Sample records for ecosystem engineers patterns

  1. Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis.

    PubMed

    Romero, Gustavo Q; Gonçalves-Souza, Thiago; Vieira, Camila; Koricheva, Julia

    2015-08-01

    Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  2. Indirect effects of ecosystem engineering combine with consumer behaviour to determine the spatial distribution of herbivory.

    PubMed

    Griffen, Blaine D; Riley, Megan E; Cannizzo, Zachary J; Feller, Ilka C

    2017-10-01

    Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system. We identified herbivory patterns in a dwarf mangrove forest on the archipelago of Twin Cays, Belize. Past wood-boring activity impacted more than one-third of trees through the creation of tree holes that are now used, presumably as predation or thermal refuge, by the herbivorous mangrove tree crab Aratus pisonii. The presence of these refuges had a significant impact on plant-animal interactions; herbivory was more than fivefold higher on trees influenced by tree holes relative to those that were completely isolated from these refuges. Additionally, herbivory decreased exponentially with increasing distance from tree holes. We use individual-based simulation modelling to demonstrate that the creation of these herbivory patterns depends on a combination of the use of engineered tree holes for refuge by tree crabs, and the use of two behaviour patterns in this species-site fidelity to a "home tree," and more frequent foraging near their home tree. We demonstrate that understanding the spatial distribution of herbivory in this system depends on combining both the use of ecosystem engineering structures with individual behavioural patterns of herbivores. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  3. A global database and "state of the field" review of research into ecosystem engineering by land animals.

    PubMed

    Coggan, Nicole V; Hayward, Matthew W; Gibb, Heloise

    2018-02-28

    Ecosystem engineers have been widely studied for terrestrial systems, but global trends in research encompassing the range of taxa and functions have not previously been synthesised. We reviewed contemporary understanding of engineer fauna in terrestrial habitats and assessed the methods used to document patterns and processes, asking: (a) which species act as ecosystem engineers and with whom do they interact? (b) What are the impacts of ecosystem engineers in terrestrial habitats and how are they distributed? (c) What are the primary methods used to examine engineer effects and how have these developed over time? We considered the strengths, weaknesses and gaps in knowledge related to each of these questions and suggested a conceptual framework to delineate "significant impacts" of engineering interactions for all terrestrial animals. We collected peer-reviewed publications examining ecosystem engineer impacts and created a database of engineer species to assess experimental approaches and any additional covariates that influenced the magnitude of engineer impacts. One hundred and twenty-two species from 28 orders were identified as ecosystem engineers, performing five ecological functions. Burrowing mammals were the most researched group (27%). Half of all studies occurred in dry/arid habitats. Mensurative studies comparing sites with and without engineers (80%) were more common than manipulative studies (20%). These provided a broad framework for predicting engineer impacts upon abundance and species diversity. However, the roles of confounding factors, processes driving these patterns and the consequences of experimentally adjusting variables, such as engineer density, have been neglected. True spatial and temporal replication has also been limited, particularly for emerging studies of engineer reintroductions. Climate change and habitat modification will challenge the roles that engineers play in regulating ecosystems, and these will become important avenues for future research. We recommend future studies include simulation of engineer effects and experimental manipulation of engineer densities to determine the potential for ecological cascades through trophic and engineering pathways due to functional decline. We also recommend improving knowledge of long-term engineering effects and replication of engineer reintroductions across landscapes to better understand how large-scale ecological gradients alter the magnitude of engineering impacts. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  4. Latitudinal gradients in ecosystem engineering by oysters vary across habitats.

    PubMed

    McAfee, Dominic; Cole, Victoria J; Bishop, Melanie J

    2016-04-01

    Ecological theory predicts that positive interactions among organisms will increase across gradients of increasing abiotic stress or consumer pressure. This theory has been supported by empirical studies examining the magnitude of ecosystem engineering across environmental gradients and between habitat settings at local scale. Predictions that habitat setting, by modifying both biotic and abiotic factors, will determine large-scale gradients in ecosystem engineering have not been tested, however. A combination of manipulative experiments and field surveys assessed whether along the east Australian coastline: (1) facilitation of invertebrates by the oyster Saccostrea glomerata increased across a latitudinal gradient in temperature; and (2) the magnitude of this effect varied between intertidal rocky shores and mangrove forests. It was expected that on rocky shores, where oysters are the primary ecosystem engineer, they would play a greater role in ameliorating latitudinal gradients in temperature than in mangroves, where they are a secondary ecosystem engineer living under the mangrove canopy. On rocky shores, the enhancement of invertebrate abundance in oysters as compared to bare microhabitat decreased with latitude, as the maximum temperatures experienced by intertidal organisms diminished. By contrast, in mangrove forests, where the mangrove canopy resulted in maximum temperatures that were cooler and of greater humidity than on rocky shores, we found no evidence of latitudinal gradients of oyster effects on invertebrate abundance. Contrary to predictions, the magnitude by which oysters enhanced biodiversity was in many instances similar between mangroves and rocky shores. Whether habitat-context modifies patterns of spatial variation in the effects of ecosystem engineers on community structure will depend, in part, on the extent to which the environmental amelioration provided by an ecosystem engineer replicates that of other co-occurring ecosystem engineers.

  5. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    PubMed

    Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process.

  6. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna

    PubMed Central

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as “ecosystem engineers” are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a “space-for-time” substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process. PMID:27902757

  7. Effects of temporal fluctuation in population processes of intertidal Lanice conchilega (Pallas, 1766) aggregations on its ecosystem engineering

    NASA Astrophysics Data System (ADS)

    Alves, Renata M. S.; Vanaverbeke, Jan; Bouma, Tjeerd J.; Guarini, Jean-Marc; Vincx, Magda; Van Colen, Carl

    2017-03-01

    Ecosystem engineers contribute to ecosystem functioning by regulating key environmental attributes, such as habitat availability and sediment biogeochemistry. While autogenic engineers can increase habitat complexity passively and provide physical protection to other species, allogenic engineers can regulate sediment oxygenation and biogeochemistry through bioturbation and/or bioirrigation. Their effects rely on the physical attributes of the engineer and/or its biogenic constructs, such as abundance and/or size. The present study focused on tube aggregations of a sessile, tube-building polychaete that engineers marine sediments, Lanice conchilega. Its tube aggregations modulate water flow by dissipating energy, influencing sedimentary processes and increasing particle retention. These effects can be influenced by temporal fluctuations in population demographic processes. Presently, we investigated the relationship between population processes and ecosystem engineering through an in-situ survey (1.5 years) of L. conchilega aggregations at the sandy beach of Boulogne-sur-Mer (France). We (1) evaluated temporal patterns in population structure, and (2) investigated how these are related to the ecosystem engineering of L. conchilega on marine sediments. During our survey, we assessed tube density, demographic structure, and sediment properties (surficial chl-a, EPS, TOM, median and mode grain size, sorting, and mud and water content) on a monthly basis for 12 intertidal aggregations. We found that the population was mainly composed by short-lived (6-10 months), small-medium individuals. Mass mortality severely reduced population density during winter. However the population persisted, likely due to recruits from other populations, which are associated to short- and long-term population dynamics. Two periods of recruitment were identified: spring/summer and autumn. Population density was highest during the spring recruitment and significantly affected several environmental properties (i.e. EPS, TOM, mode grain size, mud and water content), suggesting that demographic processes may be responsible for periods of pronounced ecosystem engineering with densities of approx. 30 000 ind·m-2.

  8. Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile.

    PubMed

    Anderson, Christopher B; Rosemond, Amy D

    2007-11-01

    Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of macroinvertebrate biomass (positive) were inversely related. Thus, while a generally positive relationship between diversity and ecosystem function has been found in a variety of systems, this work shows how they can be decoupled by responding to alterative mechanisms.

  9. Linking biogeomorphic feedbacks from ecosystem engineer to landscape scale: a panarchy approach

    NASA Astrophysics Data System (ADS)

    Eichel, Jana

    2017-04-01

    Scale is a fundamental concept in both ecology and geomorphology. Therefore, scale-based approaches are a valuable tool to bridge the disciplines and improve the understanding of feedbacks between geomorphic processes, landforms, material and organisms and ecological processes in biogeomorphology. Yet, linkages between biogeomorphic feedbacks on different scales, e.g. between ecosystem engineering and landscape scale patterns and dynamics, are not well understood. A panarchy approach sensu Holling et al. (2002) can help to close this research gap and explain how structure and function are created in biogeomorphic ecosystems. Based on results from previous biogeomorphic research in Turtmann glacier foreland (Switzerland; Eichel, 2017; Eichel et al. 2013, 2016), a panarchy concept is presented for lateral moraine slope biogeomorphic ecosystems. It depicts biogeomorphic feedbacks on different spatiotemporal scales as a set of nested adaptive cycles and links them by 'remember' and 'revolt' connections. On a small scale (cm2 - m2; seconds to years), the life cycle of the ecosystem engineer Dryas octopetala L. is considered as an adaptive cycle. Biogeomorphic succession within patches created by geomorphic processes represents an intermediate scale adaptive cycle (m2 - ha, years to decades), while geomorphic and ecologic pattern development at a landscape scale (ha - km2, decades to centuries) can be illustrated by an adaptive cycle of ‚biogeomorphic patch dynamics' (Eichel, 2017). In the panarchy, revolt connections link the smaller scale adaptive cycles to larger scale cycles: on lateral moraine slopes, the development of ecosystem engineer biomass and cover controls the engineering threshold of the biogeomorphic feedback window (Eichel et al., 2016) and therefore the onset of the biogeomorphic phase during biogeomorphic succession. In this phase, engineer patches and biogeomorphic structures can be created in the patch mosaic of the landscape. Remember connections link larger scale adaptive cycles to smaller scale cycles: configuration and properties of the lateral moraine slope patch mosaic control patch recolonization during biogeomorphic succession, while the patch-internal disturbance regime determines when the engineer can establish (establishment threshold of the biogeomorphic feedback window). Jointly, biogeomorphic feedback adaptive cycles and their connections in the panarchy create structure and function in the lateral moraine slope biogeomorphic ecosystem. Thus, by linking feedbacks on different spatiotemporal scales in biogeomorphic ecosystems and explaining the creation of ecosystem structure and function, the panarchy concept represents a useful tool for future biogeomorphic research. Eichel, J. 2017. Biogeomorphic dynamics in the Turtmann glacier forefield, Switzerland. PhD thesis, University of Bonn. Eichel J, Corenblit D, Dikau R. 2016. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surface Processes and Landforms 41: 406-419. DOI: 10.1002/esp.3859 Eichel J, Krautblatter M, Schmidtlein S, Dikau R. 2013. Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201 : 98-110. DOI: 10.1016/j.geomorph.2013.06.012 Holling CS, Gunderson LH, Peterson GD. 2002. Sustainability and Panarchies. In Panarchy: Understanding Transformations in Human and Natural Systems , . Island Press: Washington, D.C.; 63-102.

  10. Abundance and fragmentation patterns of the ecosystem engineer Lithophyllum byssoides (Lamarck) Foslie along the Iberian Peninsula Atlantic coast. Conservation and management implications

    NASA Astrophysics Data System (ADS)

    Veiga, Puri; Rubal, Marcos; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-10-01

    The crustose calcareous red macroalgae Lithophyllum byssoides (Lamarck) Foslie is a common ecosystem engineer along the Atlantic and Mediterranean coast of the Iberian Peninsula. This species is threatened by several anthropogenic impacts acting at different spatial scales, such as pollution or global warming. The aim of this study is to identify scales of spatial variation in the abundance and fragmentation patterns of L. byssoides along the Atlantic coast of the Iberian Peninsula. For this aim we used a hierarchical sampling design considering four spatial scales (from metres to 100s of kilometres). Results of the present study indicated no significant variability among regions investigated whereas significant variability was found at the scales of shore and site in spatial patterns of abundance and fragmentation of L. byssoides. Variance components were higher at the spatial scale of shore for abundance and fragmentation of L. byssoides with the only exception of percentage cover and thus, processes acting at the scale of 10s of kilometres seem to be more relevant in shaping the spatial variability both in abundance and fragmentation of L. byssoides. These results provided quantitative estimates of abundance and fragmentation of L. byssoides at the Atlantic coast of the Iberian Peninsula establishing the observational basis for future assessment, monitoring and experimental investigations to identify the processes and anthropogenic impacts affecting L. byssoides populations. Finally we have also identified percentage cover and patch density as the best variables for long-term monitoring programs aimed to detect future anthropogenic impacts on L. byssoides. Therefore, our results have important implications for conservation and management of this valuable ecosystem engineer along the Atlantic coast of the Iberian Peninsula.

  11. Follow-on proposal identifying environmental features for land management decisions

    NASA Technical Reports Server (NTRS)

    Wright, P. M.; Ridd, M. K.

    1986-01-01

    Urban morphology (an examination of spatial fabric and structure), natural ecosystem (investigations emphasizing biophysical processes and patterns), and human ecosystem (emphasizing socio-economic and engineering parameters) were studied. The most critical variable, transpiration, in the ASPCON model, created by Jaynes (1978), describing the hydrology of aspen to conifer succession was studied to improve the accuracy. Transpiration is determined by a canopy transpiration model which estimates consumptive water use (CWU) for specific species and a plant activity index. Also studied was Pinyon-Juniper woodland erosion.

  12. Functional groups of ecosystem engineers: a proposed classification with comments on current issues.

    PubMed

    Berke, Sarah K

    2010-08-01

    Ecologists have long known that certain organisms fundamentally modify, create, or define habitats by altering the habitat's physical properties. In the past 15 years, these processes have been formally defined as "ecosystem engineering", reflecting a growing consensus that environmental structuring by organisms represents a fundamental class of ecological interactions occurring in most, if not all, ecosystems. Yet, the precise definition and scope of ecosystem engineering remains debated, as one should expect given the complexity, enormity, and variability of ecological systems. Here I briefly comment on a few specific current points of contention in the ecosystem engineering concept. I then suggest that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers. Finally, I suggest some conceptual model frameworks that could apply broadly within these functional groups.

  13. Engineering Ecosystems and Synthetic Ecologies#

    PubMed Central

    Mee, Michael T; Wang, Harris H

    2012-01-01

    Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235

  14. Earthworms as ecosystem engineers and the most important detritivors in forest soils.

    PubMed

    Kooch, Yahya; Jalilvand, Hamid

    2008-03-15

    Earthworms are considered as soil engineers because of their effects on soil properties and their influence on the availability of resources for other organisms, including microorganisms and plants. However, the links between their impacts on the soil environment and the resulting modification of natural selection pressures on engineer as well as on other organisms have received little attention. Earthworms are known to have a positive influence on the soil fabric and on the decomposition and mineralization of litter by breaking down organic matter and producing large amounts of fasces, thereby mixing litter with the mineral soil. Therefore, they play an important part in changes from one humus from to another according to forest succession patterns. Consequently, they are also expected to be good bio-indicators for forest site quality and are thus useful when planning forest production improvement. Earthworm's populations are as indicator that in exploited regions is destruction indicator and reclamation plans is nature return indicator. In this study we summarized the current knowledge in relation to earthworm's ecology in forest soils as ecosystem engineers.

  15. Shift in fire-ecosystems and weather changes

    Treesearch

    Bongani Finiza

    2013-01-01

    During recent decades too much focus fell on fire suppression and fire engineering methods. Little attention has been given to understanding the shift in the changing fire weather resulting from the global change in weather patterns. Weather change have gradually changed the way vegetation cover respond to fire occurrence and brought about changes in fire behavior and...

  16. Organisms as cooperative ecosystem engineers in intertidal flats

    NASA Astrophysics Data System (ADS)

    Passarelli, Claire; Olivier, Frédéric; Paterson, David M.; Meziane, Tarik; Hubas, Cédric

    2014-09-01

    The importance of facilitative interactions and organismal ecosystem engineering for establishing the structure of communities is increasingly being recognised for many different ecosystems. For example, soft-bottom tidal flats host a wide range of ecosystem engineers, probably because the harsh physico-chemical environmental conditions render these species of particular importance for community structure and function. These environments are therefore interesting when focusing on how ecosystem engineers interact and the consequences of these interactions on community dynamics. In this review, we initially detail the influence on benthic systems of two kinds of ecosystem engineers that are particularly common in tidal flats. Firstly, we examine species providing biogenic structures, which are often the only source of habitat complexity in these environments. Secondly, we focus on species whose activities alter sediment stability, which is a crucial feature structuring the dynamics of communities in tidal flats. The impacts of these engineers on both environment and communities were assessed but in addition the interaction between ecosystem engineers was examined. Habitat cascades occur when one engineer favours the development of another, which in turn creates or modifies and improves habitat for other species. Non-hierarchical interactions have often been shown to display non-additive effects, so that the effects of the association cannot be predicted from the effects of individual organisms. Here we propose the term of “cooperative ecosystem engineering” when two species interact in a way which enhances habitat suitability as a result of a combined engineering effect. Finally, we conclude by describing the potential threats for ecosystem engineers in intertidal areas, potential effects on their interactions and their influence on communities and ecosystem function.

  17. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process

    PubMed Central

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A.; Lohrer, Andrew M.; Wethey, David S.; Hewitt, Judi E.; Thrush, Simon F.

    2016-01-01

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes. PMID:27230562

  18. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process.

    PubMed

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F

    2016-05-27

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.

  19. Identifying Ancient Settlement Patterns through LiDAR in the Mosquitia Region of Honduras.

    PubMed

    Fisher, Christopher T; Fernández-Diaz, Juan Carlos; Cohen, Anna S; Neil Cruz, Oscar; Gonzáles, Alicia M; Leisz, Stephen J; Pezzutti, Florencia; Shrestha, Ramesh; Carter, William

    2016-01-01

    The Mosquitia ecosystem of Honduras occupies the fulcrum between the American continents and as such constitutes a critical region for understanding past patterns of socio-political development and interaction. Heavy vegetation, rugged topography, and remoteness have limited scientific investigation. This paper presents prehistoric patterns of settlement and landuse for a critical valley within the Mosquitia derived from airborne LiDAR scanning and field investigation. We show that (i) though today the valley is a wilderness it was densely inhabited in the past; (ii) that this population was organized into a three-tiered system composed of 19 settlements dominated by a city; and, (iii) that this occupation was embedded within a human engineered landscape. We also add to a growing body of literature that demonstrates the utility of LiDAR as means for rapid cultural assessments in undocumented regions for analysis and conservation. Our ultimate hope is for our work to promote protections to safeguard the unique and critically endangered Mosquitia ecosystem and other similar areas in need of preservation.

  20. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses

    NASA Astrophysics Data System (ADS)

    Bouma, Tjeerd J.; Olenin, Sergej; Reise, Karsten; Ysebaert, Tom

    2009-03-01

    Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and dissolved material fluxes between the land and sea, and between the benthos and the passing water or air. Above all, habitat engineering exerts facilitating and inhibiting effects on biodiversity. Despite a strongly growing interest in the functional role of ecosystem engineering over the recent years, compared to food web analyses, the conceptual understanding of engineering-mediated species interactions is still in its infancy. In the present paper, we provide a concise overview on current insights and propose two hypotheses on the general mechanisms by which ecosystem engineering may affect biodiversity in coastal sediments. We hypothesise that autogenic and allogenic ecosystem engineers have inverse effects on epibenthic and endobenthic biodiversity in coastal sediments. The primarily autogenic structures of the epibenthos achieve high diversity at the expense of endobenthos, whilst allogenic sediment reworking by infauna may facilitate other infauna and inhibits epibenthos. On a larger scale, these antagonistic processes generate patchiness and habitat diversity. Due to such interaction, anthropogenic influences can strongly modify the engineering community by removing autogenic ecosystem engineers through coastal engineering or bottom trawling. Another source of anthropogenic influences comes from introducing invasive engineers, from which the impact is often hard to predict. We hypothesise that the local biodiversity effects of invasive ecosystem engineers will depend on the engineering strength of the invasive species, with engineering strength defined as the number of habitats it can invade and the extent of modification. At a larger scale of an entire shore, biodiversity need not be decreased by invasive engineers and may even increase. On a global scale, invasive engineers may cause shore biota to converge, especially visually due to the presence of epibenthic structures.

  1. Does competition among ecosystem engineering species result in tradeoffs in the production of ecosystem services?

    EPA Science Inventory

    Production of ecosystem services depends on the ecological community structure at a given location. Ecosystem engineering species (EES) can strongly determine community structure, but do they consequently determine the production of ecosystem services? We explore this question ...

  2. Ecosystem engineering affects ecosystem functioning in high-Andean landscapes.

    PubMed

    Badano, Ernesto I; Marquet, Pablo A

    2008-04-01

    Ecosystem engineers are organisms that change the distribution of materials and energy in the abiotic environment, usually creating and maintaining new habitat patches in the landscape. Such changes in habitat conditions have been widely documented to affect the distributions and performances of other species but up to now no studies have addressed how such effects can impact the biotically driven physicochemical processes associated with these landscapes, or ecosystem functions. Based on the widely accepted positive relationship between species diversity and ecosystem functions, we propose that the effects of ecosystem engineers on other species could have an impact on ecosystem functions via two mutually inclusive mechanisms: (1) by adding new species into landscapes, hence increasing species diversity; and (2) by improving the performances of species already present in the landscape. To test these hypotheses, we focused on the effects of a high-Andean ecosystem engineer, the cushion plant Azorella monantha, by comparing the accumulation of plant biomass and nitrogen fixed in plant tissues as species richness increases in landscapes with and without the engineer species. Our results show that both ecosystem functions increased with species richness in both landscape types, but landscapes including A. monantha cushions reached higher outcomes of plant biomass and nitrogen fixed in plant tissues than landscapes without cushions. Moreover, our results indicate that such positive effects on ecosystem functions could be mediated by the two mechanisms proposed above. Then, given the conspicuousness of ecosystem engineering in nature and its strong influence on species diversity, and given the well-known relationship between species diversity and ecosystem function, we suggest that the application of the conceptual framework proposed herein to other ecosystems would help to advance our understanding of the forces driving ecosystem functioning.

  3. [Theory and practice of bionic cultivation of traditional Chinese medicine].

    PubMed

    Liu, Dahui; Huang, Luqi; Guo, Lanping; Shao, Aijuan; Chen, Meilan

    2009-03-01

    The bionic cultivation of medicinal plant is an ecological cultivation pattern, which is adopting ecological engineering and modern agricultural techniques to simulate the natural ecosystem of wild medicinal plant community, and has been given greater attention on the agriculture of traditional Chinese medicine (TCM). It is also the cross subject that combines Chinese traditional medicine, agronomy, horticulture, ecology, agricultural engineering and management. Moreover, it has significant technology advantages of promoting the sustainable utilization of medicinal plant resources, improving the ecological environment and harmonizing man and nature. So it's important to develop the bionic cultivation of TCM.

  4. Habitat-Mediated Variation in the Importance of Ecosystem Engineers for Secondary Cavity Nesters in a Nest Web

    PubMed Central

    Robles, Hugo; Martin, Kathy

    2014-01-01

    Through physical state changes in biotic or abiotic materials, ecosystem engineers modulate resource availability to other organisms and are major drivers of evolutionary and ecological dynamics. Understanding whether and how ecosystem engineers are interchangeable for resource users in different habitats is a largely neglected topic in ecosystem engineering research that can improve our understanding of the structure of communities. We addressed this issue in a cavity-nest web (1999–2011). In aspen groves, the presence of mountain bluebird (Sialia currucoides) and tree swallow (Tachycineta bicolour) nests was positively related to the density of cavities supplied by northern flickers (Colaptes auratus), which provided the most abundant cavities (1.61 cavities/ha). Flickers in aspen groves provided numerous nesting cavities to bluebirds (66%) and swallows (46%), despite previous research showing that flicker cavities are avoided by swallows. In continuous mixed forests, however, the presence of nesting swallows was mainly related to cavity density of red-naped sapsuckers (Sphyrapicus nuchalis), which provided the most abundant cavities (0.52 cavities/ha), and to cavity density of hairy woodpeckers (Picoides villosus), which provided few (0.14 cavities/ha) but high-quality cavities. Overall, sapsuckers and hairy woodpeckers provided 86% of nesting cavities to swallows in continuous forests. In contrast, the presence of nesting bluebirds in continuous forests was associated with the density of cavities supplied by all the ecosystem engineers. These results suggest that (i) habitat type may mediate the associations between ecosystem engineers and resource users, and (ii) different ecosystem engineers may be interchangeable for resource users depending on the quantity and quality of resources that each engineer supplies in each habitat type. We, therefore, urge the incorporation of the variation in the quantity and quality of resources provided by ecosystem engineers across habitats into models that assess community dynamics to improve our understanding of the importance of ecosystem engineers in shaping ecological communities. PMID:24587211

  5. Habitat-mediated variation in the importance of ecosystem engineers for secondary cavity nesters in a nest web.

    PubMed

    Robles, Hugo; Martin, Kathy

    2014-01-01

    Through physical state changes in biotic or abiotic materials, ecosystem engineers modulate resource availability to other organisms and are major drivers of evolutionary and ecological dynamics. Understanding whether and how ecosystem engineers are interchangeable for resource users in different habitats is a largely neglected topic in ecosystem engineering research that can improve our understanding of the structure of communities. We addressed this issue in a cavity-nest web (1999-2011). In aspen groves, the presence of mountain bluebird (Sialia currucoides) and tree swallow (Tachycineta bicolour) nests was positively related to the density of cavities supplied by northern flickers (Colaptes auratus), which provided the most abundant cavities (1.61 cavities/ha). Flickers in aspen groves provided numerous nesting cavities to bluebirds (66%) and swallows (46%), despite previous research showing that flicker cavities are avoided by swallows. In continuous mixed forests, however, the presence of nesting swallows was mainly related to cavity density of red-naped sapsuckers (Sphyrapicus nuchalis), which provided the most abundant cavities (0.52 cavities/ha), and to cavity density of hairy woodpeckers (Picoides villosus), which provided few (0.14 cavities/ha) but high-quality cavities. Overall, sapsuckers and hairy woodpeckers provided 86% of nesting cavities to swallows in continuous forests. In contrast, the presence of nesting bluebirds in continuous forests was associated with the density of cavities supplied by all the ecosystem engineers. These results suggest that (i) habitat type may mediate the associations between ecosystem engineers and resource users, and (ii) different ecosystem engineers may be interchangeable for resource users depending on the quantity and quality of resources that each engineer supplies in each habitat type. We, therefore, urge the incorporation of the variation in the quantity and quality of resources provided by ecosystem engineers across habitats into models that assess community dynamics to improve our understanding of the importance of ecosystem engineers in shaping ecological communities.

  6. Identifying Ancient Settlement Patterns through LiDAR in the Mosquitia Region of Honduras

    PubMed Central

    Fernández-Diaz, Juan Carlos; Cohen, Anna S.; Neil Cruz, Oscar; Gonzáles, Alicia M.; Leisz, Stephen J.; Pezzutti, Florencia; Shrestha, Ramesh; Carter, William

    2016-01-01

    The Mosquitia ecosystem of Honduras occupies the fulcrum between the American continents and as such constitutes a critical region for understanding past patterns of socio-political development and interaction. Heavy vegetation, rugged topography, and remoteness have limited scientific investigation. This paper presents prehistoric patterns of settlement and landuse for a critical valley within the Mosquitia derived from airborne LiDAR scanning and field investigation. We show that (i) though today the valley is a wilderness it was densely inhabited in the past; (ii) that this population was organized into a three-tiered system composed of 19 settlements dominated by a city; and, (iii) that this occupation was embedded within a human engineered landscape. We also add to a growing body of literature that demonstrates the utility of LiDAR as means for rapid cultural assessments in undocumented regions for analysis and conservation. Our ultimate hope is for our work to promote protections to safeguard the unique and critically endangered Mosquitia ecosystem and other similar areas in need of preservation. PMID:27560962

  7. Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata.

    PubMed

    Emery, Sarah M; Bell-Dereske, Lukas; Rudgers, Jennifer A

    2015-04-01

    Ecosystem engineer species influence their community and ecosystem by creating or altering the physical structure of habitats. The function of ecosystem engineers is variable and can depend on both abiotic and biotic factors. Here we make use of a primary successional system to evaluate the direct and interactive effects of climate change (precipitation) and fungal endophyte symbiosis on population traits and ecosystem function of the ecosystem engineering grass species, Ammophila breviligulata. We manipulated endophyte presence in A. breviligulata in combination with rain-out shelters and rainfall additions in a factorial field experiment established in 2010 on Lake Michigan sand dunes. We monitored plant traits, survival, growth, and sexual reproduction of A. breviligulata from 2010-2013, and quantified ecosystem engineering as the sand accumulation rate. Presence of the endophyte in A. breviligulata increased vegetative growth by up to 19%, and reduced sexual reproduction by up to 46% across all precipitation treatments. Precipitation was a less significant factor than endophyte colonization for A. breviligulata growth. Reduced precipitation increased average leaf number per tiller but had no other effects on plant traits. Changes in A. breviligulata traits corresponded to increases in sand accumulation in plots with the endophyte as well as in plots with reduced precipitation. Sand accumulation is a key ecosystem function in these primary successional habitats, and so microbial symbiosis in this ecosystem engineer could lead to direct effects on the value of these dune habitats for humans.

  8. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Measuring the contribution of benthic ecosystem engineering species to the ecosystem services of an estuary: A case study of burrowing shrimps in Yaquina Estuary, Oregon

    EPA Science Inventory

    Burrowing shrimps are regarded as ecosystem engineering species in many coastal ecosystems worldwide, including numerous estuaries of the west coast of North America (Baja California to British Columbia). In estuaries of the U.S. Pacific Northwest, two species of large burrowing...

  10. Measuring the contribution of benthic ecosystem engineering species to the ecosystem services of an estuary: A case study of burrowing shrimps in Yaquina Estuary, Oregon - April 2009

    EPA Science Inventory

    Burrowing shrimps are regarded as ecosystem engineering species in many coastal ecosystems worldwide, including numerous estuaries of the west coast of North America (Baja California to British Columbia). In estuaries of the U.S. Pacific Northwest, two species of large burrowing...

  11. Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems.

    PubMed

    Mohanty, Anee; Wu, Yichao; Cao, Bin

    2014-10-01

    In natural and engineered environments, microorganisms often exist as complex communities, which are key to the health of ecosystems and the success of bioprocesses in various engineering applications. With the rapid development of nanotechnology in recent years, engineered nanomaterials (ENMs) have been considered one type of emerging contaminants that pose great potential risks to the proper function of microbial communities in natural and engineered ecosystems. The impacts of ENMs on microorganisms have attracted increasing research attentions; however, most studies focused on the antimicrobial activities of ENMs at single cell and population level. Elucidating the influence of ENMs on microbial communities represents a critical step toward a comprehensive understanding of the ecotoxicity of ENMs. In this mini-review, we summarize and discuss recent research work on the impacts of ENMs on microbial communities in natural and engineered ecosystems, with an emphasis on their influences on the community structure and function. We also highlight several important research topics which may be of great interest to the research community.

  12. Resource Quantity and Quality Determine the Inter-Specific Associations between Ecosystem Engineers and Resource Users in a Cavity-Nest Web

    PubMed Central

    Robles, Hugo; Martin, Kathy

    2013-01-01

    While ecosystem engineering is a widespread structural force of ecological communities, the mechanisms underlying the inter-specific associations between ecosystem engineers and resource users are poorly understood. A proper knowledge of these mechanisms is, however, essential to understand how communities are structured. Previous studies suggest that increasing the quantity of resources provided by ecosystem engineers enhances populations of resource users. In a long-term study (1995-2011), we show that the quality of the resources (i.e. tree cavities) provided by ecosystem engineers is also a key feature that explains the inter-specific associations in a tree cavity-nest web. Red-naped sapsuckers ( Sphyrapicus nuchalis ) provided the most abundant cavities (52% of cavities, 0.49 cavities/ha). These cavities were less likely to be used than other cavity types by mountain bluebirds ( Sialia currucoides ), but provided numerous nest-sites (41% of nesting cavities) to tree swallows ( Tachycineta bicolour ). Swallows experienced low reproductive outputs in northern flicker ( Colaptes auratus ) cavities compared to those in sapsucker cavities (1.1 vs. 2.1 fledglings/nest), but the highly abundant flickers (33% of cavities, 0.25 cavities/ha) provided numerous suitable nest-sites for bluebirds (58%). The relative shortage of cavities supplied by hairy woodpeckers ( Picoides villosus ) and fungal/insect decay (<10% of cavities each, <0.09 cavities/ha) provided fewer breeding opportunities (<15% of nests), but represented high quality nest-sites for both bluebirds and swallows. Because both the quantity and quality of resources supplied by different ecosystem engineers may explain the amount of resources used by each resource user, conservation strategies may require different management actions to be implemented for the key ecosystem engineer of each resource user. We, therefore, urge the incorporation of both resource quantity and quality into models that assess community dynamics to improve conservation actions and our understanding of ecological communities based on ecosystem engineering. PMID:24040324

  13. Resource quantity and quality determine the inter-specific associations between ecosystem engineers and resource users in a cavity-nest web.

    PubMed

    Robles, Hugo; Martin, Kathy

    2013-01-01

    While ecosystem engineering is a widespread structural force of ecological communities, the mechanisms underlying the inter-specific associations between ecosystem engineers and resource users are poorly understood. A proper knowledge of these mechanisms is, however, essential to understand how communities are structured. Previous studies suggest that increasing the quantity of resources provided by ecosystem engineers enhances populations of resource users. In a long-term study (1995-2011), we show that the quality of the resources (i.e. tree cavities) provided by ecosystem engineers is also a key feature that explains the inter-specific associations in a tree cavity-nest web. Red-naped sapsuckers (Sphyrapicusnuchalis) provided the most abundant cavities (52% of cavities, 0.49 cavities/ha). These cavities were less likely to be used than other cavity types by mountain bluebirds (Sialiacurrucoides), but provided numerous nest-sites (41% of nesting cavities) to tree swallows (Tachycinetabicolour). Swallows experienced low reproductive outputs in northern flicker (Colaptesauratus) cavities compared to those in sapsucker cavities (1.1 vs. 2.1 fledglings/nest), but the highly abundant flickers (33% of cavities, 0.25 cavities/ha) provided numerous suitable nest-sites for bluebirds (58%). The relative shortage of cavities supplied by hairy woodpeckers (Picoidesvillosus) and fungal/insect decay (<10% of cavities each, <0.09 cavities/ha) provided fewer breeding opportunities (<15% of nests), but represented high quality nest-sites for both bluebirds and swallows. Because both the quantity and quality of resources supplied by different ecosystem engineers may explain the amount of resources used by each resource user, conservation strategies may require different management actions to be implemented for the key ecosystem engineer of each resource user. We, therefore, urge the incorporation of both resource quantity and quality into models that assess community dynamics to improve conservation actions and our understanding of ecological communities based on ecosystem engineering.

  14. Emergent Properties Delineate Marine Ecosystem Perturbation and Recovery.

    PubMed

    Link, Jason S; Pranovi, Fabio; Libralato, Simone; Coll, Marta; Christensen, Villy; Solidoro, Cosimo; Fulton, Elizabeth A

    2015-11-01

    Whether there are common and emergent patterns from marine ecosystems remains an important question because marine ecosystems provide billions of dollars of ecosystem services to the global community, but face many perturbations with significant consequences. Here, we develop cumulative trophic patterns for marine ecosystems, featuring sigmoidal cumulative biomass (cumB)-trophic level (TL) and 'hockey-stick' production (cumP)-cumB curves. The patterns have a trophodynamic theoretical basis and capitalize on emergent, fundamental, and invariant features of marine ecosystems. These patterns have strong global support, being observed in over 120 marine ecosystems. Parameters from these curves elucidate the direction and magnitude of marine ecosystem perturbation or recovery; if biomass and productivity can be monitored effectively over time, such relations may prove to be broadly useful. Curve parameters are proposed as possible ecosystem thresholds, perhaps to better manage the marine ecosystems of the world. Published by Elsevier Ltd.

  15. Fluvial gravel stabilization by net-spinning Hydropsychid caddisflies: exploring the magnitude and geographic scope of ecosystem engineering effect and evaluating resistance to anthropogenic stresses

    NASA Astrophysics Data System (ADS)

    Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.

    2017-12-01

    Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.

  16. Resilience in ecotoxicology: Toward a multiple equilibrium concept

    USGS Publications Warehouse

    Bundschuh, Mirco; Schulz, Ralf; Allen, Craig R.; Angeler, David G.

    2017-01-01

    The term resilience describes stress–response patterns across scientific disciplines. In ecology, advances have been made to clearly define resilience based on underlying mechanistic assumptions. Engineering resilience (rebound) is used to describe the ability of organisms to recover from adverse conditions (disturbances), which is termed the rate of recovery. By contrast, the ecological resilience definition considers a systemic change, that is, when ecosystems reorganize into a new regime following disturbance. Under this new regime, structural and functional aspects change considerably relative to the previous regime, without recovery. In this context, resilience is an emergent property of complex systems. In the present study, we argue that both definitions and uses are appropriate in ecotoxicology, and although the differences are subtle, the implications and uses are profoundly different. We discuss resilience concepts in ecotoxicology, where the prevailing view of resilience is engineering resilience from chemical stress. Ecological resilience may also be useful for describing systemic ecological changes because of chemical stress. We present quantitative methods that allow ecotoxicologists and risk managers to assess whether an ecosystem faces an impending regime shift or whether it has already undergone such a shift. We contend that engineering and ecological resilience help to distinguish ecotoxicological responses to chemical stressors mechanistically and thus have implications for theory, policy, and application.

  17. Influence of small-scale disturbances by kangaroo rats on Chihuahuan Desert ants

    Treesearch

    R. L. Schooley; B. T. Bestelmeyer; J. F. Kelly

    2000-01-01

    Banner-tailed kangaroo rats (Dipodomys spectabilis) are prominent ecosystem engineers that build large mounds that influence the spatial structuring of fungi, plants, and some ground-dwelling animals. Ants are diverse and functionally important components of arid ecosystems; some species are also ecosystem engineers. We investigated the effects of...

  18. Sponge epibionts on ecosystem-engineering ascidians: The case of Microcosmus sabatieri

    NASA Astrophysics Data System (ADS)

    Voultsiadou, Eleni; Kyrodimou, Marianthi; Antoniadou, Chryssanthi; Vafidis, Dimitris

    2010-03-01

    The study of epibionts on habitat engineering ascidians is of increasing interest because changes in the population structure of the latter may affect associated communities, especially in the case of commercially exploited species. The solitary ascidian Microcosmus sabatieri lives on rocky cliffs in the Eastern Mediterranean and is harvested in certain Aegean areas. Its hard, wrinkled tunic is usually fouled by various epibionts both sessile and motile. Sponges are an important component of this complex and their biomass may be higher than that of the ascidian itself, strongly affecting diversity and abundance of the motile epifauna. The aim of this study was to examine in detail the structure of the epibiotic sponge assemblage on ascidians collected from their main fishing grounds in the South Aegean Sea. A rich (41 species) and taxonomically diverse sponge assemblage was found, while only eight species contributed 80% of the total sponge cover. Most of the epibiotic sponges commonly grow on the surrounding sublittoral cliffs. The encrusting sponge growth form prevailed in cover of the ascidian tunic, while two massive species dominated in terms of frequency of appearance and abundance. Ascidian dimensions, weight and volume were significantly correlated with sponge diversity, abundance and cover area, thus structuring the epibiotic sponge assemblage. Spatial patterns in sponge cover were not clear, but a general declining NW to SE trend in sponge richness, abundance and cover appeared in accordance with previous records. Sponge distribution on the ascidian tunic presented a clear pattern related with characteristic features of the ascidian: the posterior zone supported the richest and most expansive sponge fauna. The ecosystem-engineering process performed by the ascidian is enhanced by the diverse epibiotic sponge assemblage, thus further increasing habitat complexity in this space-limited, temperate, sublittoral, rocky environment.

  19. Pattern formation--A missing link in the study of ecosystem response to environmental changes.

    PubMed

    Meron, Ehud

    2016-01-01

    Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of ecological restoration and climate change on ecosystems: a case study in the Three-Rivers Headwater Region, China.

    PubMed

    Jiang, Chong; Zhang, Linbo

    2016-06-01

    The Three-Rivers Headwater Region (TRHR) is the headwater of the Yangtze River Basin (YARB), Yellow River Basin (YRB), and Lancang River Basin (LRB); it is known as China's 'Water Tower' owing to its important supply of freshwater. In order to assess ecosystem changes in the TRHR during 2000-2012, we systematically and comprehensively evaluated a combination of model simulation results and actual observational data. The results showed the following: (1) Ecosystem pattern was relatively stable during 2000-2010, with a slight decrease in farmland and desert areas, and a slight increase in grassland and wetland/water-body areas. (2) A warmer and wetter climate, and ecological engineering, caused the vegetation cover and productivity to significantly improve. (3) Precipitation was the main controlling factor for streamflow. A significant increase in precipitation during 2000-2012 resulted in an obvious increase in annual and seasonal streamflow. Glacier melting also contributed to the streamflow increase. (4) The total amount of soil conservation increased slightly from 2000 to 2012. The increase in precipitation caused rainfall erosivity to increase, which enhanced the intensity of soil erosion. The decrease in wind speed decreased wind erosion and the frequency of sandstorms. (5) The overall habitat quality in the TRHR was stable between 2000 and 2010, and the spatial pattern exhibited obvious heterogeneity. In some counties that included nature reserves, habitat quality was slightly higher in 2010 than in 2000, which reflected the effectiveness of the ecological restoration. Overall, the aforementioned ecosystem changes are the combined results of ecological restoration and climate change, and they are likely a local and temporary improvement, rather than a comprehensive and fundamental change. Therefore, more investments and efforts are needed to preserve natural ecosystems.

  1. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.

    PubMed

    Yu, Gui-Rui; Zhu, Xian-Jin; Fu, Yu-Ling; He, Hong-Lin; Wang, Qiu-Feng; Wen, Xue-Fa; Li, Xuan-Ran; Zhang, Lei-Ming; Zhang, Li; Su, Wen; Li, Sheng-Gong; Sun, Xiao-Min; Zhang, Yi-Ping; Zhang, Jun-Hui; Yan, Jun-Hua; Wang, Hui-Min; Zhou, Guang-Sheng; Jia, Bing-Rui; Xiang, Wen-Hua; Li, Ying-Nian; Zhao, Liang; Wang, Yan-Fen; Shi, Pei-Li; Chen, Shi-Ping; Xin, Xiao-Ping; Zhao, Feng-Hua; Wang, Yu-Ying; Tong, Cheng-Li

    2013-03-01

    Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long-term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited 'positive coupling correlation' in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP. © 2012 Blackwell Publishing Ltd.

  2. Shrubs as ecosystem engineers across an environmental gradient: effects on species richness and exotic plant invasion.

    PubMed

    Kleinhesselink, Andrew R; Magnoli, Susan M; Cushman, J Hall

    2014-08-01

    Ecosystem-engineering plants modify the physical environment and can increase species diversity and exotic species invasion. At the individual level, the effects of ecosystem engineers on other plants often become more positive in stressful environments. In this study, we investigated whether the community-level effects of ecosystem engineers also become stronger in more stressful environments. Using comparative and experimental approaches, we assessed the ability of a native shrub (Ericameria ericoides) to act as an ecosystem engineer across a stress gradient in a coastal dune in northern California, USA. We found increased coarse organic matter and lower wind speeds within shrub patches. Growth of a dominant invasive grass (Bromus diandrus) was facilitated both by aboveground shrub biomass and by growing in soil taken from shrub patches. Experimental removal of shrubs negatively affected species most associated with shrubs and positively affected species most often found outside of shrubs. Counter to the stress-gradient hypothesis, the effects of shrubs on the physical environment and individual plant growth did not increase across the established stress gradient at this site. At the community level, shrub patches increased beta diversity, and contained greater rarified richness and exotic plant cover than shrub-free patches. Shrub effects on rarified richness increased with environmental stress, but effects on exotic cover and beta diversity did not. Our study provides evidence for the community-level effects of shrubs as ecosystem engineers in this system, but shows that these effects do not necessarily become stronger in more stressful environments.

  3. The spatial dynamics of ecosystem engineers.

    PubMed

    Franco, Caroline; Fontanari, José F

    2017-10-01

    The changes on abiotic features of ecosystems have rarely been taken into account by population dynamics models, which typically focus on trophic and competitive interactions between species. However, understanding the population dynamics of organisms that must modify their habitats in order to survive, the so-called ecosystem engineers, requires the explicit incorporation of abiotic interactions in the models. Here we study a model of ecosystem engineers that is discrete both in space and time, and where the engineers and their habitats are arranged in patches fixed to the sites of regular lattices. The growth of the engineer population is modeled by Ricker equation with a density-dependent carrying capacity that is given by the number of modified habitats. A diffusive dispersal stage ensures that a fraction of the engineers move from their birth patches to neighboring patches. We find that dispersal influences the metapopulation dynamics only in the case that the local or single-patch dynamics exhibit chaotic behavior. In that case, it can suppress the chaotic behavior and avoid extinctions in the regime of large intrinsic growth rate of the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Sustainable exploitation and management of autogenic ecosystem engineers: application to oysters in Chesapeake Bay.

    PubMed

    Wilberg, Michael J; Wiedenmann, John R; Robinson, Jason M

    2013-06-01

    Autogenic ecosystem engineers are critically important parts of many marine and estuarine systems because of their substantial effect on ecosystem services. Oysters are of particular importance because of their capacity to modify coastal and estuarine habitats and the highly degraded status of their habitats worldwide. However, models to predict dynamics of ecosystem engineers have not previously included the effects of exploitation. We developed a linked population and habitat model for autogenic ecosystem engineers undergoing exploitation. We parameterized the model to represent eastern oyster (Crassostrea virginica) in upper Chesapeake Bay by selecting sets of parameter values that matched observed rates of change in abundance and habitat. We used the model to evaluate the effects of a range of management and restoration options including sustainability of historical fishing pressure, effectiveness of a newly enacted sanctuary program, and relative performance of two restoration approaches. In general, autogenic ecosystem engineers are expected to be substantially less resilient to fishing than an equivalent species that does not rely on itself for habitat. Historical fishing mortality rates in upper Chesapeake Bay for oysters were above the levels that would lead to extirpation. Reductions in fishing or closure of the fishery were projected to lead to long-term increases in abundance and habitat. For fisheries to become sustainable outside of sanctuaries, a substantial larval subsidy would be required from oysters within sanctuaries. Restoration efforts using high-relief reefs were predicted to allow recovery within a shorter period of time than low-relief reefs. Models such as ours, that allow for feedbacks between population and habitat dynamics, can be effective tools for guiding management and restoration of autogenic ecosystem engineers.

  5. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem.

    PubMed

    Hardman-Mountford, Nick J; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J W; Aiken, Jim

    2013-12-06

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches.

  6. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem

    PubMed Central

    Hardman-Mountford, Nick J.; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J. W.; Aiken, Jim

    2013-01-01

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches. PMID:24132201

  7. [Effects of human engineering activities on permafrost active layer and its environment in northern Qinghai-Tibetan plateau].

    PubMed

    Guo, Zhenggang; Wu, Qingbo; Niu, Fujun

    2006-11-01

    With disturbed and undisturbed belts during the construction of Qinghai-Tibet highway as test objectives, this paper studied the effects of human engineering activities on the permafrost ecosystem in northern Qinghai-Tibetan plateau. The results showed that the thickness of permafrost active layer was smaller in disturbed than in undisturbed belt, and decreased with increasing altitude in undisturbed belt while no definite pattern was observed in disturbed belt. Different vegetation types had different effects on the thickness of permafrost active layer, being decreased in the order of steppe > shrub > meadow. In the two belts, altitude was the main factor affecting the vertical distribution of soil moisture, but vegetation type was also an important affecting factor if the altitude was similar. Due to the human engineering activities, soil temperature in summer was lower in disturbed than in undisturbed belt.

  8. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.

  9. Patterns of Mass Mortality among Rocky Shore Invertebrates across 100 km of Northeastern Pacific Coastline

    PubMed Central

    Jurgens, Laura J.; Rogers-Bennett, Laura; Raimondi, Peter T.; Schiebelhut, Lauren M.; Dawson, Michael N.; Grosberg, Richard K.; Gaylord, Brian

    2015-01-01

    Mass mortalities in natural populations, particularly those that leave few survivors over large spatial areas, may cause long-term ecological perturbations. Yet mass mortalities may remain undocumented or poorly described due to challenges in responding rapidly to unforeseen events, scarcity of baseline data, and difficulties in quantifying rare or patchily distributed species, especially in remote or marine systems. Better chronicling the geographic pattern and intensity of mass mortalities is especially critical in the face of global changes predicted to alter regional disturbance regimes. Here, we couple replicated post-mortality surveys with preceding long-term surveys and historical data to describe a rapid and severe mass mortality of rocky shore invertebrates along the north-central California coast of the northeastern Pacific Ocean. In late August 2011, formerly abundant intertidal populations of the purple sea urchin (Strongylocentrotus purpuratus, a well-known ecosystem engineer), and the predatory six-armed sea star (Leptasterias sp.) were functionally extirpated from ~100 km of coastline. Other invertebrates, including the gumboot chiton (Cryptochiton stelleri) the ochre sea star (Pisaster ochraceus), and subtidal populations of purple sea urchins also exhibited elevated mortality. The pattern and extent of mortality suggest the potential for long-term population, community, and ecosystem consequences, recovery from which may depend on the different dispersal abilities of the affected species. PMID:26039349

  10. Behavioral self-organization underlies the resilience of a coastal ecosystem.

    PubMed

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan

    2017-07-25

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.

  11. Behavioral self-organization underlies the resilience of a coastal ecosystem

    PubMed Central

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.

    2017-01-01

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313

  12. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.

  13. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-07-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.

  14. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia.

    PubMed

    McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine

    2010-04-27

    The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them follows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use.

  15. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia

    PubMed Central

    McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine

    2010-01-01

    The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them fallows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use. PMID:20385814

  16. Resilience in ecotoxicology: Toward a multiple equilibrium concept.

    PubMed

    Bundschuh, Mirco; Schulz, Ralf; Schäfer, Ralf B; Allen, Craig R; Angeler, David G

    2017-10-01

    The term resilience describes stress-response patterns across scientific disciplines. In ecology, advances have been made to clearly define resilience based on underlying mechanistic assumptions. Engineering resilience (rebound) is used to describe the ability of organisms to recover from adverse conditions (disturbances), which is termed the rate of recovery. By contrast, the ecological resilience definition considers a systemic change, that is, when ecosystems reorganize into a new regime following disturbance. Under this new regime, structural and functional aspects change considerably relative to the previous regime, without recovery. In this context, resilience is an emergent property of complex systems. In the present study, we argue that both definitions and uses are appropriate in ecotoxicology, and although the differences are subtle, the implications and uses are profoundly different. We discuss resilience concepts in ecotoxicology, where the prevailing view of resilience is engineering resilience from chemical stress. Ecological resilience may also be useful for describing systemic ecological changes because of chemical stress. We present quantitative methods that allow ecotoxicologists and risk managers to assess whether an ecosystem faces an impending regime shift or whether it has already undergone such a shift. We contend that engineering and ecological resilience help to distinguish ecotoxicological responses to chemical stressors mechanistically and thus have implications for theory, policy, and application. Environ Toxicol Chem 2017;36:2574-2580. © 2017 SETAC. © 2017 SETAC.

  17. Knowledge translation in rehabilitation engineering research and development: a knowledge ecosystem framework.

    PubMed

    Chau, Tom; Moghimi, Saba; Popovic, Milos R

    2013-01-01

    Rehabilitation engineering is concerned with technology innovations and technology-mediated treatments for the improvement of quality of care and quality of life of individuals with disability. Unlike many other fields of health research, the knowledge translation (KT) cycle of rehabilitation engineering research and development (R&D) is often considered incomplete until a technology product or technology-facilitated therapy is available to target clientele. As such, the KT journey of rehabilitation engineering R&D is extremely challenging, necessarily involving knowledge exchange among numerous players across multiple sectors. In this article, we draw on recent literature about the knowledge trichotomy in technology-based rehabilitation R&D and propose a knowledge ecosystem to frame the rehabilitation engineering KT process from need to product. Identifying the principal process of the ecosystem as one of knowledge flow, we elucidate the roles of repository and networked knowledge, identify key consumers and producers in a trinity of communities of practice, and draw on knowledge management literature to describe different knowledge flows. The article concludes with instantiations of this knowledge ecosystem for 2 local rehabilitation engineering research-development-commercialization endeavors. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Building an Ecosystem for a New Engineering Program

    NASA Astrophysics Data System (ADS)

    Grebski, Wieslaw; Grebski, Michalene Eva

    2018-06-01

    Penn State Hazleton has recently developed and implemented a new Engineering program with a focus on energy efficiency and energy sustainability. To accelerate the implementation cycle of the program, it was necessary to very rapidly create and establish the components of an ecosystem needed for the Engineering program to prosper and grow. This paper describes the individual components of the ecosystem as well as the methods used to establish them. The paper also discusses the different initiatives to increase enrollment as well as placement rates for graduates. Continuous quality improvement procedure applied to maintain the quality of the program is also being discussed.

  19. Plant species richness enhances nitrogen retention in green roof plots.

    PubMed

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters downstream of green roofs. © 2016 by the Ecological Society of America.

  20. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems

    PubMed Central

    Lambers, Hans; Bishop, John G.; Hopper, Stephen D.; Laliberté, Etienne; Zúñiga-Feest, Alejandra

    2012-01-01

    Background Carboxylate-releasing cluster roots of Proteaceae play a key role in acquiring phosphorus (P) from ancient nutrient-impoverished soils in Australia. However, cluster roots are also found in Proteaceae on young, P-rich soils in Chile where they allow P acquisition from soils that strongly sorb P. Scope Unlike Proteaceae in Australia that tend to proficiently remobilize P from senescent leaves, Chilean Proteaceae produce leaf litter rich in P. Consequently, they may act as ecosystem engineers, providing P for plants without specialized roots to access sorbed P. We propose a similar ecosystem-engineering role for species that release large amounts of carboxylates in other relatively young, strongly P-sorbing substrates, e.g. young acidic volcanic deposits and calcareous dunes. Many of these species also fix atmospheric nitrogen and release nutrient-rich litter, but their role as ecosystem engineers is commonly ascribed only to their diazotrophic nature. Conclusions We propose that the P-mobilizing capacity of Proteaceae on young soils, which contain an abundance of P, but where P is poorly available, in combination with inefficient nutrient remobilization from senescing leaves allows these species to function as ecosystem engineers. We suggest that diazotrophic species that colonize young soils with strong P-sorption potential should be considered for their positive effect on P availability, as well as their widely accepted role in nitrogen fixation. Their P-mobilizing activity possibly also enhances their nitrogen-fixing capacity. These diazotrophic species may therefore facilitate the establishment and growth of species with less-efficient P-uptake strategies on more-developed soils with low P availability through similar mechanisms. We argue that the significance of cluster roots and high carboxylate exudation in the development of young ecosystems is probably far more important than has been envisaged thus far. PMID:22700940

  1. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems.

    PubMed

    Lambers, Hans; Bishop, John G; Hopper, Stephen D; Laliberté, Etienne; Zúñiga-Feest, Alejandra

    2012-07-01

    Carboxylate-releasing cluster roots of Proteaceae play a key role in acquiring phosphorus (P) from ancient nutrient-impoverished soils in Australia. However, cluster roots are also found in Proteaceae on young, P-rich soils in Chile where they allow P acquisition from soils that strongly sorb P. Unlike Proteaceae in Australia that tend to proficiently remobilize P from senescent leaves, Chilean Proteaceae produce leaf litter rich in P. Consequently, they may act as ecosystem engineers, providing P for plants without specialized roots to access sorbed P. We propose a similar ecosystem-engineering role for species that release large amounts of carboxylates in other relatively young, strongly P-sorbing substrates, e.g. young acidic volcanic deposits and calcareous dunes. Many of these species also fix atmospheric nitrogen and release nutrient-rich litter, but their role as ecosystem engineers is commonly ascribed only to their diazotrophic nature. We propose that the P-mobilizing capacity of Proteaceae on young soils, which contain an abundance of P, but where P is poorly available, in combination with inefficient nutrient remobilization from senescing leaves allows these species to function as ecosystem engineers. We suggest that diazotrophic species that colonize young soils with strong P-sorption potential should be considered for their positive effect on P availability, as well as their widely accepted role in nitrogen fixation. Their P-mobilizing activity possibly also enhances their nitrogen-fixing capacity. These diazotrophic species may therefore facilitate the establishment and growth of species with less-efficient P-uptake strategies on more-developed soils with low P availability through similar mechanisms. We argue that the significance of cluster roots and high carboxylate exudation in the development of young ecosystems is probably far more important than has been envisaged thus far.

  2. Habitat-Mediated Facilitation and Counteracting Ecosystem Engineering Interactively Influence Ecosystem Responses to Disturbance

    PubMed Central

    Eklöf, Johan S.; van der Heide, Tjisse; Donadi, Serena; van der Zee, Els M.; O'Hara, Robert; Eriksson, Britas Klemens

    2011-01-01

    Recovery of an ecosystem following disturbance can be severely hampered or even shift altogether when a point disturbance exceeds a certain spatial threshold. Such scale-dependent dynamics may be caused by preemptive competition, but may also result from diminished self-facilitation due to weakened ecosystem engineering. Moreover, disturbance can facilitate colonization by engineering species that alter abiotic conditions in ways that exacerbate stress on the original species. Consequently, establishment of such counteracting engineers might reduce the spatial threshold for the disturbance, by effectively slowing recovery and increasing the risk for ecosystem shifts to alternative states. We tested these predictions in an intertidal mudflat characterized by a two-state mosaic of hummocks (humps exposed during low tide) dominated by the sediment-stabilizing seagrass Zostera noltii) and hollows (low-tide waterlogged depressions dominated by the bioturbating lugworm Arenicola marina). In contrast to expectations, seagrass recolonized both natural and experimental clearings via lateral expansion and seemed unaffected by both clearing size and lugworm addition. Near the end of the growth season, however, an additional disturbance (most likely waterfowl grazing and/or strong hydrodynamics) selectively impacted recolonizing seagrass in the largest (1 m2) clearings (regardless of lugworm addition), and in those medium (0.25 m2) clearings where lugworms had been added nearly five months earlier. Further analyses showed that the risk for the disturbance increased with hollow size, with a threshold of 0.24 m2. Hollows of that size were caused by seagrass removal alone in the largest clearings, and by a weaker seagrass removal effect exacerbated by lugworm bioturbation in the medium clearings. Consequently, a sufficiently large disturbance increased the vulnerability of recolonizing seagrass to additional disturbance by weakening seagrass engineering effects (sediment stabilization). Meanwhile, the counteracting ecosystem engineering (lugworm bioturbation) reduced that threshold size. Therefore, scale-dependent interactions between habitat-mediated facilitation, competition and disturbance seem to maintain the spatial two-state mosaic in this ecosystem. PMID:21829719

  3. Ecohydrological processes and ecosystem services in the Anthropocene: a review

    Treesearch

    Ge Sun; Dennis Hallema; Heidi Asbjornsen

    2017-01-01

    The framework for ecosystem services has been increasingly used in integrated watershed ecosystem management practices that involve scientists, engineers, managers, and policy makers. The objective of this review is to explore the intimate connections between ecohydrological processes and water-related ecosystem services in human-dominated ecosystems in the...

  4. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits.

    PubMed

    Heuner, Maike; Silinski, Alexandra; Schoelynck, Jonas; Bouma, Tjeerd J; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.

  5. Dwarf eelgrass, Zostera japonica: a malevolent, benevolent, or benign invasive ecosystem engineer?

    EPA Science Inventory

    Dwarf eelgrass, Zostera japonica, is an introduced ecosystem engineering species first reported on the US west coast in 1957. In some US Pacific Northwest estuaries its areal coverage now exceeds that of the native eelgrass species, Zostera marina. Natural resource management’s...

  6. Recruitment dynamics of two ecosystem engineers could drive shellfish populations in U.S. west coast estuaries

    EPA Science Inventory

    Two species of burrowing shrimp, Neotrypaea californiensis and Upogebia pugettensis are important members of intertidal mudflat communities in US West coast estuaries. Both species act as ecosystem engineers and influence the presence of other structured habitats and suspension ...

  7. Ecosystem Health Assessment of Mining Cities Based on Landscape Pattern

    NASA Astrophysics Data System (ADS)

    Yu, W.; Liu, Y.; Lin, M.; Fang, F.; Xiao, R.

    2017-09-01

    Ecosystem health assessment (EHA) is one of the most important aspects in ecosystem management. Nowadays, ecological environment of mining cities is facing various problems. In this study, through ecosystem health theory and remote sensing images in 2005, 2009 and 2013, landscape pattern analysis and Vigor-Organization-Resilience (VOR) model were applied to set up an evaluation index system of ecosystem health of mining city to assess the healthy level of ecosystem in Panji District Huainan city. Results showed a temporal stable but high spatial heterogeneity landscape pattern during 2005-2013. According to the regional ecosystem health index, it experienced a rapid decline after a slight increase, and finally it maintained at an ordinary level. Among these areas, a significant distinction was presented in different towns. It indicates that the ecosystem health of Tianjijiedao town, the regional administrative centre, descended rapidly during the study period, and turned into the worst level in the study area. While the Hetuan Town, located in the northwestern suburb area of Panji District, stayed on a relatively better level than other towns. The impacts of coal mining collapse area, land reclamation on the landscape pattern and ecosystem health status of mining cities were also discussed. As a result of underground coal mining, land subsidence has become an inevitable problem in the study area. In addition, the coal mining subsidence area has brought about the destruction of the farmland, construction land and water bodies, which causing the change of the regional landscape pattern and making the evaluation of ecosystem health in mining area more difficult. Therefore, this study provided an ecosystem health approach for relevant departments to make scientific decisions.

  8. Microbiome engineering: Current applications and its future.

    PubMed

    Foo, Jee Loon; Ling, Hua; Lee, Yung Seng; Chang, Matthew Wook

    2017-03-01

    Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Will the balance of power shift among native eastern Pacific estuary ecosystem engineers with the introduced bopyrid isopod parasite orthione griffenis?

    EPA Science Inventory

    The blue mud shrimp, Upogebia pugettensis, the bay ghost shrimp, Neotrypaea californiensis, and eelgrass, Zostera marina are endemic ecosystem engineers that define the ecological structure and function of estuaries along the Pacific coast of the US as significantly as do marshes...

  10. A morphometric analysis of vegetation patterns in dryland ecosystems

    PubMed Central

    Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.

    2017-01-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems. PMID:28386414

  11. A morphometric analysis of vegetation patterns in dryland ecosystems.

    PubMed

    Mander, Luke; Dekker, Stefan C; Li, Mao; Mio, Washington; Punyasena, Surangi W; Lenton, Timothy M

    2017-02-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.

  12. A morphometric analysis of vegetation patterns in dryland ecosystems

    NASA Astrophysics Data System (ADS)

    Mander, Luke; Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.

    2017-02-01

    Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.

  13. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits

    PubMed Central

    Schoelynck, Jonas; Bouma, Tjeerd J.; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species—known as ecosystem engineers—are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced. PMID:26367004

  14. The effect of bio-irrigation by the polychaete Lanice conchilega on active denitrifiers: Distribution, diversity and composition of nosZ gene

    PubMed Central

    Yazdani Foshtomi, Maryam; Leliaert, Frederik; Derycke, Sofie; Willems, Anne; Vincx, Magda

    2018-01-01

    The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185–3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3− to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs. PMID:29408934

  15. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.

    PubMed

    Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C

    2016-11-01

    Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Nitrogen cycling process rates across urban ecosystems.

    PubMed

    Reisinger, Alexander J; Groffman, Peter M; Rosi-Marshall, Emma J

    2016-09-21

    Nitrogen (N) pollution of freshwater, estuarine, and marine ecosystems is widespread and has numerous environmental and economic impacts. A portion of this excess N comes from urban watersheds comprised of natural and engineered ecosystems which can alter downstream N export. Studies of urban N cycling have focused on either specific ecosystems or on watershed-scale mass balances. Comparisons of specific N transformations across ecosystems are required to contextualize rates from individual studies. Here we reviewed urban N cycling in terrestrial, aquatic, and engineered ecosystems, and compared N processing in these urban ecosystem types to native reference ecosystems. We found that net N mineralization and net nitrification rates were enhanced in urban forests and riparian zones relative to reference ecosystems. Denitrification was highly variable across urban ecosystem types, but no significant differences were found between urban and reference denitrification rates. When focusing on urban streams, ammonium uptake was more rapid than nitrate uptake in urban streams. Additionally, reduction of stormwater runoff coupled with potential decreases in N concentration suggests that green infrastructure may reduce downstream N export. Despite multiple environmental stressors in urban environments, ecosystems within urban watersheds can process and transform N at rates similar to or higher than reference ecosystems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Changing ecosystem service values following technological change.

    PubMed

    Honey-Rosés, Jordi; Schneider, Daniel W; Brozović, Nicholas

    2014-06-01

    Research on ecosystem services has focused mostly on natural areas or remote places, with less attention given to urban ecosystem services and their relationship with technological change. However, recent work by urban ecologists and urban designers has more closely examined and appreciated the opportunities associated with integrating natural and built infrastructures. Nevertheless, a perception remains in the literature on ecosystem services that technology may easily and irreversibly substitute for services previously obtained from ecosystems, especially when the superiority of the engineered system motivated replacement in the first place. We emphasize that the expected tradeoff between natural and manufactured capital is false. Rather, as argued in other contexts, the adoption of new technologies is complementary to ecosystem management. The complementarity of ecosystem services and technology is illustrated with a case study in Barcelona, Spain where the installation of sophisticated water treatment technology increased the value of the ecosystem services found there. Interestingly, the complementarity between natural and built infrastructures may remain even for the very ecosystems that are affected by the technological change. This finding suggests that we can expect the value of ecosystem services to co-evolve with new technologies. Technological innovation can generate new opportunities to harness value from ecosystems, and the engineered structures found in cities may generate more reliance on ecosystem processes, not less.

  18. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  19. Trait- and density-mediated indirect interactions initiated by an exotic invasive plant autogenic ecosystem engineer

    Treesearch

    Dean E. Pearson

    2010-01-01

    Indirect interactions are important for structuring ecological systems. However, research on indirect effects has been heavily biased toward top-down trophic interactions, and less is known about other indirect-interaction pathways. As autogenic ecosystem engineers, plants can serve as initiators of nontrophic indirect interactions that, like top-down pathways, can...

  20. Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens

    Treesearch

    Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya

    2006-01-01

    Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...

  1. Spatial pattern enhances ecosystem functioning in an African savanna.

    PubMed

    Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M

    2010-05-25

    The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  2. Ecosystem properties self-organize in response to a directional fog-vegetation interaction.

    PubMed

    Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O

    2014-05-01

    Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.

  3. Can the invasive earthworm, Amynthas agrestis, be controlled with prescribed fire?

    Treesearch

    Hiroshi Ikeda; Mac A. Callaham Jr.; Joseph J. O' Brien; Benjamin S. Hornsby; Evelyn S. Wenk

    2015-01-01

    Biological invasions are one of the most significant global-scale problems caused by human activities. Earthworms function as ecosystem engineers in soil ecosystems because their feeding and burrowing activities fundamentally change the physical and biological characteristics of the soils they inhabit. As a result of this “engineering,” earthworm invasions can have...

  4. Designing an Accompanying Ecosystem to Foster Entrepreneurship among Agronomic and Forestry Engineering Students. Opinion and Commitment of University Lecturers

    ERIC Educational Resources Information Center

    Ortiz-Medina, L.; Fernández-Ahumada, E.; Lara-Vélez, P.; Taguas, E. V.; Gallardo-Cobos, R.; del Campillo, M. C.; Guerrero-Ginel, J. E.

    2016-01-01

    In the Higher School of Agronomic and Forestry Engineering of the University of Cordoba, a collective project conceived as an 'ecosystem to support and accompany entrepreneurs' has been proposed. The approach aims to spread and consolidate the entrepreneurial spirit and to respond to the demands of possible stakeholders involved in the whole…

  5. Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Wu, Qingbai; Zhang, Zhongqiong; Gao, Siru; Ma, Wei

    2016-08-01

    Climate warming and engineering activities have various impacts on the thermal regime of permafrost in alpine ecosystems of the Qinghai-Tibet Plateau. Using recent observations of permafrost thermal regimes along the Qinghai-Tibet highway and railway, the changes of such regimes beneath embankments constructed in alpine meadows and steppes are studied. The results show that alpine meadows on the Qinghai-Tibet Plateau can have a controlling role among engineering construction effects on permafrost beneath embankments. As before railway construction, the artificial permafrost table (APT) beneath embankments is not only affected by climate change and engineering activities but is also controlled by alpine ecosystems. However, the change rate of APT is not dependent on ecosystem type, which is predominantly affected by climate change and engineering activities. Instead, the rate is mainly related to cooling effects of railway ballast and heat absorption effects of asphalt pavement. No large difference between alpine and steppe can be identified regarding the variation of soil temperature beneath embankments, but this difference is readily identified in the variation of mean annual soil temperature with depth. The vegetation layer in alpine meadows has an insulation role among engineering activity effects on permafrost beneath embankments, but this insulation gradually disappears because the layer decays and compresses over time. On the whole, this layer is advantageous for alleviating permafrost temperature rise in the short term, but its effect gradually weakens in the long term.

  6. Effects of mud sedimentation on lugworm ecosystem engineering

    NASA Astrophysics Data System (ADS)

    Montserrat, F.; Suykerbuyk, W.; Al-Busaidi, R.; Bouma, T. J.; van der Wal, D.; Herman, P. M. J.

    2011-01-01

    Benthic ecosystem engineering organisms attenuate hydrodynamic or biogeochemical stress to ameliorate living conditions. Bioturbating infauna, like the lugworm Arenicola marina, determine intertidal process dynamics by maintaining the sediment oxygenated and sandy. Maintaining the permeability of the surrounding sediment enables them to pump water through the interstitial spaces, greatly increasing the oxygen availability. In a field experiment, both lugworm presence and siltation regime were manipulated to investigate to what extent lugworms are able to cope with sedimentation of increasing mud percentage and how this would affect its ecosystem engineering. Fluorescent tracers were added to experimentally deposited mud to visualise bioturbation effects on fine sediment fractions. Lugworm densities were not affected by an increasing mud percentage in experimentally deposited sediment. Negative effects are expected to occur under deposition with significantly higher mud percentages. Surface chlorophyll a content was a function of experimental mud percentage, with no effect of lugworm bioturbation. Surface roughness and sediment permeability clearly increased by lugworm presence, whereas sediment erosion threshold was not significantly affected by lugworms. The general idea that A. marina removes fine sediment fractions from the bed could not be confirmed. Rather, the main ecosystem engineering effect of A. marina is hydraulic destabilisation of the sediment matrix.

  7. Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.

    2002-01-17

    This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use ofmore » such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.« less

  8. Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management

    Treesearch

    Kalev Jogiste; Henn Korjus; John Stanturf; Lee E. Frelich; Endijs Baders; Janis Donis; Aris Jansons; Ahto Kangur; Kajar Koster; Diana Laarmann; Tiit Maaten; Vitas Marozas; Marek Metslaid; Kristi Nigul; Olga Polyachenko; Tiit Randveer; Floortje Vodde

    2017-01-01

    The condition of forest ecosystems depends on the temporal and spatial pattern of management interventions and natural disturbances. Remnants of previous conditions persisting after disturbances, or ecosystem legacies, collectively comprise ecosystem memory. Ecosystem memory in turn contributes to resilience and possibilities of ecosystem reorganization...

  9. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    PubMed

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Arctic patterned-ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect

    Treesearch

    Walker D.A.; Romanovsky V.E.; Ping C.L.; Michaelson G.J.; Daanen R.P.; Shur Y.; Peterson R.A.; Krantz W.B.; Raynolds M.K.; William Gould; Grizelle Gonzalez; Nicolsky D.J.; Vonlanthen C.M.; Kade A.N.; Kuss P.; Kelley A.M.; Munger C.A.; Tarnocai C.T.; Matveyeva N.V.; Daniels F.J.A.

    2008-01-01

    Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The “Biocomplexity of Patterned Ground Ecosystems” project examined patterned-ground features (PGFs) in all five Arctic bioclimate...

  11. Research applications of ecosystem patterns

    Treesearch

    Robert G. Bailey

    2009-01-01

    This article discusses the origins of natural ecosystem patterns from global to local scales. It describes how understanding these patterns can help scientists and managers in two ways. First, the local systems are shown within the context of larger systems. This perspective can be applied in assessing the connections between action at one scale and effect at another,...

  12. Self Contained Ecosystems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A self contained ecosystem developed at Jet Propulsion Laboratory is manufactured by Engineering and Research Associates. It is essentially a no-care aquarium which requires only natural or fluorescent light.

  13. Drought-induced starvation of aardvarks in the Kalahari: an indirect effect of climate change.

    PubMed

    Rey, Benjamin; Fuller, Andrea; Mitchell, Duncan; Meyer, Leith C R; Hetem, Robyn S

    2017-07-01

    Aardvarks ( Orycteropus afer ) are elusive burrowing mammals, predominantly nocturnal and distributed widely throughout Africa except for arid deserts. Their survival may be threatened by climate change via direct and indirect effects of increasing heat and aridity. To measure their current physiological plasticity, we implanted biologgers into six adult aardvarks resident in the semi-arid Kalahari. Following a particularly dry and hot summer, five of the study aardvarks and 11 other aardvarks at the study site died. Body temperature records revealed homeothermy (35.4-37.2°C) initially, but heterothermy increased progressively through the summer, with declining troughs in the nychthemeral rhythm of body temperature reaching as low as 25°C before death, likely due to starvation. Activity patterns shifted from the normal nocturnal to a diurnal mode. Our results do not bode well for the future of aardvarks facing climate change. Extirpation of aardvarks, which play a key role as ecosystem engineers, may disrupt stability of African ecosystems. © 2017 The Author(s).

  14. Niche construction theory: a practical guide for ecologists.

    PubMed

    Odling-Smee, John; Erwin, Douglas H; Palkovacs, Eric P; Feldman, Marcus W; Laland, Kevin N

    2013-03-01

    Niche construction theory (NCT) explicitly recognizes environmental modication by organisms ("niche construction") and their legacy overtime ("ecological inheritance") to be evolutionary processes in their own right. Here we illustrate how niche construction theory provides usedl conceptual tools and theoretical insights for integrating ecosystem ecology and evolutionary theory. We begin by briefly describing NCT, and illustrating how it deifers from conventional evolutionary approaches. We then distinguish between two aspects ofniche construction--environment alteration and subsequent evolution in response to constructed environments--equating the first of these with "ecosystem engineering." We describe some of the ecological and evolutionary impacts on ecosystems of niche construction, ecosystem engineering and ecological inheritance, and illustrate how these processes trigger ecological and evolutionary feedbacks and leave detectable ecological signatures that are open to investigation. FIinally, we provide a practical guide to how NCT could be deployed by ecologists and evolutionary biologists to aeplore ecoeoolutionay dynamics. We suggest that, by highlighting the ecological and evolutionay ramifications of changes that organisms bring about in ecosystems, NCT helps link ecosystem ecology to evolutionary biology, potentially leading to a deeper understanding of how ecosystems change over time.

  15. Contrasting Ecosystem-Effects of Morphologically Similar Copepods

    PubMed Central

    Matthews, Blake; Hausch, Stephen; Winter, Christian; Suttle, Curtis A.; Shurin, Jonathan B.

    2011-01-01

    Organisms alter the biotic and abiotic conditions of ecosystems. They can modulate the availability of resources to other species (ecosystem engineering) and shape selection pressures on other organisms (niche construction). Very little is known about how the engineering effects of organisms vary among and within species, and, as a result, the ecosystem consequences of species diversification and phenotypic evolution are poorly understood. Here, using a common gardening experiment, we test whether morphologically similar species and populations of Diaptomidae copepods (Leptodiaptomus ashlandi, Hesperodiaptomus franciscanus, Skistodiaptomus oregonensis) have similar or different effects on the structure and function of freshwater ecosystems. We found that copepod species had contrasting effects on algal biomass, ammonium concentrations, and sedimentation rates, and that copepod populations had contrasting effects on prokaryote abundance, sedimentation rates, and gross primary productivity. The average size of ecosystem-effect contrasts between species was similar to those between populations, and was comparable to those between fish species and populations measured in previous common gardening experiments. Our results suggest that subtle morphological variation among and within species can cause multifarious and divergent ecosystem-effects. We conclude that using morphological trait variation to assess the functional similarity of organisms may underestimate the importance of species and population diversity for ecosystem functioning. PMID:22140432

  16. Using wind-deformed conifers to measure wind patterns in alpine transition at GLEES

    Treesearch

    Robert C. Musselman; Gene L. Wooldridge; Douglas G. Fox; Bernadette H. Connell

    1990-01-01

    The Glacier Lakes Ecosystem Experiments Site (GLEES) is a high-elevation ecosystem in the Snowy Range west of Laramie, WY, that is perceived to be highly sensitive to changes in chemical and physical climate. Deposition of atmospheric chemicals to this ecosystem is, in part, governed by the wind pattern. The GLEES has numerous wind-swept areas where the coniferous...

  17. Integrating Ecosystem Engineering and Food Web Ecology: Testing the Effect of Biogenic Reefs on the Food Web of a Soft-Bottom Intertidal Area

    PubMed Central

    De Smet, Bart; Fournier, Jérôme; De Troch, Marleen; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The potential of ecosystem engineers to modify the structure and dynamics of food webs has recently been hypothesised from a conceptual point of view. Empirical data on the integration of ecosystem engineers and food webs is however largely lacking. This paper investigates the hypothesised link based on a field sampling approach of intertidal biogenic aggregations created by the ecosystem engineer Lanice conchilega (Polychaeta, Terebellidae). The aggregations are known to have a considerable impact on the physical and biogeochemical characteristics of their environment and subsequently on the abundance and biomass of primary food sources and the macrofaunal (i.e. the macro-, hyper- and epibenthos) community. Therefore, we hypothesise that L. conchilega aggregations affect the structure, stability and isotopic niche of the consumer assemblage of a soft-bottom intertidal food web. Primary food sources and the bentho-pelagic consumer assemblage of a L. conchilega aggregation and a control area were sampled on two soft-bottom intertidal areas along the French coast and analysed for their stable isotopes. Despite the structural impacts of the ecosystem engineer on the associated macrofaunal community, the presence of L. conchilega aggregations only has a minor effect on the food web structure of soft-bottom intertidal areas. The isotopic niche width of the consumer communities of the L. conchilega aggregations and control areas are highly similar, implying that consumer taxa do not shift their diet when feeding in a L. conchilega aggregation. Besides, species packing and hence trophic redundancy were not affected, pointing to an unaltered stability of the food web in the presence of L. conchilega. PMID:26496349

  18. Montane ecosystem productivity responds more to global circulation patterns than climatic trends.

    PubMed

    Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  19. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  20. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China.

    PubMed

    Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

  1. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  2. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.

  3. THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION

    EPA Science Inventory

    Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...

  4. Implementing the optimal provision of ecosystem services

    PubMed Central

    Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Nelson, Erik

    2014-01-01

    Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners’ costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information. PMID:24722635

  5. Implementing the optimal provision of ecosystem services.

    PubMed

    Polasky, Stephen; Lewis, David J; Plantinga, Andrew J; Nelson, Erik

    2014-04-29

    Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners' costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information.

  6. Vegetation pattern formation in a fog-dependent ecosystem.

    PubMed

    Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A

    2010-07-07

    Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Disturbance facilitates the coexistence of antagonistic ecosystem engineers in California estuaries.

    PubMed

    Castorani, Max C N; Hovel, Kevin A; Williams, Susan L; Baskett, Marissa L

    2014-08-01

    Ecological theory predicts that interactions between antagonistic ecosystem engineers can lead to local competitive exclusion, but disturbance can facilitate broader coexistence. However, few empirical studies have tested the potential for disturbance to mediate competition between engineers. We examined the capacity for disturbance and habitat modification to explain the disjunct distributions of two benthic ecosystem engineers, eelgrass Zostera marina and the burrowing ghost shrimp Neotrypaea californiensis, in two California estuaries. Sediment sampling in eelgrass and ghost shrimp patches revealed that ghost shrimp change benthic biogeochemistry over small scales (centimeters) but not patch scales (meters to tens of meters), suggesting a limited capacity for sediment modification to explain species distributions. To determine the relative competitive abilities of engineers, we conducted reciprocal transplantations of ghost shrimp and eelgrass. Local ghost shrimp densities declined rapidly following the addition of eelgrass, and transplanted eelgrass expanded laterally into the surrounding ghost shrimp-dominated areas. When transplanted into eelgrass patches, ghost shrimp failed to persist. Ghost shrimp were also displaced from plots with structural mimics of eelgrass rhizomes and roots, suggesting that autogenic habitat modification by eelgrass is an important mechanism determining ghost shrimp distributions. However, ghost shrimp were able to rapidly colonize experimental disturbances to eelgrass patch edges, which are common in shallow estuaries. We conclude that coexistence in this system is maintained by spatiotemporally asynchronous disturbances and a competition-colonization trade-off: eelgrass is a competitively superior ecosystem engineer, but benthic disturbances permit the coexistence of ghost shrimp at the landscape scale by modulating the availability of space.

  8. Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles

    PubMed Central

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638

  9. Contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the sandprawn Callianassa kraussi in a marine-dominated lagoon

    NASA Astrophysics Data System (ADS)

    Pillay, D.; Branch, G. M.; Dawson, J.; Henry, D.

    2011-01-01

    Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a "bare zone" of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the "bare zone" had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl- a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal richness was unexpected. By loosening sediments, reducing anoxia and enhancing organic content, C. kraussi may engineer these high shore habitats to ameliorate environmental stresses or increase food availability.

  10. Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China

    NASA Astrophysics Data System (ADS)

    Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He

    2012-10-01

    The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.

  11. Reliability Engineering for Service Oriented Architectures

    DTIC Science & Technology

    2013-02-01

    Common Object Request Broker Architecture Ecosystem In software , an ecosystem is a set of applications and/or services that grad- ually build up over time...Enterprise Service Bus Foreign In an SOA context: Any SOA, service or software which the owners of the calling software do not have control of, either...SOA Service Oriented Architecture SRE Software Reliability Engineering System Mode Many systems exhibit different modes of operation. E.g. the cockpit

  12. Quantifying patterns of change in marine ecosystem response to multiple pressures.

    PubMed

    Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S

    2015-01-01

    The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.

  13. Incorporating historical ecosystem diversity into conservation planning efforts in grass and shrub ecosystems

    Treesearch

    Amy C. Ganguli; Johathan B. Haufler; Carolyn A. Mehl; Jimmie D. Chew

    2011-01-01

    Understanding historical ecosystem diversity and wildlife habitat quality can provide a useful reference for managing and restoring rangeland ecosystems. We characterized historical ecosystem diversity using available empirical data, expert opinion, and the spatially explicit vegetation dynamics model SIMPPLLE (SIMulating Vegetative Patterns and Processes at Landscape...

  14. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  15. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  16. Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew

    2015-09-01

    Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human-dominated landscapes.

  17. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern

    USGS Publications Warehouse

    Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.

    2012-01-01

    1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new experimental evidence illustrating the importance of the spatial pattern of organisms on ecosystem functioning. They also indicate that species richness is not the only biotic driver of multifunctionality, and that particular combinations of community attributes may be required to maximize it.

  18. Using DCOM to support interoperability in forest ecosystem management decision support systems

    Treesearch

    W.D. Potter; S. Liu; X. Deng; H.M. Rauscher

    2000-01-01

    Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...

  19. Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.

    PubMed

    Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan

    2016-12-01

    Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity

    DOE PAGES

    Ahkami, Amir H.; White, III, Richard Allen; Handakumbura, Pubudu P.; ...

    2017-04-21

    Here, the rhizosphere is arguably the most complex microbial habitat on earth, comprising an integrated network of plant roots, soil and a diverse microbial consortium of bacteria, archaea, viruses, and microeukaryotes. Understanding, predicting and controlling the structure and function of the rhizosphere will allow us to harness plant-microbe interactions and other rhizosphere activities as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate effects of climate change by designing ecosystems for long-term soil carbon storage. Here, we review critical knowledge gaps in rhizosphere science, and how mechanistic understandingmore » of rhizosphere interactions can be leveraged in rhizosphere engineering efforts with the goal of maintaining sustainable plant ecosystem services for food and bioenergy production in an ever changing global climate.« less

  1. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahkami, Amir H.; White, III, Richard Allen; Handakumbura, Pubudu P.

    Here, the rhizosphere is arguably the most complex microbial habitat on earth, comprising an integrated network of plant roots, soil and a diverse microbial consortium of bacteria, archaea, viruses, and microeukaryotes. Understanding, predicting and controlling the structure and function of the rhizosphere will allow us to harness plant-microbe interactions and other rhizosphere activities as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate effects of climate change by designing ecosystems for long-term soil carbon storage. Here, we review critical knowledge gaps in rhizosphere science, and how mechanistic understandingmore » of rhizosphere interactions can be leveraged in rhizosphere engineering efforts with the goal of maintaining sustainable plant ecosystem services for food and bioenergy production in an ever changing global climate.« less

  2. Convergence of soil nitrogen isotopes across global climate gradients

    USGS Publications Warehouse

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  3. Convergence of soil nitrogen isotopes across global climate gradients.

    PubMed

    Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd

    2015-02-06

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  4. Nonlocal grazing in patterned ecosystems.

    PubMed

    Siero, E

    2018-01-07

    Many ecosystems exhibit gapped, labyrinthine, striped or spotted patterns. Important examples are vegetation patterns in drylands: these patterns are viewed as precursors of a catastrophic transition to a degraded state. A possible source of degradation is overgrazing, but many current spatially extended models include grazing in a local linear way. In this article nonlocal grazing responses are derived, taking into account (1) how many consumers there are (demographic response) (2) where they are (aggregative response) and (3) how much they forage (functional response). Different assumptions lead to different grazing responses, the type of grazing has a large influence on how ecosystems adapt to changing environmental conditions. In dryland simulations the different types of grazing are shown to alter the desertification process driven by decreasing rainfall. A sufficiently strong aggregative response leads to the suppression of vegetation patterns, nuancing their role as generic early warning signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change.

    PubMed

    Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E

    2015-02-06

    Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.

  6. Diversity in Riparian Landscapes

    Treesearch

    Thomas R. Crow; Matthew E. Baker; Burton V. Barnes

    2000-01-01

    Therefore, in this chapter we focus on ecosystem diversity, defined as the number, kind, and pattern of landscape and waterscape ecosystems in a specified area and the ecological processes that are associated with these patterns (Lapin and Barnes 1995). One can then characterize eeosysterns as to their composition, structure, and function -- the attributes Of...

  7. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less

  8. Supplementing forest ecosystem health projects on the ground

    Treesearch

    Cathy Barbouletos; Lynette Z. Morelan

    1995-01-01

    Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...

  9. Ecological and resource economics as ecosystem management tools

    Treesearch

    Stephen Farber; Dennis Bradley

    1999-01-01

    Economic pressures on ecosystems will only intensify in the future. Increased population levels, settlement patterns, and increased incomes will raise the demands for ecosystem resources and their services. The pressure to transform ecosystem natural assets into marketable commodities, whether by harvesting and mining resources or altering landscapes through...

  10. Analysis of extent and spatial pattern change of mangrove ecosystem in Mangunharjo Sub-district from 2007 to 2017

    NASA Astrophysics Data System (ADS)

    Nugraha, S. B.; Sidiq, W. A. B. N.; Setyowati, D. L.; Martuti, N. K. T.

    2018-03-01

    This study aims to determine changes in the extent and spatial patterns of mangrove ecosystems in Mangunharjo Sub-district from 2007, 2012 and 2017. The main data source of this research is Digital Globe Imagery of Mangunharjo Sub-district and surrounding area. The extent and spatial pattern of the mangrove ecosystem were obtained from visual interpretation result of the time series image and accuracy tested with field survey data, and then the analysis was conducted quantitatively and qualitatively. The result of time series data analysis shows that there is an enhancement of mangrove forest area in Mangunharjo Sub-district from 2007-2017. In the first five years (2007-2012), the area of mangrove ecosystem increased from 9.01 Ha to 19.78 Ha, and then in the next five years (2012-2017), it was increased significantly from 19.78 Ha to 68.47 Ha. If analyzed from the spatial pattern, in 2007-2012 the mangrove ecosystems were distributed extends along the river border ponds, while in 2012-2017 it already clustered to form a certain area located at the estuary. The increasing of mangrove area in Mangunharjo Sub-district is a result of hard work with various parties, from the government institution, individual and company which launched mangrove ecosystem recovery program especially in the coastal area of Semarang City. With the better mangrove ecosystem is expected to help restore and prevent the occurrence of environmental damage in the coastal area of Semarang City due to abrasion, seawater intrusion, and tidal flood.

  11. Macroscale patterns of synchrony identify complex relationships among spatial and temporal ecosystem drivers

    USGS Publications Warehouse

    Lottig, Noah R.; Tan, Pang-Ning; Wagner, Tyler; Cheruvelil, Kendra Spence; Soranno, Patricia A.; Stanley, Emily H.; Scott, Caren E.; Stow, Craig A.; Yuan, Shuai

    2017-01-01

    Ecology has a rich history of studying ecosystem dynamics across time and space that has been motivated by both practical management needs and the need to develop basic ideas about pattern and process in nature. In situations in which both spatial and temporal observations are available, similarities in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying processes that create patterns over space and time. We used pattern analysis algorithms and data spanning 22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub‐continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And, what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of water clarity among lakes is not spatially structured at sub‐continental scales. Our results also provide strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal patterns of water clarity. This analysis of long‐term patterns of water clarity and possible drivers contributes to understanding of broad‐scale spatial patterns in the geography of synchrony and complex relationships between spatial and temporal patterns across ecosystems.

  12. Ecosystem engineering by seagrasses interacts with grazing to shape an intertidal landscape.

    PubMed

    van der Heide, Tjisse; Eklöf, Johan S; van Nes, Egbert H; van der Zee, Els M; Donadi, Serena; Weerman, Ellen J; Olff, Han; Eriksson, Britas Klemens

    2012-01-01

    Self-facilitation through ecosystem engineering (i.e., organism modification of the abiotic environment) and consumer-resource interactions are both major determinants of spatial patchiness in ecosystems. However, interactive effects of these two mechanisms on spatial complexity have not been extensively studied. We investigated the mechanisms underlying a spatial mosaic of low-tide exposed hummocks and waterlogged hollows on an intertidal mudflat in the Wadden Sea dominated by the seagrass Zostera noltii. A combination of field measurements, an experiment and a spatially explicit model indicated that the mosaic resulted from localized sediment accretion by seagrass followed by selective waterfowl grazing. Hollows were bare in winter, but were rapidly colonized by seagrass during the growth season. Colonized hollows were heavily grazed by brent geese and widgeon in autumn, converting these patches to a bare state again and disrupting sediment accretion by seagrass. In contrast, hummocks were covered by seagrass throughout the year and were rarely grazed, most likely because the waterfowl were not able to employ their preferred but water requiring feeding strategy ('dabbling') here. Our study exemplifies that interactions between ecosystem engineering by a foundation species (seagrass) and consumption (waterfowl grazing) can increase spatial complexity at the landscape level.

  13. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces

    NASA Astrophysics Data System (ADS)

    Gao, Xuan

    2017-04-01

    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally rely on eco-hydrological engineering rules,which broke the ecosystem stability of agricultural terraces.The current situation of Honghe Hani Rice Terraces heritage cannot completely meets the purpose of sustainability development and appropriate conservation of Honghe Hani Rice Terraces heritage.This study of traditional cultivation pattern can help us to propose rational solutions for future development of terraces heritages. Key words:Honghe Hani Rice Terraces,water management,eco-hydrological effects,heritage conservation

  14. Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    PubMed Central

    Vergés, Adriana; Vanderklift, Mathew A.; Doropoulos, Christopher; Hyndes, Glenn A.

    2011-01-01

    Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems. PMID:21347254

  15. Global patterns of phytoplankton dynamics in coastal ecosystems

    USGS Publications Warehouse

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  16. Modelling Potential Consequences of Different Geo-Engineering Treatments for the Baltic Sea Ecosystem

    NASA Astrophysics Data System (ADS)

    Schrum, C.; Daewel, U.

    2017-12-01

    From 1950 onwards, the Baltic Sea ecosystem suffered increasingly from eutrophication. The most obvious reason for the eutrophication is the huge amount of nutrients (nitrogen and phosphorus) reaching the Baltic Sea from human activities. However, although nutrient loads have been decreasing since 1980, the hypoxic areas have not decreased accordingly. Thus, geo-engineering projects were discussed and evaluated to artificially ventilate the Baltic Sea deep water and suppress nutrient release from the sediments. Here, we aim at understanding the consequences of proposed geo-engineering projects in the Baltic Sea using long-term scenario modelling. For that purpose, we utilize a 3d coupled ecosystem model ECOSMO E2E, a novel NPZD-Fish model approach that resolves hydrodynamics, biogeochemical cycling and lower and higher trophic level dynamics. We performed scenario modelling that consider proposed geo-engineering projects such as artificial ventilation of Baltic Sea deep waters and phosphorus binding in sediments with polyaluminium chlorides. The model indicates that deep-water ventilation indeed suppresses phosphorus release in the first 1-4 years of treatment. Thereafter macrobenthos repopulates the formerly anoxic bottom regions and nutrients are increasingly recycled in the food web. Consequently, overall system productivity and fish biomass increases and toxic algae blooms decrease. However, deep-water ventilation has no long-lasting effect on the ecosystem: soon after completion of the ventilation process, the system turns back into its original state. Artificial phosphorus binding in sediments in contrast decreases overall ecosystem productivity through permanent removal of phosphorus. As expected it decreases bacterial production and toxic algae blooms, but it also decreases fish production substantially. Contrastingly to deep water ventilation, artificial phosphorus binding show a long-lasting effect over decades after termination of the treatment.

  17. Balkanized research in ecological engineering revealed by a bibliometric analysis of earthworms and ecosystem services.

    PubMed

    Blouin, Manuel; Sery, Nicolas; Cluzeau, Daniel; Brun, Jean-Jacques; Bédécarrats, Alain

    2013-08-01

    Energy crisis, climate changes, and biodiversity losses have reinforced the drive for more ecologically-based approaches for environmental management. Such approaches are characterized by the use of organisms rather than energy-consuming technologies. Although earthworms are believed to be potentially useful organisms for managing ecosystem services, there is actually no quantification of such a trend in literature. This bibliometric analysis aimed to measure the evolution of the association of "earthworms" and other terms such as ecosystem services (primary production, nutrient cycling, carbon sequestration, soil structure, and pollution remediation), "ecological engineering" or "biodiversity," to assess their convergence or divergence through time. In this aim, we calculated the similarity index, an indicator of the paradigmatic proximity defined in applied epistemology, for each year between 1900 and 2009. We documented the scientific fields and the geographical origins of the studies, as well as the land uses, and compare these characteristics with a 25 years old review on earthworm management. The association of earthworm related keywords with ecosystem services related keywords was increasing with time, reflecting the growing interest in earthworm use in biodiversity and ecosystem services management. Conversely, no significant increase in the association between earthworms and disciplines such as ecological engineering or restoration ecology was observed. This demonstrated that general ecologically-based approaches have yet to emerge and that there is little exchange of knowledge, methods or concepts among balkanized application realms. Nevertheless, there is a strong need for crossing the frontiers between fields of application and for developing an umbrella discipline to provide a framework for the use of organisms to manage ecosystem services.

  18. Decision support for evaluating the U.S. national criteria and indicators for forest ecosystem sustainability

    Treesearch

    Keith M. Reynolds

    2006-01-01

    This paper describes and illustrates the use of the Ecosystem Management Decision Support (EMDS) system for evaluating the U.S. national criteria and indicators for forest ecosystem sustainability at the scale of Resource Planning Act (RPA) regions. The evaluation component of EMDS uses a logic engine to evaluate landscape condition, and the RPA-scale application...

  19. Structure and earthworms

    USDA-ARS?s Scientific Manuscript database

    Earthworms are an important part of the soil ecosystem and an indicator of soil quality. Sometimes referred to as ecosystem engineers, they play a pivotal role in maintaining soil productivity. Their burrowing, feeding, and casting activities alter the physical, chemical, and biological properties o...

  20. Resilience: Concepts and Measures. Chapter 2

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.

    1986-01-01

    Inertia, the resistance of an ecosystem property to change under stress, is distinguished from resilience, which refers to the degree, manner. and pace of change or recovery in ecosystem properties following disturbance. In turn, these two terms are differentiated from 'stability'. which is used here to refer to the pattern of natural fluctuation in ecosystem properties in the absence of major exogenous disturbance. Four component attributes of resilience are reviewed in the context of Mediterranean-climate examples. The elasticity component concerns the rate of recovery of an ecosystem property following disturbance; amplitude, the threshold of stress beyond which recovery to the initial state does not occur; hysteresis, the degree to which the pattern of recovery after stress differs from that of deterioration under chronic stress, and malleability the ease with which the ecosystem can become permanently altered. Each ecosystem property will typically reveal a different level of resilience to a given stress and stressor. The degree of recovery should not be expected to be complete in any event, due to sample variability and stochastic events. In cyclicallystable ecosystems, the pattern of recovery should be measured in light of this periodicity, and short-term (within-cycle) recovery distinguished from long-term (between-cycle) recovery. The prediction of resilience properties of ecosystems can be approached through a knowledge of the modular structure of foodwebs, through knowledge of the autecological adaptations of key species to the stressor, or through cumulative experience of the response to disturbance at the community level. At present there is much room for investigation of each of these approaches in Mediterranean-climate ecosystems.

  1. Monitoring Changes of Ecosystem Services Supply and Demand Pattern in Central and Southern Liaoning Urban Agglomerations, China Using Landsat Images

    NASA Astrophysics Data System (ADS)

    Li, B.; Huang, F.; Chang, S.; Qi, H.; Zhai, H.

    2018-04-01

    Indentifying the spatio-temporal patterns of ecosystem services supply and demand and the driving forces is of great significance to the regional ecological security and sustainable socio-economic development. Due to long term and high-intensity development, the ecological environment in central and southern Liaoning urban agglomerations has been greatly destroyed thereafter has restricted sustainable development in this region. Based on Landsat ETM and OLI images, land use of this urban agglomeration in 2005, 2010 and 2015 was extracted. The integrative index of multiple-ecosystem services (IMES) was used to quantify the supply (IMESs), demand (IMESd) and balance (IMESb) of multiple-ecosystem services, The spatial patterns of ecosystem services and its dynamics for the period of 2005-2015 were revealed. The multiple regression and stepwise regression analysis were used to explore relationships between ecosystem services and socioeconomic factors. The results showed that the IMESs of the region increased by 2.93 %, whereas IMESd dropped 38 %. The undersupplied area was reduced to 2. The IMESs and IMESb were mainly negatively correlated with gross domestic product (GDP), population density, foreign investment and industrial output, while GDP per capita and the number of teachers had significant positive impacts on ecosystem services supply. The positive correlation between IMESd and GDP, population density and foreign investment were found. The ecosystem services models were established. Supply and balance of multiple-ecosystem services were positively correlated with population density, but the demand was the opposite. The results can provide some reference value for the coordinately economic and ecological development in the study area.

  2. Linking degradation status with ecosystem vulnerability to environmental change

    USGS Publications Warehouse

    Angeler, David G.; Baho, Didier L.; Allen, Craig R.; Johnson, Richard K.

    2015-01-01

    Environmental change can cause regime shifts in ecosystems, potentially threatening ecosystem services. It is unclear if the degradation status of ecosystems correlates with their vulnerability to environmental change, and thus the risk of future regime shifts. We assessed resilience in acidified (degraded) and circumneutral (undegraded) lakes with long-term data (1988–2012), using time series modeling. We identified temporal frequencies in invertebrate assemblages, which identifies groups of species whose population dynamics vary at particular temporal scales. We also assessed species with stochastic dynamics, those whose population dynamics vary irregularly and unpredictably over time. We determined the distribution of functional feeding groups of invertebrates within and across the temporal scales identified, and in those species with stochastic dynamics, and assessed attributes hypothesized to contribute to resilience. Three patterns of temporal dynamics, consistent across study lakes, were identified in the invertebrates. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second and third patterns appeared unrelated to the environmental changes we monitored. Acidified and the circumneutral lakes shared similar levels and patterns of functional richness, evenness, diversity, and redundancy for species within and across the observed temporal scales and for stochastic species groups. These similar resilience characteristics suggest that both lake types did not differ in vulnerability to the environmental changes observed here. Although both lake types appeared equally vulnerable in this study, our approach demonstrates how assessing systemic vulnerability by quantifying ecological resilience can help address uncertainty in predicting ecosystem responses to environmental change across ecosystems.

  3. Divergent phenological response to hydroclimate variability in forested mountain watersheds.

    PubMed

    Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P

    2014-08-01

    Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. © 2014 John Wiley & Sons Ltd.

  4. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    PubMed

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  5. DECOMPOSTION OF GENETICALLY ENGINEERED TOBACCO UNDER FIELD CONDITIONS: PERSISTENCE OF THE PROTEINASE INHIBITOR I PRODUCT AND EFFECTS OF SOIL MICROBIAL RESPIRATION AND PROTOZOA, NEMATODE AND MICROARTHR

    EPA Science Inventory

    1. To evaluate the potential effects of genetically engineered (transgenic) plants on soil ecosystems, litterbags containing leaves of non-engineered (parental) and transgenic tobacco plants were buried in field plots. The transgenic tobacco plants were genetically engineered to ...

  6. Demography of the ecosystem engineer Crassostrea gigas, related to vertical reef accretion and reef persistence

    NASA Astrophysics Data System (ADS)

    Walles, Brenda; Mann, Roger; Ysebaert, Tom; Troost, Karin; Herman, Peter M. J.; Smaal, Aad C.

    2015-03-01

    Marine species characterized as structure building, autogenic ecosystem engineers are recognized worldwide as potential tools for coastal adaptation efforts in the face of sea level rise. Successful employment of ecosystem engineers in coastal protection largely depends on long-term persistence of their structure, which is in turn dependent on the population dynamics of the individual species. Oysters, such as the Pacific oyster (Crassostrea gigas), are recognized as ecosystem engineers with potential for use in coastal protection. Persistence of oyster reefs is strongly determined by recruitment and shell production (growth), processes facilitated by gregarious settlement on extant shell substrate. Although the Pacific oyster has been introduced world-wide, and has formed dense reefs in the receiving coastal waters, the population biology of live oysters and the quantitative mechanisms maintaining these reefs has rarely been studied, hence the aim of the present work. This study had two objectives: (1) to describe the demographics of extant C. gigas reefs, and (2) to estimate vertical reef accretion rates and carbonate production in these oyster reefs. Three long-living oyster reefs (>30 years old), which have not been exploited since their first occurrence, were examined in the Oosterschelde estuary in the Netherlands. A positive reef accretion rate (7.0-16.9 mm year-1 shell material) was observed, consistent with self-maintenance and persistent structure. We provide a framework to predict reef accretion and population persistence under varying recruitment, growth and mortality scenarios.

  7. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    EPA Science Inventory

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  8. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems

    PubMed Central

    Williams, Ryan J.; Howe, Adina; Hofmockel, Kirsten S.

    2014-01-01

    Co-occurrence patterns are used in ecology to explore interactions between organisms and environmental effects on coexistence within biological communities. Analysis of co-occurrence patterns among microbial communities has ranged from simple pairwise comparisons between all community members to direct hypothesis testing between focal species. However, co-occurrence patterns are rarely studied across multiple ecosystems or multiple scales of biological organization within the same study. Here we outline an approach to produce co-occurrence analyses that are focused at three different scales: co-occurrence patterns between ecosystems at the community scale, modules of co-occurring microorganisms within communities, and co-occurring pairs within modules that are nested within microbial communities. To demonstrate our co-occurrence analysis approach, we gathered publicly available 16S rRNA amplicon datasets to compare and contrast microbial co-occurrence at different taxonomic levels across different ecosystems. We found differences in community composition and co-occurrence that reflect environmental filtering at the community scale and consistent pairwise occurrences that may be used to infer ecological traits about poorly understood microbial taxa. However, we also found that conclusions derived from applying network statistics to microbial relationships can vary depending on the taxonomic level chosen and criteria used to build co-occurrence networks. We present our statistical analysis and code for public use in analysis of co-occurrence patterns across microbial communities. PMID:25101065

  9. Long-term ecosystem nitrogen storage and soil nitrogen availability in post-fire lodgepole pine ecosystems

    Treesearch

    Erica A. H. Smithwick; Daniel M. Kashian; Michael G. Ryan; Monica G.  Turner

    2009-01-01

    Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N...

  10. The influence of balanced and imbalanced resource supply on biodiversity-functioning relationship across ecosystems.

    PubMed

    Lewandowska, Aleksandra M; Biermann, Antje; Borer, Elizabeth T; Cebrián-Piqueras, Miguel A; Declerck, Steven A J; De Meester, Luc; Van Donk, Ellen; Gamfeldt, Lars; Gruner, Daniel S; Hagenah, Nicole; Harpole, W Stanley; Kirkman, Kevin P; Klausmeier, Christopher A; Kleyer, Michael; Knops, Johannes M H; Lemmens, Pieter; Lind, Eric M; Litchman, Elena; Mantilla-Contreras, Jasmin; Martens, Koen; Meier, Sandra; Minden, Vanessa; Moore, Joslin L; Venterink, Harry Olde; Seabloom, Eric W; Sommer, Ulrich; Striebel, Maren; Trenkamp, Anastasia; Trinogga, Juliane; Urabe, Jotaro; Vyverman, Wim; Van de Waal, Dedmer B; Widdicombe, Claire E; Hillebrand, Helmut

    2016-05-19

    Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity. © 2016 The Author(s).

  11. Patterns of Genetic Variation in Woody Plant Species in the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Victoria L. Sork; Anthony Koop; Marie Ann de la Fuente; Paul Foster; Jay Raveill

    1997-01-01

    We quantified current patterns of genetic variation of three woody plant species—Carya tomentosa (Juglandaceae), Quercus alba (Fagaceae), and Sassafras albidum (Lauraceae)—distributed throughout the nine Missouri Ozark Forest Ecosystem Project (MOFEP) study sites and evaluated the data in light of the MOFEP...

  12. Perception of scale in forest management planning: Challenges and implications

    Treesearch

    Swee May Tang; Eric J. Gustafson

    1997-01-01

    Forest management practices imposed at one spatial scale may affect the patterns and processes of ecosystems at other scales. These impacts and feedbacks on the functioning of ecosystems across spatial scales are not well understood. We examined the effects of silvicultural manipulations simulated at two spatial scales of management planning on landscape pattern and...

  13. Longitudinal patterns of metabolism in a southern Appalachian river

    Treesearch

    M. E. McTammany; J. R. Webster; E. F. Benfield; M. A. Neatrour

    2003-01-01

    We investigated longitudinal patterns of ecosystem metabolism (primary production and respiration) at 4 sites along a 37-km segment of the Little tennessee River (LTR), North Carolina. These sites corresponded to 4th- to 6th- order reaches in the LTR in an attempt to identify thr transition from heterotrophic to autotrophic conditions in this river ecosystem. In...

  14. Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA

    Treesearch

    Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff

    2008-01-01

    Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...

  15. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies

    PubMed Central

    Smith, Bruce D.

    2011-01-01

    Niche construction efforts by small-scale human societies that involve ‘wild’ species of plants and animals are organized into a set of six general categories based on the shared characteristics of the target species and similar patterns of human management and manipulation: (i) general modification of vegetation communities, (ii) broadcast sowing of wild annuals, (iii) transplantation of perennial fruit-bearing species, (iv) in-place encouragement of economically important perennials, (v) transplantation and in-place encouragement of perennial root crops, and (vi) landscape modification to increase prey abundance in specific locations. Case study examples, mostly drawn from North America, are presented for each of the six general categories of human niche construction. These empirically documented categories of ecosystem engineering form the basis for a predictive model that outlines potential general principles and commonalities in how small-scale human societies worldwide have modified and manipulated their ‘natural’ landscapes throughout the Holocene. PMID:21320898

  16. SMALL SCALE ECOSYSTEM ENGINEERING: DEVELOPMENT OF HOUSEHOLD LEVEL GREYWATER TREATMENT SYSTEMS

    EPA Science Inventory

    The project will increase quality of life through the protection of ecosystem services and drinking water supplies through pollution reduction. Additionally, through water reuse our project has the potential to decrease overall water consumption. Decreasing overall water co...

  17. Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream.

    EPA Science Inventory

    Ecosystem metabolism is an important mechanism for nutrient retention in streams, yet few high studies have investigated temporal patterns in gross primary production (GPP) and ecosystem respiration (ER) using high frequency measurements. This is a potentially important oversig...

  18. Quantifying Fast and Slow Responses of Terrestrial Carbon Exchange across a Water Availability Gradient in North American Flux Sites

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Scott, R. L.; Goulden, M.

    2014-12-01

    Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved prediction of terrestrial carbon balance. We will also present results of ongoing work to quantify fast and slow contributions to the relationship between evapotranspiration and precipitation across a precipitation gradient.

  19. Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical mountain of Laos based on time-series satellite images

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshio; Kiyono, Yoshiyuki; Asai, Hidetoshi; Ochiai, Yukihito; Qi, Jiaguo; Olioso, Albert; Shiraiwa, Tatsuhiko; Horie, Takeshi; Saito, Kazuki; Dounagsavanh, Linkham

    2010-08-01

    In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scenarios on the carbon sequestration potential at a regional scale. The study area was selected in a typical slash-and-burn region in the northern part of Laos. The chrono-sequential changes of land-use such as the relative areas of community age and cropping (C) + fallow (F) patterns were derived from the analysis of time-series satellite images. The chrono-sequential analysis showed that a consistent increase of S/B area during the past three decades and a rapid increase after 1990. Approximately 37% of the whole area was with the community age of 1-5 years, whereas 10% for 6-10 years in 2004. The ecosystem carbon stock at a regional scale was estimated by synthesizing the land-use patterns and semi-empirical carbon stock model derived from in situ measurements where the community age was used as a clue to the linkage. The ecosystem carbon stock in the region was strongly affected by the land-use patterns; the temporal average of carbon stock in 1C + 10F cycles, for example, was greater by 33 MgC ha -1 compared to that in 1C + 2F land-use pattern. The amount of carbon lost from the regional ecosystems during 1990-2004 periods was estimated to be 42 MgC ha -1. The study approach proved to be useful especially in such regions with low data-availability and accessibility. This study revealed the dynamic change of land-use and ecosystem carbon stock in the tropical mountain of Laos as affected by land-use. Results suggest the significant potential of carbon sequestration through changing land-use and ecosystem management scenarios. These quantitative estimates would be useful to better understand and manage the land-use and ecosystem carbon stock towards higher sustainability and food security in similar ecosystems.

  20. Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems

    PubMed Central

    Zinger, Lucie; Amaral-Zettler, Linda A.; Fuhrman, Jed A.; Horner-Devine, M. Claire; Huse, Susan M.; Welch, David B. Mark; Martiny, Jennifer B. H.; Sogin, Mitchell; Boetius, Antje; Ramette, Alban

    2011-01-01

    Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed. PMID:21931760

  1. The Emergence of Land Use as a Global Force in the Earth System

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2015-12-01

    Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem engineering, non-kin exchange relationships, and energy systems. It is hoped that intentional societal efforts to alter the dynamics of human systems can ultimately move Earth systems towards more beneficial and less detrimental outcomes for both human societies and nonhuman species.

  2. Unraveling the controls on biogeomorphic succession: the influence of groundwater, soil and geomorphic setting on bio-geomorphic channel evolution

    NASA Astrophysics Data System (ADS)

    Bätz, Nico; Verrecchia, Eric P.; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of biogeomorphic succession. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through biogeomorphic succession, that may determine the long-term geomorphic and biogeomorphic evolution of the river. Research has addressed how changes in disturbance frequency affect river channel pattern, but much less has been done to understand what influences the rate of biogeomorphic succession and how it affects river morphodynamics. This study explores the complex pattern of ambient conditions in braided river systems driving the rate of biogeomorphic succession. In particular, we focus on the interplay between groundwater access, soil formation, disturbance frequency and geomorphic setting, in defining what drives vegetation succession rates and its long-term implications on channel pattern evolution. We studied these feedbacks in a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Results show that, at the beginning of the succession, humification plays a negative role on local ambient conditions necessary for sprouting. Successful vegetation establishment is then related positively to humification, but also to higher disturbance rates. The third biogeomorphic phase, with the highest feedbacks on river morphology, appears to be mainly driven by groundwater access, which in turn defines the rates of humification in this gravelly environment. This in turn defines the decadal morphological response of the channel after a reduction in disturbance frequency over the last 50 years. Overall, these results show how the functioning and the developing ecosystem at local scale affect the ecosystem resilience at a larger scale, and thus affects the long-term geomorphological river response.

  3. Ecosystem Consequences of Contrasting Flow Regimes in an Urban Effects Stream Mesocosm Study

    EPA Science Inventory

    A stream mesocosm experiment was conducted to study the ecosystem-wide effects of two replicated flow hydrograph treatments programmed in an attempt to compare a simulated predevelopment condition to the theoretical changes that new development brings, while accounting for engine...

  4. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning.

    PubMed

    Bragina, Anastasia; Berg, Christian; Müller, Henry; Moser, Daniel; Berg, Gabriele

    2013-01-01

    Plant-associated bacteria are important for the growth and health of their host, but little is known about its functional diversity and impact on ecosystem functioning. We studied bacterial nitrogen fixation and methane oxidation from indicator Sphagnum mosses in Alpine bogs to test a hypothesis that the plant microbiome contained different functional patterns depending on their functions within the ecosystem. A high abundance and diversity of nitrogenase genes were detected, mostly specific for each Sphagnum. In contrast, methanotrophs formed highly similar patterns despite a high abundance and diversity of methane monooxygenase genes. Our hypothesis was supported by these contrasting functional patterns together with the result that the Sphagnum sporophyte contained a high proportion of specific diazotrophs (45.5%) but no potential methanotrophs. While essential for plant growth under nutrient-limited conditions, nitrogen-fixing bacteria were highly specific and transferred with the sporophyte unlike the ubiquitous methanotrophs which are important for the climate-relevant ecosystem itself.

  5. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning

    PubMed Central

    Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara

    2011-01-01

    Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891

  6. Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae.

    PubMed

    Rossi, Francesca; Gribsholt, Britta; Gazeau, Frederic; Di Santo, Valentina; Middelburg, Jack J

    2013-01-01

    Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge.

  7. Impacts of changes in climate and landscape pattern on ecosystem services.

    PubMed

    Hao, Ruifang; Yu, Deyong; Liu, Yupeng; Liu, Yang; Qiao, Jianmin; Wang, Xue; Du, Jinshen

    2017-02-01

    The restoration of degraded vegetation can effectively improve ecosystem services, increase human well-being, and promote regional sustainable development. Understanding the changing trends in ecosystem services and their drivers is an important step in informing decision makers for the development of reasonable landscape management measures. From 2001 to 2014, we analyzed the changing trends in five critical ecosystem services in the Xilingol Grassland, which is typical of grasslands in North China, including net primary productivity (NPP), soil conservation (SC), soil loss due to wind (SL), water yield (WY) and water retention (WR). Additionally, we quantified how climatic factors and landscape patterns affect the five ecosystem services on both annual and seasonal time scales. Overall, the results indicated that vegetation restoration can effectively improve the five grassland ecosystem services, and precipitation (PPT) is the most critical climatic factor. The impact of changes in the normalized difference vegetation index (NDVI) was most readily detectable on the annual time scale, whereas the impact of changes in landscape pattern was most readily detectable on the seasonal time scale. A win-win situation in terms of grassland ecosystem services (e.g., vegetation productivity, SC, WR and reduced SL) can be achieved by increasing grassland aggregation, partitioning the largest grasslands, dividing larger areas of farmland into smaller patches, and increasing the area of appropriate forest stands. Our work may aid policymakers in developing regional landscape management schemes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Regional scale patterns of fine root lifespan and turnover under current and future climate

    Treesearch

    M. Luke McCormack; David M. Eissenstat; Anantha M. Prasad; Erica A. Smithwick

    2013-01-01

    Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics...

  9. Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures?

    NASA Astrophysics Data System (ADS)

    Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.

    2015-12-01

    Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions and services, prohibits quantification of absolute and relative magnitudes of ecological impacts due to coastal structures or effectiveness of mitigation interventions. This knowledge deficit restricts evaluation of the potential of ecological engineering to contribute to conservation policies for intertidal habitats. To improve mitigation design and effectiveness, a greater focus on in-situ research is needed, requiring stronger and timely collaboration between government agencies, construction partners and research scientists.

  10. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  11. Managing the three-rivers headwater region, china: from ecological engineering to social engineering.

    PubMed

    Fang, Yiping

    2013-09-01

    The three-rivers headwater region (THRHR) of Qinghai province, China plays a key role as source of fresh water and ecosystem services for central and eastern China. Global warming and human activities in the THRHR have threatened the ecosystem since the 1980s. Therefore, the Chinese government has included managing of the THRHR in the national strategy since 2003. The State Integrated Test and Demonstration Region of the THRHR highlights the connection with social engineering (focus on improving people's livelihood and well-being) in managing nature reserves. Based on this program, this perspective attempts a holistic analysis of the strategic role of the THRHR, requirements for change, indices of change, and approaches to change. Long-term success of managing nature reserves requires effective combination of ecological conservation, economic development, and social progress. Thus, the philosophy of social engineering should be employed as a strategy to manage the THRHR.

  12. Green Turning Brown - Domain Engineering for Social and Health Services in Finland.

    PubMed

    Suomi, Reima; Nykänen, Pirkko; Vepsäläinen, Tapio; Hiltunen, Riina

    2017-01-01

    Being able to design information systems to an untouched domain, without the burden of existing information systems, especially legacy systems, is often seen as a dream of most information system professionals. Uncharted domains are anyway scarce, and often such greenfield projects turn into brownfield projects, also to projects where existing structures severely constrain the development of new systems. In this article we discuss the concepts of greenfield and brownfield domain engineering and software development, and reflect their possible messages to the re-engineering of the Finnish health- and social care ecosystem currently under way. In our fieldwork we could identify a lot of need and wish for greenfield domain engineering in the Finnish health and social services delivery. As well we found a lot of brownfield elements inhibiting change. Our proposal for the future is a ecosystem approach, where new and established elements could live together in a self-governed balance.

  13. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe.

    PubMed

    Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk

    2014-11-12

    The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.

  14. Post-mortem ecosystem engineering by oysters creates habitat for a rare marsh plant.

    PubMed

    Guo, Hongyu; Pennings, Steven C

    2012-11-01

    Oysters are ecosystem engineers in marine ecosystems, but the functions of oyster shell deposits in intertidal salt marshes are not well understood. The annual plant Suaeda linearis is associated with oyster shell deposits in Georgia salt marshes. We hypothesized that oyster shell deposits promoted the distribution of Suaeda linearis by engineering soil conditions unfavorable to dominant salt marsh plants of the region (the shrub Borrichia frutescens, the rush Juncus roemerianus, and the grass Spartina alterniflora). We tested this hypothesis using common garden pot experiments and field transplant experiments. Suaeda linearis thrived in Borrichia frutescens stands in the absence of neighbors, but was suppressed by Borrichia frutescens in the with-neighbor treatment, suggesting that Suaeda linearis was excluded from Borrichia frutescens stands by interspecific competition. Suaeda linearis plants all died in Juncus roemerianus and Spartina alterniflora stands, regardless of neighbor treatments, indicating that Suaeda linearis is excluded from these habitats by physical stress (likely water-logging). In contrast, Borrichia frutescens, Juncus roemerianus, and Spartina alterniflora all performed poorly in Suaeda linearis stands regardless of neighbor treatments, probably due to physical stresses such as low soil water content and low organic matter content. Thus, oyster shell deposits play an important ecosystem engineering role in influencing salt marsh plant communities by providing a unique niche for Suaeda linearis, which otherwise would be rare or absent in salt marshes in the southeastern US. Since the success of Suaeda linearis is linked to the success of oysters, efforts to protect and restore oyster reefs may also benefit salt marsh plant communities.

  15. Macroecology of unicellular organisms - patterns and processes.

    PubMed

    Soininen, Janne

    2012-02-01

    Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Emerging interdisciplinary fields in the coming intelligence/convergence era

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2012-09-01

    Dramatic advances are in the horizon resulting from rapid pace of development of several technologies, including, computing, communication, mobile, robotic, and interactive technologies. These advances, along with the trend towards convergence of traditional engineering disciplines with physical, life and other science disciplines will result in the development of new interdisciplinary fields, as well as in new paradigms for engineering practice in the coming intelligence/convergence era (post-information age). The interdisciplinary fields include Cyber Engineering, Living Systems Engineering, Biomechatronics/Robotics Engineering, Knowledge Engineering, Emergent/Complexity Engineering, and Multiscale Systems engineering. The paper identifies some of the characteristics of the intelligence/convergence era, gives broad definition of convergence, describes some of the emerging interdisciplinary fields, and lists some of the academic and other organizations working in these disciplines. The need is described for establishing a Hierarchical Cyber-Physical Ecosystem for facilitating interdisciplinary collaborations, and accelerating development of skilled workforce in the new fields. The major components of the ecosystem are listed. The new interdisciplinary fields will yield critical advances in engineering practice, and help in addressing future challenges in broad array of sectors, from manufacturing to energy, transportation, climate, and healthcare. They will also enable building large future complex adaptive systems-of-systems, such as intelligent multimodal transportation systems, optimized multi-energy systems, intelligent disaster prevention systems, and smart cities.

  17. Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model

    PubMed Central

    Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J.; Scharlemann, Jörn P. W.; Purves, Drew W.

    2014-01-01

    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures. PMID:24756001

  18. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model.

    PubMed

    Harfoot, Michael B J; Newbold, Tim; Tittensor, Derek P; Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J; Scharlemann, Jörn P W; Purves, Drew W

    2014-04-01

    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures.

  19. The carbon isotopic composition of ecosystem breath

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.

    2008-05-01

    At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance. The mechanistic basis for this pattern is defined; the implications of climate change on ring-porous versus diffuse-porous vegetation and therefore on future atmospheric carbon dioxide isotope-concentration patterns is discussed.

  20. Air pollution engineering

    NASA Astrophysics Data System (ADS)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  1. Potential of Cognitive Computing and Cognitive Systems

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  2. Ecosystem services in managing residential landscapes: priorities, value dimensions, and cross-regional patterns

    Treesearch

    K.L. Larson; K.C. Nelson; S.R. Samples; S.J. Hall; N. Bettez; J. Cavender-Bares; P.M. Groffman; M. Grove; J.B. Heffernan; S.E. Hobbie; J. Learned; J.L. Morse; C. Neill; L.A. Ogden; Jarlath O' Neil-Dunne; D.E. Pataki; C. Polsky; R. Roy Chowdhury; M. Steele; T.L.E. Trammell

    2016-01-01

    Although ecosystem services have been intensively examined in certain domains (e.g., forests and wetlands), little research has assessed ecosystem services for the most dominant landscape type in urban ecosystems—namely, residential yards. In this paper, we report findings of a cross-site survey of homeowners in six U.S. cities to 1) examine how residents subjectively...

  3. Comparing patterns of ecosystem service consumption and perceptions of range management between ethnic herders in Inner Mongolia and Mongolia

    NASA Astrophysics Data System (ADS)

    Zhen, L.; Ochirbat, B.; Lv, Y.; Wei, Y. J.; Liu, X. L.; Chen, J. Q.; Yao, Z. J.; Li, F.

    2010-01-01

    Ecosystems in the Central Asian Plateau, which includes the Mongolian Plateau, are becoming increasingly sensitive to human interventions, leading to deterioration of already fragile ecosystems. The goal of this paper is to illustrate human dependence on an ecosystem by identifying patterns of resource consumption in this region and investigating the knowledge and perceptions of herders living in these ecosystems. Data on consumption in the two regions were collected using structured questionnaires delivered to a total of 252 herders from Mongolia and China's Inner Mongolia. Meat and other animal products remain the dominant food items for most households, accompanied by various vegetables and cereals. This unbalanced diet leads to excessive consumption of protein and fat from animal sources. The major energy sources used by herders are fuelwood, animal dung, crop residues, and dry grass, but consumption patterns differed between the two areas. Mongolian herders rely more heavily on livestock for meeting their consumption needs than herders in Inner Mongolia. Herder knowledge and perceptions of ecosystem conditions and consumption of resources differed between Mongolia and Inner Mongolia, reflecting the influence of different state policies. The data reported and the conclusions drawn are relevant for developing resource management policies for the Mongolian Plateau, but also provide useful insights for any region where livestock production dominates the use of rangeland resources.

  4. Seasonal and interannual patterns in primary production, respiration and net ecosystem metabolism in three estuaries in the northeast Gulf of Mexico

    EPA Science Inventory

    Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism par...

  5. Exotic plants as ecosystem dominants

    Treesearch

    Julie S. Denslow; R. Flint Hughes

    2004-01-01

    Dominant species have long been appreciated for their role in determining ecosystem attributes such as vegetation structure, successional patterns, soil characteristics, hydrology, and productivity. Exotic species may reach such high densities that they become community dominants, and it is in this role that exotics pose the greatest threat to native ecosystems. Four...

  6. Ecosystem processes at the watershed scale: hydrologic vegetation gradient as an indicator for lateral hydrologic connectivity of headwater catchments

    Treesearch

    Taehee Hwang; James M. Vose; Christina Tague

    2012-01-01

    Lateral water flow in catchments can produce important patterns in water and nutrient fluxes and stores and also influences the long-term spatial development of forest ecosystems. Specifically, patterns of vegetation type and density along hydrologic flow paths can represent a signal of the redistribution of water and nitrogen mediated by lateral hydrologic flow. This...

  7. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems

    EPA Science Inventory

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  8. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands

    USDA-ARS?s Scientific Manuscript database

    Losses of biodiversity and ecosystem services from industrial agricultural lands are persistent and growing challenges in the United States despite decades of spending on natural resource management. Most investments have been targeted toward engineered practices (e.g., sediment control basins, terr...

  9. Methodological Considerations in the Study of Earthworms in Forest Ecosystems

    Treesearch

    Dylan Rhea-Fournier; Grizelle Gonzalez

    2017-01-01

    Decades of studies have shown that soil macrofauna, especially earthworms, play dominant engineering roles in soils, affecting physical, chemical, and biological components of ecosystems. Quantifying these effects would allow crucial improvement in biogeochemical budgets and modeling, predicting response of land use and disturbance, and could be applied to...

  10. Associations of grassland bird communities with black-tailed praire dogs in the North American Great Plains

    USDA-ARS?s Scientific Manuscript database

    Colonial, burrowing herbivores can serve as ecosystem engineers in grassland and shrubland ecosystems by creating belowground refugia, modifying vegetation structure and composition, serving as prey, and generating landscape heterogeneity. They can also serve a keystone species role by affecting the...

  11. Long-term ecosystem monitoring and change detection: the Sonoran initiative

    Treesearch

    Robert Lozar; Charles Ehlschlaeger

    2005-01-01

    Ecoregional Systems Heritage and Encroachment Monitoring (ESHEM) examines issues of land management at an ecosystem level using remote sensing. Engineer Research and Development Center (ERDC), in partnership with Western Illinois University, has developed an ecoregional database and monitoring capability covering the Sonoran region. The monitoring time horizon will...

  12. The Vegetation Nitrogen Content and its Latitudinal Patterns in China

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; He, Nianpeng; Yu, Guirui; Wang, Qiufeng

    2017-04-01

    Nitrogen is an essential nutrient element in biological life activities, and plays an important role in plant production and growth. Vegetation nitrogen content can be used as an important component in estimating ecosystem nitrogen storage. In the present study, we used a large amount of data from the database of north-south transects of eastern China and published literatures. We explored the nitrogen content of different components of China terrestrial ecosystems and its latitude pattern at the scales of the plots and of 8 eco-regions. The average nitrogen content of the forest ecosystem was 1.797% in the tree leaves, 0.663% in the tree branch, 0.586% in the tree stem, 0.755% in the tree root. In the shrub layer, the average leaf nitrogen content is 1.845%, the average branch content is 0.968% and the average root nitrogen content is 0.995%. In the herb layer, the average nitrogen content of aboveground is 2.463% and 1.279% for underground. The average nitrogen content of aboveground in grassland ecosystem is 2.006% and 0.994% for underground. The average aboveground nitrogen content in desert ecosystem is 1.911%. The average nitrogen contents of the leaves, stems and roots in wetland ecosystem were 1.669%, 0.741% and 0.659%. There were significant differences in nitrogen content among different organs, and it showed that the nitrogen content of leaves > roots > branches > trunks and aboveground component > underground component. The nitrogen content of different components in China terrestrial ecosystems increased with increasing latitude, especially in leaf. These results demonstrated latitudinal patterns of nitrogen content in Chinese terrestrial ecosystems, based on field-measured data, and provided a reference or standard for regional vegetation nitrogen allocation and storage estimations.

  13. An Ecosystem-Based Approach to Assess the Status of a Mediterranean Ecosystem, the Posidonia oceanica Seagrass Meadow

    PubMed Central

    Personnic, Sébastien; Boudouresque, Charles F.; Astruch, Patrick; Ballesteros, Enric; Blouet, Sylvain; Bellan-Santini, Denise; Bonhomme, Patrick; Thibault-Botha, Delphine; Feunteun, Eric; Harmelin-Vivien, Mireille; Pergent, Gérard; Pergent-Martini, Christine; Pastor, Jérémy; Poggiale, Jean-Christophe; Renaud, Florent; Thibaut, Thierry; Ruitton, Sandrine

    2014-01-01

    Biotic indices, which reflect the quality of the environment, are widely used in the marine realm. Sometimes, key species or ecosystem engineers are selected for this purpose. This is the case of the Mediterranean seagrass Posidonia oceanica, widely used as a biological quality element in the context of the European Union Water Framework Directive (WFD). The good quality of a water body and the apparent health of a species, whether or not an ecosystem engineer such as P. oceanica, is not always indicative of the good structure and functioning of the whole ecosystem. A key point of the recent Marine Strategy Framework Directive (MSFD) is the ecosystem-based approach. Here, on the basis of a simplified conceptual model of the P. oceanica ecosystem, we have proposed an ecosystem-based index of the quality of its functioning, compliant with the MSFD requirements. This index (EBQI) is based upon a set of representative functional compartments, the weighting of these compartments and the assessment of the quality of each compartment by comparison of a supposed baseline. The index well discriminated 17 sites in the north-western Mediterranean (French Riviera, Provence, Corsica, Catalonia and Balearic Islands) covering a wide range of human pressure levels. The strong points of the EBQI are that it is easy to implement, non-destructive, relatively robust, according to the selection of the compartments and to their weighting, and associated with confidence indices that indicate possible weakness and biases and therefore the need for further field data acquisition. PMID:24933020

  14. Diversity and distribution of Archaea in global estuarine ecosystems.

    PubMed

    Liu, Xiaobo; Pan, Jie; Liu, Yang; Li, Meng; Gu, Ji-Dong

    2018-05-09

    Estuarine ecosystem is a unique geographical transitional zone between freshwater and seawater, harboring a wide range of microbial communities including Archaea. Although a large number of Archaea have been detected in such ecosystem, the global patterns in archaeal diversity and distribution are extremely scarce. To bridge this gap, we carried out a comprehensive survey of archaeal communities using ca. 4000 publicly available archaeal 16S rRNA gene sequences (>300 bp) collected from 24 estuaries in different latitude regions. These sequences were divided into 1450 operational taxonomic units (OTUs) at 97% identity, suggesting a high biodiversity that increased gradually from the high- to low-latitude estuaries. Phylogenetic analysis showed that estuarine ecosystem was a large biodiversity pool of Archaea that was mainly composed of 12 phyla. Among them, the predominant groups were Bathyarchaeota, Euryarchaeota and Thaumarchaeota. Interestingly, archaeal distribution demonstrated a geographical differentiation in that Thaumarchaeota was dominated in the low-latitude estuaries, Bathyarchaeota in the mid-latitude estuaries, and Euryarchaeota in the high-latitude estuaries, respectively. Furthermore, the majority of the most abundant 20 OTUs demonstrated an overrepresented or underrepresented distribution pattern in some specific estuaries or latitude regions while a few were evenly distributed throughout the estuaries. This pattern indicates a potential selectivity of geographical distribution. In addition, the analysis of environmental parameters suggested that latitude would be one of the major factors driving the distribution of archaeal communities in estuarine ecosystem. This study profiles a clear framework on the diversity and distribution of Archaea in the global estuarine ecosystem and explores the general environmental factors that influence these patterns. Our findings constitute an important part of the exploration of the global ecology of Archaea. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Before the Endless Forms: Embodied Model of Transition from Single Cells to Aggregates to Ecosystem Engineering

    PubMed Central

    Solé, Ricard V.; Valverde, Sergi

    2013-01-01

    The emergence of complex multicellular systems and their associated developmental programs is one of the major problems of evolutionary biology. The advantages of cooperation over individuality seem well known but it is not clear yet how such increase of complexity emerged from unicellular life forms. Current multicellular systems display a complex cell-cell communication machinery, often tied to large-scale controls of body size or tissue homeostasis. Some unicellular life forms are simpler and involve groups of cells cooperating in a tissue-like fashion, as it occurs with biofilms. However, before true gene regulatory interactions were widespread and allowed for controlled changes in cell phenotypes, simple cellular colonies displaying adhesion and interacting with their environments were in place. In this context, models often ignore the physical embedding of evolving cells, thus leaving aside a key component. The potential for evolving pre-developmental patterns is a relevant issue: how far a colony of evolving cells can go? Here we study these pre-conditions for morphogenesis by using CHIMERA, a physically embodied computational model of evolving virtual organisms in a pre-Mendelian world. Starting from a population of identical, independent cells moving in a fluid, the system undergoes a series of changes, from spatial segregation, increased adhesion and the development of generalism. Eventually, a major transition occurs where a change in the flow of nutrients is triggered by a sub-population. This ecosystem engineering phenomenon leads to a subsequent separation of the ecological network into two well defined compartments. The relevance of these results for evodevo and its potential ecological triggers is discussed. PMID:23596506

  16. Ecosystem-based coastal defence in the face of global change.

    PubMed

    Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J

    2013-12-05

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

  17. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects.

    PubMed

    Jaramillo, Eduardo; Dugan, Jenifer E; Hubbard, David M; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation.

  18. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects

    PubMed Central

    Dugan, Jenifer E.; Hubbard, David M.; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S.

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation. PMID:28481897

  19. Annual ecosystem respiration variability of alpine peatland on the eastern Qinghai-Tibet Plateau and its controlling factors.

    PubMed

    Peng, Haijun; Hong, Bing; Hong, Yetang; Zhu, Yongxuan; Cai, Chen; Yuan, Lingui; Wang, Yu

    2015-09-01

    Peatlands are widely developed in the eastern Qinghai-Tibet Plateau, but little is known about carbon budgets for these alpine peatland ecosystems. In this study, we used an automatic chamber system to measure ecosystem respiration in the Hongyuan peatland, which is located in the eastern Qinghai-Tibet Plateau. Annual ecosystem respiration measurements showed a typical seasonal pattern, with the peak appearing in June. The highest respiration was 10.43 μmol CO2/m(2)/s, and the lowest was 0.20 μmol CO2/m(2)/s. The annual average ecosystem respiration was 2.06 μmol CO2/m(2)/s. The total annual respiration was 599.98 g C/m(2), and respiration during the growing season (from May to September) accounted for 78 % of the annual sum. Nonlinear regression revealed that ecosystem respiration has a significant exponential correlation with soil temperature at 10-cm depth (R (2) = 0.98). The Q 10 value was 3.90, which is far higher than the average Q 10 value of terrestrial ecosystems. Ecosystem respiration had an apparent diurnal variation pattern in growing season, with peaks and valleys appearing at approximately 14:00 and 10:00, respectively, which could be explained by soil temperature and soil water content variation at 10-cm depth.

  20. Deltaic margins vulnerability: the role of landscape patches in flood regulation and climate adaptation

    NASA Astrophysics Data System (ADS)

    Valentini, E.; Taramelli, A.; Nguyen Xuan, A.; Filipponi, F.; Casarotti, C.; Morelli, A.

    2015-12-01

    Andrea Taramelli1,2,3, Emiliana Valentini2,3, Alessandra Nguyenxuan2, Federico Filipponi3, Chiara Casarotti2, Arianna Morelli1 1IUSS Institute for Advanced Study, Piazza della Vittoria 15, 27100, Pavia, ITALY 2Eucentre Foundation, European Centre for Training and Research in Earthquake Engineering, Pavia, Italy 3ISPRA, Institute for Environmental Protection and Research, Via Vitaliano Brancati 48, 00144, Roma Deltas are widely identified as vulnerable hotspots at the interface of the continental land mass and the world's coastal boundaries. With respect to increasing risks related to global change, the concept of ecosystem services has a capacity to contribute to safety of both, social and natural systems and vulnerability reduction. Here we study the role of the pool of ecosystem services in terms of flood mitigation and vulnerability reduction model, in a deltaic margins of the European coast (the complex land-sea system of the Waddenzee, comprising the Netherland inner coast and the islands, North Sea) then applicable to a wide variety of deltaic regions in developing areas. Extensive tidal mud flats, saltmarshes, dune ridges and sandy spits between the mainland and the chain of islands, support valuable sediment and primary production regulation along the seaside of these ecosystems. The system includes an incentive ecosystem structure (dune system) whereby economic agents would choose development activities that reduce vulnerability (flooding protection and erosion prevention) as well as satisfy production objectives (recreation and tourism). Vulnerability values extracted using remote sensing processors represent an innovative development of systems and methodologies. Using remote sensing observations, we investigate the distribution of spatial vegetation and substrate patterns controlled by changes in environmental variables acting on deltas, and we speculate the conditions under which the Real Elementary area can be defined.

  1. Numerical Modeling of Hydrokinetic Turbines and their Environmental Effects

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Aliseda, Alberto

    2010-11-01

    Energy extraction from ocean tides via hydrokinetic turbines has recently attracted scientists and engineers attention as a highly predictable source of renewable energy. However, since the most promising locations in terms of resources and proximity to the end users are in fragile estuarine ecosystems, numerous issues concerning the environmental impact of this technology need to be addressed a priori before large scale deployment. In this work we use numerical simulations to study the possible environmental effects of hydrokinetic turbines through their influence on physical flow variables such as pressure and velocity. The velocity deficit created in the turbulent wake of a turbine affects the settling of suspended sediment in the water column and can lead to deposition into artificial patterns that will alter the benthic ecosystem. On the other side of the spectrum, pressure fluctuation through turbine blades and in blade tip vortices can damage internal organs of marine species as they swim through the device, particularly for small juveniles that behave like Lagrangian trackers. We present sedimentation statistics to understand the sensitivity of this phenomena to turbine operating conditions and sediment properties. We also show pressure history for slightly buoyant Lagrangian particles moving through the turbine and correlations with damage thresholds obtained from laboratory experiments.

  2. Nutrient resorption and patterns of litter production and decomposition in a Neotropical savanna.

    Treesearch

    A.R. Kozovits; M.M.C. Bustamante; C.R. Garofalo; S. Bucci; A.C. Franco; G. Goldstein; F. Meinzer

    2007-01-01

    1. Deposition of nutrients owing to anthropogenic activities has the potential to change nutrient availability in nutrient-limited ecosystems with consequences for plant and ecosystem processes. 2. Species-specific and ecosystem responses to the addition of nutrients were studied in a field experiment conducted in a Savanna (Cerrado sensu stricto)...

  3. Climate and atmospheric deposition patterns and trends

    Treesearch

    Warren E. Heilman; John Hom; Brian E. Potter

    2000-01-01

    One of the most important factors impacting terrestrial and aquatic ecosystems is the atmospheric environment. Climatic and weather events play a significant role in governing the natural processes that occur in these ecosystems. The current characteristics of the vast number of ecosystems that cover the northeast and north central United States are, in part, the...

  4. Carbon allocation in forest ecosystems

    Treesearch

    Creighton M. Litton; James W. Raich; Michael G. Ryan

    2007-01-01

    Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...

  5. Dynamics of ecosystem service values in response to landscape pattern changes from 1995 to 2005 in Guangzhou, Southern China

    Treesearch

    Yanqiong Ye; Jia' en Zhang; Lili Chen; Ying Ouyang; Prem Parajuli

    2015-01-01

    This study analyzed the landscape pattern changes, the dynamics of the ecosystem service values (ESVs) and the spatial distribution of ESVs from 1995 to 2005 in Guangzhou, which is the capital of Guangdong Province and a regional central city in South China. Remote sensing data and geographic information system techniques, in conjunction with spatial metrics, were used...

  6. Implications of tristability in pattern-forming ecosystems

    NASA Astrophysics Data System (ADS)

    Zelnik, Yuval R.; Gandhi, Punit; Knobloch, Edgar; Meron, Ehud

    2018-03-01

    Many ecosystems show both self-organized spatial patterns and multistability of possible states. The combination of these two phenomena in different forms has a significant impact on the behavior of ecosystems in changing environments. One notable case is connected to tristability of two distinct uniform states together with patterned states, which has recently been found in model studies of dryland ecosystems. Using a simple model, we determine the extent of tristability in parameter space, explore its effects on the system dynamics, and consider its implications for state transitions or regime shifts. We analyze the bifurcation structure of model solutions that describe uniform states, periodic patterns, and hybrid states between the former two. We map out the parameter space where these states exist, and note how the different states interact with each other. We further focus on two special implications with ecological significance, breakdown of the snaking range and complex fronts. We find that the organization of the hybrid states within a homoclinic snaking structure breaks down as it meets a Maxwell point where simple fronts are stationary. We also discover a new series of complex fronts between the uniform states, each with its own velocity. We conclude with a brief discussion of the significance of these findings for the dynamics of regime shifts and their potential control.

  7. Disturbance-mediated facilitation by an intertidal ecosystem engineer.

    PubMed

    Wright, Jeffrey T; Gribben, Paul E

    2017-09-01

    Ecosystem engineers facilitate communities by providing a structural habitat that reduces abiotic stress or predation pressure for associated species. However, disturbance may damage or move the engineer to a more stressful environment, possibly increasing the importance of facilitation for associated communities. In this study, we determined how disturbance to intertidal boulders (i.e., flipping) and the subsequent movement of a structural ecosystem engineer, the tube-forming serpulid worm Galeolaria caespitosa, from the bottom (natural state, low abiotic stress) to the top (disturbed state, high abiotic stress) surface of boulders influenced the importance of facilitation for intertidal communities across two intertidal zones. Theory predicts stronger relative facilitation should occur in the harsher environments of the top of boulders and the high intertidal zone. To test this prediction, we experimentally positioned boulders with the serpulids either face up or face down for 12 months in low and high zones in an intertidal boulder field. There were very different communities associated with the different boulders and serpulids had the strongest facilitative effects on the more stressful top surface of boulders with approximately double the species richness compared to boulders lacking serpulids. Moreover, within the serpulid matrix itself there was also approximately double the species richness (both zones) and abundance (high zone only) of small invertebrates on the top of boulders compared to the bottom. The high relative facilitation on the top of boulders reflected a large reduction in temperature by the serpulid matrix on that surface (up to 10°C) highlighting a key role for modification of the abiotic environment in determining the community-wide facilitation. This study has demonstrated that disturbance and subsequent movement of an ecosystem engineer to a more stressful environment increased the importance of facilitation and allowed species to persist that would otherwise be unable to survive in that environment. © 2017 by the Ecological Society of America.

  8. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.

    PubMed

    Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J

    2016-09-01

    Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template

    PubMed Central

    Dong, Xiaoli; Grimm, Nancy B.

    2017-01-01

    Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326

  10. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template.

    PubMed

    Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B

    2017-06-13

    Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.

  11. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands

    Treesearch

    Lisa A. Schulte; Jarad Niemi; Matthew J. Helmers; Matt Liebman; J. Gordon Arbuckle; David E. James; Randall K. Kolka; Matthew E. O’Neal; Mark D. Tomer; John C. Tyndall; Heidi Asbjornsen; Pauline Drobney; Jeri Neal; Gary Van Ryswyk; Chris Witte

    2017-01-01

    Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native...

  12. Climate Change and Evolution of Vector Associated Pathogens: Potential to Increase or Decrease Duration and Intensity of Epidemics

    USDA-ARS?s Scientific Manuscript database

    Population growth, frontier agricultural expansion, and urbanization transform the landscape and the surrounding ecosystem, affecting climate, diseases, and interactions between animals and humans. Additionally, the Earth’s oceans serve as the engine of the Earth’s climate and ecosystems, and they a...

  13. Hemigrapsus sanguineus in Long Island salt marshes: experimental evaluation of the interactions between an invasive crab and resident ecosystem engineers

    PubMed Central

    Fournier, Alexa M.; Furman, Bradley T.; Carroll, John M.

    2014-01-01

    The invasive Asian shore crab, Hemigrapsus sanguineus, has recently been observed occupying salt marshes, a novel environment for this crab species. As it invades this new habitat, it is likely to interact with a number of important salt marsh species. To understand the potential effects of H. sanguineus on this ecosystem, interactions between this invasive crab and important salt marsh ecosystem engineers were examined. Laboratory experiments demonstrated competition for burrows between H. sanguineus and the native fiddler crab, Uca pugilator. Results indicate that H. sanguineus is able to displace an established fiddler crab from its burrow. Feeding experiments revealed that the presence of H. sanguineus has a significantly negative impact on the number as well as the biomass of ribbed mussels (Geukensia demissa) consumed by the green crab, Carcinus maenas, although this only occurred at high predator densities. In addition, when both crabs foraged together, there was a significant shift in the size of mussels consumed. These interactions suggests that H. sanguineus may have long-term impacts and wide-ranging negative effects on the saltmarsh ecosystem. PMID:25071995

  14. Hemigrapsus sanguineus in Long Island salt marshes: experimental evaluation of the interactions between an invasive crab and resident ecosystem engineers.

    PubMed

    Peterson, Bradley J; Fournier, Alexa M; Furman, Bradley T; Carroll, John M

    2014-01-01

    The invasive Asian shore crab, Hemigrapsus sanguineus, has recently been observed occupying salt marshes, a novel environment for this crab species. As it invades this new habitat, it is likely to interact with a number of important salt marsh species. To understand the potential effects of H. sanguineus on this ecosystem, interactions between this invasive crab and important salt marsh ecosystem engineers were examined. Laboratory experiments demonstrated competition for burrows between H. sanguineus and the native fiddler crab, Uca pugilator. Results indicate that H. sanguineus is able to displace an established fiddler crab from its burrow. Feeding experiments revealed that the presence of H. sanguineus has a significantly negative impact on the number as well as the biomass of ribbed mussels (Geukensia demissa) consumed by the green crab, Carcinus maenas, although this only occurred at high predator densities. In addition, when both crabs foraged together, there was a significant shift in the size of mussels consumed. These interactions suggests that H. sanguineus may have long-term impacts and wide-ranging negative effects on the saltmarsh ecosystem.

  15. Soil microbial community successional patterns during forest ecosystem restoration.

    PubMed

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  16. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    PubMed Central

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  17. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity.

    PubMed

    Majumder, Biswanath; Baraneedharan, Ulaganathan; Thiyagarajan, Saravanan; Radhakrishnan, Padhma; Narasimhan, Harikrishna; Dhandapani, Muthu; Brijwani, Nilesh; Pinto, Dency D; Prasath, Arun; Shanthappa, Basavaraja U; Thayakumar, Allen; Surendran, Rajagopalan; Babu, Govind K; Shenoy, Ashok M; Kuriakose, Moni A; Bergthold, Guillaume; Horowitz, Peleg; Loda, Massimo; Beroukhim, Rameen; Agarwal, Shivani; Sengupta, Shiladitya; Sundaram, Mallikarjun; Majumder, Pradip K

    2015-02-27

    Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine.

  18. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change

    Treesearch

    Patrick Gonzalez; Ronald P. Neilson; James M. Lenihan; Raymond J. Drapek

    2010-01-01

    Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well-being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We...

  19. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest

    Treesearch

    E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger

    2006-01-01

    Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...

  20. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China

    Treesearch

    Jingfeng Xiao; Ge Sun; Jiquan Chen; Hui Chen; Shiping Chen; Gang Dong

    2013-01-01

    The magnitude, spatial patterns, and controlling factors of the carbon and water fluxes of terrestrial ecosystems in China are not well understood due to the lack of ecosystem-level flux observations. We synthesized flux and micrometeorological observations from 22 eddy covariance flux sites across China,and examined the carbon fluxes, evapotranspiration (ET), and...

  1. The microbiome of glaciers and ice sheets.

    PubMed

    Anesio, Alexandre M; Lutz, Stefanie; Chrismas, Nathan A M; Benning, Liane G

    2017-01-01

    Glaciers and ice sheets, like other biomes, occupy a significant area of the planet and harbour biological communities with distinct interactions and feedbacks with their physical and chemical environment. In the case of the glacial biome, the biological processes are dominated almost exclusively by microbial communities. Habitats on glaciers and ice sheets with enough liquid water to sustain microbial activity include snow, surface ice, cryoconite holes, englacial systems and the interface between ice and overridden rock/soil. There is a remarkable similarity between the different specific glacial habitats across glaciers and ice sheets worldwide, particularly regarding their main primary producers and ecosystem engineers. At the surface, cyanobacteria dominate the carbon production in aquatic/sediment systems such as cryoconite holes, while eukaryotic Zygnematales and Chlamydomonadales dominate ice surfaces and snow dynamics, respectively. Microbially driven chemolithotrophic processes associated with sulphur and iron cycle and C transformations in subglacial ecosystems provide the basis for chemical transformations at the rock interface under the ice that underpin an important mechanism for the delivery of nutrients to downstream ecosystems. In this review, we focus on the main ecosystem engineers of glaciers and ice sheets and how they interact with their chemical and physical environment. We then discuss the implications of this microbial activity on the icy microbiome to the biogeochemistry of downstream ecosystems.

  2. Change In Course Pattern Of The Teesta River: After Effect Of An Engineering Project

    NASA Astrophysics Data System (ADS)

    Ashrafi, Z. M.; Shuvo, S. D.; Mahmud, M. S.

    2016-12-01

    Bangladesh is blessed by rivers that contribute to country's agriculture, landscape development and water supply. Due to nature of the river's flow and morphology, several engineering project have been initiated to enhance its utility, Teesta barrage was one of them. After two decades of its construction in Northern Bangladesh, several study identified major impacts on local ecosystem due to hindrance in water flow. However, how Teesta River evolved in last 25 years after the barrage construction, has not been quantified yet. This study quantifies the downstream evolution of Teesta River in after-construction period (1990-2015). Time series earth observation satellite (Landsat) data and geo-spatial techniques have been utilized to understand the changes in course pattern. Besides, sinuosity index has been used to quantify it. Analysis shows that the river is becoming more braided with the rise of numerous `Char' areas (islands); as well as bifurcation of the main channel, creating newer channels increasingly. Statistically significant changes in Sinuosity Index (SI) of the Teesta river has found in post construction period. In some locations SI increased which indicate that the river is becoming more and more winding than straight it used to be around 1990. It is also found that the river is shifting towards the east where the number of human settlement is higher. The rate of shifting has accelerated during the 2000s. There are places where the course has moved about 3 kilometers from its earlier course. Therefore, higher number of human settlements are in threat of river bank erosion in recent years. River bank management should be developed considering the pattern of course change so that rural settlement can save from destructive river bank erosion.

  3. Alien invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America

    Treesearch

    Jason B. Dunham; Susan B. Adams; Robert E. Schroeter; Douglas C. Novinger

    2002-01-01

    Experience from case studies of biological invasions in aquatic ecosystems has motivated a set of proposed empirical “rules” for understanding patterns of invasion and impacts on native species. Further evidence is needed to better understand these patterns, and perhaps contribute to a useful predictive theory of invasions. We reviewed the case of brook trout (

  4. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay

    USGS Publications Warehouse

    Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.

    2017-01-01

    The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.

  5. Ecosystem service provision in a changing Europe: adapting to the impacts of combined climate and socio-economic change.

    PubMed

    Dunford, Robert W; Smith, Alison C; Harrison, Paula A; Hanganu, Diana

    Future patterns of European ecosystem services provision are likely to vary significantly as a result of climatic and socio-economic change and the implementation of adaptation strategies. However, there is little research in mapping future ecosystem services and no integrated assessment approach to map the combined impacts of these drivers. Map changing patterns in ecosystem services for different European futures and (a) identify the role of driving forces; (b) explore the potential influence of different adaptation options. The CLIMSAVE integrated assessment platform is used to map spatial patterns in services (food, water and timber provision, atmospheric regulation, biodiversity existence/bequest, landscape experience and land use diversity) for a number of combined climatic and socio-economic scenarios. Eight adaptation strategies are explored within each scenario. Future service provision (particularly water provision) will be significantly impacted by climate change. Socio-economic changes shift patterns of service provision: more dystopian societies focus on food provision at the expense of other services. Adaptation options offer significant opportunities, but may necessitate trade-offs between services, particularly between agriculture- and forestry-related services. Unavoidable trade-offs between regions (particularly South-North) are also identified in some scenarios. Coordinating adaptation across regions and sectors will be essential to ensure that all needs are met: a factor that will become increasingly pressing under dystopian futures where inter-regional cooperation breaks down. Integrated assessment enables exploration of interactions and trade-offs between ecosystem services, highlighting the importance of taking account of complex cross-sectoral interactions under different future scenarios of planning adaptation responses.

  6. Bream (Abramis brama (L.)) as zoogeomorphic agents and ecosystem engineers: Implications for fine sediment transport in lowland rivers

    NASA Astrophysics Data System (ADS)

    Smith, James; Rice, Stephen; Hodgkins, Richard

    2017-04-01

    Despite increasing recognition that animals play important roles in geomorphological systems (zoogeomorphology), with important ecological implications for the animals and their ecosystems (ecosystem engineering), sediment transport continues to be regarded as an abiotic process. This research challenges that orthodoxy by investigating the biotic processes associated with bioturbation in rivers caused by feeding bream (Abramis brama (L.)) and quantifying their impact on fine sediment suspension and sediment yield. Experiments in lakes have demonstrated that bream negatively influence ecosystem dynamics through bottom up mechanisms as a result of physical bioturbation caused by benthivorous feeding. Although this level of bioturbation, and thus sediment entrainment, can alter the fundamental biogeochemical cycles and food web dynamics in lentic ecosystems, research is yet to assess this potential effect in riverine ecosystems or evaluate this bioturbation mechanism as a driver of fluvial sediment flux - even though they are common in rivers across mainland Europe. A series of ex-situ mesocosm experiments have investigated the controls of fine sediment entrainment by bream, assessing the roles of both biomass (size and number) and food density on suspended sediment concentration and turbidity. Bream create large volumes of suspended sediment during feeding (highest recorded turbidity 1172 NTU) and there are significant (p < 0.001) increases in turbidity associated with each experimental parameter: number of fish, fish size and food density. Supplementary experiments have assessed bream as ecosystem engineers in the presence of the congener species, roach (Rutilus rutilus (L.)), which share the same ecological niche. In the presence of roach, the impact of bream on turbidity increased by an average of 120% (6.6 NTU to 15 NTU) and increased further at the 90th percentile by 240% (32 NTU to 110 NTU). In light of these findings, the extensive geographical distribution of bream and the observation that shoals of bream commonly exceed one thousand individuals, it is plausible that bream are an important biological constituent of the fine sediment cascade within riverine systems. Complementary field work is underway to quantify the frequency-magnitude characteristics of the fine sediment plumes that feeding shoals of bream generate in lowland UK rivers.

  7. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    EPA Science Inventory

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  8. ECOREGIONS OF WISCONSIN

    EPA Science Inventory

    Ecoregions are geographical areas within which the biotic and abiotic components of terrestrial and aquatic ecosystems exhibit different but relatively homogeneous patterns in comparison to that of other areas. As such these regions serve as a framework for ecosystem management ...

  9. Global patterns of groundwater table depth.

    PubMed

    Fan, Y; Li, H; Miguez-Macho, G

    2013-02-22

    Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.

  10. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models.

    PubMed

    Nelson, Erik; Sander, Heather; Hawthorne, Peter; Conte, Marc; Ennaanay, Driss; Wolny, Stacie; Manson, Steven; Polasky, Stephen

    2010-12-15

    As the global human population grows and its consumption patterns change, additional land will be needed for living space and agricultural production. A critical question facing global society is how to meet growing human demands for living space, food, fuel, and other materials while sustaining ecosystem services and biodiversity [1]. We spatially allocate two scenarios of 2000 to 2015 global areal change in urban land and cropland at the grid cell-level and measure the impact of this change on the provision of ecosystem services and biodiversity. The models and techniques used to spatially allocate land-use/land-cover (LULC) change and evaluate its impact on ecosystems are relatively simple and transparent [2]. The difference in the magnitude and pattern of cropland expansion across the two scenarios engenders different tradeoffs among crop production, provision of species habitat, and other important ecosystem services such as biomass carbon storage. For example, in one scenario, 5.2 grams of carbon stored in biomass is released for every additional calorie of crop produced across the globe; under the other scenario this tradeoff rate is 13.7. By comparing scenarios and their impacts we can begin to identify the global pattern of cropland and irrigation development that is significant enough to meet future food needs but has less of an impact on ecosystem service and habitat provision. Urban area and croplands will expand in the future to meet human needs for living space, livelihoods, and food. In order to jointly provide desired levels of urban land, food production, and ecosystem service and species habitat provision the global society will have to become much more strategic in its allocation of intensively managed land uses. Here we illustrate a method for quickly and transparently evaluating the performance of potential global futures.

  11. Landslides Are Common In The Amazon Rainforests Of SE Peru

    NASA Astrophysics Data System (ADS)

    Khanal, S. P.; Muttiah, R. S.; Janovec, J. P.

    2005-12-01

    The recent landslides in La Conchita, California, Mumbai, India, Ratnapura, Sri Lanka and Sugozu village, Turkey have dramatically illustrated prolonged rainfall on water induced change in soil shear stress. In these examples, the human footprint may have also erased or altered the natural river drainage from small to large scales. By studying patterns of landslides in natural ecosystems, government officials, policy makers, engineers, geologists and others may be better informed about likely success of prevention or amelioration programs in risk prone areas. Our study area in the Los Amigos basin in Amazon rainforests of Southeastern Peru, has recorded several hundred landslides. The area has no large human settlements. The basin is characterized by heavy rainfall, dense vegetation, river meander and uniform soils. Our objectives were: 1). Determine the spatial pattern of landslides using GIS and Remotely sensed data, 2). Model the statistical relationship between environmental variables and, 3). Evaluate influence of drainage on landscape and soil loss. GIS layers consisted of: 50cm aerial imagery, DEMs, digitized streams, soils, geology, rainfall from the TRMM satellite, and vegetation cover from the LANDSAT and MODIS sensors.

  12. Self-organized multi-species vegetation patterns: the role of connectivity of environmental niches in natural water harvesting ecosystems

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Self-organizing vegetation patterns are natural water harvesting systems in arid and semi-arid regions of the world and should be imitated when designing man-managed water-harvesting systems for rain-fed crop. Disconnected vegetated and bare zones, functioning as a source-sink system of resources, sustain vegetation growth and reduce water and soil losses. Mechanisms such as soil crusting over bare areas and soil loosening in vegetated areas feed back to the local net facilitation effect and contribute to maintain the patterned landscape structure. Dis-connectivity of run-off production and run-on infiltration sites reduces runoff production at the landscape scale, and increases water retention in the vegetated patches. What is the effect of species adaptation to different resource niches on the landscape structure? A minimal model for two coexisting species and soil moisture balance was formulated, to improve our understanding of the effects of species differentiation on the dynamics of plants and water at single-pattern and landscape scale within a tiger bush type ecosystem. A basic assumption of our model was that soil moisture availability is a proxy for the environmental niche of plant species. Connectivity and dis-connectivity of specific niches of adaptation of two differing plant species was an input parameter of our model, in order to test the effect of coexistence on the ecosystem structure. The ecosystem structure is the model outcome, including: patterns persistence of coexisting species; patterns persistence of one species with exclusion of the other; patterns decline with just one species surviving in a non organized structure; bare landscape with loss of both species. Results suggest that pattern-forming-species communities arise as a result of complementary niche adaptation (niche dis-connecivity), whereas niche superposition (niche connectivity) may lead to impoverishment of environmental resources and loss of vegetation cover and diversity.

  13. Saturn Apollo Program

    NASA Image and Video Library

    2004-04-15

    H-1 Engine major components with callouts (chart 1): The H-1 engine was used in a cluster of eight on the the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern: four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine had a thrust of 188,000 pounds for a combined thrust of over 1,500,000 pounds.

  14. Saturn Apollo Program

    NASA Image and Video Library

    2004-04-15

    H-1 engine major components with callouts (chart 1). The H-1 engine was used in a cluster of eight on the the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern: four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine had a thrust of 188,000 pounds for a combined thrust of over 1,500,000 pounds.

  15. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  16. The 2002 Rodeo-Chediski Wildfire's impacts on southwestern ponderosa pine ecosystems, hydrology, and fuels

    Treesearch

    Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2011-01-01

    The Rodeo-Chediski Wildfire burned nearly 462,600 acres in north-central Arizona in the summer of 2002. The wildfire damaged or destroyed ecosystem resources and disrupted the hydrologic functioning within the impacted ponderosa pine (Pinus ponderosa) forests in a largely mosaic pattern. Impacts of the wildfire on ecosystem resources, factors important to hydrologic...

  17. Sensitivity to low-temperature events: Implications for CO2 dynamics in subtropical coastal ecosystems

    Treesearch

    Sparkle L. Malone; Jordan Barr; Jose D. Fuentes; Steven F. Oberbauer; Christina L. Staudhammer; Evelyn E. Gaiser; Gregory Starr

    2016-01-01

    We analyzed the ecosystem effects of low-temperature events (<5 °C) over 4 years (2009-2012) in subtropical short and long hydroperiod freshwater marsh and mangrove forests within Everglades National Park. To evaluate changes in ecosystem productivity, we measured temporal patterns of CO2 and the normalized difference vegetation index over the study period. Both...

  18. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

    Treesearch

    Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal

    2016-01-01

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...

  19. Ecosystem vulnerability assessment and synthesis: a report from the Climate Change Response Framework Project in northern Wisconsin

    Treesearch

    Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery Dorland

    2011-01-01

    The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...

  20. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    USGS Publications Warehouse

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo; Yin, Runsheng

    2009-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon storage and loss. Here we use the General Ensemble Biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China's upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sinks/source pattern showed a high degree of spatial heterogeneity, Carbon sinks were associated with forest areas without disturbances, whereas carbon Sources were primarily caused by stand-replacing disturbances. This highlights the importance of land-use history in determining the regional carbon sinks/source pattern.

  1. From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study

    NASA Astrophysics Data System (ADS)

    Meron, Ehud

    2018-03-01

    Spatial patterns are ubiquitous in animate matter. Besides their intricate structure and beauty they generally play functional roles. The capacity of living systems to remain functional in changing environments is a question of utmost importance, but its intimate relationship to pattern formation is largely unexplored. Here, we address this relationship using dryland vegetation as a case study. Following a brief introduction to pattern-formation theory, we describe a mathematical model that captures several mechanisms of vegetation pattern formation and discuss ecological contexts that showcase different mechanisms. Using this model, we unravel the different vegetation patterns that keep dryland ecosystems viable along the rainfall gradient, identify multistability ranges where fronts separating domains of alternative stable states exist, and highlight the roles of front dynamics in mitigating or reversing desertification. The utility of satellite images in testing model predictions is discussed. An outlook on outstanding open problems concludes this paper.

  2. Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines.

    PubMed

    Rogora, M; Frate, L; Carranza, M L; Freppaz, M; Stanisci, A; Bertani, I; Bottarin, R; Brambilla, A; Canullo, R; Carbognani, M; Cerrato, C; Chelli, S; Cremonese, E; Cutini, M; Di Musciano, M; Erschbamer, B; Godone, D; Iocchi, M; Isabellon, M; Magnani, A; Mazzola, L; Morra di Cella, U; Pauli, H; Petey, M; Petriccione, B; Porro, F; Psenner, R; Rossetti, G; Scotti, A; Sommaruga, R; Tappeiner, U; Theurillat, J-P; Tomaselli, M; Viglietti, D; Viterbi, R; Vittoz, P; Winkler, M; Matteucci, G

    2018-05-15

    Mountain ecosystems are sensitive and reliable indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers from a broad ecological perspective. Mountain research sites within the LTER (Long-Term Ecological Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria covering in most cases more than two decades of observations. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular plant species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change, with site-specific characteristics and rates. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were also observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for (i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, (ii) carrying out further studies, in particular short-term analyses with fine spatial and temporal resolutions to improve our understanding of responses to extreme events, and (iii) increasing comparability and standardizing protocols across networks to distinguish local patterns from global patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Monitoring of initial patterns and structures in an artificial catchment

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang; Gerwin, Werner; Biemelt, Detlef; Fischer, Anton

    2010-05-01

    To combine process-oriented research on initial development of ecosystems with interactions and co-development of spatial patterns and structures the Transregional Collaborative Research Centre (SFB/TRR) 38 (www.tu-cottbus.de/sfb_trr) was established as an initiative of three universities (BTU Cottbus, TU Munich and ETH Zurich). The objective of the SFB/TRR 38 is to enhance our understanding of structure genesis in ecosystems and of process dynamics as well as their interactions during the initial development phase. The aim is to integrate these feedback mechanisms in the analysis of water and element budgets at the catchment scale and to implement them into models. To allow the clear definition of starting conditions at ´point zeró and to be able to integrate spatially distributed processes and patterns to larger units, an artificial catchment was constructed in the mining area of Lusatia/Germany as the main research site (Gerwin et al. 2009a). With an area of about 6 ha, this catchment ´Chicken Creeḱ is to our knowledge the largest artificial catchment worldwide. It was constructed as a 2-4 m layer of post-glacial sandy to loamy sediments overlying a 1-2 m layer of Tertiary clay that forms a shallow pan and seals the whole catchment at the base. No further measures of restoration like planting, amelioration or fertilization were carried out to allow natural succession and undisturbed development. Due to the artificial construction, boundary conditions of this site are clearly defined including well documented inner structures as compared to natural catchments. It is assumed that the interaction of patterns and processes during initial development will proceed from simpler to more complex states of the systems and that different stages along this phase can be identified at the catchment level. Changes within the catchment are intensively monitored since 2005, when construction finished (Gerwin et al. 2009b), including intensive on-site measurements and micro-drone based aerial images. Starting from relatively homogenous site conditions the catchment rapidly developed new structures and patterns due to soil erosion, sediment transport, stream formation, vegetation cover and succession, groundwater table rise and surface crust formation resulting in an increasing differentiation of subareas and site characteristics. Some of these structures and patterns formed as a result of the interaction of abiotic and biotic processes during initial development, some were influenced by structures caused by the construction process itself, and others were affected by single accidental events, e.g. the occurrence of high intensity thunderstorms. References Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009a) The artificial catchment "Chicken Creek" (Lusatia, Germany) - a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecolological Engineering 35, 1786-1796. Gerwin W, Schaaf W, Biemelt D, Winter S, Fischer A, Veste M, Hüttl RF (2009b) Ecological monitoring at the artificial watershed Chicken Creek (Germany). Physics and chemistry of the earth (in review).

  4. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Toots, Märt; Diédhiou, Abdala G; Henkel, Terry W; Kjøller, Rasmus; Morris, Melissa H; Nara, Kazuhide; Nouhra, Eduardo; Peay, Kabir G; Põlme, Sergei; Ryberg, Martin; Smith, Matthew E; Kõljalg, Urmas

    2012-09-01

    Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi-microbial symbionts that play key roles in plant nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM fungi, greater evolutionary age and larger total area of EcM host vegetation may also contribute to the higher diversity in temperate ecosystems. Our results provide useful biogeographic and ecological hypotheses for explaining the distribution of fungi that remain to be tested by involving next-generation sequencing techniques and relevant soil metadata. © 2012 Blackwell Publishing Ltd.

  5. Perturbations to trophic interactions and the stability of complex food webs

    PubMed Central

    O'Gorman, Eoin J.; Emmerson, Mark C.

    2009-01-01

    The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606

  6. Noise in ecosystems: a short review.

    PubMed

    Spagnolo, B; Valenti, D; Fiasconaro, A

    2004-06-01

    Noise, through its interaction with the nonlinearity of the living systems, can give rise to counter-intuitive phenomena such as stochastic resonance, noise-delayed extinction, temporal oscillations, and spatial patterns. In this paper we briefly review the noise-induced effects in three different ecosystems: (i) two competing species; (ii) three interacting species, one predator and two preys, and (iii) N-interacting species. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is random in cases (i) and (iii), and a periodical function, which accounts for the environmental temperature, in case (ii). We find noise-induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise-delayed extinction, and noise-induced pattern formation with nonmonotonic behaviors of patterns areas and of the density correlation as a function of the multiplicative noise intensity. The asymptotic behavior of the time average of the i(th) population when the ecosystem is composed of a great number of interacting species is obtained and the effect of the noise on the asymptotic probability distributions of the populations is discussed.

  7. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy-covariance, biometric and continuous soil chamber measurements

    NASA Astrophysics Data System (ADS)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2012-10-01

    Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruits, the limited root-apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.

  8. The role of climate in the global patterns of ecosystem carbon turnover rates - contrasts between data and models

    NASA Astrophysics Data System (ADS)

    Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Migliavacca, M.; Thurner, M.; Beer, C.; Jung, M.; Mu, M.; Randerson, J. T.; Saatchi, S. S.; Santoro, M.; Reichstein, M.

    2012-12-01

    The turnover rates of carbon in terrestrial ecosystems and their sensitivity to climate are instrumental properties for diagnosing the interannual variability and forecasting trends of biogeochemical processes and carbon-cycle-climate feedbacks. We propose to globally look at the spatial distribution of turnover rates of carbon to explore the association between bioclimatic regimes and the rates at which carbon cycles in terrestrial ecosystems. Based on data-driven approaches of ecosystem carbon fluxes and data-based estimates of ecosystem carbon stocks it is possible to build fully observationally supported diagnostics. These data driven diagnostics support the benchmarking of CMIP5 model outputs (Coupled Model Intercomparison Project Phase 5) with observationally based estimates. The models' performance is addressed by confronting spatial patterns of carbon fluxes and stocks with data, as well as the global and regional sensitivities of turnover rates to climate. Our results show strong latitudinal gradients globally, mostly controlled by temperature, which are not always paralleled by CMIP5 simulations. In northern colder regions is also where the largest difference in temperature sensitivity between models and data occurs. Interestingly, there seem to be two different statistical populations in the data (some with high, others with low apparent temperature sensitivity of carbon turnover rates), where the different models only seem to describe either one or the other population. Additionally, the comparisons within bioclimatic classes can even show opposite patterns between turnover rates and temperature in water limited regions. Overall, our analysis emphasizes the role of finding patterns and intrinsic properties instead of plain magnitudes of fluxes for diagnosing the sensitivities of terrestrial biogeochemical cycles to climate. Further, our regional analysis suggests a significant gap in addressing the partial influence of water in the ecosystem carbon turnover rates especially in very cold or water limited regions.

  9. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes

    PubMed Central

    Raudsepp-Hearne, C.; Peterson, G. D.; Bennett, E. M.

    2010-01-01

    A key challenge of ecosystem management is determining how to manage multiple ecosystem services across landscapes. Enhancing important provisioning ecosystem services, such as food and timber, often leads to tradeoffs between regulating and cultural ecosystem services, such as nutrient cycling, flood protection, and tourism. We developed a framework for analyzing the provision of multiple ecosystem services across landscapes and present an empirical demonstration of ecosystem service bundles, sets of services that appear together repeatedly. Ecosystem service bundles were identified by analyzing the spatial patterns of 12 ecosystem services in a mixed-use landscape consisting of 137 municipalities in Quebec, Canada. We identified six types of ecosystem service bundles and were able to link these bundles to areas on the landscape characterized by distinct social–ecological dynamics. Our results show landscape-scale tradeoffs between provisioning and almost all regulating and cultural ecosystem services, and they show that a greater diversity of ecosystem services is positively correlated with the provision of regulating ecosystem services. Ecosystem service-bundle analysis can identify areas on a landscape where ecosystem management has produced exceptionally desirable or undesirable sets of ecosystem services. PMID:20194739

  10. The role of algae and cyanobacteria in the production and release of odorants in water.

    PubMed

    Lee, Jechan; Rai, Prabhat Kumar; Jeon, Young Jae; Kim, Ki-Hyun; Kwon, Eilhann E

    2017-08-01

    This review covers literatures pertaining to algal and cyanobacterial odor problems that have been published over the last five decades. Proper evaluation of algal and cyanobacterial odors may help establish removal strategies for hazardous metabolites while enhancing the recyclability of water. A bloom of microalgae is a sign of an anthropogenic disturbance in aquatic systems and can lead to diverse changes in ecosystems along with increased production of odorants. In general, because algal and cyanobacterial odors vary in chemistry and intensity according to blooming pattern, it is necessary to learn more about the related factors and processes (e.g., changes due to differences in taxa). This necessitates systematic and transdisciplinary approaches that require the cooperation of chemists, biologists, engineers, and policy makers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. THE MAXIMIUM POWER PRINCIPLE: AN EMPIRICAL INVESTIGATION

    EPA Science Inventory

    The maximum power principle is a potential guide to understanding the patterns and processes of ecosystem development and sustainability. The principle predicts the selective persistence of ecosystem designs that capture a previously untapped energy source. This hypothesis was in...

  12. INTEGRATED ASSESSMENTS OF ANTHROPOGENIC AND NATURAL CHANGES IN CHESAPEAKE BAY WATERSHEDS

    EPA Science Inventory

    Both natural and anthropogenic factors affect spatial and temporal patterns in ecosystem conditions. To manage environmental change and risks, distinguishing between natural variations in ecosystem conditions and anthropogenic changes becomes important. This concept is illustrate...

  13. APPLYING SATELLITE IMAGERY TO TRIAGE ASSESSMENT OF ECOSYSTEM HEALTH

    EPA Science Inventory

    Considerable evidence documents that certain changes in vegetation and soils result in irreversibly degraded rangeland ecosystems. We used Advanced Very High Resolution Radiometer (AVHRR)imagery to develop calibration patterns of change in the Normalized Difference Vegetation Ind...

  14. Ecological Engineering Practices for the Reduction of Excess Nitrogen in Human-Influenced Landscapes: A Guide for Watershed Managers

    EPA Science Inventory

    Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have s...

  15. Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2018-03-01

    A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.

  16. Ecosystem classifications based on summer and winter conditions.

    PubMed

    Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q

    2013-04-01

    Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.

  17. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge

    USGS Publications Warehouse

    Hooper, D.U.; Chapin, F. S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; Schmid, B.; SetSlS, H.; Symstad, A.J.; Vandermeer, J.; Wardle, D.A.

    2005-01-01

    Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1) Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts, including effects of dominant species, keystone species, ecological engineers, and interactions among species (e.g., competition, facilitation, mutualism, disease, and predation). Relative abundance alone is not always a good predictor of the ecosystem-level importance of a species, as even relatively rare species (e.g., a keystone predator) can strongly influence pathways of energy and material flows.2) Alteration of biota in ecosystems via species invasions and extinctions caused by human activities has altered ecosystem goods and services in many well-documented cases. Many of these changes are difficult, expensive, or impossible to reverse or fix with technological solutions.3) The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change.4) Some ecosystem properties are initially insensitive to species loss because (a) ecosystems may have multiple species that carry out similar functional roles, (b) some species may contribute relatively little to ecosystem properties, or (c) properties may be primarily controlled by abiotic environmental conditions.5) More species are needed to insure a stable supply of ecosystem goods and services as spatial and temporal variability increases, which typically occurs as longer time periods and larger areas are considered.We have high confidence in the following conclusions:1) Certain combinations of species are complementary in their patterns of resource use and can increase average rates of productivity and nutrient retention. At the same time, environmental conditions can influence the importance of complementarity in structuring communities. Identification of which and how many species act in a complementary way in complex communities is just beginning.2) Susceptibility to invasion by exotic species is strongly influenced by species composition and, under similar environmental conditions, generally decreases with increasing species richness. However, several other factors, such as propagule pressure, disturbance regime, and resource availability also strongly influence invasion success and often override effects of species richness in comparisons across different sites or ecosystems.3) Having a range of species that respond differently to different environmental perturbations can stabilize ecosystem process rates in response to disturbances and variation in abiotic conditions. Using practices that maintain a diversity of organisms of different functional effect and functional response types will help preserve a range of management options.Uncertainties remain and further research is necessary in the following areas:1) Further resolution of the relationships among taxonomic diversity, functional diversity, and community structure is important for identifying mechanisms of biodiversity effects.2) Multiple trophic levels are common to ecosystems but have been understudied in biodiversity/ecosystem functioning research. The response of ecosystem properties to varying composition and diversity of consumer organisms is much more complex than responses seen in experiments that vary only the diversity of primary producers.3) Theoretical work on stability has outpaced experimental work, especially field research. We need long-term experiments to be able to assess temporal stability, as well as experimental perturbations to assess response to and recovery from a variety of disturbances. Design and analysis of such experiments must account for several factors that covary with species diversity.4) Because biodiversity both responds to and influences ecosystem properties, understanding the feedbacks involved is necessary to integrate results from experimental communities with patterns seen at broader scales. Likely patterns of extinction and invasion need to be linked to different drivers of global change, the forces that structure communities, and controls on ecosystem properties for the development of effective management and conservation strategies.5) This paper focuses primarily on terrestrial systems, with some coverage of freshwater systems, because that is where most empirical and theoretical study has focused. While the fundamental principles described here should apply to marine systems, further study of that realm is necessary.Despite some uncertainties about the mechanisms and circumstances under which diversity influences ecosystem properties, incorporating diversity effects into policy and management is essential, especially in making decisions involving large temporal and spatial scales. Sacrificing those aspects of ecosystems that are difficult or impossible to reconstruct, such as diversity, simply because we are not yet certain about the extent and mechanisms by which they affect ecosystem properties, will restrict future management options even further. It is incumbent upon ecologists to communicate this need, and the values that can derive from such a perspective, to those charged with economic and policy decision-making.

  18. Linking macrobenthic communities structure and zonation patterns on sandy shores: Mapping tool toward management and conservation perspectives in Northern France

    NASA Astrophysics Data System (ADS)

    Rolet, Céline; Spilmont, Nicolas; Dewarumez, Jean-Marie; Luczak, Christophe

    2015-05-01

    In a context of intensifying anthropogenic pressures on sandy shores, the mapping of benthic habitat appears as an essential first step and a fundamental baseline for marine spatial planning, ecosystem-based management and conservation efforts of soft-sediment intertidal areas. Mapping allows representing intertidal habitats that are basically characterised by abiotic (e.g sediments, exposure to waves…) and biotic factors such as macrobenthic communities. Macrobenthic communities are known to show zonation patterns across sandy beaches and many studies highlighted the existence of three biological zones. We tested this general model of a tripartite biological division of the shore at a geographical scale of policy, conservation and management decisions (i.e. Northern France coastline), using multivariate analyses combined with the Direct Field Observation (DFO) method. From the upper to the lower shores, the majority of the beaches exhibited three macrobenthic communities confirming the existence of the tripartite biological division of the shore. Nevertheless, in some cases, two or four zones were found: (1) two zones when the drying zone located on the upper shore was replaced by littoral rock or engineering constructions and (2) four zones on beaches and estuaries where a muddy-sand community occurred from the drift line to the mid shore. The correspondence between this zonation pattern of macrobenthic communities and the EUNIS habitat classification was investigated and the results were mapped to provide a reference state of intertidal soft-sediment beaches and estuaries. Our results showed evidence of the applicability of this EUNIS typology for the beaches and estuaries at a regional scale (Northern France coastline) with a macroecological approach. In order to fulfil the requirements of the European Directives (WFD and MFSD), this mapping appears as a practical tool for any functional study on these coastal ecosystems, for the monitoring of anthropogenic activities and for the implementation of management plans concerning effective conservation strategies.

  19. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010.

    PubMed

    Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei

    2015-02-01

    Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.

  20. Carbon allocation patterns in boreal and hemiboreal forest ecosystems along the gradient of soil fertility

    NASA Astrophysics Data System (ADS)

    Kriiska, Kaie; Uri, Veiko; Frey, Jane; Napa, Ülle; Kabral, Naima; Soosaar, Kaido; Rannik, Kaire; Ostonen, Ivika

    2017-04-01

    Carbon (C) allocation plays a critical role in forest ecosystem carbon cycling. Changes in C allocation alter ecosystems carbon sequestration and plant-soil-atmosphere gas exchange, hence having an impact on the climate. Currently, there is lack of reliable indicators that show the direction of C accumulation patterns in forest ecosystems on regional scale. The first objective of our study was to determine the variability of carbon allocation in hemiboreal coniferous forests along the gradient of soil fertility in Estonia. We measured C stocks and fluxes, such as litter, fine root biomass and production, soil respiration etc. in 8 stands of different site types - Scots pine (Cladonia, Vaccinium, Myrtillus, Fragaria) and Norway spruce (Polytrichum, Myrtillus, Oxalis, Calamagrostis alvar). The suitability of above- and belowground litter production (AG/BG) ratio was analysed as a carbon allocation indicator. The second aim of the study was to analyse forest C allocation patterns along the north-south gradient from northern boreal Finland to hemiboreal Estonia. Finally, C sequestration in silver birch and grey alder stands were compared with coniferous stands in order to determine the impact of tree species on carbon allocation. Preliminary results indicate that estimated AG/BG ratio (0.5 ... 3.0) tends to decrease with increasing soil organic horizon C/N ratio, indicating that in less fertile sites more carbon is allocated into belowground through fine root growth and in consequence the soil organic carbon stock increases. Similar trends were found on the north-south forest gradient. However, there was a significant difference between coniferous and broadleaf stands in C allocation patterns. Net ecosystem exchange in Estonian coniferous stands varied from -1.64 ... 3.95 t C ha-1 yr-1, whereas older stands tended to be net carbon sources.

  1. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region (Version 2.0)

    DTIC Science & Technology

    2007-09-01

    07-24 102 Viereck, L. A., K. Van Cleve, and C. T. Dyrness. 1986. Forest ecosystem distribution in the Taiga environment, Chapter 3. In Forest...ecosystems in the Alaska Taiga : A synthesis of structure and function. ed. K. Van Cleve, F. S. Chapin III, P. W. Flanagan, L. A. Viereck, and C. T

  2. Systemic solutions for multi-benefit water and environmental management.

    PubMed

    Everard, Mark; McInnes, Robert

    2013-09-01

    The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and researchers working on ways to quantify and optimise delivery of ecosystem services. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Forecasting Climate-Induced Ecosystem Changes on Army Installations

    DTIC Science & Technology

    2011-10-01

    W. Hargrove Construction Engineering Research Laboratory (CERL) US Army Engineer Research and Development Center 2902 Newmark Dr. Champaign, IL...unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC/CERL TR-11-36...35 ERDC/CERL TR-11-36 v Preface This study was conducted for Dr. Jeffrey Holland, Director of the Engineer Research and Development

  4. Pattern Water Use Efficiency perspective on degradation and recovery of shrublands across Mediterranean to Arid transition zones

    NASA Astrophysics Data System (ADS)

    Shoshany, Maxim

    2017-04-01

    Shrublands cover a total of 12.7 million km2 , a considerable part of them along semi-arid to arid transition zones. Varying patterns of shrubs, grasses and barren land along such climatic gradients express the spatial dimension of climate change and human disturbance which attracted limited attention in the eco-geomorphic literature. Questions concerning relationships between rainfall, shrublands biomass and their patterns are fundamental for the understanding of these ecosystems response to the expected changes in water availability due to global warming and the increase in human disturbance to natural ecosystems following World population growth. While processes leading to the formation of patterns had attracted considerable attention, the spatial dimension of Water Use Efficiency (WUE) which is a parameter measuring ecosystems productivity in relation to water availability is severely missing. Relative shrub cover is a primary estimator of the fraction of water utilized for shrubs growth. Edge effects must be considered as well in fragmented ecosystems in general and in hot regions in particular since soil temperature in hot regions which frequently exceed 50oC during summer months decreases photosynthesis and productivity in plants bordering bare soil. This edge effect is decreasing with the increase in shrubs' height. Pattern Water Use Efficiency describes the combined effect of shrub cover, shrub height and shrub patches edge zone proportion on water use efficiency. In my presentation I will first present mapping od PWUEs across Mediterranean to arid transition zones in the Eastern Mediterranean. Then I will present several mathematical models describing PWUE for simulated patterns, searching for the spatial parameterization providing the highest sensitivity to patterns responses to changes in habitat conditions. Such simulations would allow us to discuss several PWUE strategies for shrublands recovery under the current scenarios of climate change and human driven degradation.

  5. Range and variation in landscape patch dynamics: Implications for ecosystem management

    Treesearch

    Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg

    2001-01-01

    Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...

  6. ASSESSING ARID RIPARIAN LANDSCAPES USING REMOTE SENSING: THE FIRST STEP

    EPA Science Inventory

    Riparian ecosystems are of great value in the Southwest yet they are also extremely fragile and susceptible to natural and anthropogenic disturbances. Riparian ecosystems establish in patterns per the hydrologic and geomorphologic processes that dictate terrestrial plant success...

  7. An ecohydraulic view on stream resilience and ecosystem functioning - what can science teach management?

    NASA Astrophysics Data System (ADS)

    Battin, Tom J.; Dzubakova, Katharina; Boodoo, Kyle; Ulseth, Amber

    2017-04-01

    Streams and rivers are increasingly exposed to environmental change across various spatial and temporal scales. Consequently, ecosystem health and integrity are becoming compromised. Most management strategies designed to recover and maintain stream ecosystem health involve engineering measures of geomorphology. The success of such engineering measures relies on a thorough understanding of the underlying physical, chemical and biological process coupling across scales. First, we present results from experimental work unraveling the relevance of streambed heterogeneity for the resilience of phototrophic biofilms. This is critical as phototrophic biofilms are key for nutrient removal and hence for keeping the water clean. These biofilms are also the machinery of primary production and related carbon fluxes in stream ecosystems. Next, we show how climate change may affect primary production, including CO2, in streams and the networks they form. In fact, streams are now recognized as major sources of CO2 to the atmosphere and contributors to the global carbon cycle. Despite this, we do not yet understand how geomorphological features, themselves continuously reworked by hydrology and sedimentary dynamics, affect CO2 fluxes in streams. We show that gravel bars, clearly conspicuous geomorphological features, are hotspots of CO2 fluxes compared to the streamwater itself. This has major implications for carbon cycling and stream ecosystem functioning. Finally, we discuss what stream management could learn from ecohydraulic insights from young scientists doing excellent basic research.

  8. Techno-ecological synergy: a framework for sustainable engineering.

    PubMed

    Bakshi, Bhavik R; Ziv, Guy; Lepech, Michael D

    2015-02-03

    Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed.

  9. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.

    2016-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  10. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.

    2017-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  11. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China

    NASA Astrophysics Data System (ADS)

    Ai, Junyong; Sun, Xiang; Feng, Lan; Li, Yangfan; Zhu, Xiaodong

    2015-09-01

    Quantifying and mapping the distribution patterns of ecosystem services can help to ascertain which services should be protected and where investments should be directed to improve synergies and reduce tradeoffs. Moreover, the indicators of urbanization that affect the provision of ecosystem services must be identified to determine which approach to adopt in formulating policies related to these services. This paper presents a case study that maps the distribution of multiple ecosystem services and analyzes the ways in which they interact. The relationship between the supply of ecosystem services and the socio-economic development in the Taihu Lake Basin of eastern China is also revealed. Results show a significant negative relationship between crop production and tourism income ( p<0.005) and a positive relationship between crop production, nutrient retention, and carbon sequestration ( p<0.005). The negative effects of the urbanization process on providing and regulating services are also identified through a comparison of the ecosystem services in large and small cities. Regression analysis was used to compare and elucidate the relative significance of the selected urbanization factors to ecosystem services. The results indicate that urbanization level is the most substantial factor inversely correlated with crop production ( R 2 = 0.414) and nutrient retention services ( R 2 = 0.572). Population density is the most important factor that negatively affects carbon sequestration ( R 2 = 0.447). The findings of this study suggest the potential relevance of ecosystem service dynamics to urbanization management and decision making.

  12. Sensitivity of aquatic ecosystems to climatic and anthropogenic changes: The basin and range, American Southwest and Mexico

    USGS Publications Warehouse

    Grimm, N. B.; Chacon, A.; Dahm, Clifford N.; Hostetler, S.W.; Lind, O.T.; Starkweather, P.L.; Wurtsbaugh, W.W.

    1997-01-01

    Variability and unpredictability are characteristics of the aquatic ecosystems, hydrological patterns and climate of the largely dryland region that encompasses the Basin and Range, American Southwest and western Mexico. Neither hydrological nor climatological models for the region are sufficiently developed to describe the magnitude or direction of change in response to increased carbon dioxide; thus, an attempt to predict specific responses of aquatic ecosystems is premature. Instead, we focus on the sensitivity of rivers, streams, springs, wetlands, reservoirs, and lakes of the region to potential changes in climate, especially those inducing a change in hydrological patterns such as amount, timing and predictability of stream flow. The major sensitivities of aquatic ecosystems are their permanence and even existence in the face of potential reduced net basin supply of water, stability of geomorphological structure and riparian ecotones with alterations in disturbance regimes, and water quality changes resulting from a modified water balance. In all of these respects, aquatic ecosystems of the region are also sensitive to the extensive modifications imposed by human use of water resources, which underscores the difficulty of separating this type of anthropogenic change from climate change. We advocate a focus in future research on reconstruction and analysis of past climates and associated ecosystem characteristics, long-term studies to discriminate directional change vs. year to year variability (including evidence of aquatic ecosystem responses or sensitivity to extremes), and studies of ecosystems affected by human activity. ?? 1997 by John Wiley & Sons, Ltd.

  13. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    PubMed Central

    Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941

  14. Alternative mechanisms alter the emergent properties of self-organization in mussel beds

    PubMed Central

    Liu, Quan-Xing; Weerman, Ellen J.; Herman, Peter M. J.; Olff, Han; van de Koppel, Johan

    2012-01-01

    Theoretical models predict that spatial self-organization can have important, unexpected implications by affecting the functioning of ecosystems in terms of resilience and productivity. Whether and how these emergent effects depend on specific formulations of the underlying mechanisms are questions that are often ignored. Here, we compare two alternative models of regular spatial pattern formation in mussel beds that have different mechanistic descriptions of the facilitative interactions between mussels. The first mechanism involves a reduced mussel loss rate at high density owing to mutual protection between the mussels, which is the basis of prior studies on the pattern formation in mussels. The second mechanism assumes, based on novel experimental evidence, that mussels feed more efficiently on top of mussel-generated hummocks. Model simulations point out that the second mechanism produces very similar types of spatial patterns in mussel beds. Yet the mechanisms predict a strikingly contrasting effect of these spatial patterns on ecosystem functioning, in terms of productivity and resilience. In the first model, where high mussel densities reduce mussel loss rates, patterns are predicted to strongly increase productivity and decrease the recovery time of the bed following a disturbance. When pattern formation is generated by increased feeding efficiency on hummocks, only minor emergent effects of pattern formation on ecosystem functioning are predicted. Our results provide a warning against predictions of the implications and emergent properties of spatial self-organization, when the mechanisms that underlie self-organization are incompletely understood and not based on the experimental study. PMID:22418256

  15. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    NASA Astrophysics Data System (ADS)

    Band, Larry

    2010-05-01

    Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a significant increase in population in the Southern Appalachians, with new building of second homes in steep headwaters, requiring significant expansion in high altitude roads, in contrast with traditional valley bottom development. With additional increases in hydrologic extremes (heavy precipitation and drought), and progressive changes in forest composition there has been increases in hazard from flash flooding, landslide activity and degraded water quality. The evaluation of integrated watershed impacts of the expected changes in climate and land management requires an interdisciplinary approach including direct feedbacks between ecological, hydrological, geomorphic and atmospheric processes within the framework of an adapting social system. Advances in this type of interdisciplinary research require a network of ecohydrologic observatories generating long term, multi-dimensional data, and a science community working across the interface of multiple fields. Adding individual and institutional behavior as an input or interactive component of watershed ecosystems remains a challenge that spans ecological, hydrological and social science.

  16. The role of feedback mechanisms in the initial development of the constructed catchment Chicken Creek

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang; Hinz, Christoph; Gerwin, Werner; Zaplata, Markus; Hüttl, Reinhard F.

    2015-04-01

    Over a period of ten years, we investigated the initial development of the constructed catchment 'Chicken Creek', south of Cottbus, Germany (Gerwin et al., 2009). Since the boundary conditions and inner structures of the hillslope are well known and documented (Gerwin et al., 2011), the site offers unique possibilities to study the relevant processes of ecosystem development interacting with various structures and patterns. We observed considerable changes within the catchment (Elmer et al., 2013). Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate (Schaaf et al., 2013). With time, secondary structures and patterns evolved and became more and more important. Invading biota and vegetation succession initialized abiotic/biotic feedback mechanisms resulting in pattern and habitat formation, and generally in increased differentiation, heterogeneity and complexity that are typical characteristics of ecosystems (Schaaf et al., 2011). The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Elmer M, Gerwin W, Schaaf W, Zaplata MK, Hohberg K, Nenov R, Bens O, Hüttl RF (2013): Dynamics of initial ecosystem development at the artificial catchment Chicken Creek, Lusatia, Germany. Environ Earth Sci 69, 491-505. Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009): The artificial catchment "Chicken Creek" (Lusatia, Germany) - A landscape laboratory for interdisciplinary studies of initial ecosystem development, Ecol Eng 35, 1786-1796. Gerwin W, Schaaf W, Biemelt D, Winter S, Fischer A, Veste M, Hüttl RF (2011): Overview and first results of ecological monitoring at the artificial watershed Chicken Creek (Germany). Phys Chem Earth 36, 61-73. Schaaf W, Bens O, Fischer A, Gerke HH, Gerwin W, Grünewald U, Holländer HM, Kögel-Knabner I, Mutz M, Schloter M, Schulin R, Veste M, Winter S, Hüttl, RF (2011): Patterns and processes of initial terrestrial ecosystem development. J Plant Nutr Soil Sci 174, 229-239. Schaaf W, Elmer M, Fischer A, Gerwin W, Nenov R, Pretsch H, Seifert S, Winter S, Zaplata MK (2013): Monitoring the formation of structures and patterns during initial development of an artificial catchment. Environ Monit Assess 185, 5965-5986.

  17. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry. © 2014 John Wiley & Sons Ltd.

  18. Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs

    USGS Publications Warehouse

    Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C.

    2013-01-01

    Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single-place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black-tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black-tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off-colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White-tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black-tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black-tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing-tolerant shortgrasses at both complexes. Variation in modification of vegetation structure may be understood in terms of the responses of different dominant perennial grasses to intense defoliation and differences in foraging behavior among prairie dog species. Spatial variation in the engineering role of prairie dogs suggests spatial variation in their keystone role, and spatial variation in the roles of other ecosystem engineers. Thus, ecosystem engineering can have a spatial component not evident from single-place studies.

  19. Ecosystem extent and fragmentation

    USGS Publications Warehouse

    Sayre, Roger; Hansen, Matt

    2017-01-01

    One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    A Cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), had a thrust of 188,000 pound each for a combined thrust of over 1,500,000 pounds. The H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).

  1. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    A Cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. The H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), had a thrust of 188,000 pound each for a combined thrust of over 1,500,000 pounds. Each H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).

  2. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems

    PubMed Central

    Danovaro, Roberto; Molari, Massimiliano; Corinaldesi, Cinzia; Dell’Anno, Antonio

    2016-01-01

    Bacteria and archaea dominate the biomass of benthic deep-sea ecosystems at all latitudes, playing a crucial role in global biogeochemical cycles, but their macroscale patterns and macroecological drivers are still largely unknown. We show the results of the most extensive field study conducted so far to investigate patterns and drivers of the distribution and structure of benthic prokaryote assemblages from 228 samples collected at latitudes comprising 34°N to 79°N, and from ca. 400- to 5570-m depth. We provide evidence that, in deep-sea ecosystems, benthic bacterial and archaeal abundances significantly increase from middle to high latitudes, with patterns more pronounced for archaea, and particularly for Marine Group I Thaumarchaeota. Our results also reveal that different microbial components show varying sensitivities to changes in temperature conditions and food supply. We conclude that climate change will primarily affect deep-sea benthic archaea, with important consequences on global biogeochemical cycles, particularly at high latitudes. PMID:27386507

  3. Selenium biotransformations in an engineered aquatic ecosystem for bioremediation of agricultural wastewater via brine shrimp production.

    PubMed

    Schmidt, Radomir; Tantoyotai, Prapakorn; Fakra, Sirine C; Marcus, Matthew A; Yang, Soo In; Pickering, Ingrid J; Bañuelos, Gary S; Hristova, Krassimira R; Freeman, John L

    2013-05-21

    An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filter-feeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp ( Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested.

  4. Riparian spiders as sentinels of PCB contamination across heterogeneous aquatic ecosystems

    EPA Science Inventory

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the ...

  5. Delineating resource sheds in aquatic ecosystems (presentation)

    EPA Science Inventory

    Analysis of spatially-explicit ecological phenomena in aquatic ecosystems is impeded by a lack of knowledge of, and tools to delimit, spatial patterns of material supply to point locations. Here we apply the concept of "resource sheds" to coasts and watersheds. Resource sheds ar...

  6. Spatially explicit assessment of ecosystem services in China's Loess Plateau: Patterns, interactions, drivers, and implications

    NASA Astrophysics Data System (ADS)

    Jiang, Chong; Zhang, Haiyan; Zhang, Zhidong

    2018-02-01

    Human demands for natural resources have significantly changed the natural landscape and induced ecological degradation and associated ecosystem services. An understanding of the patterns, interactions, and drivers of ecosystem services is essential for the ecosystem management and guiding targeted land use policy-making. The Losses Plateau (LP) provides ecosystem services including the carbon sequestration and soil retention, and exerts tremendous impacts on the midstream and downstream of the Yellow River. Three dominant ecosystem services between 2000 and 2012 within the LP were presented based on multiple source datasets and biophysical models. In addition, paired ecosystem services interactions were quantified using the correlation analysis and constraint line approach. The main conclusions are as follows. It was observed that the warming and wetting climate and ecological program jointly promoted the vegetation growth and carbon sequestration. The increasing precipitation throughout 2000-2012 was related to the soil retention and hydrological regulation fluctuations. The vegetation restoration played a positive role in the soil retention enhancement, thus substantially reduced water and sediment yields. The relationships between ecosystem services were not only correlations (tradeoffs or synergies), but rather constraint effects. The constraint effects between the three paired ecosystem services could be classified as the negative convex (carbon sequestration vs. hydrological regulation) and hump-shaped (soil retention vs. carbon sequestration and soil retention vs. hydrological regulation), and the coefficients of determination for the entire LP were 0.78, 0.84, and 0.65, respectively. In the LP, the rainfall (water availability) was the key constraint factor that affected the relationships between the paired ecosystem services. The spatially explicit mapping of ecosystem services and interaction analyses utilizing constraint line approach enriched the understanding of connections between ecosystem services and the potential drivers, which had important implications for the land use planning and landscapes services optimizing.

  7. PERSISTENCE OF A SURROGATE FOR A GENETICALLY ENGINEERED CELLULOLYTIC MICROORGANISM AND EFFECTS ON AQUATIC COMMUNITY AND ECOSYSTEM PROPERTIES: MICROCOSM AND STREAM COMPARISONS

    EPA Science Inventory

    Our research objectives were to: (1) determine the persistence of an introduced surrogate (Cellulomonas sp NRC 2406) for a genetically engineered microorganism (GEM) in three streamlined habitats; sediments, growths of Cladophora (Chlorophyta), and leaf packs, (2) test ommunity a...

  8. A Multifactor Ecosystem Assessment of Wetlands Created Using a Novel Dredged Material Placement Technique in the Atchafalaya River, Louisiana: An Engineering With Nature Demonstration Project

    DTIC Science & Technology

    functions. The strategic placement of dredged materials in locations that mimic natural process promoted additional ecological benefits, especially...regarding wading bird and infaunal habitat, thus adhering to Engineering With Nature (EWN) processes. The multifactor approach improved the wetland

  9. Bubble Stripping as a Tool to Reduce High Dissolved CO2 in Coastal Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Koweek, D.; Mucciarone, D. A.; Dunbar, R. B.

    2016-02-01

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism and long residence times. Many of the socially, commercially, and recreationally important species may have adapted to this natural variability over time. However, eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use an empirically validated numerical model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a non-bubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change emphasizes the need to both adapt to and mitigate the effects of climate change and ocean acidification. We believe shallow water bubble stripping could be one approach for reducing high CO2 conditions in coastal ecosystems and should be added to the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.

  10. Computer-aided biochemical programming of synthetic microreactors as diagnostic devices.

    PubMed

    Courbet, Alexis; Amar, Patrick; Fages, François; Renard, Eric; Molina, Franck

    2018-04-26

    Biological systems have evolved efficient sensing and decision-making mechanisms to maximize fitness in changing molecular environments. Synthetic biologists have exploited these capabilities to engineer control on information and energy processing in living cells. While engineered organisms pose important technological and ethical challenges, de novo assembly of non-living biomolecular devices could offer promising avenues toward various real-world applications. However, assembling biochemical parts into functional information processing systems has remained challenging due to extensive multidimensional parameter spaces that must be sampled comprehensively in order to identify robust, specification compliant molecular implementations. We introduce a systematic methodology based on automated computational design and microfluidics enabling the programming of synthetic cell-like microreactors embedding biochemical logic circuits, or protosensors , to perform accurate biosensing and biocomputing operations in vitro according to temporal logic specifications. We show that proof-of-concept protosensors integrating diagnostic algorithms detect specific patterns of biomarkers in human clinical samples. Protosensors may enable novel approaches to medicine and represent a step toward autonomous micromachines capable of precise interfacing of human physiology or other complex biological environments, ecosystems, or industrial bioprocesses. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    USGS Publications Warehouse

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo

    2010-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.

  12. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles

    Treesearch

    John M. Frank; William J. Massman; Brent E. Ewers; Laurie S. Huckaby; Jose F. Negron

    2014-01-01

    Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of...

  13. Assessment of Regional Ecosystem Health—A Case Study of the Golden Triangle of Southern Fujian Province, China

    PubMed Central

    Wang, Ziyan; Qiu, Quanyi; Wu, Tong; Shao, Guofan

    2018-01-01

    Intensifying urbanization and rapid population growth in Fujian Province, China, has caused pollution of air and water resources; this has adversely impacted ecosystems and human health. China has recently begun pursuing a massive infrastructure and economic development strategy called the Belt and Road Initiative, which could potentially cause further environmental damage. Evaluations of ecosystem health are therefore a first step towards identifying the potential impacts from the development and planning sustainable development strategies in the Golden Triangle of Southern Fujian. To this end, our study analyzed landscape patterns and evaluated ecosystem health in this region. We used an index system method to develop a pressure–state–response (PSR) model for assessing the region’s ecosystem health. We found that: (1) the landscape type with the greatest area in the study region is cultivated land and there were no areas that were undisturbed by human activity; (2) the overall ecological health of the region is good, but there is distinct variation across the region. This study incorporates the landscape pattern into an evaluation of ecosystem health. Using counties as evaluation units, we provide a general evaluation index for this scale. The methods reported here can be used in complex ecological environments to inform sustainable management decisions. PMID:29671817

  14. Process-Driven Ecological Modeling for Landscape Change Analysis

    NASA Astrophysics Data System (ADS)

    Altman, S.; Reif, M. K.; Swannack, T. M.

    2013-12-01

    Landscape pattern is an important driver in ecosystem dynamics and can control system-level functions such as nutrient cycling, connectivity, biodiversity and carbon sequestration. However, the links between process, pattern and function remain ambiguous. Understanding the quantitative relationship between ecological processes and landscape pattern across temporal and spatial scales is vital for successful management and implementation of ecosystem-level projects. We used remote sensing imagery to develop critical landscape metrics to understand the factors influencing landscape change. Our study area, a coastal area in southwest Florida, is highly dynamic with critically eroding beaches and a range of natural and developed land cover types. Hurricanes in 2004 and 2005 caused a breach along the coast of North Captiva Island that filled in by 2010. We used a time series of light detection and ranging (lidar) elevation data and hyperspectral imagery from 2006 and 2010 to determine land cover changes. Landscape level metrics used included: Largest Patch Index, Class Area, Area-weighted mean area, Clumpiness, Area-weighted Contiguity Index, Number of Patches, Percent of landcover, Area-weighted Shape. Our results showed 1) 27% increase in sand/soil class as the channel repaired itself and shoreline was reestablished, 2) 40% decrease in the mudflat class area due to conversion to sand/soil and water, 3) 30% increase in non-wetland vegetation class as a result of new vegetation around the repaired channel, and 4) the water class only slightly increased though there was a marked increase in the patch size area. Thus, the smaller channels disappeared with the infilling of the channel, leaving much larger, less complex patches behind the breach. Our analysis demonstrated that quantification of landscape pattern is critical to linking patterns to ecological processes and understanding how both affect landscape change. Our proof of concept indicated that ecological processes can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.

  15. Snow depth manipulation experiments in a dry and a moist tundra

    NASA Astrophysics Data System (ADS)

    Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.

    2017-12-01

    As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.

  16. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China

    PubMed Central

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  17. Deer Island Aquatic Ecosystem Restoration Project

    DTIC Science & Technology

    2015-07-01

    across the U.S. Army Corps of Engineers (USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic...USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic Ecosystem Restoration Project (Deer Island AERP...Mississippi Wetlands Restoration Projects). The project received additional funding through several public laws in response to hurricane damages

  18. Assessing the feasibility of integrating ecosystem-based with engineered water resource governance and management for water security in semi-arid landscapes: A case study in the Banas catchment, Rajasthan, India.

    PubMed

    Everard, Mark; Sharma, Om Prakash; Vishwakarma, Vinod Kumar; Khandal, Dharmendra; Sahu, Yogesh K; Bhatnagar, Rahul; Singh, Jitendra K; Kumar, Ritesh; Nawab, Asghar; Kumar, Amit; Kumar, Vivek; Kashyap, Anil; Pandey, Deep Narayan; Pinder, Adrian C

    2018-01-15

    Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan ('water self-reliance mission'). Policy reform emphasising recharge can contribute to water security and yield socio-economic outcomes through a systemic understanding of how the water system functions, and by connecting goals and budgets across multiple, currently fragmented policy areas. The underpinning principles of this necessary paradigm shift are proven and have wider geographic relevance, though context-specific research is required to underpin robust policy and practical implementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient.

    PubMed

    Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A

    2016-11-01

    The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative effects of grazing-induced disturbance on soil function. Further, our results suggest that most of this effect will be derived from echidnas, with little positive effects due to rabbits. Activities that enhance the habitat for echidnas or reduce rabbit populations are likely to have a positive effect on soil function in these systems. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  20. Marine biological diversity: Some important issues, opportunities and critical research needs

    NASA Astrophysics Data System (ADS)

    Butman, Cheryl Ann; Carlton, James T.

    1995-07-01

    Marine biological diversity is changing, dramatically in some cases, and most recent changes are due to broad-scale human activities. Knowledge of "biodiversity" — the variety of genomes (the genetic material specifying all characteristics and functions within an organism), species and ecosystems — is the foundation for understanding and predicting how human and natural effects can change the ocean's ecosystems. Evaluating the scale and ultimate consequences to life in the sea of a plethora of anthropogenic effects is difficult, however, because there is inadequate knowledge of both the patterns of and the processes that control marine biodiversity. Recognizing change and evaluating its consequences require sufficient knowledge of present and historical natural patterns of biodiversity, and sufficient understanding of how and why these patterns vary in space and time. Data on biodiversity patterns and their causes are sorely lacking for most marine ecosystems. Adequate understanding of what creates and maintains diversity must be the scientific underpinning for policy decisions regarding pollutant and waste disposal, habitat alteration, fisheries management and the preservation of threatened or endangered species. The inability, at this time, to provide such information to policy makers may have important implications for the conservation of marine life [Norse, 1993].

  1. Catchment hydrological responses to forest harvest amount and spatial pattern - 2011

    EPA Science Inventory

    We used an ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest location and amount on ecosystem carbon (C) and nitrogen (N) dynamics in an intensively studied headwater catchment (WS10) in western Oregon,...

  2. THE EFFECT OF FRESHWATER INFLOW ON NET ECOSYSTEM METABOLISM IN LAVACA BAY, TEXAS

    EPA Science Inventory

    Estuaries and other coastal ecosystems depend on freshwater inflow to maintain the gradients in environmental characteristics that define these transitional water bodies. Freshwater inflow (FWI) rates in many estuaries are changing due to changing land use patterns, water divers...

  3. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.

    PubMed

    Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin

    2018-06-04

    Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. Global patterns of drought recovery

    DOE PAGES

    Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; ...

    2017-08-09

    Drought has major impacts on natural and human systems, and is especially important for land carbon sink variability due to its influence on terrestrial biosphere climate regulation. While 20th Century trends in drought regimes have been varied, “more extreme extremes”, including more frequent and severe droughts, are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns are largely unknown. Here we use three independent global data products of gross primary productivitymore » to show that, across diverse terrestrial ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: (1) Across the globe, recovery is longest in the tropics and high northern latitudes—critical tipping elements in Earth’s climate system. (2) Drought impacts, the area of ecosystems under active recovery and recovery times, have increased over the 20th century. If future droughts become more frequent, time between droughts may become shorter than drought recovery time, leading to chronically impacted ecosystems.« less

  5. Global patterns of drought recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.

    Drought has major impacts on natural and human systems, and is especially important for land carbon sink variability due to its influence on terrestrial biosphere climate regulation. While 20th Century trends in drought regimes have been varied, “more extreme extremes”, including more frequent and severe droughts, are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns are largely unknown. Here we use three independent global data products of gross primary productivitymore » to show that, across diverse terrestrial ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: (1) Across the globe, recovery is longest in the tropics and high northern latitudes—critical tipping elements in Earth’s climate system. (2) Drought impacts, the area of ecosystems under active recovery and recovery times, have increased over the 20th century. If future droughts become more frequent, time between droughts may become shorter than drought recovery time, leading to chronically impacted ecosystems.« less

  6. Global patterns of drought recovery.

    PubMed

    Schwalm, Christopher R; Anderegg, William R L; Michalak, Anna M; Fisher, Joshua B; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D; Wolf, Adam; Huntzinger, Deborah N; Schaefer, Kevin; Cook, Robert; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel; Huang, Maoyi; Jain, Atul; Tian, Hanqin

    2017-08-09

    Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time-how long an ecosystem requires to revert to its pre-drought functional state-is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO 2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth's climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink.

  7. Global patterns of drought recovery

    NASA Astrophysics Data System (ADS)

    Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; Fisher, Joshua B.; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D.; Wolf, Adam; Huntzinger, Deborah N.; Schaefer, Kevin; Cook, Robert; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel; Huang, Maoyi; Jain, Atul; Tian, Hanqin

    2017-08-01

    Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time—how long an ecosystem requires to revert to its pre-drought functional state—is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth’s climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink.

  8. [Advances in plant ecophysiological studies on re-vegetation of degraded ecosystem].

    PubMed

    Zhao, Ping

    2003-11-01

    Natural force and human intervention lead to many local, regional, and sometimes global changes in plant community patterns. Regardless of the cause and intensity of these changes, ecosystem can recover most of their attributes through natural succession, or can be repaired by human assistance. The essentiality of restoration of degraded ecosystem is community succession, a process during which an ecosystem evolves from primary stage to advanced stage, and its structure and function change from simple to complex plant. Ecophysiological study could explain some macroscopical phenomena of the ecology of re-vegetation of degraded ecosystem, and provide a scientific base for assembling pioneering plant community. The advances in plant ecophysiological study on re-vegetation of degraded ecosystems were reviewed in this paper.

  9. Stochastic simulations of a synthetic bacteria-yeast ecosystem

    PubMed Central

    2012-01-01

    Background The field of synthetic biology has greatly evolved and numerous functions can now be implemented by artificially engineered cells carrying the appropriate genetic information. However, in order for the cells to robustly perform complex or multiple tasks, co-operation between them may be necessary. Therefore, various synthetic biological systems whose functionality requires cell-cell communication are being designed. These systems, microbial consortia, are composed of engineered cells and exhibit a wide range of behaviors. These include yeast cells whose growth is dependent on one another, or bacteria that kill or rescue each other, synchronize, behave as predator-prey ecosystems or invade cancer cells. Results In this paper, we study a synthetic ecosystem comprising of bacteria and yeast that communicate with and benefit from each other using small diffusible molecules. We explore the behavior of this heterogeneous microbial consortium, composed of Saccharomyces cerevisiae and Escherichia coli cells, using stochastic modeling. The stochastic model captures the relevant intra-cellular and inter-cellular interactions taking place in and between the eukaryotic and prokaryotic cells. Integration of well-characterized molecular regulatory elements into these two microbes allows for communication through quorum sensing. A gene controlling growth in yeast is induced by bacteria via chemical signals and vice versa. Interesting dynamics that are common in natural ecosystems, such as obligatory and facultative mutualism, extinction, commensalism and predator-prey like dynamics are observed. We investigate and report on the conditions under which the two species can successfully communicate and rescue each other. Conclusions This study explores the various behaviors exhibited by the cohabitation of engineered yeast and bacterial cells. The way that the model is built allows for studying the dynamics of any system consisting of two species communicating with one another via chemical signals. Therefore, key information acquired by our model may potentially drive the experimental design of various synthetic heterogeneous ecosystems. PMID:22672814

  10. Simulation of Regionally Ecological Land Based on a Cellular Automation Model: A Case Study of Beijing, China

    PubMed Central

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-01-01

    Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410

  11. Soil Carbon Recovery of Degraded Steppe Ecosystems of the Mongolian Plateau

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Togtohyn, C.; Qi, J.

    2013-12-01

    Mongolian steppe grassland systems are critical source of ecosystem services to societal groups in temperate East Asia. These systems are characterized by their arid and semiarid environments where rainfall tends to be too variable or evaporative losses reduce water availability to reliably support cropping systems or substantial forest cover. These steppe ecosystems have supported land use practices to accommodate the variable rainfall patterns, and seasonal and spatial patterns of forage production displayed by the nomadic pastoral systems practiced across Asia. These pastoral systems are dependent on grassland ecosystem services, including forage production, wool, skins, meat and dairy products, and in many systems provide critical biodiversity and land and water protection services which serve to maintain pastoral livelihoods. Precipitation variability and associated drought conditions experienced frequently in these grassland systems are key drivers of these systems. However, during the past several decades climate change and grazing and land use conversion have resulted in degradation of ecosystem services and loss of soil organic matter. Recent efforts in China and Mongolia are investigating different grazing management practices to restore soil organic matter in these degraded systems. Simulation modeling is being applied to evaluate the long-term benefits of different grazing management regimes under various climate scenarios.

  12. Simulation of regionally ecological land based on a cellular automation model: a case study of Beijing, China.

    PubMed

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-08-01

    Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.

  13. Multi-jet propulsion organized by clonal development in a colonial siphonophore

    PubMed Central

    Costello, John H.; Colin, Sean P.; Gemmell, Brad J.; Dabiri, John O.; Sutherland, Kelly R.

    2015-01-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labour in thrust and torque production that controls direction and magnitude of whole-colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning, whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but, more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater-distributed propulsion vehicle design. PMID:26327286

  14. Multi-jet propulsion organized by clonal development in a colonial siphonophore

    NASA Astrophysics Data System (ADS)

    Costello, John; Colin, Sean; Gemmell, Brad; Dabiri, John; Sutherland, Kelly

    2015-11-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labor in thrust and torque production that controls direction and magnitude of whole colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater distributed propulsion vehicle design.

  15. Multi-jet propulsion organized by clonal development in a colonial siphonophore.

    PubMed

    Costello, John H; Colin, Sean P; Gemmell, Brad J; Dabiri, John O; Sutherland, Kelly R

    2015-09-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labour in thrust and torque production that controls direction and magnitude of whole-colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning, whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but, more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater-distributed propulsion vehicle design.

  16. Effects of contrasting rooting distribution patterns on plant transpiration along a precipitation gradient

    USDA-ARS?s Scientific Manuscript database

    Understanding and predicting ecosystem functioning in water limited ecosystems requires a thorough assessment of the role plant root systems. Widespread ecological phenomena such as shrub encroachment may drastically change root distribution in the soil profile affecting the uptake of water and nutr...

  17. Quantifying long-term trajectories of plant community change with movement models: implication for ecological resilience

    USDA-ARS?s Scientific Manuscript database

    Quantification of rates and patterns of community dynamics is central for understanding the organization and function of ecosystems. These insights may support a greater empirical understanding of ecological resilience, and the application of resilience concepts toward ecosystem management. Distinct...

  18. Preventing regime shifts on the Colorado Plateau: Application of ecological threshold concepts to land management decision making

    USDA-ARS?s Scientific Manuscript database

    Investigating the mechanisms responsible for ecological thresholds is essential to understanding processes leading to ecosystem regime shifts. Dryland ecosystems are especially prone to threshold behavior wherein stressor-mediated alteration of patterns and processes can shift systems to alternative...

  19. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    NASA Astrophysics Data System (ADS)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2013-05-01

    Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruit, the limited root apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.

  20. Putting humans in ecology: consistency in science and management.

    PubMed

    Hobbs, Larry; Fowler, Charles W

    2008-03-01

    Normal and abnormal levels of human participation in ecosystems can be revealed through the use of macro-ecological patterns. Such patterns also provide consistent and objective guidance that will lead to achieving and maintaining ecosystem health and sustainability. This paper focuses on the consistency of this type of guidance and management. Such management, in sharp contrast to current management practices, ensures that our actions as individuals, institutions, political groups, societies, and as a species are applied consistently across all temporal, spatial, and organizational scales. This approach supplants management of today, where inconsistency results from debate, politics, and legal and religious polarity. Consistency is achieved when human endeavors are guided by natural patterns. Pattern-based management meets long-standing demands for enlightened management that requires humans to participate in complex systems in consistent and sustainable ways.

  1. Seasonal Patterns of Mixed Species Groups in Large East African Mammals

    PubMed Central

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups. PMID:25470495

  2. Seasonal patterns of mixed species groups in large East African mammals.

    PubMed

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups.

  3. Joint Engineering Leadership Development Program: Developing a Diverse Regional Engineering Talent Ecosystem. A BHEF Case Study

    ERIC Educational Resources Information Center

    Business-Higher Education Forum, 2017

    2017-01-01

    Through the collaboration of its business and academic partners, the Business-Higher Education Forum (BHEF) launched the National Higher Education and Workforce Initiative (HEWI) to support business-higher education partnerships that co-design innovative community college and university pathways to careers, as well as maximize work-based learning…

  4. Ecosystem-level water-use efficiency inferred from eddy covariance data: definitions, patterns and spatial up-scaling

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.

    2007-12-01

    In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.

  5. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    USGS Publications Warehouse

    Constantz, James; Naranjo, Ramon C.; Niswonger, Richard G.; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.

    2016-01-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  6. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    NASA Astrophysics Data System (ADS)

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-04-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.

  7. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens.

    PubMed

    Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H

    2016-04-05

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.

  8. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    PubMed Central

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  9. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport, and lake water quality. The integrated model will be validated using a comprehensive observational database that includes soil moisture, evapotranspiration, stomatal conductance, streamflow, stream and lake water quality, and crop yields and productivity. Integrated scenarios will be developed to synthesize decision-maker perspectives, alternative approaches to resource governance, plausible trends in demographic and economic drivers, and model projections under alternate climate and land use regimes to understand future conditions of the watershed and its ecosystem services. The quantitative data and integrated scenarios will then be linked to evaluate governance of water and land use.

  10. Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan

    2017-04-01

    DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong, since: (i) No given ecosystem ever is at steady state! (ii) Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.

  11. Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes.

    NASA Astrophysics Data System (ADS)

    Pietsch, S.

    2016-12-01

    DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong. Any given ecosystem never is at steady state! Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.

  12. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  13. The evolution of ecosystem ascendency in a complex systems based model.

    PubMed

    Brinck, Katharina; Jensen, Henrik Jeldtoft

    2017-09-07

    General patterns in ecosystem development can shed light on driving forces behind ecosystem formation and recovery and have been of long interest. In recent years, the need for integrative and process oriented approaches to capture ecosystem growth, development and organisation, as well as the scope of information theory as a descriptive tool has been addressed from various sides. However data collection of ecological network flows is difficult and tedious and comprehensive models are lacking. We use a hierarchical version of the Tangled Nature Model of evolutionary ecology to study the relationship between structure, flow and organisation in model ecosystems, their development over evolutionary time scales and their relation to ecosystem stability. Our findings support the validity of ecosystem ascendency as a meaningful measure of ecosystem organisation, which increases over evolutionary time scales and significantly drops during periods of disturbance. The results suggest a general trend towards both higher integrity and increased stability driven by functional and structural ecosystem coadaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration

    PubMed Central

    Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.

    2017-01-01

    ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. PMID:28476769

  15. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.

    PubMed

    Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D

    2017-07-15

    Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. Copyright © 2017 American Society for Microbiology.

  16. Leafing out phenology in woody plants of the Northern Hempisphere show phylogenetic, ecological and anatomical patterns

    USDA-ARS?s Scientific Manuscript database

    Leafing out phenology affects a wide variety of ecosystem processes and ecological interactions, and it affects how natural and artificial ecosystems respond to different weather conditions in the spring. There is, however, relatively little information available on the factors affecting species dif...

  17. Southern Nevada ecosystem stressors [Chapter 2

    Treesearch

    Burton K. Pendleton; Jeanne C. Chambers; Mathew L. Brooks; Steven M. Ostoja

    2013-01-01

    Southern Nevada ecosystems and their associated resources are subject to a number of global and regional/local stressors that are affecting the sustainability of the region. Global stressors include elevated carbon dioxide (CO2) concentrations and associated changes in temperature and precipitation patterns and amounts, solar radiation, and nutrient cycles (Smith and...

  18. Ecological Factors in Migration in Nonmetropolitan Counties, 1950-1970.

    ERIC Educational Resources Information Center

    Murdock, Steve H.

    To determine the dominant ecosystem types in nonmetropolitan counties and the role of ecological factors in determination of levels of total and age-specific migration patterns within nonmetropolitan areas and ecosystem types for 1950-60 and 1960-70, 30 ecological variables representing POET concepts of population, organization, environment, and…

  19. DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM

    EPA Science Inventory

    The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...

  20. THE DOWNSLOPE PROPAGATION OF A DISTURBANCE IN A FORESTED CATCHMENT: AN ECO-HYDROLOGIC SIMULATION STUDY

    EPA Science Inventory

    We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...

  1. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    Treesearch

    Victor Resco de Dios; Michael L. Goulden; Kiona Ogle; Andrew D. Richardson; David Y. Hollinger; Eric A. Davidson; Josu G. Alday; Greg A. Barron-Gafford; Arnaud Carrara; Andrew S. Kowalski; Walt C. Oechel; Borja R. Reverter; Russell L. Scott; Ruth K. Varner; Ruben Diaz-Sierra; Jose M. Moreno

    2012-01-01

    It is often assumed that daytime patterns of ecosystem carbon assimilation are mostly driven by direct physiological responses to exogenous environmental cues. Under limited environmental variability, little variation in carbon assimilation should thus be expected unless endogenous plant controls on carbon assimilation, which regulate photosynthesis in time, are active...

  2. DISTRIBUTION OF TOTAL AND METHYLMERCURY IN DIFFERENT ECOSYSTEM COMPARTMENTS IN THE EVERGLADES: IMPLICATIONS FOR MERCURY BIOACCUMULATION

    EPA Science Inventory

    Mercury (Hg) species distribution patterns among ecosystem compartments in the Everglades were analyzed at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation, and to investigate major biogeochemical processes that are pertinent to t...

  3. Life form influences survivorship patterns for 109 herbaceous perennials from six semi-arid ecosystems

    USDA-ARS?s Scientific Manuscript database

    We compiled six long-term datasets from western North America to test for ecosystem-dependent demographic responses for forbs and grasses. Based on these data, we characterized 123 survivorship curves for 109 species. Three demographic parameters were extracted from these survivorship curves: surviv...

  4. Spatial perspectives in state-and-transition models: A missing link to land management?

    USDA-ARS?s Scientific Manuscript database

    Conceptual models of alternative states and thresholds are based largely on observations of ecosystem processes at a few points in space. Because the distribution of alternative states in spatially-structured ecosystems is the result of variations in pattern-process interactions at different scales,...

  5. Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands.

    PubMed

    Law, Alan; Gaywood, Martin J; Jones, Kevin C; Ramsay, Paul; Willby, Nigel J

    2017-12-15

    Potential for habitat restoration is increasingly used as an argument for reintroducing ecosystem engineers. Beaver have well known effects on hydromorphology through dam construction, but their scope to restore wetland biodiversity in areas degraded by agriculture is largely inferred. Our study presents the first formal monitoring of a planned beaver-assisted restoration, focussing on changes in vegetation over 12years within an agriculturally-degraded fen following beaver release, based on repeated sampling of fixed plots. Effects are compared to ungrazed exclosures which allowed the wider influence of waterlogging to be separated from disturbance through tree felling and herbivory. After 12years of beaver presence mean plant species richness had increased on average by 46% per plot, whilst the cumulative number of species recorded increased on average by 148%. Heterogeneity, measured by dissimilarity of plot composition, increased on average by 71%. Plants associated with high moisture and light conditions increased significantly in coverage, whereas species indicative of high nitrogen decreased. Areas exposed to both grazing and waterlogging generally showed the most pronounced change in composition, with effects of grazing seemingly additive, but secondary, to those of waterlogging. Our study illustrates that a well-known ecosystem engineer, the beaver, can with time transform agricultural land into a comparatively species-rich and heterogeneous wetland environment, thus meeting common restoration objectives. This offers a passive but innovative solution to the problems of wetland habitat loss that complements the value of beavers for water or sediment storage and flow attenuation. The role of larger herbivores has been significantly overlooked in our understanding of freshwater ecosystem function; the use of such species may yet emerge as the missing ingredient in successful restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Designing Flood Management Systems for Joint Economic and Ecological Robustness

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Grantham, T.; Brown, C. M.; Poff, N. L.

    2015-12-01

    Freshwater ecosystems across the United States are threatened by hydrologic change caused by water management operations and non-stationary climate trends. Nonstationary hydrology also threatens flood management systems' performance. Ecosystem managers and flood risk managers need tools to design systems that achieve flood risk reduction objectives while sustaining ecosystem functions and services in an uncertain hydrologic future. Robust optimization is used in water resources engineering to guide system design under climate change uncertainty. Using principles introduced by Eco-Engineering Decision Scaling (EEDS), we extend robust optimization techniques to design flood management systems that meet both economic and ecological goals simultaneously across a broad range of future climate conditions. We use three alternative robustness indices to identify flood risk management solutions that preserve critical ecosystem functions in a case study from the Iowa River, where recent severe flooding has tested the limits of the existing flood management system. We seek design modifications to the system that both reduce expected cost of flood damage while increasing ecologically beneficial inundation of riparian floodplains across a wide range of plausible climate futures. The first robustness index measures robustness as the fraction of potential climate scenarios in which both engineering and ecological performance goals are met, implicitly weighting each climate scenario equally. The second index builds on the first by using climate projections to weight each climate scenario, prioritizing acceptable performance in climate scenarios most consistent with climate projections. The last index measures robustness as mean performance across all climate scenarios, but penalizes scenarios with worse performance than average, rewarding consistency. Results stemming from alternate robustness indices reflect implicit assumptions about attitudes toward risk and reveal the tradeoffs between using structural and non-structural flood management strategies to ensure economic and ecological robustness.

  7. Land use pattern, socio-economic development, and assessment of their impacts on ecosystem service value: study on natural wetlands distribution area (NWDA) in Fuzhou city, southeastern China.

    PubMed

    Cai, Yuan-Bin; Zhang, Hao; Pan, Wen-Bin; Chen, Yan-Hong; Wang, Xiang-Rong

    2013-06-01

    This paper quantifies the allocation of ecosystem services value (ESV) associated with land use pattern and qualitatively examined impacts of land use changes and socio-economic factors on spatiotemporal variation of ESV in the Natural Wetland Distribution Area (NWDA), Fuzhou city, China. The results showed that total ESV of the study area decreased from 4,332.16 × 10(6) RMB Yuan in 1989 to 3,697.42 × 10(6) RMB Yuan in 2009, mainly due to the remarkable decreases in cropland (decreased by 55.3 %) and wetland (decreased by 74.2 %). Forest, water, and wetland played major roles in providing ecosystem services, accounting for over 90 % of the total ESV. Based on time series Landsat TM/ETM+ imagery, geographic information system, and historical data, analysis of the spatiotemporal variation of ESV from 1989 to 2009 was performed. It indicated that rapid expansion of urban areas along the Minjiang River resulted in significant changes in land use types, leading to a dramatic decline in ecosystem services. Meanwhile, because of land scarcity and unique ecosystem functions, the emergency of wetland and cropland protection in built-up area has become an urgent task of local authorities to the local government. Furthermore, there was still a significant negative correlation between ESV of cropland and wetland and the GDP. The results suggest that future planning of land use pattern should control encroachment of urban areas into cropland and wetland in addition to scientific and rational policies towards minimizing the adverse effects of urbanization.

  8. Carbon storage in China's terrestrial ecosystems: A synthesis.

    PubMed

    Xu, Li; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Gao, Yang; Wen, Ding; Li, Shenggong; Niu, Shuli; Ge, Jianping

    2018-02-12

    It is important to accurately estimate terrestrial ecosystem carbon (C) storage. However, the spatial patterns of C storage and the driving factors remain unclear, owing to lack of data. Here, we collected data from literature published between 2004 and 2014 on C storage in China's terrestrial ecosystems, to explore variation in C storage across different ecosystems and evaluate factors that influence them. We estimated that total C storage was 99.15 ± 8.71 PgC, with 14.60 ± 3.24 PgC in vegetation C (Veg-C) and 84.55 ± 8.09 PgC in soil organic C (SOC) storage. Furthermore, C storage in forest, grassland, wetland, shrub, and cropland ecosystems (excluding vegetation) was 34.08 ± 5.43, 25.69 ± 4.71, 3.62 ± 0.80, 7.42 ± 1.92, and 15.17 ± 2.20 PgC, respectively. In addition to soil nutrients and texture, climate was the main factor regulating the spatial patterns of C storage. Climate influenced the spatial patterns of Veg-C and SOC density via different approaches, Veg-C was mainly positively influenced by mean annual precipitation (MAP), whereas SOC was negatively dependent on mean annual temperature (MAT). This systematic estimate of C storage in China provides new insights about how climate constrains C sequestration, demonstrating the contrasting effects of MAP and MAT on Veg-C and SOC; thus, these parameters should be incorporated into future land management and C sequestration strategies.

  9. Isoscapes of the Sierra Nevada, California: Inferences from Landscape Patterns of Carbon, Nitrogen and Hydrogen in Lakes and Their Watersheds

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.; Sadro, S.; Lucero, D. M.

    2016-12-01

    Montane aquatic ecosystems integrate conditions within their catchments and act as sentinels for environmental change. Variations in elevation, atmospheric deposition, and bedrock chemistry produce complex environmental gradients that influence the flow of materials and energy between lakes and their watersheds. We investigated the landscape-level variations in stable isotopes (Isoscapes) of C, N and H in foodwebs of 12 Sierra Nevada lakes and watersheds spanning an elevation range of 1500 to 3500 m a.s.l. Collections included terrestrial plants, soils and insects and the entire aquatic food chain from dissolved organic matter (DOM) through plankton, benthic invertebrates and fish. Our major objective was to understand how environmental gradients such as temperature and precipitation (distance-for-time proxies for climate change) effect foodweb structure and reciprocal subsidies of C and energy between lakes and their watersheds. Possibly related to its role as a limiting nutrient for aquatic and terrestrial ecosystems, we observed no consistent pattern for δ15N across any environmental gradient. In contrast, there was a strong pattern of enrichment in 13C with increasing elevation (slope = +3.4 permil per km). Similarly, δ2H of snowfall and foodweb components showed a depletion of 2H with elevation (slope = -17 permil per km for foodwebs and -20 permil per km for water) suggesting strong influence of snowmelt on aquatic ecosystem function. We will further explore these isotope patterns and draw inferences on how changes in montane climate, including trends toward earlier snowmelt and lower snowfall, will impact aquatic ecosystems of the Sierra Nevada.

  10. Diverse Responses of Belowground Internal Nitrogen Cycling to Increasing Aridity

    NASA Astrophysics Data System (ADS)

    Kou, D.; Peng, Y.; Wang, G.; Ding, J.; Chen, Y.; Yang, G.; Fang, K.; Liu, L.; Zhang, B.; Müller, C.; Zhang, J.; Yang, Y.

    2017-12-01

    Belowground microbial nitrogen (N) dynamics play key roles in regulating structure and function of terrestrial ecosystems, however, our understanding on their responses to global change remains limited. This gap is particularly true for drylands, which constitute the largest biome in terrestrial ecosystems and are sensitive to predicted increase in aridity. Here, responding patterns and controls of six gross N transformation rates were explored along an aridity gradient in Tibetan drylands. Our results showed that gross N rates responded diversely to the changing aridity. Both mineralization (MN) and ammonium immobilization (INH4) declined as aridity increased. Aridity affected MN through its association with plant cover, clay content, soil organic matter (SOM), dissolved organic nitrogen (DON) and total microbial biomass, while regulated INH4 mainly through its effects on SOM and NH4+. Autotrophic nitrification (ONH4) exhibited a bell-shaped pattern along the gradient with a tipping point at aridity index = 0.47. Such a pattern was induced by aridity effects on the abundance of ammonia oxidizing archaea (AOA) and ammonia supplying capacity. Different from above N transformations, rates of nitrate immobilization (INO3) and dissimilatory nitrate reduction to ammonium (DNRA) had no responses to changing aridity, largely regulated by soil DON availability and clay content, respectively. Overall, these results suggest that predicted increase in aridity will exert different effects on various soil internal N cycling processes. The diverse patterns point to different responses of ecosystem N cycle with respect to aridity, and thus potentially have profound impact on structure and function of dryland ecosystems.

  11. Environmental Engineering in the Slovak Republic

    NASA Astrophysics Data System (ADS)

    Stevulova, N.; Balintova, M.; Zelenakova, M.; Estokova, A.; Vilcekova, S.

    2017-10-01

    The fundamental role of environmental engineering is to protect human population and environment from impacts of human activities and to ensure environmental quality. It relates to achieving the environmental sustainability goals through advanced technologies for pollutants removing from air, water and soil in order to minimize risk in ecosystem and ensuring favourable conditions for life of humans and organisms. Nowadays, a critical analysis of the environment quality and innovative approaches to problem solving in order to achieve sustainability in environmental engineering, are necessary. This article presents an overview of the quality of the environment and progress in environmental engineering in Slovakia and gives information regarding the environmental engineering education at Faculty of Civil Engineering at Technical University in Kosice.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1968-01-09

    A cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), initially had a thrust of 188,000 pounds each for a combined thrust of over 1,500,000 pounds. Later, the H-1 engine was upgraded to 205,000 pounds of thrust and a combined total thrust of 1,650,000 pounds for the Saturn IB program. This photo depicts a single modified H-1 engine. The H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).

  13. Human alterations, dynamic equilibrium, and riparian ecosystem responses along selected rivers in Tuscany, Italy (Invited)

    NASA Astrophysics Data System (ADS)

    Hupp, C. R.; Rinaldi, M.

    2010-12-01

    Many, if not most, streams have been mildly to severely affected by human disturbance, which complicates efforts to understand riparian ecosystems. Mediterranean regions have a long history of human influences including: dams, stream channelization, mining of sediment, and levee /canal construction. Typically these alterations reduce the ecosystem services that functioning floodplains provide and may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Additionally, human alterations typically shift affected streams away from a state of natural dynamic equilibrium, where net sediment deposition is approximately in balance with net erosion. Lack of equilibrium typically affects the degree to which floodplain ecosystems are connected to streamflow regime. Low connectivity, usually from human- or climate-induced incision, may result in reduced flow on floodplains and lowered water tables. High connectivity may result in severe sediment deposition. Connectivity has a direct impact on vegetation communities. Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Multivariate analysis reveals distinct quantitative vegetation patterns related to six fluvial geomorphic surfaces. Analysis of vegetation data also shows distinct associations of plants with adjustment processes related to the stage of channel evolution. Plant distribution patterns coincide with disturbance/landform/soil moisture gradients. Species richness increases from channel bed to terrace and on heterogeneous riparian areas, while species richness decreases from moderate to intense incision and from low to intense narrowing. As a feedback mechanism, woody vegetation in particular may facilitate geomorphic recovery of floodplains by affecting sedimentation dynamics. Identification and understanding of critical fluvial parameters related to floodplain connectivity (e.g. stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services.

  14. Fine-Scale Bacterial Beta Diversity within a Complex Ecosystem (Zodletone Spring, OK, USA): The Role of the Rare Biosphere

    PubMed Central

    Youssef, Noha H.; Couger, M. B.; Elshahed, Mostafa S.

    2010-01-01

    Background The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems. Methodology/Principal Findings We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU0.03) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere. Conclusions/Significance The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic surveys of highly complex ecosystems. PMID:20865128

  15. Functional diversity patterns of abyssal nematodes in the Eastern Mediterranean: A comparison between cold seeps and typical deep sea sediments

    NASA Astrophysics Data System (ADS)

    Kalogeropoulou, V.; Keklikoglou, K.; Lampadariou, N.

    2015-04-01

    Spatial patterns in deep sea nematode biological trait composition and functional diversity were investigated between chemosynthetic and typical deep sea ecosystems as well as between different microhabitats within the chemosynthetic ecosystems, in the Eastern Mediterranean. The chemosynthetic ecosystems chosen were two mud volcanoes, Napoli at 1950 m depth and Amsterdam at 2040 m depth which are cold seeps characterized by high chemosynthetic activity and spatial heterogeneity. Typical deep sea ecosystems consisted of fine-grained silt-clay sediments which were collected from three areas located in the south Ionian Sea at 2765 to 2840 m depth, the southern Cretan margin at 1089 to 1998 m depth and the Levantine Sea at 3055 to 3870 m depth. A range of biological traits (9 traits; 31 categories) related to buccal morphology, tail shape, body size, body shape, life history strategy, sediment position, cuticle morphology, amphid shape and presence of somatic setae were combined to identify patterns in the functional composition of nematode assemblages between the two habitats, the two mud volcanoes (macroscale) and between the microhabitats within the mud volcanoes (microscale). Data on trait correspondence was provided by biological information on species and genera. A total of 170 nematode species were allocated in 67 different trait combinations, i.e. functional groups, based on taxonomic, morphological and behavioral characteristics. The Biological Trait Analysis (BTA) revealed significant differences between the mud volcanoes and the typical deep sea sediments indicating the presence of different biological functions in ecologically very different environments. Moreover, chemosynthetic activity and habitat heterogeneity within mud volcanoes enhance the presence of different biological and ecological functions in nematode assemblages of different microhabitats. Functional diversity and species richness patterns varied significantly across the different environmental gradients prevailing in the study areas. Biological trait analysis, with the addition of newly introduced trait categories, and functional diversity outcomes provided greater explanatory power of ecosystem functioning than species richness and taxonomic diversity.

  16. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    PubMed

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  17. Complex seasonal patterns of primary producers at the land-sea interface

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.

    2008-01-01

    Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO 2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts with annual cycles of terrestrial and oceanic primary producers for which seasonal fluctuations are recurrent and synchronous over large geographic regions. This finding bears on two fundamental ecological questions: (1) how do estuarine and coastal consumers adapt to an irregular and unpredictable food supply, and (2) how can we extract signals of climate change from phytoplankton observations in coastal ecosystems where local-scale processes can mask responses to changing climate? ?? 2008 Blackwell Publishing Ltd/CNRS.

  18. Do ecohydrology and community dynamics feed back to banded-ecosystem structure and productivity?

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Mixed communities including grass, shrubs and trees are often reported to populate self-organized vegetation patterns. Patterns of survey data suggest that species diversity and complementarity strengthen the dynamics of banded environments. Resource scarcity and local facilitation trigger self organization, whereas coexistence of multiple species in vegetated self-organizing patches, implying competition for water and nutrients and favorable reproduction sites, is made possible by differing adaptation strategies. Mixed community spatial self-organization has so far received relatively little attention, compared with local net facilitation of isolated species. We assumed that soil moisture availability is a proxy for the environmental niche of plant species according to Ursino and Callegaro (2016). Our modelling effort was focused on niche differentiation of coexisting species within a tiger bush type ecosystem. By minimal numerical modelling and stability analysis we try to answer a few open scientific questions: Is there an adaptation strategy that increases biodiversity and ecosystem functioning? Does specific adaptation to environmental niches influence the structure of self-organizing vegetation pattern? What specific niche distribution along the environmental gradient gives the highest global productivity?

  19. Fitness trade-offs of group formation and movement by Thomson's gazelles in the Serengeti ecosystem.

    PubMed

    Fryxell, John M; Berdahl, Andrew M

    2018-05-19

    Collective behaviours contributing to patterns of group formation and coordinated movement are common across many ecosystems and taxa. Their ubiquity is presumably due to altering interactions between individuals and their predators, resources and physical environment in ways that enhance individual fitness. On the other hand, fitness costs are also often associated with group formation. Modifications to these interactions have the potential to dramatically impact population-level processes, such as trophic interactions or patterns of space use in relation to abiotic environmental variation. In a wide variety of empirical systems and models, collective behaviour has been shown to enhance access to ephemeral patches of resources, reduce the risk of predation and reduce vulnerability to environmental fluctuation. Evolution of collective behaviour should accordingly depend on the advantages of collective behaviour weighed against the costs experienced at the individual level. As an illustrative case study, we consider the potential trade-offs on Malthusian fitness associated with patterns of group formation and movement by migratory Thomson's gazelles in the Serengeti ecosystem.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Authors.

  20. Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons.

    PubMed

    McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.

  1. Citation Analysis: A Case Study of Korean Scientists and Engineers in Electrical and Electronics Engineering.

    ERIC Educational Resources Information Center

    Rieh, Hae-young

    1993-01-01

    Describes a study that investigated the citation patterns of publications by scientists and engineers in electrical and electronics engineering in Korea. Citation behavior of personnel in government, universities, and industry is compared; and citation patterns from articles in Korean and non-Korean publications are contrasted. (Contains 27…

  2. Alternative hypotheses to explain why biodiversity-ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments.

    PubMed

    Mora, Camilo; Danovaro, Roberto; Loreau, Michel

    2014-06-25

    Recent studies of the relationship between biodiversity and functioning in marine ecosystems have yielded non-saturating patterns that contrast sharply with the results of experimental studies, where ecosystem functioning rapidly saturates with increases in biodiversity. Here we provide a simple theoretical framework of three alternative hypotheses that, individually or combined, are likely to explain this contrast: i) the use of functional richness instead of species richness, ii) an increased production efficiency of species in producing biomass when more ecological interactions are present, and iii) the fact that communities are likely assembled in an ordered succession of species from low to high ecological efficiency. Our results provide theoretical support for concave-up biodiversity-ecosystem functioning relationships in natural ecosystems and confirm that the loss of species can have substantially larger effects on the functioning of natural ecosystems than anticipated from controlled manipulative experiments.

  3. Alternative hypotheses to explain why biodiversity-ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments

    PubMed Central

    Mora, Camilo; Danovaro, Roberto; Loreau, Michel

    2014-01-01

    Recent studies of the relationship between biodiversity and functioning in marine ecosystems have yielded non-saturating patterns that contrast sharply with the results of experimental studies, where ecosystem functioning rapidly saturates with increases in biodiversity. Here we provide a simple theoretical framework of three alternative hypotheses that, individually or combined, are likely to explain this contrast: i) the use of functional richness instead of species richness, ii) an increased production efficiency of species in producing biomass when more ecological interactions are present, and iii) the fact that communities are likely assembled in an ordered succession of species from low to high ecological efficiency. Our results provide theoretical support for concave-up biodiversity-ecosystem functioning relationships in natural ecosystems and confirm that the loss of species can have substantially larger effects on the functioning of natural ecosystems than anticipated from controlled manipulative experiments. PMID:24962477

  4. Can spatial patterns along climatic gradients predict ecosystem responses to climate change? Experimenting with reaction-diffusion simulations.

    PubMed

    Roitberg, Elena; Shoshany, Maxim

    2017-01-01

    Following a predicted decline in water resources in the Mediterranean Basin, we used reaction-diffusion equations to gain a better understanding of expected changes in properties of vegetation patterns that evolve along the rainfall transition between semi-arid and arid rainfall regions. Two types of scenarios were investigated: the first, a discrete scenario, where the potential consequences of climate change are represented by patterns evolving at discrete rainfall levels along a rainfall gradient. This scenario concerns space-for-time substitutions characteristic of the rainfall gradient hypothesis. The second, a continuous scenario, represents explicitly the effect of rainfall decline on patterns which evolved at different rainfall levels along the rainfall gradient prior to the climate change. The eccentricity of patterns that emerge through these two scenarios was found to decrease with decreasing rainfall, while their solidity increased. Due to their inverse modes of change, their ratio was found to be a highly sensitive indicator for pattern response to rainfall decline. An eccentricity ratio versus rainfall (ER:R) line was generalized from the results of the discrete experiment, where ERs above this line represent developed (recovered) patterns and ERs below this line represent degraded patterns. For the rainfall range of 1.2 to 0.8 mm/day, the continuous rainfall decline experiment with ERs that lie above the ER:R line, yielded patterns less affected by rainfall decline than would be expected according to the discrete representation of ecosystems' response. Thus, for this range, space-for-time substitution represents an overestimation of the consequences of the expected rainfall decline. For rainfall levels below 0.8 mm/day, eccentricity ratios from the discrete and continuous experiments practically converge to the same trend of pattern change along the ER:R line. Thus, the rainfall gradient hypothesis may be valid for regions characterized by this important rainfall range, which typically include desert fringe ecosystems.

  5. Assessing the drivers shaping global patterns of urban vegetation landscape structure.

    PubMed

    Dobbs, C; Nitschke, C; Kendal, D

    2017-08-15

    Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai-Tibet Plateau, China.

    PubMed

    Wu, Huawu; Li, Xiao-Yan; Jiang, Zhiyun; Chen, Huiying; Zhang, Cicheng; Xiao, Xiong

    2016-01-15

    Plant water use patterns reflect the complex interactions between different functional types and environmental conditions in water-limited ecosystems. However, the mechanisms underlying the water use patterns of plants in the alpine desert of the Qinghai-Tibet Plateau remain poorly understood. This study investigated seasonal variations in the water sources of herbs (Carex moorcroftii, Astragalus adsurgens) and shrubs (Artemisia oxycephala, Hippophae rhamnoides) using stable oxygen-18 isotope methods. The results indicated that the native herbs (C. moorcroftii, A. adsurgens) and one of the shrubs (A. oxycephala) mainly relied on water from the shallow layer (0-30 cm) throughout the growing season, while the introduced shrub (H. rhamnoides) showed plasticity in switching between water from shallow and deep soil layers depending on soil water availability. All studied plants primarily depended on water from shallow soil layers early in the season. The differences of water use patterns between the introduced and native plants are closely linked with the range of active root zones when competing for water. Our findings will facilitate the mechanistic understanding of plant-soil-water relations in alpine desert ecosystems and provide information for screening introduced species for sand fixation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The role of recurrent disturbances for ecosystem multifunctionality.

    PubMed

    Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf

    2013-10-01

    Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.

  8. A Multi-Scale Approach to Assess and Restore Ecosystems in a Watershed Context

    DTIC Science & Technology

    2013-09-01

    Laguna Formation .. Mehrten Formation .. Metamorphic Rocks , Undifferentiated .. Modesto Formation. Upper Unit c=J North Merced Gravel .. Riverbank...distribution is unlimited. The US Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental...watershed assessment procedure that can be used to evaluate existing ecological conditions as well as proposed changes. The approach employs indicators

  9. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    PubMed

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Multiple hypotheses testing of fish incidence patterns in an urbanized ecosystem

    USGS Publications Warehouse

    Chizinski, C.J.; Higgins, C.L.; Shavlik, C.E.; Pope, K.L.

    2006-01-01

    Ecological and evolutionary theories have focused traditionally on natural processes with little attempt to incorporate anthropogenic influences despite the fact that humans are such an integral part of virtually all ecosystems. A series of alternate models that incorporated anthropogenic factors and traditional ecological mechanisms of invasion to account for fish incidence patterns in urban lakes was tested. The models were based on fish biology, human intervention, and habitat characteristics. However, the only models to account for empirical patterns were those that included fish invasiveness, which incorporated species-specific information about overall tolerance and fecundity. This suggests that species-specific characteristics are more important in general distributional patterns than human-mediated dispersal. Better information of illegal stocking activities is needed to improve human-mediated models, and more insight into basic life history of ubiquitous species is needed to truly understand underlying mechanisms of biotic homogenization. ?? Springer 2005.

  11. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally

    PubMed Central

    Ramirez, Kelly S.; Leff, Jonathan W.; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W.; Kelly, Eugene F.; Oldfield, Emily E.; Shaw, E. Ashley; Steenbock, Christopher; Bradford, Mark A.; Wall, Diana H.; Fierer, Noah

    2014-01-01

    Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. PMID:25274366

  12. Environmental drivers of heterogeneity in the trophic-functional structure of protozoan communities during an annual cycle in a coastal ecosystem.

    PubMed

    Xu, Guangjian; Yang, Eun Jin; Xu, Henglong

    2017-08-15

    Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.

  13. ECOSYSTEM IMPACTS OF GEOENGINEERING: A Review for Developing a Science Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Lynn M; Jackson, Robert B; Norby, Richard J

    2012-01-01

    Geoengineering methods are intended to reduce the magnitude of climate change, which is already having demonstrable effects on ecosystem structure and functioning. Two different types of activities have been proposed: solar radiation management (SRM), or sunlight reflection methods, which involves reflecting a small percentage of solar light back into space to offset the warming due to greenhouse gases, and carbon dioxide removal (CDR), which includes a range of engineered and biological processes to remove carbon dioxide (CO2) from the atmosphere. This report evaluates some of the possible impacts of CDR and SRM on the physical climate and their subsequent influencemore » on ecosystems, which include the risks and uncertainties associated with new kinds of purposeful perturbations to the Earth. Therefore, the question considered in this review is whether CDR and SRM methods would exacerbate or alleviate the deleterious impacts on ecosystems associated with climate changes that might occur in the foreseeable future.Geoengineering methods are intended to reduce the magnitude of climate change, which is already having demonstrable effects on ecosystem structure and functioning. Two different types of activities have been proposed: solar radiation management (SRM), or sunlight reflection methods, which involves reflecting a small percentage of solar light back into space to offset the warming due to greenhouse gases, and carbon dioxide removal (CDR), which includes a range of engineered and biological processes to remove carbon dioxide (CO2) from the atmosphere. This report evaluates some of the possible impacts of CDR and SRM on the physical climate and their subsequent influence on ecosystems, which include the risks and uncertainties associated with new kinds of purposeful perturbations to the Earth. Therefore, the question considered in this review is whether CDR and SRM methods would exacerbate or alleviate the deleterious impacts on ecosystems associated with climate changes that might occur in the foreseeable future.« less

  14. NE-RESM: An Integrated Water Resource Assessment and Solutions Platform for the U.S. Northeast

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Miara, A.; Rosenzweig, B.; Duchin, F.; Dileki, N.; Stewart, R.; Wollheim, W. M.; Melillo, J. M.; Kicklighter, D. W.; Fekete, B. M.; Yang, P.; Gonzalez, J.

    2013-12-01

    Recent analysis of inland water systems using high-resolution maps depicting a wide array of stressors unveils a pattern of threat to the world's fresh water resource base upon which much of the human water supply and aquatic biodiversity depend. A characteristic pattern of management is evident in the contemporary setting, through which impairment accumulates as a function of wealth, but is then remedied by costly, after-the-fact technological investments. The Northeast region of the United States serves as an ideal example of major changes that have taken place with respect to the global hydrologic cycle. Over the course of this century, the region will be significantly impacted by both climate change and strategic management decisions focused often on near-term solutions but with potential century-scale legacy effects. We report on development of a Regional Earth System Model for the Northeast (NE-RESM), an NSF-funded project that assembles an interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. Major components of this work include: (i) downscaled atmospheric model outputs to drive terrestrial-aquatic ecosystem models, (ii) geospatial modeling of anthropogenic greenhouse gas emissions and biotic source/sinks, (iii) a meso-economic input-output model to evaluate the impacts of ecosystem services constraints on the economy, (iv) a linked ecosystem services accounting tool, and (v) policymaker engagement. This paper will report on one set of experiments focusing on the nexus of energy, water and the economy and how it is impacted by climate constraints and environmental regulations (i.e., Clean Water Act). We identify climate and regulatory-based limits on regional power output. At the same time, we can demonstrate opportunities to better manage the nearly 400 power plants comprising the region's thermoelectric sector. These opportunities arise from analysis of power plants in sequence along individual river reaches. We identify unexpected beneficiary effects of environmental regulations, that target the protection of aquatic ecosystems, but also enable downstream power stations to produce electricity when the most thermally polluting upstream plants curtail operations. We will also report on the co-design of scenario modeling experiments with stakeholders, through policy charettes, focusing on regional food security and agriculture; landscape management and build-out trajectories; and, strategic investments in water quality management. These charettes have been useful in demonstrating the ways in which state-of-the-art Earth system models can be used to improve the resiliency of a regional environment in light of major climate and other natural and human-created system stressors.

  15. Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes

    NASA Astrophysics Data System (ADS)

    Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.

    2017-11-01

    Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.

  16. Modelling hydrological processes and analysing water-related ecosystem services of Western Siberian lowland basins

    NASA Astrophysics Data System (ADS)

    Schmalz, Britta; Kiesel, Jens; Kruse, Marion; Pfannerstill, Matthias; Sheludkov, Artyom; Khoroshavin, Vitaliy; Veshkurseva, Tatyana; Müller, Felix; Fohrer, Nicola

    2015-04-01

    For discussing and planning sustainable land management of river basins, stakeholders need suitable information on spatio-temporal patterns of hydrological components and ecosystem services. The ecosystem services concept, i.e., services provided by ecosystems that contribute to human welfare benefits, contributes comprehensive information for sustainable river management. This study shows an approach to use ecohydrological modelling results for quantifying and assessing water-related ecosystem services in three lowland river basins in Western Siberia, a region which is of global significance in terms of carbon sequestration, agricultural production and biodiversity preservation. Using the ecohydrological model SWAT, the three basins Pyschma (16762 km²), Vagai (3348 km²) and Loktinka (373 km²) were modelled following a gradient from the landscape units taiga, pre-taiga to forest steppe. For a correct representation of the Siberian lowland hydrology, the consideration of snow melt and retention of surface runoff as well as the implementation of a second groundwater aquifer was of great importance. Good to satisfying model performances were obtained for the extreme hydrological conditions. The simulated SWAT output variables of different hydrological processes were used as indicators for the two regulating services water flow and erosion regulation. The model results were translated into a relative ecosystem service valuation scale. The resulting ecosystem service maps show different spatial and seasonal patterns. Although the high resolution modelling results are averaged out within the aggregated relative valuation scale, seasonal differences can be depicted: during snowmelt, low relevant regulation can be determined, especially for water flow regulation, but a very high relevant regulation was calculated for the vegetation period during summer and for the winter period. The SWAT model serves as a suitable quantification method for the assessment of water-related ecosystem services on different spatial scales and ecoregions of the Western Siberian lowlands.

  17. Bacterial taxa–area and distance–decay relationships in marine environments

    PubMed Central

    Zinger, L; Boetius, A; Ramette, A

    2014-01-01

    The taxa–area relationship (TAR) and the distance–decay relationship (DDR) both describe spatial turnover of taxa and are central patterns of biodiversity. Here, we compared TAR and DDR of bacterial communities across different marine realms and ecosystems at the global scale. To obtain reliable global estimates for both relationships, we quantified the poorly assessed effects of sequencing depth, rare taxa removal and number of sampling sites. Slope coefficients of bacterial TARs were within the range of those of plants and animals, whereas slope coefficients of bacterial DDR were much lower. Slope coefficients were mostly affected by removing rare taxa and by the number of sampling sites considered in the calculations. TAR and DDR slope coefficients were overestimated at sequencing depth <4000 sequences per sample. Noticeably, bacterial TAR and DDR patterns did not correlate with each other both within and across ecosystem types, suggesting that (i) TAR cannot be directly derived from DDR and (ii) TAR and DDR may be influenced by different ecological factors. Nevertheless, we found marine bacterial TAR and DDR to be steeper in ecosystems associated with high environmental heterogeneity or spatial isolation, namely marine sediments and coastal environments compared with pelagic ecosystems. Hence, our study provides information on macroecological patterns of marine bacteria, as well as methodological and conceptual insights, at a time when biodiversity surveys increasingly make use of high-throughput sequencing technologies. PMID:24460915

  18. 2013. Wetlands. In: Mooney, H. and Zavaleta, E., editors. Ecosystems of California: A Source Book. Berkeley, CA: University of California Press

    USDA-ARS?s Scientific Manuscript database

    This publication is an introduction to wetland ecosystems in California, their geographic distribution, and historical ecology. Hydroclimatology and hydrology are explained as key drivers and patterns of variability in wetland habitats and biological communities. Primary wetland types are describe...

  19. Southwestern Avian Community Organization in Exotic Tamarix: Current Patterns and Future Needs

    Treesearch

    H. A. Walker

    2006-01-01

    Tamarisk (saltcedar: Tamarix), an invasive exotic tree native to the Eastern Hemisphere, is currently the dominant plant species in most southwestern riparian ecosystems at elevations below 1500 m. Tamarisk alters abiotic conditions and the floral composition of native southwestern riparian ecosystems and, in turn, affects native southwestern animal communities....

  20. Assessment of national biomass in complex forests and technical capacity scenarios

    Treesearch

    Matieu Henry; Javier G. P. Gamarra; Gael Sola; Luca Birigazzi; Emily Donegan; Julian Murillo; Tommaso Chiti; Nicolas Picard; Miguel Cifuentes-Jara; S Sandeep; Laurent Saint-André

    2015-01-01

    Understanding forest ecosystems is paramount for their sustainable management and for the livelihoods and ecosystem services which depend on them. However, the complexity and diversity of these systems poses a challenge to interpreting data patterns. The availability and accessibility of data and tools often determine the method selected for forest assessment. Capacity...

  1. Classifying and comparing spatial models of fire dynamics

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan

    2007-01-01

    Wildland fire is a significant disturbance in many ecosystems worldwide and the interaction of fire with climate and vegetation over long time spans has major effects on vegetation dynamics, ecosystem carbon budgets, and patterns of biodiversity. Landscape-Fire-Succession Models (LFSMs) that simulate the linked processes of fire and vegetation development in a spatial...

  2. Predicting plant species diversity in a longleaf pine landscape

    Treesearch

    L. Katherine Kirkman; P. Charles Goebel; Brian J. Palik; Larry T. West

    2004-01-01

    In this study, we used a hierarchical, multifactor ecological classification system to examine how spatial patterns of biodiversity develop in one of the most species-rich ecosystems in North America, the fire-maintained longleaf pine-wiregrass ecosystem and associated depressional wetlands and riparian forests. Our goal was to determine which landscape features are...

  3. Sulfur pollution: an environmental study of Welland, Ontario

    Treesearch

    Michael R. Moss

    1977-01-01

    The distribution of sulfur as an environmental pollutant is analysed in the vicinity of Welland, Ontario. A biogeochemical-cycle approach enables areas of excess accumulation to be compared among all linked ecosystem components. Although the patterns of distribution are similar, the amounts of sulfur accumulated in different ecosystems, grassland and woodland, show...

  4. Restoration planning on the Okanogan-Wenatchee national forest: prescriptions for resilient landscapes

    Treesearch

    Keith Reynolds; Paul Hessburg; Joan O’Callaghan

    2014-01-01

    Human settlement and land management have radically altered the composition and structure of eastern Washington forests. Restoring high-functioning landscapes and habitat patterns have broad implications for the future sustainability of native species, ecosystem services, and ecosystem processes. Many land managers and scientists have turned their attention to whole...

  5. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Treesearch

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  6. On species persistence-time distributions.

    PubMed

    Suweis, S; Bertuzzo, E; Mari, L; Rodriguez-Iturbe, I; Maritan, A; Rinaldo, A

    2012-06-21

    We present new theoretical and empirical results on the probability distributions of species persistence times in natural ecosystems. Persistence times, defined as the timespans occurring between species' colonization and local extinction in a given geographic region, are empirically estimated from local observations of species' presence/absence. A connected sampling problem is presented, generalized and solved analytically. Species persistence is shown to provide a direct connection with key spatial macroecological patterns like species-area and endemics-area relationships. Our empirical analysis pertains to two different ecosystems and taxa: a herbaceous plant community and a estuarine fish database. Despite the substantial differences in ecological interactions and spatial scales, we confirm earlier evidence on the general properties of the scaling of persistence times, including the predicted effects of the structure of the spatial interaction network. The framework tested here allows to investigate directly nature and extent of spatial effects in the context of ecosystem dynamics. The notable coherence between spatial and temporal macroecological patterns, theoretically derived and empirically verified, is suggested to underlie general features of the dynamic evolution of ecosystems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot

    NASA Astrophysics Data System (ADS)

    Wernberg, Thomas; Smale, Dan A.; Tuya, Fernando; Thomsen, Mads S.; Langlois, Timothy J.; de Bettignies, Thibaut; Bennett, Scott; Rousseaux, Cecile S.

    2013-01-01

    Extreme climatic events, such as heat waves, are predicted to increase in frequency and magnitude as a consequence of global warming but their ecological effects are poorly understood, particularly in marine ecosystems. In early 2011, the marine ecosystems along the west coast of Australia--a global hotspot of biodiversity and endemism--experienced the highest-magnitude warming event on record. Sea temperatures soared to unprecedented levels and warming anomalies of 2-4°C persisted for more than ten weeks along >2,000km of coastline. We show that biodiversity patterns of temperate seaweeds, sessile invertebrates and demersal fish were significantly different after the warming event, which led to a reduction in the abundance of habitat-forming seaweeds and a subsequent shift in community structure towards a depauperate state and a tropicalization of fish communities. We conclude that extreme climatic events are key drivers of biodiversity patterns and that the frequency and intensity of such episodes have major implications for predictive models of species distribution and ecosystem structure, which are largely based on gradual warming trends.

  8. Synergy of VSWIR and LiDAR for Ecosystem Structure, Biomass, and Canopy Diversity

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Asner, Gregory P.

    2010-01-01

    This slide presentation reviews the use of Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer and LiDAR to study ecosystem structure, biomass and canopy diversity. It is shown that the biophysical data from LiDAR and biochemical information from hyperspectral remote sensing provides complementary data for: (1) describing spatial patterns of vegetation and biodiversity, (2) characterizing relationships between ecosystem form and function, and (3) detecting natural and human induced change that affects the biogeochemical cycles.

  9. Changes in the location of biodiversity-ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily

    2017-04-12

    Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).

  10. Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States

    NASA Astrophysics Data System (ADS)

    Zhou, Tao; Luo, Yiqi

    2008-09-01

    Ecosystem carbon (C) uptake is determined largely by C residence times and increases in net primary production (NPP). Therefore, evaluation of C uptake at a regional scale requires knowledge on spatial patterns of both residence times and NPP increases. In this study, we first applied an inverse modeling method to estimate spatial patterns of C residence times in the conterminous United States. Then we combined the spatial patterns of estimated residence times with a NPP change trend to assess the spatial patterns of regional C uptake in the United States. The inverse analysis was done by using the genetic algorithm and was based on 12 observed data sets of C pools and fluxes. Residence times were estimated by minimizing the total deviation between modeled and observed values. Our results showed that the estimated C residence times were highly heterogeneous over the conterminous United States, with most of the regions having values between 15 and 65 years; and the averaged C residence time was 46 years. The estimated C uptake for the whole conterminous United States was 0.15 P g C a-1. Large portions of the taken C were stored in soil for grassland and cropland (47-70%) but in plant pools for forests and woodlands (73-82%). The proportion of C uptake in soil was found to be determined primarily by C residence times and be independent of the magnitude of NPP increase. Therefore, accurate estimation of spatial patterns of C residence times is crucial for the evaluation of terrestrial ecosystem C uptake.

  11. 76 FR 81485 - Chief of Engineers Environmental Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... focus on ecosystem restoration through integrated water resources management, including discussion of the potential effects of climate change. Following the discussions and presentations there will be a...

  12. Ecosystem engineers drive creek formation in salt marshes.

    PubMed

    Vu, Huy D; Wie Ski, Kazimierz; Pennings, Steven C

    2017-01-01

    Ecosystem engineers affect different organisms and processes in multiple ways at different spatial scales. Moreover, similar species may differ in their engineering effects for reasons that are not always clear. We examined the role of four species of burrowing crabs (Sesarma reticulatum, Eurytium limosum, Panopeus herbstii, Uca pugnax) in engineering tidal creek networks in salt marshes experiencing sea level rise. In the field, crab burrows were associated with heads of eroding creeks and the loss of plant (Spartina alterniflora) stems. S. reticulatum was closely associated with creek heads, but densities of the other crab species did not vary across marsh zones. In mesocosm experiments, S. reticulatum excavated the most soil and strongly reduced S. alterniflora biomass. The other three species excavated less and did not affect S. alterniflora. Creek heads with vegetation removed to simulate crab herbivory grew significantly faster than controls. Percolation rates of water into marsh sediments were 10 times faster at creek heads than on the marsh platform. Biomass decomposed two times faster at creek heads than on the marsh platform. Our results indicate that S. reticulatum increases creek growth by excavating sediments and by consuming plants, thereby increasing water flow and erosion at creek heads. Moreover, it is possible that S. reticulatum burrows also increase creek growth by increasing surface and subsurface erosion, and by increasing decomposition of organic matter at creek heads. Our results show that the interaction between crab and plant ecosystem engineers can have both positive and negative effects. At a small scale, in contrast to other marsh crabs, S. reticulatum harms rather than benefits plants, and increases erosion rather than marsh growth. At a large scale, however, S. reticulatum facilitates the drainage efficiency of the marsh through the expansion of tidal creek networks, and promotes marsh health. © 2016 by the Ecological Society of America.

  13. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the most sensitive to toxic air contaminants in the Sierra Nevada-Southern Cascades region.

  14. Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: The burrowing cascade initiated by the Gopher Tortoise

    NASA Astrophysics Data System (ADS)

    Kinlaw, A.; Grasmueck, M.

    2012-07-01

    Physical ecosystem engineers often make major, durable physical constructs that can provide living space for other species and can structure local animal communities over evolutionary time. In Florida, a medium sized chelonian, the Gopher Tortoise (Gopherus polyphemus) will excavate extensive subterranean chambers that can endure for long periods of time. The tortoise starts a 'burrowing cascade', by first excavating a larger burrow that may extend 10 m, which is then re-engineered by Florida Mice (Podomys floridanus) and other rodents that dig smaller side-burrows and pockets. This sequence is often followed by an invertebrate, the camel cricket (Ceuthophilus labibuli) which is reported to excavate even smaller chambers. Our first aim was to quantify the zoogeomorphic impact of this burrowing cascade by measuring the amount of soil excavated in a large sample of burrows in two communities. Secondly, we hypothesized that the high biodiversity reported for these structures might be related to the quasi-fractal nature of the geometry, following the work of Frontier (1987). To visualize this underground geometry, we used high-resolution 3D Ground Penetrating Radar (GPR), which provided images and insights previously unobtainable using excavations or 2D GPR. Our images verified that the active tortoise burrow had a spiraling shape, but also showed splits in the larger burrow apparently dug by tortoises. For the first time, the smaller Florida Mouse burrows were imaged, showing side loops that exit and re-renter the tortoise burrow. This study also presents new information by making the discovery of numerous remnants of past tortoise burrows underground in the sampling grid surrounding the active burrow. Our third aim was to interpret our field results with previous ecological field studies to evaluate the strength of evidence that this species ranks as an ecosystem engineer.

  15. The 1990 forest ecosystem dynamics multisensor aircraft campaign

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon

    1991-01-01

    The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.

  16. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  17. Effects of land cover and regional climate variations on long-term spatiotemporal changes in sagebrush ecosystems

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Aldridge, Cameron L.

    2012-01-01

    This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes involved abrupt changes directly caused by landscape transformations and over 60% of the variations involved gradual changes directly related to climatic perturbations. The primary increases in bare ground and declines in sagebrush vegetation abundance were significantly correlated with the 1996-2006 decreasing trend in annual precipitation.

  18. Causes and effects of a highly successful marine invasion: Case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries

    NASA Astrophysics Data System (ADS)

    Troost, Karin

    2010-10-01

    Since the 1960's, the Pacific oyster Crassostrea gigas has been introduced for mariculture at several locations within NW Europe. The oyster established itself everywhere and expanded rapidly throughout the receiving ecosystems, forming extensive and dense reef structures. It became clear that the Pacific oyster induced major changes in NW European estuaries. This paper reviews the causes of the Pacific oyster's remarkably successful establishment and spread in The Netherlands and neighbouring countries, and includes a comprehensive review of consequences for the receiving communities. Ecosystem engineering by C. gigas and a relative lack of natural enemies in receiving ecosystems are identified as the most important characteristics facilitating the invader's successful establishment and expansion. The Pacific oyster's large filtration capacity and eco-engineering characteristics induced many changes in receiving ecosystems. Different estuaries are affected differently; in the Dutch Oosterschelde estuary expanding stocks saturate the carrying capacity whereas in the Wadden Sea no such problems exist. In general, the Pacific oyster seems to fit well within continental NW European estuarine ecosystems and there is no evidence that the invader outcompetes native bivalves. C. gigas induces changes in plankton composition, habitat heterogeneity and biodiversity, carrying capacity, food webs and parasite life cycles. The case of the Pacific oyster in NW European estuaries is only one example in an increasing series of biological invasions mediated by human activities. This case-study will contribute to further elucidating general mechanisms in marine invasions; invasions that sometimes appear a threat, but can also contribute to ecological complexity.

  19. Ethics and the UN Sustainable Development Goals: The Case for Comprehensive Engineering : Commentary on "Using Student Engagement to Relocate Ethics to the Core of the Engineering Curriculum".

    PubMed

    van den Hoven, Jeroen

    2016-12-27

    In the twenty-first century, the urgent problems the world is facing (the UN Sustainable Development Goals) are increasingly related to vast and intricate 'systems of systems', which comprise both socio-technical and eco-systems. In order for engineers to adequately and responsibly respond to these problems, they cannot focus on only one technical or any other aspect in isolation, but must adopt a wider and multidisciplinary perspective of these systems, including an ethical and social perspective. Engineering curricula should therefore focus on what we call 'comprehensive engineering'. Comprehensive engineering implies ethical coherence, consilience of scientific disciplines, and cooperation between parties.

  20. Stormwater Management Effects on Ecosystem Services: A Literature Review

    NASA Astrophysics Data System (ADS)

    Prudencio, L.; Null, S. E.

    2016-12-01

    Managing stormwater provides benefits for enhancing water supplies while reducing urban runoff. Yet, there has been little research focused on understanding how stormwater management affects ecosystem services, the benefits that ecosystems provide to humans. Garnering more knowledge of the changes to ecosystem services from stormwater management will ultimately improve management and decision-making. The objective of this research is to review and synthesize published literature on 1) ecosystem services and stormwater management and 2) changes in ecosystem services from anthropogenic impacts and climate warming, to establish a foundation for research at the intersection of ecosystems services, stormwater management, and global environmental change. We outline four research areas for ecosystem services and stormwater management that should be further explored. These four areas, named after the four types of ecosystem services, highlight context-specific research questions and human and climate change effects. We conclude that effective and sustainable stormwater management requires incorporating engineering, social, and environmental criteria to quantify benefits of provisioning, regulating, cultural, and supporting ecosystem services. Lastly, improved current and potential stormwater management policy may better support sustainable stormwater methods at the institutional level. Stormwater quality and monitoring could be improved through the use of the Clean Water Act (e.g. Total Maximum Daily Loads), the Endangered Species Act, and public health measures. Additional policies regulating groundwater quantity and quality have been and may continue to be implemented by states, encouraging sustainable and cleaner stormwater practices.

  1. Anticipated water quality changes in response to climate change and potential consequences for inland fishes

    USGS Publications Warehouse

    Chen, Yushun; Todd, Andrew S.; Murphy, Margaret H.; Lomnicky, Gregg

    2016-01-01

    Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Changes anticipated with climate change in the future are likely to have a profound effect on inland aquatic ecosystems through diverse pathways, including changes in water quality. In this brief article, we present an initial discussion of several of the water quality responses that can be anticipated to occur within inland water bodies with climate change and how those changes are likely to impact fishes.

  2. Discontinuities, cross-scale patterns, and the organization of ecosystems

    USGS Publications Warehouse

    Nash, Kirsty L.; Allen, Craig R.; Angeler, David G.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Knutson, Melinda; Nelson, R. John; Nystrom, Magnus; Stow, Craig A.; Sandstrom, Shana M.

    2014-01-01

    Ecological structures and processes occur at specific spatiotemporal scales, and interactions that occur across multiple scales mediate scale-specific (e.g., individual, community, local, or regional) responses to disturbance. Despite the importance of scale, explicitly incorporating a multi-scale perspective into research and management actions remains a challenge. The discontinuity hypothesis provides a fertile avenue for addressing this problem by linking measureable proxies to inherent scales of structure within ecosystems. Here we outline the conceptual framework underlying discontinuities and review the evidence supporting the discontinuity hypothesis in ecological systems. Next we explore the utility of this approach for understanding cross-scale patterns and the organization of ecosystems by describing recent advances for examining nonlinear responses to disturbance and phenomena such as extinctions, invasions, and resilience. To stimulate new research, we present methods for performing discontinuity analysis, detail outstanding knowledge gaps, and discuss potential approaches for addressing these gaps.

  3. Role of the noise on the transient dynamics of an ecosystem of interacting species

    NASA Astrophysics Data System (ADS)

    Spagnolo, B.; La Barbera, A.

    2002-11-01

    We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.

  4. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems

    NASA Astrophysics Data System (ADS)

    Moritz, Max A.; Moody, Tadashi J.; Krawchuk, Meg A.; Hughes, Mimi; Hall, Alex

    2010-02-01

    Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean-climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high-resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long-term urban development on fire-prone landscapes.

  5. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    USGS Publications Warehouse

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2017-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  6. Seasonality of semi-arid and savanna-type ecosystems in an Earth system model

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.

    2016-12-01

    Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.

  7. A collaborative characterization of North American grasslands and rangelands: climate, ecohydrology and carbon sink-source dynamics

    NASA Astrophysics Data System (ADS)

    Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.

    2013-12-01

    Grassland and rangeland ecoregions extend across the North American continent and exhibit diversity in climate, ecosystem services, and biophysical processes. In many grasslands and rangelands, the potential for reductions in ecosystem services and for large-scale ecosystem state change may increase under future climate scenarios. Climate change projections for North America vary, however, and the way changing climate will influence specific ecoregions is largely unknown. To better understand the regional effects of climate change on grasslands and rangelands, it is important to better understand the biophysical characteristics of these systems locally, and to identify the sensitivity of these characteristics to observed climate variation. In our study, we propose to use eddy covariance, soil moisture and precipitation data to identify how the grasslands and rangelands of North America differ in their responses to climate variability through time, with specific focus on the active growing season. Our primary goal is to determine the sensitivity of ecosystem Net Primary Productivity [NPP] to variation in temperature and precipitation patterns, and classify North American grasslands and rangelands by these sensitivities in addition to more standard climate and productivity variables. Our preliminary analyses in mesic, semiarid and arid grasslands in Kansas, Colorado and New Mexico show significant (P < 0.05) differences in climate, carbon sink strength and growing season length, and suggest that patterns of seasonal productivity and precipitation sensitivity may elucidate important grassland and rangeland responses to changing climate. Using change in Gross Primary Productivity (GPP) as an indicator of the onset of photosynthesis in spring and of senescense in the fall, grassland and rangeland ecosystems in Kansas (top and bottom left panels) and New Mexico (bottom right panel) display differing patterns of activity throughout the year.

  8. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  9. Comparing pristine and depleted ecosystems: The Sørfjord, Norway versus the Gulf of St. Lawrence, Canada. Effects of intense fisheries on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Morissette, Lyne; Pedersen, Torstein; Nilsen, Marianne

    2009-04-01

    The Sørfjord, Norway, and the Gulf of St. Lawrence, Canada, are two sub-arctic ecosystems with similar trophic structure. However, in the Gulf of St. Lawrence, severe exploitation of groundfish stocks has lead to important shifts in the trophic structure. In the Sørfjord, the situation is different: fishing pressure is much lighter. Our hypothesis is that overexploitation leads to changes in the trophic structure and severely alters the resilience of ecosystems. Based on the same modelling approach ( Ecopath with Ecosim) the food web structure was compared, using different ecosystem indicators. Patterns of food web structure and trophodynamics were contrasted. Cod was the keystone species in both ecosystems, and forage fish were also important. Even after similar environmental changes in both ecosystems, and after a reduction of fishing pressure in the Gulf of St. Lawrence, there is no recovery of cod stocks in this ecosystem. In the Sørfjord, after different perturbations (but not from the fishery), the ecosystem seems to return to its equilibrium.

  10. Evaluating simulated functional trait patterns and quantifying modelled trait diversity effects on simulated ecosystem fluxes

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Schimel, D.

    2014-12-01

    Dynamic Global Vegetation Models (DGVMs) typically employ only a small set of Plant Functional Types (PFTs) to represent the vast diversity of observed vegetation forms and functioning. There is growing evidence, however, that this abstraction may not adequately represent the observed variation in plant functional traits, which is thought to play an important role for many ecosystem functions and for ecosystem resilience to environmental change. The geographic distribution of PFTs in these models is also often based on empirical relationships between present-day climate and vegetation patterns. Projections of future climate change, however, point toward the possibility of novel regional climates, which could lead to no-analog vegetation compositions incompatible with the PFT paradigm. Here, we present results from the Jena Diversity-DGVM (JeDi-DGVM), a novel traits-based vegetation model, which simulates a large number of hypothetical plant growth strategies constrained by functional tradeoffs, thereby allowing for a more flexible temporal and spatial representation of the terrestrial biosphere. First, we compare simulated present-day geographical patterns of functional traits with empirical trait observations (in-situ and from airborne imaging spectroscopy). The observed trait patterns are then used to improve the tradeoff parameterizations of JeDi-DGVM. Finally, focusing primarily on the simulated leaf traits, we run the model with various amounts of trait diversity. We quantify the effects of these modeled biodiversity manipulations on simulated ecosystem fluxes and stocks for both present-day conditions and transient climate change scenarios. The simulation results reveal that the coarse treatment of plant functional traits by current PFT-based vegetation models may contribute substantial uncertainty regarding carbon-climate feedbacks. Further development of trait-based models and further investment in global in-situ and spectroscopic plant trait observations are needed.

  11. Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change.

    PubMed

    Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A

    2015-08-01

    Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. © 2015 John Wiley & Sons Ltd.

  12. EMDS 3.0: A modeling framework for coping with complexity in environmental assessment and planning.

    Treesearch

    K.M. Reynolds

    2006-01-01

    EMDS 3.0 is implemented as an ArcMap® extension and integrates the logic engine of NetWeaver® to perform landscape evaluations, and the decision modeling engine of Criterium DecisionPlus® for evaluating management priorities. Key features of the system's evaluation component include abilities to (1) reason about large, abstract, multifaceted ecosystem management...

  13. Multi-Ecosystem Assessment of Mercury Bioaccumulation in Fishes: Habitat, Landscape, and Biogeochemical Drivers of Fish Mercury

    NASA Astrophysics Data System (ADS)

    Eagles-Smith, C.; Ackerman, J.; Herring, G.; Willacker, J.; Flanagan, C.

    2014-12-01

    Mercury (Hg) is a globally distributed contaminant that threatens ecosystem health across aquatic environments. The complexity of the Hg cycle and its primary drivers, coupled with dynamic food web processes that govern biomagnification, result in marked spatial variability in Hg bioaccumulation across aquatic ecosystems. However, it is unclear if patterns of bioaccumulation are consistent in magnitude and direction across ecosystem types. We synthesized data from several studies spanning more than 200 individual sites, comprising four distinct ecosystem classifications (estuaries, sub-alpine lakes, rivers, and managed wetlands). Within each ecosystem, we compared fish Hg concentrations among replicated sub-habitats and also evaluated the influence of land use, landscape composition, and biogeochemical drivers on fish Hg concentrations. We found substantial variability in fish Hg concentrations among adjacent sub-habitats within ecosystems. In estuarine environments, fish Hg concentrations were 7.4x higher in seasonal-saline wetlands than adjacent tidal wetland habitats. In riverine alcoves, preliminary data suggest that fish Hg concentrations were 1.5x higher than in fishes from paired mainstem river habitat. Among managed wetland habitats, fish Hg concentrations in rice fields were 2x higher than those in managed seasonal wetlands that were subjected to identical wetting and drying patterns. Across ecosystems, dissolved organic carbon (DOC) concentrations in surface waters were consistently correlated with fish Hg concentrations, highlighting its importance in Hg methylation and transport processes. Yet, the strength and direction of the relationships varied among habitat types. For example, fish Hg concentrations were positively correlated with DOC concentrations in riverine environments, whereas we found a negative correlation in alpine lakes. Instead, the most important determinant of fish Hg concentrations in alpine lakes was conifer tree density within a lake's catchment, resulting in a 4x increase in fish Hg concentration in lakes with the lowest to the highest catchment conifer tree density. Together, this integrated ecosystem analysis highlights the importance of understanding small-scale variation in bioaccumulation processes in order to better predict Hg risk.

  14. Downed Wood in micronesian mangrove Forests

    Treesearch

    James A. Allen; Katherine C. Ewel; Bobby D. Keeland; Tara Tara; Thomas J. Smith

    2000-01-01

    Dead, downed wood is an important component of upland forest and aquatic ecosystems, but its role in wetland ecosystems, including mangroves, is poorly understood. We measured downed wood in ten sites on the western Pacific islands of Kosrae, Pohnpei, and Yap, all located within the Federated States of Micronesia. Our goals were to examine patterns of variability in...

  15. Historical wildfire impacts on ponderosa pine tree overstories: An Arizona case study

    Treesearch

    Peter F. Ffolliott; Cody L. Stropki; Daniel G. Neary

    2008-01-01

    The Rodeo-Chediski Wildfire--the largest in Arizona's history--damaged or destroyed ecosystem resources and disrupted ecosystem functioning in a largely mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of this wildfire on tree overstories were studied for 5 years (2002 to 2007) on two watersheds...

  16. North American forest disturbance mapped from a decadal Landsat record

    Treesearch

    Jeffrey G. Masek; Chengquan Huang; Robert Wolfe; Warren Cohen; Forrest Hall; Jonathan Kutler; Peder Nelson

    2008-01-01

    Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for the United States and Canada for the period 1990-...

  17. Impact of soil moisture deficit on ecosystem function across the United States

    Treesearch

    Susan Moran; Morgan Ross; Mallory Burns

    2016-01-01

    The cumulative effect of recent prolonged warm drought on regional ecosystem function is still uncertain. Large regions of the United States are experiencing new hydroclimatic conditions with extreme variability in climate drivers such as total precipitation, precipitation patterns (e.g., storm size, intensity and frequency), and seasonal temperatures.

  18. Lynx conservation in an ecosystem management context [Chapter 15

    Treesearch

    Kevin S. McKelvey; Keith B. Aubry; James K. Agee; Steven W. Buskirk; Leonard F. Ruggiero; Gary M. Koehler

    2000-01-01

    In an ecosystem management context, management for lynx must occur in the context of the needs of other species, watershed health, and a variety of products, outputs, and uses. This chapter presents a management model based on the restoration of historical patterns and processes. We argue that this model is sustainable in a formal sense, practical, and likely...

  19. Initial responses of forest understories to varying levels and patterns of green-tree retention.

    Treesearch

    Charles B. Halpern; Donald McKenzie; Shelley A. Evans; Douglas A. Maguire

    2005-01-01

    Timber harvest with "green-tree" retention has been adopted in many temperate and boreal forest ecosystems, reflecting growing appreciation for the ecological values of managed forests. On federal forest lands in the Pacific Northwest, standards and guidelines for green-tree retention have been adopted, but systematic assessments of ecosystem response have...

  20. PATTERNS OF SOIL ORGANIC MATTER STABILIZATION IN A TRANSECT OF MATURE FORESTS IN THE PACIFIC NORTHWEST USA

    EPA Science Inventory

    Ecosystem soils influence the cycling of nutrients, movement and storage of water, and serve as an important global reservoir of carbon (C). The accumulation and storage of C in soils is a major factor in the global C cycle and is crucial for sustaining ecosystem health and func...

  1. Temporal Dynamics in Soil Oxygen and Greenhouse Gases in Two Humid Tropical Forests

    Treesearch

    Daniel Liptzin; Whendee L. Silver; Matteo Detto

    2011-01-01

    Soil redox plays a key role in regulating biogeochemical transformations in terrestrial ecosystems, but the temporal and spatial patterns in redox and associated controls within and across ecosystems are poorly understood. Upland humid tropical forest soils may be particularly prone to fluctuating redox as abundant rainfall limits oxygen (O2) diffusion through finely...

  2. Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds

    Treesearch

    Matthew P. Miller; Elizabeth W. Boyer; Diane M. McKnight; Michael G. Brown; Rachel S. Gabor; Carolyn Hunsaker; Lidiia Iavorivska; Shreeram Inamdar; Dale W. Johnson; Louis A. Kaplan; Henry Lin; William H. McDowell; Julia N. Perdrial

    2016-01-01

    The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in...

  3. Observations of bird numbers and species following a historic wildfire in Arizona ponderosa pine forests

    Treesearch

    Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2009-01-01

    The Rodeo-Chediski Wildfire, the largest in Arizona's history, damaged or destroyed ecosystem resources or disrupted ecosystem functioning in a mostly mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of the wildfire on the occurrence of birds and their diversities were studied on...

  4. Regional patterns of major nonnative invasive plants and associated factors in upper Midwest forests

    Treesearch

    Zhaofei Fan; W. Keith Moser; Mark H. Hansen; Mark D. Nelson

    2013-01-01

    Nonnative invasive plants (IPs) are rapidly spreading into natural ecosystems (e.g., forests and grasslands). Potential threats of IP invasion into natural ecosystems include biodiversity loss, structural and environmental change, habitat degradation, and economic losses. The Upper Midwest of the United States encompasses the states of Illinois, Indiana, Iowa, Michigan...

  5. Are Madrean ecosystems approaching tipping points? Anticipating interactions of landscape disturbance and climate change

    Treesearch

    Donald A. Falk

    2013-01-01

    Contemporary climate change is driving transitions in many Madrean ecosystems, but the time scale of these changes is accelerated greatly by severe landscape disturbances such as wildfires and insect outbreaks. Landscape-scale disturbance events such as wildfires interact with prior disturbance patterns and landscape structure to catalyze abrupt transitions to novel...

  6. A geomorphic perspective on terrain-modulated organization of vegetation productivity: Analysis in two semiarid grassland ecosystems in Southwestern United States

    USDA-ARS?s Scientific Manuscript database

    Spatial patterns of ecosystem productivity arise from the terrain-modulated wetting and drying of the landscape. Using a daily relative greenness (rG) index we explore the relations between spatial variability of plant productivity and landscape morphology, and how these relations change over time...

  7. Legacies of Lead in Charm City's Soil: Lessons from the Baltimore Ecosystem Study

    Treesearch

    Kirsten Schwarz; Richard Pouyat; Ian Yesilonis

    2016-01-01

    Understanding the spatial distribution of soil lead has been a focus of the Baltimore Ecosystem Study since its inception in 1997. Through multiple research projects that span spatial scales and use different methodologies, three overarching patterns have been identified: (1) soil lead concentrations often exceed state and federal regulatory limits; (2) the variability...

  8. Microbial ecology of deep-water mid-Atlantic canyons

    USGS Publications Warehouse

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  9. How to Make Our Models More Physically-based

    NASA Astrophysics Data System (ADS)

    Savenije, H. H. G.

    2016-12-01

    Models that are generally called "physically-based" unfortunately only have a partial view of the physical processes at play in hydrology. Although the coupled partial differential equations in these models reflect the water balance equations and the flow descriptors at laboratory scale, they miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem (and sometimes people). What these agents do is manipulate the substrate in a way that it supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, in agreement with the landscape, and in response to climatic drivers. In brief, our hydrological system is alive and has a strong capacity to adjust to prevailing and changing circumstances. Although most physically based models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian thinking on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. If this active agent is not reflected in our models, then they miss essential physics. Through a Darwinian approach, we can determine the root zone storage capacity of ecosystems, as a crucial component of hydrological models, determining the partitioning of fluxes and the conservation of moisture to bridge periods of drought. Another crucial element of physical systems is the evolution of drainage patterns, both on and below the surface. On the surface, such patterns facilitate infiltration or surface drainage with minimal erosion; in the unsaturated zone, patterns facilitate efficient replenishment of moisture deficits and preferential drainage when there is excess moisture; in the groundwater, patterns facilitate the efficient and gradual drainage of groundwater, resulting in linear reservoir recession. Models that do not incorporate these patterns are not physical. The parameters in the equations may be adjusted to compensate for the lake of patterns, but this involves scale-dependent calibration. In contrast to what is widely believed, relatively simple conceptual models can accommodate these physical processes accurately and very efficiently.

  10. Soil fauna, soil properties and geo-ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.

    2012-04-01

    The impact of soil fauna on soil processes is of utmost importance, as the activity of soil fauna directly affects soil quality. This is expressed by the direct effects of soil fauna on soil physical and soil chemical properties that not only have great importance to food production and ecosystems services, but also on weathering and hydrological and geomorphological processes. Soil animals can be perceived as ecosystem engineers that directly affect the flow of water, sediments and nutrients through terrestrial ecosystems. The biodiversity of animals living in the soil is huge and shows a huge range in size, functions and effects. Most work has been focused on only a few species such as earthworms and termites, but in general the knowledge on the effect of soil biota on soil ecosystem functioning is limited as it is for their impact on processes in the soil and on the soil surface. In this presentation we would like to review some of the impacts of soil fauna on soil properties that have implications for geo-ecosystem functioning and soil formation processes.

  11. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations.

    PubMed

    Phillippi, Julie A; Miller, Eric; Weiss, Lee; Huard, Johnny; Waggoner, Alan; Campbell, Phil

    2008-01-01

    In vivo, growth factors exist both as soluble and as solid-phase molecules, immobilized to cell surfaces and within the extracellular matrix. We used this rationale to develop more biologically relevant approaches to study stem cell behaviors. We engineered stem cell microenvironments using inkjet bioprinting technology to create spatially defined patterns of immobilized growth factors. Using this approach, we engineered cell fate toward the osteogenic lineage in register to printed patterns of bone morphogenetic protein (BMP) 2 contained within a population of primary muscle-derived stem cells (MDSCs) isolated from adult mice. This patterning approach was conducive to patterning the MDSCs into subpopulations of osteogenic or myogenic cells simultaneously on the same chip. When cells were cultured under myogenic conditions on BMP-2 patterns, cells on pattern differentiated toward the osteogenic lineage, whereas cells off pattern differentiated toward the myogenic lineage. Time-lapse microscopy was used to visualize the formation of multinucleated myotubes, and immunocytochemistry was used to demonstrate expression of myosin heavy chain (fast) in cells off BMP-2 pattern. This work provides proof-of-concept for engineering spatially controlled multilineage differentiation of stem cells using patterns of immobilized growth factors. This approach may be useful for understanding cell behaviors to immobilized biological patterns and could have potential applications for regenerative medicine.

  12. Fire as an ecosystem process: Chapter 3

    USGS Publications Warehouse

    Keeley, Jon E.; Safford, Hugh D.; Mooney, Harold A.; Zavaleta, Erika S.

    2016-01-01

    This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

  13. The metabolic regimes of flowing waters

    USGS Publications Warehouse

    Bernhardt, Emily S.; Heffernan, Jim B.; Grimm, Nancy B.; Stanley, Emily H.; Harvey, Judson; Arroita, M.; Appling, Alison; Cohen, M.J.; McDowell, William H.; Hall, R.O.; Read, Jordan S.; Roberts, B.J.; Stets, Edward; Yackulic, Charles B.

    2018-01-01

    The processes and biomass that characterize any ecosystem are fundamentally constrained by the total amount of energy that is either fixed within or delivered across its boundaries. Ultimately, ecosystems may be understood and classified by their rates of total and net productivity and by the seasonal patterns of photosynthesis and respiration. Such understanding is well developed for terrestrial and lentic ecosystems but our understanding of ecosystem phenology has lagged well behind for rivers. The proliferation of reliable and inexpensive sensors for monitoring dissolved oxygen and carbon dioxide is underpinning a revolution in our understanding of the ecosystem energetics of rivers. Here, we synthesize our current understanding of the drivers and constraints on river metabolism, and set out a research agenda aimed at characterizing, classifying and modeling the current and future metabolic regimes of flowing waters.

  14. A review of research on ecosystem of arid area using RS-GIS in China

    NASA Astrophysics Data System (ADS)

    Han, Hongling

    2007-06-01

    Arid area is classical mountain-oasis-desert ecosystem in North-west China. As the ecosystem has its nature geography character obviously, it has superior to research with remote-sensing and geography information system. The study on arid ecosystem in RS-GIS' way is focused on that the landscape spatial pattern of complex MODS ecosystem, the dynamic development of Land use/land cover, the security of ecological environment of eco-tone and so on. At the same time, the research on the single system is more and more, which has provided more ways and deeper fields of arid area using RS-GIS. Through the use of RS-GIS, desertification, oasis' development, urbanization etc. can be known, which would provide precaution for human-being and suitable ways to adjust the problems.

  15. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  16. Turbomachinery noise studies of the AiResearch QCGAT engine with inflow control

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Homyak, L.; Chrulski, D. D.

    1981-01-01

    The AiResearch Quiet Clean General Aviation Turbofan engine was tested on an outdoor test stand to compare the acoustic performance of two inflow control devices (ICD's) of similar design, and three inlet lips of different external shape. Only small performance differences were found. Far-field directivity patterns calculated by applicable existing analyses were compared with the measured tone and broadband patterns. For some of these comparisons, tests were made with an ICD to reduce rotor/inflow disturbance interaction noise, or with the acoustic suppression panels in the inlet or bypass duct covered with aluminum tape to determine hard wall acoustic performance. The comparisons showed that the analytical expressions used predict many directivity pattern features and trends, but can deviate in shape from the measured patterns under certain engine operating conditions. Some patterns showed lobes from modes attributable to rotor/engine strut interaction sources.

  17. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China.

    PubMed

    Xiao, Yang; Xiao, Qiang

    2018-03-29

    Because natural ecosystems and ecosystem services (ES) are both critical to the well-being of humankind, it is important to understand their relationships and congruence for conservation planning. Spatial conservation planning is required to set focused preservation priorities and to assess future ecological implications. This study uses the combined measures of ES models and ES potential to estimate and analyze all four groups of ecosystem services to generate opportunities to maximize ecosystem services. Subsequently, we identify the key areas of conservation priorities as future forestation and conservation hotspot zones to improve the ecological management in Chongqing City, located in the upper reaches of the Three Gorges Reservoir Area, China. Results show that ecosystem services potential is extremely obvious. Compared to ecosystem services from 2000, we determined that soil conservation could be increased by 59.11%, carbon sequestration by 129.51%, water flow regulation by 83.42%, and water purification by 84.42%. According to our prioritization results, approximately 48% of area converted to forests exhibited high improvements in all ecosystem services (categorized as hotspot-1, hotspot-2, and hotspot-3). The hotspots identified in this study can be used as an excellent surrogate for evaluation ecological engineering benefits and can be effectively applied in improving ecological management planning.

  18. Small birds, big effects: the little auk (Alle alle) transforms high Arctic ecosystems.

    PubMed

    González-Bergonzoni, Ivan; Johansen, Kasper L; Mosbech, Anders; Landkildehus, Frank; Jeppesen, Erik; Davidson, Thomas A

    2017-02-22

    In some arctic areas, marine-derived nutrients (MDN) resulting from fish migrations fuel freshwater and terrestrial ecosystems, increasing primary production and biodiversity. Less is known, however, about the role of seabird-MDN in shaping ecosystems. Here, we examine how the most abundant seabird in the North Atlantic, the little auk ( Alle alle ), alters freshwater and terrestrial ecosystems around the North Water Polynya (NOW) in Greenland. We compare stable isotope ratios ( δ 15 N and δ 13 C) of freshwater and terrestrial biota, terrestrial vegetation indices and physical-chemical properties, productivity and community structure of fresh waters in catchments with and without little auk colonies. The presence of colonies profoundly alters freshwater and terrestrial ecosystems by providing nutrients and massively enhancing primary production. Based on elevated δ 15 N in MDN, we estimate that MDN fuels more than 85% of terrestrial and aquatic biomass in bird influenced systems. Furthermore, by using different proxies of bird impact (colony distance, algal δ 15 N) it is possible to identify a gradient in ecosystem response to increasing bird impact. Little auk impact acidifies the freshwater systems, reducing taxonomic richness of macroinvertebrates and truncating food webs. These results demonstrate that the little auk acts as an ecosystem engineer, transforming ecosystems across a vast region of Northwest Greenland. © 2017 The Author(s).

  19. Small birds, big effects: the little auk (Alle alle) transforms high Arctic ecosystems

    PubMed Central

    Johansen, Kasper L.; Mosbech, Anders; Landkildehus, Frank; Jeppesen, Erik; Davidson, Thomas A.

    2017-01-01

    In some arctic areas, marine-derived nutrients (MDN) resulting from fish migrations fuel freshwater and terrestrial ecosystems, increasing primary production and biodiversity. Less is known, however, about the role of seabird-MDN in shaping ecosystems. Here, we examine how the most abundant seabird in the North Atlantic, the little auk (Alle alle), alters freshwater and terrestrial ecosystems around the North Water Polynya (NOW) in Greenland. We compare stable isotope ratios (δ15N and δ13C) of freshwater and terrestrial biota, terrestrial vegetation indices and physical–chemical properties, productivity and community structure of fresh waters in catchments with and without little auk colonies. The presence of colonies profoundly alters freshwater and terrestrial ecosystems by providing nutrients and massively enhancing primary production. Based on elevated δ15N in MDN, we estimate that MDN fuels more than 85% of terrestrial and aquatic biomass in bird influenced systems. Furthermore, by using different proxies of bird impact (colony distance, algal δ15N) it is possible to identify a gradient in ecosystem response to increasing bird impact. Little auk impact acidifies the freshwater systems, reducing taxonomic richness of macroinvertebrates and truncating food webs. These results demonstrate that the little auk acts as an ecosystem engineer, transforming ecosystems across a vast region of Northwest Greenland. PMID:28202811

  20. Crab regulation of cross-ecosystem resource transfer by marine foraging fire ants.

    PubMed

    Garcia, Erica A; Bertness, Mark D; Alberti, Juan; Silliman, Brian R

    2011-08-01

    Permeability of boundaries in biological systems is regulated by biotic and/or abiotic factors. Despite this knowledge, the role of biotic factors in regulating resource transfer across ecosystem boundaries has received little study. Additionally, little is known about how cross-ecosystem resource transfer affects source populations. We used experiments, observations and stable isotopes, to evaluate: (1) the proportion of intertidal-foraging black fire ant (Solenopsis richteri) diet derived from marine sources, (2) how black fire ant cross-ecosystem resource transfer is altered by the dominant bioengineer in the intertidal, a burrowing crab (Neohelice granulata), (3) the top-down impact of these terrestrial ants on a marine resource, and (4) the effect of marine resources on recipient black fire ants. We found that more than 85% of the black fire ant diet is derived from marine sources, the number of intertidal foraging ants doubles in the absence of crab burrows, and that ants cause a 50% reduction in intertidal polychaetes. Also, ant mound density is three times greater adjacent to marine systems. This study reveals that cross-ecosystem foraging terrestrial ants can clearly have strong impacts on marine resources. Furthermore, ecosystem engineers that modify and occupy habitat in these ecosystem boundaries can strongly regulate the degree of cross-ecosystem resource transfer and resultant top down impacts.

  1. The contribution of bacterial genome engineering to sustainable development.

    PubMed

    Reuß, Daniel R; Commichau, Fabian M; Stülke, Jörg

    2017-09-01

    The United Nations' Sustainable Development Goals define important challenges for the prosperous development of mankind. To reach several of these goals, among them the production of value-added compounds, improved economic and ecologic balance of production processes, prevention of climate change and protection of ecosystems, the use of engineered bacteria can make valuable contributions. We discuss the strategies for genome engineering and how they can be applied to meet the United Nations' goals for sustainable development. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Ship canals and aquatic ecosystems

    USGS Publications Warehouse

    Aron, William I.; Smith, Stanford H.

    1971-01-01

    Through a combination of ecosystem homeostasis and the perversity of man and nature, oftentimes the significant biological changes effected by environmental modifications are not detected until long after the initial change has taken place. The immediate impact, which may range from the spectacular to the undetectable, is a deceptive measure of the long-term and often more important changes in the ecosystem. Two major engineering achievements illustrate this premise: (i) construction of the Erie Canal, which provided access from the Atlantic Ocean to the Great Lakes, and the Welland Canal, which bypasses the block between Lakes Ontario and Erie created by Niagara Falls (Fig. 1), and (ii) construction of the Suez Canal between the Red Sea and the Mediterranean Sea.

  3. Spatial patterns of ecohydrologic properties on a hillslope-alluvial fan transect, central New Mexico

    USGS Publications Warehouse

    Bedford, D.R.; Small, E.E.

    2008-01-01

    Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.

  4. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania.

    PubMed

    Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian

    2015-12-01

    The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores.

  5. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania

    PubMed Central

    Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian

    2015-01-01

    The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores. PMID:26620189

  6. [Research progress in water use efficiency of plants under global climate change].

    PubMed

    Wang, Qing-wei; Yu, Da-pao; Dai, Li-min; Zhou, Li; Zhou, Wang-ming; Qi, Guang; Qi, Lin; Ye, Yu-jing

    2010-12-01

    Global climate change is one of the most concerned environmental problems in the world since the 1980s, giving significant effects on the plant productivity and the water transport and use patterns. These effects would be reflected in the water use efficiency (WUE) of individual plants, communities, and ecosystems, and ultimately, in the vegetation distribution pattern, species composition, and ecosystem structure. To study the WUE of plants would help to the understanding and forecasting of the responses of terrestrial vegetation to global climate change, and to the adoption of adaptive strategies. This paper introduced the concept of plant WUE and the corresponding measurement techniques at the scales of leaf, individual plant, community, and ecosystem, and reviewed the research progress in the effects of important climatic factors such as elevated atmospheric CO2 concentration, precipitation pattern, nitrogen deposition, and their combination on the plant WUE, as well as the variation characteristics of plant WUE and the adaptive survival strategies of plants under different site conditions. Some problems related to plant WUE research were pointed out, and the future research directions in the context of global climate change were prospected.

  7. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania

    NASA Astrophysics Data System (ADS)

    Ciobanu, Marcel; Popovici, Iuliana; Zhao, Jie; Stoica, Ilie-Adrian

    2015-12-01

    The percentage compositions of soil herbivorous, bacterivorous and fungivorous nematodes in forests, grasslands and scrubs in Romania was analysed. Percentages of nematode abundance, biomass and metabolic footprint methods were used to evaluate the patterns and relative size of herbivory, bacterial- and fungal-mediated channels in organic and mineral soil horizons. Patterns and magnitudes of herbivore, bacterivore and fungivore energy pathways differed for a given ecosystem type and soil depth according to the method used. The relevance of herbivore energy channel increased with soil depth due to higher contribution of root-feeders. Ectoparasites, sedentary parasites and epidermal cell and root hair feeders were the most important contributors to the total biomass and metabolic footprints of herbivores. Metabolic footprint method revealed the general dominance of bacterial-based energy channel in all five types of ecosystems. The influence of altitude and climatic factors on percentages of abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores decreased with soil depth, whereas the influence of humus content, cation-exchange capacity and base saturation increased. Vegetation, altitude, climate and soil physico-chemical characteristics are important factors that influenced the abundance, biomass and metabolic footprints of herbivores, bacterivores and fungivores.

  8. Space Biology: Patterns of Life

    ERIC Educational Resources Information Center

    Salisbury, Frank B.

    1971-01-01

    Present knowledge about Mars is compared with past beliefs about the planet. Biological experiments that indicate life may exist on Mars are interpreted. Life patterns or biological features that might be postulated for extraterrestrial life are presented at the molecular, cellular, organism, and ecosystem levels. (DS)

  9. Extreme precipitation patterns reduced terrestrial ecosystem production across biomass

    USDA-ARS?s Scientific Manuscript database

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated ...

  10. Intertidal habitat utilization patterns of birds in a Northeast Pacific estuary

    EPA Science Inventory

    A habitat-based framework is a practical method for developing models (or, ecological production functions, EPFs) to describe the spatial distribution of ecosystem services. To generate EPFs for Yaquina estuary, Oregon, USA, we compared bird use patterns among intertidal habitats...

  11. Soil respiration patterns and controls in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Hui, Dafeng

    2015-01-01

    Soil depth, SOM, and vegetation cover were important drivers of Rs in limestone cedar glades. Seasonal Rs patterns reflected those for mesic temperate grasslands more than for semi-arid ecosystems, in that Rs primarily tracked temperature for most of the year.

  12. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    USGS Publications Warehouse

    Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.

  13. Toxicity of Engineered Nanoparticles in the Environment

    PubMed Central

    Maurer-Jones, Melissa A.; Gunsolus, Ian L.; Murphy, Catherine J.; Haynes, Christy L.

    2014-01-01

    While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address. PMID:23427995

  14. Toxicity of engineered nanoparticles in the environment.

    PubMed

    Maurer-Jones, Melissa A; Gunsolus, Ian L; Murphy, Catherine J; Haynes, Christy L

    2013-03-19

    While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address.

  15. Synthetic circuit designs for earth terraformation.

    PubMed

    Solé, Ricard V; Montañez, Raúl; Duran-Nebreda, Salva

    2015-07-18

    Mounting evidence indicates that our planet might experience runaway effects associated to rising temperatures and ecosystem overexploitation, leading to catastrophic shifts on short time scales. Remediation scenarios capable of counterbalancing these effects involve geoengineering, sustainable practices and carbon sequestration, among others. None of these scenarios seems powerful enough to achieve the desired restoration of safe boundaries. We hypothesize that synthetic organisms with the appropriate engineering design could be used to safely prevent declines in some stressed ecosystems and help improving carbon sequestration. Such schemes would include engineering mutualistic dependencies preventing undesired evolutionary processes. We hypothesize that some particular design principles introduce unescapable constraints to the engineered organisms that act as effective firewalls. Testing this designed organisms can be achieved by using controlled bioreactor models, with single and heterogeneous populations, and accurate computational models including different scales (from genetic constructs and metabolic pathways to population dynamics). Our hypothesis heads towards a future anthropogenic action that should effectively act as Terraforming processes. It also implies a major challenge in the existing biosafety policies, since we suggest release of modified organisms as potentially necessary strategy for success.

  16. Reverse and forward engineering of protein pattern formation.

    PubMed

    Kretschmer, Simon; Harrington, Leon; Schwille, Petra

    2018-05-26

    Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Escherichia coli Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  17. Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia

    NASA Astrophysics Data System (ADS)

    Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry

    2017-04-01

    Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes with banded vegetation patterns show evidence of higher resilience. We will also present some preliminary modelling results that complement this analysis and capture the coevolution of vegetation and landforms (erosion), leading to this type of threshold behaviour.

  18. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.

    PubMed

    Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast.

  19. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai-Tibetan Plateau.

    PubMed

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched.

  20. Divergent patterns of experimental and model derived variables of tundra ecosystem carbon exchange in response to arctic warming

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.

    2017-12-01

    Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.

  1. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai–Tibetan Plateau

    PubMed Central

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai–Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched. PMID:26147223

  2. Land management influences trade-offs and the total supply of ecosystem services in alpine grassland in Tibet, China.

    PubMed

    Wu, Junxi; Zhao, Yan; Yu, Chengqun; Luo, Liming; Pan, Ying

    2017-05-15

    Developing sustainable use patterns for alpine grassland in Tibet is the primary challenge related to conserving these vulnerable ecosystems of the 'world's third pole' and guaranteeing the well-being of local inhabitants. This challenge requires researchers to think beyond the methods of most current studies that are limited to a single aspect of conservation or productivity, and focus on balancing various needs. An analysis of trade-offs involving ecosystem services provides a framework that can be used to quantify the type of balancing needed. In this study, we measured variations in four types of ecosystem services under five types of grassland management including grazing exclusion, sowing, combined plowing and grazing exclusion, combined plowing and sowing, and natural grassland, from 2013 to 2015. In addition, we accessed the existence and changing patterns of ecosystem service trade-offs using Spearman coefficients and a trade-off index. The results revealed the existence of trade-offs among provisioning and regulating services. Plowing and sowing could convert the trade-off relationships into synergies immediately. Grazing exclusion reduced the level of trade-offs gradually over time. Thus, the combined plowing and sowing treatment promoted the total supply of multiple ecosystem services when compared with natural grassland. We argue that the variations in dry matter allocation to above- and belowground serve as one cause of the variation in trade-off relationships. Another cause for variation in trade-offs is the varied species competition between selection effects and niche complementarity. Our study provides empirical evidence that the effects of trade-offs among ecosystem services could be reduced and even converted into synergies by optimizing management techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario.

    PubMed

    Busch, G; Lammel, G; Beese, F O; Feichter, J; Dentener, F J; Roelofs, G J

    2001-01-01

    A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.

  4. Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

    PubMed Central

    Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.

    2012-01-01

    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440

  5. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{submore » 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.« less

  6. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    PubMed

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.

  7. Regional Scale Prioritisation for Key Ecosystem Services, Renewable Energy Production and Urban Development

    PubMed Central

    Casalegno, Stefano; Bennie, Jonathan J.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services. PMID:25250775

  8. [Constructing ecological security patterns in mountain areas based on geological disaster sensitivity: A case study in Yuxi City, Yunnan Province, China.

    PubMed

    Peng, Jian; Guo, Xiao Nan; Hu, Yi Na; Liu, Yan Xu

    2017-02-01

    As one of the key topics in the research of landscape ecology, regional ecological security patterns can effectively promote regional sustainable development and terrestrial ecological barriers construction. It is extremely important for middle Yunnan, with frequent disasters and fragile ecolo-gical environment, to construct ecological security patterns so as to effectively avoid the geological disasters, maintain ecosystem health, and promote the coordinated development of regional ecological system and social economic system. Taking Yuxi City as a case study area, this study firstly estimated the ecosystem services importance of water conservation, carbon fixation and oxygen release, soil conservation, and biodiversity according to the basal characteristics of regional ecological environment, and then identified ecological sources in consideration of the quality of integrated ecosystem services and single types. Secondly, the resistance surface based on land use types was modified by the sensitivity of regional geological disasters. Lastly, the ecological corridors were identified using minimum cumulative resistance model, and as a result, the ecological security pattern of Yuxi City was constructed. The results showed that there were 81 patches for ecological sources in Yuxi City, accounting for 38.4% of the total area, and overlaying 75.2% of nature protection areas. The ecological sources were mainly distributed in the western mountainous areas as well as eastern water areas of the city. The length of ecological corridors was 1642.04 km, presenting a spatial pattern of one vertical and three horizontals, and extending along river valleys and fault basins with high vegetation coverage. This paper constructed ecological security patterns in mountainous areas aiming at the characteristics of geological disasters, providing spatial guidance for development and conservation decision-making in mountain areas.

  9. Lower Mississippi River Environmental Program. Report 13. Preliminary Environmental Design Considerations Associated with Articulated Concrete Mattress Revetments along the Lower Mississippi River

    DTIC Science & Technology

    1988-05-01

    Engineer Water Resources Support Center, Fort Belvoir, Va. Conner, J. W., Pennington, C. H., and Bosley, T. R. 1983. "Larval Fish of Selected Aquatic ...Mississippi River Environmental Program; Report 13 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Aquatic Ecosystem...Jenkins, Aquatic Ecosystem Analysts, PO Box 4188, Fayetteville, Ark. Mr. Stephen P. Cobb, MRC, Vicksburg, Miss., was the project officer and program manager

  10. Fiscal Year 2014 United States Army Corps of Engineers -Civil Works Annual Financial Report: Maintaining Readiness Through Fiscal Responsibility

    DTIC Science & Technology

    2014-01-01

    modify previously authorized but unconstructed projects as needed to meet current science and engineering standards. Based on these completed...Everglades Planning Project feasibility report, which incorporates updated science and technical information gained over the last decade, was completed...report of the President’s Council of Advisors on Science and Technology on Sustaining Environmental Capital, recently formed a Biodiversity and Ecosystem

  11. LLMapReduce: Multi-Level Map-Reduce for High Performance Data Analysis

    DTIC Science & Technology

    2016-05-23

    LLMapReduce works with several schedulers such as SLURM, Grid Engine and LSF. Keywords—LLMapReduce; map-reduce; performance; scheduler; Grid Engine ...SLURM; LSF I. INTRODUCTION Large scale computing is currently dominated by four ecosystems: supercomputing, database, enterprise , and big data [1...interconnects [6]), High performance math libraries (e.g., BLAS [7, 8], LAPACK [9], ScaLAPACK [10]) designed to exploit special processing hardware, High

  12. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    PubMed

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered. Copyright © 2017 American Society for Microbiology.

  13. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils

    PubMed Central

    Lee, Angela; McGuire, Krista L.

    2017-01-01

    ABSTRACT New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation (cbbL-R [cbbL gene, red-like subunit] and apsA), nitrogen cycling (noxZ and amoA), and contaminant degradation (bphA); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a powerful prospect, but it first requires an understanding of how engineered soil habitats shape patterns of microbial diversity. This research adds to our understanding of urban microbial biogeography by providing data on soil bacteria in bioswales, which had relatively diverse and compositionally distinct communities compared to park and tree pit soils. Bioswales also contained comparatively diverse pools of genes related to carbon sequestration, nitrogen cycling, and contaminant degradation, suggesting that engineered soils may serve as effective reservoirs of functional microbial biodiversity. We also examined both total (DNA-based) and expressed (RNA) communities, revealing that total bacterial communities (the exclusive targets in the vast majority of soil studies) were poor predictors of expressed community diversity, pointing to the value of quantifying RNA, especially when ecological functioning is considered. PMID:28576763

  14. Integrating ecosystem services in terrestrial conservation planning.

    PubMed

    Yuan, Mei-Hua; Lo, Shang-Lien; Yang, Chih-Kai

    2017-05-01

    The purpose of this study is to estimate the benefits of ecosystem services for prioritization of land use conservation and to highlight the importance of ecosystem services by comparison between ecosystem service value and green GDP accounting. Based on land use pattern and benefit transfer method, this research estimated value of ecosystem services in Taiwan. Scientific information of land use and land cover change is accessed through multi-year satellite imagery moderate resolution imaging spectroradiometer (MODIS), and geographic information system (GIS) technology. Combined with benefit transfer method, this research estimated the ecosystem service valuation of forest, grassland, cropland, wetland, water, and urban for the period of 2000 to 2015 in Taiwan. It is found that forest made the greatest contribution and the significant increasing area of wetland has huge potential benefit for environmental conservation in Taiwan. We recommend placing maintaining wetland ecosystem in Taiwan with higher priority. This research also compared ecosystem service value with natural capital consumption which would essentially facilitate policy makers to understand the relationship between benefits gained from natural capital and the loss from human-made capital.

  15. Abrupt shifts in ecosystem function and intensification of global biogeochemical cycle driven by hydroclimatic extremes

    NASA Astrophysics Data System (ADS)

    Ma, Xuanlong; Huete, Alfredo; Ponce-Campos, Guillermo; Zhang, Yongguang; Xie, Zunyi; Giovannini, Leandro; Cleverly, James; Eamus, Derek

    2016-04-01

    Amplification of the hydrologic cycle as a consequence of global warming is increasing the frequency, intensity, and spatial extent of extreme climate events globally. The potential influences resulting from amplification of the hydro-climatic cycle, coupled with an accelerating warming trend, pose great concerns on the sustainability of terrestrial ecosystems to sequester carbon, maintain biodiversity, provide ecosystem services, food security, and support human livelihood. Despite the great implications, the magnitude, direction, and carry-over effect of these extreme climate events on ecosystem function, remain largely uncertain. To address these pressing issues, we conducted an observational, interdisciplinary study using satellite retrievals of atmospheric CO2 and photosynthesis (chlorophyll fluorescence), and in-situ flux tower measures of ecosystem-atmosphere carbon exchange, to reveal the shifts in ecosystem function across extreme drought and wet periods. We further determine the factors that govern ecosystem sensitivity to hydroclimatic extremes. We focus on Australia but extended our analyses to other global dryland regions due to their significant role in global biogeochemical cycles. Our results revealed dramatic impacts of drought and wet hydroclimatic extremes on ecosystem function, with abrupt changes in vegetation productivity, carbon uptake, and water-use-efficiency between years. Drought resulted in widespread reductions or collapse in the normal patterns of vegetation growth seasonality such that in many cases there was no detectable phenological cycle during extreme drought years. We further identified a significant increasing trend (p < 0.001) in extreme wet year precipitation amounts over Australia and many other global regions, resulting in an increasing trend in magnitude of the episodic carbon sink pulses coupled to each La Niña-induced wet years. This finding is of global biogeochemical significance, with the consequence of amplifying the global carbon cycle. Lastly, we use landscape measurements of carbon and water fluxes from eddy-covariance towers and field sampling of aboveground net primary productivity from long-term ecological networks to verify the patterns observed by top-down approaches. Our results demonstrate the intensification of hydroclimatic extremes due to global warming is exerting important impacts on ecosystem function, which further have significant implications on global biogeochemical cycles as well as local ecosystem processes.

  16. Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally.

    PubMed

    Ramirez, Kelly S; Leff, Jonathan W; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W; Kelly, Eugene F; Oldfield, Emily E; Shaw, E Ashley; Steenbock, Christopher; Bradford, Mark A; Wall, Diana H; Fierer, Noah

    2014-11-22

    Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. An Empirical Study on Students' Ability to Comprehend Design Patterns

    ERIC Educational Resources Information Center

    Chatzigeorgiou, Alexander; Tsantalis, Nikolaos; Deligiannis, Ignatios

    2008-01-01

    Design patterns have become a widely acknowledged software engineering practice and therefore have been incorporated in the curricula of most computer science departments. This paper presents an observational study on students' ability to understand and apply design patterns. Within the context of a postgraduate software engineering course,…

  18. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.

  19. The science, information, and engineering needed to manage water availability and quality in 2050: Chapter 23

    USGS Publications Warehouse

    Hirsch, Robert M.

    2012-01-01

    This chapter explores four water resources issues: 1) hydrologic variability, hazards, water supply and ecosystem preservation; 2) urban landscape design; 3) non-point source water quality, and 4) climate change, resiliency, and nonstationarity. It also considers what science, technology, and engineering practice may be needed in the coming decades to sustain water supplies and ecosystems in the face of increasing stresses from a growing demand for water. Dealing with these four water resource issues in the highly uncertain future would will demand predictive models that are rooted in real-world data. In a non-stationary world, continuity of observations is crucial. All watersheds are influenced by human actions through changes in land use, water use, and climate. The focus of water planning and management between today and 2050 will depend more than ever on collection and analysis of long-term data to learn about the evolving state of the system, understanding ecosystem processes in the water and on the landscape, and finding innovative ways to manage water as a shared resource. This includes sharing water with our neighbors on the landscape, sharing with the other species that depend on water, and sharing with future generations.

  20. Patterns of new versus recycled primary production in the terrestrial biosphere

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways, a...

  1. Catchment hydro-biogeochemical response to forest harvest intensity and spatial pattern

    EPA Science Inventory

    We apply a new model, Visualizing Ecosystems for Land Management Assessment (VELMA), to Watershed 10 (WS10) in the H.J. Andrews Experimental Forest to simulate the effects of harvest intensity and spatial pattern on catchment hydrological and biogeochemical processes. Specificall...

  2. Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson W.

    2011-01-01

    In general, the stability of different wetland pattern types is most strongly related to factors controlling the erosion and deposition of sediment at vegetation patch edges, the magnitude of sediment redistribution by flow, patch elevation relative to water level, and the variability of erosion rates in vegetation patches with low flow-resistance. As we exemplify in our case-study of the Everglades ridge and slough landscape, feedback between flow and vegetation also causes hysteresis in landscape evolution trajectories that will affect the potential for landscape restoration. Namely, even if the hydrologic conditions that historically produced higher flows are restored, degraded portions of the ridge and slough landscape are unlikely to revert to their former patterning. As wetlands and floodplains worldwide become increasingly threatened by climate change and urbanization, the greater mechanistic understanding of landscape pattern and process that our analysis provides will improve our ability to forecast and manage the behavior of these ecosystems.

  3. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    NASA Astrophysics Data System (ADS)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  4. Humans, Topograpghy, and Wildland Fire: The Ingredients for Long-term Patterns in Ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography, and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These factors can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  5. Humans, topography, and wildland fire: The ingredients for long-term patterns in ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography,and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These facters can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  6. Soil Water and Temperature Explain Canopy Phenology and Onset of Spring in a Semiarid Steppe

    Treesearch

    Lynn M. Moore; William K. Lauenroth; David M. Bell; Daniel R. Schlaepfer

    2015-01-01

    It is well known that the timing of growth and development influences critical life stages of all organisms. „The seasonal dynamics of ecosystems are usually well explained by photoperiod and temperature. However, phenological patterns in water-limited ecosystems are rarely studied and insufficiently explained by these two variables. We tested how onset (i.e.,...

  7. Fire patterns of South Eastern Queensland in a global context: A review

    Treesearch

    Philip Le C. F. Stewart; Patrick T. Moss

    2015-01-01

    Fire is an important driver in ecosystem evolution, composition, structure and distribution, and is vital for maintaining ecosystems of the Great Sandy Region (GSR). Charcoal records for the area dating back over 40, 000 years provide evidence of the great changes in vegetation composition, distribution and abundance in the region over time as a result of fire. Fires...

  8. Reconciling carbon-cycle concepts, terminology, and methodology

    Treesearch

    F.S. III Chapin; G.M Woodwell; J.T. Randerson; G.M. Lovett; E.B. Rastetter; D.D. Baldocchi; D.A. Clark; M.E. Harmon; D.S. Schimel; Valentini R.; Wirth C.; Aber J.D.; Cole J.J.; Goulden M.L.; Harden J.W.; Heimann M.; Howarth R.W.; Matson P.A.; McGuire A.D.; Melillo J.M.; H.A. Mooney; J.C. Neff; R.A. Houghton; M.L. Pace; M.G. Ryan; S.W. Running; O.E. Sala; W.H. Schlesinger; E. D. Schulze

    2005-01-01

    Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by...

  9. Insights from long-term research on the Fernow Experimental Forest

    Treesearch

    Mary Beth Adams

    2016-01-01

    In 1951, five weirs were constructed in the mixed hardwood forests of the Fernow Experimental Forest and watershed research began. Specializing in long-term watershed scale manipulations, researchers at the Fernow have evaluated effects of various silvicultural practices on water yield, seasonal flow patterns, water quality and on ecosystem processes and ecosystem...

  10. Ecogeography of the herpetofauna of a nothern California watershed: linking species patterns to landscape processes

    Treesearch

    Hartwell H. Welsh Jr.; Garth R. Hodgson; Amy J. Lind

    2005-01-01

    Ecosystems are rapidly being altered and destabilized on a global scale, threatening native biota and compromising vital services provided to human society. We need to better understand the processes that can undermine ecosystem integrity (resistance-resilience) in order to devise strategies to ameliorate this trend. We used a herpetofaunal assemblage to first assess...

  11. Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites

    Treesearch

    Kell B. Wilson; Dennis Baldocchi; Eva Falge; Marc Aubinet; Paul Berbigier; Christian Bernhofer; Han Dolman; Chris Field; Allen Goldstein; Andre Granier; Dave Hollinger; Gabriel Katul; B.E. Law; Tilden Meyers; John Moncrieff; Russ Monson; John Tenhunen; Riccardo Valentini; Shashi Verma; Steve Wofsy

    2003-01-01

    Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the...

  12. Effects of forest regrowth and urbanization on ecosystem carbon storage in a rural–urban gradient in the Southeastern United States

    Treesearch

    Chi Zhang; Hanqin Tian; Shufen Pan; Mingliang Liu; Graeme Lockaby; Erik B. Schilling; John Stanturf

    2008-01-01

    Forest regrowth after cropland abandonment and urban sprawl are two counteracting processes that have influenced carbon (C) sequestration in the southeastern United States in recent decades. In this study, we examined patterns of land-use/landcover change and their effect on ecosystem C storage in three west Georgia counties (Muscogee,...

  13. Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades

    Treesearch

    Sparkle L. Malone; Christina L. Staudhammer; Henry W. Loescher; Paulo Olivas; Steven F. Oberbauer; Michael G. Ryan; Jessica Schedlbauer; Gregory Starr

    2014-01-01

    We analyzed energy partitioning in short- and long-hydroperiod freshwater marsh ecosystems in the Florida Everglades by examining energy balance components (eddy covariance derived latent energy (LE) and sensible heat (H) flux). The study period included several wet and dry seasons and variable water levels, allowing us to gain better mechanistic information about the...

  14. Recent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite record.

    Treesearch

    Christopher Potter; Tan Pang-Ning; Vipin Kumar; Chris Kucharik; Steven Klooster; Vanessa Genovese; Warren Cohen; Sean Healey

    2005-01-01

    Ecosystem structure and function are strongly affected by disturbance events, many of which in North America are associated with seasonal temperature extremes, wildfires, and tropical storms. This study was conducted to evaluate patterns in a 19-year record of global satellite observations of vegetation phenology from the advanced very high resolution radiometer (AVHRR...

  15. Fir sawyer beetle-Siberian fir interaction modeling: resistance of fir stands to insect outbreaks

    Treesearch

    Tamara M. Ovtchinnikova; Victor V. Kiselev

    1991-01-01

    Entomological monitoring is part of a total ecological monitoring system. Its purpose is the identification, prognosis, and estimation of forest ecosystem impacts induced by insects. The entomological monitoring of a forest is based on a clear understanding of the role played by insects in forest ecosystems. The patterns of insect population dynamics in space and time...

  16. Loss of functionally unique species may gradually undermine ecosystems

    PubMed Central

    O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.

    2011-01-01

    Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593

  17. Chapter4 - Drought patterns in the conterminous United States and Hawaii.

    Treesearch

    Frank H. Koch; William D. Smith; John W. Coulston

    2014-01-01

    Droughts are common in virtually all U.S. forests, but their frequency and intensity vary widely both between and within forest ecosystems (Hanson and Weltzin 2000). Forests in the Western United States generally exhibit a pattern of annual seasonal droughts. Forests in the Eastern United States tend to exhibit one of two prevailing patterns: random occasional droughts...

  18. Building community partnerships to implement the new Science and Engineering component of the NGSS

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership represents one model of science and education professionals collaborating to incorporate science and engineering activities into the curriculum.

  19. Research on reform plan of civil engineering adult education graduation design

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Sun, Shengnan; Cui, Shicai

    2017-12-01

    As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.

  20. Stormwater management and ecosystem services: a review

    NASA Astrophysics Data System (ADS)

    Prudencio, Liana; Null, Sarah E.

    2018-03-01

    Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to measure ecosystem services from green stormwater infrastructure, and better incorporate stormwater management into environmental policy. Our conclusions outline promising future research directions at the intersection of stormwater management and ecosystem services.

Top