Sample records for ecosystem processes soil

  1. Soil fauna, soil properties and geo-ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.

    2012-04-01

    The impact of soil fauna on soil processes is of utmost importance, as the activity of soil fauna directly affects soil quality. This is expressed by the direct effects of soil fauna on soil physical and soil chemical properties that not only have great importance to food production and ecosystems services, but also on weathering and hydrological and geomorphological processes. Soil animals can be perceived as ecosystem engineers that directly affect the flow of water, sediments and nutrients through terrestrial ecosystems. The biodiversity of animals living in the soil is huge and shows a huge range in size, functions and effects. Most work has been focused on only a few species such as earthworms and termites, but in general the knowledge on the effect of soil biota on soil ecosystem functioning is limited as it is for their impact on processes in the soil and on the soil surface. In this presentation we would like to review some of the impacts of soil fauna on soil properties that have implications for geo-ecosystem functioning and soil formation processes.

  2. THE IMPORTANCE OF THE BIODIVERSITY OF SOIL BIOTA IN ARID ECOSYSTEMS

    EPA Science Inventory

    The importance of soil biota in maintaining ecosystem integrity is examined by a review of studies of soil processes and soil biota in arid ecosystems. In decomposition and mineralization processes, there is a temporal succession of microarthropod and nematode species. Tydeid mit...

  3. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective.

    PubMed

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H

    2015-04-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  4. Plant Functional Traits: Soil and Ecosystem Services.

    PubMed

    Faucon, Michel-Pierre; Houben, David; Lambers, Hans

    2017-05-01

    Decline of ecosystem services has triggered numerous studies aiming at developing more sustainable agricultural management practices. Some agricultural practices may improve soil properties by expanding plant biodiversity. However, sustainable management of agroecosystems should be performed from a functional plant trait perspective. Advances in functional ecology, especially plant functional trait effects on ecosystem processes and services, provide pivotal knowledge for ecological intensification of agriculture; this approach acknowledges that a crop field is an agroecosystem whose ecological processes influence soil properties. We highlight the links between plant functional traits and soil properties in relation to four major ecosystem processes involved in vital ecosystem services: food production, crop protection, climate change mitigation, and soil and water conservation, aiming towards ecological intensification of sustainable agricultural and soil management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Treesearch

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  6. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    Treesearch

    Shuhua Yi; David McGuire; Jennifer Harden; Eric Kasischke; Kristen Manies; Larr Hinzman; Anna Liljedahl; Jim Randerson; Heping Liu; Vladimire Romanovsky; Sergei Marchenko; Yongwon Kim

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were...

  7. A process-based framework for soil ecosystem services study and management.

    PubMed

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests

    Treesearch

    Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky

    2010-01-01

    Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...

  9. Impact of Hydrologic Variability on Ecosystem Dynamics and the Sustainable Use of Soil and Water Resources

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.

    2013-05-01

    We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.

  10. Soil food web properties explain ecosystem services across European land use systems.

    PubMed

    de Vries, Franciska T; Thébault, Elisa; Liiri, Mira; Birkhofer, Klaus; Tsiafouli, Maria A; Bjørnlund, Lisa; Bracht Jørgensen, Helene; Brady, Mark Vincent; Christensen, Søren; de Ruiter, Peter C; d'Hertefeldt, Tina; Frouz, Jan; Hedlund, Katarina; Hemerik, Lia; Hol, W H Gera; Hotes, Stefan; Mortimer, Simon R; Setälä, Heikki; Sgardelis, Stefanos P; Uteseny, Karoline; van der Putten, Wim H; Wolters, Volkmar; Bardgett, Richard D

    2013-08-27

    Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.

  11. Soil food web properties explain ecosystem services across European land use systems

    PubMed Central

    de Vries, Franciska T.; Thébault, Elisa; Liiri, Mira; Birkhofer, Klaus; Tsiafouli, Maria A.; Bjørnlund, Lisa; Bracht Jørgensen, Helene; Brady, Mark Vincent; Christensen, Søren; de Ruiter, Peter C.; d’Hertefeldt, Tina; Frouz, Jan; Hedlund, Katarina; Hemerik, Lia; Hol, W. H. Gera; Hotes, Stefan; Mortimer, Simon R.; Setälä, Heikki; Sgardelis, Stefanos P.; Uteseny, Karoline; van der Putten, Wim H.; Wolters, Volkmar; Bardgett, Richard D.

    2013-01-01

    Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world. PMID:23940339

  12. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  13. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    PubMed

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized. © 2016 John Wiley & Sons Ltd.

  14. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan.

    PubMed

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.

  15. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    PubMed Central

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia. PMID:24455157

  16. [Effects of global change on soil fauna diversity: A review].

    PubMed

    Wu, Ting-Juan

    2013-02-01

    Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.

  17. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

    Treesearch

    Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal

    2016-01-01

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...

  18. A hierarchical approach to ecological assessment of contaminated soils at Aberdeen Proving Ground, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.G.

    1995-12-31

    Despite the expansion of environmental toxicology studies over the past decade, soil ecosystems have largely been ignored in ecotoxicological studies in the United States. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach that integrates biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to determine community structure, (2) laboratory and field testsmore » on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input to the decision-making, process. This methodology appears to, offer an efficient and potentially cost-saving tool for remedial investigations of contaminated sites.« less

  19. Biotic and abiotic processes in eastside ecosystems: the effects of management on soil properties, processes, and productivity.

    Treesearch

    Alan E. Harvey; J. Michael Geist; Gerald L McDonald; Martin F. Jurgensen; Patrick H. Cochran; Darlene Zabowski; Robert T. Meurisse

    1994-01-01

    Productivity of forest and range land soils is based on a combination of diverse physical, chemical and biological properties. In ecosystems characteristic of eastside regions of Oregon and Washington, the productive zone is usually in the upper 1 or 2 m. Not only are the biological processes that drive both soil productivity and root development concentrated in...

  20. Spatial characterization of soil properties and influence in soil formation in oak-grassland of Sierra Morena, S Spain

    NASA Astrophysics Data System (ADS)

    Román-Sánchez, Andrea; Cáceres, Francisco; Pédèches, Remi; Giráldez Cervera, Juan Vicente; Vanwalleghem, Tom

    2016-04-01

    The Mediterranean oak-grassland ecosystem is very important for the rural economy and for the biodiversity of south-western European countries like Spain and Portugal. Nevertheless these ecosystems are not well characterized especially their soils. In this report soil carbon has been evaluated and related to other properties. The principal factors controlling the structure, productivity and evolution of forest ecosystems are bedrock, climate, relief, vegetation and time. Soil carbon has an important influence in the soil and ecosystem structures. The purpose of this study is to determine the relationship between relief, soil properties, spatial distribution of soil carbon and their influence in soil formation and geomorphology. This work is part of another study which aims to elucidate the processes involved in the soil formation and to examine their behaviour on long-term with a modelling. In our study area, located in oak-grassland of Sierra Morena, in Cordoba, S Spain, have been studied 67 points at 6 depths in 262 hectares in order to determine carbon content varying between 0-6%, soil properties such as soil depth between 0-4 m, horizon depth and the rocks amount in surface. The relationship between the soil carbon, soil properties and the relief characteristic like slope, aspect, curvature can shed light the processes that affect the mechanisms of bedrock weathering and their interrelationship with geomorphological processes.

  1. Response of soil microbial and invertebrate communities to tracked vehicle disturbance in tallgrass prairie

    Treesearch

    P.S. Althoff; T.C. Todd; S.J. Thien; M.A. Callaham

    2009-01-01

    Soil biota drive fundamental ecosystem processes such as decomposition, nutrient cycling, and maintenance of soil structure. They are especially active in grassland ecosystems such as the tallgrass by heterotrophic soil organisms. Because both soil microbes and soil fauna display perturbation responses that integrate the physical, chemical, and biological changes to...

  2. On the Need to Establish an International Soil Modeling Consortium

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Vanderborght, J.; Schnepf, A.

    2014-12-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.

  3. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants, as these can maintain transpiration for a longer time even through the top soil layer dries out.

  4. Integrating soil ecological knowledge into restoration management

    Treesearch

    M.A. Callaham

    2008-01-01

    The variability in the type of ecosystem degradation andthe specificity of restoration goals can challenge restorationists’ability to generalize about approaches that leadto restoration success. The discipline of soil ecology, whichemphasizes both soil organisms and ecosystem processes,

  5. Specific features of the development of soils of hydromorphic ecosystems in the northern taiga of Western Siberia under conditions of cryogenesis

    NASA Astrophysics Data System (ADS)

    Matyshak, G. V.; Bogatyrev, L. G.; Goncharova, O. Yu.; Bobrik, A. A.

    2017-10-01

    Differently directed and heterochronous cryogenic processes have contributed to the contrasting soil cover patterns and spatial heterogeneity of the properties of soils in hydromorphic ecosystems of the discontinuous permafrost zone of the northern taiga in Western Siberia. Frost heave and permafrost thawing within ecosystems of highmoor bogs have led to the development of specific cryogenic landforms, such as flat-topped and large peat mounds. A set of cryogenic soils is developed in these ecosystems; it includes different variants of cryozems, gleyzems (Cryosols), and peat soils (Histosols). The distribution of these soil types is controlled by the local topography and thawing depth, other factors being insignificant. Alternation of peat horizons of different types and ages, whirl-like patterns of horizon boundaries, considerable variations in the thickness of soil horizons, and inversions of soil horizons under the impact of frost cracking, frost heave, and cryoturbation are typical of the considered soils. Thawing depth is the most significant factor affecting the thickness of organic horizons, the soil pH, and the degree of decomposition of peat. As a result of the upward movement of bog ecosystems under the impact of frost heave, peat soils are subjected to considerable transformation: peat horizons undergo mineralization, and the thickness of organic horizons decreases; in some cases, eluvial-illuvial differentiation of the mineral horizons takes place, and peat podzols are developed. However, the opposite process of the return of the soils to the bog stage of pedogenesis with peat accumulation may take place in any time in the case of activation of thermokarst processes.

  6. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition.

    PubMed

    Bradford, Mark A; Wood, Stephen A; Bardgett, Richard D; Black, Helaina I J; Bonkowski, Michael; Eggers, Till; Grayston, Susan J; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T Hefin

    2014-10-07

    Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding--and in management decisions--about how biodiversity is related to the provision of multiple ecosystem services.

  7. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition

    PubMed Central

    Bradford, Mark A.; Wood, Stephen A.; Bardgett, Richard D.; Black, Helaina I. J.; Bonkowski, Michael; Eggers, Till; Grayston, Susan J.; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T. Hefin

    2014-01-01

    Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such “multifunctionality” has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson’s paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding—and in management decisions—about how biodiversity is related to the provision of multiple ecosystem services. PMID:25246582

  8. Adaptive management for soil ecosystem services

    USGS Publications Warehouse

    Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.

    2016-01-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.

  9. Soil life in reconstructed ecosystems: initial soil food web responses after rebuilding a forest soil profile for a climate change experiment

    Treesearch

    Paul T. Rygiewicz; Vicente J. Monleon; Elaine R. Ingham; Kendall J. Martin; Mark G. Johnson

    2010-01-01

    Disrupting ecosystem components, while transferring and reconstructing them for experiments can produce myriad responses. Establishing the extent of these biological responses as the system approaches a new equilibrium allows us more reliably to emulate comparable native systems. That is, the sensitivity of analyzing ecosystem processes in a reconstructed system is...

  10. Impact of seasonal variation on soil bacterial diversity and ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Amoo, Adenike Eunice; Oluranti Babalola, Olubukola

    2017-04-01

    Soil biodiversity boosts the functioning of the ecosystem thereby contributing to the provision of various ecosystem services. Understanding the link between biodiversity and ecosystem functioning and their reaction to environmental heterogeneity can maximize the contribution of soil microbes to ecosystem services. The diversity, abundance and function of microorganisms can be altered by seasonal variation. There is a dearth of information on how soil biodiversity respond to environmental changes. The impact of seasonal variation on bacterial communities and its effects on soil functioning in four South African forests was investigated. The samples were analysed for pH, moisture content, total carbon and nitrogen, soil nitrate and extractable phosphate. High-throughput sequencing and quantitative PCR were used to determine the diversity and abundance of bacteria. Community level physiological profiles (CLPPs) were measured using the MicroResp™ method. Enzyme activities were additionally used as proxy for ecosystem functions. The functional genes for nitrification and phosphate solubilisation were also measured. Seasonal variation has strong effects on bacterial communities and consequently soil processes. A reduction in biodiversity has direct results on soil ecosystem functioning.

  11. Using stable isotopes to resolve eco-hydrological dynamics of soil-plant-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Dubbert, M.; Piayda, A.; Kübert, A.; Cuntz, M.; Werner, C.

    2016-12-01

    Water is the main driver of ecosystem productivity in most terrestrial ecosystems worldwide. Extreme events are predicted to increase in frequency in many regions and dynamic responses in soil-vegetation-atmosphere feedbacks play a privotal role in understanding the ecosystem water balance and functioning. In this regard, more interdisciplinary approaches, bridging hydrology, ecophysiology and atmospheric sciences are needed and particularly water stable isotopes are a powerful tracer of water transfer in soils and at the soil-plant interface (Werner and Dubbert 2016). Here, we present observations 2 different ecosystems. Water fluxes, atmospheric concentrations and their isotopic compositions were measured using laser spectroscopy. Soil moisture and its isotopic composition in several depths as well as further water sources in the ecosystem were monitored throughout the year. Using these isotopic approaches we disentangled soil-plant-atmosphere feedback processes controlling the ecosystem water cycle including vegetation effects on soil water infiltration and distribution, event water use of vegetation and soil fluxes, vegetational soil water uptake depths plasticity and partitioning of ecosystem water fluxes. In this regard, we review current strategies of ET partitioning and highlight pitfalls in the presented strategies (Dubbert et al. 2013, Dubbert et al.2014a). We demonstrate that vegetation strongly influenced water cycling, altering infiltration and distribution of precipitation. In conclusion, application of stable water isotope tracers delivers a process based understanding of interactions between soil, understorey and trees governing ecosystem water cycling necessary for prediction of climate change impact on ecosystem productivity and vulnerability. ReferencesDubbert, M. et al. (2013): Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. Journal of Hydrology Dubbert, M. et al. (2014a): Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytologist. Werner, C. and Dubbert, M. (2016): Resolving rapid dynamics of soil-plant-atmosphere interactions. New Phytologist.

  12. Linking Soil Microbial Ecology to Ecosystem Functioning in Integrated Crop-Livestock Systems

    USDA-ARS?s Scientific Manuscript database

    Enhanced soil stability, nutrient cycling and C sequestration potential are important ecosystem functions driven by soil microbial processes and are directly influenced by agricultural management. Integrated crop-livestock agroecosystems (ICL) can enhance these functions via high-residue returning c...

  13. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Treesearch

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  14. RELATIONSHIPS BETWEEN CULTURABLE SOIL MICROBIAL POPULATIONS AND GROSS NITROGEN TRANSFORMATION PROCESSES IN A CLAY LOAM SOIL ACROSS ECOSYSTEMS

    EPA Science Inventory

    The size and quality of soil organic matter (SOM) pool can vary between ecosystems and can affect many soil properties. The objective of this study was to examine the relationship between gross N transformation rates and microbial populations and to investigate the role that SOM...

  15. Topographic, edaphic, and vegetative controls on plant-available water

    Treesearch

    Salli F. Dymond; John B. Bradford; Paul V. Bolstad; Randall K. Kolka; Stephen D. Sebestyen; Thomas M. DeSutter

    2017-01-01

    Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary...

  16. Arctic mosses govern below-ground environment and ecosystem processes.

    PubMed

    Gornall, J L; Jónsdóttir, I S; Woodin, S J; Van der Wal, R

    2007-10-01

    Mosses dominate many northern ecosystems and their presence is integral to soil thermal and hydrological regimes which, in turn, dictate important ecological processes. Drivers, such as climate change and increasing herbivore pressure, affect the moss layer thus, assessment of the functional role of mosses in determining soil characteristics is essential. Field manipulations conducted in high arctic Spitsbergen (78 degrees N), creating shallow (3 cm), intermediate (6 cm) and deep (12 cm) moss layers over the soil surface, had an immediate impact on soil temperature in terms of both average temperatures and amplitude of fluctuations. In soil under deep moss, temperature was substantially lower and organic layer thaw occurred 4 weeks later than in other treatment plots; the growing season for vascular plants was thereby reduced by 40%. Soil moisture was also reduced under deep moss, reflecting the influence of local heterogeneity in moss depth, over and above the landscape-scale topographic control of soil moisture. Data from field and laboratory experiments show that moss-mediated effects on the soil environment influenced microbial biomass and activity, resulting in warmer and wetter soil under thinner moss layers containing more plant-available nitrogen. In arctic ecosystems, which are limited by soil temperature, growing season length and nutrient availability, spatial and temporal variation in the depth of the moss layer has significant repercussions for ecosystem function. Evidence from our mesic tundra site shows that any disturbance causing reduction in the depth of the moss layer will alleviate temperature and moisture constraints and therefore profoundly influence a wide range of ecosystem processes, including nutrient cycling and energy transfer.

  17. An applied hydropedological perspective on the rendering of ecosystem services from urban soils

    EPA Science Inventory

    Ecosystem services are benefits to human populations derived from natural capitals like soil. When a soil is urbanized during infrastructure and superstructure development, the related processes modulate the state and quality of natural resources, along with the form and function...

  18. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  19. Asymmetrical Responses of Ecosystem Processes to Positive Versus Negative Precipitation Extremes: a Replicated Regression Experimental Approach

    NASA Astrophysics Data System (ADS)

    Felton, A. J.; Smith, M. D.

    2016-12-01

    Heightened climatic variability due to atmospheric warming is forecast to increase the frequency and severity of climate extremes. In particular, changes to interannual variability in precipitation, characterized by increases in extreme wet and dry years, are likely to impact virtually all terrestrial ecosystem processes. However, to date experimental approaches have yet to explicitly test how ecosystem processes respond to multiple levels of climatic extremity, limiting our understanding of how ecosystems will respond to forecast increases in the magnitude of climate extremes. Here we report the results of a replicated regression experimental approach, in which we imposed 9 and 11 levels of growing season precipitation amount and extremity in mesic grassland during 2015 and 2016, respectively. Each level corresponded to a specific percentile of the long-term record, which produced a large gradient of soil moisture conditions that ranged from extreme wet to extreme dry. In both 2015 and 2016, asymptotic responses to water availability were observed for soil respiration. This asymmetry was driven in part by transitions between soil moisture versus temperature constraints on respiration as conditions became increasingly dry versus increasingly wet. In 2015, aboveground net primary production (ANPP) exhibited asymmetric responses to precipitation that largely mirrored those of soil respiration. In total, our results suggest that in this mesic ecosystem, these two carbon cycle processes were more sensitive to extreme drought than to extreme wet years. Future work will assess ANPP responses for 2016, soil nutrient supply and physiological responses of the dominant plant species. Future efforts are needed to compare our findings across a diverse array of ecosystem types, and in particular how the timing and magnitude of precipitation events may modify the response of ecosystem processes to increasing magnitudes of precipitation extremes.

  20. Wildfire and post-fire erosion impacts on forest ecosystem carbon and nitrogen: An analysis

    Treesearch

    D. G. Neary; S. T. Overby

    2006-01-01

    Many ecosystem processes occurring in soils depend upon the presence of organic matter. Soil organic matter is particularly important for nutrient supply, cation exchange capacity, and water retention, hence its importance in long-term site productivity. However, wildfires consume large amounts of aboveground organic material, and soil heating can consume soil organic...

  1. Assessing heterogeneity in soil nitrogen cycling: a plot-scale approach

    Treesearch

    Peter Baas; Jacqueline E. Mohan; David Markewitz; Jennifer D. Knoepp

    2014-01-01

    The high level of spatial and temporal heterogeneity in soil N cycling processes hinders our ability to develop an ecosystem-wide understanding of this cycle. This study examined how incorporating an intensive assessment of spatial variability for soil moisture, C, nutrients, and soil texture can better explain ecosystem N cycling at the plot scale. Five sites...

  2. Adaptive management for soil ecosystem services.

    PubMed

    Birgé, Hannah E; Bevans, Rebecca A; Allen, Craig R; Angeler, David G; Baer, Sara G; Wall, Diana H

    2016-12-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services. Copyright © 2016. Published by Elsevier Ltd.

  3. Integrating soil ecological knowledge into restoration management

    Treesearch

    Liam Heneghan; Susan P. Miller; Sara Baer; Mac A. Callaham; James Montgomery; Mitchell Pavao-Zuckerman; Charles C. Rhoades; Sarah Richardson

    2008-01-01

    The variability in the type of ecosystem degradation and the specificity of restoration goals can challenge restorationists' ability to generalize about approaches that lead to restoration success. The discipline of soil ecology, which emphasizes both soil organisms and ecosystem processes, has generated a body of knowledge that can be generally useful in...

  4. Soil Functional Mapping: A Geospatial Framework for Scaling Soil Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Lawrence, C. R.

    2017-12-01

    Climate change is dramatically altering biogeochemical cycles in most terrestrial ecosystems, particularly the cycles of water and carbon (C). These changes will affect myriad ecosystem processes of importance, including plant productivity, C exports to aquatic systems, and terrestrial C storage. Soil C storage represents a critical feedback to climate change as soils store more C than the atmosphere and aboveground plant biomass combined. While we know plant and soil C cycling are strongly coupled with soil moisture, substantial unknowns remain regarding how these relationships can be scaled up from soil profiles to ecosystems. This greatly limits our ability to build a process-based understanding of the controls on and consequences of climate change at regional scales. In an effort to address this limitation we: (1) describe an approach to classifying soils that is based on underlying differences in soil functional characteristics and (2) examine the utility of this approach as a scaling tool that honors the underlying soil processes. First, geospatial datasets are analyzed in the context of our current understanding of soil C and water cycling in order to predict soil functional units that can be mapped at the scale of ecosystems or watersheds. Next, the integrity of each soil functional unit is evaluated using available soil C data and mapping units are refined as needed. Finally, targeted sampling is conducted to further differentiate functional units or fill in any data gaps that are identified. Completion of this workflow provides new geospatial datasets that are based on specific soil functions, in this case the coupling of soil C and water cycling, and are well suited for integration with regional-scale soil models. Preliminary results from this effort highlight the advantages of a scaling approach that balances theory, measurement, and modeling.

  5. Nitrogen amendments have predictable effects on soil microbial communities and processes

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Craine, J. M.; Fierer, N.

    2011-12-01

    Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. While there has been much effort devoted to quantifying aboveground impacts of anthropogenic N effects, less work has focused on identifying belowground impacts. Bacteria play critical roles in ecosystem processes and identifying how anthropogenic N impacts bacterial communities may elucidate how critical microbially-mediated ecosystem functions are altered by N additions. In order to connect changes in soil processes to changes in the microbial community, we need to first determine if the changes are consistent across different soil types and ecosystems. We assessed the patterns of N effects across a variety of ecosystems in two ways. First, utilizing long-term experimental N gradients at Cedar Creek LTER, MN and Kellogg Biological Station LTER, MI, we examined the response of microbial communities to anthropogenic N additions. Using high-throughput pyrosequencing techniques we quantified changes in soil microbial communities across the nitrogen gradients. We observed strong directional shifts in community composition at both sites; N fertilization consistently impacted both the phylogenetic and taxonomic structure of soil bacterial community structure in a predictable manner regardless of ecosystem type. For example, at both sites Acidobacteria experienced significant declines as nitrogen increased, while other groups such as Actinobacteria and Bacteroidetes increased in relative abundance. Our results suggest that bacterial communities across these N fertility gradients are structured by either nitrogen and/or soil carbon availability, rather than by shifts in the plant community or soil pH indirectly associated with the elevated nitrogen inputs. Still, this field-work does not incorporate changes in soil processes (e.g. soil respiration) or microbial activity (e.g. microbial biomass and extracellular enzyme activity), or separate N from C effects. To address these factors, we performed a lab experiment, amending 30 soils collected from across North America with inorganic N. From this year-long incubation we obtained soil respiration, microbial biomass, bacterial community and extracellular enzyme activity measurements. Across all soil types we consistently observed a significant decrease in both soil respiration, approximately 10%, and microbial biomass, approximately 35%. Using high-throughput pyrosequencing we identified seven bacterial groups that responded significantly to the N additions, including those observed in our field survey. Together, this work suggests that increases in soil N shifts the functional capabilities of the microbial community and highlights possibly mechanisms behind the observed changes.

  6. Fungal Biodiversity and Their Role in Soil Health

    PubMed Central

    Frąc, Magdalena; Hannula, Silja E.; Bełka, Marta; Jędryczka, Małgorzata

    2018-01-01

    Soil health, and the closely related terms of soil quality and fertility, is considered as one of the most important characteristics of soil ecosystems. The integrated approach to soil health assumes that soil is a living system and soil health results from the interaction between different processes and properties, with a strong effect on the activity of soil microbiota. All soils can be described using physical, chemical, and biological properties, but adaptation to environmental changes, driven by the processes of natural selection, are unique to the latter one. This mini review focuses on fungal biodiversity and its role in the health of managed soils as well as on the current methods used in soil mycobiome identification and utilization next generation sequencing (NGS) approaches. The authors separately focus on agriculture and horticulture as well as grassland and forest ecosystems. Moreover, this mini review describes the effect of land-use on the biodiversity and succession of fungi. In conclusion, the authors recommend a shift from cataloging fungal species in different soil ecosystems toward a more global analysis based on functions and interactions between organisms. PMID:29755421

  7. Fungal Biodiversity and Their Role in Soil Health.

    PubMed

    Frąc, Magdalena; Hannula, Silja E; Bełka, Marta; Jędryczka, Małgorzata

    2018-01-01

    Soil health, and the closely related terms of soil quality and fertility, is considered as one of the most important characteristics of soil ecosystems. The integrated approach to soil health assumes that soil is a living system and soil health results from the interaction between different processes and properties, with a strong effect on the activity of soil microbiota. All soils can be described using physical, chemical, and biological properties, but adaptation to environmental changes, driven by the processes of natural selection, are unique to the latter one. This mini review focuses on fungal biodiversity and its role in the health of managed soils as well as on the current methods used in soil mycobiome identification and utilization next generation sequencing (NGS) approaches. The authors separately focus on agriculture and horticulture as well as grassland and forest ecosystems. Moreover, this mini review describes the effect of land-use on the biodiversity and succession of fungi. In conclusion, the authors recommend a shift from cataloging fungal species in different soil ecosystems toward a more global analysis based on functions and interactions between organisms.

  8. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    USGS Publications Warehouse

    Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.

  9. Wetland soils, hydrology and geomorphology

    Treesearch

    C. Rhett Jackson; James A. Thompson; Randall K. Kolka

    2014-01-01

    The hydrology, soils, and watershed processes of a wetland all interact with vegetation and animals over time to create the dynamic physical template upon which a wetland's ecosystem is based (Fig. 2.1). With respect to many ecosystem processes, the physical factors defining a wetland environment at any particular time are often treated as independent variables,...

  10. Wetland biogeochemistry and ecological risk assessment

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Zhang, Guangliang

    2017-02-01

    Wetlands are an important ecotone between terrestrial and aquatic ecosystems and can provide great ecological service functions. Soils/sediments are one of the important components of wetland ecosystems, which support wetland plants and microorganisms and influence wetland productivity. Moreover, wetland soils/sediments serve as sources, sinks and transfers of carbon, nitrogen, phosphorus and chemical contaminants such as heavy metals. In natural wetland ecosystems, wetland soils/sediments play a great role in improving water quality as these chemical elements can be retained in wetland soils/sediments for a long time. Moreover, the biogeochemical processes of the abovementioned elements in wetland soils/sediments can drive wetland evolution and development, and their changes will considerably affect wetland ecosystem health. Therefore, a better understanding of wetland soil biogeochemistry will contribute to improving wetland ecological service functions.

  11. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems

    PubMed Central

    Palmer, Jeda; Thorburn, Peter J.; Biggs, Jody S.; Dominati, Estelle J.; Probert, Merv E.; Meier, Elizabeth A.; Huth, Neil I.; Dodd, Mike; Snow, Val; Larsen, Joshua R.; Parton, William J.

    2017-01-01

    Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally affected by increased SOC in the dryland agro-ecosystems studied, but increased in the irrigated agro-ecosystem. Therefore, we show that under increased SOC concentration, N cycling contributes both positively and negatively to ecosystem services depending on supply, while the effects on soil physical properties are negligible. PMID:28539929

  12. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems.

    PubMed

    Palmer, Jeda; Thorburn, Peter J; Biggs, Jody S; Dominati, Estelle J; Probert, Merv E; Meier, Elizabeth A; Huth, Neil I; Dodd, Mike; Snow, Val; Larsen, Joshua R; Parton, William J

    2017-01-01

    Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally affected by increased SOC in the dryland agro-ecosystems studied, but increased in the irrigated agro-ecosystem. Therefore, we show that under increased SOC concentration, N cycling contributes both positively and negatively to ecosystem services depending on supply, while the effects on soil physical properties are negligible.

  13. Establishing an International Soil Modelling Consortium

    NASA Astrophysics Data System (ADS)

    Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan

    2015-04-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Soil is not only essential for establishing a sustainable bio-economy, but also plays a key role also in a broad range of societal challenges including 1) climate change mitigation and adaptation, 2) land use change 3) water resource protection, 4) biotechnology for human health, 5) biodiversity and ecological sustainability, and 6) combating desertification. Soils regulate and support water, mass and energy fluxes between the land surface, the vegetation, the atmosphere and the deep subsurface and control storage and release of organic matter affecting climate regulation and biogeochemical cycles. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society . To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. We therefore propose to establish an international soil modelling consortium with the aims of 1) bringing together leading experts in modelling soil processes within all major soil disciplines, 2) addressing major scientific gaps in describing key processes and their long term impacts with respect to the different functions and ecosystem services provided by soil, 3) intercomparing soil model performance based on standardized and harmonized data sets, 4) identifying interactions with other relevant platforms related to common data formats, protocols and ontologies, 5) developing new approaches to inverse modelling, calibration, and validation of soil models, 6) integrating soil modelling expertise and state of the art knowledge on soil processes in climate, land surface, ecological, crop and contaminant models, and 7) linking process models with new observation, measurement and data evaluation technologies for mapping and characterizing soil properties across scales. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.

  14. Effects of fire on major forest ecosystem processes: an overview.

    PubMed

    Chen, Zhong

    2006-09-01

    Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.

  15. Ecosystem processes and nitrogen export in northern U.S. watersheds.

    USGS Publications Warehouse

    Stottlemyer, R.

    2001-01-01

    There is much interest in the relationship of atmospheric nitrogen (N) inputs to ecosystem outputs as an indicator of possible "nitrogen saturation" by human activity. Longer-term, ecosystem-level mass balance studies suggest that the relationship is not clear and that other ecosystem processes may dominate variation in N outputs. We have been studying small, forested watershed ecosystems in five northern watersheds for periods up to 35 years. Here I summarize the research on ecosystem processes and the N budget. During the past 2 decades, average wet-precipitation N inputs ranged from about 0.1 to 6 kg N ha(-1) year(-1) among sites. In general, sites with the lowest N inputs had the highest output-to-input ratios. In the Alaska watersheds, streamwater N output exceeded inputs by 70 to 250%. The ratio of mean monthly headwater nitrate (NO3-) concentration to precipitation NO3- concentration declined with increased precipitation concentration. A series of ecosystem processes have been studied and related to N outputs. The most important appear to be seasonal change in hydrologic flowpath, soil freezing, seasonal forest-floor inorganic N pools resulting from over-winter mineralization beneath the snowpack, spatial variation in watershed forest-floor inorganic N pools, the degree to which snowmelt percolates soils, and gross soil N mineralization rates.

  16. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    DOE PAGES

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; ...

    2017-09-28

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less

  17. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    NASA Astrophysics Data System (ADS)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; Zhou, Xiaolu; Wang, Meng; Zhang, Kerou; Wang, Gangsheng

    2017-10-01

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral-associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.

  18. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less

  19. Soil water storage and daily dynamics of typical ecosystems in Heihe Watershed, China

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2017-12-01

    Soil water plays a key role in terrestrial ecosystems by controlling exchange processes among soil, vegetation, and atmosphere. The spatiotemporal distribution and dynamics of soil water storage (SWS) may provide information on the exchange of soil moisture among landscapes and between groundwater and surface water. The Heihe River Watershed (HRW) is a typical inland river basin located in the arid region of Northwestern China. Based on the soil water data automatically recorded every 30 min in 18 sites during the Heihe Water Allied Telemetry Experimental Research, the soil water dynamic of six typical ecosystems, i.e., alpine meadow, mountain coniferous forest, mountain steppe, temperate desert, riparian forest, and cropland, were analyzed. The 2m-depth soil water storage of cropland in growing season was highest, followed by riparian forest, alpine meadow, mountain coniferous forest, and mountain steppe, and that of temperate desert was the lowest. For alpine meadow, mountain coniferous forest, and desert ecosystems, the seasonal fluctuation of soil water content was obvious in 0-100cm depth but not in 100-200cm depth. For mountain steppe, cropland, and riparian forest ecosystems, there were obviously seasonal fluctuation in soil water content in all 0-200cm depth. In addition, the frequency distributions of 30-min soil water contents of the six ecosystems were different greatly. Together with rainfall, the soil water content was greatly affected by irrigation and seasonal frozen.

  20. Photodegradation processes in arid ecosystems: controlling factors and potential application in land restoration

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Luna-Ramos, Lourdes; Oyonarte, Cecilio; Sole Benet, Albert

    2017-04-01

    Water availability plays a fundamental part in controlling biotic processes in arid ecosystems. However, recent evidence suggests that other decisive drivers take part in these processes. Despite low annual rainfall and microbial activity, unexplained high rates of litter decomposition, net nitrogen mineralization, soil enzymatic activity and carbon turnover have been observed in arid ecosystems. These observations have been partly explained by photodegradation, a process that consists of the breakdown of organic matter via solar radiation (UV) and that can increase decomposition rates and lead to changes in the balance of carbon and nutrients between plants, soil and atmosphere. A complete understanding of these mechanisms and its drivers in arid ecosystems remains a critical challenge for the scientific community at the global level. In this research, we conducted a multi-site field experiment to test the effects of photodegradation on decomposition of organic amendments used in ecosystem restoration. The study was carried out during 12 months in two study areas: the Pilbara region in Western Australia (Southern Hemisphere) and the Cabo de Gata Nijar Natural Park, South Spain (Northern Hemisphere). In both sites, four treatments were applied in replicated plots (1x1 m, n=4) that included a control (C) with no soil amendment; organic amendment covering the soil surface (AS); organic amendment incorporated into the soil (AI); and a combination of both techniques, both covering the surface and incorporated into the soil (AS-AI). Different organic amendments (native mulch versus compost) and soil substrates were used at each site according to local practices, but in both sites these were applied to increase soil organic matter up to 2%. At the two locations, a radiometer and a logger with a soil temperature and soil moisture probe were installed to monitor UV radiation and soil conditions for the duration of the trial. Soil microbial activity, soil CO2 efflux, and the organic matter fractions (including total OC and hydro-soluble C) were measured repeatedly during the experiment. At the end of the experiment, levels of the soluble fraction of C, soil CO2 efflux and soil microbial activity were significantly (p< 0.05) higher in those plots amended in the surface in both sites. These increases in the surface reflect a fast C decomposing process that can be directly related to UV radiation, evidencing the critical role of photodegradation on the decomposition of the organic matter. These processes can be critical at global scales as they can contribute to forcing biogechemical cycles; however, responses will vary depending on the type of the substrate and organic amendment.

  1. Overcoming uncertainty with carbonyl sulfide-based GPP estimates: observing and modeling soil COS fluxes in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Whelan, M.; Hilton, T. W.; Berry, J. A.; Berkelhammer, M. B.; Desai, A. R.; Rastogi, B.; Campbell, J. E.

    2015-12-01

    Significant carbonyl sulfide (COS) exchange by soils limits the applicability of net ecosystem COS flux observations as a proxy for stomatal trace gas exchange. High frequency measurements of COS over urban and natural ecosystems offer a potential window into processes regulating the carbon and water cycle: photosynthetic carbon uptake and stomatal conductance. COS diffuses through plant stomata and is irreversibly consumed by enzymes involved in photosynthesis. In certain environments, the magnitude of soil COS fluxes may constitute one-quarter of COS uptake by plants. Here we present a way of anticipating conditions when anomalously large soil COS fluxes are likely to occur and be taken into account. Previous studies have pointed to either a tendency for soil uptake of COS from the atmosphere with a soil moisture optimum, or exponential COS production coincident with temperature. Data from field and laboratory studies were used to deconvolve the two processes. CO2 and COS fluxes were observed from forest, desert, grassland, and agricultural soils under a range of temperature and soil moisture conditions. We demonstrate how to estimate temperature and soil moisture impacts on COS soil production based on our cross-site incubations. By building a model of soil COS exchange that combines production and consumption terms, we offer a framework for interpreting the two disparate conclusions about soil COS exchange in previous studies. Such a construction should be used in ecosystem and continental scale modeling of COS fluxes to anticipate where the influence of soil COS exchange needs to be accounted for, resulting in greater utility of carbonyl sulfide as a tracer of plant physiological processes.

  2. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    USGS Publications Warehouse

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  3. Chemical and Physical Soil Restoration in Mining Areas

    NASA Astrophysics Data System (ADS)

    Teresinha Gonçalves Bizuti, Denise; de Marchi Soares, Thaís; Roberti Alves de Almeida, Danilo; Sartorio, Simone Daniela; Casagrande, José Carlos; Santin Brancalion, Pedro Henrique

    2017-04-01

    The current trend of ecological restoration is to address the recovery of degraded areas by ecosystemic way, overcoming the rehabilitation process. In this sense, the topsoil and other complementary techniques in mining areas plays an important role in soil recovery. The aim of this study was to contextualize the soil improvement, with the use of topsoil through chemical and physical attributes, relative to secondary succession areas in restoration, as well as in reference ecosystems (natural forest). Eighteen areas were evaluated, six in forest restoration process, six native forests and six just mining areas. The areas were sampled in the depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Chemical indicators measured were parameters of soil fertility and texture, macroporosity, microporosity, density and total porosity as physical parameters. The forest restoration using topsoil was effective in triggering a process of soil recovery, promoting, in seven years, chemical and physical characteristics similar to those of the reference ecosystem.

  4. Understanding the Day Cent model: Calibration, sensitivity, and identifiability through inverse modeling

    USGS Publications Warehouse

    Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.

    2015-01-01

    The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.

  5. Bioindication in Urban Soils in Switzerland

    NASA Astrophysics Data System (ADS)

    Amossé, J.; Le Bayon, C.; Mitchell, E. A. D.; Gobat, J. M.

    2012-04-01

    Urban development leads to profound changes in ecosystem structure (e.g. biodiversity) and functioning (e.g. ecosystem services). While above-ground diversity is reasonably well studied much less is known about soil diversity, soil processes and more generally soil health in urban settings. Soil invertebrates are key actors of soil processes at different spatial and temporal scales and provide essential ecosystem services. These functions may be even more vital in stressed environments such as urban ecosystems. Despite the general recognition of the importance of soil organisms in ecosystems, soil trophic food webs are still poorly known and this is especially the case in urban settings. As urban soils are characterised by high fragmentation and stress (e.g. drought, pollution) the structure and functioning of soil communities is likely to be markedly different from that of natural soils. It is for example unclear if earthworms, whose roles in organic matter transformation and soil structuration is well documented in natural and semi-natural soils, are also widespread and active in urban soils. Bioindication is a powerful tool to assess the quality of the environment. It is complementary to classical physicochemical soil analysis or can be used as sole diagnostic tool in cases where these analyses cannot be performed. However little is known about the potential use of bioindicators in urban settings and especially it is unclear if methods developped in agriculture can be applied to urban soils. The development of reliable methods for assessing the quality of urban soils has been identified as a priority for policy making and urban management in Switzerland, a high-urbanized country. We therefore initiated a research project (Bioindication in Urban Soil - BUS). The project is organised around four parts: (i) typology of urban soils in a study Region (Neuchâtel), (ii) sampling of soil fauna and analysis of soil physicochemical properties, (iii) comparison of the functionality of urban soils and alluvial soils, used as a natural reference because of their regular physical perturbation by flooding and associated erosion/sedimentation, (iv) evaluation of soil bioindicators (e.g. earthworm, enchytraeid and testate amoebae) for urban soils. The application objective of my research is to introduce bioindicators and their limit values for the future revision of the legal Ordonnance on soils (OSol), and to develop guidelines to improve or to build urban soils with the aim of reaching a sustainable urban ecosystem development.

  6. Soil cover patterns and SOC dynamics impacts on the soil processes, land management and ecosystem services in Central Region of Russia

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Chernikov, Vladimir; Yashin, Ivan; Geraskin, Mikhail; Morev, Dmitriy

    2014-05-01

    In the Central Region of Russia (CRR) the soil cover patterns usually play the very important role in the soil forming and degradation processes (SFP & SDP) potential and current rates, soil organic carbon (SOC) dynamics and pools, greenhouse gases (GHG) emissions and soluble SOC fluxes that we need take into attention for better assessment of the natural and especially man-changed ecosystems' services and for best land-use practices development. Central Region of Russia is the biggest one in RF according to its population and role in the economy. CRR is characterized by high spatial variability of soil cover due to as original landscape heterogeneity as complicated history of land-use practices during last 700 years. Our long-term researches include the wide zonal-provincial set of representative ecosystems and soil cover patterns with different types and history of land-use (forest, meadow-steppe and agricultural ones) from middle-taiga to steppe zones with different level of continentality. The carried out more than 30-years region- and local-scale researches of representative natural and rural landscapes in Tver', Yaroslavl', Kaluga, Moscow, Vladimir, Saransk (Mordovia), Kursk, Orel, Tambov, Voronezh and Saratov oblasts give us the interregional multi-factorial matrix of elementary soil cover patterns (ESCP) with different soil forming and degradation processes rates and soil organic carbon dynamics due to regionally specific soil-geomorphologic features, environmental and dominated microclimate conditions, land-use current practices and history. The validation and ranging of the limiting factors of SFP and SDP develop¬ment, soil carbon dynamics and sequestration potential, ecosystem (agroecosystem) principal services, land functional qualities and agroecological state have been done for dominating and most dynamical components of ESCP regional-typological forms - with application of SOC structure analysis, regional and local GIS, soil spatial patterns detail mapping, traditional regression kriging, correlation tree models and DSS adapted to concrete region and agrolandscape conditions. The outcomes of statistical process modeling show the essential amplification of erosion, dehumification, CO2, CH4 and N2O emission, soluble SOC fluxes, acidification or alkalization, disaggregation and overcompaction processes due to violation of environmentally sound land-use systems and traditional balances of organic matter, nutrients, Ca and Na in agrolandscapes. Due to long-term intensive and out-of-balance land-use practices the most zonal soils and soil cover pattern essentially lost not only their unique natural features (humus horizons depth till 1 m and more in case of Chernozems, 2-6 % of SOC and favorable agrophysical features), but ecosystem services and ecological functions including terrestrial ecosystem carbon balance and the GHG fluxes control. Key-site monitoring results and regional generalized data showed 1-1.5% SOC lost during last 50 years period and active processes of CO2 emission and humus profile eluvial-illuvial redistribution too. A drop of Corg content below threshold "humus limiting content" values (for different soils they vary from 1 to 3-4% of SOC) considerably reduces effectiveness of used fertilizers and possibility of sustai¬nable agronomy here. Forest-steppe Chernozems are usually characterized by higher stability than steppe ones. The ratio between erosive and biological losses in humus supplies can be ten-tatively estimated as fifty-fifty with strong spatial variability due to slope and land-use parameters. These processes have essentially different sets of environmental consequences and ecosystem services that we need to understand in frame of environmental and agroecological problems development prediction.

  7. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    NASA Astrophysics Data System (ADS)

    Smith, P.; Cotrufo, M. F.; Rumpel, C.; Paustian, K.; Kuikman, P. J.; Elliott, J. A.; McDowell, R.; Griffiths, R. I.; Asakawa, S.; Bustamante, M.; House, J. I.; Sobocká, J.; Harper, R.; Pan, G.; West, P. C.; Gerber, J. S.; Clark, J. M.; Adhya, T.; Scholes, R. J.; Scholes, M. C.

    2015-06-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or can result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that although there are knowledge gaps that require further research, enough is known to start improving soils globally. The main challenge is in finding ways to share knowledge with soil managers and policy-makers, so that best-practice management can be implemented. A key element of this knowledge sharing must be in raising awareness of the multiple ecosystem services underpinned by soils, and the natural capital they provide. The International Year of Soils in 2015 presents the perfect opportunity to begin a step-change in how we harness scientific knowledge to bring about more sustainable use of soils for a secure global society.

  8. Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.

    2013-04-01

    Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g. economic, environmental and social). Global intensification of agroecosystems is a major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Elevated erosion and transport is common in agroecosystems and presents a multi-disciplinary problem with direct physical impacts (e.g. soil loss), other less tangible impacts (e.g. loss of ecosystem productivity), and indirect downstream effects that necessitate an integrated approach to effectively address the problem. Climate is also likely to increase susceptibility of soil to erosion. Beyond physical response, the consequences of erosion on soil biota have hitherto been ignored, yet biota play a fundamental role in ecosystem service provision. To our knowledge few studies have addressed the gap between erosion and consequent impacts on soil biota. Transport and redistribution of soil biota by erosion is poorly understood, as is the concomitant impact on biodiversity and ability of soil to deliver the necessary range of ecosystem services to maintain function. To investigate impacts of erosion on soil biota a two-fold research approach is suggested. Physical processes involved in redistribution should be characterised and rates of transport and redistribution quantified. Similarly, cumulative and long-term impacts of biota erosion should be considered. Understanding these fundamental aspects will provide a basis upon which mitigation strategies can be considered.

  9. The Role of Soil Biological Function in Regulating Agroecosystem Services and Sustainability in the Quesungual Agroforestry System

    NASA Astrophysics Data System (ADS)

    Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.

    2014-12-01

    The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for management of soil biological function and ecosystem services in the Quesungual agroforestry system.

  10. Radioisotope tracer approach for understanding the impacts of global change-induced pedoturbation on soil C dynamics

    NASA Astrophysics Data System (ADS)

    Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.

    2010-12-01

    Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in response to global change factors may be misleading if they do not account for the depth change in the soil mixing cells.

  11. UNDERSTANDING THE ROLE OF OZONE STRESS IN ALTERING BELOWGROUND PROCESSES

    EPA Science Inventory

    Forested ecosystems are comprised of tremendous biological diversity and functional complexity both above and belowground. Soil ecosystems are known to contain thousands of species, with many more that have not yet been identified. Soil heterotrophic organisms depend on green p...

  12. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Treesearch

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  13. Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant 'Zinke' effects.

    PubMed

    Waring, Bonnie G; Álvarez-Cansino, Leonor; Barry, Kathryn E; Becklund, Kristen K; Dale, Sarah; Gei, Maria G; Keller, Adrienne B; Lopez, Omar R; Markesteijn, Lars; Mangan, Scott; Riggs, Charlotte E; Rodríguez-Ronderos, María Elizabeth; Segnitz, R Max; Schnitzer, Stefan A; Powers, Jennifer S

    2015-08-07

    Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of individual plants on their local environments (individual plant effects). Here, we synthesize this work using meta-analysis to show that plant effects are strong and pervasive across ecosystems on six continents. Overall, soil properties beneath individual plants differ from those of neighbours by an average of 41%. Although the magnitudes of individual plant effects exhibit weak relationships with climate and latitude, they are significantly stronger in deserts and tundra than forests, and weaker in intensively managed ecosystems. The ubiquitous effects of plant individuals and species on local soil properties imply that individual plant effects have a role in plant-soil feedbacks, linking individual plants with biogeochemical processes at the ecosystem scale. © 2015 The Author(s).

  14. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes

    Treesearch

    Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch

    2008-01-01

    Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....

  15. Soil Carbon Distribution along a Hill Slope in the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Bunn, A. G.; Schade, J. D.

    2011-12-01

    Arctic ecosystems are warming at an accelerated rate relative to lower latitudes, and this warming has significant global significance. In particular, the thawing of permafrost soils has the potential to strongly influence global carbon cycling and the functioning of terrestrial and aquatic ecosystems. Our overarching scientific goal is to study the impact of thawing permafrost on the transport and processing of carbon and other nutrients as they move with water from terrestrial ecosystems to the Arctic Ocean. Transport of materials from soil to headwater aquatic ecosystems is the first step in this movement. Processes occurring along hill slopes strongly influence the form and concentration of material available for transport. These processes include downhill accumulation of materials due to groundwater movement, or alternatively, local effects of changes in soil and vegetation characteristics. In this project, we studied a hill slope adjacent to a small first order stream in the Kolyma River in Eastern Siberia. We sampled soil at several points along three transects from the top of the hill to the riparian zone by coring and homogenizing the entire active layer at each point. We measured soil organic matter content, soil moisture, water extractable dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and CDOM absorbance. We also measured soil respiration using a laboratory-based biological oxygen demand protocol conducted on soil-water slurries. Active layer depth decreased down the hillslope, while soil moisture, organic matter, and DOC all increased down the hillslope. CDOM absorbance increased downhill, which indicates a decrease in molecular weight of organic compounds at the bottom of the hill. This suggests either an input of newer carbon or processing of high molecular weight DOM down the slope. Soil respiration also increased downhill and was likely driven in part by increased OM in the shallower active layer. Finally, several soil variables were tightly correlated with active layer depth, suggesting that these patterns are driven by changes in the rate of thaw of the active layer driving local soil processes. Clearly, our results suggest significant changes in the form and amount of carbon available for processing and transport along hillslope transects, which may strongly influence the role of terrestrial-aquatic linkage in transport and processing of carbon and other nutrients.

  16. Water and Nitrogen Limitations of Ecosystem Processes Across Three Dryland Plant Communities

    NASA Astrophysics Data System (ADS)

    Beltz, C.; Lauenroth, W. K.; Burke, I. C.

    2017-12-01

    The availability of water and nitrogen (N) play a major role in controlling the distribution of ecosystem types and the rates of ecosystem processes across the globe. Both these resources are being altered by human activity. Anthropogenic fixation of N has increased inputs into the biosphere from 0.5 kg N ha-1 yr-1 to upwards of 10 kg N ha-1 yr-1, while the amount and seasonality of precipitation are expected to continue to change. Within dryland environments, the relationships between increasingly available N and ecosystem processes are especially complex due to dryland's characteristic strong limitation by low and highly variable precipitation. Other experiments have shown that this interplay between N and water can cause temporally complex co-limitation and spatially complex responses with variable effects on ecosystems, such as those to net primary productivity, soil respiration, and plant community composition. Research spanning multiple dryland plant communities is critical for generalizing findings to the 40% of the Earth's terrestrial surface covered in dryland ecosystems. Given IPCC projections in which both N availability and precipitation are altered, examining their interactive effect across multiple plant communities is critical to increasing our understanding of the limitations to ecosystem process in drylands. We are studying a gradient of three plant communities representing a C4 grassland (shortgrass steppe), a C3/C4 grassland (mixed grass prairie), and a shrub-dominated ecosystem with C3 and C4 grasses (sagebrush steppe). We added two levels of N (10 kg N ha-1 and 100 kg N ha-1) and increased summer monthly precipitation by 20%. Sites responded differently to treatments, with the scale of effect varying by treatment. The high-level nitrogen increased soil N availability and soil respiration, while decreasing soil carbon in the labile pool in the upper soil layers. These results will allow for better understanding of increased N in combination with altered water availability across different plant communities and ecosystems, particularly helping to close the gap in knowledge on the effects of low-level, chronic N addition in drylands.

  17. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    NASA Astrophysics Data System (ADS)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  18. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    NASA Astrophysics Data System (ADS)

    Smith, P.; Cotrufo, M. F.; Rumpel, C.; Paustian, K.; Kuikman, P. J.; Elliott, J. A.; McDowell, R.; Griffiths, R. I.; Asakawa, S.; Bustamante, M.; House, J. I.; Sobocká, J.; Harper, R.; Pan, G.; West, P. C.; Gerber, J. S.; Clark, J. M.; Adhya, T.; Scholes, R. J.; Scholes, M. C.

    2015-11-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.

  19. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, S. H.; Jansson, P.-E.

    2012-05-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  20. Factors Driving Potential Ammonia Oxidation in Canadian Arctic Ecosystems: Does Spatial Scale Matter?

    PubMed Central

    Banerjee, Samiran

    2012-01-01

    Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation. PMID:22081570

  1. The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis

    USGS Publications Warehouse

    He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.

    2014-01-01

    The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.

  2. [A research review on "fertile islands" of soils under shrub canopy in arid and semi-arid regions].

    PubMed

    Chen, Guangsheng; Zeng, Dehui; Chen, Fusheng; Fan, Zhiping; Geng, Haiping

    2003-12-01

    Due to the inclemency of climate and soil conditions and the intense disturbance of human beings, the soil resources heterogeneity in arid and semi-arid grassland ecosystems worldwide was gradually increased during the last century. The interaction between soil heterogeneity and shrubs induced the autogenic development of "fertile islands" and the increasing spread of shrubs in the grassland ecosystems. The development of "fertile islands" around individual shrubs could change the vegetation composition and structure, as well as the distribution patterns of soil resources, and thus, reinforced the changes of the ecosystem function and structure from a relative stable grassland ecosystem to a quasi-stable shrubland ecosystem. The study of "fertile islands" phenomenon would help us to understand the causes, consequences and processes of desertification in arid and semi-arid areas. In this paper, the causes of "fertile islands", its study methods and significance and its relationship with shrub spreading as well as the responses of vegetation to it were summarized. The problems which might occur in the study of this phenomenon were also pointed out. Our aim was to offer some references to the study of land desertification processes and vegetation restoration in the arid and semi-arid regions.

  3. Sustaining "the Genius of Soils"

    NASA Astrophysics Data System (ADS)

    Sposito, G.

    2011-12-01

    Soils are weathered porous earth surficial materials that exhibit an approximately vertical stratification reflecting the continual action of percolating water and living organisms. They are complex open, multicomponent, multiphase biogeochemical systems which function as both provisioning and regulatory agents in terrestrial ecosystems while influencing aquatic ecosystems through their impacts on evapotranspiration and runoff. The ability of soils to engage in their supportive ecosystem functions depends on what has been termed metaphorically as their "natural capital," the defining properties that condition soil response to biological, geological, and hydrological processes as well as human-driven activities. Natural capital must necessarily differ among soils depending on how they have developed under the five soil-forming processes, but it also can be determined by land use and by the flows of matter and energy that link the global atmosphere, biosphere, and hydrosphere. These latter two determinants have in recent decades begun to exhibit strong variability that exceeds what has been characteristic of them during the past 10 millennia of earth history, thereby raising the apocalyptic issue of whether a deleterious or even catastrophic undermining of the ability of soils to function supportively in ecosystems is in the offing. Resolving this issue will require deeper understanding of how soils perform their provisioning and regulatory functions, how they respond to land-use changes, and how they mediate the global flows of matter and energy.

  4. Soil processes and tree growth at shooting ranges in a boreal forest reflect contamination history and lead-induced changes in soil food webs.

    PubMed

    Selonen, Salla; Setälä, Heikki

    2015-06-15

    The effects of shooting-derived lead (Pb) on the structure and functioning of a forest ecosystem, and the recovery of the ecosystem after range abandonment were studied at an active shotgun shooting range, an abandoned shooting range where shooting ceased 20 years earlier and an uncontaminated control site. Despite numerous lead-induced changes in the soil food web, soil processes were only weakly related to soil food web composition. However, decomposition of Scots pine (Pinus sylvestris) needle litter was retarded at the active shooting range, and microbial activity, microbial biomass and the rate of decomposition of Pb-contaminated grass litter decreased with increasing soil Pb concentrations. Tree (P. sylvestris) radial growth was suppressed at the active shooting range right after shooting activities started. In contrast, the growth of pines improved at the abandoned shooting range after the cessation of shooting, despite reduced nitrogen and phosphorus contents of the needles. Higher litter degradation rates and lower Pb concentrations in the topmost soil layer at the abandoned shooting range suggest gradual recovery after range abandonment. Our findings suggest that functions in lead-contaminated coniferous forest ecosystems depend on the successional stage of the forest as well as the time since the contamination source has been eliminated, which affects, e.g., the vertical distribution of the contaminant in the soil. However, despite multiple lead-induced changes throughout the ecosystem, the effects were rather weak, indicating high resistance of coniferous forest ecosystems to this type of stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bioactive Molecules in Soil Ecosystems: Masters of the Underground

    PubMed Central

    Zhuang, Xuliang; Gao, Jie; Ma, Anzhou; Fu, Shenglei; Zhuang, Guoqiang

    2013-01-01

    Complex biological and ecological processes occur in the rhizosphere through ecosystem-level interactions between roots, microorganisms and soil fauna. Over the past decade, studies of the rhizosphere have revealed that when roots, microorganisms and soil fauna physically contact one another, bioactive molecular exchanges often mediate these interactions as intercellular signal, which prepare the partners for successful interactions. Despite the importance of bioactive molecules in sustainable agriculture, little is known of their numerous functions, and improving plant health and productivity by altering ecological processes remains difficult. In this review, we describe the major bioactive molecules present in below-ground ecosystems (i.e., flavonoids, exopolysaccharides, antibiotics and quorum-sensing signals), and we discuss how these molecules affect microbial communities, nutrient availability and plant defense responses. PMID:23615474

  6. Calcium Induces Long-Term Legacy Effects in a Subalpine Ecosystem

    PubMed Central

    Schaffner, Urs; Alewell, Christine; Eschen, René; Matthies, Diethart; Spiegelberger, Thomas; Hegg, Otto

    2012-01-01

    Human activities have transformed a significant proportion of the world’s land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m−2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems. PMID:23284779

  7. Growing season ecosystem and leaf-level gas exchange of an exotic and native semiarid bunchgrass

    USDA-ARS?s Scientific Manuscript database

    The extensive spread of the South African grass, Lehmann lovegrass (Eragrostis lehmanniana) may potentially alter ecological and hydrological processes across semiarid grasslands and savannahs of western North America. We compared volumetric soil moisture (Q), ecosystem (i.e. whole-plant and soil) ...

  8. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    PubMed

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  9. Biogeochemical Responses and Feedbacks to Climate Change: Synthetic Meta-Analyses Relevant to Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Gestel, Natasja; Jan van Groenigen, Kees; Osenberg, Craig

    This project examined the sensitivity of carbon in land ecosystems to environmental change, focusing on carbon contained in soil, and the role of carbon-nitrogen interactions in regulating ecosystem carbon storage. The project used a combination of empirical measurements, mathematical models, and statistics to partition effects of climate change on soil into processes enhancing soil carbon and processes through which it decomposes. By synthesizing results from experiments around the world, the work provided novel insight on ecological controls and responses across broad spatial and temporal scales. The project developed new approaches in meta-analysis using principles of element mass balance and largemore » datasets to derive metrics of ecosystem responses to environmental change. The project used meta-analysis to test how nutrients regulate responses of ecosystems to elevated CO2 and warming, in particular responses of nitrogen fixation, critical for regulating long-term C balance.« less

  10. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils.

    PubMed

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An 'anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems.

  11. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    PubMed Central

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  12. Spatial structure of soil properties at different scales of Mt. Kilimanjaro, Tanzania

    NASA Astrophysics Data System (ADS)

    Kühnel, Anna; Huwe, Bernd

    2013-04-01

    Soils of tropical mountain ecosystems provide important ecosystem services like water and carbon storage, water filtration and erosion control. As these ecosystems are threatened by global warming and the conversion of natural to human-modified landscapes, it is important to understand the implications of these changes. Within the DFG Research Unit "Kilimanjaro ecosystems under global change: Linking biodiversity, biotic interactions and biogeochemical ecosystem processes", we study the spatial heterogeneity of soils and the available water capacity for different land use systems. In the savannah zone of Mt. Kilimanjaro, maize fields are compared to natural savannah ecosystems. In the lower montane forest zone, coffee plantations, traditional home gardens, grasslands and natural forests are studied. We characterize the soils with respect to soil hydrology, emphasizing on the spatial variability of soil texture and bulk density at different scales. Furthermore soil organic carbon and nitrogen, cation exchange capacity and the pH-value are measured. Vis/Nir-Spectroscopy is used to detect small scale physical and chemical heterogeneity within soil profiles, as well as to get information of soil properties on a larger scale. We aim to build a spectral database for these soil properties for the Kilimanjaro region in order to get rapid information for geostatistical analysis. Partial least square regression with leave one out cross validation is used for model calibration. Results for silt and clay content, as well as carbon and nitrogen content are promising, with adjusted R² ranging from 0.70 for silt to 0.86 for nitrogen. Furthermore models for other nutrients, cation exchange capacity and available water capacity will be calibrated. We compare heterogeneity within and across the different ecosystems and state that spatial structure characteristics and complexity patterns in soil parameters can be quantitatively related to biodiversity and functional diversity parameters.

  13. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant-interspace heterogeneity

    NASA Astrophysics Data System (ADS)

    Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli

    2018-01-01

    We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  14. How ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities.

    PubMed

    Lazzaro, Lorenzo; Mazza, Giuseppe; d'Errico, Giada; Fabiani, Arturo; Giuliani, Claudia; Inghilesi, Alberto F; Lagomarsino, Alessandra; Landi, Silvia; Lastrucci, Lorenzo; Pastorelli, Roberta; Roversi, Pio Federico; Torrini, Giulia; Tricarico, Elena; Foggi, Bruno

    2018-05-01

    Biological invasions are a global threat to biodiversity. Since the spread of invasive alien plants may have many impacts, an integrated approach, assessing effects across various ecosystem components, is needed for a correct understanding of the invasion process and its consequences. The nitrogen-fixing tree Robinia pseudoacacia (black locust) is a major invasive species worldwide and is used in forestry production. While its effects on plant communities and soils are well known, there have been few studies on soil fauna and microbes. We investigated the impacts of the tree on several ecosystem components, using a multi-trophic approach to combine evidence of soil chemical properties and soil microbial, nematode, microarthropod and plant communities. We sampled soil and vegetation in managed forests, comparing those dominated by black locust with native deciduous oak stands. We found qualitative and quantitative changes in all components analysed, such as the well-known soil nitrification and acidification in stands invaded by black locust. Bacterial richness was the only component favoured by the invasion. On the contrary, abundance and richness of microarthropods, richness of nematodes, and richness and diversity of plant communities decreased significantly in invaded stands. The invasion process caused a compositional shift in all studied biotic communities and in relationships between the different ecosystem components. We obtained clear insights into the effects of invasion of managed native forests by black locust. Our data confirms that the alien species transforms several ecosystem components, modifying the plant-soil community and affecting biodiversity at different levels. Correct management of this aggressive invader in temperate forests is urgently required. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    PubMed

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in agricultural systems, allowing sustainable temporal intensification while protecting and enhancing soil functioning.

  16. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems

    PubMed Central

    Williams, Alwyn; Kane, Daniel A.; Ewing, Patrick M.; Atwood, Lesley W.; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S.; Grandy, A. Stuart; Huerd, Sheri C.; Hunter, Mitchell C.; Koide, Roger T.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde S.; Spokas, Kurt A.; Yannarell, Anthony C.; Jordan, Nicholas R.

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services); and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in agricultural systems, allowing sustainable temporal intensification while protecting and enhancing soil functioning. PMID:26904043

  17. Ecosystem health in mineralized terrane; data from podiform chromite (Chinese Camp mining district, California), quartz alunite (Castle Peak and Masonic mining districts, Nevada/California), and Mo/Cu porphyry (Battle Mountain mining district, Nevada) deposits

    USGS Publications Warehouse

    Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.

    2010-01-01

    The myriad definitions of soil/ecosystem quality or health are often driven by ecosystem and management concerns, and they typically focus on the ability of the soil to provide functions relating to biological productivity and/or environmental quality. A variety of attempts have been made to create indices that quantify the complexities of soil quality and provide a means of evaluating the impact of various natural and anthropogenic disturbances. Though not without their limitations, indices can improve our understanding of the controls behind ecosystem processes and allow for the distillation of information to help link scientific and management communities. In terrestrial systems, indices were initially developed and modified for agroecosystems; however, the number of studies implementing such indices in nonagricultural systems is growing. Soil quality indices (SQIs) are typically composed of biological (and sometimes physical and chemical) parameters that attempt to reduce the complexity of a system into a metric of a soil’s ability to carry out one or more functions.The indicators utilized in SQIs can be as varied as the studies themselves, reflecting the complexity of the soil and ecosystems in which they function. Regardless, effective soil quality indicators should correlate well with soil or ecosystem processes, integrate those properties and processes, and be relevant to management practices. Commonly applied biological indicators include measures associated with soil microbial activity or function (for example, carbon and nitrogen mineralization, respiration, microbial biomass, enzyme activity. Cost, accessibility, ease of interpretation, and presence of existing data often dictate indicator selection given the number of available measures. We employed a large number of soil biological, chemical, and physical measures, along with measures of vegetation cover, density, and productivity, in order to test the utility and sensitivity of these measures within various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts.The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.

  18. Ecosystem functions including soil organic carbon, total nitrogen and available potassium are crucial for vegetation recovery.

    PubMed

    Qiu, Kaiyang; Xie, Yingzhong; Xu, Dongmei; Pott, Richard

    2018-05-15

    The effects of biodiversity on ecosystem functions have been extensively studied, but little is known about the effects of ecosystem functions on biodiversity. This knowledge is important for understanding biodiversity-ecosystem functioning relationships. Desertification reversal is a significant global challenge, but the factors that play key roles in this process remain unclear. Here, using data sampled from areas undergoing desertification reversal, we identify the dominant soil factors that play a role in vegetation recovery with ordinary least squares and structural equation modelling. We found that ecosystem functions related to the cycling of soil carbon (organic C, SOC), nitrogen (total N, TN), and potassium (available K, AK) had the most substantial effects on vegetation recovery. The effects of these ecosystem functions were simultaneously influenced by the soil clay, silt and coarse sand fractions and the soil water content. Our findings suggest that K plays a critical role in ecosystem functioning and is a limiting factor in desertification reversal. Our results provide a scientific basis for desertification reversal. Specifically, we found that plant biodiversity may be regulated by N, phosphorus (P) and K cycling. Collectively, biodiversity may respond to ecosystem functions, the conservation and enhancement of which can promote the recovery of vegetation.

  19. Water from air: An overlooked source of moisture in arid and semiarid regions

    USGS Publications Warehouse

    McHugh, Theresa; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

  20. Modelling the process-based controls of long term CO2 exchange in High Arctic heath ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Jansson, P. E.; Elberling, B.

    2016-12-01

    Frozen organic carbon (C) stored in northern permafrost soils may become vulnerable due to the rapid warming of the Arctic. The loss of C as greenhouse gases may imply a critical warming potential, resulting in positive feedbacks to global climate change. However, how permafrost ecosystems C dynamics is associated with changes in hydrothermal conditions (e.g. extent and duration of snow, soil water content and active layer depth) and changes in the responses of ecosystem biogeochemistry to climate (e.g. carbon assimilation of the entire growing season, falling rates of plants' litter, and turnover rates of different soil carbon pools) is still unclear and needs to be distinguished from site to site. Here, we use a process-oriented model (CoupModel) that couples heat and mass transfer within the high resolution soil-plant-atmosphere profile to simulate the high Arctic Cassiope tetragona Heath ecosystems in Northeast Greenland. The 15 years of net ecosystem exchange (NEE) flux (2000-2014) measured during the growing season indicate that the ecosystems may be at a transition from a C sink to a C source. We calibrated the model with the NEE flux transformed from hourly data to daily, yearly and total cumulative data to identify ensembles of parameters that best described the various patterns in the observed C fluxes. Only the ensembles of yearly and total cumulative transformation described reasonably well for seasonal variability, inter-annual variability and long term trends of measurements. The correlations between parameters and simulation performance described the relative importance of physical or biological parameters that contributes to the short- and long-term variation of C flux from biogeochemical processes of such ecosystems. The estimated C budget including internal fluxes and redistribution between various pools showed that the ecosystem functioned as a C source in the first-half period and a week C sink in the second-half period. The respiration outside the growing season was mainly from the autotropic respiration of plants, occupying a considerable portion of the total yearly respiration. The dynamics of soil C fluxes were associated with the variations of air temperature, snow fall and soil moisture of the shoulder seasons.

  1. Soil properties, soil functions and soil security

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro

    2017-04-01

    Soil plays a crucial role in the ecosystem functioning such as food production, capture and storage of water, carbon and nutrients and in the realisation of a number of UN Sustainable Developments Goals. In this work we present an approach to spatially and jointly assess the multiple contributions of soil to the delivery of ecosystem services within multiple land-use system. We focussed on the modelling of the impact of soil on sediment retention, carbon storage, storing and filtering of nutrients, habitat for soil organisms and water regulation, taking into account examples of land use and climate scenarios. Simplified models were used for the single components. Spatialised Bayesian Belief networks were used for the jointly assessment and mapping of soil contribution to multiple land use and ecosystem services. We integrated continuous 3D soil information derived from digital soil mapping approaches covering the whole of mainland Scotland, excluding the Northern Islands. Uncertainty was accounted for and propagated across the whole process. The Scottish test case highlights the differences in roles between mineral and organic soils and provides an example of integrated study assessing the contributions of soil. The results show the importance of the multi-functional analysis of the contribution of soils to the ecosystem service delivery and UN SDGs.

  2. Modelling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties

    USGS Publications Warehouse

    Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.

    2000-01-01

    We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.

  3. Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Sherrod, S.K.; Moldenke, A.

    2005-01-01

    Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded, recently invaded, and historically invaded sites (all currently or once dominated by Hilaria), germination and survivorship were not affected. In contrast, aboveground Hilaria biomass was significantly greater in recently invaded soils than in the other two soils. We attributed the Hilaria response to differences in soil nutrients present before the invasion, especially soil nitrogen, phosphorus, and potassium, as these nutrients were elevated in the soils that produced the greatest Hilaria biomass. Our data suggest that it is not soil biotic richness per se that determines soil process rates or plant productivity, but instead that either (1) the presence of a few critical soil food web taxa can keep ecosystem function high, (2) nutrient loss is very slow in this ecosystem, and/or (3) these processes are microbially driven. However, the presence of Bromus may reduce key soil nutrients over time and thus may eventually suppress native plant success. ?? 2005 by the Ecological Society of America.

  4. Soil cover patterns and dynamics impact on GHG fluxes in RF native and man-changed ecosystems

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Nesterova, Olga

    2017-04-01

    The increased soil spatial-temporal variability is mutual feature for most mature natural and particularly man-changed terrestrial ecosystems in Central and Far-East regions of Russia with soil cover strongly pronounced bioclimatic zoning and landscape-geomorphologic differentiation. Soil cover patterns (SCP) detailed morphogenetic analysis and typification is useful tool for soil forming and degradation processes quantitative evaluation, land ecological state and functional quality quantitative assessment. Quantitative analysis and functional-ecological interpretation of representative SCP spatial variability is especially important for environmentally friendly and demand-driven land-use planning and decision making. The carried out 33-years region- and local-scale researches of the wide zonal-provincial set of representative ecosystems and SCP with different types and history of land-use (forest, meadow-steppe, agricultural and recreational ones) give us the interregional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. Succession process-based analysis of modern evolution of man-changed and natural soils and ESCP essentially increases accuracy of quantitative assessments of dominant soil forming and degradation processes rate and potential, their influence on land and soil cover quality and ecosystem services. Their results allow developing the regional and landscape adapted versions of automated land evaluation systems and land-use DSS. The validation and ranging of the limiting factors of ESCP regulation and develop¬ment, ecosystem principal services (with especial attention on greenhouse gases emissions, soil carbon dynamics and sequestration potential, biodiversity and productivity, hydrological regimes and geomorphologic stabilization), land functional qualities and agroecological state have been done for dominating and most dynamical components of ESCP regional-typological forms - with application of regional/local GIS, ESCP mapping, kriging, correlation tree models and adapted to region DSS. Key-site monitoring results and regional generalized data showed 1-1.5 % Corg lost during last 50 years period, active processes of CO2, CH4 and N2O emission (2-4-time variability in frame of one farm and of one vegetation season) and humus redistribution throw soil profile and soil cover patterns. Forest-steppe Chernozem ecosystems are usually characterized by more stable SCP than forest or steppe ones. The ratio between erosive and biological losses in humus supplies is estimated as fifty-fifty with strong spatial varia¬bility due to slope and land-use parameters. These problem agroecological situations can be essentially improved by climate-smart agriculture practice development with DSS-based landscape-adaptive land-use systems and organic farming stimulation with environmentally friendly technologies, adapted to conditions of concrete agrolandscapes in Central and Far-East Russia.

  5. Global changes alter soil fungal communities and alter rates of organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Moore, J.; Frey, S. D.

    2016-12-01

    Global changes - such as warming, more frequent and severe droughts, increasing atmospheric CO2, and increasing nitrogen (N) deposition rates - are altering ecosystem processes. The balance between soil carbon (C) accumulation and decomposition is determined in large part by the activity and biomass of detrital organisms, namely soil fungi, and yet their sensitivity to global changes remains unresolved. We present results from a meta-analysis of 200+ studies spanning manipulative and observational field experiments to quantify fungal responses to global change and expected consequences for ecosystem C dynamics. Warming altered the functional soil microbial community by reducing the ratio of fungi to bacteria (f:b) total fungal biomass. Additionally, warming reduced lignolytic enzyme activity generally by one-third. Simulated N deposition affected f:b differently than warming, but the effect on fungal biomass and activity was similar. The effect of N-enrichment on f:b was contingent upon ecosystem type; f:b increased in alpine meadows and heathlands but decreased in temperate forests following N-enrichment. Across ecosystems, fungal biomass marginally declined by 8% in N-enriched soils. In general, N-enrichment reduced fungal lignolytic enzyme activity, which could explain why soil C accumulates in some ecosystems following warming and N-enrichment. Several global change experiments have reported the surprising result that soil C builds up following increases in temperature and N deposition rates. While site-specific studies have examined the role of soil fungi in ecosystem responses to global change, we present the first meta-analysis documenting general patterns of global change impacts on soil fungal communities, biomass, and activity. In sum, we provide evidence that soil microbial community shifts and activity plays a large part in ecosystem responses to global changes, and have the potential to alter the magnitude of the C-climate feedback.

  6. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling codes embeded within ESM will be used for Pan-Arctic regional evaluation of climate change-caused ecosystem responses and their feedbacks to climate system at various scales.

  7. Sensing technologies to measure metabolic activities in soil and assess its health conditions

    NASA Astrophysics Data System (ADS)

    De Cesare, Fabrizio; Macagnano, Antonella

    2013-04-01

    Soil is a complex ecosystem comprised of several and mutually interacting components, both abiotic (organo-mineral associations) and biotic (microbial and pedofaunal populations and plants), where a single parameter depends on other factors and affects the same and other factors, so that a network of influences among organisms coexists with the reciprocal actions between organisms and their environment. Therefore, it is difficult to undoubtedly determine what is the cause and what the effect within relationships between factors and processes. Soil is commonly studied through the evaluation and measurement of single parameters (e.g. the content of soil organic matter (SOM), microbial biomass, enzyme activities, pH, etc.), events (e.g. soil erosion, compaction, etc.) and processes (e.g. soil respiration, carbon fluxes, nitrification/denitrification, etc.), often carried out in laboratory conditions in order to limit the number of factors acting within the ecosystem under study, but missing the information about the global soil environment that way. In the last decade, several scientists have proposed and suggested the need for a holistic approach to soil ecosystems in different contexts. Recently, we have applied a sensing system developed in the last decades and capable of analysing complex mixtures of gases and volatiles (odours or aromas) in atmospheres, namely called electronic nose (EN). Typically, ENs are devices consisting of an array of differentially and partially specific, despite selective, sensors upon diverse coatings of sensitive films, i.e. interacting with single analytes of the same chemical class, despite not highly specific for a single substance, only, but showing also lower extent of cross-selectivity towards compounds of other chemical classes. ENs can be used in the classifications of odours by processing the collected responses of all sensors in the array through pattern recognition analyses, in order to obtain a chemical fingerprint (olfactory fingerprint) typical of the analysed air sample. Due to these features, we decided to apply such a sensing technology to the analyses of soil atmospheres, because several processes in soil, both abiotic and biotic, result in gas and/or volatile production and the dynamics of such releases may also be affected by several additional environmental factors, such as soil moisture, temperature, gas exchange rates with outer atmosphere, adsorption/desorption processes, etc. Then, the analysis of soil atmosphere may provide information about global soil conditions (e.g. soil quality and health), according to a holistic approach, where several factors are contemporarily taken into account. At the same time, the use of such a technology, if adequately trained on purpose, can supply information about a single or a pool of processes sharing similar features, which occur in soil over a certain period of time and mostly affecting soil atmosphere. According to these premises and hypotheses, we demonstrated that EN is an useful technology to measure soil microbial activity, through its correlation to specific metabolic activities occurring in soil (i.e. global and specific respiration and some enzyme activities), but also soil microbial biomass. On the basis of such evidences, we also were able to use this technology to assess the quality and health conditions of soil ecosystems in terms of metabolic indices previously identified, according to some metabolic parameters and biomass quantification of microbial populations. In other studies, we also applied EN technology, despite using a different set of sensors in the array, to analyse the atmosphere of soil ecosystems in order to assess their environmental conditions after contamination with polycyclic aromatic hydrocarbons (PAHs) (i.e. semivolatile - SVOCs - organic pollutants). In this case, EN technology resulted capable of distinguishing between contaminated and uncontaminated soils, according to the differences in a list of substances, occurring in the atmospheres of differently treated soils, which were identified through SPME-GC/MS analyses and then suggested to be responsible for the different classification. Analysing the EN responses, it was also possible to follow the degradation process of pollutants by resident microbial populations over time, on the basis of the contemporary decrease of contaminant and the increased release of CO2. Then, we suggest that EN technology may be usefully employed in the analyses of soil ecosystems in order to both supply information about global soil environment, according to the holistic approach, and about specific processes occurring therein. Furthermore, since EN technology resulted to be effective and successful in detecting processes in soil, in both natural and perturbed conditions, involving microbial populations, which are commonly considered as the most sensitive and responsive to soil environmental modifications, we suggest it might be reasonably employed in analyses concerning the assessment of soil quality and health. Consequently, such a technology may also be used to study several processes involving soil ecosystems, such as soil management practices, soil restoration, soil contamination and remediation, soil fertility, etc.

  8. Impact of litter quantity on the soil bacteria community during the decomposition of Quercus wutaishanica litter.

    PubMed

    Zeng, Quanchao; Liu, Yang; An, Shaoshan

    2017-01-01

    The forest ecosystem is the main component of terrestrial ecosystems. The global climate and the functions and processes of soil microbes in the ecosystem are all influenced by litter decomposition. The effects of litter decomposition on the abundance of soil microorganisms remain unknown. Here, we analyzed soil bacterial communities during the litter decomposition process in an incubation experiment under treatment with different litter quantities based on annual litterfall data (normal quantity, 200 g/(m 2 /yr); double quantity, 400 g/(m 2 /yr) and control, no litter). The results showed that litter quantity had significant effects on soil carbon fractions, nitrogen fractions, and bacterial community compositions, but significant differences were not found in the soil bacterial diversity. The normal litter quantity enhanced the relative abundance of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes, Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were significantly less abundant in the normal quantity litter addition treatment, and were subsequently more abundant in the double quantity litter addition treatment. The bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-, and Delta) to Actinobacteria-dominant during the decomposition of the normal quantity of litter. A cluster analysis showed that the double litter treatment and the control had similar bacterial community compositions. These results suggested that the double quantity litter limited the shift of the soil bacterial community. Our results indicate that litter decomposition alters bacterial dynamics under the accumulation of litter during the vegetation restoration process, which provides important significant guidelines for the management of forest ecosystems.

  9. Integration of Process Models and Remote Sensing for Estimating Productivity, Soil Moisture, and Energy Fluxes in a Tallgrass Prairie Ecosystem

    EPA Science Inventory

    We describe a research program aimed at integrating remotely sensed data with an ecosystem model (VELMA) and a soil-vegetation-atmosphere transfer (SVAT) model (SEBS) for generating spatially explicit, regional scale estimates of productivity (biomass) and energy\\mass exchanges i...

  10. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Treesearch

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  11. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, S. H.; Jansson, P.-E.

    2013-02-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  12. Perturbations and gradients as fundamental tests for modeling the soil carbon cycle

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Bailey, V. L.; Becker, K.; Fansler, S.; Hinkle, C.; Liu, C.

    2013-12-01

    An important step in matching process-level knowledge to larger-scale measurements and model results is to challenge those models with site-specific perturbations and/or changing environmental conditions. Here we subject modified versions of an ecosystem process model to two stringent tests: replicating a long-term climate change dryland experiment (Rattlesnake Mountain) and partitioning the carbon fluxes of a soil drainage gradient in the northern Everglades (Disney Wilderness Preserve). For both sites, on-site measurements were supplemented by laboratory incubations of soil columns. We used a parameter-space search algorithm to optimize, within observational limits, the model's influential inputs, so that the spun-up carbon stocks and fluxes matched observed values. Modeled carbon fluxes (net primary production and net ecosystem exchange) agreed with measured values, within observational error limits, but the model's partitioning of soil fluxes (autotrophic versus heterotrophic), did not match laboratory measurements from either site. Accounting for site heterogeneity at DWP, modeled carbon exchange was reasonably consistent with values from eddy covariance. We discuss the implications of this work for ecosystem- to global scale modeling of ecosystems in a changing climate.

  13. Linking Belowground Plant Traits With Ecosystem Processes: A Multi-Biome Perspective

    NASA Astrophysics Data System (ADS)

    Iversen, C. M.; Norby, R. J.; Childs, J.; McCormack, M. L.; Walker, A. P.; Hanson, P. J.; Warren, J.; Sloan, V. L.; Sullivan, P. F.; Wullschleger, S.; Powell, A. S.

    2015-12-01

    Fine plant roots are short-lived, narrow-diameter roots that play an important role in ecosystem carbon, water, and nutrient cycling in biomes ranging from the tundra to the tropics. Root ecologists make measurements at a millimeter scale to answer a question with global implications: In response to a changing climate, how do fine roots modulate the exchange of carbon between soils and the atmosphere and how will this response affect our future climate? In a Free-Air CO2 Enrichment experiment in Oak Ridge, TN, elevated [CO2] caused fine roots to dive deeper into the soil profile in search of limiting nitrogen, which led to increased soil C storage in deep soils. In contrast, the fine roots of trees and shrubs in an ombrotrophic bog are constrained to nutrient-poor, oxic soils above the average summer water table depth, though this may change with warmer, drier conditions. Tundra plant species are similarly constrained to surface organic soils by permafrost or waterlogged soils, but have many adaptations that alter ecosystem C fluxes, including aerenchyma that oxygenate the rhizosphere but also allow direct methane flux to the atmosphere. FRED, a global root trait database, will allow terrestrial biosphere models to represent the complexity of root traits across the globe, informing both model representation of ecosystem C and nutrient fluxes, but also the gaps where measurements are needed on plant-soil interactions (for example, in the tropical biome). While the complexity of mm-scale measurements may never have a place in large-scale global models, close collaboration between empiricists and modelers can help to guide the scaling of important, yet small-scale, processes to quantify their important roles in larger-scale ecosystem fluxes.

  14. The VULCAN Project: Toward a better understanding of the vulnerability of soil organic matter to climate change in permafrost ecosystems

    NASA Astrophysics Data System (ADS)

    Plaza, C.; Schuur, E.; Maestre, F. T.

    2015-12-01

    Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  15. Woodland clearance alters geomorphic, hydrologic, and pedogenic drivers of ecosystem services: examples from the southern Blue Ridge (USA) and the French western Pyrenees Mountains

    NASA Astrophysics Data System (ADS)

    Leigh, David

    2016-04-01

    The southern Blue Ridge (USA) and French western Pyrenees both are humid-temperate mountains where native woodlands have been cleared on soils formed in residuum and colluvium on hillslopes. Forest removal increased rates of erosion and sediment yield that drove both negative and positive ecosystem services. For example, the supportive ecosystem service of soil formation was diminished on eroded hillslopes, but may have been enhanced by accumulation of sediment on bottomlands far downstream from the highland source areas. Negative effects on provisional ecosystem services (e.g. water supply) resulted in aggraded bottomlands by increasing the depth to the water table. Legacy effects linger on hillslopes that reforested (diminished soil properties), and ongoing alteration of pedogenic and hydrologic processes affect pastures that persisted from cleared woodlands. Beyond those general similarities, pastures of the two regions exhibit very different pedogenic pathways and ecosystem service outcomes. Soils of the Blue Ridge pastures adhere to a typical degradation scenario of erosion, compaction, and reduced infiltration capacities, whereas Pyrenees pastures exhibit soil qualities trending in the opposite direction and arguably now are better quality soils than their forested predecessors. Major differences in temporal duration and management styles apparently have led to such contrasts in soil quality. The Blue Ridge pastures are only tens to hundreds of years old, whereas Pyrenees pastures are thousands of years old. Blue Ridge pastures are maintained by mowing with tractors and year-round grazing primarily with beef cattle, whereas Pyrenees pastures (outfields) lack tractors and are only grazed seasonally (summer), primarily with sheep. Fire is rarely used as a management tool in the Blue Ridge, while Pyrenees pastures frequently are burned. Such management practices, and their influence on pedogenic and hydrologic processes, generally have resulted in negative ecosystem services in the Blue Ridge (degraded soils and water holding capacity) versus some positive ecosystem services in the Pyrenees. That is, the soils of the Pyrenees pastures store more carbon and provide equal or better water infiltration and storage capacity than their native forested predecessors, while that is not the case in the Blue Ridge. Stratigraphic proxies from colluvial deposits in the Pyrenees attest to a past when the management practices were erosional and degradational, (within the Bronze Age through Roman times), but more recent management practices appear to be sustainable and have resulted in improved soil quality. Both mountain ranges share some negative impacts, but the Pyrenees offer an example of anthropic landscape conversion where certain pedogenic and hydrologic processes have been enhanced and result in some positive ecosystem services and sustainable outcomes.

  16. Towards Integrating Soil Quality Monitoring Targets as Measures of Soil Natural Capital Stocks with the Provision of Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Taylor, M. D.; Mackay, A. D.; Dominati, E.; Hill, R. B.

    2012-04-01

    This paper presents the process used to review soil quality monitoring in New Zealand to better align indicators and indicator target ranges with critical values of change in soil function. Since its inception in New Zealand 15 year ago, soil quality monitoring has become an important state of the environment reporting tool for Regional Councils. This tool assists councils to track the condition of soils resources, assess the impact of different land management practices, and provide timely warning of emerging issues to allow early intervention and avoid irreversible loss of natural capital stocks. Critical to the effectiveness of soil quality monitoring is setting relevant, validated thresholds or target ranges. Provisional Target Ranges were set in 2003 using expert knowledge available and data on production responses. Little information was available at that time for setting targets for soil natural capital stocks other than those for food production. The intention was to revise these provisional ranges as further information became available and extend target ranges to cover the regulating and cultural services provided by soils. A recently developed ecosystems service framework was used to explore the feasibility of linking soil natural capital stocks measured by the current suite of soil quality indicators to the provision of ecosystem services by soils. Importantly the new approach builds on and utilises the time series data sets collected by current suite of soil quality indicators, adding value to the current effort, and has the potential to set targets ranges based on the economic and environmental outcomes required for a given farm, catchment or region. It is now timely to develop a further group of environmental indicators for measuring specific soil issues. As with the soil quality indicators, these environmental indicators would be aligned with the provision of ecosystem services. The toolbox envisaged is a set of indicators for specific soil issues with appropriate targets tied to ecosystem services and changes in critical soil function. Such indicators would be used for specific purposes for limited periods, rather than long-term, continuous monitoring. Some examples will be presented. An important step needed to successfully initiate and complete the review was assigning national oversight. Reigniting scientific interest (which had declined with the cessation of funding in 2003) and documentation of the process were other important steps. We had to extend the recently developed ecosystem service approach to accommodate the catchment scale. This required additional attributes in the framework and recognition that some of the proxies will change with scale as will the techniques to value the services. The framework was originally developed for use at the farm scale. Macroporosity, one of the two indicators used to monitor the physical condition of the soil, was used to illustrate how the ecosystem service framework could be used to link a change in the physical condition of the soil with the provision of services. The sum of the dollar values of selected soil ecosystem services were used to inform the state of soil natural capital stocks. This estimate provides a new insight into the value of the soil quality indicators and existing target ranges. Doing so will enable targets to be more closely aligned and integrated with the provision of a range of ecosystem services, going far beyond food production.

  17. Following The Money: Characterizing the Dynamics of Microbial Ecosystems and Labile Organic Matter in Grassland Soils

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; McNeal, K. S.

    2006-12-01

    The dynamics of soil microbial ecosystems and labile fractions of soil organic matter in grasslands have important implications for the response of these critical ecosystems to perturbations. Organic, inorganic and genetic biomarkers in the solid (e.g. lipids, microbial DNA), liquid (e.g. porewater ions) or gaseous phases (e.g. carbon dioxide) have been used to characterize carbon cycling and soil microbial ecology. These proxies are generally limited in the amount of temporal information that they can provide (i.e., solid-phase proxies) or the amount of specific information they can provide about carbon sources or microbial community processes (e.g. inorganic gases). It is the aim of this research to validate the use of soil volatile organic carbon emissions (VOCs) as useful indicators of subsurface microbial community shifts and processes as a function of ecosystem perturbations. We present results of method validation using laboratory microcosm, where VOC metabolites as characterized by gas chromatography and mass spectrometry (GC-MS), were related to other proxies including carbon dioxide (CO2) via infra-red technology, and microbial community shifts as measured by Biolog© and fatty acid methyl ester (FAME) techniques. Experiments with soil collected from grasslands along the coastal margin region in southern Texas were preformed where environmental factors such as soil water content, soil type, and charcoal content are manipulated. Results indicate that over fifty identifiable VOC metabolites are produced from the soils, where many (~15) can be direct indicators of microbial ecology. Principle component analysis (PCA) evidences these trends through similar cluster patterns for the VOC results, the Biolog© results, and FAME. Regression analysis further shows that VOCs are significant (p < 0.05) indicators of microbial stress. Our results are encouraging that characterizing VOCs production in grassland soils are easy to measure, relatively inexpensive method, and useful proxies of subsurface microbial ecosystems and the dynamics of labile carbon in these systems.

  18. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities

    NASA Astrophysics Data System (ADS)

    Hidy, Dóra; Barcza, Zoltán; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Dobor, Laura; Gelybó, Györgyi; Fodor, Nándor; Pintér, Krisztina; Churkina, Galina; Running, Steven; Thornton, Peter; Bellocchi, Gianni; Haszpra, László; Horváth, Ferenc; Suyker, Andrew; Nagy, Zoltán

    2016-12-01

    The process-based biogeochemical model Biome-BGC was enhanced to improve its ability to simulate carbon, nitrogen, and water cycles of various terrestrial ecosystems under contrasting management activities. Biome-BGC version 4.1.1 was used as a base model. Improvements included addition of new modules such as the multilayer soil module, implementation of processes related to soil moisture and nitrogen balance, soil-moisture-related plant senescence, and phenological development. Vegetation management modules with annually varying options were also implemented to simulate management practices of grasslands (mowing, grazing), croplands (ploughing, fertilizer application, planting, harvesting), and forests (thinning). New carbon and nitrogen pools have been defined to simulate yield and soft stem development of herbaceous ecosystems. The model version containing all developments is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module; in this paper, Biome-BGCMuSo v4.0 is documented). Case studies on a managed forest, cropland, and grassland are presented to demonstrate the effect of model developments on the simulation of plant growth as well as on carbon and water balance.

  19. Bark Beetle Impacts on Ecosystem Processes are Over Quickly and Muted Spatially

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Norton, U.; Borkhuu, B.; Reed, D. E.; Peckham, S. D.; Biederman, J. A.; King, A.; Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Frank, J. M.; Massman, W. J.; Mackay, D. S.; Pendall, E. G.

    2013-12-01

    The recent epidemic of bark beetles across western North America has impacted conifers from low to high elevations from New Mexico to Yukon. The mechanism of mortality is clear, with both mountain pine and spruce beetles killing trees by introducing xylem occluding blue stain fungi which dramatically stops transpiration. The visual impact of this outbreak is stunning, with mortality of canopy trees over 90% in some stands. However, emerging work shows that the impact on ecosystem processes is not as dramatic. We hypothesize that increased soil water and nitrogen sets up rapid succession of plant communities, which quickly restores ecosystem processing of water, carbon and nitrogen, while spatial patchiness of mortality and belowground responses mutes the impact as spatial scale increases from stands to watersheds. In support of our hypothesis we found 1) Soil nitrogen and moisture increase within one growing season but decrease to the same as uninfested stands five years later. 2) Soil respiration is correlated with live tree basal area suggesting a large component of autotrophic respiration. 3) Once stands have more than 50% basal area mortality, seedling density increases up to five fold and total non-tree understory cover increased two fold both within five years after infestation. 4) Ecosystem scale estimates of water vapor fluxes do not decline as rapidly as overstory leaf area. 5) Stable isotopes of snow, soil and stream water suggest that increased below canopy evapotranspiration nearly compensates for reduced canopy transpiration. 6) Nested watershed data shows that precipitation variations are much more important in regulating streamflow than changes in canopies from bark beetle induced mortality. These results were tested in the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. TREES was able to predict annual changes in the carbon fluxes but had difficulty simulating soil moisture and annual water budgets likely due to inadequate abiotic water vapor flux mechanisms and an explicit understory canopy layer. Our results show that ecosystems are resilient to the bark beetle epidemic and the resulting ecosystem process change is much less dramatic than might be expected based on the visual impact.

  20. Natural abundance N stable isotopes in plants and soils as an indicator of N deposition hotspots in urban environments

    NASA Astrophysics Data System (ADS)

    Trammell, T. L.

    2017-12-01

    The natural abundance of stable isotopes in plants and soils has been utilized to understand ecological phenomenon. Foliar δ15N is an integrator of soil δ15N, atmospheric N sources, and fractionation processes that occur during plant N uptake, plant N assimilation, and mycorrhizal associations. The amount of reactive N in the environment has greatly increased due to human activities, and urban ecosystems experience excess N deposition that can have cascading effects on plants and soils. Foliar δ15N has been shown to increase with increasing N deposition and nitrification rates suggesting increased foliar δ15N occurs with greater N inputs as a result of accelerated soil N cycling. Thus, foliar δ15N can be an indication of soil N availability for plant uptake and soil N cycling rates, since high N availability results in increased soil N cycling and subsequent loss of 14N. Limited research has utilized foliar and soil δ15N in urban forests to assess the importance of plant uptake of atmospheric N deposition and to gain insight about ecosystem processes. Previous investigations found foliar δ15N of mature trees in urban forests is not only related to elevated pollutant-derived N deposition, but also to soil N availability and soil N cycling rates. Similarly, enriched foliar δ15N of urban saplings was attributed to soil characteristics that indicated higher nitrification, thus, greater nitrate leaching and low N retention in the urban soils. These studies demonstrate the need for measuring the δ15N of various plant and soil N sources while simultaneously measuring soil N processes (e.g., net nitrification rates) in order to use natural abundance δ15N of plants and soils to assess N sources and cycling in urban forests. A conceptual framework that illustrates biogenic and anthropogenic controls on nitrogen isotope composition in urban plants and soils will be presented along with foliar and soil δ15N from urban forests across several cities as a proof of concept. Foliar and soil 15N can be extremely useful when N sources are isotopically distinct, patterns are detectable, or multiple tools are used simultaneously to understand N cycling. N cycles tightly in most ecosystems, thus δ15N in plants and soils can provide information about N source and availability to ecosystems.

  1. Management of Indigenous Plant-Microbe Symbioses Aids Restoration of Desertified Ecosystems

    PubMed Central

    Requena, Natalia; Perez-Solis, Estefania; Azcón-Aguilar, Concepción; Jeffries, Peter; Barea, José-Miguel

    2001-01-01

    Disturbance of natural plant communities is the first visible indication of a desertification process, but damage to physical, chemical, and biological soil properties is known to occur simultaneously. Such soil degradation limits reestablishment of the natural plant cover. In particular, desertification causes disturbance of plant-microbe symbioses which are a critical ecological factor in helping further plant growth in degraded ecosystems. Here we demonstrate, in two long-term experiments in a desertified Mediterranean ecosystem, that inoculation with indigenous arbuscular mycorrhizal fungi and with rhizobial nitrogen-fixing bacteria not only enhanced the establishment of key plant species but also increased soil fertility and quality. The dual symbiosis increased the soil nitrogen (N) content, organic matter, and hydrostable soil aggregates and enhanced N transfer from N-fixing to nonfixing species associated within the natural succession. We conclude that the introduction of target indigenous species of plants associated with a managed community of microbial symbionts is a successful biotechnological tool to aid the recovery of desertified ecosystems. PMID:11157208

  2. Effects of soil oxidation-reduction conditions on internal oxygen transport, root aeration, and growth of wetland plants

    Treesearch

    S.R. Pezeshki; R.D. DeLaune

    2000-01-01

    Characterization of hydric soils and the relationship between soil oxidation-reduction processes and wetland plant distribution are critical to the identification and delineation of wetlands and to our understanding of soil processes and plant functioning in wetland ecosystems. However, the information on the relationship between flood response of wetland plants and...

  3. Detecting Below-Ground Processes, Diversity, and Ecosystem Function in a Savanna Ecosystem Using Spectroscopy Across Different Vegetation Layers

    NASA Astrophysics Data System (ADS)

    Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.

    2017-12-01

    Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.

  4. Validating visual disturbance types and classes used for forest soil monitoring protocols

    Treesearch

    D. S. Page-Dumroese; A. M. Abbott; M. P. Curran; M. F. Jurgensen

    2012-01-01

    We describe several methods for validating visual soil disturbance classes used during forest soil monitoring after specific management operations. Site-specific vegetative, soil, and hydrologic responses to soil disturbance are needed to identify sensitive and resilient soil properties and processes; therefore, validation of ecosystem responses can provide information...

  5. Genotype and plant trait effects on soil CO2 efflux responses to altered precipitation in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Global climate change models predict increasing drought during the growing season, which will alter many ecosystem processes including soil CO2 efflux (JCO2), with potential consequences for carbon retention in soils. Soil moisture, soil temperature and plant traits such...

  6. Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau.

    PubMed

    Ganjurjav, Hasbagan; Hu, Guozheng; Wan, Yunfan; Li, Yue; Danjiu, Luobu; Gao, Qingzhu

    2018-02-01

    Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.

  7. Microbial Community Activity is Insensitive to Passive Warming in a Semiarid Ecosystem

    NASA Astrophysics Data System (ADS)

    Espinosa, N. J.; Gallery, R. E.; Fehmi, J. S.

    2016-12-01

    Soil microorganisms drive ecosystem nutrient cycling through the production of extracellular enzymes, which facilitate organic matter decomposition, and the flux of large amounts of carbon dioxide to the atmosphere. Although aird and semiarid ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Semiarid ecosystems have added complexity due to the widespread biological adaptations to infrequent and discreet precipitation pulses, which enable biological activity to persist throughout dry periods and thrive following seasonal precipitation events. Additionally, the intricacies of plant-microbe interactions and the response of these interactions to a warmer climate and increased precipitation variability in semiarid ecosystems present a continued challenge for climate change research. In this study, we used a passive warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions to two common semiarid soils. The response of soil respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that microbial activity would increase with temperature manipulations when soil moisture limitation was alleviated by summer precipitation. The passive warming treatment was most pronounced during periods of daily and seasonal temperature maxima. For all seven hydrolytic enzymes examined, there was no significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. Surprisingly, soil respiration responded positively to warming for certain carbon additions and seasons, which did not correspond with a similar response in plant biomass. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the soil microbial community activity of semiarid ecosystems is potentially resilient to a warmer environment.

  8. Environmental Filtering Process Has More Important Roles than Dispersal Limitation in Shaping Large-Scale Prokaryotic Beta Diversity Patterns of Grassland Soils.

    PubMed

    Cao, Peng; Wang, Jun-Tao; Hu, Hang-Wei; Zheng, Yuan-Ming; Ge, Yuan; Shen, Ju-Pei; He, Ji-Zheng

    2016-07-01

    Despite the utmost importance of microorganisms in maintaining ecosystem functioning and their ubiquitous distribution, our knowledge of the large-scale pattern of microbial diversity is limited, particularly in grassland soils. In this study, the microbial communities of 99 soil samples spanning over 3000 km across grassland ecosystems in northern China were investigated using high-throughput sequencing to analyze the beta diversity pattern and the underlying ecological processes. The microbial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes across all the soil samples. Spearman's correlation analysis indicated that climatic factors and soil pH were significantly correlated with the dominant microbial taxa, while soil microbial richness was positively linked to annual precipitation. The environmental divergence-dissimilarity relationship was significantly positive, suggesting the importance of environmental filtering processes in shaping soil microbial communities. Structural equation modeling found that the deterministic process played a more important role than the stochastic process on the pattern of soil microbial beta diversity, which supported the predictions of niche theory. Partial mantel test analysis have showed that the contribution of independent environmental variables has a significant effect on beta diversity, while independent spatial distance has no such relationship, confirming that the deterministic process was dominant in structuring soil microbial communities. Overall, environmental filtering process has more important roles than dispersal limitation in shaping microbial beta diversity patterns in the grassland soils.

  9. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    DTIC Science & Technology

    2014-02-01

    moisture level of 14% dry soil mass was maintained for the duration of the study by weekly additions of ASTM Type I water. Soil samples were collected...maintain the initial soil moisture level. One cluster of Orchard grass straw was harvested from a set of randomly selected replicate containers...decomposition is among the most integrating processes within the soil ecosystem because it involves complex interactions of soil microbial, plant , and

  10. A biological quality index for volcanic Andisols and Aridisols (Canary Islands, Spain): variations related to the ecosystem degradation.

    PubMed

    Armas, Cecilia María; Santana, Bayanor; Mora, Juan Luis; Notario, Jesús Santiago; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2007-05-25

    The aim of this work is to identify indicators of biological activity in soils from the Canary Islands, by studying the variation of selected biological parameters related to the processes of deforestation and accelerated soil degradation affecting the Canarian natural ecosystems. Ten plots with different degrees of maturity/degradation have been selected in three typical habitats in the Canary Islands: laurel forest, pine forest and xerophytic scrub with Andisols and Aridisols as the most common soils. The studied characteristics in each case include total organic carbon, field soil respiration, mineralized carbon after laboratory incubation, microbial biomass carbon, hot water-extractable carbon and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities. A Biological Quality Index (BQI) has been designed on the basis of a regression model using these variables, assuming that the total soil organic carbon content is quite stable in nearly mature ecosystems. Total carbon in mature ecosystems has been related to significant biological variables (hot water-extractable carbon, soil respiration and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities), accounting for nearly 100% of the total variance by a multiple regression analysis. The index has been calculated as the ratio of the value calculated from the regression model and the actual measured value. The obtained results show that soils in nearly mature ecosystems have BQI values close to unit, whereas those in degraded ecosystems range between 0.24 and 0.97, depending on the degradation degree.

  11. [Effects of land use change on carbon storage in terrestrial ecosystem].

    PubMed

    Yang, Jingcheng; Han, Xingguo; Huang, Jianhui; Pan, Qingmin

    2003-08-01

    Terrestrial ecosystem is an important carbon pool, which plays a crucial role in carbon biogeochemical cycle. Human activities such as fossil fuel combustion and land use change have resulted in carbon fluxes from terrestrial ecosystem to the atmosphere, which increased the atmospheric CO2 concentration, and reinforced the greenhouse effect. Land use change affects the structure and function of the terrestrial ecosystem, which causes its change of carbon storage. To a great extent, the change of carbon storage lies in the type of ecosystem and the change of land use patterns. The conversion of forest to agricultural land and pasture causes a large reduction of carbon storage in vegetation and soil, and the decrease of soil carbon concentration is mainly caused by the reduction of detritus, the acceleration of soil organic matter decomposition, and the destroy of physical protection to organic matter due to agricultural practices. The loss of soil organic matter appears at the early stage after deforestation, and the loss rate is influenced by many factors and soil physical, chemical and biological processes. The conversion of agricultural land and pasture to forest and many conservative agricultural practices can sequester atmospheric carbon in vegetation and soil. Vegetation can sequester large amounts of carbon from atmosphere, while carbon accumulation in soil varies greatly because of farming history and soil spatial heterogeneity. Conservative agricultural practices such as no-tillage, reasonable cropping system, and fertilization can influence soil physical and chemical characters, plant growth, quality and quantity of stubble, and soil microbial biomass and its activity, and hence, maintain and increase soil carbon concentration.

  12. HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS

    EPA Science Inventory

    The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...

  13. Diagnosis of Processes Controlling Dissolved Organic Carbon (DOC) Export in a Subarctic Region by a Dynamic Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Tang, J.

    2015-12-01

    Permafrost thawing in high latitudes allows more soil organic carbon (SOC) to become hydrologically accessible. This can increase dissolved organic carbon (DOC) exports and carbon release to the atmosphere as CO2 and CH4, with a positive feedback to regional and global climate warming. However, this portion of carbon loss through DOC export is often neglected in ecosystem models. In this paper, we incorporate a set of DOC-related processes (DOC production, mineralization, diffusion, sorption-desorption and leaching) into an Arctic-enabled version of the dynamic ecosystem model LPJ-GUESS (LPJ-GUESS WHyMe) to mechanistically model the DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS WHyMe with these DOC processes is applied to the Stordalen catchment in northern Sweden. The relative importance of different DOC-related processes for mineral and peatland soils for this region have been explored at both monthly and annual scales based on a detailed variance-based Sobol sensitivity analysis. For mineral soils, the annual DOC export is dominated by DOC fluxes in snowmelt seasons and the peak in spring is related to the runoff passing through top organic rich layers. Two processes, DOC sorption-desorption and production, are found to contribute most to the annual variance in DOC export. For peatland soils, the DOC export during snowmelt seasons is constrained by frozen soils and the processes of DOC production and mineralization, determining the magnitudes of DOC desorption in snowmelt seasons as well as DOC sorption in the rest of months, play the most important role in annual variances of DOC export. Generally, the seasonality of DOC fluxes is closely correlated with runoff seasonality in this region. The current implementation has demonstrated that DOC-related processes in the framework of LPJ-GUESS WHyMe are at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The quantified contributions from different processes on DOC export dynamics could be further linked to the climate change, vegetation composition change and permafrost thawing in this region.

  14. Greenhouse gas emissions and N turnover along an altitudinal gradient at Mt. Kilimanjaro, Tanzania.

    NASA Astrophysics Data System (ADS)

    Gütlein, Adrian; Gerschlauer, Friederike; Zistl-Schlingmann, Marcus; Dannenmann, Michael; Meier, Rudolf; Kolar, Alison; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-04-01

    Worldwide climate and land-use change force alterations in various ecosystem properties and functions such as diversity and activity of soil microbial communities which are responsible for biogeochemical processes like soil nitrogen (N) turnover and associated greenhouse gas (GHG) exchange. Tropical deforestation is highest in Africa and despite the importance of those ecosystems to global climate and biogeochemical cycles, data for greenhouse gas exchange is still rare (Serca et al., 1994, Werner et al., 2007) and no study regarding N turnover processes has been published yet. For that reason, we focused on seven different land-use types extending along an altitudinal gradient (950 -- 3880m) at Mt. Kilimanjaro, East Africa, covering (semi-) natural savanna, two montane forests and one afro alpine ecosystem, an extensive agroforest (homegarden) and an intensively managed coffee plantation. On all ecosystems we measured CO_2, CH4 and N_2O fluxes and gross rates of ammonification, nitrification, N immobilization, and dissimilatory nitrate reduction to ammonium (DNRA). GHG results reveal pronounced N_2O fluxes depending mainly on soil moisture and to a lesser extent on soil temperature. Emissions are highest during the rainy seasons while lowest at dry season conditions. The largest N_2O emissions are recognizable at Ocotea forest, most likely due to the generally higher SOC/ totN and wetter conditions favoring formation and emission of N_2O via denitrification. Soils of the studied ecosystems were a sink of atmospheric CH

  15. Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region

    PubMed Central

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M.

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%–386% higher and agricultural ecosystems exhibited lower CO2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions. PMID:23082234

  16. Soil respiration in different agricultural and natural ecosystems in an arid region.

    PubMed

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  17. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  18. Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest

    Treesearch

    Tana Wood; W. L. Silver

    2012-01-01

    [1] Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and...

  19. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska

    Treesearch

    Q. Zhuang; A. D. McGuire; K. P. O' Neill; J. W. Harden; V. E. Romanovsky; J. Yarie

    2003-01-01

    In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce...

  20. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland

    Treesearch

    Aimee T. Classen; Steven T. Overby; Stephen C. Hart; George W. Koch; Thomas G. Whitham

    2007-01-01

    Herbivores can directly impact ecosystem function by altering litter quality of an ecosystem or indirectly by shifting the composition of microbial communities that mediate nutrient processes. We examined the effects of tree susceptibility and resistance to herbivory on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore...

  1. Response of a subalpine grassland to simulated grazing: Aboveground productivity along soil phosphorus gradients

    Treesearch

    C. Thiel-Egenter; A. C. Risch; M. F. Jurgensen; D. S. Page-Dumroese; B. O. Krusi; M. Schutz

    2007-01-01

    Interactions between grassland ecosystems and vertebrate herbivores are critical for a better understanding of ecosystem processes, but diverge widely in different ecosystems. In this study, we examined plant responses to simulated red deer (Cervus elaphus L.) grazing using clip-plot experiments in a subalpine grassland ecosystem of the Central...

  2. Principal factors of soil spatial heterogeneity and ecosystem services at the Central Chernozemic Region of Russia

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Valentini, Riccardo

    2013-04-01

    The essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central Chernozemic Region of Russia which is not only one of the biggest «food baskets» in RF but very important regulator of ecosystem principal services at the European territory of Russia. The original spatial heterogeneity of dominated here forest-steppe and steppe Chernozems and the other soils has been further complicated by a specific land-use history and different-direction soil successions due to environmental changes and more than 1000-year history of human impacts. The carried out long-term researches of representative natural, rural and urban landscapes in Kursk, Orel, Tambov and Voronezh oblasts give us the regional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. The validation and ranging of the limiting factors of ESCP regulation and development, ecosystem principal services, land functional qualities and agroecological state have been done for dominating and most dynamical components of ESCP regional-typological forms - with application of regional and local GIS, soil spatial patterns mapping, traditional regression kriging, correlation tree models. The outcomes of statistical modeling show the essential amplification of erosion, dehumification and CO2 emission, acidification and alkalization, disaggregation and overcompaction processes due to violation of agroecologically sound land-use systems and traditional balances of organic matter, nutrients, Ca and Na in agrolandscapes. Due to long-term intensive and out-of-balance land-use practices the famous Russian Chernozems begin to lose not only their unique natural features of (around 1 m of humus horizon, 4-6% of Corg and favorable agrophysical features), but traditional soil cover patterns, ecosystem services and agroecological functions. Key-site monitoring results and regional generalized data showed 1-1.5 % Corg lost during last 50 years period and active processes of CO2 emission and humus profile eluvial-illuvial redistribution too. Forest-steppe Chernozems are usually characterized by higher stability than steppe ones. The ratio between erosive and biological losses in humus supplies can be ten¬tatively estimated as fifty-fifty with strong spatial variability due to slope and land-use parameters. These processes have essentially different sets of environmental consequences and ecosystem services that we need to understand in frame of agroecological problems development prediction. A drop of Corg content below threshold "humus limiting content" values (3-4% of Corg) considerably reduces effectiveness of used fertilizers and possibility of sustainable agronomy here. This problem environmental and agroecological situation can be essentially improved by new federal law on environmentally friendly agriculture but it's draft is still in the process of deliberation. Quantitative analysis of principal ecosystem services, soil cover patterns and degradation processes in parameters of land qualities help us in developing different-scale projects for agricultural and urban land-use, taking into attention not only economical benefits but environmental functions too. The conceptions of ecosystem services and local land resource management are becoming more and more popular at the Central Chernozemic Region of Russia due to innovation application of basic agroecology, ecological monitoring and soil science achievements.

  3. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.

    PubMed

    Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong

    2013-02-01

    Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.

  4. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems.

    PubMed

    Lynn, Tin Mar; Ge, Tida; Yuan, Hongzhao; Wei, Xiaomeng; Wu, Xiaohong; Xiao, Keqing; Kumaresan, Deepak; Yu, San San; Wu, Jinshui; Whiteley, Andrew S

    2017-04-01

    CO 2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14 C ( 14 C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14 C-labeled soil organic carbon ( 14 C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14 C-SOC level, and 14 C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO 2 -fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.

  5. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

    PubMed Central

    Lladó, Salvador; López-Mondéjar, Rubén

    2017-01-01

    SUMMARY The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. PMID:28404790

  6. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    PubMed

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  7. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  8. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective.

    PubMed

    Robertson, Susan J; McGill, William B; Massicotte, Hugues B; Rutherford, P Michael

    2007-05-01

    The importance of developing multi-disciplinary approaches to solving problems relating to anthropogenic pollution is now clearly appreciated by the scientific community, and this is especially evident in boreal ecosystems exposed to escalating threats of petroleum hydrocarbon (PHC) contamination through expanded natural resource extraction activities. This review aims to synthesize information regarding the fate and behaviour of PHCs in boreal forest soils in both ecological and sustainable management contexts. From this, we hope to evaluate potential management strategies, identify gaps in knowledge and guide future research. Our central premise is that mycorrhizal systems, the ubiquitous root symbiotic fungi and associated food-web communities, occupy the structural and functional interface between decomposition and primary production in northern forest ecosystems (i.e. underpin survival and productivity of the ecosystem as a whole), and, as such, are an appropriate focal point for such a synthesis. We provide pertinent basic information about mycorrhizas, followed by insights into the ecology of ecto- and ericoid mycorrhizal systems. Next, we review the fate and behaviour of PHCs in forest soils, with an emphasis on interactions with mycorrhizal fungi and associated bacteria. Finally, we summarize implications for ecosystem management. Although we have gained tremendous insights into understanding linkages between ecosystem functions and the various aspects of mycorrhizal diversity, very little is known regarding rhizosphere communities in PHC-contaminated soils. This makes it difficult to translate ecological knowledge into environmental management strategies. Further research is required to determine which fungal symbionts are likely to survive and compete in various ecosystems, whether certain fungal - plant associations gain in ecological importance following contamination events, and how PHC contamination may interfere with processes of nutrient acquisition and exchange and metabolic processes. Research is also needed to assess whether the metabolic capacity for intrinsic decomposition exists in these ecosystems, taking into account ecological variables such as presence of other organisms (and their involvement in syntrophic biodegradation), bioavailability and toxicity of mixtures of PHCs, and physical changes to the soil environment.

  9. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils

    PubMed Central

    Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community. PMID:28767679

  10. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  11. Global comparison reveals biogenic weathering as driven by nutrient limitation at ecosystem scale

    NASA Astrophysics Data System (ADS)

    Boy, Jens; Godoy, Roberto; Dechene, Annika; Shibistova, Olga; Amir, Hamid; Iskandar, Issi; Fogliano, Bruno; Boy, Diana; McCulloch, Robert; Andrino, Alberto; Gschwendtner, Silvia; Marin, Cesar; Sauheitl, Leopold; Dultz, Stefan; Mikutta, Robert; Guggenberger, Georg

    2017-04-01

    A substantial contribution of biogenic weathering in ecosystem nutrition, especially by symbiotic microorganisms, has often been proposed, but large-scale in vivo studies are still missing. Here we compare a set of ecosystems spanning from the Antarctic to tropical forests for their potential biogenic weathering and its drivers. To address biogenic weathering rates, we installed mineral mesocosms only accessible for bacteria and fungi for up to 4 years, which contained freshly broken and defined nutrient-baring minerals in soil A horizons of ecosystems along a gradient of soil development differing in climate and plant species communities. Alterations of the buried minerals were analyzed by grid-intersection, confocal lascer scanning microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy on the surface and on thin sections. On selected sites, carbon fluxes were tracked by 13C labeling, and microbial community was identified by DNA sequencing. In young ecosystems (protosoils) biogenic weathering is almost absent and starts after first carbon accumulation by aeolian (later litter) inputs and is mainly performed by bacteria. With ongoing soil development and appearance of symbiotic (mycorrhized) plants, nutrient availability in soil increasingly drove biogenic weathering, and fungi became the far more important players than bacteria. We found a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. We conclude that nutrient limitations at ecosystem scale are generally counteracted by adapted fungal biogenic weathering. The close relation between fungal weathering and plant-available nutrients over a large range of severely contrasting ecosystems points towards a direct energetic support of these weathering processes by the photoautotrophic community, making biogenic weathering a directional on-demand process common in all types of ecosystems.

  12. Physical Processes Dictate Early Biogeochemical Dynamics of Soil Pyrogenic Organic Matter in a Subtropical Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Stuart, Jason M.; Anderson, Russell; Lazzarino, Patrick; Kuehn, Kevin A.; Harvey, Omar R.

    2018-05-01

    Quantifying links between pyOM dynamics, environmental factors and processes is central to predicting ecosystem function and response to future perturbations. In this study, changes in carbon (TC), nitrogen (TN) , pH and relative recalcitrance (R50) for pine- and cordgrass-derived pyOM were measured at 3-6 weeks intervals throughout the first year of burial in the soil. Objectives were to 1) identify key environmental factors and processes driving early-stage pyOM dynamics, and 2) develop quantitative relationships between environmental factors and changes in pyOM properties. The study was conducted in sandy soils of a forested ecosystem in the Longleaf pine range, US with a focus on links between changes in pyOM properties, fire history (FH), cumulative precipitation (Pcum), average temperature (Tavg) and soil residence time (SRT). Pcum, SRT and Tavg were the main factors controlling TC and TN accounting for 77-91% and 64-96% of their respective variability. Fire history, along with Pcum, SRT and Tavg, exhibited significant controlling effects on pyOM, pH and R50 - accounting for 48-91% and 88-93% of respective variability. Volatilization of volatiles and leaching of water-soluble components (in summer) and the sorption of exogenous organic matter (fall through spring) were most plausibly controlling pyOM dynamics in this study. Overall, our results point to climatic and land management factors and physicochemical process as the main drivers of pyOM dynamics in the pine ecosystems of the Southeastern US.

  13. Indicators of ecosystem function identify alternate states in the sagebrush steppe.

    PubMed

    Kachergis, Emily; Rocca, Monique E; Fernandez-Gimenez, Maria E

    2011-10-01

    Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics for rangeland management. Our findings suggest that the IRH approximate ecosystem processes and can distinguish between alternate states and communities and identify transitions when building data-driven STMs. Functional indicators are a simple, efficient way to create data-driven models that are consistent with alternate state theory. Managers can use them to improve current model-building methods and thus apply state-and-transition models more broadly for land management decision-making.

  14. Arbuscule mycorrhizae: A linkage between erosion and plant processes in a southwest grassland

    Treesearch

    Mary O' Dea; D. Phillip Guertin; C. P. P. Reid

    2000-01-01

    Plant and soil processes within a natural ecosystem interact with surface hydrology through their influence on surface roughness, soil structure, and evaporation, and through their relation with soil biota. In the Southwest, decreases in perennial grass cover and erosion on uplands and stream channels can initiate a decline in watershed condition. Agronomic literature...

  15. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    NASA Astrophysics Data System (ADS)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to be the driver of the degradation process. Thus, earthworms contribute to a sustainable control of fungal pathogens like Fusarium and its mycotoxins in wheat straw by reducing the risk of plant diseases and environmental pollution as ecosystem services. Further studies are planned within the EU-project SoilMan under the BiodivERsA network. In context of the suppression of fungal plant pathogens and the detoxification of their mycotoxins by soil organisms in agroecosystems it is hypothesised that (1) processes related to services or disservices are induced and directed by abundance and activity of functional groups of soil biota; (2) dynamics and interaction in the soil biota community control ecosystem function and services.

  16. Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.

    2018-01-01

    Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.

  17. Belowground processes regulate ecosystem nitrogen retention during a multi-year forest dieback event

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Le Moine, J.; Gough, C. M.; Vogel, C.; Nadelhoffer, K. J.; Curtis, P.

    2013-12-01

    In the absence of disturbances, forests typically have strong retention capacity for nitrogen (N), which is internally recycled between soil, microbial and plant pools. However, disturbances that trigger senescence or mortality of forest vegetation may alter internal N cycling processes and lead to the loss of ecosystem N retention capacity. Here, we present an assessment of the role played by belowground processes in governing ecosystem N cycling and retention during an experimental disturbance that killed the dominant canopy taxa in a Great Lakes forest over a 4-year period. After applying stem girdling to hasten the age-related senescence of the dominant taxa (Populus and Betula spp.; ~35% of the basal area), we observed a 38% decrease in stand-level allocation of nonstructural carbohydrates to fine roots, which triggered a tenfold increase in the rate of fine root turnover and increased soil NH4+ and NO3- availability. Elevated soil N availability decreased mycorrhizal hyphal foraging and N uptake, effectively down-regulating the role of symbiotic fungi in the N nutrition of the residual (longer-lived) tree taxa. However, even as residual trees took up less N from mycorrhizal sources, their overall N uptake increased and served to offset the loss of the dominant taxa. The net result of this offset was that canopy N stocks remained constant through the disturbance period and there was no appreciable loss of ecosystem N stocks due to leaching or gaseous export. In sum, the cascade of changes in root, microbial, and soil processes during this experiment indicates that these interdependent components of the belowground system comprised a mechanism responsible for retention and redistribution of ecosystem N stocks during the disturbance period.

  18. Microbial Community Activity And Plant Biomass Are Insensitive To Passive Warming In A Semiarid Ecosystem

    NASA Astrophysics Data System (ADS)

    Espinosa, N. J.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2017-12-01

    Soil microorganisms drive biogeochemical and nutrient cycling through the production of extracellular enzymes that facilitate organic matter decomposition and the flux of large amounts of carbon dioxide to the atmosphere. Although dryland ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Understanding the responses of these globally predominant dryland ecosystems is therefore important yet complicated by co-occurring environmental changes. For example, the widespread and pervasive transition from grass to woody dominated landscapes is changing the hydrology, fire regimes, and carbon storage potential of semiarid ecosystems. In this study, we used a novel passive method of warming to conduct a warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions that accompany woody plant encroachment in semiarid ecosystems. The response of heterotrophic respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that the temperature manipulations would have direct and indirect effects on microbial activity. Warmer soils directly reduce the activity of soil extracellular enzymes through denaturation and dehydration of soil pores and indirectly through reducing microbe-available substrates and plant inputs. Overall, reduction in extracellular enzyme activity may reduce decomposition of coarse woody debris and potentially enhance soil carbon storage in semiarid ecosystems. For all seven hydrolytic enzymes examined as well as heterotrophic respiration, there was no consistent or significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the controls over soil microbial community activity in semiarid ecosystems are complex and are potentially regulated more by pulse events than small changes in conditions such as a warmer environment.

  19. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services.

    PubMed

    Gianinazzi, Silvio; Gollotte, Armelle; Binet, Marie-Noëlle; van Tuinen, Diederik; Redecker, Dirk; Wipf, Daniel

    2010-11-01

    The beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the 'first green revolution', less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution. These resources and processes, which are called ecosystem services, include products like food and processes like nutrient transfer. Many people have been under the illusion that these ecosystem services are free, invulnerable and infinitely available; taken for granted as public benefits, they lack a formal market and are traditionally absent from society's balance sheet. In 1997, a team of researchers from the USA, Argentina and the Netherlands put an average price tag of US $33 trillion a year on these fundamental ecosystem services. The present review highlights the key role that the AM symbiosis can play as an ecosystem service provider to guarantee plant productivity and quality in emerging systems of sustainable agriculture. The appropriate management of ecosystem services rendered by AM will impact on natural resource conservation and utilisation with an obvious net gain for human society.

  20. Responses of alpine grassland on Qinghai-Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

    NASA Astrophysics Data System (ADS)

    Yi, Shuhua; Wang, Xiaoyun; Qin, Yu; Xiang, Bo; Ding, Yongjian

    2014-07-01

    Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost hydrology scheme to examine this issue. Our results showed that 1) the DOS-TEM model could properly simulate the responses of soil thermal and hydrological dynamics and of ecosystem dynamics to climate warming and spatial differences in precipitation; 2) the simulated results were consistent with plot-scale studies showing that warming caused an increase in maximum unfrozen thickness, a reduction in vegetation and soil carbon pools as a whole, and decreases in soil water content, net primary production, and heterotrophic respiration; and 3) the simulated results were also consistent with basin-scale studies showing that the ecosystem responses to warming were different in regions with different combinations of water and energy constraints. Permafrost prevents water from draining into water reservoirs. However, the degradation of permafrost in response to warming is a long-term process that also enhances evapotranspiration. Thus, the degradation of the alpine grassland ecosystem on the Qinghai-Tibetan Plateau (releasing carbon) cannot be mainly attributed to the disappearing waterproofing function of permafrost.

  1. Soil mapping and processes modelling for sustainable land management: a review

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Brevik, Eric; Muñoz-Rojas, Miriam; Miller, Bradley; Smetanova, Anna; Depellegrin, Daniel; Misiune, Ieva; Novara, Agata; Cerda, Artemi

    2017-04-01

    Soil maps and models are fundamental for a correct and sustainable land management (Pereira et al., 2017). They are an important in the assessment of the territory and implementation of sustainable measures in urban areas, agriculture, forests, ecosystem services, among others. Soil maps represent an important basis for the evaluation and restoration of degraded areas, an important issue for our society, as consequence of climate change and the increasing pressure of humans on the ecosystems (Brevik et al. 2016; Depellegrin et al., 2016). The understanding of soil spatial variability and the phenomena that influence this dynamic is crucial to the implementation of sustainable practices that prevent degradation, and decrease the economic costs of soil restoration. In this context, soil maps and models are important to identify areas affected by degradation and optimize the resources available to restore them. Overall, soil data alone or integrated with data from other sciences, is an important part of sustainable land management. This information is extremely important land managers and decision maker's implements sustainable land management policies. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. References Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P., Misiune, I., Egarter-Vigl, L. (2016) Mapping Ecosystem Services in Lithuania. International Journal of Sustainable Development and World Ecology, 23, 441-455. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. (2017) Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (Eds.) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006

  2. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    Treesearch

    S. Vicca; M. Bahn; M. Estiarte; E. E. van Loon; R. Vargas; G. Alberti; P. Ambus; M. A. Arain; C. Beier; L. P. Bentley; W. Borken; N. Buchmann; S. L. Collins; G. de Dato; J. S. Dukes; C. Escolar; P. Fay; G. Guidolotti; P. J. Hanson; A. Kahmen; G. Kröel-Dulay; T. Ladreiter-Knauss; K. S. Larsen; E. Lellei-Kovacs; E. Lebrija-Trejos; F. T. Maestre; S. Marhan; M. Marshall; P. Meir; Y. Miao; J. Muhr; P. A. Niklaus; R. Ogaya; J. Peñuelas; C. Poll; L. E. Rustad; K. Savage; A. Schindlbacher; I. K. Schmidt; A. R. Smith; E. D. Sotta; V. Suseela; A. Tietema; N. van Gestel; O. van Straaten; S. Wan; U. Weber; I. A. Janssens

    2014-01-01

    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends an extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the...

  3. Greenhouse gas exchange in tropical mountain ecosystems in Tanzania

    NASA Astrophysics Data System (ADS)

    Gerschlauer, Friederike; Kikoti, Imani; Kiese, Ralf

    2014-05-01

    Tropical mountain ecosystems with their mostly immense biodiversity are important regions for natural resources but also for agricultural production. Their supportive ecosystem processes are particularly vulnerable to the combined impacts of global warming and the conversion of natural to human-modified landscapes. Data of impacts of climate and land use change on soil-atmosphere interactions due to GHG (CO2, CH4, and N2O) exchange from these ecosystems are still scarce, in particular for Africa. Tropical forest soils are underestimated as sinks for atmospheric CH4 with regard to worldwide GHG budgets (Werner et al. 2007, J GEOPHYS RES Vol. 112). Even though these soils are an important source for the atmospheric N2O budget, N2O emissions from tropical forest ecosystems are still poorly characterized (Castaldi et al. 2013, Biogeosciences 10). To obtain an insight of GHG balances of selected ecosystems soil-atmosphere exchange of N2O, CH4 and CO2 was investigated along the southern slope of Mt. Kilimanjaro, Tanzania. We will present results for tropical forests in three different altitudes (lower montane, Ocotea, and Podocarpus forest), home garden (extensive agro-forestry), and coffee plantation (intensive agro-forestry). Therefore we used a combined approach consisting of a laboratory parameterization experiment (3 temperature and 2 moisture levels) and in situ static chamber measurements for GHG exchange. Field measurements were conducted during different hygric seasons throughout two years. Seasonal variation of temperature and especially of soil moisture across the different ecosystems resulted in distinct differences in GHG exchange. In addition environmental parameters like soil bulk density and substrate availability varying in space strongly influenced the GHG fluxes within sites. The results from parameterization experiments and in situ measurements show that natural forest ecosystems and extensive land use had higher uptakes of CH4. For the investigated forest ecosystems we found considerable differences in soil sink strength for CH4. N2O emissions were highest in natural forest ecosystems even though N input in the intensively managed system was considerably higher. Highest N2O efflux rates were identified in the region of highest mean annual precipitation. CO2 emissions reduced from managed to natural ecosystems. In general an increase in temperature as well as in soil moisture caused higher GHG fluxes throughout all investigated natural and managed ecosystems. With increasing altitude of the investigated forests GHG emissions reduced overall.

  4. The methane sink associated to soils of natural and agricultural ecosystems in Italy.

    PubMed

    Castaldi, Simona; Costantini, Massimo; Cenciarelli, Pietro; Ciccioli, Paolo; Valentini, Riccardo

    2007-01-01

    In the present work, the CH4 sink associated to Italian soils was calculated by using a process-based model controlled by gas diffusivity and microbial activity, which was run by using a raster-based geographical information system. Georeferenced data included land cover CLC2000, soil properties from the European Soil Database, climatic data from the MARS-STAT database, plus several derived soils properties based on published algorithms applied to the above mentioned databases. Overall CH4 consumption from natural and agricultural sources accounted for a total of 43.3 Gg CH4 yr(-1), with 28.1 Gg CH4 yr(-1) removed in natural ecosystems and 15.1 Gg CH4 yr(-1) in agricultural ecosystems. The highest CH4 uptake rates were obtained for natural areas of Southern Apennines and islands of Sardinia and Sicily, and were mainly associated to areas covered by sclerophyllous vegetation (259.7+/-30.2 mg CH4 m(-2) yr(-1)) and broad-leaved forest (237.5 mg CH4 m(-2) yr(-1)). In terms of total sink strength broad-leaved forests were the dominant ecosystem. The overall contribution of each ecosystem type to the whole CH4 sink depended on the total area covered by the specific ecosystem and on its exact geographic distribution. The latter determines the type of climate present in the area and the dominant soil type, both factors which showed to have a strong influence on CH4 uptake rates. The aggregated CH4 sink, calculated for natural ecosystems present in the Italian region, is significantly higher than previously reported estimates, which were extrapolated from fluxes measured in other temperate ecosystems.

  5. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  6. The role of water tracks in altering biotic and abiotic soil properties and processes in a polar desert in Antarctica

    NASA Astrophysics Data System (ADS)

    Ball, Becky A.; Levy, Joseph

    2015-02-01

    Groundwater discharge via water tracks is a largely unexplored passageway routing salts and moisture from high elevations to valley floors in the McMurdo Dry Valleys (MDV) of Antarctica. Given the influence that water tracks have on the distribution of liquid water in seasonally thawed Antarctic soils, it is surprising how little is known about their role in structuring biotic and abiotic processes this cold desert ecosystem. Particularly, it is unclear how soil biota will respond to the activation of new water tracks resulting from enhanced active layer thickening or enhanced regional snowmelt. In the MDV, water tracks are both wetter and more saline than the surrounding soils, constituting a change in soil habitat suitability for soil biology and therefore the ecological processes they carry out. To investigate the net impact that water tracks have on Dry Valley soil biology, and therefore the ecosystem processes for which they are responsible, we analyzed microbial biomass and activity in soils inside and outside of three water tracks and relate this to the physical soil characteristics. Overall, our results suggest that water tracks can significantly influence soil properties, which can further impact biological biovolume and both biotic and abiotic fluxes of CO2. However, the nature of its impact differs with water track, further suggesting that not all water tracks can be regarded the same.

  7. Importance of vegetation dynamics for future terrestrial carbon cycling

    NASA Astrophysics Data System (ADS)

    Ahlström, Anders; Xia, Jianyang; Arneth, Almut; Luo, Yiqi; Smith, Benjamin

    2015-05-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by biome shifts, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.

  8. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem.

    PubMed

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-03-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.

  9. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    PubMed Central

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  10. Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-covered ecosystems.

    PubMed

    Templer, Pamela H; Reinmann, Andrew B; Sanders-DeMott, Rebecca; Sorensen, Patrick O; Juice, Stephanie M; Bowles, Francis; Sofen, Laura E; Harrison, Jamie L; Halm, Ian; Rustad, Lindsey; Martin, Mary E; Grant, Nicholas

    2017-01-01

    Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise.

  11. Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-covered ecosystems

    PubMed Central

    Templer, Pamela H.; Reinmann, Andrew B.; Sanders-DeMott, Rebecca; Sorensen, Patrick O.; Juice, Stephanie M.; Bowles, Francis; Sofen, Laura E.; Harrison, Jamie L.; Halm, Ian; Rustad, Lindsey; Martin, Mary E.; Grant, Nicholas

    2017-01-01

    Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise. PMID:28207766

  12. The increasing importance of atmospheric demand in regulating ecosystem functioning

    USDA-ARS?s Scientific Manuscript database

    The profound effects of hydrologic stress on ecosystem productivity, water use, and mortality are driven by two variables – soil moisture supply and atmospheric demand for water. The impact of these two drivers on ecosystem processes has historically been difficult to disentangle, and often the rol...

  13. Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions

    PubMed Central

    Niboyet, Audrey; Brown, Jamie R.; Dijkstra, Paul; Blankinship, Joseph C.; Leadley, Paul W.; Le Roux, Xavier; Barthes, Laure; Barnard, Romain L.; Field, Christopher B.; Hungate, Bruce A.

    2011-01-01

    Background Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases. Methodology/Principal Findings We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO2 concentration, precipitation and nitrogen supply on soil nitrous oxide (N2O) emissions in a grassland ecosystem. We examined the responses of soil N2O emissions, as well as the responses of the two main microbial processes contributing to soil N2O production – nitrification and denitrification – and of their main drivers. We show that the fire disturbance greatly increased soil N2O emissions over a three-year period, and that elevated CO2 and enhanced nitrogen supply amplified fire effects on soil N2O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO2 and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. Conclusions/Significance Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence. PMID:21687708

  14. Effects of land-use management on soil microbes to degrade organic matter through captured metagenomics and metatranscriptomics

    NASA Astrophysics Data System (ADS)

    Manoharan, Lokeshwaran; Ahren, Dag; Urich, Tim; Hedlund, Katarina

    2017-04-01

    The role of microbial communities in different soil ecosystem processes has been hard to determine in the past due to their vast diversity both in terms of taxonomy and functions. Molecular methods such as high-throughput sequencing of environmental communities have made it easier to delve into these diverse ecosystems and understand their functions. Trait-based approaches through quantification of functional genes and their expression have shown to be much more meaningful in explaining ecosystem functioning than the taxonomy based approaches. One such approach is the "captured metagenomics" technique where only the genetic regions of functional enzymes involved in a particular ecosystem process such as carbon metabolism is targeted from the genetic pool and sequenced. This allows focused investigations of ecosystem processes through functional genes in complex environments such as soils. In our study, we have implemented this method to look into the effects of land-use management on the functional genetic diversity of microbial communities to degrade soil organic matter (SOM). Soils from different agricultural and grassland fields in southern Sweden were chosen in this study. Oligonucleotide probes were generated based on the genetic sequences of enzymes involved in organic matter degradation from public databases. On the DNA level, there was a significant shift in the functional genetic diversity of microbes to degrade SOM due to land-use management. Grasslands had a higher abundance and diversity of genes coding for enzymes involved in SOM degradation than agricultural soils. The amount of nitrogen was the main factor that affected the functional diversity of the microbes that degrade SOM in these soils. Interestingly, there was no correlation between the functional diversity of microbes to their taxonomic diversity measured through traditional ribosomal sequencing. In addition, for the first time the capture method was used in large scale, targeting many genes coding for SOM degrading enzymes coupled with RNA/cDNA from the soils to quantify their expressions. For this, the soils from different land-use managements were treated with straw, while the microbial growth rates in these soils were also monitored for a month. RNA was extracted from at three different time points from both treated and untreated soils from different land-use managements. Agricultural soils with straw addition had higher relative microbial growth rates and higher abundance of gene sequences captured compared to the control and grassland soils. Land-use management seems to be the most significant factor in affecting the expression of SOM degrading genes in these soils. Additional analyses of the generated data are expected to provide valuable insights on how land-use management affects the microbial responses during addition of organic matter in soils.

  15. Quantifying the influence of deep soil moisture on ecosystem albedo: the role of vegetation Zulia M. Sánchez-Mejía 1 and Shirley A. Papuga1 1School of Natural Resources and the Environment, University of Arizona, Tucson, AZ

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Z. M.; Papuga, S. A.

    2012-12-01

    Water limited ecosystems in arid and semiarid regions are characterized by sparse vegetation and a relatively large fraction of bare soil. Importantly, the land surface in these dryland regions is highly sensitive to pulses of moisture that affect the vegetation canopy in density and color, as well as the soil color. Changes in surface conditions due to these pulses have been shown to affect the surface energy fluxes and atmospheric processes in these regions. For instance, previous studies have shown that shallow soil moisture ( < 20 cm below the surface) significantly changes surface albedo (a= SWup/ SWin). Recent studies have highlighted the importance of deep soil moisture ( > 20 cm below the surface) for vegetation dynamics in these regions. We hypothesize that deep soil moisture will change vegetation canopy density and color enough that changes in albedo will be observable at the surface, therefore linking deep soil moisture and albedo. We adopt a conceptual framework to address this hypothesis, where at any point in time the soil profile falls into one of four cases: (1) dry shallow soil and dry deep soil; (2) wet shallow soil and dry deep soil; (3) wet shallow soil and wet deep soil; and (4) dry shallow soil and wet deep soil. At a creosotebush dominated ecosystem of the Santa Rita Experimental Range, southern Arizona during summers of 2011 and 2012, we took albedo measurements during these cases at multiple bare and vegetated patches within the footprint of an eddy covariance tower. We found that when the soil is completely dry (Case 1) albedo is highest in both bare and vegetated patches. Likewise, when the soil is wet in both the shallow and deep regions (Case 3), albedo is lowest in both bare and vegetated patches. Interestingly, we also found that albedo is significantly lower for vegetated patches when the deep soil is wet and shallow soil is dry (Case 4). These results imply that deep soil moisture can be important in altering ecosystem level albedo. We note that ecosystems with higher percent vegetative cover are likely to be more sensitive to deep soil moisture driven changes in albedo. To quantify the influence of percent cover on ecosystem albedo, we populate a 100 x 100 cell grid randomly with bare and vegetated cells. For each case, we assign an albedo value to each cell based on probability distribution functions (PDFs) of soil moisture and albedo created from our field campaign data. Using this technique we can identify for each soil moisture case at which point the percent vegetative cover will significantly influence ecosystem albedo. Quantitative analyses of these ecosystem interactions help identify the unique role of deep soil moisture in land surface - atmosphere interactions.

  16. Effects of Bromus tectorum invasion on microbial carbon and nitrogen cycling in two adjacent undisturbed arid grassland communities

    USGS Publications Warehouse

    Schaeffer, Sean M.; Ziegler, Susan E.; Belnap, Jayne; Evans, R.D.

    2012-01-01

    Soil nitrogen (N) is an important component in maintaining ecosystem stability, and the introduction of non-native plants can alter N cycling by changing litter quality and quantity, nutrient uptake patterns, and soil food webs. Our goal was to determine the effects of Bromus tectorum (C3) invasion on soil microbial N cycling in adjacent non-invaded and invaded C3 and C4 native arid grasslands. We monitored resin-extractable N, plant and soil δ13C and δ15N, gross rates of inorganic N mineralization and consumption, and the quantity and isotopic composition of microbial phospholipid biomarkers. In invaded C3 communities, labile soil organic N and gross and net rates of soil N transformations increased, indicating an increase in overall microbial N cycling. In invaded C4 communities labile soil N stayed constant, but gross N flux rates increased. The δ13C of phospholipid biomarkers in invaded C4 communities showed that some portion of the soil bacterial population preferentially decomposed invader C3-derived litter over that from the native C4 species. Invasion in C4 grasslands also significantly decreased the proportion of fungal to bacterial phospholipid biomarkers. Different processes are occurring in response to B. tectorum invasion in each of these two native grasslands that: 1) alter the size of soil N pools, and/or 2) the activity of the microbial community. Both processes provide mechanisms for altering long-term N dynamics in these ecosystems and highlight how multiple mechanisms can lead to similar effects on ecosystem function, which may be important for the construction of future biogeochemical process models.

  17. Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, Ashley A.; Hart, Stephen C.; Ketterer, Michael E.; Newman, Gregory S.; Kowler, Andrew L.

    2015-06-01

    Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.

  18. Site preparation burning to improve southern Appalachian pine-hardwood stands: nitrogen responses in soil, soil water, and streams

    Treesearch

    Jennifer D. Knoepp; Wayne T. Swank

    1993-01-01

    Few studies have examined the consequences of site preparation burning in an ecosystem context. As Swift et al. (1993) explain in detail, a major study is being conducted in the southern Appalachians to understand the effects of a fell and bum site preparation treatment on basic ecosystem processes and the integrated response to disturbance. The intent is to determine...

  19. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.

    PubMed

    Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin

    2018-06-04

    Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  20. Phosphorus Dynamics in High Latitude Soils

    NASA Astrophysics Data System (ADS)

    Vincent, A. G.; Vestergren, J.; Gröbner, G.; Wardle, D.; Schleucher, J.; Giesler, R.

    2016-12-01

    Phosphorus (P) is an important macronutrient in boreal forests and arctic and subarctic tundra, and elucidating the factors that control its bioavailability is essential to understand the function of these ecosystems, now and under global change. We tested several hypotheses about differences in soil P composition along natural gradients of temperature, ecosystem development, soil metal concentration, and fire frequency in Northern Sweden. To characterise P composition we used traditional soil P fractionation procedures as well as 1-dimensional 31P Nuclear Magnetic Resonance (NMR) and novel 2-dimensional 1H-31P NMR techniques. Here we synthesize the main patterns emerging from this work. Temperature seems to be an important driver of P bioavailability regardless of vegetation type in subarctic tundra, given a positive correlation between temperature and the concentration of bioavailable soil P along an elevational gradient. In boreal forest, stage of ecosystem development along a 7800 year old chronosequence created by glacial isostatic adjustment was associated with marked, yet not unidirectional, shifts in the composition of soil P, which suggests ongoing changes in unknown ecological processes. Naturally higher concentrations of iron and aluminium in soils due to groundwater recharge and discharge were related with higher concentrations of P compounds widely considered to be recalcitrant, such as inositol phosphates. Finally, retrogressive forest ecosystems with low productivity growing on old soils did not have a relatively higher proportion of recalcitrant organic P compounds, contrary to our expectations based on current biogeochemistry theory. Finally, one of our most enigmatic findings is the high relative abundance of labile P compounds such as RNA in soil. This would suggest that a great proportion of soil P is located within live microbial cells, and therefore that microbial dynamics are a crucial control on P bioavailability in these ecosystems.

  1. The Hydrologic Implications Of Unique Urban Soil Horizon Sequencing On The Functions Of Passive Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Shuster, W.; Schifman, L. A.; Herrmann, D.

    2017-12-01

    Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.

  2. Soil ecosystem functioning under climate change: plant species and community effects.

    PubMed

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.

  3. Estonian soil classification as a tool for recording information on soil cover and its matching with local site types, plant covers and humus forms classifications

    NASA Astrophysics Data System (ADS)

    Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri

    2015-04-01

    Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2-3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus cover type); (iii) being compartment for deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (iv) forming (bio)chemically variegated active space for soil type specific edaphon. For studying of ESC matching with others ecosystem compartments classifications the comparative analysis of corresponding classification schemas was done. It may be concluded that forest and natural grasslands site types as well the plant associations of forests and grasslands correlate (match) well with ESC and therefore these compartments may be adequately expressed on soil cover matrixes. Special interest merits humus cover (in many countries known as humus form), which is by the issue natural body between plant and soil or plant cover and soil cover. The humus cover, which lied on superficial part of soil cover, has been formed by functional interrelationships of plants and soils, reflects very well the local pedo-ecological conditions (both productivity and decomposition cycles) and, therefore, the humus cover types are good indicators for characterizing of local pedo-ecological conditions. The classification of humus covers (humus forms) should be bound with soil classifications. It is important to develop a pedocentric approach in treating of fabric and functioning of natural and agro-ecosystems. Such, based on soil properties, ecosystem approach to management and protection natural resources is highly recommended at least in temperate climatic regions. The sound matching of soil and plant cover is of decisive importance for sustainable functioning of ecosystem and in attaining a good environmental status of the area.

  4. Greenhouse gas emissions from soil under changing environmental conditions

    USDA-ARS?s Scientific Manuscript database

    This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...

  5. Using greenhouse gas fluxes to define soil functional types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben

    Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variabilitymore » of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.« less

  6. Nematode Community Response to Green Infrastructure Design in a Semiarid City.

    PubMed

    Pavao-Zuckerman, Mitchell A; Sookhdeo, Christine

    2017-05-01

    Urbanization affects ecosystem function and environmental quality through shifts in ecosystem fluxes that are brought on by features of the built environment. Green infrastructure (GI) has been suggested as a best management practice (BMP) to address urban hydrologic and ecological impacts of the built environment, but GI practice has only been studied from a limited set of climatic conditions and disciplinary approaches. Here, we evaluate GI features in a semiarid city from the perspective of soil ecology through the application of soil nematode community analysis. This study was conducted to investigate soil ecological interactions in small-scale GI as a means of assessing curb-cut rain garden basin design in a semiarid city. We looked at the choice of mulching approaches (organic vs. rock) and how this design choice affects the soil ecology of rain basins in Tucson, AZ. We sampled soils during the monsoon rain season and assessed the soil nematode community as a bioindicator of soil quality and biogeochemical processes. We found that the use of organic mulch in GI basins promotes enhanced soil organic matter contents and larger nematode populations. Nematode community indices point to enhanced food web structure in streetscape rain garden basins that are mulched with organic material. Results from this study suggest that soil management practices for GI can help promote ecological interactions and ecosystem services in urban ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health

    USGS Publications Warehouse

    Griffin, Dale W.; Kellogg, Christina A.; Shinn, Eugene A.

    2001-01-01

    Movement of soil particles in atmospheres is a normal planetary process. Images of Martian dust devils (wind-spouts) and dust storms captured by NASA's Pathfinder have demonstrated the significant role that storm activity plays in creating the red atmospheric haze of Mars. On Earth, desert soils moving in the atmosphere are responsible for the orange hues in brilliant sunrises and sunsets. In severe dust storm events, millions of tons of soil may be moved across great expanses of land and ocean. An emerging scientific interest in the process of soil transport in the Earth's atmosphere is in the field of public and ecosystem health. This article will address the benefits and the potential hazards associated with exposure to particle fallout as clouds of desert dust traverse the globe.

  8. Soil ecosystem functioning under climate change: plant species and community effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less

  9. Ecosystem properties self-organize in response to a directional fog-vegetation interaction.

    PubMed

    Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O

    2014-05-01

    Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.

  10. Ecosystem fluxes of hydrogen in a mid-latitude forest driven by soil microorganisms and plants

    DOE PAGES

    Meredith, Laura K.; Commane, Róisín; Keenan, Trevor F.; ...

    2016-09-14

    Molecular hydrogen (H 2 ) is an atmospheric trace gas with a large microbe-mediated soil sink, yet cycling of this compound throughout ecosystems is poorly understood. Measurements of the sources and sinks of H 2 in various ecosystems are sparse, resulting in large uncertainties in the global H 2 budget. Constraining the H 2 cycle is critical to understanding its role in atmospheric chemistry and climate. We measured H 2 fluxes at high frequency in a temperate mixed deciduous forest for 15 months using a tower-based flux-gradient approach to determine both the soil-atmosphere and the net ecosystem flux of H 2more » . We also found that Harvard Forest is a net H 2 sink (-1.4 ± 1.1 kg H 2  ha -1 ) with soils as the dominant H 2 sink (-2.0 ± 1.0 kg H 2  ha -1 ) and aboveground canopy emissions as the dominant H 2 source (+0.6 ± 0.8 kg H 2  ha -1 ). Aboveground emissions of H 2 were an unexpected and substantial component of the ecosystem H 2 flux, reducing net ecosystem uptake by 30% of that calculated from soil uptake alone. Soil uptake was highly seasonal (July maximum, February minimum), positively correlated with soil temperature and negatively correlated with environmental variables relevant to diffusion into soils (i.e., soil moisture, snow depth, snow density). Soil microbial H 2 uptake was correlated with rhizosphere respiration rates (r = 0.8, P  <  0.001), and H 2 metabolism yielded up to 2% of the energy gleaned by microbes from carbon substrate respiration. Here, we elucidate key processes controlling the biosphere–atmosphere exchange of H 2 and raise new questions regarding the role of aboveground biomass as a source of atmospheric H 2 and mechanisms linking soil H 2 and carbon cycling. Our results should be incorporated into modeling efforts to predict the response of the H 2 soil sink to changes in anthropogenic H 2 emissions and shifting soil conditions with climate and land-use change.« less

  11. Ecosystem fluxes of hydrogen in a mid-latitude forest driven by soil microorganisms and plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meredith, Laura K.; Commane, Róisín; Keenan, Trevor F.

    Molecular hydrogen (H 2 ) is an atmospheric trace gas with a large microbe-mediated soil sink, yet cycling of this compound throughout ecosystems is poorly understood. Measurements of the sources and sinks of H 2 in various ecosystems are sparse, resulting in large uncertainties in the global H 2 budget. Constraining the H 2 cycle is critical to understanding its role in atmospheric chemistry and climate. We measured H 2 fluxes at high frequency in a temperate mixed deciduous forest for 15 months using a tower-based flux-gradient approach to determine both the soil-atmosphere and the net ecosystem flux of H 2more » . We also found that Harvard Forest is a net H 2 sink (-1.4 ± 1.1 kg H 2  ha -1 ) with soils as the dominant H 2 sink (-2.0 ± 1.0 kg H 2  ha -1 ) and aboveground canopy emissions as the dominant H 2 source (+0.6 ± 0.8 kg H 2  ha -1 ). Aboveground emissions of H 2 were an unexpected and substantial component of the ecosystem H 2 flux, reducing net ecosystem uptake by 30% of that calculated from soil uptake alone. Soil uptake was highly seasonal (July maximum, February minimum), positively correlated with soil temperature and negatively correlated with environmental variables relevant to diffusion into soils (i.e., soil moisture, snow depth, snow density). Soil microbial H 2 uptake was correlated with rhizosphere respiration rates (r = 0.8, P  <  0.001), and H 2 metabolism yielded up to 2% of the energy gleaned by microbes from carbon substrate respiration. Here, we elucidate key processes controlling the biosphere–atmosphere exchange of H 2 and raise new questions regarding the role of aboveground biomass as a source of atmospheric H 2 and mechanisms linking soil H 2 and carbon cycling. Our results should be incorporated into modeling efforts to predict the response of the H 2 soil sink to changes in anthropogenic H 2 emissions and shifting soil conditions with climate and land-use change.« less

  12. Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    2009-12-01

    Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative analysis of the long term behavior of biotic and abiotic factors which depend on the position of the water level and enable the assessment of impacts of climate changes on the wetland ecosystem.

  13. Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe.

    PubMed

    Song, Bing; Niu, Shuli; Zhang, Zhe; Yang, Haijun; Li, Linghao; Wan, Shiqiang

    2012-01-01

    Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated soil labile and recalcitrant C and N under 6 years' treatments of experimental warming and increased precipitation in a temperate steppe in Northern China. We measured soil light fraction C (LFC) and N (LFN), microbial biomass C (MBC) and N (MBN), dissolved organic C (DOC) and heavy fraction C (HFC) and N (HFN). The results showed that increased precipitation significantly stimulated soil LFC and LFN by 16.1% and 18.5%, respectively, and increased LFC:HFC ratio and LFN:HFN ratio, suggesting that increased precipitation transferred more soil organic carbon into the quick-decayed carbon pool. Experimental warming reduced soil labile C (LFC, MBC, and DOC). In contrast, soil heavy fraction C and N, and total C and N were not significantly impacted by increased precipitation or warming. Soil labile C significantly correlated with gross ecosystem productivity, ecosystem respiration and soil respiration, but not with soil moisture and temperature, suggesting that biotic processes rather than abiotic factors determine variations in soil labile C. Our results indicate that certain soil carbon fraction is sensitive to climate change in the temperate steppe, which may in turn impact ecosystem carbon fluxes in response and feedback to climate change.

  14. Light and Heavy Fractions of Soil Organic Matter in Response to Climate Warming and Increased Precipitation in a Temperate Steppe

    PubMed Central

    Song, Bing; Niu, Shuli; Zhang, Zhe; Yang, Haijun; Li, Linghao; Wan, Shiqiang

    2012-01-01

    Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated soil labile and recalcitrant C and N under 6 years' treatments of experimental warming and increased precipitation in a temperate steppe in Northern China. We measured soil light fraction C (LFC) and N (LFN), microbial biomass C (MBC) and N (MBN), dissolved organic C (DOC) and heavy fraction C (HFC) and N (HFN). The results showed that increased precipitation significantly stimulated soil LFC and LFN by 16.1% and 18.5%, respectively, and increased LFC∶HFC ratio and LFN∶HFN ratio, suggesting that increased precipitation transferred more soil organic carbon into the quick-decayed carbon pool. Experimental warming reduced soil labile C (LFC, MBC, and DOC). In contrast, soil heavy fraction C and N, and total C and N were not significantly impacted by increased precipitation or warming. Soil labile C significantly correlated with gross ecosystem productivity, ecosystem respiration and soil respiration, but not with soil moisture and temperature, suggesting that biotic processes rather than abiotic factors determine variations in soil labile C. Our results indicate that certain soil carbon fraction is sensitive to climate change in the temperate steppe, which may in turn impact ecosystem carbon fluxes in response and feedback to climate change. PMID:22479373

  15. Microbial Mechanisms Enhancing Soil C Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zak, Donald

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiologicalmore » processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C storage. Our preliminary results support the hypothesis that simulated N deposition has down-regulated the transcription of fungal genes encoding lignocellulolytic enzymes, thereby slowing litter decay and substantially increasing soil C storage over a relative short duration. The objective of this study was to understand the molecular mechanisms and metabolic processes by which simulated N deposition has slowed microbial decay of plant detritus, thereby increasing soil C storage in the wide-spread and ecologically important northern forest ecosystem. We addressed our research objective using a combination of transcriptomic and metatranscriptomic approaches in parallel with biogeochemical analyses of soil C cycling. By linking the environmental regulation of microbial genes to biogeochemical processes, we endeavor to understanding the enhanced accumulation of soil C in response to a wide-spread agent of global change.« less

  16. Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics

    USGS Publications Warehouse

    Zhuang, Q.; McGuire, A.D.; Melillo, J.M.; Clein, Joy S.; Dargaville, R.J.; Kicklighter, D.W.; Myneni, Ranga B.; Dong, J.; Romanovsky, V.E.; Harden, J.; Hobbie, J.E.

    2003-01-01

    There is substantial evidence that soil thermal dynamics are changing in terrestrial ecosystems of the Northern Hemisphere and that these dynamics have implications for the exchange of carbon between terrestrial ecosystems and the atmosphere. To date, large-scale biogeochemical models have been slow to incorporate the effects of soil thermal dynamics on processes that affect carbon exchange with the atmosphere. In this study we incorporated a soil thermal module (STM), appropriate to both permafrost and non-permafrost soils, into a large-scale ecosystem model, version 5.0 of the Terrestrial Ecosystem Model (TEM). We then compared observed regional and seasonal patterns of atmospheric CO2 to simulations of carbon dynamics for terrestrial ecosystems north of 30°N between TEM 5.0 and an earlier version of TEM (version 4.2) that lacked a STM. The timing of the draw-down of atmospheric CO2 at the start of the growing season and the degree of draw-down during the growing season were substantially improved by the consideration of soil thermal dynamics. Both versions of TEM indicate that climate variability and change promoted the loss of carbon from temperate ecosystems during the first half of the 20th century, and promoted carbon storage during the second half of the century. The results of the simulations by TEM suggest that land-use change in temperate latitudes (30–60°N) plays a stronger role than climate change in driving trends for increased uptake of carbon in extratropical terrestrial ecosystems (30–90°N) during recent decades. In the 1980s the TEM 5.0 simulation estimated that extratropical terrestrial ecosystems stored 0.55 Pg C yr−1, with 0.24 Pg C yr−1 in North America and 0.31 Pg C yr−1 in northern Eurasia. From 1990 through 1995 the model simulated that these ecosystems stored 0.90 Pg C yr−1, with 0.27 Pg C yr−1 stored in North America and 0.63 Pg C yr−1 stored in northern Eurasia. Thus, in comparison to the 1980s, simulated net carbon storage in the 1990s was enhanced by an additional 0.35 Pg C yr−1 in extratropical terrestrial ecosystems, with most of the additional storage in northern Eurasia. The carbon storage simulated by TEM 5.0 in the 1980s and 1990s was lower than estimates based on other methodologies, including estimates by atmospheric inversion models and remote sensing and inventory analyses. This suggests that other issues besides the role of soil thermal dynamics may be responsible, in part, for the temporal and spatial dynamics of carbon storage of extratropical terrestrial ecosystems. In conclusion, the consideration of soil thermal dynamics and terrestrial cryospheric processes in modeling the global carbon cycle has helped to reduce biases in the simulation of the seasonality of carbon dynamics of extratropical terrestrial ecosystems. This progress should lead to an enhanced ability to clarify the role of other issues that influence carbon dynamics in terrestrial regions that experience seasonal freezing and thawing of soil.

  17. Divergent patterns of experimental and model derived variables of tundra ecosystem carbon exchange in response to arctic warming

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.

    2017-12-01

    Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.

  18. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    PubMed Central

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  19. Does the aboveground herbivore assemblage influence soil bacterial community composition and richness in subalpine grasslands?

    Treesearch

    Melanie Hodel; Martin Schütz; Martijn L. Vandegehuchte; Beat Frey; Matthias Albrecht; Matt D. Busse; Anita C. Risch

    2014-01-01

    Grassland ecosystems support large communities of aboveground herbivores that can alter ecosystem processes. Thus, grazing by herbivores can directly and indirectly affect belowground properties such as the microbial community structure and diversity. Even though multiple species of functionally different herbivores coexist in grassland ecosystems, most studies have...

  20. Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland

    NASA Astrophysics Data System (ADS)

    White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.

    2014-12-01

    Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were affected by initial slope-affected erosion, fire severity, vegetation type, and rate of vegetation recovery. The simulation results showed that fire types, such as high severity, was generally associated with low site BC retention related to low vertical transfer of BC into soils, buoyancy of BC particles, and surface runoff from unvegetated soils.

  1. A proposed framework to operationalize ESS for the mitigation of soil threats

    NASA Astrophysics Data System (ADS)

    Schwilch, Gudrun; Bernet, Lea; Fleskens, Luuk; Mills, Jane; Stolte, Jannes; van Delden, Hedwig; Verzandvoort, Simone

    2015-04-01

    Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ESS) in decision-making, and a coherent approach to assess and value ESS is still lacking. There are a lot of different - often context-specific - ESS frameworks with their own definitions and understanding of terms. Based on a thorough review, the EU FP7 project RECARE (www.recare-project.eu) suggests an adapted framework for ecosystem services related to soils that can be used for practical application in preventing and remediating degradation of soils in Europe. This lays the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management. Similar to many ESS frameworks, the RECARE framework distinguishes between an ecosystem and human well-being part. As the RECARE project is focused on soil threats, this is the starting point on the ecosystem part of the framework. Soil threats affect natural capital, such as soil, water, vegetation, air and animals, and are in turn influenced by those. Within the natural capital, the RECARE framework focuses especially on soil and its properties, classified in inherent and manageable properties. The natural capital then enables and underpins soil processes, while at the same time being affected by those. Soil processes, finally, are the ecosystem's capacity to provide services, thus they support the provision of soil functions and ESS. ESS may be utilized to produce benefits for individuals and human society. Those benefits are explicitly or implicitly valued by individuals and human society. The values placed on those benefits influence policy and decision-making and thus lead to a societal response. Individual (e.g. farmers') and societal decision making and policy determine land management and other (human) driving forces, which in turn affect soil threats and natural capital. In order to improve ESS with Sustainable Land Management (SLM) - i.e. measures aimed to prevent or remediate soil threats, the services identified in the framework need to be "manageable" (modifiable) for the stakeholders. To this end, effects of soil threats and prevention / remediation measures are captured by key soil properties as well as through bio-physical (e.g. reduced soil loss), socio-economic (e.g. reduced workload) and socio-cultural (e.g. aesthetics) impact indicators. In order to use such indicators in RECARE, it should be possible to associate the changes in soil processes to impacts of prevention / remediation measures (SLM). This requires the indicators to be sensitive enough to small changes, but still sufficiently robust to provide evidence of the change and attribute it to SLM. The RECARE ESS framework will be presented and discussed in order to further develop its operationalization. Inputs from the conference participants are highly welcome.

  2. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches

    USDA-ARS?s Scientific Manuscript database

    Communities of soil nematodes impact ecosystem functions, including plant growth, decomposition, and nutrient cycling, all of which are vital processes in agriculture. We used complementary morphological and DNA metabarcoding analyses to characterize soil nematode communities in three cropping syste...

  3. Afforestation neutralizes soil pH.

    PubMed

    Hong, Songbai; Piao, Shilong; Chen, Anping; Liu, Yongwen; Liu, Lingli; Peng, Shushi; Sardans, Jordi; Sun, Yan; Peñuelas, Josep; Zeng, Hui

    2018-02-06

    Soil pH regulates soil biogeochemical processes and has cascading effects on terrestrial ecosystem structure and functions. Afforestation has been widely adopted to increase terrestrial carbon sequestration and enhance water and soil preservation. However, the effect of afforestation on soil pH is still poorly understood and inconclusive. Here we investigate the afforestation-caused soil pH changes with pairwise samplings from 549 afforested and 148 control plots in northern China. We find significant soil pH neutralization by afforestation-afforestation lowers pH in relatively alkaline soil but raises pH in relatively acid soil. The soil pH thresholds (T pH ), the point when afforestation changes from increasing to decreasing soil pH, are species-specific, ranging from 5.5 (Pinus koraiensis) to 7.3 (Populus spp.) with a mean of 6.3. These findings indicate that afforestation can modify soil pH if tree species and initial pH are properly matched, which may potentially improve soil fertility and promote ecosystem productivity.

  4. Industrious leaf cutter ants and their carbon footprints

    NASA Astrophysics Data System (ADS)

    Swanson, A. C.; Dierick, D.; Trahan, N. A.; Allen, M. F.; Schwendenmann, L.; Harmon, T. C.; Oberbauer, S. F.; Fernandez Bou, A. S.; Zelikova, T. J.

    2017-12-01

    Leaf cutter ants (LCA) are considered ecosystem engineers in Neotropical forest ecosystems because they alter physical and environmental conditions for other organisms. LCA excavate large underground nests, maintaining intricate tunnels and fungal and waste chambers, and they continuously bring in vast amounts of fresh leaf material. In order to understand their ecosystem-wide impacts, we set out to determine whether their engineering activities fundamentally alter soil structure, soil nutrient pools, and gas fluxes in a wet tropical rainforest in Costa Rica. To directly compare LCA nest to non-nest sites, we utilized embedded sensor arrays with series of soil moisture, CO2, O2, and temperature sensors placed at four soil depths and automated minirhizotrons (AMR) to measure root and hyphal production and turnover. We also collected soils for biogeochemical analyses and measured soil CO2 fluxes and carbon isotope ratios of below-ground CO2 for two years. Our measurements confirmed that LCA alter their soil environment to regulate internal soil CO2 concentrations, moisture, and temperature, increasing O2 concentrations in the process. There were marked differences in soil structure inside nests relative to non-nests and these were associated with increased root and hyphal production and turnover in nests. Soil C, N, P, and their respective degrading enzymes were highly variable among sites and between nests and controls but N and P increased with soil depth and were generally higher in nests than controls. Contrary to our expectations, C mineralization rates were lower in nests but CO2 fluxes were high from nest vents and similar to non-nests elsewhere. At the system scale, LCA appear to fundamentally change the soil environment inside their nests and create spatial heterogeneity in biogeochemical processes and root and hyphal growth, influencing the overall C balance of Neotropical forests.

  5. Hydraulic redistribution affects modeled carbon cycling via soil microbial activity and suppressed fire.

    PubMed

    Fu, Congsheng; Wang, Guiling; Bible, Kenneth; Goulden, Michael L; Saleska, Scott R; Scott, Russell L; Cardon, Zoe G

    2018-04-13

    Hydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world-wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe-controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system-scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO 2 (or reduce annual CO 2 release to the atmosphere). Moreover, engagement of CLM4.5's ground-truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO 2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems. © 2018 John Wiley & Sons Ltd.

  6. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5-7 years post fire (70.70±8.94 ppm CO2-CO and 21.67±2.62 mg kg-1, respectively). Microbial activity measured with the Solvita test was significantly correlated (R Pearson > 0.7; P < 0.001) with microbial parameters analysed with PLFA such as microbial biomass, bacteria biomass or mycorrhizhal fungi. This method has proven to be reliable, fast and easy to interpret for assessment of soil microbial activity in the recovery of soil quality during the recovery after fire. Keywords Pilbara region, biodiverse ecosystems, microbial biomass, microbial respiration, Solvita test, CO2 burst.

  7. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  8. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio)

    NASA Astrophysics Data System (ADS)

    Glaser, Bruno; Birk, Jago Jonathan

    2012-04-01

    Tropical rainforests are highly important for the global climate regulation and for global biodiversity. However, these ecosystems are characterized by nutrient-poor and highly weathered soils and by high turnover rates of organic matter. Thus, they are fragile ecosystems prone to loss of ecosystem services when anthropogenically disturbed. Currently, the major threat to these ecosystems is deforestation leading to irreversible destruction of rainforests. Surprising and not expected is that within these ecosystems small patches of highly fertile soils occur which are known as Anthropogenic Dark Earths or terra preta de Índio (terra preta). These soils exhibit high nutrient and soil organic matter stocks and allow sustainable agriculture. Frequent occurrence of pot-sherds of pre-Columbian origin and further evidence for settlement activities clearly demonstrate that terra preta is of anthropogenic origin. In recent years, the terra preta phenomenon has gained increasing interest because it is assumed that terra preta could act as a model for promoting sustainable agricultural practices in the humid tropics and because terra preta is an example for long-term CO2 sequestration into terrestrial ecosystems with additional positive benefits for ecosystem services. These potentials of terra preta initiated a great number of studies but also stimulated fantasy about their genesis. Therefore, the aim of this review is to summarize the scientific knowledge about terra preta properties and to discuss their genesis. From our own and literature data it is evident that terra preta is the product of inorganic [e.g. ash, bones (esp. fish)] and organic (e.g. biomass wastes, manure, excrements, urine, and biochar) amendments to infertile Ferralsols. These ingredients were microbially metabolized and stabilized by humification in soil, fungi playing a bigger role in this process compared to bacteria in surrounding ecosystems. Biochar is a key component for this process due to its stability and its enrichment in terra preta. It is still unclear if terra preta was produced intentionally or un-intentionally. In addition, it is unclear how much time was needed after the disposal of the materials mentioned above to develop a terra preta. Further research is highly desired to investigate these latter two issues.

  9. Evaluation of dielectric mixing models for microwave soil moisture retrieval using data from the Combined Radar/Radiometer (ComRAD) ground-based SMAP simulator

    USDA-ARS?s Scientific Manuscript database

    Soil moisture measurements are required to improve our understanding of hydrological processes, ecosystem functions, and linkages between the Earth’s water, energy, and carbon cycles. The efficient retrieval of soil moisture depends on various factors in which soil dielectric mixing models are consi...

  10. Long-Term Soil Chemistry Changes in Aggrading Forest Ecosystems

    Treesearch

    Jennifer D. Knoepp; Wayne T. Swank

    1994-01-01

    Assessing potential long-term forest productivity requires identification of the processes regulating chemical changes in forest soils. We resampled the litter layer and upper two mineral soil horizons, A and AB/BA, in two aggrading southern Appalachian watersheds 20 yr after an earlier sampling. Soils from a mixed-hardwood watershed exhibited a small but significant...

  11. Short- and long-term influence of stand density on soil microbial communities in ponderosa pine forests

    Treesearch

    Steven T. Overby

    2009-01-01

    Soil microbial communities process plant detritus and returns nutrients needed for plant growth. Increased knowledge of this intimate linkage between plant and soil microbial communities will provide a better understanding of ecosystem response to changing abiotic and biotic conditions. This dissertation consists of three studies to determine soil microbial community...

  12. Fungal community composition and diversity vary with soil depths and landscape position in a no-till wheat cropping system.

    USDA-ARS?s Scientific Manuscript database

    Fungal communities in soil are critical to plant health and ecosystem processes in agricultural systems. Although the composition of fungal communities is often related to soil edaphic characteristic and host plant identity, there is a paucity of information on how communities vary with soil depth a...

  13. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.

    PubMed

    Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro

    2016-01-01

    Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.

  14. Ca cycling and isotopic fluxes in forested ecosystems in Hawaii

    USGS Publications Warehouse

    Wiegand, B.A.; Chadwick, O.A.; Vitousek, P.M.; Wooden, J.L.

    2005-01-01

    Biogeochemical processes fractionate Ca isotopes in plants and soils along a 4 million year developmental sequence in the Hawaiian Islands. We observed that plants preferentially take up 40Ca relative to 44Ca, and that biological fractionation and changes in the relative contributions from volcanic and marine sources produce a significant increase in 44Ca in soil exchangeable pools. Our results imply moderate fluxes enriched in 44Ca from strongly nutrient-depleted old soils, in contrast with high 40Ca fluxes in young and little weathered environments. In addition, biological fractionation controls divergent geochemical pathways of Ca and Sr in the plant-soil system. While Ca depletes progressively with increasing soil age, Sr/Ca ratios increase systematically. Sr isotope ratios provide a valuable tracer for provenance studies of alkaline earth elements in forested ecosystems, but its usefulness is limited when deciphering biogeochemical processes involved in the terrestrial Ca cycle. Ca isotopes in combination with Sr/ Ca ratios reveal more complex processes involved in the biogeochemistry of Ca and Sr. Copyright 2005 by the American Geophysical Union.

  15. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils

    NASA Astrophysics Data System (ADS)

    Huygens, Dries; Boeckx, Pascal; Templer, Pamela; Paulino, Leandro; van Cleemput, Oswald; Oyarzún, Carlos; Müller, Christoph; Godoy, Roberto

    2008-08-01

    Nitrogen cycling is an important aspect of forest ecosystem functioning. Pristine temperate rainforests have been shown to produce large amounts of bioavailable nitrogen, but despite high nitrogen turnover rates, loss of bioavailable nitrogen is minimal in these ecosystems. This tight nitrogen coupling is achieved through fierce competition for bioavailable nitrogen by abiotic processes, soil microbes and plant roots, all of which transfer bioavailable nitrogen to stable nitrogen sinks, such as soil organic matter and above-ground forest vegetation. Here, we use a combination of in situ 15N isotope dilution and 15N tracer techniques in volcanic soils of a temperate evergreen rainforest in southern Chile to further unravel retention mechanisms for bioavailable nitrogen. We find three processes that contribute significantly to nitrogen bioavailability in rainforest soils: heterotrophic nitrate production, nitrate turnover into ammonium and into a pool of dissolved organic nitrogen that is not prone to leaching loss, and finally, the decoupling of dissolved inorganic nitrogen turnover and leaching losses of dissolved organic nitrogen. Identification of these biogeochemical processes helps explain the retention of bioavailable nitrogen in pristine temperate rainforests.

  16. Nitrogen controls on ecosystem carbon sequestration: a model implementation and application to Saskatchewan, Canada

    USGS Publications Warehouse

    Liu, J.; Price, D.T.; Chen, J.M.

    2005-01-01

    A plant–soil nitrogen (N) cycling model was developed and incorporated into the Integrated BIosphere Simulator (IBIS) of Foley et al. [Foley, J.A., Prentice, I.C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., Haxeltine, A., 1996. An integrated biosphere model of land surface process, terrestrial carbon balance and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628]. In the N-model, soil mineral N regulates ecosystem carbon (C) fluxes and ecosystem C:N ratios. Net primary productivity (NPP) is controlled by feedbacks from both leaf C:N and soil mineral N. Leaf C:N determines the foliar and canopy photosynthesis rates, while soil mineral N determines the N availability for plant growth and the efficiency of biomass construction. Nitrogen controls on the decomposition of soil organic matter (SOM) are implemented through N immobilization and mineralization separately. The model allows greater SOM mineralization at lower mineral N, and conversely, allows greater N immobilization at higher mineral N. The model's seasonal and inter-annual behaviours are demonstrated. A regional simulation for Saskatchewan, Canada, was performed for the period 1851–2000 at a 10 km × 10 km resolution. Simulated NPP was compared with high-resolution (1 km × 1 km) NPP estimated from remote sensing data using the boreal ecosystem productivity simulator (BEPS) [Liu, J., Chen, J.M., Cihlar, J., Park, W.M., 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 44, 81–87]. The agreement between IBIS and BEPS, particularly in NPP spatial variation, was considerably improved when the N controls were introduced into IBIS.

  17. DSM for soil erosion risk in Scotland

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro; McLeaod, Jim; Castellazzi, Marie; Baggio Compagnucci, Andrea; Irvine, Justin

    2017-04-01

    Soils play a crucial role in ecosystem functioning, and modelling its risk of degradation is fundamental, especially in the context of climate change. In this work we used continuous 3D soil information derived from digital soil mapping (DSM) approaches to map sediment erosion and deposition patterns due to rainfall. The test area covers the whole of mainland Scotland, excluding the Northern Islands. Soil profiles data were interpolated using a geo-statistical hybrid Generalised Additive Models method for a range of soil properties such as organic matter, texture, soil depth and peat presence. The same method was used to interpolate climatic data and management information. Remote sensing data were integrated in the process and land use data included. Information on grazing (sheep and deer) pressure was taken into account in the modelling. The uncertainty was accounted and propagated across the whole process. The Scottish test case highlights the differences in roles between mineral and organic soils with an assessment adapted to each of them. The results and intermediate steps were compared with available continental scale results. The results show the importance of the use of DSM approaches for modeling soils and ecosystem functions and assessing uncertainty propagation.

  18. Soil Science Education: Philosophy and Perspectives. SSSA Special Publication Number 37.

    ERIC Educational Resources Information Center

    Baveye, Philippe, Ed.; And Others

    Soil science provides the educational framework to integrate components of earth science systems, to understand the causes and consequences of spatial variability, and view dynamic processes impacting ecosystems in a holistic perspective. This book, a special publication of the Soil Science Society of America (SSSA), identifies and analyzes…

  19. Restoring ecosystem functions and services by overcoming soil threats - The case of Mt. Hekla area in Iceland

    NASA Astrophysics Data System (ADS)

    Thorsson, Johann; Petursdottir, Thorunn

    2015-04-01

    Soils are one of the main fundamental bodies of terrestrial ecosystems. Soil functions contribute substantially to the ecosystem services humans and all other living beings depend on. Current soil threats are in most cases related to anthropogenic impacts and derived environmental pressures. For instance, overexploitation has in many cases damaged ecosystem resilience, affected current equilibrium and caused severe soil degradation. The resulting dysfunctional ecosystems are incapable of providing necessary ecosystem services. In such cases ecosystem restoration is necessary to restore ecosystem functions and ecological succession. The Mt. Hekla area in Iceland is an example of land suffering from accelerated erosion amplified by anthropogenic impacts. The area is 900 km2 located in South Iceland in the vicinity of the volcano Mt. Hekla. Today over 40% of the area is classified as eroded but historical documents indicate that vast part of the area were fertile and vegetated at the time of settlement, 1100 years ago; hence was able to withstand the geological disturbances occurring prior to the arrival of man as is obvious from the pristine woody patches still remaining. Severe soil degradation followed the large-scale deforestation and overgrazing that took place within the area. The initial land degradation event is considered to have occurred in the 11th century, but has been ongoing since then in several episodes. The Þjórsá glacial river flows through the area and carries enormous amounts of sediments every year. After the deforestation, the ecosystem resilience was damaged and the land left exposed to the elements. Eventually large scale wind erosion started, followed with water erosion and increased impact of freeze-thaw processes. The Soil Conservation Service of Iceland started working in the area in the early 20th century and land reclamation operations have been ongoing until this day. Considerable successes have been made as is manifested in the fact that sandstorms, once frequent, do not occur any more in the area. A governmental project (the "Mt. Hekla Forest") has been ongoing since 2007 focusing explicitly on this area. The project's main aim is to restore ecosystem services and increase the system resilience towards volcanic eruptions and other potential natural hazards. In this presentation we will discuss the causes for the ecosystem collapse in the Hekla area in further details and the social-ecological context of the restoration activities implemented.

  20. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica.

    PubMed

    Ayres, Edward; Nkem, Johnson N; Wall, Diana H; Adams, Byron J; Barrett, J E; Broos, Emma J; Parsons, Andrew N; Powers, Laura E; Simmons, Breana L; Virginia, Ross A

    2008-12-01

    Antarctic ecosystems are often considered nearly pristine because levels of anthropogenic disturbance are extremely low there. Nevertheless, over recent decades there has been a rapid increase in the number of people, researchers and tourists, visiting Antarctica. We evaluated, over 10 years, the direct impact of foot traffic on the abundance of soil animals and soil properties in Taylor Valley within the McMurdo Dry Valleys region of Antarctica. We compared soils from minimally disturbed areas with soils from nearby paths that received intermediate and high levels of human foot traffic (i.e., up to approximately 80 passes per year). The nematodes Scottnema lindsayae and Eudorylaimus sp. were the most commonly found animal species, whereas rotifers and tardigrades were found only occasionally. On the highly trampled footpaths, abundance of S. lindsayae and Eudorylaimus sp. was up to 52 and 76% lower, respectively, than in untrampled areas. Moreover, reduction in S. lindsayae abundance was more pronounced after 10 years than 2 years and in the surface soil than in the deeper soil, presumably because of the longer period of disturbance and the greater level of physical disturbance experienced by the surface soil. The ratio of living to dead Eudorylaimus sp. also declined with increased trampling intensity, which is indicative of increased mortality or reduced fecundity. At one site there was evidence that high levels of trampling reduced soil CO(2) fluxes, which is related to total biological activity in the soil. Our results show that even low levels of human traffic can significantly affect soil biota in this ecosystem and may alter ecosystem processes, such as carbon cycling. Consequently, management and conservation plans for Antarctic soils should consider the high sensitivity of soil fauna to physical disturbance as human presence in this ecosystem increases.

  1. An Evaluation of Vegetation Influences on Infiltration in Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    Perkins, K. S.; Stock, J. D.; Nimmo, J. R.

    2016-12-01

    Changes in vegetation communities such as removing trees, introducing grazing ungulates, and replacing native plants with invasive species have substantially altered soil infiltration processes and rates and therefore runoff, erosion, and aquifer recharge. We hypothesize that broad vegetation communities can be characterized by distributions of saturated hydraulic conductivity (Kfs). We used 300 field measurements of hydraulic conductivity from six sites on five of the Hawaiian Islands to show this effect. We analyzed the data using three broad ecosystem categories: grasses, trees and shrubs, or bare soil. The soils of each site have co-evolved with past and present ecological community without significant mechanical disturbance by agriculture or other human activities. Geometric mean values Kfs are 203 mm/h for soils hosting trees and shrubs, 50 mm/h for grasses, and 13 mm/h for bare soil. Differences are statistically significant at the 95% confidence level. These examples show that it is feasible to make maps of Kfs based on field and ecosystem data. These ecosystem trends can be used to estimate ongoing changes to runoff and recharge from climate and land use change.

  2. Biochemical processes in sagebrush ecosystems: Interactions with terrain

    NASA Technical Reports Server (NTRS)

    Matson, P. (Principal Investigator); Reiners, W.; Strong, L.

    1985-01-01

    The objectives of a biogeochemical study of sagebrush ecosystems in Wyoming and their interactions with terrain are as follows: to describe the vegetational pattern on the landscape and elucidate controlling variables, to measure the soil properties and chemical cycling properties associated with the vegetation units, to associate soil properties with vegetation properties as measured on the ground, to develop remote sensing capabilities for vegetation and surface characteristics of the sagebrush landscape, to develop a system of sensing snow cover and indexing seasonal soil to moisture; and to develop relationships between temporal Thematic Mapper (TM) data and vegetation phenological state.

  3. Input-decomposition balance of heterotrophic processes in a warm-temperate mixed forest in Japan

    NASA Astrophysics Data System (ADS)

    Jomura, M.; Kominami, Y.; Ataka, M.; Makita, N.; Dannoura, M.; Miyama, T.; Tamai, K.; Goto, Y.; Sakurai, S.

    2010-12-01

    Carbon accumulation in forest ecosystem has been evaluated using three approaches. One is net ecosystem exchange (NEE) estimated by tower flux measurement. The second is net ecosystem production (NEP) estimated by biometric measurements. NEP can be expressed as the difference between net primary production and heterotrophic respiration. NEP can also be expressed as the annual increment in the plant biomass (ΔW) plus soil (ΔS) carbon pools defined as follows; NEP = ΔW+ΔS The third approach needs to evaluate annual carbon increment in soil compartment. Soil carbon accumulation rate could not be measured directly in a short term because of the small amount of annual accumulation. Soil carbon accumulation rate can be estimated by a model calculation. Rothamsted carbon model is a soil organic carbon turnover model and a useful tool to estimate the rate of soil carbon accumulation. However, the model has not sufficiently included variations in decomposition processes of organic matters in forest ecosystems. Organic matter in forest ecosystems have a different turnover rate that creates temporal variations in input-decomposition balance and also have a large variation in spatial distribution. Thus, in order to estimate the rate of soil carbon accumulation, temporal and spatial variation in input-decomposition balance of heterotrophic processes should be incorporated in the model. In this study, we estimated input-decomposition balance and the rate of soil carbon accumulation using the modified Roth-C model. We measured respiration rate of many types of organic matters, such as leaf litter, fine root litter, twigs and coarse woody debris using a chamber method. We can illustrate the relation of respiration rate to diameter of organic matters. Leaf and fine root litters have no diameter, so assumed to be zero in diameter. Organic matters in small size, such as leaf and fine root litter, have high decomposition respiration. It could be caused by the difference in structure of organic matter. Because coarse woody debris has shape of cylinder, microbes decompose from the surface of it. Thus, respiration rate of coarse woody debris is lower than that of leaf and fine root litter. Based on this result, we modified Roth-C model and estimate soil carbon accumulation rate in recent years. Based on the results from a soil survey, the forest soil stored 30tC ha-1 in O and A horizon. We can evaluate the modified model using this result. NEP can be expressed as the annual increment in the plant biomass plus soil carbon pools. So if we can estimate NEP using this approach, then we can evaluate NEP estimated by micrometeorological and ecological approaches and reduce uncertainty of NEP estimation.

  4. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  5. Examining responses of ecosystem carbon exchange to environmental changes using particle filtering mathod

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.

    2017-12-01

    Attention has been paid to the agricultural field that could regulate ecosystem carbon exchange by water management and residual treatments. However, there have been less known about the dynamic responses of the ecosystem to environmental changes. In this study, focussing on paddy field, where CO2 emissions due to microbial decomposition of organic matter are suppressed and alternatively CH4 emitted under flooding condition during rice growth season and subsequently CO2 emission following the fallow season after harvest, the responses of ecosystem carbon exchange were examined. We conducted model data fusion analysis for examining the response of cropland-atmosphere carbon exchange to environmental variation. The used model consists of two sub models, paddy rice growth sub-model and soil decomposition sub-model. The crop growth sub-model mimics the rice plant growth processes including formation of reproductive organs as well as leaf expansion. The soil decomposition sub-model simulates the decomposition process of soil organic carbon. Assimilating the data on the time changes in CO2 flux measured by eddy covariance method, rice plant biomass, LAI and the final yield with the model, the parameters were calibrated using a stochastic optimization algorithm with a particle filter method. The particle filter method, which is one of the Monte Carlo filters, enable us to evaluating time changes in parameters based on the observed data until the time and to make prediction of the system. Iterative filtering and prediction with changing parameters and/or boundary condition enable us to obtain time changes in parameters governing the crop production as well as carbon exchange. In this study, we focused on the parameters related to crop production as well as soil carbon storage. As the results, the calibrated model with estimated parameters could accurately predict the NEE flux in the subsequent years. The temperature sensitivity, denoted by Q10s in the decomposition rate of soil organic carbon (SOC) were obtained as 1.4 for no cultivation period and 2.9 for cultivation period (submerged soil condition in flooding season). It suggests that the response of ecosystem carbon exchange differs due to SOC decomposition process which is sensitive to environmental variation during paddy rice cultivation period.

  6. Geochemical and Isotopic (Sr, U) Tracing of Weathering Processes Controlling the Recent Geochemical Evolution of Soil Solutions in the Strengbach Catchment (Vosges, France)

    NASA Astrophysics Data System (ADS)

    Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.

    2012-12-01

    The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to model the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer geochemical approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.

  7. Recovery of decomposition and soil microarthropod communities in a clearcut watershed in the Southern Appalachians

    Treesearch

    Liam Heneghan; Alissa Salmore

    2014-01-01

    The recovery of ecosystems after disturbance remains a productive theme for ecological research. Numerous studies have focused either on the reestablishment of biological communities or on the recovery of ecosystem processes after perturbations. In the case of decomposer organisms an the processes of organic matter decay and the mineralization of nutrients, the...

  8. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    Treesearch

    Yiqi Luo; Jerry Melillo; Shuli Niu; Claus Beier; James S. Clark; Aime E.T. Classen; Eric Dividson; Jeffrey S. Dukes; R. Dave Evans; Christopher B. Field; Claudia I. Czimczik; Michael Keller; Bruce A. Kimball; Lara M. Kueppers; Richard J. Norby; Shannon L. Pelini; Elise Pendall; Edward Rastetter; Johan Six; Melinda Smith; Mark G. Tjoelker; Margaret S. Torn

    2011-01-01

    Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes...

  9. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere

    Treesearch

    Ned Nikolova; Karl F. Zeller

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology....

  10. Liming impacts on soils, crops and biodiversity in the UK: A review.

    PubMed

    Holland, J E; Bennett, A E; Newton, A C; White, P J; McKenzie, B M; George, T S; Pakeman, R J; Bailey, J S; Fornara, D A; Hayes, R C

    2018-01-01

    Fertile soil is fundamental to our ability to achieve food security, but problems with soil degradation (such as acidification) are exacerbated by poor management. Consequently, there is a need to better understand management approaches that deliver multiple ecosystem services from agricultural land. There is global interest in sustainable soil management including the re-evaluation of existing management practices. Liming is a long established practice to ameliorate acidic soils and many liming-induced changes are well understood. For instance, short-term liming impacts are detected on soil biota and in soil biological processes (such as in N cycling where liming can increase N availability for plant uptake). The impacts of liming on soil carbon storage are variable and strongly relate to soil type, land use, climate and multiple management factors. Liming influences all elements in soils and as such there are numerous simultaneous changes to soil processes which in turn affect the plant nutrient uptake; two examples of positive impact for crops are increased P availability and decreased uptake of toxic heavy metals. Soil physical conditions are at least maintained or improved by liming, but the time taken to detect change varies significantly. Arable crops differ in their sensitivity to soil pH and for most crops there is a positive yield response. Liming also introduces implications for the development of different crop diseases and liming management is adjusted according to crop type within a given rotation. Repeated lime applications tend to improve grassland biomass production, although grassland response is variable and indirect as it relates to changes in nutrient availability. Other indicators of liming response in grassland are detected in mineral content and herbage quality which have implications for livestock-based production systems. Ecological studies have shown positive impacts of liming on biodiversity; such as increased earthworm abundance that provides habitat for wading birds in upland grasslands. Finally, understanding of liming impacts on soil and crop processes are explored together with functional aspects (in terms of ecosystems services) in a new qualitative framework that includes consideration of how liming impacts change with time. This holistic approach provides insights into the far-reaching impacts that liming has on ecosystems and the potential for liming to enhance the multiple benefits from agriculturally managed land. Recommendations are given for future research on the impact of liming and the implications for ecosystem services. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Seasonal and inter-annual dynamics in the stable oxygen isotope compositions of water pools in a temperate humid grassland ecosystem: results from MIBA sampling and MuSICA modelling

    NASA Astrophysics Data System (ADS)

    Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme

    2015-04-01

    The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The comparison of measured and predicted ecosystem fluxes showed that the model captured the main features of the diurnal cycles of GPP, NEE, LE and H, as well as the soil temperature dynamics. In this presentation I will present the main results of this model-data comparison, as well as results from a model sensitivity analysis performed over a range of soil, plant and meteorological parameters to evaluate the relative importance of each parameter on the δ18O signatures of the various water pools.

  12. Wind Erosion Caused by Land Use Changes Significantly Reduces Ecosystem Carbon Storage and Carbon Sequestration Potentials in Grassland

    NASA Astrophysics Data System (ADS)

    Li, P.; Chi, Y. G.; Wang, J.; Liu, L.

    2017-12-01

    Wind erosion exerts a fundamental influence on the biotic and abiotic processes associated with ecosystem carbon (C) cycle. However, how wind erosion under different land use scenarios will affect ecosystem C balance and its capacity for future C sequestration are poorly quantified. Here, we established an experiment in a temperate steppe in Inner Mongolia, and simulated different intensity of land uses: control, 50% of aboveground vegetation removal (50R), 100% vegetation removal (100R) and tillage (TI). We monitored lateral and vertical carbon flux components and soil characteristics from 2013 to 2016. Our study reveals three key findings relating to the driving factors, the magnitude and consequence of wind erosion on ecosystem C balance: (1) Frequency of heavy wind exerts a fundamental control over the severity of soil erosion, and its interaction with precipitation and vegetation characteristics explained 69% variation in erosion intensity. (2) With increases in land use intensity, the lateral C flux induced by wind erosion increased rapidly, equivalent to 33%, 86%, 111% and 183% of the net ecosystem exchange of the control site under control, 50R, 100R and TI sites, respectively. (3) After three years' treatment, erosion induced decrease in fine fractions led to 31%, 43%, 85% of permanent loss of C sequestration potential in the surface 5cm soil for 50R, 100R and TI sites. Overall, our study demonstrates that lateral C flux associated with wind erosion is too large to be ignored. The loss of C-enriched fine particles not only reduces current ecosystem C content, but also results in irreversible loss of future soil C sequestration potential. The dynamic soil characteristics need be considered when projecting future ecosystem C balance in aeolian landscape. We also propose that to maintain the sustainability of grassland ecosystems, land managers should focus on implementing appropriate land use rather than rely on subsequent managements on degraded soils.

  13. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems.

    PubMed

    Guerrero-Ramírez, Nathaly R; Craven, Dylan; Reich, Peter B; Ewel, John J; Isbell, Forest; Koricheva, Julia; Parrotta, John A; Auge, Harald; Erickson, Heather E; Forrester, David I; Hector, Andy; Joshi, Jasmin; Montagnini, Florencia; Palmborg, Cecilia; Piotto, Daniel; Potvin, Catherine; Roscher, Christiane; van Ruijven, Jasper; Tilman, David; Wilsey, Brian; Eisenhauer, Nico

    2017-11-01

    The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.

  14. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland

    PubMed Central

    Escolar, Cristina; Maestre, Fernando T.; Rey, Ana

    2015-01-01

    Soil surface communities composed of cyanobacteria, algae, mosses, liverworts, fungi, bacteria and lichens (biocrusts) largely affect soil respiration in dryland ecosystems. Climate change is expected to have large effects on biocrusts and associated ecosystem processes. However, few studies so far have experimentally assessed how expected changes in temperature and rainfall will affect soil respiration in biocrust-dominated ecosystems. We evaluated the impacts of biocrust development, increased air temperature and decreased precipitation on soil respiration dynamics during dry (2009) and wet (2010) years, and investigated the relative importance of soil temperature and moisture as environmental drivers of soil respiration, in a semiarid grassland from central Spain. Soil respiration rates were significantly lower in the dry than during the wet year, regardless of biocrust cover. Warming increased soil respiration rates, but this response was only significant in biocrust-dominated areas (> 50% biocrust cover). Warming also increased the temperature sensitivity (Q10 values) of soil respiration in biocrust-dominated areas, particularly during the wet year. The combination of warming and rainfall exclusion had similar effects in low biocrust cover areas. Our results highlight the importance of biocrusts as a modulator of soil respiration responses to both warming and rainfall exclusion, and indicate that they must be explicitly considered when evaluating soil respiration responses to climate change in drylands. PMID:25914428

  15. Changes in soil thermal regime lead to substantial shifts in carbon and energy fluxes in drained Arctic tundra

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Kwon, M. J.; Kittler, F.; Heimann, M.; Zimov, N.; Zimov, S. A.

    2016-12-01

    Climate change impacts in the Arctic will not only depend on future temperature trajectories in this region. In particular, potential shifts in hydrologic regimes, e.g. linked to altered precipitation patterns or changes in topography following permafrost degradation, can dramatically modify ecosystem feedbacks to warming. Here, we analyze how severe drainage affects both biogeochemical and biogeophysical processes within a formerly wet Arctic tundra, with a special focus on the interactions between hydrology and soil temperatures, and related effects on the fluxes of carbon and energy. Our findings are based on year-round observations from a decade-long drainage experiment conducted near Chersky, Northeast Siberia. Through our multi-disciplinary observations we can document that the drainage triggered a suite of secondary changes in ecosystem properties, including e.g. adaptation processes in the vegetation community structure, or shifts in snow cover regime. Most profoundly, a combination of low heat capacity and reduced heat conductivity in dry organic soils lead to warmer soil temperatures near the surface, while deeper soil layers remained colder. These changes in soil thermal regime reduced the contribution of deeper soil layers with older carbon pools to overall ecosystem respiration, as documented through radiocarbon signals. Regarding methane, the observed steeper temperature gradient along the vertical soil profile slowed down methane production in deep layers, while promoting CH4 oxidation near the surface. Taken together, both processes contributed to a reduction in CH4 emissions up to a factor of 20 following drainage. Concerning the energy budget, we observed an intensification of energy transfer to the lower atmosphere, particularly in form of sensible heat, but the reduced energy transfer into deeper soil layers also led to systematically shallower thaw depths. Summarizing, drainage may contribute to slow down decomposition of old carbon from deep soil layers, counterbalancing direct warming effects on permafrost carbon pools.

  16. Linking Stoichiometric Homeostasis of Microorganisms with Soil Phosphorus Dynamics in Wetlands Subjected to Microcosm Warming

    PubMed Central

    Wang, Hang; Li, HongYi; Zhang, ZhiJian; Muehlbauer, Jeffrey D.; He, Qiang; Xu, XinHua; Yue, ChunLei; Jiang, DaQian

    2014-01-01

    Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C) climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P) biogeochemical cycling coupled with carbon (C) dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H) to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m−2 d−1 in the control and 0.07 to 61.26 mg m−2 d−1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001) relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater) and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C) and flow of resources (e.g., N and P), and can be a useful ecological tool for assessing potential P flux in ecosystems. PMID:24475045

  17. Nitrogen enrichment regulates calcium sources in forests

    USGS Publications Warehouse

    Hynicka, Justin D.; Pett-Ridge, Julie C.; Perakis, Steven

    2016-01-01

    Nitrogen (N) is a key nutrient that shapes cycles of other essential elements in forests, including calcium (Ca). When N availability exceeds ecosystem demands, excess N can stimulate Ca leaching and deplete Ca from soils. Over the long term, these processes may alter the proportion of available Ca that is derived from atmospheric deposition vs. bedrock weathering, which has fundamental consequences for ecosystem properties and nutrient supply. We evaluated how landscape variation in soil N, reflecting long-term legacies of biological N fixation, influenced plant and soil Ca availability and ecosystem Ca sources across 22 temperate forests in Oregon. We also examined interactions between soil N and bedrock Ca using soil N gradients on contrasting basaltic vs. sedimentary bedrock that differed 17-fold in underlying Ca content. We found that low-N forests on Ca-rich basaltic bedrock relied strongly on Ca from weathering, but that soil N enrichment depleted readily weatherable mineral Ca and shifted forest reliance toward atmospheric Ca. Forests on Ca-poor sedimentary bedrock relied more consistently on atmospheric Ca across all levels of soil N enrichment. The broad importance of atmospheric Ca was unexpected given active regional uplift and erosion that are thought to rejuvenate weathering supply of soil minerals. Despite different Ca sources to forests on basaltic vs. sedimentary bedrock, we observed consistent declines in plant and soil Ca availability with increasing N, regardless of the Ca content of underlying bedrock. Thus, traditional measures of Ca availability in foliage and soil exchangeable pools may poorly reflect long-term Ca sources that sustain soil fertility. We conclude that long-term soil N enrichment can deplete available Ca and cause forests to rely increasingly on Ca from atmospheric deposition, which may limit ecosystem Ca supply in an increasingly N-rich world.

  18. High Microbial Diversity Promotes Soil Ecosystem Functioning.

    PubMed

    Maron, Pierre-Alain; Sarr, Amadou; Kaisermann, Aurore; Lévêque, Jean; Mathieu, Olivier; Guigue, Julien; Karimi, Battle; Bernard, Laetitia; Dequiedt, Samuel; Terrat, Sébastien; Chabbi, Abad; Ranjard, Lionel

    2018-05-01

    In soil, the link between microbial diversity and carbon transformations is challenged by the concept of functional redundancy. Here, we hypothesized that functional redundancy may decrease with increasing carbon source recalcitrance and that coupling of diversity with C cycling may change accordingly. We manipulated microbial diversity to examine how diversity decrease affects the decomposition of easily degradable (i.e., allochthonous plant residues) versus recalcitrant (i.e., autochthonous organic matter) C sources. We found that a decrease in microbial diversity (i) affected the decomposition of both autochthonous and allochthonous carbon sources, thereby reducing global CO 2 emission by up to 40%, and (ii) shaped the source of CO 2 emission toward preferential decomposition of most degradable C sources. Our results also revealed that the significance of the diversity effect increases with nutrient availability. Altogether, these findings show that C cycling in soil may be more vulnerable to microbial diversity changes than expected from previous studies, particularly in ecosystems exposed to nutrient inputs. Thus, concern about the preservation of microbial diversity may be highly relevant in the current global-change context assumed to impact soil biodiversity and the pulse inputs of plant residues and rhizodeposits into the soil. IMPORTANCE With hundreds of thousands of taxa per gram of soil, microbial diversity dominates soil biodiversity. While numerous studies have established that microbial communities respond rapidly to environmental changes, the relationship between microbial diversity and soil functioning remains controversial. Using a well-controlled laboratory approach, we provide empirical evidence that microbial diversity may be of high significance for organic matter decomposition, a major process on which rely many of the ecosystem services provided by the soil ecosystem. These new findings should be taken into account in future studies aimed at understanding and predicting the functional consequences of changes in microbial diversity on soil ecosystem services and carbon storage in soil. Copyright © 2018 American Society for Microbiology.

  19. Microbial imprint on soil-atmosphere H2, COS, and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Prinn, R. G.

    2013-12-01

    Microorganisms drive large trace gas fluxes between soil and atmosphere, but the signal can be difficult to detect and quantify in the presence of stronger exchange processes in an ecosystem. Partitioning methods are often needed to estimate trace gas budgets and to develop process-based models to explore the sensitivity of microbe-mediated fluxes. In this study, we test the performance of trace gases with predominantly microbe-mediated soil fluxes as a metric of the soil microbial uptake activity of other trace gases. Using simultaneous, collocated measurements at Harvard Forest, we consider three trace gases with microbe-mediated soil fluxes of various importance relative to their other (mainly plant-mediated) ecosystem fluxes: molecular hydrogen (H2), carbonyl sulfide (COS), and carbon dioxide (CO2). These gases probe different aspects of the soil trace-gas microbiology. Soil H2 uptake is a redox reaction driving the energy metabolism of a portion of the microbial community, while soil CO2 respiration is a partial proxy for the overall soil microbial metabolism. In comparison, very little is understood about the microbiological and environmental drivers of soil COS uptake and emissions. In this study, we find that H2, COS, and CO2 soil uptake rates are often correlated, but the relative soil uptake between gases is not constant, and is influenced by seasonality and local environmental conditions. We also consider how differences in the microbial communities and pathways involved in the soil fluxes may explain differences in the observations. Our results are important for informing previous studies using tracer approaches. For example, H2 has been used to estimate COS soil uptake, which must be accounted for to use COS as a carbon cycle tracer. Furthermore, the global distribution of H2 deposition velocity has been inferred from net primary productivity (CO2). Given that insufficient measurement frequency and spatial distribution exists to partition global net ecosystem fluxes of many climate-relevant trace gases, insight into the use of certain trace gases to estimate rates of more general biogeochemical processes is useful.

  20. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil mesurements

    USDA-ARS?s Scientific Manuscript database

    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground pl...

  1. Soil functional types: surveying the biophysical dimensions of soil security

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or climate) for a particular soil-provided ecosystem service (e.g. climate regulation)". One SFT can thus include several soil types having the same functionality for a particular soil-provided ES. Another consequence is that SFT maps for two different ES may not superimpose over the same area, since some soils may fall in the same SFT for a service and in different SFT for another one. Soil functional types could be assessed and monitored in space and time by a combination of soil functional traits that correspond to inherent and manageable properties of soils. Their metrology would involve either classic (pedological observations) or advanced (molecular ecology, spectrometry, geophysics) tools. SFT could be studied and mapped at all scales, depending on the purpose of the soil security assessment (e.g. global climate modeling, land planning and management, biodiversity conservation). Overall, research is needed to find a pathway from soil pedological maps to SFT maps which would yield important benefits towards the assessment and monitoring of soil security. Indeed, this methodology would allow (i) reducing the spatial uncertainty on the assessment of ES; (ii) identifying and mapping multifunctional soils, which may be the most important soil resource to preserve. References [1] McBratney et al., 2014. Geoderma 213:203-213. [2] Droogers P, Bouma J, 1997. SSSAJ 61:1704-1710.

  2. Proceedings: Pacific Northwest forest and rangeland soil organism symposium; 1998 March 17-19; Corvallis, OR.

    Treesearch

    Robert T. Meurisse; William G. Ypsilantis; Cathy Seybold

    1999-01-01

    Soil organisms have become a focus of attention for addressing issues of soil quality and health, and ecosystem sustainability. Land managers are challenged to ensure that their actions are beneficial to belowground organisms and processes in the long term. Research about soil organisms, their populations, roles, and management effects is fragmented and often esoteric...

  3. Investigation on the dominant factors controlling the spatio-temporal distribution of soil moisture in experimental grasslands

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, G.; Hildebrandt, A.; Samaniego-Eguiguren, L.; Kreutziger, Y.; Attinger, S.

    2009-04-01

    The spatio-temporal distribution of soil moisture in the unsaturated zone influences the vegetation growth, governs the runoff generation processes as well as the energy balance at the interface between biosphere and the atmosphere, by influencing evapotranspiration. A better understanding of the spatio-temporal variability and dependence of soil moisture on living versus abiotic environment would lead to an improved representation of the soil-vegetation-atmosphere processes in hydrological and climate models. The Jena Experiment site (Germany) was established October 2001 in order to analyse the interaction between plant diversity and ecosystem processes. The main experiment covers 92 plots of 20 x 20 m arranged into a grid, on which a mixture of up to 60 grassland species and of one to four plant functional groups have been seeded. Each of these plots is equipped with at least one measurement tube for soil moisture. Measurements have been conducted weekly for four growing seasons (SSF). Here, we use geostatistical methods, like variograms and multivariate regressions, to investigate in how far abiotic environment and ecosystem explain the spatial and temporal variation of soil moisture at the Jena Experiment site. We test the influence of the soil environment, biodiversity, leaf area index and groundwater table. The poster will present the results of this analysis.

  4. Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem

    USGS Publications Warehouse

    Faist, Akasha M; Herrick, Jeffrey E.; Belnap, Jayne; Van Zee, Justin W; Barger, Nichole N

    2017-01-01

    Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems, and these processes may then be dramatically altered with soil surface disturbance. In this study, we examined biocrust hydrologic responses to disturbance at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance (trampling, scalping and trampling+scalping) of the early successional light cyanobacterial biocrusts generally reduced runoff. In contrast, trampling well-developed dark-cyano-lichen biocrusts increased runoff and sediment loss relative to intact controls. Scalping did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well-developed, intact dark biocrusts generally had lower runoff, low sediment loss, and highest aggregate stability whereas the less-developed light biocrusts were highest in runoff and sediment loss when compared to the controls. These results suggest the importance of maintaining the well-developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential.

  5. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  6. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    Atmospheric deposition of nitrogen (N) and sulfur (S) cause complex responses in ecosystems, from fertilization to forest ecosystem decline, freshwater eutrophication to acidification, loss of soil base cations, and alterations of disturbance regimes. DayCent-Chem, an ecosystem simulation model that combines ecosystem nutrient cycling and plant dynamics with aqueous geochemical equilibrium calculations, was developed to address ecosystem responses to combined atmospheric N and S deposition. It is unique among geochemically-based models in its dynamic biological cycling of N and its daily timestep for investigating ecosystem and surface water chemical response to episodic events. The model was applied to eight mountainous watersheds in the United States. The sites represent a gradient of N deposition across locales, from relatively pristine to N-saturated, and a variety of ecosystem types and climates. Overall, the model performed best in predicting stream chemistry for snowmelt-dominated sites. It was more difficult to predict daily stream chemistry for watersheds with deep soils, high amounts of atmospheric deposition, and a large degree of spatial heterogeneity. DayCent-Chem did well in representing plant and soil carbon and nitrogen pools and fluxes. Modeled stream nitrate (NO3-) and ammonium (NH4+) concentrations compared well with measurements at all sites, with few exceptions. Simulated daily stream sulfate (SO42-) concentrations compared well to measured values for sites where SO42- deposition has been low and where SO42- adsorption/desorption reactions did not seem to be important. The concentrations of base cations and silica in streams are highly dependent on the geochemistry and weathering rates of minerals in each catchment, yet these were rarely, if ever, known. Thus, DayCent-Chem could not accurately predict weathering products for some catchments. Additionally, few data were available for exchangeable soil cations or the magnitude of base cation deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites. The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

  7. The Contribution of Soils to North America's Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Reed, S.; Thornton, P. E.; Lajtha, K.; Bailey, V. L.; Shrestha, G.; Jastrow, J. D.; Torn, M. S.

    2015-12-01

    This presentation will cover key aspects of the terrestrial soil carbon cycle in North America and the US for the upcoming State of the Carbon Cycle Report (SOCCRII). SOCCRII seeks to summarize how natural processes and human interactions affect the global carbon cycle, how socio-economic trends affect greenhouse gas concentrations in the atmosphere, and how ecosystems are influenced by and respond to greenhouse gas emissions, management decisions, and concomitant climate effects. Here, we will summarize the contemporary understanding of carbon stocks, fluxes, and drivers in the soil ecosystem compartment. We will highlight recent advances in modeling the magnitude of soil carbon stocks and fluxes, as well as the importance of remaining uncertainties in predicting soil carbon cycling and its relationship with climate. Attention will be given to the role of uncertainties in predicting future fluxes from soils, and how those uncertainties vary by region and ecosystem. We will also address how climate feedbacks and management decisions can enhance or minimize future climatic effects based on current understanding and observations, and will highlight select research needs to improve our understanding of the balance of carbon in soils in North America.

  8. Influence of Watershed Characteristics on Wetland Hydrology (Tampa, FL)

    EPA Science Inventory

    The availability of oxygen in wetland soils is a major driver of rate changes for several important ecological functions (e.g. nutrient processing, carbon sequestration) that the Tampa Bay Ecosystem Services Research Program (TB-ESRP) is quantifying to estimate ecosystem services...

  9. The forest ecosystem of southeast Alaska: 5. Soil mass movement.

    Treesearch

    Douglas N. Swanston

    1974-01-01

    Research in southeast Alaska has identified soil mass movement as the dominant erosion process, with debris avalanches and debris flows the most frequent events on characteristically steep, forested slopes. Periodically high soil water levels and steep slopes are controlling factors. Bedrock structure and the rooting characteristics of trees and other vegetation exert...

  10. Responses of redwood soil microbial community structure and N transformations to climate change

    Treesearch

    Damon C. Bradbury; Mary K. Firestone

    2012-01-01

    Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...

  11. Sensitivity of soil permafrost to winter warming: Modeled impacts of climate change.

    NASA Astrophysics Data System (ADS)

    Bouskill, N.; Riley, W. J.; Mekonnen, Z. A.; Grant, R.

    2016-12-01

    High-latitude tundra soils are warming at nearly twice the rate of temperate ecosystems. Changes in temperature and soil moisture can feedback on the processes controlling the carbon balance of tundra soils by altering plant community composition and productivity and microbial decomposition rates. Recent field manipulation experiments have shown that elevated soil and air temperatures can stimulate both gross primary productivity and ecosystem respiration. However, the observed soil carbon gains following summer time stimulation of plant productivity have been more than offset by elevated decomposition rates during the rest of the year, and particularly over winter. A critical uncertainty is whether these short-term responses also represent the long-term trajectory of tundra ecosystems under chronic disturbance. Herein we employ a mechanistic land-model (ecosys) that represents many of the key above- and belowground processes regulating the carbon balance of tundra soils to simulate a winter warming experiment at Eight Mile Lake, Alaska. Using this model we examined the short-term (5 - 10 year) influence of soil warming through the wintertime by mimicking the accumulation of a deeper snow pack. This deeper snow pack was removed to a height equal to that of the snow pack over control plots prior to snow melt. We benchmarked the model using physical and biological measurements made over the course of a six-year experiment at the site. The model accurately represented the effect of the experimental manipulation on thaw depth, N mineralization, winter respiration, and ecosystem gross and net primary production. After establishing confidence in the modeled short-term responses, we extend the same chronic disturbance to 2050 to examine the long-term response of the plant and microbial communities to warming. We discuss our results in reference to the long-term trajectory of the carbon and nutrient cycles of high-latitude permafrost regions.

  12. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    PubMed Central

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  13. Carbon cycling in high-latitude ecosystems

    NASA Technical Reports Server (NTRS)

    Townsend, Alan; Frolking, Stephen; Holland, Elizabeth

    1992-01-01

    The carbon-rich soils and peatlands of high-latitude ecosystems could substantially influence atmospheric concentrations of CO2 and CH4 in a changing climate. Currently, cold, often waterlogged conditions retard decomposition, and release of carbon back to the atmosphere may be further slowed by physical protection of organic matter in permafrost. As a result, many northern ecosystems accumulate carbon over time (Billings et al., 1982; Poole and Miller, 1982), and although such rates of accumulation are low, thousands of years of development have left Arctic ecosystems with an extremely high soil carbon content; Schlesinger's (1984) average value of 20.4 kg C/m(sup 2) leads to a global estimate of 163 x 10(exp 15) g C. All GCM simulations of a doubled CO2 climate predict the greatest warming to occur in the polar regions (Dickinson, 1986; Mitchell, 1989). Given the extensive northern carbon pools and the strong sensitivity of decomposition processes to temperature, even a slight warming of the soil could dramatically alter the carbon balance of Arctic ecosystems. If warming accelerates rates of decomposition more than rates of primary production, a sizeable additional accumulation of CO2 in the atmosphere could occur. Furthermore, CH4 produced in anaerobic soils and peatlands of the Arctic already composes a good percentage of the global efflux (Cicerone and Oremlund, 1988); if northern soils become warmer and wetter as a whole, CH4 emissions could dramatically rise. A robust understanding of the primary controls of carbon fluxes in Arctic ecosystems is critical. As a framework for a systematic examination of these controls, we discussed a conceptual model of regional-scale Arctic carbon turnover, including CH4 production, and based upon the Century soil organic matter model.

  14. Snow depth manipulation experiments in a dry and a moist tundra

    NASA Astrophysics Data System (ADS)

    Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.

    2017-12-01

    As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.

  15. NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    NASA Technical Reports Server (NTRS)

    Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.

    1991-01-01

    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.

  16. Monitoring boreal ecosystem phenology with integrated active/passive microwave remote sensing

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Njoku, E.; Kimball, J.; Running, S.; Thompson, C.; Lee, J. K.

    2002-01-01

    The important role of the high latitudes in the functioning of global processes is becoming well established. The size and remoteness of arctic and boreal ecosystems, however, pose a challenge to quantification of both terrestrial ecosystem processes and their feedbacks to regional and global climate conditions. Boreal and arctic regions form a complex land cover mosaic where vegetation structure, condition and distribution are strongly regulated by environmental factors such as moisture availability, permafrost, growing season length, disturbance and soil nutrients.

  17. The formation and fate of chlorinated organic substances in temperate and boreal forest soils.

    PubMed

    Clarke, Nicholas; Fuksová, Kvetoslava; Gryndler, Milan; Lachmanová, Zora; Liste, Hans-Holger; Rohlenová, Jana; Schroll, Reiner; Schröder, Peter; Matucha, Miroslav

    2009-03-01

    Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect the chlorine cycle, although little is at present known about how. The present data on the apparently considerable size of the pool of OCls indicate its importance for the functioning of the forest soil system and its stability, but factors controlling their formation, degradation and transport are not clearly understood. It would be useful to estimate the significance and rates of key processes to be able to judge the importance of OCls in SOM and litter degradation. Effects of forest management processes affecting SOM and chloride deposition are likely to affect OCls as well. Further standardisation and harmonisation of sampling and analytical procedures is necessary. More work is necessary in order to understand and, if necessary, develop strategies for mitigating the environmental impact of OCls in temperate and boreal forest soils. This includes both intensified research, especially to understand the key processes of formation and degradation of chlorinated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on OCls, as management can be used to produce desired effects.

  18. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    PubMed

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  19. Monitoring ecosystem quality and function in arid settings of the Mojave Desert

    USGS Publications Warehouse

    Belnap, Jayne; Webb, Robert H.; Miller, Mark E.; Miller, David M.; DeFalco, Lesley A.; Medica, Philip A.; Brooks, Matthew L.; Esque, Todd C.; Bedford, Dave

    2008-01-01

    Monitoring ecosystem quality and function in the Mojave Desert is both a requirement of state and Federal government agencies and a means for determining potential long-term changes induced by climatic fluctuations and land use. Because it is not feasible to measure every attribute and process in the desert ecosystem, the choice of what to measure and where to measure it is the most important starting point of any monitoring program. In the Mojave Desert, ecosystem function is strongly influenced by both abiotic and biotic factors, and an understanding of the temporal and spatial variability induced by climate and landform development is needed to determine where site-specific measurements should be made. We review a wide variety of techniques for sampling, assessing, and measuring climatic variables, desert soils, biological soil crusts, annual and perennial vegetation, reptiles, and small mammals. The complete array of ecosystem attributes and processes that we describe are unlikely to be measured or monitored at any given location, but the array of possibilities allows for the development of specific monitoring protocols, which can be tailored to suit the needs of land-management agencies.

  20. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem

    PubMed Central

    Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems. PMID:29624606

  1. Armillaria species: Primary drivers of forest ecosystem processes and potential impacts of climate change

    Treesearch

    Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Amy L. Ross-Davis; Sara M. Ashiglar; Geral I. McDonald

    2012-01-01

    Species of the fungal genus Armillaria are pervasive in forest soils and are associated with widely ranging tree species of diverse forests worldwide (Baumgartner et al., 2011). As primary decay drivers of ecosystem processes, Armillaria species exhibit diverse ecological behaviors, ranging from virulent root and/or butt pathogens of diverse woody hosts, such as timber...

  2. Rangeland health attributes and indicators for qualitative assessment

    USGS Publications Warehouse

    Pyke, David A.; Herrick, J.E.; Pellant, Mike

    2002-01-01

    Panels of experts from the Society for Range Management and the National Research Council proposed that status of rangeland ecosystems could be ascertained by evaluating an ecological site's potential to conserve soil resources and by a series of indicators for ecosystem processes and site stability. Using these recommendations as a starting point, we developed a rapid, qualitative method for assessing a moment-in-time status of rangelands. Evaluators rate 17 indicators to assess 3 ecosystem attributes (soil and site stability, hydrologic function, and biotic integrity) for a given location. Indicators include rills, water flow patterns, pedestals and terracettes, bare ground, gullies, wind scour and depositional areas, litter movement, soil resistance to erosion, soil surface loss or degradation, plant composition relative to infiltration, soil compaction, plant functional/structural groups, plant mortality, litter amount, annual production, invasive plants, and reproductive capability. In this paper, we detail the development and evolution of the technique and introduce a modified ecological reference worksheet that documents the expected presence and amount of each indicator on the ecological site. In addition, we review the intended applications for this technique and clarify the differences between assessment and monitoring that lead us to recommend this technique be used for moment-in-time assessments and not be used for temporal monitoring of rangeland status. Lastly, we propose a mechanism for adapting and modifying this technique to reflect improvements in understanding of ecosystem processes. We support the need for quantitative measures for monitoring rangeland health and propose some measures that we believe may address some of the 17 indicators.

  3. Ectomycorrhizal fungi slow soil carbon cycling.

    PubMed

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.

  4. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sihi, Debjani; Davidson, Eric A.; Chen, Min

    Heterotrophic respiration (Rh), microbial processing of soil organic matter to carbon dioxide (CO 2), is a major, yet highly uncertain, carbon (C) flux from terrestrial systems to the atmosphere. Temperature sensitivity of Rh is often represented with a simple Q 10 function in ecosystem models and earth system models (ESMs), sometimes accompanied by an empirical soil moisture modifier. More explicit representation of the effects of soil moisture, substrate supply, and their interactions with temperature has been proposed as a way to disentangle the confounding factors of apparent temperature sensitivity of Rh and improve the performance of ecosystem models and ESMs.more » The objective of this work was to insert into an ecosystem model a more mechanistic, but still parsimonious, model of environmental factors controlling Rh and evaluate the model performance in terms of soil and ecosystem respiration. The Dual Arrhenius and Michaelis-Menten (DAMM) model simulates Rh using Michaelis-Menten, Arrhenius, and diffusion functions. Soil moisture affects Rh and its apparent temperature sensitivity in DAMM by regulating the diffusion of oxygen, soluble C substrates, and extracellular enzymes to the enzymatic reaction site. Here, we merged the DAMM soil flux model with a parsimonious ecosystem flux model, FöBAAR (Forest Biomass, Assimilation, Allocation and Respiration). We used high-frequency soil flux data from automated soil chambers and landscape-scale ecosystem fluxes from eddy covariance towers at two AmeriFlux sites (Harvard Forest, MA and Howland Forest, ME) in the northeastern USA to estimate parameters, validate the merged model, and to quantify the uncertainties in a multiple constraints approach. The optimized DAMM-FöBAAR model better captured the seasonal and inter-annual dynamics of soil respiration (Soil R) compared to the FöBAAR-only model for the Harvard Forest, where higher frequency and duration of drying events significantly regulate substrate supply to heterotrophs. However, DAMM-FöBAAR showed improvement over FöBAAR-only at the boreal transition Howland Forest only in unusually dry years. The frequency of synoptic-scale dry periods is lower at Howland, resulting in only brief water limitation of Rh in some years. At both sites, the declining trend of soil R during drying events was captured by the DAMM-FöBAAR model; however, model performance was also contingent on site conditions, climate, and the temporal scale of interest. While the DAMM functions require a few more parameters than a simple Q10 function, we have demonstrated that they can be included in an ecosystem model and reduce the model-data mismatch. Moreover, the mechanistic structure of the soil moisture effects using DAMM functions should be more generalizable than the wide variety of empirical functions that are commonly used, and these DAMM functions could be readily incorporated into other ecosystem models and ESMs.« less

  5. Plant communities, soil carbon, and soil nitrogen properties in a successional gradient of sub-alpine meadows on the eastern Tibetan plateau of China.

    PubMed

    Li, Wen-Jin; Li, Jin-Hua; Knops, Johannes M H; Wang, Gang; Jia, Ju-Jie; Qin, Yan-Yan

    2009-10-01

    To assess the recovery trajectory and self-maintenance of restored ecosystems, a successional gradient (1, 3, 5, 15, and 30 years after abandonment) was established in a sub-alpine meadow of the eastern Tibetan Plateau in China. Plant communities and soil carbon and nitrogen properties were investigated and analyzed. Regression analyses were used to assess the models (linear or quadratic) relating measures of species richness, soil carbon and nitrogen properties to fallow time. We found that species richness (S) increased over the first 20 years but decreased thereafter, and aboveground biomass showed a linear increase along the fallow time gradient. The richness of different functional groups (forb, grass and legume) changed little along the fallow time gradient, but their corresponding above ground biomass showed the U-shaped, humped or linear pattern. Soil microbial carbon (MBC) and nitrogen (MBN) in the upper 20 cm showed a U-shaped pattern along the fallow time gradient. However, soil organic carbon (C(org)) and total nitrogen (TN) in the soil at depth greater than 20 cm showed significant patterns of linear decline along the fallow time gradient. The threshold models of species richness reflected best the recovery over the 15 year fallow period. These results indicated that fallow time had a greater influence on development of the plant community than soil processes in abandoned fields in sub-alpine meadow ecosystem. These results also suggested that although the succession process did not significantly increase soil C, an increase in microbial biomass at the latter stage of succession could promote the decomposability of plant litter. Therefore, abandoned fields in sub-alpine meadow ecosystem may have a high resilience and strong rehabilitating capability under natural recovery condition.

  6. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability in the soil, deviations from the equilibrium are more or less pronounced. We hypothesized that the 18Op is the result of other processes such the mineralization of organic P by phosphatases. These first results of 18Op on forest soils are suggesting that isotopic equilibrium driven by biological cycling (pyrophosphatase) is not always overprinting other processes. In addition, together with information on P speciation/concentration, 18Op seems to provide direct insights on P cycling at the ecosystem level. Blake R.E., Neil J.R.O., Surkov A.V. (2005) Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes. American Journal of Science 305: 596-620 Moir J.O., Tiessen H. Characterization of available P by sequential extraction. Soil Sampling and Methods of Analysis, Second Edition. Ed. by M.R. Carter and E.G. Gregorich CRC Press 2007 Tamburini F., Pfahler V, Bünemann E.K., Guelland K., Bernasconi S.M., Frossard E. (2012) Oxygen Isotopes Unravel the Role of Microorganisms in Phosphate Cycling in Soils. Environmental Science & Technology 46: 5956-5962

  7. Transpiration Dominates Ecosystem Water-Use Efficiency in Response to Warming in an Alpine Meadow

    NASA Astrophysics Data System (ADS)

    Quan, Quan; Zhang, Fangyue; Tian, Dashuan; Zhou, Qingping; Wang, Lixin; Niu, Shuli

    2018-02-01

    As a key linkage of C and water cycles, water-use efficiency (WUE) quantifies how much water an ecosystem uses for carbon gain. Although ecosystem C and water fluxes have been intensively studied, yet it remains unclear how ecosystem WUE responds to climate warming and which processes dominate the response of WUE. To answer these questions, we examined canopy WUE (WUEc), ecosystem WUE (WUEe) and their components including gross ecosystem productivity, ecosystem evapotranspiration (ET), soil evaporation (E), and plant canopy transpiration (T), in response to warming in an alpine meadow by using a manipulative warming experiment in 2015 and 2016. As expected, low- and high-level warming treatments increased soil temperature (Tsoil) at 10 cm on average by 1.65 and 2.77°C, but decreased soil moisture (Msoil) by 2.52 and 7.6 vol %, respectively, across the two years. Low- and high-level warming increased WUEe by 7.7 and 9.3% over the two years, but rarely changed WUEc in either year. T/ET ratio determined the differential responses of WUEc and WUEe. Larger T/ET led to less difference between WUEc and WUEe. By partitioning WUEc and WUEe into different carbon and water fluxes, we found that T rather than gross ecosystem productivity or E dominated the responses of WUEc and WUEe to warming. This study provides empirical insights into how ecosystem WUE responds to warming and illustrates the importance of plant transpiration in regulating ecosystem WUE under future climate change.

  8. Impacts of fire on nitrogen cycling in aquatic and terrestrial ecosystems in the Yukon-Kuskokwim River Delta, AK

    NASA Astrophysics Data System (ADS)

    Schade, J. D.; Jardine, L. E.; Bristol, E. M.; Navarro-Perez, E.; Melton, S.; Jimmie, J. A.; Natali, S.; Mann, P. J.; Holmes, R. M.

    2016-12-01

    Global climate change is having a disproportionate impact on northern high latitudes, including rapid increases in temperature, changes in precipitation, and increasing fire frequency and severity. Wildfires have been shown to strongly influence ecosystem processes through acceleration of permafrost thaw and increased nitrogen (N) availability, the effects of which may increase gaseous loss of carbon (C) to the atmosphere, increase primary production by alleviating N limitation, or both. The extent of these fire impacts has not been well-documented in the Arctic, particularly in areas of discontinuous permafrost. In 2015, the Yukon-Kuskokwim River Delta (YK Delta) in southwestern Alaska experienced the largest fire season in recorded history, providing an opportunity to study wildfire impacts on an area particularly vulnerable to permafrost thaw. Our objectives were to study the impacts of these fires on nitrogen availability in a range of land cover classes, including peat plateaus, channel fens, and aquatic ecosystems distributed across the landscapes. We sampled soils from several vegetation patches on burned and unburned peat plateaus, and soil and surface waters from fens, small ponds, and streams downslope of these sites. All water samples were filtered through GFF filters in the field. Soils were transported frozen to the Woods Hole Research Center and extracted in KCl. All water samples and extracts were analyzed for NH4 and NO3 concentrations. We found substantially higher concentrations of extractable NH4 in burned soils, but very little extractable NO3 in either burned or unburned soils. Water samples also showed higher NH4 in aquatic ecosystems in burned watersheds, but, in contrast to soils, showed relatively high NO3 concentrations, particularly in waters from lower landscape positions. Overall, aquatic ecosystems exhibited higher NO3: NH4 ratios than soil extractions, and increasing NO3: NH4 downslope. These results suggest significant export of nitrogen after fire and the potential for nitrification as N is transported across the landscape. These changes in N cycling are likely to have substantial consequences for the recovery of plant communities post-fire and for microbial processes and greenhouse gas fluxes, including N2O, from burned watersheds.

  9. Impacts of fire on nitrogen cycling in aquatic and terrestrial ecosystems in the Yukon-Kuskokwim River Delta, AK

    NASA Astrophysics Data System (ADS)

    Schade, J. D.; Jardine, L. E.; Bristol, E. M.; Navarro-Perez, E.; Melton, S.; Jimmie, J. A.; Natali, S.; Mann, P. J.; Holmes, R. M.

    2017-12-01

    Global climate change is having a disproportionate impact on northern high latitudes, including rapid increases in temperature, changes in precipitation, and increasing fire frequency and severity. Wildfires have been shown to strongly influence ecosystem processes through acceleration of permafrost thaw and increased nitrogen (N) availability, the effects of which may increase gaseous loss of carbon (C) to the atmosphere, increase primary production by alleviating N limitation, or both. The extent of these fire impacts has not been well-documented in the Arctic, particularly in areas of discontinuous permafrost. In 2015, the Yukon-Kuskokwim River Delta (YK Delta) in southwestern Alaska experienced the largest fire season in recorded history, providing an opportunity to study wildfire impacts on an area particularly vulnerable to permafrost thaw. Our objectives were to study the impacts of these fires on nitrogen availability in a range of land cover classes, including peat plateaus, channel fens, and aquatic ecosystems distributed across the landscapes. We sampled soils from several vegetation patches on burned and unburned peat plateaus, and soil and surface waters from fens, small ponds, and streams downslope of these sites. All water samples were filtered through GFF filters in the field. Soils were transported frozen to the Woods Hole Research Center and extracted in KCl. All water samples and extracts were analyzed for NH4 and NO3 concentrations. We found substantially higher concentrations of extractable NH4 in burned soils, but very little extractable NO3 in either burned or unburned soils. Water samples also showed higher NH4 in aquatic ecosystems in burned watersheds, but, in contrast to soils, showed relatively high NO3 concentrations, particularly in waters from lower landscape positions. Overall, aquatic ecosystems exhibited higher NO3: NH4 ratios than soil extractions, and increasing NO3: NH4 downslope. These results suggest significant export of nitrogen after fire and the potential for nitrification as N is transported across the landscape. These changes in N cycling are likely to have substantial consequences for the recovery of plant communities post-fire and for microbial processes and greenhouse gas fluxes, including N2O, from burned watersheds.

  10. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function.

    PubMed

    Weidenhamer, Jeffrey D; Callaway, Ragan M

    2010-01-01

    Invasive plants have a multitude of impacts on plant communities through their direct and indirect effects on soil chemistry and ecosystem function. For example, plants modify the soil environment through root exudates that affect soil structure, and mobilize and/or chelate nutrients. The long-term impact of litter and root exudates can modify soil nutrient pools, and there is evidence that invasive plant species may alter nutrient cycles differently from native species. The effects of plants on ecosystem biogeochemistry may be caused by differences in leaf tissue nutrient stoichiometry or secondary metabolites, although evidence for the importance of allelochemicals in driving these processes is lacking. Some invasive species may gain a competitive advantage through the release of compounds or combinations of compounds that are unique to the invaded community—the “novel weapons hypothesis.” Invasive plants also can exert profound impact on plant communities indirectly through the herbicides used to control them. Glyphosate, the most widely used herbicide in the world, often is used to help control invasive weeds, and generally is considered to have minimal environmental impacts. Most studies show little to no effect of glyphosate and other herbicides on soil microbial communities. However, herbicide applications can reduce or promote rhizobium nodulation and mycorrhiza formation. Herbicide drift can affect the growth of non-target plants, and glyphosate and other herbicides can impact significantly the secondary chemistry of plants at sublethal doses. In summary, the literature indicates that invasive species can alter the biogeochemistry of ecosystems, that secondary metabolites released by invasive species may play important roles in soil chemistry as well as plant-plant and plant-microbe interactions, and that the herbicides used to control invasive species can impact plant chemistry and ecosystems in ways that have yet to be fully explored.

  11. Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Lorenz, K.

    2010-12-01

    Urban lands comprise the most intensively transformed lands on earth. Urban land cover changed from 0.01% of the global ice-free land area in 1700 to 0.5% in 2002. Globally, urbanization is now the primary process of land cover transformation. Urbanization accentuates conversion of natural or agricultural lands to urban soils with altered biological, chemical and physical properties. Soil functions particularly important in urban ecosystems are the protection against damages by intense precipitation and flooding, retention and immobilization of contaminants, production of clean water, and buffering of climate extremes, mainly through evaporative cooling. Because of their disturbance by human activities, urban soils have distinct properties. In contrast to natural soils, human-made materials dominate or strongly influence urban soils as human activities constitute important soil-forming factors in urban ecosystems. Soils whose properties and pedogenesis are dominated by their technical origin are classified as Technosols in the World Reference Base (WRB) for Soil Resources. They contain large proportions of artifacts, or are sealed by technic hard rock. Technosols include soils from wastes (e.g., landfills, sludge, cinders, mine spoils and ashes), pavements with their underlying unconsolidated materials, soils with geomembranes and constructed soils in human-made materials. However, Technosols and their properties have not yet been studied extensively. Yet, a greater understanding of urban soil properties is urgently needed to assess their biogeochemical cycles and role in the global carbon (C) cycle, and to manage their ecosystem services for the well-being of the urban population. Studies of biogeochemical cycles in urban soils of Stuttgart, Germany, have shown that soils from as deep as 1.9-m depth contain significant amounts of microbial biomass and are metabolically active. Buried organic matter (OM) rich artifacts where frequently observed originating from a long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.

  12. Nitrate is an important nitrogen source for Arctic tundra plants.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Koyama, Lina A; Hobbie, Sarah E; Weiss, Marissa S; Inagaki, Yoshiyuki; Shaver, Gaius R; Giblin, Anne E; Hobara, Satoru; Nadelhoffer, Knute J; Sommerkorn, Martin; Rastetter, Edward B; Kling, George W; Laundre, James A; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang

    2018-03-27

    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO 3 - ) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO 3 - concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO 3 - that is typically below detection limits. Here we reexamine NO 3 - use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO 3 - Soil-derived NO 3 - was detected in tundra plant tissues, and tundra plants took up soil NO 3 - at comparable rates to plants from relatively NO 3 - -rich ecosystems in other biomes. Nitrate assimilation determined by 15 N enrichments of leaf NO 3 - relative to soil NO 3 - accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO 3 - availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO 3 - availability in tundra soils is crucial for predicting C storage in tundra. Copyright © 2018 the Author(s). Published by PNAS.

  13. Nitrate is an important nitrogen source for Arctic tundra plants

    PubMed Central

    Liu, Xue-Yan; Koyama, Lina A.; Weiss, Marissa S.; Inagaki, Yoshiyuki; Shaver, Gaius R.; Giblin, Anne E.; Hobara, Satoru; Nadelhoffer, Knute J.; Sommerkorn, Martin; Rastetter, Edward B.; Kling, George W.; Laundre, James A.; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang

    2018-01-01

    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3−) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3− concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3− that is typically below detection limits. Here we reexamine NO3− use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3−. Soil-derived NO3− was detected in tundra plant tissues, and tundra plants took up soil NO3− at comparable rates to plants from relatively NO3−-rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3− relative to soil NO3− accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3− availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3− availability in tundra soils is crucial for predicting C storage in tundra. PMID:29540568

  14. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimee T; Overby, Stephen; Hart, Stephen C

    2007-01-01

    Herbivores can directly impact ecosystem function by altering litter quality entering an ecosystem or indirectly by affecting a shift in the microbial community that mediate nutrient processes. We examine herbivore susceptibility and resistance effects on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs will feedback to the microbial community. Our study population consisted of individual trees that are susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and trees that herbivores have been manually removed since 1982. Moth herbivory increased pi on litter nitrogen concentrations (16%) and canopy precipitation infiltrationmore » (28%), both significant factors influencing litter and soil microbial populations. Our research resulted in three major conclusions: 1) In spite of an increase in litter quality, herbivory does not change litter microarthropod abundance or species richness. 2) Herbivore susceptibility alters bulk soil microbial communities, but not soil properties. 3) Season has a strong influence on microbial communities, and their response to herbivore inputs, in this semi-arid ecosystem.« less

  15. Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons.

    PubMed

    McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.

  16. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  17. Quantifying the contribution of riparian soils to the provision of ecosystem services.

    PubMed

    de Sosa, Laura L; Glanville, Helen C; Marshall, Miles R; Prysor Williams, A; Jones, Davey L

    2018-05-15

    Riparian areas, the interface between land and freshwater ecosystems, are considered to play a pivotal role in the supply of regulating, provisioning, cultural and supporting services. Most previous studies, however, have tended to focus on intensive agricultural systems and only on a single ecosystem function. Here, we present the first study which attempts to assess a wide range of ecological processes involved in the provision of the ecosystem service of water quality regulation across a diverse range of riparian typologies. Specifically, we focus on 1) evaluating the spatial variation in riparian soils properties with respect to distance with the river and soil depth in contrasting habitat types; 2) gaining further insights into the underlying mechanisms of pollutant removal (i.e. pesticide sorption/degradation, denitrification, etc.) by riparian soils; and 3) quantify and evaluate how riparian vegetation across different habitat types contribute to the provision of watercourse shading. All the habitats were present within a single large catchment and included: (i) improved grassland, (ii) unimproved (semi-natural) grassland, (iii) broadleaf woodland, (iv) coniferous woodland, and (iv) mountain, heath and bog. Taking all the data together, the riparian soils could be statistically separated by habitat type, providing evidence that they deliver ecosystem services to differing extents. Overall, however, our findings seem to contradict the general assumption that soils in riparian area are different from neighbouring (non-riparian) areas and that they possess extra functionality in terms of ecosystem service provision. Watercourse shading was highly habitat specific and was maximal in forests (ca. 52% shade cover) in comparison to the other habitat types (7-17%). Our data suggest that the functioning of riparian areas in less intensive agricultural areas, such as those studied here, may be broadly predicted from the surrounding land use, however, further research is required to critically test this across a wider range of ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. How mangrove forests adjust to rising sea level

    USGS Publications Warehouse

    Krauss, Ken W.; McKee, Karen L.; Lovelock, Catherine E.; Cahoon, Donald R.; Saintilan, Neil; Reef, Ruth; Chen, Luzhen

    2014-01-01

    Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.

  19. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Wang, Liang; Feng, Xiaojuan; Zhang, Jinbo; Ma, Tian; Wang, Xin; Liu, Zongguang

    2018-03-01

    Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  20. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    PubMed

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  1. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    NASA Astrophysics Data System (ADS)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  2. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    PubMed Central

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values. PMID:26956399

  3. The use of soil quality indicators to assess soil functionality in restored semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, 1-day CO2 test, microbial activity, mine restoration, soil health, ecosystem services. Introduction Semi-arid and arid environments are highly vulnerable to land degradation and their restoration has commonly showed low rates of success (James et al., 2013). A systematic knowledge of soil functionality is critical to successful restoration of degraded ecosystems since approximately 80% of ecosystem services can be connected to soil functions. The assessment of soil functionality generally involves the evaluation of soil properties and processes as they relate to the ability of soil to function effectively as a component of a healthy ecosystem (Costantini et al., 2015) Using soil quality indicators may be a valuable approach to assess functionality of topsoil and novel substrates used in restoration (Muñoz-Rojas et al., 2014; 2015). A key soil chemical indicator is soil organic C, that has been widely used as an attribute of soil quality because of the many functions that it provides and supports (Willaarts et al., 2015). However, microbial indicators can be more sensitive to disturbances and could be a valuable addition in soil assessment studies in restoration programs. Here, we propose a set of soil quality indicators to assess the soil status in restored soils (topsoil and waste material) of semi-arid environments. The study was conducted during March 2015 in the Pilbara biogeographical region (northwestern Australia) at an iron ore mine site rehabilitated in 2011. Methods Soil samples were collected from two sub-areas with different soil materials used as growth media: topsoil retrieved from nearby stockpiles and a lateritic waste material utilised for its erosive stability and physical competence. An undisturbed natural shrub-grassland ecosystem dominated by Triodia spp. and Acacia spp. representative of the restored area was selected as the analogue reference site. Soil physicochemical analysis were undertaken according to standard methods. Soil microbial activity was measured with the 1-day CO2 test, a cost-effective and rapid method to determine soil microbial respiration rate based on the measurement of the CO2 burst produced after moistening dry soil (Muñoz-Rojas et al., 2016). Soil microbial abundance of specific groups was measured by phospholipid fatty acid analysis. Results and discussion We showed that in addition to organic C and C:N ratio, biological indicators (microbial diversity and activity in particular), are the most sensitive indicators to detect differences among reconstructed soils and analogue undisturbed soils in semi-arid areas. The 1-day CO2 test is an alternative cost- and time-effective method to measure microbial activity and assess soil functionality of restored soils. Our results also showed a positive effect of vegetation on reconstructed soils and a recovery of soil functionality in waste material to levels similar to topsoil once vegetation is established, although soil quality levels are still far from those in undisturbed native soils four years post-restoration. Soil functionality is critical in the restoration process, particularly in semi-arid areas, and the methods used here could be effectively applied in a broad range of restoration projects in arid and semi-arid environments. References Costantini EAC, Branquinho C, Nunes A, Schwilch G, Stavi I, Valdecantos A and Zucca C (2015) Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems. Solid Earth Discussions 7:3645-3687. James JJ, Sheley RL, EricksonT, Rollins KS, Taylor MH, Dixon KW (2013) A systems approach to restoring degraded drylands. Journal of Applied Ecology 50:730-739. Muñoz-Rojas M., Erickson T, Merritt D, Dixon K (2014) Optimising post-mining soil conditions to maximise restoration success in a biodiverse semiarid environment. Geophysical Research. Abstracts Vol. 16, EGU2014-2069-1, EGU General Assembly. Muñoz-Rojas M, Erickson T, Merritt D, Dixon K (2015) Applying soil science for restoration of post mining degraded landscapes in semi-arid Australia: challenges and opportunities. Geophysical Research. Abstracts Vol. 17, EGU2015-3967-1, EGU General Assembly. Muñoz-Rojas M, Erickson TE, Martini D, Dixon KW, Merritt DJ (2016) Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological indicators 63:14-22. Willaarts BA, Oyonarte C, Muñoz-Rojas M., Ibáñez JJ and Aguilera PA (2015) Environmental Factors Controlling Soil Organic Carbon Stocks in Two Contrasting Mediterranean Climatic Areas of Southern Spain. Land Degradation and Development (on-line). DOI: 10.1002/ldr.2417

  4. Burning transformations: Fire history effects on organic matter processing from hillslopes to streams

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Gilbertson, A.; Maxwell, K.

    2017-12-01

    Disturbance strongly regulates material and energy flows, changing ecosystem pattern and process. An increase in the size and severity of fire, particularly in the Intermountain West, over the last several decades is expected to continue due to a warming climate. Predicting how fire will alter the net ecosystem carbon balance requires us to understand how carbon is stored, processed, and transferred. Here we present results from paired watersheds focused on five 2002 severe fires in Colorado to examine how organic matter is processed along the hillslope and within the stream. Comparing soil samples and water extractable organic matter (WEOM) between burned and unburned sites illustrates the impact of fire: burned soils have 50% organic matter (OM) content as unburned soils, regardless of geomorphic position. While a smaller pool, soil OM (SOM) in burned sites is more susceptible to microbial degradation (p<0.001 for 4 of 6 sites), especially in systems with slower vegetative recovery. This is explained, in part, to the water extractable organic matter (WEOM) from unburned soils having a higher C:N than burned sites (p<0.02). This shift in SOM quality is likely due to differing OM inputs (e.g. grasses and forbes vs. trees in burned vs. unburned sites). Comparing results from intact soil column experiments to soil extractions and stream samples, suggests that the majority of this soil derived WEOM does not make it to the stream, potentially getting sorbed deeper in the mineral rich, organic poor, portion of the soil. Interestingly, the systematic shifts in OM amounts and quality (as measured by SUVA, E2:E3, and fluorescence) within the terrestrial system in response to fire, are not seen in stream exports. As such, while there are significant relationships (p<0.05) between stream DOM quality, DOM bioavailability, and stream metabolism, burned watersheds are not exporting DOM that is more bioavailable. In addition, despite different terrestrial OM pools, burned and unburned watersheds export statistically similar amounts of DOM per unit area, suggesting that a larger fraction of OM is transferred from the terrestrial to aquatic ecosystem within fire affected landscapes.

  5. As above, so below? How the interplay between overstory species and edaphic factors influences the magnitude and mechanisms of belowground carbon cycles.

    NASA Astrophysics Data System (ADS)

    Desie, Ellen; Vancampenhout, Karen; Buelens, Jeroen; Verstraeten, Gorik; Verheyen, Kris; Heyens, Kathleen; Muys, Bart

    2017-04-01

    The choice of overstory species in relation to soil properties is one of the most important management decisions in forestry, especially when deciduous or mixed stands are replaced by coniferous monocultures. When assessed in relation to climate change, conversion effects are mainly studied in terms of total carbon stocks. These are generally considered to evolve linearly, according to similar stabilization processes across ecosystems. Here we show that the belowground carbon cycle is subject to ecosystem-specific stable process domains. The process domains are separated by steep thresholds, or even tipping points, where a small increase in environmental forcing can cause a drastic change in the way the ecosystem processes carbon. These effects are demonstrated in detail for the old-growth forest complex of the Gaume in Belgium. This forest spans a lithological gradient and mixed-species stands occur next to stands recently converted to Norway spruce (Picea abies) monocultures, creating a setting of paired plots that allow to address the magnitude of management choices relative to intrinsic natural potential. Vegetation descriptions, litter samples and soil samples at different depths were compared for above- and belowground functional biodiversity, litter layer characteristics, soil properties, nutrient status, bioturbation, soil carbon stocks and soil carbon functional pools. Results show that in soils with limited remaining buffer capacity, overstory-induced acidification under spruce causes a shift to an acid aluminum buffered environment, with a collapse in variability of abiotic and biotic soil properties. This entails a shift in soil fauna and depth relations, with a clear decoupling of the litter layer from the topsoil and the subsoil in terms of biological communities, carbon input and stochastic constraints. Finally, this study indicates that although spruce conversion increases the total soil carbon stocks, this extra carbon is stored in more labile carbon pools. Sustainable management strategies should therefore recognize the importance of aboveground species diversity and identity, and the corresponding litter characteristics for driving carbon cycles, especially in systems near a pedological threshold.

  6. The response of arid soil communities to climate change: Chapter 8

    USGS Publications Warehouse

    Steven, Blaire; McHugh, Theresa Ann; Reed, Sasha C.

    2017-01-01

    Arid and semiarid ecosystems cover approximately 40% of Earth’s terrestrial surface and are present on each of the planet’s continents [1]. Drylands are characterized by their aridity, but there is substantial geographic, edaphic, and climatic variability among these vast ecosystems, and these differences underscore substantial variation in dryland soil microbial communities, as well as in the future climates predicted among arid and semiarid systems globally. Furthermore, arid ecosystems are commonly patchy at a variety of spatial scales [2,3]. Vascular plants are widely interspersed in drylands and bare soil, or soil that is covered with biological soil crusts, fill these spaces. The variability acts to further enhance spatial heterogeneity, as these different zones within dryland ecosystems differ in characteristics such as water retention, albedo, and nutrient cycling [4–6]. Importantly, the various soil patches of an arid landscape may be differentially sensitive to climate change. Soil communities are only active when enough moisture is available, and drylands show large spatial variability in soil moisture, with potentially long dry periods followed by pulses of moisture. The pulse dynamics associated with this wetting and drying affect the composition, structure, and function of dryland soil communities, and integrate biotic and abiotic processes via pulse-driven exchanges, interactions, transitions, and transfers. Climate change will likely alter the size, frequency, and intensity of future precipitation pulses, as well as influence non-rainfall sources of soil moisture, and aridland ecosystems are known to be highly sensitive to such climate variability. Despite great heterogeneity, arid ecosystems are united by a key parameter: a limitation in water availability. This characteristic may help to uncover unifying aspects of dryland soil responses to global change. The dryness of an ecosystem can be described by its aridity index (AI). Several AIs have been proposed, but the most widely used metrics determine the difference between average precipitation and potential evapotranspiration, where evapotranspiration is the sum of evaporation and plant transpiration, both of which move water from the ecosystem to the atmosphere [7–9]. Because evapotranspiration can be affected by various environmental factors such as temperature and incident radiation (Fig. 10.1), regions that receive the same average precipitation may have significantly different AI values [10,11]. Multiple studies have documented that mean annual precipitation, and thus AI, is highly correlated with biological diversity and net primary productivity [12–15]. Accordingly, AI is considered to be a central regulator of the diversity, structure, and productivity of an ecosystem, playing an especially influential role in arid ecosystems. Thus, the climate parameters that drive alterations in the AI of a region are likely to play an disproportionate role in shaping the response of arid soil communities to a changing climate. In this chapter we consider climate parameters that have been shown to be altered through climate change, with a focus on how these parameters are likely to affect dryland soil communities, including microorganisms and invertebrates. In particular, our goal is to highlight dryland soil community structure and function in the context of climate change, and we will focus on community relationships with increased atmospheric CO2 concentrations (a primary driver of climate change), temperature, and sources of soil moisture.

  7. Landscape soil variability in relatively static and dynamic properties in arid and semi-arid ecosystems: do they matter for restoration?

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: Soils matter for restoration. Or do they? This paper takes a process-based approach to this question, using a combination of published literature, pedotransfer functions, and several datasets where a range of relatively static and dynamic soil properties were measured on...

  8. FT-IR and C-13 NMR analysis of soil humic fractions from a long term cropping systems study

    USDA-ARS?s Scientific Manuscript database

    Increased knowledge of humic fractions is important due to its involvement in many soil ecosystem processes. Soil humic acid (HA) and fulvic acid (FA) from a nine-year agroecosystem study with different tillage, cropping system, and N source treatments were characterized using FT-IR andsolid-state ...

  9. A Cross-Site Comparison of Factors Influencing Soil Nitrification Rates in Northeastern USA Forested Watersheds

    Treesearch

    Donald S. Ross; Beverley C. Wemple; Austin E. Jamison; Guinevere Fredriksen; James B. Shanley; Gregory B. Lawrence; Scott W. Bailey; John L. Campbell

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small...

  10. Environmental technologies of woody crop production systems

    Treesearch

    Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; Gary S. Ba??uelos; Richard A. Hallett; Amir Hass; Craig M. Stange; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee

    2016-01-01

    Soil erosion, loss of productivity potential, biodiversity loss, water shortage, and soil and water pollution are ongoing processes that decrease or degrade provisioning (e.g., biomass, freshwater) and regulating (e.g., carbon sequestration, soil quality) ecosystem services. Therefore, developing environmental technologies that maximize these services is essential for...

  11. Microbial community variation and its relationship with nitrogen mineralization in historically altered forests

    Treesearch

    Jennifer M. Fraterrigo; Teri C. Balser; Monica g. Turner

    2006-01-01

    Past land use can impart soil legacies that have important implications for ecosystem function. Although these legacies have been linked with microbially mediated processes, little is known about the long-term influence of land use on soil microbial communities themselves. We examined whether historical land use affected soil microbial community composition (lipid...

  12. Environmental technologies of woody crop production systems

    USDA-ARS?s Scientific Manuscript database

    Land degradation is a threat to global sustainability with an estimated 25% of the world’s land area already degraded. Soil erosion, loss of productivity potential, biodiversity loss, water shortage, and soil pollution are ongoing processes that decrease or degrade ecosystem services. Degradation ra...

  13. Changes in Soil Microbial Community Structure with Flooding

    USDA-ARS?s Scientific Manuscript database

    Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...

  14. Predicting effects of climate change on the composition and function of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Dubinsky, E.; Brodie, E.; Myint, C.; Ackerly, D.; van Nostrand, J.; Bird, J.; Zhou, J.; Andersen, G.; Firestone, M.

    2008-12-01

    Complex soil microbial communities regulate critical ecosystem processes that will be altered by climate change. A critical step towards predicting the impacts of climate change on terrestrial ecosystems is to determine the primary controllers of soil microbial community composition and function, and subsequently evaluate climate change scenarios that alter these controllers. We surveyed complex soil bacterial and archaeal communities across a range of climatic and edaphic conditions to identify critical controllers of soil microbial community composition in the field and then tested the resulting predictions using a 2-year manipulation of precipitation and temperature using mesocosms of California annual grasslands. Community DNA extracted from field soils sampled from six different ecosystems was assayed for bacterial and archaeal communities using high-density phylogenetic microarrays as well as functional gene arrays. Correlations among the relative abundances of thousands of microbial taxa and edaphic factors such as soil moisture and nutrient content provided a basis for predicting community responses to changing soil conditions. Communities of soil bacteria and archaea were strongly structured by single environmental predictors, particularly variables related to soil water. Bacteria in the Actinomycetales and Bacilli consistently demonstrated a strong negative response to increasing soil moisture, while taxa in a greater variety of lineages responded positively to increasing soil moisture. In the climate change experiment, overall bacterial community structure was impacted significantly by total precipitation but not by plant species. Changes in soil moisture due to decreased rainfall resulted in significant and predictable alterations in community structure. Over 70% of the bacterial taxa in common with the cross-ecosystem study responded as predicted to altered precipitation, with the most conserved response from Actinobacteria. The functional consequences of these predictable changes in community composition were measured with functional arrays that detect genes involved in the metabolism of carbon, nitrogen and other elements. The response of soil microbial communities to altered precipitation can be predicted from the distribution of microbial taxa across moisture gradients.

  15. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    NASA Astrophysics Data System (ADS)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also executed and the simulated results compared. Once the model was optimised for forests in the Congo basin it was validated against observed tree volume, soil carbon and soil nitrogen from a set of independent plots.

  16. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems.

    PubMed

    Bern, Carleton R; Chadwick, Oliver A; Kendall, Carol; Pribil, Michael J

    2015-05-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ(34)S VCDT) of -0.8‰. Bulk deposition on the island of Maui had a δ(34)S VCDT that varied temporally, spanned a range from +8.2 to +19.7‰, and reflected isotopic mixing from three sources: sea-salt (+21.1‰), marine biogenic emissions (+15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to +2.7‰) to relatively high (+17.8 to +19.3‰) soil δ(34)S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from +8.1 to +20.3‰ and generally decreased with increasing elevation (0-2000 m), distance from the coast (0-12 km), and annual rainfall (180-5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over ecosystem sulfur biogeochemistry across relatively small spatial scales. Published by Elsevier B.V.

  17. Autotrophic and Heterotrophic Controls over Winter Soil Carbon Cycling in a Subalpine Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Monson, R. K.; Scott-Denton, L. E.; Lipson, D. A.; Weintrub, M. N.; Rosenstiel, T. N.; Schmidt, S. K.; Williams, M. W.; Burns, S. P.; Delany, A. E.; Turnipseed, A. A.

    2005-12-01

    Studies were conducted at the Niwot Ridge Ameriflux site to understand wintertime soil carbon cycling and its control over ecosystem respiration. Wintertime respiration in this ecosystem results in the loss of 60-90% of the carbon assimilated the previous growing season. Thus, an understanding of the controls over winter carbon cycling is required to understand controls over the annual carbon budget. Trees were girdled to prevent the transport of photosynthates to the rhizosphere. In plots with non-girdled trees a large mid-winter pulse of sucrose was observed to enter the soil. In plots with girdled trees, no sucrose pulse was observed. Trees of this ecosystem are not photosynthetically active during the winter, leading us to conclude that the sucrose pulse is due to the death of fine roots that had accumulated sucrose the previous autumn. The sucrose pulse is potentially utilized by a novel winter community of microbes. Using DNA fingerprinting we discovered that the dominant isolates from the winter soils were from Jathinobacter, whereas the summer isolates were from Burkholderia. The winter community was capable of high rates of respiration and exponential growth at low temperatures, whereas the summer community was not. Our winter observations also indicated high activity of N-acetyl-C-glucosaminidase, one of the principal enzymes involved in chitin degradation. The presence of such high chitinase activities implicates decomposing fungal biomass as a principle source of CO2 beneath the snow pack. Using a novel in situ, beneath-snow CO2 measurement system, we observed unprecedented Q10 values for winter respiration, being 98 and 8.44 x 104 for the soil next to tree boles or within the open spaces between trees, respectively. These high Q10 values are likely the result of fractional changes in the availability of liquid water below 0°C and responses of microbial biomass to changes in the liquid water fraction. Using six-years of eddy covariance data, we showed that interannual variation in winter ecosystem respiration is positively correlated to interannual variation in the spring snow depth. Years with a with a deeper spring snow pack exhibited higher soil temperatures, and concomitantly higher soil respiration rates. Given the recently reported decadal-scale trend in decreasing snow pack in the Western U.S., which is coupled to warm climate anomalies, our observations indicate the potential for higher wintertime soil carbon sequestration due to lower winter ecosystem respiration rates in subalpine forests. Our studies of processes beneath the winter snow pack demonstrate that contrary to previous assumptions, winter biogeochemical processing of soil organic matter is an important component of ecosystem carbon budgets. Despite low temperatures and an inactive plant rhizosphere, winter microbial communities and exoenzymes appear to be active, carbon substrates appear to be in relatively high abundance and soil respiration rates appear to be sensitive to seasonal and interannual winter climate variability.

  18. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    PubMed

    Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process.

  19. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Ju, Weimin

    2009-06-01

    Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.

  20. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna

    PubMed Central

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as “ecosystem engineers” are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a “space-for-time” substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other foundation species through a facilitation cascade process. PMID:27902757

  1. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    NASA Astrophysics Data System (ADS)

    Esperschütz, J.; Zimmermann, C.; Dümig, A.; Welzl, G.; Buegger, F.; Elmer, M.; Munch, J. C.; Schloter, M.

    2013-07-01

    In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany). Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L.) were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1-4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity)

  2. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica.

    PubMed

    Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R

    2016-08-15

    Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems.

    PubMed

    Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John

    2015-08-15

    Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Global biogeography of microbial nitrogen-cycling traits in soil

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Martiny, A.; Martiny, J. B. H.

    2016-12-01

    Microorganisms drive much of the Earth's nitrogen (N) cycle. However, despite their importance, many ecosystem models do not explicitly consider microbial communities and their functions. One obstacle in doing this is that we lack a complete understanding of the role that microbes play in biogeochemical processes. To address this challenge we used metagenomics to assess various N cycling traits of soil microorganisms in samples from around the globe. As measurable characteristics of an organism, traits can be used to quantify the role of microbes in ecosystem processes. Using 365 publically available soil metagenomes, we characterized the biogeography of microbial N cycling traits, defined as the abundance and composition of eight N pathways. We found strong biogeographic patterns in the frequency of N pathway traits; however, our models explained much less variation in taxonomic composition across sites. Focusing on individual N pathways, we identified the prominent taxa harboring these pathways. In addition, we found an unexpectedly high frequency of Bacteria encoding the dissimilatory nitrate reduction to ammonium (DNRA) pathway, a little studied N cycle process in soils. Finally, across all N pathways, phylogenetic analysis revealed that some phyla seem to be N cycle generalists (i.e delta-Proteobacteria), with the potential to carry out many N transformations, whereas others seem to be specialists (i.e. Cyanobacteria). As the most comprehensive map to date of the global distribution of microbial N traits, this study provides a springboard for further investigation of the prominent players in N cycling in soils. Overall, biogeographic patterns of traits can provide a foundation for understanding how microbial diversity impacts ecosystem processes and ultimately predicting how this diversity may shift in the face of global change.

  5. Soil and sediments micromorphology: reconstruction of palaeoenvironments, anthropogenic processes, or more recent human impact on ecosystems

    NASA Astrophysics Data System (ADS)

    Gérard, Martine; Trombino, Luca; Stoops, Georges

    2014-05-01

    Soils and sediments registered the environmental changes in time and space, but also display components inherited from human activities, both in archaeological and in modern times. Micromorphological investigations carried out on undisturbed samples of soil and sediments by microscopic and ultramicroscopic techniques, correlated with mineralogy, geochemistry or biology, allow us to interpret the processes behind the formation of regoliths, sediments and anthropogenic deposits, from which a relative chronology, specific environmental conditions and/or extent of human impact may be deduced. The traditional optical microscopy observations, carried on the thin section groundmass and pedofeatures, provide clues on the different processes behind soils and sediments genesis (weathering, supergene, low T hydrothermal, anthropogenic) and their impact on ecosystems or on palaeoenvironments. In more recent times, the improvements in electron microscope imaging technology permit to make detailed observations up to the nanoscale, opening a new domain of observations to micromorphologists, both as regard of the micromass and of the thinner pedofeatures. Moreover, the optimisation of the microgeochemical mapping techniques, with spatially resolved chemical, isotopic or mineralogical analyses, is another powerful tool to gain insight in chemical migration fronts: the limit of the original rock fabric disappearance may be bypassed. In order to illustrate micromorphological researches in natural and man-influenced ecosystems, and to combine researches at different scales, several optical and electronic images of soils and sediments groundmass, associated to their microgeochemical characteristics will be presented, with selected examples taken from the climatic record of paleosols, the impact of hydrothermal alteration on saprolites, the neo-formation of minerals related to weathering process evolution, the protosoil formation in natural and human waste deposits, and the forensic scenarios.

  6. Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Bowker, Matthew A; Ochoa, Victoria; Gozalo, Beatriz; Berdugo, Miguel; Val, James; Singh, Brajesh K

    2016-03-01

    The increase in aridity predicted with climate change will have a negative impact on the multiple functions and services (multifunctionality) provided by dryland ecosystems worldwide. In these ecosystems, soil communities dominated by mosses, lichens and cyanobacteria (biocrusts) play a key role in supporting multifunctionality. However, whether biocrusts can buffer the negative impacts of aridity on important biogeochemical processes controlling carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes remains largely unknown. Here, we conducted an empirical study, using samples from three continents (North America, Europe and Australia), to evaluate how the increase in aridity predicted by climate change will alter the capacity of biocrust-forming mosses to modulate multiple ecosystem processes related to C, N and P cycles. Compared with soil surfaces lacking biocrusts, biocrust-forming mosses enhanced multiple functions related to C, N and P cycling and storage in semiarid and arid, but not in humid and dry-subhumid, environments. Most importantly, we found that the relative positive effects of biocrust-forming mosses on multifunctionality compared with bare soil increased with increasing aridity. These results were mediated by plant cover and the positive effects exerted by biocrust-forming mosses on the abundance of soil bacteria and fungi. Our findings provide strong evidence that the maintenance of biocrusts is crucial to buffer negative effects of climate change on multifunctionality in global drylands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006

    Treesearch

    Gregory K. Dillon; Zachery A. Holden; Penelope Morgan; Michael A. Crimmins; Emily K. Heyerdahl; Charles H. Luce

    2011-01-01

    Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties. We analyzed the occurrence of, and trends in, satellite-derived burn...

  8. Effects of tillage on the Fe oxides activation in soil

    NASA Astrophysics Data System (ADS)

    Chi, Guangyu; Chen, Xin; Shi, Yi; Wang, Jun; Zheng, Taihui

    2009-07-01

    Since mid-1950s, the wetland ecosystems in Sanjiang Plain of Northeast China have been experiencing greater changes in land use, which had negative effects on the soil environments. This study assessed the effects of soil tillage on the activation of soil Fe in the region. The test ecosystems included natural wetland, paddy field and upland field converted from wetland. Soil samples at the depths of 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-60 cm, 60-90 cm and 90-120 cm were collected from each of the ecosystems for the analysis of vertical distribution of soil pH, organic carbon, chelate Fe oxides and Fe(II). The results showed that the conversion of wetland into paddy field and upland field induced a decrease of organic carbon content in 0-10 cm soil layer by 61.8% (P <0.05) and 70.0% (P < 0.05), respectively. The correlations among iron forms and soil organic carbon showed that chelate Fe oxides and Fe(II) was correlated positively with soil organic carbon and chelate ratio had a more positive relationship with organic carbon than chelate Fe oxides and Fe(II). The results of chelate Fe oxides, Fe(II) and chelate ratio of Fe suggested that reclamation could prevent the Fe activation and organic matter is credited for having an important influence on the process of Fe activation.

  9. Biological indices of soil quality: an ecosystem case study of their use

    Treesearch

    Jennifer D. Knoepp; David C. Coleman; D.A. Crossley; James S. Clark

    2000-01-01

    Soil quality indices can help ensure that site productivity and soil function are maintained. Biological indices yield evidence of how a soil functions and interacts with the plants, animals, and climate that comprise an ecosystem. Soil scientists can identify and quantify both chemical and biological soil-quality indicators for ecosystems with a single main function,...

  10. Modeling N Cycling during Succession after Forest Disturbance: an Analysis of N Mining and Retention Hypothesis

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ollinger, S. V.; Ouimette, A.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.

    2017-12-01

    Dissolved inorganic nitrogen losses at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, have declined in recent decades, a pattern that counters expectations based on prevailing theory. An unbalanced ecosystem nitrogen (N) budget implies there is a missing component for N sink. Hypotheses to explain this discrepancy include increasing rates of denitrification and accumulation of N in mineral soil pools following N mining by plants. Here, we conducted a modeling analysis fused with field measurements of N cycling, specifically examining the hypothesis relevant to N mining and retention in mineral soils. We included simplified representations of both mechanisms, N mining and retention, in a revised ecosystem process model, PnET-SOM, to evaluate the dynamics of N cycling during succession after forest disturbance at the HBEF. The predicted N mining during the early succession was regulated by a metric representing a potential demand of extra soil N for large wood growth. The accumulation of nitrate in mineral soil pools was a function of the net aboveground biomass accumulation and soil N availability and parameterized based on field 15N tracer incubation data. The predicted patterns of forest N dynamics were consistent with observations. The addition of the new algorithms also improved the predicted DIN export in stream water with an R squared of 0.35 (P<0.01) aganist observations. Predicted mining processes had an average rate of 7.4 kgNha-1yr-1 and Predicted rates of N retention processes were 5.2 kgNha-1yr-1, both of which were in line with estimates only based on field data. The predicted trend of low DIN export could continue for another 70 years to pay back the mined N in mineral soils. Predicted ecosystem N balance showed that N gas loss could account for 14-46% of the total N deposition, the soil mining about 103% during the early succession, and soil retention about 35% at the current forest stage at the HBEF.

  11. Seasonal variations in methane fluxes in response to summer warming and leaf litter addition in a subarctic heath ecosystem

    NASA Astrophysics Data System (ADS)

    Pedersen, Emily Pickering; Elberling, Bo; Michelsen, Anders

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas controlled by both biotic and abiotic processes. Few studies have investigated CH4 fluxes in subarctic heath ecosystems, and climate change-induced shifts in CH4 flux and the overall carbon budget are therefore largely unknown. Hence, there is an urgent need for long-term in situ experiments allowing for the study of ecosystem processes over time scales relevant to environmental change. Here we present in situ CH4 and CO2 flux measurements from a wet heath ecosystem in northern Sweden subjected to 16 years of manipulations, including summer warming with open-top chambers, birch leaf litter addition, and the combination thereof. Throughout the snow-free season, the ecosystem was a net sink of CH4 and CO2 (CH4 -0.27 mg C m-2 d-1; net ecosystem exchange -1827 mg C m-2 d-1), with highest CH4 uptake rates (-0.70 mg C m-2 d-1) during fall. Warming enhanced net CO2 flux, while net CH4 flux was governed by soil moisture. Litter addition and the combination with warming significantly increased CH4 uptake rates, explained by a pronounced soil drying effect of up to 32% relative to ambient conditions. Both warming and litter addition also increased the seasonal average concentration of dissolved organic carbon in the soil. The site was a carbon sink with a net uptake of 60 g C m-2 over the snow-free season. However, warming reduced net carbon uptake by 77%, suggesting that this ecosystem type might shift from snow-free season sink to source with increasing summer temperatures.

  12. Variation in phenolic root exudates and rhizosphere carbon cycling among tree species in temperate forest ecosystems

    NASA Astrophysics Data System (ADS)

    Zwetsloot, Marie; Bauerle, Taryn; Kessler, André; Wickings, Kyle

    2017-04-01

    Temperate forest tree species composition has been highly dynamic over the past few centuries and is expected to only further change under current climate change predictions. While aboveground changes in forest biodiversity have been widely studied, the impacts on belowground processes are far more challenging to measure. In particular, root exudation - the process through which roots release organic and inorganic compounds into the rhizosphere - has received little scientific attention yet may be the key to understanding root-facilitated carbon cycling in temperate forest ecosystems. The aim of this study was to analyze the extent by which tree species' variation in phenolic root exudate profiles influences soil carbon cycling in temperate forest ecosystems. In order to answer this question, we grew six temperate forest tree species in a greenhouse including Acer saccharum, Alnus rugosa, Fagus grandifolia, Picea abies, Pinus strobus, and Quercus rubra. To collect root exudates, trees were transferred to hydroponic growing systems for one week and then exposed to cellulose acetate strips in individual 800 mL jars with a sterile solution for 24 hours. We analyzed the methanol-extracted root exudates for phenolic composition with high-performance liquid chromatography (HPLC) and determined species differences in phenolic abundance, diversity and compound classes. This information was used to design the subsequent soil incubation study in which we tested the effect of different phenolic compound classes on rhizosphere carbon cycling using potassium hydroxide (KOH) traps to capture soil CO2 emissions. Our findings show that tree species show high variation in phenolic root exudate patterns and that these differences can significantly influence soil CO2 fluxes. These results stress the importance of linking belowground plant traits to ecosystem functioning. Moreover, this study highlights the need for research on root and rhizosphere processes in order to improve terrestrial carbon cycling models and estimate forest ecosystem feedbacks to climate change.

  13. Drivers of spatial heterogeneity in nitrogen processing among three alpine plant communities in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Churchill, A. C.; Beers, A.; Grinath, J.; Bowman, W. D.

    2017-12-01

    Nitrogen cycling across the globe has been fundamentally altered due to regional elevated N deposition and there is a cascade of ecosystem consequences including shifts in species composition, eutrophication, and soil acidification. Making predictions that encompass the factors that drive these ecosystem changes has frequently been limited to single ecosystem types, or areas with fairly homogenous abiotic conditions. The alpine is an ecosystem type that exhibits changes under relatively low levels of N depositions due to short growing seasons and shallow soils limiting N storage. While recent work provided estimates for the magnitude of N associated with ecosystem changes, less is known about the within-site factors that may interact to stabilize or amplify the differential response of N pools under future conditions of resource deposition. To examine numerous potential within-site and regional factors (both biotic and abiotic) affecting ecosystem N pools we examined the relationship between those factors and a suite of ecosystem pools of N followed by model selection procedures and structural equation modelling. Measurements were conducted at Niwot Ridge Long Term Ecological Research site and in Rocky Mountain National Park in three distinct alpine meadow ecosystems (dry, moist, and wet meadows). These meadows span a moisture gradient as well as plant community composition, thereby providing high variability of potential biotic and abiotic drivers across small spatial scales in the alpine. In general, regional scale abiotic factors such as site levels of annual average N deposition or precipitation were poor predictors of seasonal pools of N, while spring soil water pools of N were negatively correlated with elevation. Models containing multiple abiotic and biotic drivers, however, were best at predicting soil and plant pools of N across the two sites. Future analysis will include highlight interactions among with-site factors affecting N pools in the alpine using structural equation modelling to statistically examine the bidirectional relationship between plant communities and soil pools of N.

  14. Modelling carbon and nitrogen turnover in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative sensitivity of biological transformations to these processes.

  15. Treeline biogeochemistry and dynamics, Noatak National Preserve, northwestern Alaska: A section in Studies by the U.S. Geological Survey in Alaska, 2000

    USGS Publications Warehouse

    Stottlemyer, Robert; Binkley, Dan; Steltzer, Heidi; Wilson, Frederic H.; Galloway, John P.

    2002-01-01

    The extensive boreal biome is little studies relative to its global importance. Its high soil moisture and low temperatures result in large below-ground reservoirs of carbon (C) and nitrogen (N). Presently, such high-latitude ecosystems are undergoing the largest temperature increases in global warming. Change in soil temperature or moisture in the large pools of soil organic matter could fundamentally change ecosystem C and N budgets. Since 1990, we have conducted treeline studies in a small (800 ha) watershed in Noatak National Preserve, northwestern Alaska. Our objectives were to (1) gain an understanding of treeline dynamics, structure, and function; and (2) examine the effects of global climate change, particularly soil temperature, moisture, and N availability, on ecosystem processes. Our intensive site studies show that the treeline has advanced into turdra during the past 150 years. Inplace and laboratory incubations indicate that soil organic-layer mineralization rates increase with a temperature change >5 degrees C. N availability was greatest in soils beneath alder and lowest beneath willow or cottongrass tussocks. Watershed output of inorganic N as NO3 was 70 percent greater than input. The high inorganic-N output likely reflects soil freeze-thaw cycles, shallow flowpaths to the stream, and low seasonal biological retention. Concentrations and flux of dissolved organic carbon (DOC) in streamwater increased during spring melt and in autumn, indicating a seasonal accumulation of soil and forest-floor DOC and a shallower flowpath for meltwater to the stream. In sum, our research suggests that treeling transitionzone processes are quite sensitive to climate change, especially those functions regulating the C and N cycles.

  16. Woody vegetation and soil characteristics of residential forest patches and open spaces along an urban-to-rural gradient

    Treesearch

    Benjamin L. Reichert; Sharon R. Jean-Philippe; Christopher Oswalt; Jennifer Franklin; Mark Radosevich

    2015-01-01

    As the process of urbanization advances across the country, so does the importance of urban forests, which include both trees and the soils in which they grow. Soil microbial biomass, which plays a critical role in nutrient transformation in urban ecosystems, is affected by factors such as soil type and the availability of water, carbon, and nitrogen. The aim of this...

  17. Characterizing the impact of diffusive and advective soil gas transport on the measurement and interpretation of the isotopic signal of soil respiration

    Treesearch

    Zachary E. Kayler; Elizabeth W. Sulzman; William D. Rugh; Alan C. Mix; Barbara J. Bond

    2010-01-01

    By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-S) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how (δ13CR-S) is affected by...

  18. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  19. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions.

    PubMed

    Gebremikael, Mesfin T; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-09-08

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  20. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    NASA Astrophysics Data System (ADS)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan

    2016-09-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  1. Application of lime (CaCO3) to promote forest recovery from severe acidification increases potential for earthworm invasion

    USGS Publications Warehouse

    Homan, Caitlin; Beirer, Colin M; McCay, Timothy S; Lawrence, Gregory B.

    2016-01-01

    The application of lime (calcium carbonate) may be a cost-effective strategy to promote forest ecosystem recovery from acid impairment, under contemporary low levels of acidic deposition. However, liming acidified soils may create more suitable habitat for invasive earthworms that cause significant damage to forest floor communities and may disrupt ecosystem processes. We investigated the potential effects of liming in acidified soils where earthworms are rare in conjunction with a whole-ecosystem liming experiment in the chronically acidified forests of the western Adirondacks (USA). Using a microcosm experiment that replicated the whole-ecosystem treatment, we evaluated effects of soil liming on Lumbricus terrestris survivorship and biomass growth. We found that a moderate lime application (raising pH from 3.1 to 3.7) dramatically increased survival and biomass of L. terrestris, likely via increases in soil pH and associated reductions in inorganic aluminum, a known toxin. Very few L. terrestris individuals survived in unlimed soils, whereas earthworms in limed soils survived, grew, and rapidly consumed leaf litter. We supplemented this experiment with field surveys of extant earthworm communities along a gradient of soil pH in Adirondack hardwood forests, ranging from severely acidified (pH < 3) to well-buffered (pH > 5). In the field, no earthworms were observed where soil pH < 3.6. Abundance and species richness of earthworms was greatest in areas where soil pH > 4.4 and human dispersal vectors, including proximity to roads and public fishing access, were most prevalent. Overall our results suggest that moderate lime additions can be sufficient to increase earthworm invasion risk where dispersal vectors are present.

  2. Integrative measurements focusing on carbon, energy and water fluxes at the forest site 'Hohes Holz' and the grassland 'Grosses Bruch'

    NASA Astrophysics Data System (ADS)

    Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz

    2017-04-01

    The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the flux sites, two abnormally dry years (2015 and 2016) occurred. Fluxes from these years are evaluated in detail here. These data are additionally used to evaluate the drought assessment of the German Drought Monitor (www.ufz.de/droughtmonitor).

  3. Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelianagro-ecosystems

    EPA Science Inventory

    Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulat...

  4. Meteorological measurements. Chapter 3

    Treesearch

    David Y. Hollinger

    2008-01-01

    Environmental measurements are useful for detecting climatic trends, understanding how the environment influences biological processes, and as input to ecosystem models. Landscape-scale monitoring requires a suite of environmental measures for all of these purposes, including air and soil temperature, humidity, wind speed, precipitation and soil moisture, and different...

  5. Soil emission and uptake of carbonyl sulfide at a temperate mountain grassland

    NASA Astrophysics Data System (ADS)

    Kitz, Florian; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M.; Wohlfahrt, Georg

    2016-04-01

    Flux partitioning, i.e. inferring gross primary productivity (GPP) and ecosystem respiration from the measured net ecosystem carbon dioxide (CO2) exchange, is one uncertainty in modelling the carbon cycle and in times where robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive GPP by measuring carbonyl sulfide (COS), the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite to use COS as a proxy for canopy photosynthesis is a robust estimation of COS sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on properties like soil temperature and soil water content. The main aim of this study was to quantify the soil COS exchange and its drivers of a temperate mountain grassland in order to aid the use of COS as tracer for canopy CO2 and water vapor exchange. We conducted a field campaign with a Quantum cascade laser at a temperate mountain grassland to estimate the soil COS fluxes under ambient conditions and while simulating a drought. We used self-built fused silica (i.e. light-transparent) soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. Vegetation was removed within the chambers, therefor more radiation reached the soil surface compared to natural conditions. This might be the reason for highly positive fluxes during daytime more similar to agricultural study sites. To further investigate this large soil COS source we conducted within canopy concentration measurements near the soil surface and still recorded fluxes confirming the soil as a COS source during daytime. Results from the drought experiment suggested a strong impact of incoming radiation on soil COS fluxes followed by soil temperature, whereas the influence of soil water content (SWC) seemed to be negligible, even though the SWC dropped significantly due to rain exclusion. These results were bolstered by soil nighttime fluxes around zero and measurements with non-transparent chambers exhibiting much smaller fluxes compared to transparent ones. In the case that other ecosystems react in a similar fashion and biotic processes are negligible when parameterizing soil COS fluxes, we are a step closer to using COS as a proxy for GPP.

  6. Intensive land use in the Swedish mountains between AD 800 and 1200 led to deforestation and ecosystem transformation with long-lasting effects.

    PubMed

    Östlund, Lars; Hörnberg, Greger; DeLuca, Thomas H; Liedgren, Lars; Wikström, Peder; Zackrisson, Olle; Josefsson, Torbjörn

    2015-10-01

    Anthropogenic deforestation has shaped ecosystems worldwide. In subarctic ecosystems, primarily inhabited by native peoples, deforestation is generally considered to be mainly associated with the industrial period. Here we examined mechanisms underlying deforestation a thousand years ago in a high-mountain valley with settlement artifacts located in subarctic Scandinavia. Using the Heureka Forestry Decision Support System, we modeled pre-settlement conditions and effects of tree cutting on forest cover. To examine lack of regeneration and present nutrient status, we analyzed soil nitrogen. We found that tree cutting could have deforested the valley within some hundred years. Overexploitation left the soil depleted beyond the capacity of re-establishment of trees. We suggest that pre-historical deforestation has occurred also in subarctic ecosystems and that ecosystem boundaries were especially vulnerable to this process. This study improves our understanding of mechanisms behind human-induced ecosystem transformations and tree-line changes, and of the concept of wilderness in the Scandinavian mountain range.

  7. Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2016-12-01

    High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.

  8. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production.

    PubMed

    Sinsabaugh, Robert L; Moorhead, Daryl L; Xu, Xiaofeng; Litvak, Marcy E

    2017-06-01

    The carbon use efficiency of plants (CUE a ) and microorganisms (CUE h ) determines rates of biomass turnover and soil carbon sequestration. We evaluated the hypothesis that CUE a and CUE h counterbalance at a large scale, stabilizing microbial growth (μ) as a fraction of gross primary production (GPP). Collating data from published studies, we correlated annual CUE a , estimated from satellite imagery, with locally determined soil CUE h for 100 globally distributed sites. Ecosystem CUE e , the ratio of net ecosystem production (NEP) to GPP, was estimated for each site using published models. At the ecosystem scale, CUE a and CUE h were inversely related. At the global scale, the apparent temperature sensitivity of CUE h with respect to mean annual temperature (MAT) was similar for organic and mineral soils (0.029°C -1 ). CUE a and CUE e were inversely related to MAT, with apparent sensitivities of -0.009 and -0.032°C -1 , respectively. These trends constrain the ratio μ : GPP (= (CUE a  × CUE h )/(1 - CUE e )) with respect to MAT by counterbalancing the apparent temperature sensitivities of the component processes. At the ecosystem scale, the counterbalance is effected by modulating soil organic matter stocks. The results suggest that a μ : GPP value of c. 0.13 is a homeostatic steady state for ecosystem carbon fluxes at a large scale. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure

    NASA Astrophysics Data System (ADS)

    Göckede, Mathias; Kittler, Fanny; Kwon, Min Jung; Burjack, Ina; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergey

    2017-12-01

    Hydrologic conditions are a key factor in Arctic ecosystems, with strong influences on ecosystem structure and related effects on biogeophysical and biogeochemical processes. With systematic changes in water availability expected for large parts of the northern high-latitude region in the coming centuries, knowledge on shifts in ecosystem functionality triggered by altered water levels is crucial for reducing uncertainties in climate change predictions. Here, we present findings from paired ecosystem observations in northeast Siberia comprising a drained and a control site. At the drainage site, the water table has been artificially lowered by up to 30 cm in summer for more than a decade. This sustained primary disturbance in hydrologic conditions has triggered a suite of secondary shifts in ecosystem properties, including vegetation community structure, snow cover dynamics, and radiation budget, all of which influence the net effects of drainage. Reduced thermal conductivity in dry organic soils was identified as the dominating drainage effect on energy budget and soil thermal regime. Through this effect, reduced heat transfer into deeper soil layers leads to shallower thaw depths, initially leading to a stabilization of organic permafrost soils, while the long-term effects on permafrost temperature trends still need to be assessed. At the same time, more energy is transferred back into the atmosphere as sensible heat in the drained area, which may trigger a warming of the lower atmospheric surface layer.

  10. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    USDA-ARS?s Scientific Manuscript database

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...

  11. Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra.

    PubMed

    Bueno, C Guillermo; Williamson, Scott N; Barrio, Isabel C; Helgadóttir, Ágústa; HiK, David S

    2016-01-01

    In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes.

  12. Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra

    PubMed Central

    Williamson, Scott N.; Barrio, Isabel C.; Helgadóttir, Ágústa; HiK, David S.

    2016-01-01

    In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes. PMID:27760156

  13. Soil ecosystem services in loblolly pine plantations 15 years after harvest, compaction, and vegetation control

    Treesearch

    D. Andrew Scott; Robert J. Eaton; Julie A. Foote; Benjamin Vierra; Thomas W. Boutton; Gary B. Blank; Kurt Johnsen

    2014-01-01

    Site productivity has long been identified as the primary ecosystem service to be sustained in timberlands. However, soil C sequestration and ecosystem biodiversity have emerged as critical services provided by managed forest soils that must also be sustained. These ecosystem services were assessed in response to gradients of organic matter removal, soil compaction,...

  14. Microbiological indicators for assessing ecosystem soil quality and changes in it at degraded sites treated with compost

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Barra Caracciolo, Anna; Grenni, Paola; Di Lenola, Martina; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Soil quality is defined as the capacity of a soil to function as a vital system, within natural or managed ecosystem boundaries, sustain plant and animal health and productivity, maintain or enhance air and water environment quality and support human health and habitation. Soil organisms are extremely diverse and contribute to a wide range of ecosystem services that are essential to the sustainable functioning of natural and managed ecosystems. In particular, microbial communities provide several ecosystem services, which ensure soil quality and fertility. In fact, they adapt promptly to environmental changes by varying their activity and by increasing the reproduction of populations that have favourable skills. The structure (e.g. cell abundance) and functioning (e.g. viability and activity) of natural microbial communities and changes in them under different environmental conditions can be considered useful indicators of soil quality state. In this work we studied the quality state of three different soils, located in Taranto Province (Southern Italy), affected by land degradation processes, such as organic matter depletion, desertification and contamination (PCB and metals). Moreover, compost, produced from selected organic waste, was added to the soils studied in order to improve their quality state. Soil samples were collected before and after compost addition and both microbial and chemical analyses were performed in order to evaluate the soil quality state at each site at different times. For this purpose, the microbiological indicators evaluated were bacterial abundance (DAPI counts), cell viability (Live/Dead method), dehydrogenase activity (DHA) and soil respiration. At the same time, the main physico-chemical soil characteristics (organic carbon, available phosphorous, total nitrogen, carbonate and water content, texture and pH) were also measured. Moreover, in the contaminated soil samples PCB and inorganic (e.g. Pb, Se, Sn, Zn) contaminants were analysed respectively by GC-MS and ICP-MS. The overall results showed that the bacterial structure and functioning were affected in different ways by the organic carbon availability and quality, and contaminant occurrence (organic or inorganic compounds). The compost treatment contributed to improve soil fertility and to increase cell number and activity after 7 months in the two low organic carbon content soils. At the polluted site a general increase in bacterial activity after compost addition was also observed and this might be related to a decrease in inorganic and organic contamination levels.

  15. A Soil Service Index: Peatland soils as a case study for quantifying the value, vulnerability, and status of soils

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Harden, J. W.; Hugelius, G.

    2017-12-01

    What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis; they also support much biodiversity, including iconic species such as the orangutan in Indonesia and the guanaco in Chile. While these ecosystem services have been recognized in many sectors and a voluntary standard for a peatland carbon market is emerging, peatland services have not been systematically quantified, or accounted for, at the global level.

  16. Woody encroachment impacts on ecosystem nitrogen cycling: fixation, storage and gas loss

    NASA Astrophysics Data System (ADS)

    Soper, F.; Sparks, J. P.

    2016-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs have the potential to alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates vary seasonally, inter-annually and as a function of plant age and abiotic conditions. Applying a small-scale mass balance model to soil N accrual around individual trees (accounting for atmospheric inputs, and gas and hydrologic losses) generated current fixation estimates of 11 kg N ha-1 yr-1, making symbiotic fixation the largest input of N to the ecosystem. However, soil N accrual and increased cycling rates did not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Lab incubations suggested that N2 losses are likely to be low, with field oxygen conditions not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of significant net N accrual, driven by fixation under ongoing encroachment. Given the large scale of woody legume encroachment in the USA, this process is likely to contribute substantially to regional N balances.

  17. On the use of tower-flux measurements to assess the performance of global ecosystem models

    NASA Astrophysics Data System (ADS)

    El Maayar, M.; Kucharik, C.

    2003-04-01

    Global ecosystem models are important tools for the study of biospheric processes and their responses to environmental changes. Such models typically translate knowledge, gained from local observations, into estimates of regional or even global outcomes of ecosystem processes. A typical test of ecosystem models consists of comparing their output against tower-flux measurements of land surface-atmosphere exchange of heat and mass. To perform such tests, models are typically run using detailed information on soil properties (texture, carbon content,...) and vegetation structure observed at the experimental site (e.g., vegetation height, vegetation phenology, leaf photosynthetic characteristics,...). In global simulations, however, earth's vegetation is typically represented by a limited number of plant functional types (PFT; group of plant species that have similar physiological and ecological characteristics). For each PFT (e.g., temperate broadleaf trees, boreal conifer evergreen trees,...), which can cover a very large area, a set of typical physiological and physical parameters are assigned. Thus, a legitimate question arises: How does the performance of a global ecosystem model run using detailed site-specific parameters compare with the performance of a less detailed global version where generic parameters are attributed to a group of vegetation species forming a PFT? To answer this question, we used a multiyear dataset, measured at two forest sites with contrasting environments, to compare seasonal and interannual variability of surface-atmosphere exchange of water and carbon predicted by the Integrated BIosphere Simulator-Dynamic Global Vegetation Model. Two types of simulations were, thus, performed: a) Detailed runs: observed vegetation characteristics (leaf area index, vegetation height,...) and soil carbon content, in addition to climate and soil type, are specified for model run; and b) Generic runs: when only observed climates and soil types at the measurement sites are used to run the model. The generic runs were performed for the number of years equal to the current age of the forests, initialized with no vegetation and a soil carbon density equal to zero.

  18. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soilmore » erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.« less

  19. Influence of Disturbance on Soil Respiration in Biologically Crusted Soil during the Dry Season

    PubMed Central

    Feng, Wei; Zhang, Yu-qing; Wu, Bin; Zha, Tian-shan; Jia, Xin; Qin, Shu-gao; Shao, Chen-xi; Liu, Jia-bin; Lai, Zong-rui; Fa, Ke-yu

    2013-01-01

    Soil respiration (Rs) is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs) are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss), as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60–70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q 10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration. PMID:24453845

  20. The 1990 forest ecosystem dynamics multisensor aircraft campaign

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon

    1991-01-01

    The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.

  1. The role of soil communities in improving ecosystem services in organic farming

    NASA Astrophysics Data System (ADS)

    Zandbergen, Jelmer; Koorneef, Guusje; Veen, Cees; Schrama, Jan; van der Putten, Wim

    2017-04-01

    Worldwide soil fertility decreases and it is generally believed that organic matter (OM) addition to agricultural soils can improve soil properties leading to beneficial ecosystem services. However, it remains unknown under which conditions and how fast biotic, physical and chemical soil properties respond to varying quality and quantity of OM inputs. Therefore, the aims of this research project are (1) to unravel biotic, physical and chemical responses of soils to varying quantity and quality of OM addition; and (2) to understand how we can accelerate the response of soils in order to improve beneficial soil ecosystem services faster. The first step in our research project is to determine how small-scale spatio-temporal patterns in soil biotic, physical and chemical properties relate to crop production and quality. To do this we combine field measurements on soil properties with remote and proximate sensing measures on crop development and yield in a long-term farming systems experiment in the Netherlands (Vredepeel). We hypothesize that spatio-temporal variation in crop development and yield are strongly related to spatio-temporal variation in soil parameters. In the second step of our project we will use this information to identify biological interactions underlying improving soil functions in response to OM addition over time. We will specifically focus on the role of soil communities in driving nutrient cycling, disease suppression and the formation of soil structure, all crucial elements of key soil services in agricultural soils. The knowledge that will be generated in our project can be used to detect specific organic matter qualities that support the underlying ecological processes to accelerate the transition towards improved soil functioning thereby governing enhanced crop yields.

  2. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K.; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  3. Runoff Generation Mechanisms and Mean Transit Time in a High-Elevation Tropical Ecosystem

    NASA Astrophysics Data System (ADS)

    Mosquera, G.

    2015-12-01

    Understanding runoff generation processes in tropical mountainous regions remains poorly understood, particularly in ecosystems above the tree line. Here, we provide insights on the process dominating the ecohydrology of the tropical alpine biome (i.e., páramo) of the Zhurucay River Ecohydrological Observatory. The study site is located in south Ecuador between 3400-3900 m in elevation. We used a nested monitoring system with eight catchments (20-753 ha) to measure hydrometric data since December 2010. Biweekly samples of rainfall, streamflow, and soil water at low tension were collected for three years (May 2011-May2014) and analyzed for water stable isotopes. We conducted an isotopic characterization of rainfall, streamflow, and soil waters to investigate runoff generation. These data were also integrated into a lumped model to estimate the mean transit time (MTT) and to investigate landscape features that control its variability. The isotopic characterization evidenced that the water stored in the shallow organic horizon of the Histosol soils (Andean wetlands) located near the streams is the major contributor of water to the streams year-round, whereas the water draining through the hillslope soils, the Andosols, regulates discharge by recharging the wetlands at the valley bottoms. The MTT evaluation indicated relatively short MTTs (0.15-0.73 yr) linked to short subsurface flow paths of water. We also found evidence for topographic controls on the MTT variability. These results reveal that: 1) the ecohydrology of this ecosystem is dominated by shallow subsurface flow in the organic horizon of the soils and 2) the combination of the high storage capacity of the Andean wetlands and the slope of the catchments controls runoff generation and the high water regulation capacity of the ecosystem.

  4. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.

    PubMed

    Schwinning, Susanne; Sala, Osvaldo E

    2004-10-01

    In arid/semi-arid ecosystems, biological resources, such as water, soil nutrients, and plant biomass, typically go through periods of high and low abundance. Short periods of high resource abundance are usually triggered by rainfall events, which, despite of the overall scarcity of rain, can saturate the resource demand of some biological processes for a time. This review develops the idea that there exists a hierarchy of soil moisture pulse events with a corresponding hierarchy of ecological responses, such that small pulses only trigger a small number of relatively minor ecological events, and larger pulses trigger a more inclusive set and some larger ecological events. This framework hinges on the observation that many biological state changes, where organisms transition from a state of lower to higher physiological activity, require a minimal triggering event size. Response thresholds are often determined by the ability of organisms to utilize soil moisture pulses of different infiltration depth or duration. For example, brief, shallow pulses can only affect surface dwelling organisms with fast response times and high tolerance for low resource levels, such as some species of the soil micro-fauna and -flora, while it takes more water and deeper infiltration to affect the physiology, growth or reproduction of higher plants. This review first discusses how precipitation, climate and site factors translate into soil moisture pulses of varying magnitude and duration. Next, the idea of the response hierarchy for ecosystem processes is developed, followed by an exploration of the possible evolutionary background for the existence of response thresholds to resource pulses. The review concludes with an outlook on global change: does the hierarchical view of precipitation effects in ecosystems provide new perspectives on the future of arid/semiarid lands?

  5. Macroinvertebrates in North American tallgrass prairie soils: effects of fire, mowing, and fertilization on density and biomass

    Treesearch

    M.A. Callaham; J.M. Blair; T.C. Todd; D.J. Kitchen; M.R. Whiles

    2003-01-01

    The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups. and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station. we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term...

  6. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    PubMed Central

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, 2) increase BSC cover in areas under strong erosion risk, to avoid soil loss, and 3) enhance soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. PMID:22073661

  7. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    USGS Publications Warehouse

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, (2) increasing BSC cover in areas under strong erosion risk, to avoid soil loss, and (3) enhancing soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. ?? 2011 by the Ecological Society of America.

  8. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of the environmental setting or wider climatic conditions that the grasslands experience. Furthermore, it is demonstrated that the relatively stable ecosystem state that has prevailed in the 'pristine' grasslands studied, is in fact very fragile and may be easily altered, either by anthropogenic forcing, due to land management or by 'semi-natural' processes, related to climate change or changes in the incidence of wildfires (for example). Once structurally altered, it is also shown that positive feedbacks will occur to accelerate the loss of critical resources (topsoil and nutrients) from the ecosystem, in particular in drylands, resulting in widespread land degradation that cannot be reversed. In the temperate grasslands studied, it is shown that anthropogenic intervention may halt or even to some degree reverse the degradation of the soil-vegetation-water continuum. However, such 'landscape restoration' approaches are costly and require long-term management commitment if they are to succeed. degrade these critical ecosystems further. Finally, analysis of water, sediment and nutrient fluxes from this range of grasslands also demonstrates how critical ecosystem services that grasslands can provide; including soil water storage to buffer downstream flooding, soil carbon storage and enhanced biodiversity are reduced, often to the point where restoration of the original (pristine) landscape function is impossible. To conclude, discussion is made of how we can learn across grass landscapes globally, to ensure that those ecosystems that might be restored to build resilient landscapes under future climates are well understood and that future efforts to manage grasslands for increased food production do not degrade these critical ecosystems further.

  9. Simulations of ecosystem hydrological processes using a unified multi-scale model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.« less

  10. AUTOMATED RESPIROMETER METHOD FOR MICROBIAL TOXICITY ASSESSMENT OF LOW-LEVEL ZINC CONTAMINATION IN SOIL

    EPA Science Inventory

    Zinc is an essential trace element for all living organisms including humans. ecause microbial-based toxicity approaches to assess the changes in ecosystem processes are not well defined for soil application, this laboratory has developed an automated respirometer capable of meas...

  11. Relic components within the soil cover of Mexico: regional variability

    NASA Astrophysics Data System (ADS)

    Solleiro Rebolledo, Elizabeth; Sedov, Sergey

    2015-04-01

    The case of paleosols persisting on the land surface (non-buried paleosols or relict soils) besides paleoecological interest has specific implications for studies of soil geography, ecology and management. In fact these soil bodies form part of the modern soil mantle and provide ecological services for the current (agro)ecosystems but are neither formed nor re-produced by these ecosystems, conforming locally extinct soils (although similar profiles can develop at present under other bioclimatic conditions). In consequence, they are a heritage of past climatic and biotic conditions now extinct, thus presenting a non-restorable component of the present landscape. Mexico has so abundant and diverse paleosols, both surface and buried, that really could be considered to be a "paleopedological paradise". Two groups of factors promote generation of this abundance: Major part of territory of Mexico is occupied by mountainous landscapes with high intensity of tectonic, volcanic and geomorphic processes. These processes create a complex mosaic of geological materials and landforms of different age (like alluvial and lake terraces, eroded slopes, and volcanic deposits of various eruptions). Meanwhile younger landsurfaces are occupied by the recently developed soils, the older ones could bear the relict soil bodies. The same processes produce sedimentary strata (alluvial, colluvial, pyroclastic, etc.) which frequently cover the pre-existing landsurfaces and soils, producing series of buried paleosols. In this work we present three study cases of relict paleosols that are integrated to the modern soil cover of Mexico: the case of reddish-brown soils in the arid landscapes of Sonora (in the north); the pedosediments (tepetates) in central Mexico; and the red soils developed under humid conditions in Yucatan (in the south).

  12. Global Carbon Reservoir Oxidative Ratios

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Gallagher, M. E.; Hockaday, W. C.

    2010-12-01

    Photosynthesis and respiration move carbon and oxygen between the atmosphere and the biosphere at a ratio that is characteristic of the biogeochemical processes involved. This ratio is called the oxidative ratio (OR) of photosynthesis and respiration, and is defined as the ratio of moles of O2 per moles of CO2. This O2/CO2 ratio is a characteristic of biosphere-atmosphere gas fluxes, much like the 13C signature of CO2 transferred between the biosphere and the atmosphere has a characteristic signature. OR values vary on a scale of 0 (CO2) to 2 (CH4), with most ecosystem values clustered between 0.9 and 1.2. Just as 13C can be measured for both carbon fluxes and carbon pools, OR can also be measured for fluxes and pools and can provide information about the processes involved in carbon and oxygen cycling. OR values also provide information about reservoir organic geochemistry because pool OR values are proportional to the oxidation state of carbon (Cox) in the reservoir. OR may prove to be a particularly valuable biogeochemical tracer because of its ability to couple information about ecosystem gas fluxes with ecosystem organic geochemistry. We have developed 3 methods to measure the OR of ecosystem carbon reservoirs and intercalibrated them to assure that they yield accurate, intercomparable data. Using these tools we have built a large enough database of biomass and soil OR values that it is now possible to consider the implications of global patterns in ecosystem OR values. Here we present a map of the natural range in ecosystem OR values and begin to consider its implications. One striking pattern is an apparent offset between soil and biospheric OR values: soil OR values are frequently higher than that of their source biomass. We discuss this trend in the context of soil organic geochemistry and gas fluxes.

  13. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    PubMed

    Fan, Zhaosheng; Jastrow, Julie D; Liang, Chao; Matamala, Roser; Miller, Raymond Michael

    2013-01-01

    Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  14. Evaporative losses from soils covered by physical and different types of biological soil crusts

    USGS Publications Warehouse

    Chamizo, S.; Cantón, Y.; Domingo, F.; Belnap, J.

    2013-01-01

    Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well-developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (<6%), there was no difference in evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils.

  15. High-resolution data on the impact of warming on soil CO2 efflux from an Asian monsoon forest

    PubMed Central

    Liang, Naishen; Teramoto, Munemasa; Takagi, Masahiro; Zeng, Jiye

    2017-01-01

    This paper describes a project for evaluation of global warming’s impacts on soil carbon dynamics in Japanese forest ecosystems. We started a soil warming experiment in late 2008 in a 55-year-old evergreen broad-leaved forest at the boundary between the subtropical and warm-temperate biomes in southern Japan. We used infrared carbon-filament heat lamps to increase soil temperature by about 2.5 °C at a depth of 5 cm and continuously recorded CO2 emission from the soil surface using a multichannel automated chamber system. Here, we present details of the experimental processes and datasets for the CO2 emission rate, soil temperature, and soil moisture from control, trenched, and warmed trenched plots. The long term of the study and its high resolution make the datasets meaningful for use in or development of coupled climate-ecosystem models to tune their dynamic behaviour as well as to provide mean parameters for decomposition of soil organic carbon to support future predictions of soil carbon sequestration. PMID:28291228

  16. Transformation and contamination of soils in iron ore mining areas (a review)

    NASA Astrophysics Data System (ADS)

    Zamotaev, I. V.; Ivanov, I. V.; Mikheev, P. V.; Belobrov, V. P.

    2017-03-01

    Current concepts of soil transformation and contamination in iron ore mining areas have been reviewed. Changes of soils and ecosystems in the mining areas are among the largest-scale impacts of economic activity on the nature. Regularities in the radial differentiation, spatial distribution, and accumulation of heavy metals in soils of different natural zones are analyzed. The effects of mining technogenesis and gas-dust emissions from enterprises on soil microbial communities and fauna are considered. In zones of longterm atmotechnogenic impact of mining and processing plants, the stable state of ecosystems is lost and/or a new technoecosystem different from the natural one, with own microbial cenosis, is formed, where communities of soil organisms are in the stress state. In the ore mining regions, embriozems are formed, which pass through specific stages of technogenically-determined development, as well as technosols, chemozems, and technogenic surface formations with variable material compositions and properties. Technogenic soils and soil-like bodies form a soil cover differing from the initial one, whose complexity and contrast are not related to the natural factors of differentiation.

  17. Uncertainty in Ecohydrological Modeling in an Arid Region Determined with Bayesian Methods

    PubMed Central

    Yang, Junjun; He, Zhibin; Du, Jun; Chen, Longfei; Zhu, Xi

    2016-01-01

    In arid regions, water resources are a key forcing factor in ecosystem circulation, and soil moisture is the critical link that constrains plant and animal life on the soil surface and underground. Simulation of soil moisture in arid ecosystems is inherently difficult due to high variability. We assessed the applicability of the process-oriented CoupModel for forecasting of soil water relations in arid regions. We used vertical soil moisture profiling for model calibration. We determined that model-structural uncertainty constituted the largest error; the model did not capture the extremes of low soil moisture in the desert-oasis ecotone (DOE), particularly below 40 cm soil depth. Our results showed that total uncertainty in soil moisture prediction was improved when input and output data, parameter value array, and structure errors were characterized explicitly. Bayesian analysis was applied with prior information to reduce uncertainty. The need to provide independent descriptions of uncertainty analysis (UA) in the input and output data was demonstrated. Application of soil moisture simulation in arid regions will be useful for dune-stabilization and revegetation efforts in the DOE. PMID:26963523

  18. The ecohydrology of water limited landscapes

    NASA Astrophysics Data System (ADS)

    Huxman, T. E.

    2011-12-01

    Developing a mechanistic understanding of the coupling of ecological and hydrological systems is crucial for understanding the land-surface response of large areas of the globe to changes in climate. The distribution of biodiversity, the quantity and quality of streamflow, the biogeochemistry that constrains vegetation cover and production, and the stability of soil systems in watersheds are all functions of water-life coupling. Many key ecosystem services are governed by the dynamics of near-surface hydrology and biological feedbacks on the landscape occur through plant influence over available soil moisture. Thus, ecohydrology has tremendous potential to contribute to a predictive framework for understanding earth system dynamics. Despite the importance of such couplings and water as a major limiting resource in ecosystems throughout the globe, ecology still struggles with a mechanistic understanding of how changes in rainfall affect the biology of plants and microbes, or how changes in plant communities affect hydrological dynamics in watersheds. Part of the problem comes from our lack of understanding of how plants effectively partition available water among individuals in communities and how that modifies the physical environment, affecting additional resource availability and the passage of water along other hydrological pathways. The partitioning of evapotranspiration between transpiration by plants and evaporation from the soil surface is key to interrelated ecological, hydrological, and atmospheric processes and likely varies with vegetation structure and atmospheric dynamics. In addition, the vertical stratification of autotrophic and heterotrophic components in the soil profile, and the speed at which each respond to increased water, exert strong control over the carbon cycle. The magnitude of biosphere-atmosphere carbon exchange depends on the time-depth-distribution of soil moisture, a fundamental consequence of local precipitation pulse characteristics, soil texture and plant functional type. The transport of metabolic products within plants and their differential activation result in non-intuitive patterns of exchange associated with the major drivers creating problems with the scaling of physiological processes of individual plants to ecosystems. Such dynamics, along with hysteretic behavior creates challenges for measurement, evaluation, modeling and predicting ecosystem behavior. New frameworks and conceptual approaches to modeling ecosystem metabolism and the role of water are helping to describe the consequences of precipitation variability and change.

  19. Transformation of leaf litter by insect herbivory in the Subarctic: Consequences for soil biogeochemistry under global change

    NASA Astrophysics Data System (ADS)

    Kristensen, J. A.; Metcalfe, D. B.; Rousk, J.

    2017-12-01

    Climate warming may increase insect herbivore ranges and outbreak intensities in arctic ecosystems. Thorough understanding of the implications of these changes for ecosystem processes is essential to make accurate predictions of surface-atmosphere carbon (C) feedbacks. Yet, we lack a comprehensive understanding of the impacts of herbivore outbreaks on soil microbial underpinnings of C and nitrogen (N) fluxes. Here, we investigate the growth responses of heterotrophic soil decomposers and C and N mineralisation to simulated defoliator outbreaks in Subarctic birch forests. In microcosms, topsoil was incubated with leaf litter, insect frass, mineral N and combinations of the three; all was added in equal amounts of N. A higher fraction of added C and N was mineralised during outbreaks (frass addition) relative to non-outbreak years (litter addition). However, under high mineral N-availability in the soil of the kind likely under longer periods of enhanced insect herbivory (litter+mineral N), the mineralised fraction of added C decreased while the mineralised fraction of N increased substantially, which suggest a shift towards more N-mining of the organic substrates. This shift was accompanied by higher fungal dominance, and may facilitate soil C-accumulation assuming constant quality of C-inputs. Thus, long-term increases of insect herbivory, of the kind observed in some areas and projected by some models, may facilitate higher ecosystem C-sink capacity in this Subarctic ecosystem.

  20. Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment.

    PubMed

    Piñeiro, Juan; Ochoa-Hueso, Raúl; Delgado-Baquerizo, Manuel; Dobrick, Silvan; Reich, Peter B; Pendall, Elise; Power, Sally A

    2017-11-10

    Plant roots play a crucial role in regulating key ecosystem processes such as carbon (C) sequestration and nutrient solubilisation. Elevated (e)CO 2 is expected to alter the biomass of fine, coarse and total roots to meet increased demand for other resources such as water and nitrogen (N), however, the magnitude and direction of observed changes vary considerably between ecosystems. Here, we assessed how climate and soil properties mediate root responses to eCO 2 by comparing 24 field-based CO 2 experiments across the globe including a wide range of ecosystem types. We calculated response ratios (i.e. effect size) and used structural equation modelling (SEM) to achieve a system-level understanding of how aridity, mean annual temperature and total soil nitrogen simultaneously drive the response of total, coarse and fine root biomass to eCO 2 . Models indicated that increasing aridity limits the positive response of fine and total root biomass to eCO 2 , and that fine (but not coarse or total) root responses to eCO 2 are positively related to soil total N. Our results provide evidence that consideration of factors such as aridity and soil N status is crucial for predicting plant and ecosystem-scale responses to future changes in atmospheric CO 2 concentrations, and thus feedbacks to climate change.

  1. USDA-ARS?s Scientific Manuscript database

    Ecosystems that maximize soil organic matter and good soil structure maintain high soil biological functioning, soil health and plant growth. Natural ecosystems such as prairies are valuable benchmarks for developing sustainable crop and soil management practices. Soil biological properties critical...

  2. Rhizosphere: a leverage for tolerance to water deficits of soil microflora ?

    NASA Astrophysics Data System (ADS)

    Bérard, Annette; Ruy, Stéphane; Coronel, Anaïs; Toussaint, Bruce; Czarnes, Sonia; Legendre, Laurent; Doussan, Claude

    2015-04-01

    Microbial soil communities play a fundamental role in soil organic matter mineralization, which is a key process for plant nutrition, growth and production in agro-ecosystems. A number of these microbial processes take place in the rhizosphere: the soil zone influenced by plant roots activity, which is a "hotspot " of biological and physico-chemical activity, transfers and biomass production. The knowledge of rhizosphere processes is however still scanty, especially regarding the interactions between physico-chemical processes occurring there and soil microorganisms. The rhizosphere is a place where soil aggregates are more stable, and where bulk density, porosity, water and nutrients transfer are modified with respect to the bulk soil (e.g. because of production of mucilage, of which exo-polysaccharides (EPS) produced by roots and microorganisms. During a maize field experiment, rhizospheric soil (i.e. soil strongly adhering to maize roots) and bulk soil were sampled twice in spring and summer. These soil samples were characterized for physicochemical parameters (water retention curves and analysis of exopolysaccarides) and microflora (microbial biomass, catabolic capacities of the microbial communities assessed with the MicroRespTM technique, stability of soil microbial respiration faced to a heat-drought disturbance). We observed differences between rhizospheric and bulk soils for all parameters studied: Rhizospheric soils showed higher microbial biomasses, higher quantities of exopolysaccarides and a higher water retention capacity compared to bulk soil measurements. Moreover, microbial soil respiration showed a higher stability confronted to heat-drought stress in the rhizospheric soils compared to bulk soils. Results were more pronounced during summer compared to spring. Globally these data obtained from field suggest that in a changing climate conditions, the specific physico-biological conditions in the rhizosphere partially linked to exopolysaccarides, could induce stability (Resistance, Resilience) of soil microbial communities towards stresses, in particular severe drought. The knowledge of these interactions in the rhizosphere between local hydric soil properties and microbial behaviour facing drought, could allow a better understanding of the functioning of agro-ecosystems for their management in a changing climate.

  3. Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient

    USGS Publications Warehouse

    Wu, Zhuoting; Koch, George W.; Dijkstra, Paul; Bowker, Matthew A.; Hungate, Bruce A.

    2011-01-01

    Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant–soil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.

  4. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    USGS Publications Warehouse

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  5. An ecosystem approach to evaluate restoration measures in the lignite mining district of Lusatia/Germany

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang

    2015-04-01

    Lignite mining in Lusatia has a history of over 100 years. Open-cast mining directly affected an area of 1000 km2. Since 20 years we established an ecosystem oriented approach to evaluate the development and site characteristics of post-mining areas mainly restored for agricultural and silvicultural land use. Water and element budgets of afforested sites were studied under different geochemical settings in a chronosequence approach (Schaaf 2001), as well as the effect of soil amendments like sewage sludge or compost in restoration (Schaaf & Hüttl 2006). Since 10 years we also study the development of natural site regeneration in the constructed catchment Chicken Creek at the watershed scale (Schaaf et al. 2011, 2013). One of the striking characteristics of post-mining sites is a very large small-scale soil heterogeneity that has to be taken into account with respect to soil forming processes and element cycling. Results from these studies in combination with smaller-scale process studies enable to evaluate the long-term effect of restoration measures and adapted land use options. In addition, it is crucial to compare these results with data from undisturbed, i.e. non-mined sites. Schaaf, W., 2001: What can element budgets of false-time series tell us about ecosystem development on post-lignite mining sites? Ecological Engineering 17, 241-252. Schaaf, W. and Hüttl, R. F., 2006: Direct and indirect effects of soil pollution by lignite mining. Water, Air and Soil Pollution - Focus 6, 253-264. Schaaf, W., Bens, O., Fischer, A., Gerke, H.H., Gerwin, W., Grünewald, U., Holländer, H.M., Kögel-Knabner, I., Mutz, M., Schloter, M., Schulin, R., Veste, M., Winter, S. & Hüttl, R.F., 2011: Patterns and processes of initial terrestrial-ecosystem development. Journal of Plant Nutrition and Soil Science, 174, 229-239. Schaaf, W., Elmer, M., Fischer, A., Gerwin, W., Nenov, R., Pretsch, H. and Zaplate, M.K., 2013: Feedbacks between vegetation, surface structures and hydrology during initial development of the artificial catchment `Chicken Creek'. Procedia Environmental Sciences 19, 86-95.

  6. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    PubMed

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. How did climate drying reduce ecosystem carbon storage in the forest-steppe ecotone? A case study in Inner Mongolia, China.

    PubMed

    Zhang, Yuke; Liu, Hongyan

    2010-07-01

    The projected recession of forests in the forest-steppe ecotone under projected climate drying would restrict the carbon sink function of terrestrial ecosystems. Previous studies have shown that the forest-steppe ecotone in the southeastern Inner Mongolia Plateau originally resulted from climate drying and vegetation shifts during the mid- to late-Holocene, but the interrelated processes of changing soil carbon storage and vegetation and soil shifts remain unclear. A total of 44 forest soil profiles and 40 steppe soil profiles were excavated to determine soil carbon storage in deciduous broadleaf forests (DBF), coniferous forests (CF) and steppe (ST) in this area. Carbon density was estimated to be 106.51 t/hm(2) (DBF), 73.20 t/hm(2) (CF), and 28.14 t/hm(2) (ST) for these ecosystems. Soil organic carbon (SOC) content was negatively correlated with sand content (R = -0.879, P < 0.01, n = 42), and positively correlated with silt (R = 0.881, P < 0.01, n = 42) and clay (R = 0.858, P < 0.01, n = 42) content. Consistent trends between fractions of coarse sand and a proxy index of relative aridity in sediment sequences from two palaeo-lakes further imply that climate drying reduced SOC through coarsening of the soil texture in the forest-steppe ecotone. Changes in carbon storage caused by climate drying can be divided into two stages: (1) carbon storage of the ecosystem was reduced to 68.7%, mostly by soil coarsening when DBF were replaced by CF at approximately 5,900 (14)C years before present (BP); and (2) carbon storage was reduced to 26.4%, mostly by vegetation shifts when CF were replaced by ST at approximately 2,900 (14)C years BP.

  8. Human-induced geomorphic change across environmental gradients

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Molina, A.; Bellin, N.; Christl, M.

    2016-12-01

    Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical soil erosion, with direct implications on nutrient cycling, soil fertility and agricultural production. In this study, we present a conceptual model for assessing human-induced erosion for a wide variety of environmental settings and pose that human-induced geomorphic change cannot be assessed solely based on modern erosion rates as natural or baseline erosion rates can be important in e.g. mountainous terrain. As such, we assess the vulnerability of a given ecosystem to human-induced land cover change by quantifying the change in catchment-wide erosion rates resulting from anthropogenic changes in vegetation cover. Human-induced erosion is here approximated by the ratio of the total specific sediment yield to the natural erosional mass flux, and is dimensionless. The conceptual model is applied to three contrasting environmental settings where data on soil production, physical soil erosion and long-term denudation are available: the tropical Andes, subtropical southern Brazil, and semi-arid Spanish Cordillera. The magnitude of human-induced geomorphic change strongly differs between the three regions. The data suggest that the sensitivity to human-induced erosion is ecosystem dependent, and related to soil erosivity and potential vegetation cover disturbances as a result of human impact. It may therefore be expected that the potential for erosion regulation is larger in well-vegetated ecosystem where strong differences may exist in vegetation cover between human disturbed and undisturbed or restored sites.

  9. Monsoon dependent ecosystems: Implications of the vertical distribution of soil moisture on land surface-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia M.

    Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.

  10. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    NASA Astrophysics Data System (ADS)

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem to act as a C sink is directly and indirectly dependent on the vegetation structure.

  11. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact.

    PubMed

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-10-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems.

  12. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact

    PubMed Central

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-01-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14–19% and the ambient radiation by 9–16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems. PMID:26423726

  13. Effects of repetitive droughts on carbon, nutrient and water cycles of heathland ecosystem

    NASA Astrophysics Data System (ADS)

    Rineau, Francois; Beenaerts, Natalie; Nijs, Ivan; De Boeck, Hans; Vangronsveld, Jaco

    2017-04-01

    A large body of research is now focusing on the understanding of mechanisms regulating ecosystem functioning, predictions on their activity in the long-term, and the management practices to keep them running. For this purpose, Hasselt University decided to invest in the construction of a high technological research infrastructure: the "Ecotron Hasselt University", where twelve large ecosystem replicates can be continuously monitored and controlled. The ecotrons will be fed with real-time climatic data from a nearby ICOS tower located on top of a heathland landscape. The research performed there will focus on understanding the response of heathland ecosystem services (ES) to yearly repeated droughts of different intensities. We aim to perform as well an economical valuation of these ES. From a biological point of view, we will measure soil processes that drive the three most valuable ES: water, C and nutrient cycles, and especially how soil organisms affect them, through which mechanisms and at different drought intensities. Species interactions and their influence on C sequestration and organic matter degradation will be also incorporated into a state-of-the art soil C cycling model.

  14. Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient

    USGS Publications Warehouse

    Chapman, Eric; Cadillo-Quiroz, Hinsby; Childers, Daniel L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2017-01-01

    Climate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an “undisturbed” system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the “undisturbed” permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function.

  15. Linking global-change induced shifts in soil nitrogen cycling with the abundance of key microorganisms

    NASA Astrophysics Data System (ADS)

    Carey, C.; Eviner, V.; Beman, M.; Hart, S. C.

    2013-12-01

    Since western colonization, the ecology of California has seen marked transformations. In particular, invasion of terrestrial ecosystems by exotic plants has altered plant community composition, disturbances, soil hydrologic regimes, and nutrient cycling. In addition, as a result of fertilization and combustion of fossil fuels, California experiences some of the highest nitrogen (N) deposition rates in the country. Land use has also changed with the introduction of domestic livestock grazing about 250 years ago. Currently, approximately 32% of land in California experiences grazing pressure. These ecological changes likely affect the ecosystems of California simultaneously. However, with multifactor global change experiments in their infancy, little is known about potential interactive effects on ecosystem structure and function. Our study measured the response of soil N dynamics to a unique combination of treatments: invasion by exotic plants (Aegilops triuncialis and Taeniatherum caput-medusae), elevated N additions, and simulated cattle grazing (aboveground vegetation removal). In addition, we quantified the abundance of key functional genes involved in nitrification (amoA) and denitrification (nirS/nirK) in order to gain a mechanistic insight into changes in ecosystem functioning. We found that, while responses of soil N pools and processes to global change factors tend to be dominated by main effects, interactions among factors can substantially alter the overall response of the ecosystem. For instance, N additions increased potential nitrification and pools of total inorganic N (TIN; NH4+ and NO3-); when N additions and grazing were combined, however, nitrification potentials and TIN decreased to those of ambient N (control) levels. Additionally, neither N additions nor simulated grazing independently affected soil microbial biomass of invaded plots; yet, when combined, the microbial biomass increased significantly. Our results help to provide a better understanding of the regulatory role of the soil microbial community in terrestrial N cycling and also help to improve our understanding of the controls on global change-induced shifts in ecosystem functioning.

  16. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  17. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  18. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning

    PubMed Central

    Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara

    2011-01-01

    Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891

  19. Latent Effect of Soil Organic Matter Oxidation on Mercury Cycling within a Southern Boreal Ecosystem

    EPA Science Inventory

    The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term chang...

  20. GROSS N TRANSFORMATION RATES AND MICROBIAL POPULATION DYNAMICS UNDER FIELD AND LABORATORY CONDITIONS FROM TWO DIFFERENT ECOSYSTEMS

    EPA Science Inventory

    Change of soil and environmental conditions can influence microbial activities and subsequent soil nitrogen (N) transformation processes. The objective of this study was to compare gross N transformation rates between field and laboratory incubation conditions using an old-field...

  1. Plant Community and Soil Environment Response to Summer Fire in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Fire is a keystone process in many ecosystems, especially grasslands. However, documentation of plant community and soil environment responses to fire is limited for semiarid grasslands relative to that for mesic grasslands. Replicated summer fire research is lacking, but much needed because summe...

  2. Global diversity and geography of soil fungi

    Treesearch

    Leho Tedersoo; Mohammad Bahram; Sergei Põlme; Urmas Kõljalg; Nourou S. Yorou; Ravi Wijesundera; Luis Villarreal Ruiz; Aida M. Vasco-Palacios; Pham Quang Thu; Ave Suija; Matthew E. Smith; Cathy Sharp; Erki Saluveer; Alessandro Saitta; Miguel Rosas; Taavi Riit; David Ratkowsky; Karin Pritsch; Kadri Põldmaa; Meike Piepenbring; Cherdchai Phosri; Marko Peterson; Kaarin Parts; Kadri Pärtel; Eveli Otsing; Eduardo Nouhra; André L. Njouonkou; R. Henrik Nilsson; Luis N. Morgado; Jordan Mayor; Tom W. May; Luiza Majukim; D. Jean Lodge; Su See Lee; Karl-Henrik Larsson; Petr Kohout; Kentaro Hosaka; Indrek Hiiesalu; Terry W. Henkel; Helery Harend; Liang-dong Guo; Alina Greslebin; Gwen Gretlet; Jozsef Geml; Genevieve Gates; William Dunstan; Chris Dunk; Rein Drenkhan; John Dearnaley; André De Kesel; Tan Dang; Xin Chen; Franz Buegger; Francis Q. Brearley; Gregory Bonito; Sten Anslan; Sandra Abell; Kessy Abarenkov

    2014-01-01

    Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples,we demonstrate that fungal richness is decoupled from plant diversity.The plant-to-fungus richness ratio declines exponentially toward the poles....

  3. CHEMFLO-2000: INTERACTIVE SOFTWARE FOR SIMULATING WATER AND CHEMICAL MOVEMENT IN UNSATURATED SOILS

    EPA Science Inventory

    The movement of water and chemicals into and through soils has a large impact upon our environment and the entire ecosystem. Understanding these processes is of great importance in managing, utilizing, and protecting our natural resources. This software was written to enhance our...

  4. Fire effects on belowground sustainability: A review and synthesis

    Treesearch

    Daniel G. Neary; Carole C. Klopatek; Leonard F. DeBano; Peter F. Ffolliott

    1999-01-01

    The overall effects of the fire on ecosystems are complex, ranging from the reduction or elimination of aboveground biomass to impacts on belowground physical, chemical and microbial mediated processes. Since a key component of overall ecosystem sustainability occurs belowground, recovery is tied to the soil's physical, chemical, and biological functions and...

  5. Coordinated Approaches to Quantify Long-Term Ecosystem dynamics in Response to Global Change

    USDA-ARS?s Scientific Manuscript database

    Climate change and its impact on ecosystems are usually assessed at decadal and century time scales. Ecological responses to climate change at those scales are strongly regulated by long-term processes, such as changes in species composition, carbon dynamics in soil and by big trees, and nutrient r...

  6. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallenstein, Matthew

    The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, butmore » will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.« less

  7. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements

    NASA Astrophysics Data System (ADS)

    Traore, Abdoul Khadre; Ciais, Philippe; Vuichard, Nicolas; Poulter, Benjamin; Viovy, Nicolas; Guimberteau, Matthieu; Jung, Martin; Myneni, Ranga; Fisher, Joshua B.

    2014-08-01

    Few studies have evaluated land surface models for African ecosystems. Here we evaluate the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) process-based model for the interannual variability (IAV) of the fraction of absorbed active radiation, the gross primary productivity (GPP), soil moisture, and evapotranspiration (ET). Two ORCHIDEE versions are tested, which differ by their soil hydrology parameterization, one with a two-layer simple bucket and the other a more complex 11-layer soil-water diffusion. In addition, we evaluate the sensitivity of climate forcing data, atmospheric CO2, and soil depth. Beside a very generic vegetation parameterization, ORCHIDEE simulates rather well the IAV of GPP and ET (0.5 < r < 0.9 interannual correlation) over Africa except in forestlands. The ORCHIDEE 11-layer version outperforms the two-layer version for simulating IAV of soil moisture, whereas both versions have similar performance of GPP and ET. Effects of CO2 trends, and of variable soil depth on the IAV of GPP, ET, and soil moisture are small, although these drivers influence the trends of these variables. The meteorological forcing data appear to be quite important for faithfully reproducing the IAV of simulated variables, suggesting that in regions with sparse weather station data, the model uncertainty is strongly related to uncertain meteorological forcing. Simulated variables are positively and strongly correlated with precipitation but negatively and weakly correlated with temperature and solar radiation. Model-derived and observation-based sensitivities are in agreement for the driving role of precipitation. However, the modeled GPP is too sensitive to precipitation, suggesting that processes such as increased water use efficiency during drought need to be incorporated in ORCHIDEE.

  8. Positive responses of belowground C dynamics to nitrogen enrichment in China.

    PubMed

    Deng, Lei; Peng, Changhui; Zhu, Guangyu; Chen, Lei; Liu, Yulin; Shangguan, Zhouping

    2018-03-01

    Determining how nitrogen (N) impacts ecosystem carbon (C) cycling is critical to using C sequestration to offset anthropogenic CO 2 emissions. The N deposition rate in China is higher than the global average; however, many results of N enrichment experiments in China have not been included in global syntheses. In this study, we assembled a large dataset that comprised 124 published studies concerning N addition experiments, including 570 observations at 127 sites across China, to quantify the responses of belowground C dynamics to N enrichment in terrestrial ecosystems in China by a meta-analysis. The results showed that overall soil organic C, dissolved organic C (DOC) and soil microbial biomass C (MBC) increased by 1.8, 7.4, and 8.8%, respectively (P<0.05), in response to N enrichment; belowground biomass and litter increased by 14.6 and 24.4%, respectively (P<0.05); and soil respiration increased by 6.1% (P<0.05). N enrichment promoted C inputs into the soil mainly by increasing litter and belowground biomass inputs. Additionally, N enrichment increased C output by increasing soil respiration. Land use type and N addition level had different impacts on the soil C pool and on soil respiration. DOC, MBC, and litter exhibited more positive responses to N deposition in cooler and more arid regions than in other regions. The meta-analysis indicated that N enrichment had a positive impact on belowground C cycles in China. Climate played a greater role than did N deposition level in affecting processes of ecosystem C cycling. Moreover, belowground C cycle processes are determined by complicated interactions among land use type, N enrichment, and climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The International year of soils: thoughts on future directions for experiments in soil erosion research

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2015-04-01

    The 2015 UN Year of Soils (IYS), implemented by the FAO, aims to increase awareness and understanding of the importance of soil for food security and essential ecosystem functions. The IYS has six specific objectives, ranging from raising the awareness among civil society and decision makers about the profound importance of soils, to the development of policies supporting the sustainable use of the non-renewable soil resource. For scientists and academic teachers using experiments to study soil erosion processes, two objectives appear of particular relevance. First is need for the rapid capacity enhancement for soil information collection and monitoring at all levels (global, regional and national). While at first glance, this objective appears to relate mostly to traditional mapping, sampling and monitoring, the threat of large-scale soil loss, at least with regards to their ecosystem services, illustrates the need for approaches of studying soils that avoids such irreversible destruction. Relying on often limited data and their extrapolation does not cover this need for soil information because rapid change of the drivers of change itself carry the risk of unprecedented soil reactions not covered by existing data sets. Experiments, on the other hand, offer the possibility to simulate and analyze future soil change in great detail. Furthermore, carefully designed experiments may also limit the actual effort involved in collecting the specific required information, e.g. by applying tests designed to study soil system behavior under controlled conditions, compared to field monitoring. For rainfall simulation, experiments should therefore involve the detailed study of erosion processes and include detailed recording and reporting of soil and rainfall properties. The development of a set of standardised rainfall simulations would widen the use data collected by such experiments. A second major area for rainfall simulation lies in the the education of the public about the crucial role soil plays in food security, climate change adaptation and mitigation, essential ecosystem services, poverty alleviation and sustainable development. While erosion monitoring and modeling, as well as erosion risk assessment maps provide a solid foundation for decision makers, the attention of the public for "dirt" is often much easier to achieve by setting up a rainfall simulation experiment that illustrates the connection between a process, such as rainfall and runoff observed in daily life, and its causes and consequences. Exploring the potential of rainfall simulation experiments as an outreach tool should therefore be part of the soil science, geomorphology and hydrology community during the IYS 2015 and beyond.

  10. Air-Pollution-Mediated Changes in Alpine Ecosystems and Ecotones.

    PubMed

    Rusek, Josef

    1993-08-01

    Soil biological parameters (e.g., Collembola), soil types, soil chemical parameters (pH, humus substances), and plant communities were studied in different ecosystems and ecotones in alpine, subalpine, and spruce forest zones in the Tatra National Park, Slovak Republic. The preliminary, selected data, based on a long-term research program, showed a high sensitivity of some alpine ecotones and ecosystems to long-distance transported acid deposits. The changes in different ecosystem parameters since 1977 were more extensive in alpine grasslands on limestone than on granite. The greatest soil pH decrease was in the plant communities Festucetum versicoloris (-1.5 pH), Geranio-Alchemilletum crinitae (-1.32 pH), and Saxifragetum perdurantis (-1.25 pH), which are restricted to places with snow accumulation and water runoff gullies. In these ecosystems the greatest changes occurred in the leaching of humus substances. Some formerly less abundant and rare soil animals restricted to acid bedrock became dominant in some ecosystems on limestone as well as on granite; other formerly dominant species disappeared from the entire study area (e.g., Folsomia alpina). The aerial extent of some ecosystems changed substantially since 1977, and their surrounding ecotones moved into the space formerly occupied by one of the adjacent ecosystems. These changes are detectable by remote-sensing methods. In Central European mountains, strongly affected by global and regional industrial air pollution (e.g., Krusne Hory, Krkonose, Beskydy), spruce forests started to die back from higher to lower mountain elevations. The effects of air pollution on alpine and subalpine vegetation were not studied there. Strong alterations in alpine ecosystems and ecotones were detected by the author during long-term studies in the High Tatra Mountains, and I suggest that subalpine and mountain forest belts will be affected here in the near future as they were in the more polluted Central European mountains. The ecosystems and ecotones in higher alpine zones are likely to be affected earlier than the ecosystems at lower altitudes. Detection of ecosystem alteration in the alpine zone may be used for prediction of acidification processes and global change in ecosystems at lower altitudes. The consequences of global climate change are predictable by monitoring changes in the extent of some ecosystems located in discrete mountain geomorphological units (e.g., karstic sinkholes, water runoff gullies, wind shadows, ridges exposed to wind, etc.) and ecotones among them because of their dependence on duration of snow cover, water supply, wind and frost exposure, and other abiotic and biotic factors. © 1993 by the Ecological Society of America.

  11. Winter climate change effects on soil C and N cycles in urban grasslands.

    PubMed

    Durán, Jorge; Rodríguez, Alexandra; Morse, Jennifer L; Groffman, Peter M

    2013-09-01

    Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2 O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost. © 2013 John Wiley & Sons Ltd.

  12. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.

    PubMed

    Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan

    2004-10-01

    In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.

  13. Above and belowground connections and species interactions: Controls over ecosystem fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Amy Marie; Phillips, Richard; Stoy, Paul Christopher

    The ultimate goal of this work was to quantify soil and volatile organic compound fluxes as a function of tree species and associated mycorrhizal associations in an intact forest, but also to describe the physical and biological factors that control these emissions. The results of this research lay the foundation toward an improved mechanistic understanding of carbon pathways, fluxes, and ecosystem function, ultimately improving the representation of forest ecosystems in Earth System models. To this end, a multidisciplinary approach was necessary to fill a critical gap in our understanding of how soil and root processes may influence whole-ecosystem carbon-based volatilemore » fluxes in the face of a rapidly changing climate. We developed a series of novel sampling protocols and coupled a variety of advanced analytical techniques, resulting in findings relevant across disciplines. Furthermore, we leveraged existing infrastructure, research sites, and datasets to design a low-cost exploratory project that links belowground processes, soil volatile emissions, and total ecosystem carbon budgets. Measurements from soil collars installed across a species/mycorrhizal gradient at the DOE-supported Moran Monroe State Forest Ameriflux tower site suggest that leaf litter is the primary source of belowground and forest floor volatile emissions, but the strength of this source is significantly affected not only by leaf litter type, but the strength of the soil as a sink. Results suggest that the strength of the sink is influenced by tree species-specific associated microbial communities that change throughout the season as a function of temperature, soil moisture, leaf litter inputs, and phenology. The magnitude of the observed volatile fluxes from the forest floor is small relative to total aboveground ecosystem flux, but the contribution of these emissions to volatile-mediated ecological interactions and soil processes (e.g. nitrification) varies substantially across the growing season. This research lays the foundation to answer important questions regarding the impacts of seasonality and forest composition on belowground volatile source-sink dynamics in mediating nutrient cycling and biogeochemistry dynamics—critical components of overall ecosystem functioning. In collaboration with the Environmental Simulations Unit (EUS) at the Helmholtz Zentrum in Munich, Germany (headed by Prof. Dr. Joerg-Peter Schinitzler), we investigated carbon investment in above and belowground plant volatile compounds in response to environmental conditions and mycorrhizal associations. Using the sophisticated phytotron facility and on-line trace gas instruments, we conducted controlled laboratory experiments that showed that biotic stresses, such as herbivore feeding, can alter the magnitude of belowground volatile emissions as well as carbon allocation towards these volatiles. We saw no effect of mycorrhizae on any induced response, suggesting that microbial effects were unrelated to source-sink dynamics driving terpene emissions. Furthermore, the results suggest that even though enzyme activity responsible for root volatile synthesis is up-regulated following herbivory, the sink strength of the soil can significantly impact what is measured at the soil/atmosphere interface and thereby what enters the atmosphere. This is important as scientists may be underestimating the magnitude of belowground volatile emissions and their influence on belowground interactions due to limitations associated with current sampling techniques. These key findings are being integrated with results from a hydroxyl radical reactivity-VOC campaign and a late season litter removal experiment to offer a comprehensive mechanistic understanding of the sources and controls over soil volatile emissions, particularly during times of the year when vegetative aboveground emissions are low (leaf senescence). Ultimately, these coupled field and laboratory experiments offer insights into seasonal dynamics of volatile emissions and the mechanisms that control carbon allocation to these compounds with an eye towards improving carbon budgets, nutrient cycling, and terrestrial ecosystem models.« less

  14. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Hao

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the near-surface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub ( Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of `cool islands' in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  15. Soil carbon storage in a small arid catchment in the Negev desert (Israel)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ulrike; Kuhn, Nikolaus

    2010-05-01

    The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon densities (in kg/m²) were estimated for the mineral soil layer. The results indicate a large spatial variability of the carbon contents, the soil volume and depths across the landscape. In general, topography exerts a strong control on the carbon contents and the soil depths in the study site. Lowest carbon contents are apparent at the hillslope tops with increasing contents downslope. Because of the significantly larger carbon content at the northern exposed slope, we suggest that solar radiation driven differences of soil moisture content major controls SOC. Regarding the soil depths, the differences are not that clear. Soil depths seem to be higher at the southern exposed slope, but differences with respect to the slope position are not significant. Concerning the total amount of carbon storage in the study area, the results show that soil carbon may not be neglected in arid areas. Our results should provide an indication that carbon contents in dynamic environments are more affected and controlled by surface properties (soil volume) than by climate. Concluding that hint, climate is less important than surface processes in dryland ecosystems.

  16. Humus soil as a critical driver of flora conversion on karst rock outcrops.

    PubMed

    Zhu, Xiai; Shen, Youxin; He, Beibei; Zhao, Zhimeng

    2017-10-03

    Rock outcrop is an important habitat supporting plant communities in karst landscape. However, information on the restoration of higher biotic populations on outcrops is limited. Here, we investigated the diversity, biomass changes of higher vascular plants (VP) and humus soil (HS) on karst outcrops during a restoration process. We surveyed VP on rock outcrops and measured HS reserved by various rock microhabitats in a rock desertification ecosystem (RDE), an anthropogenic forest ecosystem (AFE), and a secondary forest ecosystem (SFE) in Shilin County, southwest China. HS metrics (e.g. quantity and nutrients content) and VP metrics (e.g. richness, diversity and biomass) were higher at AFE than at RDE, but lower than at SFE, suggesting that the restoration of soil subsystem vegetation increased HS properties and favored the succession of VP on rock outcrops. There was significantly positive correlation between VP metrics and HS amount, indicating that the succession of VP was strongly affected by availability and heterogeneity of HS in various rock microhabitats. Thus, floral succession of rock subsystem was slow owing to the limited resources on outcrops, although the vegetation was restored in soil subsystem.

  17. Nexus Thinking on Soil Carbon Dynamics and Soil Health

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2016-12-01

    Anthropocene is driven by global population of 7.5 billion in 2016, increasing annually by 80 million and projected to be 9.7 billion by 2050. The ecological impact (I=PAT, where P is population, A is affluence, and T is technology) of the population is similar to that of a geological force. Thus, humanity's impact is driven by demands for food, water, energy, and services derived from soil. Soil health, its capacity to function as a vital living system, is determined by quantity and quality of soil organic carbon (SOC) in the root zone ( 50cm). Maintenance of SOC at above the threshold level (1.5 to 2.0% by weight in the root zone) is critical to performing numerous ecosystem services for human wellbeing and nature conservancy. These services and functions strongly depend on nexus or inter-connectivity of biological processes within the pedosphere. The nexus is strongly governed by coupled biogeochemical cycling of water (H2O), carbon (C), nitrogen (N), phosphorus (P) and sulfur (S). Further, it is the nexus between pedological and biological processes that renews and purifies water by denaturing and filtering pollutants; circulates C among biotic and abiotic pools in close association with other elements (N, P, S); provides habitat and energy source for soil biota (macro, meso, and micro flora and fauna), facilitates exchanges of gases between soil and the atmosphere and moderates climate, and creates favorable rhizospheric processes that promote plant growth and enhance net primary productivity. Soil health, governed by SOC quality and quantity, determines the provisioning of numerous ecosystem services and the importance of nexus thinking is highlighted by the truism that "health of soil, plants, animals, human and ecosystem is one and indivisible." The sequestration of SOC depends on land use and soil management strategies which create a positive C budget. Thus, input of biomass-C into the soil must exceed the losses by erosion, mineralization and leaching. The proportion of biomass-C retained as SOC depends on soil (e.g., texture, clay minerals), landscape (e.g., slope, drainage), land use (e.g., natural, managed) and management (e.g., input). The nexus thinking is important to implementation of the "4 per Thousand" initiative proposed at the COP 21 to mitigate climate change and advance food security.

  18. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of the environmental setting or wider climatic conditions that the grasslands experience. Furthermore, it is demonstrated that the relatively stable ecosystem state that has prevailed in the 'pristine' grasslands studied, is in fact very fragile and may be easily altered, either by anthropogenic forcing, due to land management or by 'semi-natural' processes, related to climate change or changes in the incidence of wildfires (for example). Once structurally altered, it is also shown that positive feedbacks will occur to accelerate the loss of critical resources (topsoil and nutrients) from the ecosystem, in particular in drylands, resulting in widespread land degradation that cannot be reversed. In the temperate grasslands studied, it is shown that anthropogenic intervention may halt or even to some degree reverse the degradation of the soil-vegetation-water continuum. However, such 'landscape restoration' approaches are costly and require long-term management commitment if they are to succeed. Finally, analysis of water, sediment and nutrient fluxes from this range of grasslands also demonstrates how critical ecosystem services that grasslands can provide; including soil water storage to buffer downstream flooding, soil carbon storage and enhanced biodiversity are reduced, often to the point where restoration of the original (pristine) landscape function is impossible. To conclude, discussion is made of how we can learn across grass landscapes globally, to ensure that those ecosystems that might be restored to build resilient landscapes under future climates are well understood and that future efforts to manage grasslands for increased food production do not degrade these critical ecosystems further.

  19. Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire

    NASA Astrophysics Data System (ADS)

    SerçA, D.; Delmas, R.; Le Roux, X.; Parsons, D. A. B.; Scholes, M. C.; Abbadie, L.; Lensi, R.; Ronce, O.; Labroue, L.

    1998-12-01

    NO emission rates from soils were measured for twelve major African ecosystems in four countries (Congo, Niger, Ivory Coast, and South Africa) and within four major phytogeographic domains: the Guineo-Congolese, Guinean, Sahelian, and Zambezian domains. Measurements were performed during wet and/or dry seasons. All the measurements were made with the same dynamic chamber device, which allowed true comparisons to be made. This study showed that emission rates strongly differed between ecosystems and exhibited a marked temporal variability. Ecosystem effect was highly significant during both the dry and wet seasons. Emission rates were low (<0.6 ng NO-N m-2 s-1) in Hyparrhenia and Loudetia savannas of the Guinean or Guineo-Congolese domains. Intermediate NO fluxes were obtained in rain forest and gallery forest ecosystems, in a broad-leafed savanna and in a seasonally wetted grassland (sandy soil) of the Zambezian domain, and in a dry fallow savanna of the Sahelian domain. Emission rates were maximum (>7 ng NO-N m-2 s-1) in a seasonally wetted grassland (site 2) and in particular sites subjected to various disturbances, for example soil fauna activity (termite mounds) or past human disturbance (Acacia patches-settlement site). Microbial activity potentials (i.e., carbon mineralization, nitrification, denitrification, and total net N mineralization) were determined for most of the soils where NO fluxes were measured. In some sites, these potential activities were useful to identify the major processes controlling NO emission rates. Denitrification potential was very low and could not explain substantial NO fluxes from broad- and fine-leafed savannas and Hyperihelia savannas of the Zambezian domain. Very low potentials of both nitrification and denitrification could be related to the low NO fluxes for the three Guinean savanna sites studied. NO fluxes were significantly higher during the wet season than the dry season in both savanna and forest ecosystems. Emission rates in savanna ecosystems were significantly increased within a few hours after fire. The measurements presented here provide a unique, consistent database which can be used to further analyze the processes involved in the spatial and temporal variations of NO emissions.

  20. CO2 emissions driven by wind are produced at global scale

    NASA Astrophysics Data System (ADS)

    Rosario Moya, M.; Sánchez-Cañete, Enrique P.; Kowalski, Andrew S.; Serrano-Ortiz, Penélope; López-Ballesteros, Ana; Oyonarte, Cecilio; Domingo, Francisco

    2017-04-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aims of this study are: 1) to identify anomalous daytime CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that influence these emissions, and 3) to explore the potential processes which can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with maximum quality were used, i.e. control flag equal to 0) and daytime (shortwave radiation incoming > 50 W m-2). Partial Spearman correlation analyses were performed between NEE and ancillary data: air temperature, vapour pressure deficit, soil temperature, precipitation, atmospheric pressure, soil water content, incoming photosynthetic photon flux density, friction velocity and net radiation. When necessary, ancillary variables were gap-filled using the MDS method (Reichstein et al. 2005). Preliminary results showed strong and highly significant correlations between friction velocity and anomalous CO2 emissions, suggesting that these emissions were mainly produced by ventilation events. Anomalous CO2 emissions were found mainly in arid ecosystems and sites with hot and dry summers. We suggest that anomalous CO2 emissions occur globally and therefore, their contribution to the global NEE requires further investigation in order to better understand its drivers.

  1. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming

    Treesearch

    L.E. Rustad; J.L. Campbell; G.M. Marion; R.J. Norby; M.J. Mitchell; A.E. Hartley; J.H.C. Cornelissen; J. Gurevitch

    2001-01-01

    Climate change due to greenhouse gas emissions is predicted to raise the mean global temperature by 1.0-3.5°C in the next 50-100 years. The direct and indirect effects of this potential increase in temperature on terrestrial ecosystems and ecosystem processes are likely to be complex and highly varied in time and space. The Global Change and Terrestrial...

  2. Final Technical Report to DOE for the Award DE-SC0004601

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jizhong

    Understanding the responses, adaptations and feedback mechanisms of biological communities to climate change is critical to project future state of earth and climate systems. Although significant amount of knowledge is available on the feedback responses of aboveground communities to climate change, little is known about the responses of belowground microbial communities due to the challenges in analyzing soil microbial community structure. Thus the goal overall goal of this study is to provide system-level, predictive mechanistic understanding of the temperature sensitivity of soil carbon (C) decomposition to climate warming by using cutting-edge integrated metagenomic technologies. Towards this goal, the following fourmore » objectives will be pursued: (i) To determine phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems; (ii) To delineate the responses of microbial community structure, functions and activities to climate change in the temperate grassland and tundra ecosystems; (iii) To determine the temperature sensitivity of microbial respiration in soils with different mixtures of labile versus recalcitrant C, and the underlying microbiological basis for temperature sensitivity of these pools; and (iv) To synthesize all experimental data for revealing microbial control of ecosystem carbon processes in responses to climate change. We have achieved our goals for all four proposed objectives. First, we determined the phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems. For this objective, we have developed a novel phasing amplicon sequencing (PAS) approach for MiSeq sequencing of amplicons. This approach has been used for sequencing various phylogenetic and functional genes related to ecosystem functioning. A comprehensive functional gene array (e.g., GeoChip 5.0) has also been developed and used for soil microbial community analysis in this study. In addition, shot-gun metagenome sequencing along with the above approaches have been used to understand the phylogenetic and functional diversity, composition, and structure of soil microbial communities in both temperature grassland and tundra ecosystems. Second, we determined the response of soil microbial communities to climate warming in both temperate grassland and tundra ecosystems using various methods. Our major findings are: (i) Microorganisms are very rapid to respond to climate warming in the tundra ecosystem, AK, which is vulnerable, too. (ii) Climate warming also significantly shifted the metabolic diversity, composition and structure of microbial communities, and key metabolic pathways related to carbon turnover, such as cellulose degradation (~13%) and CO2 production (~10%), and to nitrogen cycling, including denitrification (~12%) were enriched by warming. (iii) Warming also altered the expression patterns of microbial functional genes important to ecosystem functioning and stability through GeoChip and metatranscriptomic analysis of soil microbial communities at the OK site. Third, we analyzed temperature sensitivity of C decomposition to climate warming for both AK and OK soils through laboratory incubations. Key results include: (i) Alaska tundra soils showed that after one year of incubation, CT in the top 15 cm could be as high as 25% and 15% of the initial soil C content at 25°C and 15°C incubations, respectively. (ii) analysis of 456 incubated soil samples with 16S rRNA gene, ITS and GeoChip hybridization showed that warming shifted the phylogenretic and functional diversity, composition, structure and metabolic potential of soil microbial communities, and at different stages of incubation, key populations and functional genes significantly changed along with soil substrate changes. Functional gene diversity and functional genes for degrading labile C components decrease along incubation when labile C components are exhausting, but the genes related to degrading recalcitrant C increase. These molecular data will be directly used for modeling. Fourth, we have developed novel approaches to integrate and model experimental data to understand microbial control of ecosystem C processes in response to climate change. We compared different methods to calculate Q10 for estimating temperature sensitivity, and new approaches for Q10 calculation and molecular ecological network analysis were also developed. Using those newly developed approaches, our result indicated that Q10s increased with the recalcitrance of C pools, suggesting that longer incubation studies are needed in order to assess the temperature sensitivity of slower C pools, especially at low temperature regimes. This project has been very productive, resulting in 42 papers published or in press, 4 submitted, and 13 in preparation.« less

  3. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronan, C.S.; Grigal, D.F.

    1995-03-01

    The calcium/aluminum (Ca/Al) molar ratio of the soil solution provides a valuable measurement endpoint or ecological indicator for identification of approximate thresholds beyond which the risk of forest damage from Al stress and nutrient imbalances increases. The Ca/Al ratio can also be used as an indicator to assess forest ecosystem changes over time in response to acidic deposition, forest harvesting, or other processes contributing to acid soil infertility. Based on a critical review of literature on Al stress, we estimate that there is a 50:50 risk of adverse impacts on tree growth or nutrition when the soil solution Ca/Al ratiomore » is as low as 1.0, a 75% risk when the soil solution ratio is as low as 0.5, and nearly a 100% risk when the soil solution Ca/Al molar ratio is as low as 0.2. The Ca/Al ratio of the soil solution can be corroborated with other complementary indices.« less

  4. Ecosystem services of soil biota: In what context is a focus on soil biota meaningful?

    NASA Astrophysics Data System (ADS)

    Baveye, Philippe C.

    2016-04-01

    Over the last few years, the topic of the ecosystem services of soils has attracted considerable attention, in particular among researchers working on soil biota. A direct link is established explicitly in numerous articles between soil biota and specific ecosystem services, or between soil biodiversity and ecosystem services. A careful review of the literature indicates however that these links are, more often than not, strictly axiomatic, rather than based on actual observations. In fact, there are still at the moment virtually no measurements of ecosystem services of soils at any scale, measurements that would be required to establish such links. Furthermore, at a conceptual level, it is not clear to what extent the effect of soil biota in the delivery of ecosystem services can be separated from the contribution of other components of soil systems. Soil microorganisms, in particular, proliferate and are metabolically active in a pore space whose characteristics and dynamics could in principle have a profound effect on their activity. So also could the composition and spatial distribution of soil organic matter, or the spatial pattern of plant root propagation. By emphasizing the role of soil biota, at the exclusion of other aspects of soil systems, there is a risk that important features of the provision of ecosystem services by soils will be missed. In this talk (based in part on a workshop organized recently in France, and of a follow-up review article), an analysis of this general problem will be presented, as well as suggestions of how to avoid it by promoting truly interdisciplinary research involving not only soil ecologists but also physicists, hydrologists, and chemists.

  5. Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.

  6. [Research progress on the mechanisms and influence factors of nitrogen retention and transformation in riparian ecosystems.

    PubMed

    Yang, Dan; Fan, Da Yong; Xie, Zong Qiang; Zhang, Ai Ying; Xiong, Gao Ming; Zhao, Chang Ming; Xu, Wen Ting

    2016-03-01

    Riparian zone, the ecological transition buffer between terrestrial and aquatic ecosystems (rivers, lakes, reservoirs, wetlands, and other specific water bodies) with unique eco-hydrological and biogeochemical processes, is the last ecological barrier to prevent ammonium, nitrate and other non-point nitrogen pollutants from adjacent water bodies. Based on a summary of current progress of related studies, we found there were two major mechanisms underpinning the nitrogen retention/removal by the riparian ecosystems: 1) the relative locations of nitrogen in the soil-plant-atmosphere continuum system could be altered by riparian vegetation; 2) nitrogen could also be denitrified and then removed permanently by microorganisms in riparian soil. However, which process is more critical for the nitrogen removal remains elusive. Due to large variances of hydro-dynamic, vegetation, microbial, and soil substrate properties in nitrogen retention and transformation with various watersheds, it's difficult to identify which factor is the most important one driving nitrogen cycle in the riparian ecosystems. It is also found that the limitation of study methods, paucity of data at large spatial and temporal scale, and no consensus on the riparian width, are the three major reasons leading to large variances of the results among studies. In conclusion, it is suggested that further efforts should be focused on: 1) the detailed analysis on the successive environmental factors with long-term; 2) the application of a comprehensive method combining mathematical models, geographic information system, remote sensing and quantified technique (such as the coupled technique of the isotopic tracer and gas exchange measurement); 3) the implementation of studies at large temporal and spatial scales. It is sure that, these efforts can help to optimize the nitrogen removal pathways in the riparian ecosystems and provide scientific basis for ecosystem management.

  7. Improved global simulation of groundwater-ecosystem interactions via tight coupling of a dynamic global ecosystem model and a global hydrological model

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin

    2017-04-01

    In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.

  8. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    USGS Publications Warehouse

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

  9. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning

    PubMed Central

    Escolar, Cristina; Martínez, Isabel; Bowker, Matthew A.; Maestre, Fernando T.

    2012-01-01

    Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics. PMID:23045707

  10. Re-connecting Urban Ecohydrology to Improve Ecosystem Functioning: The Role of Local-scale Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.

    2010-12-01

    As rates of urbanization continue to rise and a greater proportion of the population lives in urban and suburban areas, the provision of ecological services and functions become increasingly important to sustain human and environmental health in urban ecosystems. Soils play a primary role in the healthy functioning of ecosystems that provide supporting, provisioning, regulating, preserving, and cultural ecosystem services, yet developing our understanding of how urban soils function to provide these services within an ecological context is just getting underway. Soils in urban ecosytems are highly heterogeneous, and are affected by both direct and indirect influences and local modifications which alter their functioning relative to non-urbanized local soils. Here I discuss the functioning of rain gardens in and around Tucson, AZ, that have been installed in the urban landscape with the purpose of providing various ecosystem services to local residents and the greater urban ecosystem. This reconnection of ecohydrologic flows in the city has the potential to alter the structure and function of urban ecosystems in positive (through the increase in water availability) and negative (through the import of pollutants to soils) ways. This study compares soil properties, microbial function, and ecosystem functions within the urban ecosystem to determine how urbanization alters soils in semi-arid environments, and to determine if green urban modifications in desert cities can improve soils and ecosystem services. Soils in rain gardens have nearly twice the organic matter contents of native and urban soils, and correspondingly, greater microbial function (as indicated through respiration potential), higher abundance (through substrate induced respiration), and community complexity (indicated by a 3x increase in metabolic diversity) in these green design modifications. Net N-mineralization rates are almost 1.5 times faster in the rain garden basins than urban soils in general. This study also includes the comparison of different approaches to installing rain gardens to illustrate the effects of different management strategies on biogeochemical cycling. The inclusion of mulch in the garden design increases microbial biomass and reduces the rate of N-mineralization. These data indicate that soil quality is improved in arid system rain gardens. Such urban modifications both improve soils and reconnect ecohydrologic flows in Tucson neighborhoods, suggesting that the provision of ecosystem services in cities can be assisted with small scale green infrastructure modifications. In fact, such small scale improvements in ecosystem functioning may contribute to broader scale resilience of the urban ecosystem.

  11. Assessment of soil quality in different ecosystems (with soils of Podolsk and Serpukhov districts of Moscow oblast as examples)

    NASA Astrophysics Data System (ADS)

    Gavrilenko, E. G.; Ananyeva, N. D.; Makarov, O. A.

    2013-12-01

    The values of the soil-ecological index and microbiological parameters (the carbon of microbial biomass Cmic, its ratio to the total organic carbon Cmic/Corg, and basal respiration) were determined for the soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, and gray forest soils under different land uses (forest, fallow, cropland, and urban areas) in the Podolsk and Serpukhov districts of Moscow oblast (237 and 45 sampling points, respectively). The soil sampling from the upper 10 cm (without the litter horizon) was performed in September and October. To calculate the soil-ecological index, both soil (physicochemical and agrochemical) and climatic characteristics were taken into account. Its values for fallow, cropland, and urban ecosystems averaged 70.2, 72.8, and 64.2 points ( n = 90, 17, and 24, respectively). For the soils of forest ecosystems, the average value of the soil-ecological index was lower (54.4; n = 151). At the same time, the micro-biological characteristics of the studied forest soils were generally higher than those in the soils of fallow, cropland, and urban ecosystems. In this context, to estimate the soil quality in different ecosystems on the basis of the soil-ecological index, the use of a correction coefficient for the biological properties of the soils (the Cmic content) was suggested. The ecological substantiation of this approach for assessing the quality of soils in different ecosystems is presented in the paper.

  12. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, Holly; Brooks, Paul

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a naturalmore » experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.« less

  13. Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest

    NASA Astrophysics Data System (ADS)

    Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.

    2017-12-01

    Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that exceeded simultaneous oxidation of atmospheric methane in shallow, aerobic soils.

  14. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Treesearch

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  15. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    PubMed

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Habitat and Biodiversity: One out of five essential soil functions for agricultural soils

    NASA Astrophysics Data System (ADS)

    Trinsoutrot Gattin, Isabelle; Creamer, Rachel; van Leeuwen, Jeroen; Vrebos, Dirk; Gatti, Fabio; Bampa, Francesca; Schulte, Rogier; Rutgers, Michiel

    2017-04-01

    Current agricultural challenges require developing new agricultural systems that can optimize the ecological functioning of soils in order to limit the use of chemical inputs (i.e. disease suppression) and maintain a high organic matter content. This implies our ability to evaluate the effects of management practices on immediate performance objectives (i.e. fertility linked to nutrient cycling) but also in longer-term objective (i.e. C cycling and storage) in a variety of agro-climatic conditions. These issues demand the development of systemic approaches for understanding the determinants of soil functioning. In ecology, it is generally accepted that there are many positive relationships between soil biodiversity indicators and the functioning of ecosystems. Indeed, soil organisms and their interactions are essential drivers of ecosystem processes and impact the response, resilience and adaptability of ecosystems to environmental pressures. Thus, maintaining soil biodiversity is a condition for the sustainability of cropping systems. In this new context, the European project Landmark considers soil functions as a key to the improvement of agricultural land management towards sustainable development goals, amongst the five functions is soil biodiversity and habitat provisioning. We propose to present how we manage within this project to deal with this challenging objective at three spatial scales : field, landscape (regional) and European (policy). We aim to define a link between the physical, chemical and biological soil properties and "habitat & biodiversity" soil function in order to identify key indicators which modulate biodiversity. This will allow us to quantify and assess this soil function, in order to provide insight in win wins and tradeoffs in soil functions to enhance management practices which optimise the biodiversity in European agricultural systems.

  17. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation types. The interaction between these zones is of strong interest to understand the evolution of the landscape and the permafrost distribution. The obtained information is expected to be useful for improving predictions of Arctic ecosystem feedbacks to climate.

  18. The Effects of Harvesting on Long-Term Soil Productivity in Southern Indiana Oak-Hickory Forests

    Treesearch

    Travis W. Idol; Phillip E. Pope; Felix Ponder

    2002-01-01

    Timber harvesting has the potential to alter long-term soil productivity in a variety of forest ecosystems. We monitored the effects of harvesting on N cycling processes in upland oak-hickory forests of southern Indiana, using a chronosequence of stands ranging in age from 1 year to 100 years after harvest. N cycling pools and processes were monitored from 1995-1999....

  19. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    USGS Publications Warehouse

    Bern, Carleton R.; Chadwick, Oliver A.; Kendall, Carol; Pribil, Michael J.

    2015-01-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ34S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ34S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ34S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over ecosystem sulfur biogeochemistry across relatively small spatial scales.

  20. Soil microbial responses to nitrogen addition in arid ecosystems

    DOE PAGES

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; ...

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO 3-NH 4 mix at 0, 7, and 15 kg N ha -1 y -1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies andmore » in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. By most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha -1 y -1 and 159 kg ha -1, respectively, for biomass, and 70 kg ha -1 y -1 and 114 kg ha -1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. As a result, large effect sizes at low N addition rates indicate that arid ecosystems are sensitive to modest increments in anthropogenic N deposition.« less

  1. Simulating ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON in CoupModel (v5)

    NASA Astrophysics Data System (ADS)

    He, Hongxing; Meyer, Astrid; Jansson, Per-Erik; Svensson, Magnus; Rütting, Tobias; Klemedtsson, Leif

    2018-02-01

    The symbiosis between plants and Ectomycorrhizal fungi (ECM) is shown to considerably influence the carbon (C) and nitrogen (N) fluxes between the soil, rhizosphere, and plants in boreal forest ecosystems. However, ECM are either neglected or presented as an implicit, undynamic term in most ecosystem models, which can potentially reduce the predictive power of models.

    In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implement the previously developed MYCOFON model into a detailed process-based, soil-plant-atmosphere model, Coup-MYCOFON, which explicitly describes the C and N fluxes between ECM and roots. This new Coup-MYCOFON model approach (ECM explicit) is compared with two simpler model approaches: one containing ECM implicitly as a dynamic uptake of organic N considering the plant roots to represent the ECM (ECM implicit), and the other a static N approach in which plant growth is limited to a fixed N level (nonlim). Parameter uncertainties are quantified using Bayesian calibration in which the model outputs are constrained to current forest growth and soil C / N ratio for four forest sites along a climate and N deposition gradient in Sweden and simulated over a 100-year period.

    The nonlim approach could not describe the soil C / N ratio due to large overestimation of soil N sequestration but simulate the forest growth reasonably well. The ECM implicit and explicit approaches both describe the soil C / N ratio well but slightly underestimate the forest growth. The implicit approach simulated lower litter production and soil respiration than the explicit approach. The ECM explicit Coup-MYCOFON model provides a more detailed description of internal ecosystem fluxes and feedbacks of C and N between plants, soil, and ECM. Our modeling highlights the need to incorporate ECM and organic N uptake into ecosystem models, and the nonlim approach is not recommended for future long-term soil C and N predictions. We also provide a key set of posterior fungal parameters that can be further investigated and evaluated in future ECM studies.

  2. Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health.

    PubMed

    Chae, Yooeun; Cui, Rongxue; Woong Kim, Shin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-01-01

    It is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods. Our results provided the levels of activity of soil exoenzymes that indicate soil health. Most enzymes showed lower activity levels in remediated soils than in contaminated soils, with the exception of protease and urease, which showed higher activity after remediation in some soils, perhaps due to the limited nutrients available in remediated soils. Soil exoenzymes showed significantly higher activity in soils from one of the sites than from the other, due to improper conditions at the second site, including high pH, poor nutrient levels, and a high proportion of sand in the latter soil. Principal component analysis revealed that ß-glucosidase was the best indicator of soil ecosystem health, among the enzymes evaluated. We recommend using ß-glucosidase enzyme activity as a prior indicator in estimating soil ecosystem health. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Interactions between drought and soil biogeochemistry: scaling from molecules to meters

    NASA Astrophysics Data System (ADS)

    Schimel, J.; Schaeffer, S. M.

    2011-12-01

    Water is the perhaps the single most critical resource for life, yet most terrestrial ecosystems experience regular drought. Reduced water potential causes physiological stress; reduced diffusion limits resource availability when microbes may need resources to acclimate. Most biogeochemical models, however, have assumed that soil processes either slow down or stop during drought. But organisms survive and enzymes remain viable. In California, as soils stay dry through the long summer drought, microbial biomass actually increases and pools of extractable organic C increase, probably because extracellular enzymes continue to break down plant detritus (notably roots). Yet 14C suggests that in deeper soils, the pulse of C released on rewetting comes from pools with turnover times of as long as 800 years. What are the mechanisms that regulate these complex dynamics? They appear to involve differential moisture sensitivity for the activity of extracellular enzymes, substrate diffusion, and microbial metabolism. Rewetting not only redistributes materials made available during the drought, but it also disrupts aggregates and may make previously-protected substrates available as well. We have used several methods to simply capture these linkages between water and carbon in models that are applicable at the ecosystem scale and that could improve our ability to model biogeochemical cycles in arid and semi-arid ecosystems. One is a simple empirical modification to the DAYCENT model while the other is a mechanistic model that incorporates microbial dry-season processes.

  4. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A. D.

    2013-07-01

    surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

  5. Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.

    2015-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.

  6. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  7. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    PubMed Central

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-01-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (<23.7 m), medium (25.4–26.0 m), and high-elevation groups (>28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes. PMID:27808154

  8. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone.

    PubMed

    Sjögersten, Sofie; Wookey, Philip A

    2009-02-01

    Changes in temperature and moisture resulting from climate change are likely to strongly modify the ecosystem carbon sequestration capacity in high-latitude areas, both through vegetation shifts and via direct warming effects on photosynthesis and decomposition. This paper offers a synthesis of research addressing the potential impacts of climate warming on soil processes and carbon fluxes at the forest-tundra ecotone in Scandinavia. Our results demonstrated higher rates of organic matter decomposition in mountain birch forest than in tundra heath soils, with markedly shallower organic matter horizons in the forest. Field and laboratory experiments suggest that increased temperatures are likely to increase CO2 efflux from both tundra and forest soil providing moisture availability does not become limiting for the decomposition process. Furthermore, colonization of tundra heath by mountain birch forest would increase rates of decomposition, and thus CO2 emissions, from the tundra heath soils, which currently store substantial amounts of potentially labile carbon. Mesic soils underlying both forest and tundra heath are currently weak sinks of atmospheric methane, but the strength of this sink could be increased with climate warming and/or drying.

  9. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-11-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (<23.7 m), medium (25.4-26.0 m), and high-elevation groups (>28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes.

  10. Convergence of soil nitrogen isotopes across global climate gradients

    USGS Publications Warehouse

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  11. Convergence of soil nitrogen isotopes across global climate gradients.

    PubMed

    Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd

    2015-02-06

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  12. Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands

    USGS Publications Warehouse

    Ricca, Mark; Miles, A. Keith; Van Vuren, Dirk H.; Eviner, Valerie T.

    2016-01-01

    Introductions of mammalian herbivores to remote islands without predators provide a natural experiment to ask how temporal and spatial variation in herbivory intensity alter feedbacks between plant and soil processes. We investigated ecosystem effects resulting from introductions of Rangifer tarandus (hereafter “Rangifer”) to native mammalian predator- and herbivore-free islands in the Aleutian archipelago of Alaska. We hypothesized that the maritime tundra of these islands would experience either: (1) accelerated ecosystem processes mediated by positive feedbacks between increased graminoid production and rapid nitrogen cycling; or (2) decelerated processes mediated by herbivory that stimulated shrub domination and lowered soil fertility. We measured summer plant and soil properties across three islands representing a chronosequence of elapsed time post-Rangifer introduction (Atka: ~100 yr; Adak: ~50; Kagalaska: ~0), with distinct stages of irruptive population dynamics of Rangifer nested within each island (Atka: irruption, K-overshoot, decline, K-re-equilibration; Adak: irruption, K-overshoot; Kagalaska: initial introduction). We also measured Rangifer spatial use within islands (indexed by pellet group counts) to determine how ecosystem processes responded to spatial variation in herbivory. Vegetation community response to herbivory varied with temporal and spatial scale. When comparing temporal effects using the island chronosequence, increased time since herbivore introduction led to more graminoids and fewer dwarf-shrubs, lichens, and mosses. Slow-growingCladonia lichens that are highly preferred winter forage were decimated on both long-termRangifer-occupied islands. In addition, linear relations between more concentrated Rangifer spatial use and reductions in graminoid and forb biomass within islands added spatial heterogeneity to long-term patterns identified by the chronosequence. These results support, in part, the hypothesis that Rangifer population persistence on islands is facilitated by successful exploitation of graminoid biomass as winter forage after palatable lichens are decimated. However, the shift from shrubs to graminoids was expected to enhance rates of nitrogen cycling, yet rates of net N-mineralization, NH4+ pools, and soil δ15N declined markedly along the chronosequence and were weakly associated with spatial use within islands. Overall plant and soil patterns were disrupted but responded differently to intermediate (50 yr) and long-term (100 yr) herbivory, and were correlated with distinct stages of irruptive population dynamics.

  13. Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland

    PubMed Central

    Eldridge, David J; Woodhouse, Jason N; Curlevski, Nathalie J A; Hayward, Matthew; Brown, Mark V; Neilan, Brett A

    2015-01-01

    Animals that modify their physical environment by foraging in the soil can have dramatic effects on ecosystem functions and processes. We compared bacterial and fungal communities in the foraging pits created by bilbies and burrowing bettongs with undisturbed surface soils dominated by biocrusts. Bacterial communities were characterized by Actinobacteria and Alphaproteobacteria, and fungal communities by Lecanoromycetes and Archaeosporomycetes. The composition of bacterial or fungal communities was not observed to vary between loamy or sandy soils. There were no differences in richness of either bacterial or fungal operational taxonomic units (OTUs) in the soil of young or old foraging pits, or undisturbed soils. Although the bacterial assemblage did not vary among the three microsites, the composition of fungi in undisturbed soils was significantly different from that in old or young foraging pits. Network analysis indicated that a greater number of correlations between bacterial OTUs occurred in undisturbed soils and old pits, whereas a greater number of correlations between fungal OTUs occurred in undisturbed soils. Our study suggests that digging by soil-disturbing animals is likely to create successional shifts in soil microbial and fungal communities, leading to functional shifts associated with the decomposition of organic matter and the fixation of nitrogen. Given the primacy of organic matter decomposition in arid and semi-arid environments, the loss of native soil-foraging animals is likely to impair the ability of these systems to maintain key ecosystem processes such as the mineralization of nitrogen and the breakdown of organic matter, and to recover from disturbance. PMID:25932616

  14. Plant-soil-microbe interactions regulating soil C storage

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Bach, E.; Williams, R.

    2016-12-01

    Integration across disciplines is required to identify the emergent microbial scale properties that regulate the release or occlusion of plant inputs in soil organic matter. To investigate how micro-scale processes influence soil carbon cycling, we measured microbial community composition and activity within soil aggregates monthly over two growing seasons of a long-term bioenergy field experiment. Using a biologically sensitive sieving technique, soil aggregates were isolated and microbial community activity and composition were measured. This aggregate approach revealed biogeochemical processes regulating C cycling that are not detected using whole soil approaches. Soil aggregation influenced microbe-substrate interactions, where diversified perennial grassland systems supported greater aggregation and reduced severity of aggregate turnover compared to corn systems. Aggregate turnover and concurrent increases in activity resulted in greater microbial biomass and physical protection of soil organic matter in prairie systems, especially fertilized prairies. Fertilized prairie enhanced microbial biomass, enzyme activity, and soil aggregation despite greater root biomass in unfertilized prairie. Independent of ecosystem or sampling date, N-acetyl-glucosaminidase activity and Nitrospirae abundance was greatest in large macroaggregates (>2000 µm), which harbored the highest C:N; cellobiohydrolase activity and Acidobacteria abundance was greatest in microaggregates (<250 µm) which had the lowest C:N. Aggregate fractions differed in microbial community composition (bacteria, archaea, and fungi) and potential enzyme activity, independent of cropping system. Microaggregates harbored significantly greater microbial diversity and richness across all bioenergy cropping systems. Together these results suggest that by mediating access to substrates, soil structure (aggregates) can influence the microbial community composition and extracellular enzyme activity to regulate ecosystem scale decomposition of soil organic matter.

  15. Toxic effects of acid rain on aquatic and terrestrial ecosystems.

    PubMed

    Rutherford, G K

    1984-08-01

    The historical perspective as well as the nature and causes of acid precipitation are presented. The toxicological effects of acid precipitation on lakes, other water bodies, fish, and invertebrate fauna are reviewed. In addition, the effects of this phenomenon on soil productivity and forest growth are examined. It appears that grave toxic effects have been and are being experienced by aquatic systems, but there is little reliable evidence of economic damage to crops, natural vegetation, and soil and biological processes. There may be insidious long-term effects on terrestrial ecosystems, particularly in the more susceptible areas.

  16. Microbial processes dominate P fluxes in a low-phosphorus temperate forest soil: insights provided by 33P and 18O in phosphate

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Mészáros, Éva; Frossard, Emmanuel

    2016-04-01

    The classical view of the P cycle in forests is that trees and mycorrhizal fungi associated with them take up most of their phosphorus as phosphate (P) from the soil solution. The soil solution is then replenished by the release of P from sorbed phases, by the dissolution of P containing minerals or by biological mineralization and/or enzymatic hydrolysis of organic P compounds. Direct insight into the processes phosphate goes through at the ecosystem level is, however, missing. Assessing the relevance of inorganic and biological processes controlling P cycling requires the use of appropriate approaches and tracers. Within the German Priority Program "Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources" we studied P forms and dynamics in organic horizons (Of/Oh) of temperate beech forest soils in Germany with contrasting soil P availability (P-poor and P-rich). We followed the fate of P from the litter into the soil pools, using isotopes as tracers (stable oxygen isotopes in water and phosphate and 33P) and relied on measurements in experimental forest sites and a three-months incubation experiment with litter addition. Using an isotopic dilution approach we were able to estimate gross (7 mg P kg-1 d-1 over the first month) and net mineralization rates (about 5 mg P kg-1 d-1 over the first 10 days) in the P-poor soil. In this soil the immobilization of P in the microbial biomass ranged from 20 to 40% of gross mineralization during the incubation, meaning that a considerable part of mineralized P contributed to replenish the available P pool. In the P-rich soil, physicochemical processes dominated exchangeable P to the point that the contribution of biological/biochemical processes was non-detectable. Oxygen isotopes in phosphate elucidated that organic P mineralization by enzymatic hydrolysis gains more importance with decreasing P availability, both under controlled and under field conditions. In summary, microbial processes dominated P fluxes (70 to 80%) in the P-poor soil, while in the P-rich soil microbial processes could not be detected because of the higher baseline of physicochemical processes. Our results support the hypothesis that organic P has a faster turnover under conditions of low P availability and that net mineralization is the most relevant process providing available P for plants under these conditions.

  17. Soil N transformations and its controlling factors in temperate grasslands in China: A study from 15N tracing experiment to literature synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Liang; Feng, Xiaojuan; Hu, Huifeng; Cai, Zucong; Müller, Christoph; Zhang, Jinbo

    2016-12-01

    Temperate grasslands in arid and semiarid regions cover about 40% of the total land area in China. So far, only a few studies have studied the N transformations in these important ecosystems. In the present study, soil gross N transformation rates in Inner Mongolia temperate grasslands in China were determined using a 15N tracing experiment and combined with a literature synthesis to identify the soil N transformation characteristics and their controlling factors in a global perspective. Our results showed that the rates of gross N mineralization and immobilization NH4+ were significantly lower, while autotrophic nitrification rates were significantly higher in Chinese temperate grassland soils compared to other regions in the world. In particular, the primary mineral N consumption processes, i.e., immobilization of NO3- and NH4+, and dissimilatory nitrate reduction to ammonium, were on average much lower in temperate grassland soils in China, compared to other temperate grassland regions. The reduced heterotrophic activity and microbial growth associated with lower soil organic carbon and arid climate (e.g., mean annual precipitation) were identified as the main factors regulating soil N cycling in the studied regions in China. To restrict NO3- accumulation and associated high risks of N losses in these arid and semiarid ecosystems in China, it is important to develop the regimes of soil organic C and water management that promote the retention of N in these grassland ecosystems.

  18. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Treesearch

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  19. Tree harvest in an experimental sand ecosystem: plant effects on nutrient dynamics and solute generation.

    Treesearch

    C. K. Keller; R. O' Brien; J. R. Havig; J. L. Smith; B. T. Bormann; D. Wang

    2006-01-01

    The hydrochemical signatures of forested ecosystems are known to be determined by a time-variant combination of physical-hydrologic, geochemical, and biologic processes. We studied subsurface potassium (K), calcium (Ca), and nitrate (NO3) in an experimental red-pine mesocosm to determine how trees affect the behavior of these nutrients in soil...

  20. Topsoil structure stability in a restored floodplain: Impacts of fluctuating water levels, soil parameters and ecosystem engineers.

    PubMed

    Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P

    2018-10-15

    Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    USDA-ARS?s Scientific Manuscript database

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  2. Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.

    Treesearch

    S.M. Nay; B.T. Bormann

    2000-01-01

    Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...

  3. Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems

    Treesearch

    F. Kizito; M.I. Dragila; M. Sene; J.R. Brooks; F.C. Meinzer; I. Diedhiou; M. Diouf; A. Lufafa; R.P. Dick; J. Selker; R. Cuenca

    2012-01-01

    Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulatum) that co-exist with annual food crops in...

  4. Land Cover Land Use Change and Soil Organic Carbon under Climate Variability in the Semi-Arid West African Sahel (1960-2050)

    ERIC Educational Resources Information Center

    Dieye, Amadou M.

    2016-01-01

    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project…

  5. Influences of thinning, prescribed burning, and wildfire on soil processes and properties in southwestern ponderosa pine forests: A retrospective study

    Treesearch

    Kevin C. Grady; Stephen C. Hart

    2006-01-01

    Following Euro-American settlement in the late 1800s, fire suppression and livestock grazing in ponderosa pine-bunchgrass ecosystems of the southwestern US resulted in the replacement of grass openings with dense stands of ponderosa pine. This, in turn, has led to apparent decreases in decomposition, net N mineralization, and soil respiration (i.e., net soil CO2 efflux...

  6. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    USGS Publications Warehouse

    Templer, P.H.; Mack, M.C.; Chapin, F. S.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  7. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.

    PubMed

    Templer, P H; Mack, M C; Chapin, F S; Christenson, L M; Compton, J E; Crook, H D; Currie, W S; Curtis, C J; Dail, D B; D'Antonio, C M; Emmett, B A; Epstein, H E; Goodale, C L; Gundersen, P; Hobbie, S E; Holland, K; Hooper, D U; Hungate, B A; Lamontagne, S; Nadelhoffer, K J; Osenberg, C W; Perakis, S S; Schleppi, P; Schimel, J; Schmidt, I K; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W W; Zak, D R

    2012-08-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  8. Complex terrain in the Critical Zone: How topography drives ecohydrological patterns of soil and plant carbon exchange in a semiarid mountainous system

    NASA Astrophysics Data System (ADS)

    Barron-Gafford, G.; Minor, R. L.; Heard, M. M.; Sutter, L. F.; Yang, J.; Potts, D. L.

    2015-12-01

    The southwestern U.S. is predicted to experience increasing temperatures and longer periods of inter-storm drought. High temperature and water deficit restrict plant productivity and ecosystem functioning, but the influence of future climate is predicted to be highly heterogeneous because of the complex terrain characteristic of much of the Critical Zone (CZ). Within our Critical Zone Observatory (CZO) in the Southwestern US, we monitor ecosystem-scale carbon and water fluxes using eddy covariance. This whole-ecosystem metric is a powerful integrating measure of ecosystem function over time, but details on spatial heterogeneity resulting from topographic features of the landscape are not captured, nor are interactions among below- and aboveground processes. We supplement eddy covariance monitoring with distributed measures of carbon flux from soil and vegetation across different aspects to quantify the causes and consequences of spatial heterogeneity through time. Given that (i) aspect influences how incoming energy drives evaporative water loss and (ii) seasonality drives temporal patterns of soil moisture recharge, we were able to examine the influence of these processes on CO2 efflux by investigating variation across aspect. We found that aspect was a significant source of spatial heterogeneity in soil CO2 efflux, but the influence varied across seasonal periods. Snow on South-facing aspects melted earlier and yielded higher efflux rates in the spring. However, during summer, North- and South-facing aspects had similar amounts of soil moisture, but soil temperatures were warmer on the North-facing aspect, yielding greater rates of CO2 efflux. Interestingly, aspect did not influence photosynthetic rates. Taken together, we found that physical features of the landscape yielded predictable patterns of levels and phenologies of soil moisture and temperature, but these drivers differentially influenced below- and aboveground sources of carbon exchange. Conducting these spatially distributed measurements are time consuming. Looking forward, we have begun using unmanned aerial vehicles outfitted with thermal and multi-spectral cameras to quantify patterns of water flux, NDVI, needle browning due to moisture stress, and overall phenology in the CZ.

  9. Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.; Good, S. P.; Higgins, C. W.

    2017-12-01

    Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.

  10. Use of morphometric soil aggregates parameters to evaluate the reclamation process in mined areas located at amazon forest - Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. I.; Fengler, F. H.; Longo, R. M.; Mello, G. F.; Damame, D. B.; Crowley, D. E.

    2015-12-01

    Brazil has a high mineral potential that have been explored over the years. A large fraction of these mineral resources are located in Amazon region, which is known for its large biodiversity and world climate importance. As the policies that control the Amazon preservation are relatively new, several mining activities have been exploring the Amazon territory, promoting a large process of degradation. Once the mining activities have a high potential of environmental changes the government created polices to restrain the mining in Amazon forests and obligate mining companies to reclaim theirs minded areas. However, the measurement of reclamation development still is a challenging task for the Professionals involved. The volume and complexity of the variables, allied to the difficulty in identifying the reclamation of ecosystem functionalities are still lack to ensure the reclamation success. In this sense this work aims to investigate the representativeness of morphometric soil aggregates parameters in the understanding of reclamation development. The study area is located in the National Forest of Jamari, State of Rondônia. In the past mining companies explored the region producing eight closed mines that are now in reclamation process. The soil aggregates morphometric measurements: geometric mean diameter (GMD), aggregate circularity index, and aggregate roundness, were choose based in its obtaining facility, and their association to biological activity. To achieve the proposed objective the aggregates of eight sites in reclamation, from different closed mines, where chosen and compared to Amazon forest and open mine soil aggregates. The results were analyzed to one way ANOVA to identifying differences between areas in reclamation, natural ecosystem, and open mine. It was obtained differences for GMD and circularity index. However, only the circularity index allowed to identifying differences between the reclamation sites. The results allowed concluding: (1) Morphometric aggregates measurements can represent the reclamation process in Amazon territory; (2) To validate the results more areas in reclamation process in different ecosystems must be investigated; (3) Roundness didn't represented any differences.Key words: circularity index, ecosystem, geometric mean diameter.

  11. Impacts of prescribed fire on ecosystem C and N cycles at Fort Benning Installation, Georgia

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Liu, S.; Tieszen, L.

    2007-12-01

    A critical challenge for the land managers at military installation is to maintain the ecological sustainability of natural resources while meeting the needs of military training. Prescribed ground fire as a land management practice has been used to remove the ground layer plants at Fort Benning for two purposes: to facilitate access for military training, and to maintain and restore fire-adapted longleaf pine communities that are critical habitat for the federally endangered red-cockaded woodpecker (Picoides borealis). Nevertheless, the impacts of prescribed fire on ecosystem processes and health are not well-understood and quantified at the plot to regional scales. Frequent fire may result in ecosystem nitrogen (N) deficiency due to repeated N loss through combustion, volatilization, and leaching, threatening ecosystem sustainability at Fort Benning. On the other hand, N loss may be offset by enhanced symbiotic N2 fixation since fire favors herbaceous legumes by scarifying legume seeds and stimulating germination. Quantifying the impacts of prescribed fire on ecosystem carbon (C) and N cycles is further complicated by interactions and feedbacks among burning, nitrogen inputs, other land use practices (e.g. tree thinning or clear-cutting), and soil properties. In this study, we used the Erosion-Deposition-Carbon Model (EDCM), a process-based biogeochemical model, to simulate C and N dynamic at Fort Benning under different combinations of fire frequency, fire intensity, nitrogen deposition, legume nitrogen input, forest harvesting, and soil sand content. Model simulations indicated that prescribed fire led to nitrogen losses from ecosystems at Fort Benning, especially with high intensity and high frequency fires. Forest harvesting further intensified ecosystem nitrogen limitation, leading to reduced biophysical potential of C sequestration. The adverse impacts of prescribed fire and forest harvesting on C and N cycles were much higher in more sandy soil than in less sandy soil. N inputs from nitrogen deposition and legume N fixation helped replenish N losses to some extent. However, N losses due to fire and harvesting were not balanced or exceeded under current atmospheric N deposition and legume N input rates, suggesting additional N input (e.g., fertilization) may be needed to maintain the sustainability of current ecosystem states and management practices at Fort Benning.

  12. The resilience and functional role of moss in boreal and arctic ecosystems.

    PubMed

    Turetsky, M R; Bond-Lamberty, B; Euskirchen, E; Talbot, J; Frolking, S; McGuire, A D; Tuittila, E-S

    2012-10-01

    Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries - permafrost formation and thaw, peat accumulation, development of microtopography - and there is a need for studies that increase our understanding of slow, long-term dynamical processes. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  13. The resilience and functional role of moss in boreal and arctic ecosystems

    USGS Publications Warehouse

    Turetsky, M.; Bond-Lamberty, B.; Euskirchen, E.S.; Talbot, J. J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S.

    2012-01-01

    Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries – permafrost formation and thaw, peat accumulation, development of microtopography – and there is a need for studies that increase our understanding of slow, long-term dynamical processes.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.

    Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less

  15. Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe.

    PubMed

    Peng, Yunfeng; Li, Fei; Zhou, Guoying; Fang, Kai; Zhang, Dianye; Li, Changbin; Yang, Guibiao; Wang, Guanqin; Wang, Jun; Yang, Yuanhe

    2017-12-01

    Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N-phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N-induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed-effects models to further determine the relative contributions of various factors to the N-induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N-induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment. © 2017 John Wiley & Sons Ltd.

  16. Pedotransfer Functions in Earth System Science: Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Van Looy, Kris; Bouma, Johan; Herbst, Michael; Koestel, John; Minasny, Budiman; Mishra, Umakant; Montzka, Carsten; Nemes, Attila; Pachepsky, Yakov A.; Padarian, José; Schaap, Marcel G.; Tóth, Brigitta; Verhoef, Anne; Vanderborght, Jan; van der Ploeg, Martine J.; Weihermüller, Lutz; Zacharias, Steffen; Zhang, Yonggen; Vereecken, Harry

    2017-12-01

    Soil, through its various functions, plays a vital role in the Earth's ecosystems and provides multiple ecosystem services to humanity. Pedotransfer functions (PTFs) are simple to complex knowledge rules that relate available soil information to soil properties and variables that are needed to parameterize soil processes. In this paper, we review the existing PTFs and document the new generation of PTFs developed in the different disciplines of Earth system science. To meet the methodological challenges for a successful application in Earth system modeling, we emphasize that PTF development has to go hand in hand with suitable extrapolation and upscaling techniques such that the PTFs correctly represent the spatial heterogeneity of soils. PTFs should encompass the variability of the estimated soil property or process, in such a way that the estimation of parameters allows for validation and can also confidently provide for extrapolation and upscaling purposes capturing the spatial variation in soils. Most actively pursued recent developments are related to parameterizations of solute transport, heat exchange, soil respiration, and organic carbon content, root density, and vegetation water uptake. Further challenges are to be addressed in parameterization of soil erosivity and land use change impacts at multiple scales. We argue that a comprehensive set of PTFs can be applied throughout a wide range of disciplines of Earth system science, with emphasis on land surface models. Novel sensing techniques provide a true breakthrough for this, yet further improvements are necessary for methods to deal with uncertainty and to validate applications at global scale.

  17. Effect of antecedent terrestrial land-use on C and N cycling in created wetlands

    NASA Astrophysics Data System (ADS)

    McCalley, C. K.; Al Graiti, T.; Williams, T.; Huang, S.; McGowan, M. B.; Eddingsaas, N. C.; Tyler, A. C.

    2017-12-01

    Land-use legacies and their interaction with both management actions and climate variability has a poorly characterized impact on the development of ecosystem functions and the trajectory of climate-carbon feedbacks. The complex structure-function relationships in wetlands foster delivery of valuable, climate sensitive, ecosystem services (carbon sequestration, nutrient removal, flood control, etc.) but also make them susceptible to colonization by invasive plants and lead to emission of key greenhouse gases. This project uses created wetland ecosystems as a model to understand how heterogeneity in antecedent conditions interacts with management options to create unique structure-function scenarios and a range of climate feedback outcomes. We utilized ongoing experiments in created wetlands that differ in antecedent conditions (crop agriculture, livestock grazing) and investigated how management options (invasive species removal, organic matter addition) interact with legacy impacts to promote key ecosystem functions, including greenhouse gas emissions, carbon sequestration, denitrification and plant biodiversity. The effects of antecedent land-use on soil chemistry, coupled with hydrologic patterns resulted in wetlands with divergent C and N dynamics despite their similar creation history. Additionally, the occurrence of extreme weather events (drought and excessive flooding) during the study period highlighted the overarching role that increased climate variability will play in determining key ecosystem processes in wetlands. Responses to management were linked to hydro-period: while organic matter addition successfully increased soil organic matter to more closely replicate natural systems at all sites, it had the largest impact on C and N cycling when soils were saturated. Overall, environmental conditions that promoted saturated soils, both those shaped by human activities or climate extremes, enhanced primary productivity, nutrient removal and greenhouse gas production as well as decreased soil respiration.

  18. Are patterns in nutrient limitation belowground consistent with those aboveground: Results from a 4 million year chronosequence

    USGS Publications Warehouse

    Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.

    2011-01-01

    Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.

  19. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem

    DOE PAGES

    Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; ...

    2016-04-25

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA genemore » amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete ( > 80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.« less

  20. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    USGS Publications Warehouse

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by naturally occurring radioactive materials (NORM)at oilfield sites.

  1. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem.

    PubMed

    Johnston, Eric R; Rodriguez-R, Luis M; Luo, Chengwei; Yuan, Mengting M; Wu, Liyou; He, Zhili; Schuur, Edward A G; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong; Konstantinidis, Konstantinos T

    2016-01-01

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.

  2. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem

    PubMed Central

    Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; Yuan, Mengting M.; Wu, Liyou; He, Zhili; Schuur, Edward A. G.; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong; Konstantinidis, Konstantinos T.

    2016-01-01

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1–2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100–530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems. PMID:27199914

  3. Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes

    NASA Astrophysics Data System (ADS)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert

    2018-01-01

    Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater confidence in measurements for all dynamic disturbances.

  4. The unseen iceberg: Plant roots in arctic tundra

    USGS Publications Warehouse

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  5. Historical climate controls soil respiration responses to current soil moisture.

    PubMed

    Hawkes, Christine V; Waring, Bonnie G; Rocca, Jennifer D; Kivlin, Stephanie N

    2017-06-13

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration-moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.

  6. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, E.A.; Huso, M.; Pyke, D.A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.

  7. Multi-scale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.

  8. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function.

    PubMed

    Grandy, A Stuart; Neff, Jason C

    2008-10-15

    Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions <53 microm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions.

  9. Trade-offs among ecosystem services in a typical Karst watershed, SW China.

    PubMed

    Tian, Yichao; Wang, Shijie; Bai, Xiaoyong; Luo, Guangjie; Xu, Yan

    2016-10-01

    Nowadays, most research results on ecosystem services in Karst areas are limited to a single function of an ecosystem service. Few scholars conduct a comparative study on the mutual relationships among ecosystem services, let alone reveal the trade-off and synergic relationships in typical Karst watershed. This research aims to understand and quantitatively evaluate the relationships among ecosystem services in a typical Karst watershed, broaden the depth and width of trade-off and synergic relationships in ecosystem services and explore a set of technical processes involved in these relationships. With the Shibantang Karst watershed in China as the research site, we explore the trade-off and synergic relationships of net primary productivity (NPP), water yield, and sediment yield by coupling Soil and Water Assessment Tool (SWAT) and Carnegie-Ames-Stanford Approach (CASA), and simulating and evaluating these three ecosystem services between 2000 and 2010. Results of this study are as follows. (1) The annual average water yield decreased from 528mm in 2000 to 513mm in 2010, decreasing by 2.84%. (2) The annual average sediment yield decreased from 26.15t/ha in 2000 to 23.81t/ha in 2010, with an average annual reduction of 0.23t/ha. (3) The annual average NPP increased from 739.38gCm(-2)a(-1) in 2000 to 746.25gCm(-2)a(-1) in 2010, increasing by 6.87gCm(-2)a(-1) . (4) Water yield and sediment yield are in a synergic relationship. The increase of water yield can accumulate the soil erosion amount. NPP is in a trade-off relationship with water yield and sediment yield. The improvement of NPP is good for decreasing water yield and soil erosion amount and increasing soil conservation amount. This study provides policy makers and planners an approach to develop an integrated model, as well as design mapping and monitoring protocols for land use change and ecosystem service assessments. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau.

    PubMed

    Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng

    2016-08-16

    Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland.

  11. [Characteristics of soil nematode community along an age sequence of sandy desert soil cultivation in a marginal oasis of middle reaches of Heihe River].

    PubMed

    Wang, Xue-Feng; Su, Yong-Zhong; Yang, Rong

    2010-08-01

    This paper studied the characteristics of soil nematode community following the conversion of native sandy desert soil to irrigated farmland in a marginal oasis of the middle reaches of Heihe River basin, aimed to approach the bioindicating function of soil nematodes in soil evolution process. A total of 27921 soil nematode individuals were captured, belonging to 25 families and 34 genera. The total number of nematodes increased gradually with increasing age of cultivation. At all sampling sites, bacterivores and plant parasites were the dominant trophic groups, and made up the main parts of nematode community in oasis farmland. Through the analysis of the evenness index (J) and dominance index (lambda) of nematode community, the ecosystems were found to be fragile for the farmlands having cultivated for 0, 10, and > 50 years. The maturity index MI2-5 and MMI decreased with increasing cultivation age, suggesting that the practice of agricultural use enhanced the disturbance on farmland. The soil properties changed significantly after 10 years of cultivation, which was at a significant change stage for the structure stability of soil ecosystems. The characteristics of soil nematode community could be used as the bioindicator of soil evolution following the conversion of native desert soil to irrigated farmland.

  12. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau

    PubMed Central

    Lin, Li; Zhu, Biao; Chen, Chengrong; Zhang, Zhenhua; Wang, Qi-Bing; He, Jin-Sheng

    2016-01-01

    Soils in the alpine grassland store a large amount of nitrogen (N) due to slow decomposition. However, the decomposition could be affected by climate change, which has profound impacts on soil N cycling. We investigated the changes of soil total N and five labile N stocks in the topsoil, the subsoil and the entire soil profile in response to three years of experimental warming and altered precipitation in a Tibetan alpine grassland. We found that warming significantly increased soil nitrate N stock and decreased microbial biomass N (MBN) stock. Increased precipitation reduced nitrate N, dissolved organic N and amino acid N stocks, but increased MBN stock in the topsoil. No change in soil total N was detected under warming and altered precipitation regimes. Redundancy analysis further revealed that soil moisture (26.3%) overrode soil temperature (10.4%) in explaining the variations of soil N stocks across the treatments. Our results suggest that precipitation exerted stronger influence than warming on soil N pools in this mesic and high-elevation grassland ecosystem. This indicates that the projected rise in future precipitation may lead to a significant loss of dissolved soil N pools by stimulating the biogeochemical processes in this alpine grassland. PMID:27527683

  13. A meta-analysis of soil biodiversity impacts on the carbon cycle

    NASA Astrophysics Data System (ADS)

    de Graaff, M.-A.; Adkins, J.; Kardol, P.; Throop, H. L.

    2015-03-01

    Loss of biodiversity impacts ecosystem functions, such as carbon (C) cycling. Soils are the largest terrestrial C reservoir, containing more C globally than the biotic and atmospheric pools together. As such, soil C cycling, and the processes controlling it, has the potential to affect atmospheric CO2 concentrations and subsequent climate change. Despite the growing evidence of links between plant diversity and soil C cycling, there is a dearth of information on whether similar relationships exist between soil biodiversity and C cycling. This knowledge gap occurs even though there has been increased recognition that soil communities display high levels of both taxonomic and functional diversity and are key drivers of fluxes of C between the atmosphere and terrestrial ecosystems. Here, we used meta-analysis and regression analysis to quantitatively assess how soil biodiversity affects soil C cycling pools and processes (i.e., soil C respiration, litter decomposition, and plant biomass). We compared the response of process variables to changes in diversity both within and across groups of soil organisms that differed in body size, a grouping that typically correlates with ecological function. When studies that manipulated both within- and across-body size group diversity were included in the meta-analysis, loss of diversity significantly reduced soil C respiration (-27.5%) and plant tissue decomposition (-18%) but did not affect above- or belowground plant biomass. The loss of within-group diversity significantly reduced soil C respiration, while loss of across-group diversity did not. Decomposition was negatively affected both by loss of within-group and across-group diversity. Furthermore, loss of microbial diversity strongly reduced soil C respiration (-41%). In contrast, plant tissue decomposition was negatively affected by loss of soil faunal diversity but was unaffected by loss of microbial diversity. Taken together, our findings show that loss of soil biodiversity strongly impacts on soil C cycling processes, and highlight the importance of diversity across groups of organisms (e.g., primary consumers and secondary decomposers) for maintaining full functionality of C cycle processes. However, our understanding of the complex relationships between soil biodiversity and C cycling processes is currently limited by the sheer number of methodological concerns associated with these studies, which can greatly overestimate or underestimate the impact of soil biodiversity on soil C cycling, challenging extrapolation to natural field settings. Future studies should attempt to further elucidate the relative importance of taxonomic diversity (species numbers) versus functional diversity.

  14. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.

    PubMed

    Goodale, Christine L; Fredriksen, Guinevere; Weiss, Marissa S; McCalley, K; Sparks, Jed P; Thomas, Steven A

    2015-10-01

    Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils.

  15. Alder (Alnus crispa) effects on soils in ecosystems of the Agashashok River valley, northwest Alaska

    USGS Publications Warehouse

    Rhoades, Charles; Oskarsson, Hlynur; Binkley, Dan; Stottlemeyer, Robert

    2001-01-01

    At the northern limit of the boreal forest biome, alder (Alnus crispa [Ait.] Pursh) shrubs occur in a variety of ecosystems. We assessed the effects of individual alder shrubs on soil properties and understory plant tissue nitrogen in floodplain terraces, valley slopes and tussock tundra ridges. The three ecosystems differed with respect to soil properties and abiotic conditions and supported distinct plant communities. Alder increased resin-exchangeable soil N and NO3 production significantly in each ecosystem. The greatest difference between alder canopy and surrounding soil NO3 measured both under field and laboratory conditions occurred in floodplain sites. The shrub effect on soil pH and soil organic matter was greatest on tundra ridges. Alder shrubs also influenced the nitrogen nutrition of plants growing beneath their canopies. Plants growing below alder canopies had higher foliar nitrogen concentration and natural abundance 15N composition and lower carbon to nitrogen ratio than open-grown plants. Similar to soil N availability, understory plant leaf chemistry responded more to alder on floodplains than on slope or tundra ecosystems. This pattern suggests that understory plants rely more heavily on alder-fixed-N in this resource-poor ecosystem.

  16. The effect of compost on carbon cycling in soil

    NASA Astrophysics Data System (ADS)

    Singer, E.; Woyke, T.

    2013-12-01

    Rangelands cover an estimated 40-70% of global landmass, approximately one-third of the landmass of the United States and half of California. The soils of this vast land area has high carbon (C) storage capacity, which makes it an important target ecosystem for the mitigation of greenhouse gas emission and effects on climate change, in particular under land management techniques that favor increased C sequestration rates. While microbial communities are key players in the processes responsible for C storage and loss in soils, we have barely shed light on these highly complex processes in part due to the tremendous and seemingly intractable diversity of microbes, largely uncultured, that inhabit soil ecosystems. In our study, we compare Mediterranean grassland soil plots that were amended with greenwaste of various C:N ratios and biochar in a single event. Monthly subsampling of control and amended plots over the course of three months was performed in depth increments of 0-12 cm and 12-24 cm. We present data on greenhouse gas emissions and budgets of carbon, nitrogen, phosphorus, and micronutrients in dependence of amendment types and seasonality. Changes in the active members of the soil microbial community were assessed using a novel approach combining flow cytometry and metagenomic sequencing disclosing 'who does what'. This is the first study revealing the nature of actively metabolizing microbial community members linked to the geochemical characteristics of compost-amended soil.

  17. The effect of compost on carbon cycling and the active soil microbiota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Woyke, Tanja; Ryals, Rebecca

    2014-09-02

    Rangelands cover an estimated 40-70percent of global landmass, approximately one-third of the landmass of the United States and half of California. The soils of this vast land area has high carbon (C) storage capacity, which makes it an important target ecosystem for the mitigation of greenhouse gas emission and effects on climate change, in particular under land management techniques that favor increased C sequestration rates. While microbial communities are key players in the processes responsible for C storage and loss in soils, we have barely shed light on these highly complex processes in part due to the tremendous and seeminglymore » intractable diversity of microbes, largely uncultured, that inhabit soil ecosystems. In our study, we compare Mediterranean grassland soil plots that were amended with greenwaste compost in a single event 6 years ago. Subsampling of control and amended plots was performed in depth increments of 0-10 cm. We present data on greenhouse gas emissions and budgets of carbon, nitrogen, phosphorus, and micronutrients in dependence of compost amendment. Changes in the active members of the soil microbial community were assessed using a novel approach combining flow cytometry and 16S tag sequencing disclosing who is active. This is the first study revealing the nature of actively metabolizing microbial community members linked to the geochemical characteristics of compost-amended soil.« less

  18. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesus, Ederson da C.; Liang, Chao; Quensen, John F.

    Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less

  19. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States

    DOE PAGES

    Jesus, Ederson da C.; Liang, Chao; Quensen, John F.; ...

    2015-06-28

    Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less

  20. Rewilding as nature based solution in land management

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Keesstra, Saskia; Pereira, Paulo; Cerda, Artemio

    2017-04-01

    Rewilding is an effective tool of ecological restoration and a nature based solution for hydro-meteorological risk control. Rewilding contributes to reduce flood risk, resist droughts, helps to restore soil organic matter content, increases soil and plant biodiversity, improves the overall ecosystem and human health. The key element of rewilding is not the nature control, but following the natural processes to restore the key soil ecological factors and their connectivity. Rewilding can be applicable at different ecosystem stages, from natural reserve to more anthropogenic system such as agricultural land through the restoration of wild soil function trough permaculture or forest farming. The proposed nature based solution not only avoid the investment in traditional engineering but it also an opportunities for creating new economics model based on wild nature (ecoturism, education, wild edible plants). This work is a review of applied rewilding actions and considerations on future nature based solutions applications will be discussed .

  1. Occurrence and activity of subterranean termites in temperate forest soils: United States and Spain

    NASA Astrophysics Data System (ADS)

    Jurgensen, M.; Page-Dumroese, D.; Cerdà, A.; Forschler, B.; Trettin, C.; Cook, S.; Kard, B.

    2009-04-01

    Termites are an important component of many tropical, sub-tropical, and temperate soil invertebrate communities, and they have an impact on soil hydrological, chemical and biological processes. Termites also emit methane and could be an important factor in the production of this important atmospheric greenhouse gas. Many studies have been conducted on mound-building termites in tropical ecosystems, but much less is known on the ecology of subterranean termites in temperate soils. Most of the information about the subterranean termites is derived from work focused on protecting dwellings, which does not necessarily translate to ecosystem-level functions. We have developed an international network across diverse biomes to assess wood decomposition in forests; this presentation will summarize findings on the effects role of termites. Their occurrence is much more prevalent than commonly thought, and their role in mediating wood turnover appears to be significant.

  2. Controls over foliar N:P ratios in tropical rain forests.

    PubMed

    Townsend, Alan R; Cleveland, Cory C; Asner, Gregory P; Bustamante, Mercedes M C

    2007-01-01

    Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N:P ratios in the tropics to infer larger-scale ecosystem processes must comprehensively account for the diversity of any given site and recognize the broad range in nutrient requirements, even at the local scale.

  3. Illuminating the hydrology of a high-elevation tropical ecosystem: Runoff generation in the páramo

    NASA Astrophysics Data System (ADS)

    Mosquera, G.; Lazo, P. X.; Célleri, R.; Vache, K. B.; Segura, C.; Crespo, P.

    2016-12-01

    A high-elevation tropical ecosystem that develops above the three line, the páramo, is known as the "water tower" of South America. However, rainfall-runoff processes and the influence of landscape structure in the hydrologic behavior of this ecosystem remain unknown. Here, we provide a process-based interpretation of runoff generation and insights into the landscape features controlling the hydrology in the páramo of the Zhurucay River Ecohydrological Observatory located in south Ecuador between 3400-3900 m a.s.l. A nested monitoring system of seven catchments (0.20-7.53 km2) was used to measure hydrometric data since December 2010. Biweekly samples of rainfall, streamflow, and soil water were collected for 3 years (May 2011-May2014) and analyzed for water stable isotopes. A combined assessment of hydrometric and isotopic data was used to investigate runoff generation. Mean transit times (MTTs) of baseflow were estimated by integrating the isotopic data into a lumped model. Isotope signals evidenced that water stored in the shallow organic horizon of the páramo soils located at the bottom of the valley near the streams (Histosols) is the major contributor to runoff generation year-round, whereas water draining through the hillslope soils (Andosols) regulates discharge by recharging the Histosols at the valley bottoms. The MTT evaluation showed relatively short MTTs (6.1±2.0 months) linked to short subsurface flow paths of water towards the stream network. We also found evidence of vegetation cover controls on water yield and runoff generation and topographic controls on baseflow MTT variability. These results reveal that 1) the runoff generation mechanisms of this ecosystem are dominated by shallow subsurface flow in the organic horizon of the soils and 2) the combination of the high storage capacity of the Histosols and the slope of the catchments controls runoff generation and the high water regulation capacity of the ecosystem.

  4. Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems.

    PubMed

    Wardle, David A; Jonsson, Micael; Kalela-Brundin, Maarit; Lagerström, Anna; Bardgett, Richard D; Yeates, Gregor W; Nilsson, Marie-Charlotte

    2012-03-01

    Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes.

  5. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

    PubMed

    Fang, Qingqing; Wang, Guoqiang; Xue, Baolin; Liu, Tingxi; Kiem, Anthony

    2018-04-23

    In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem exchange of CO 2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, R eco , and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, R eco , and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Vacant urban lot soils and their potential to support ecosystem services

    EPA Science Inventory

    AimsUrban soils are the basis of many ecosystem services in cities. Here, we examine formerly residential vacant lot soils in Cleveland, Ohio and Detroit, Michigan, USA for their potential to provide multiple ecosystem services. We examine two key contrasts: 1) differences betwee...

  7. MARINE AEROSOLS ALTER SOIL PROCESSES IN COASTAL FORESTS

    EPA Science Inventory

    Most models of watershed biogeochemistry include the movement of materials from land to rivers and eventually the ocean. Few conceptual views, however, acknowledge the influence of materials derived from the ocean on terrestrial ecosystems processes. Based on spatial patterns o...

  8. On inclusion of ecosystem services in the assessment of damage from land degradation

    NASA Astrophysics Data System (ADS)

    Tsvetnov, E. V.; Makarov, O. A.; Yakovlev, A. S.; Bondarenko, E. V.

    2016-12-01

    In the assessment of damage arising from land degradation at the Training and Experimental Soil-Ecological Center of Moscow State University, the cost of unfulfilled and underfulfilled ecosystem surfaces of soils should be taken into account. The following soil services were considered for the territory studied: direct provision with resources, protection, maintenance of ecosystem life and cultural services. A relationship between the concepts of ecosystem services and ecological functions of soils is shown. The concept of function is wider in some respect than the concept associated with it. In the definition of ecosystem service, only the manifestation of the soil function, which can have an economic interpretation, is selected. A simulation of ecosystem services proposed in the ecological and economic evaluation of damage arising from land degradation can be a real mechanism of nature conservation and development of systems of sustainable management at various levels of the administrative structure of the country.

  9. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ores mining and smelting area (Slovakia).

    PubMed

    Demková, Lenka; Árvay, Július; Bobuľská, Lenka; Tomáš, Ján; Stanovič, Radovan; Lošák, Tomáš; Harangozo, Luboš; Vollmannová, Alena; Bystrická, Judita; Musilová, Janette; Jobbágy, Ján

    2017-04-16

    Heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in soils and plants of four different ecosystems (forest, grassland, agro and urban ecosystem) at different distances from the source of the pollution were analyzed in order to assess and compare soil contamination in the various ecosystems and determine the potential accumulation of plants depending on the place they inhabit. Correlation relationships among heavy metals in soils differ depending on the ecosystem, and between soil and plant, the heavy metals showed significant correlation for Cu, Mn, Ni, Pb and Zn. Contamination factor (C f ), degree of contamination (C d ) and pollution load index (PLI) were used in order to determine the level of environmental contamination of the study area. All studied ecosystems were rated as moderately contaminated (except agroecosystem, which was found as low contamination ecosystem) according to C d and extremely polluted according to PLI. The highest pollution in both cases was found in urban ecosystem, and Cd, Cu and Fe were determined as the biggest pollutants.

  10. Soil ecology and agricultural technology; An integrated approach towards improved soil management for sustainable farming

    NASA Astrophysics Data System (ADS)

    Pulleman, Mirjam; Pérès, Guénola; Crittenden, Stephen; Heddadj, Djilali; Sukkel, Wijnand

    2014-05-01

    Intensive arable food production systems are in need of smart solutions that combine ecological knowledge and farm technology to maximize yields while protecting natural resources. The huge diversity of soil organisms and their interactions is of crucial importance for soil functions and ecosystem services, such as organic matter incorporation and break down, nutrient mineralization, soil structure formation, water regulation and disease and pest control. Soil management decisions that take into account the soil biodiversity and associated functions are thus essential to (i) maintain soil productivity in the long term, (ii) reduce the dependency on external inputs and non-renewables such as fossil fuels, and (iii) make agroecosystems more resilient against biotic and abiotic stresses. Organic farming systems and reduced tillage systems are two approaches that aim to increase soil biodiversity and general soil quality, through improved management of organic matter but differ in their emphasis on the use of chemical inputs for crop protection or soil disturbance, respectively. In North-western Europe experience with and knowledge of reduced tillage systems is still scarce, both in conventional and organic farming. Our study targeted both conventional and organic farming and aimed at 1) documenting reduced tillage practices within different agroecological contexts in NW Europe; 2) evaluating the effects of reduced tillage systems on soil biodiversity and soil ecosystem services; 3) increase understanding of agroecological factors that determine trade-offs between different ecosystem services. Earthworm species and nematode taxa were selected as indicator organisms to be studied for their known response to soil management and effects on soil functions. Additionally, soil organic matter, physical soil parameters and processes, and crop yields have been measured across multiple sites. Data have been collected over several cropping seasons in long term field experiments and farmers field sites in France (Brittanny) and the Netherlands (Flevopolder, Hoeksche Waard). The observed diversity in earthworm communities in terms of species, abundance, and trait diversity could be related to soil quality and soil functioning. Data integration across sites allows for the evaluation of the impact of reduced tillage systems on the provision of ecosystem services via proxies such as crop yields, soil organic matter content, aggregate stability and water infiltration. We will present results of this collaborative work to shed light on some of the benefits and trade-offs associated with reduced tillage systems in NW Europe, and in particular on the role of soil organism groups for soil functioning and crop performance. Finally, scope for improvement of soil management based on novel farm technologies and farming system designs will be discussed.

  11. Quantifying the Global Nitrous Oxide Emissions Using a Trait-based Biogeochemistry Model

    NASA Astrophysics Data System (ADS)

    Zhuang, Q.; Yu, T.

    2017-12-01

    Nitrogen is an essential element for the global biogeochemical cycle. It is a key nutrient for organisms and N compounds including nitrous oxide significantly influence the global climate. The activities of bacteria and archaea are responsible for the nitrification and denitrification in a wide variety of environments, so microbes play an important role in the nitrogen cycle in soils. To date, most existing process-based models treated nitrification and denitrification as chemical reactions driven by soil physical variables including soil temperature and moisture. In general, the effect of microbes on N cycling has not been modeled in sufficient details. Soil organic carbon also affects the N cycle because it supplies energy to microbes. In my study, a trait-based biogeochemistry model quantifying N2O emissions from the terrestrial ecosystems is developed based on an extant process-based model TEM (Terrestrial Ecosystem Model). Specifically, the improvement to TEM includes: 1) Incorporating the N fixation process to account for the inflow of N from the atmosphere to biosphere; 2) Implementing the effects of microbial dynamics on nitrification process; 3) fully considering the effects of carbon cycling on N nitrogen cycling following the principles of stoichiometry of carbon and nitrogen in soils, plants, and microbes. The difference between simulations with and without the consideration of bacterial activity lies between 5% 25% based on climate conditions and vegetation types. The trait based module allows a more detailed estimation of global N2O emissions.

  12. Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow.

    PubMed

    Tang, Jing; Yurova, Alla Y; Schurgers, Guy; Miller, Paul A; Olin, Stefan; Smith, Benjamin; Siewert, Matthias B; Olefeldt, David; Pilesjö, Petter; Poska, Anneli

    2018-05-01

    Tundra soils account for 50% of global stocks of soil organic carbon (SOC), and it is expected that the amplified climate warming in high latitude could cause loss of this SOC through decomposition. Decomposed SOC could become hydrologically accessible, which increase downstream dissolved organic carbon (DOC) export and subsequent carbon release to the atmosphere, constituting a positive feedback to climate warming. However, DOC export is often neglected in ecosystem models. In this paper, we incorporate processes related to DOC production, mineralization, diffusion, sorption-desorption, and leaching into a customized arctic version of the dynamic ecosystem model LPJ-GUESS in order to mechanistically model catchment DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS is compared to observed DOC export at Stordalen catchment in northern Sweden. Vegetation communities include flood-tolerant graminoids (Eriophorum) and Sphagnum moss, birch forest and dwarf shrub communities. The processes, sorption-desorption and microbial decomposition (DOC production and mineralization) are found to contribute most to the variance in DOC export based on a detailed variance-based Sobol sensitivity analysis (SA) at grid cell-level. Catchment-level SA shows that the highest mean DOC exports come from the Eriophorum peatland (fen). A comparison with observations shows that the model captures the seasonality of DOC fluxes. Two catchment simulations, one without water lateral routing and one without peatland processes, were compared with the catchment simulations with all processes. The comparison showed that the current implementation of catchment lateral flow and peatland processes in LPJ-GUESS are essential to capture catchment-level DOC dynamics and indicate the model is at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The extended model provides a new tool to investigate potential interactions among climate change, vegetation dynamics, soil hydrology and DOC dynamics at both stand-alone to catchment scales. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A conceptual framework for regional feedbacks in a changing climate

    NASA Astrophysics Data System (ADS)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B.

    2012-04-01

    Terrestrial ecosystems and climate influence each other through biogeochemical (e.g. carbon cycle) and biogeophysical (e.g. albedo, water fluxes) processes. These interactions might be disturbed when a climate human-induced forcing takes place (e.g. deforestation); and the ecosystem responses to the climate system might amplify (positive feedback) or dampen (negative feedback) the initial forcing. Research on feedbacks has been mainly based on the carbon cycle at the global scale. However, biogeophysical feedbacks might have a great impact at the local or regional scale, which is the main focus of this article. A conceptual framework, with the major interactions and processes between terrestrial ecosystems and climate, is presented to further explore feedbacks at the regional level. Four hot spots with potential changes in land use/management and climate are selected: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, diverse climate human-induced forcings and feedbacks were identified based on relevant published literature. For Europe, the positive soil moisture-evapotranspiration (ET) is important for natural vegetation during a heat wave event, while the positive soil moisture-precipitation feedback plays a more important role for droughts in the Amazon region. Agricultural expansion in SSA will depend on the impacts of the changing climate on crop yields and the adopted agro-technologies. The adoption of irrigation in the commonly rainfed systems might turn the positive soil moisture- ET feedback into a negative one. In contrast, South and Southeast Asia might face water shortage in the future, and thus turning the soil moisture-ET feedback into a positive one. Further research is needed for the major processes that affect the ultimate sign of the feedbacks, as well as for the interactions, which effect remains uncertain, such as ET-precipitation interaction. In addition, socio-economic feedbacks need to be added in the ecosystems-climate system since they play an essential role in human decisions on land use and land cover change (LULCC).

  14. Mortality and community changes drive sudden oak death impacts on litterfall and soil nitrogen cycling.

    PubMed

    Cobb, Richard C; Eviner, Valerie T; Rizzo, David M

    2013-10-01

    Few studies have quantified pathogen impacts to ecosystem processes, despite the fact that pathogens cause or contribute to regional-scale tree mortality. We measured litterfall mass, litterfall chemistry, and soil nitrogen (N) cycling associated with multiple hosts along a gradient of mortality caused by Phytophthora ramorum, the cause of sudden oak death. In redwood forests, the epidemiological and ecological characteristics of the major overstory species determine disease patterns and the magnitude and nature of ecosystem change. Bay laurel (Umbellularia californica) has high litterfall N (0.992%), greater soil extractable NO3 -N, and transmits infection without suffering mortality. Tanoak (Notholithocarpus densiflorus) has moderate litterfall N (0.723%) and transmits infection while suffering extensive mortality that leads to higher extractable soil NO3 -N. Redwood (Sequoia sempervirens) has relatively low litterfall N (0.519%), does not suffer mortality or transmit the pathogen, but dominates forest biomass. The strongest impact of pathogen-caused mortality was the potential shift in species composition, which will alter litterfall chemistry, patterns and dynamics of litterfall mass, and increase soil NO3 -N availability. Patterns of P. ramorum spread and consequent mortality are closely associated with bay laurel abundances, suggesting this species will drive both disease emergence and subsequent ecosystem function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils

    NASA Astrophysics Data System (ADS)

    Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.

    2009-12-01

    Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.

  16. Losses and recovery of organic carbon from a seagrass ecosystem following disturbance

    PubMed Central

    Macreadie, Peter I.; Trevathan-Tackett, Stacey M.; Skilbeck, Charles G.; Sanderman, Jonathan; Curlevski, Nathalie; Jacobsen, Geraldine; Seymour, Justin R.

    2015-01-01

    Seagrasses are among the Earth's most efficient and long-term carbon sinks, but coastal development threatens this capacity. We report new evidence that disturbance to seagrass ecosystems causes release of ancient carbon. In a seagrass ecosystem that had been disturbed 50 years ago, we found that soil carbon stocks declined by 72%, which, according to radiocarbon dating, had taken hundreds to thousands of years to accumulate. Disturbed soils harboured different benthic bacterial communities (according to 16S rRNA sequence analysis), with higher proportions of aerobic heterotrophs compared with undisturbed. Fingerprinting of the carbon (via stable isotopes) suggested that the contribution of autochthonous carbon (carbon produced through plant primary production) to the soil carbon pool was less in disturbed areas compared with seagrass and recovered areas. Seagrass areas that had recovered from disturbance had slightly lower (35%) carbon levels than undisturbed, but more than twice as much as the disturbed areas, which is encouraging for restoration efforts. Slow rates of seagrass recovery imply the need to transplant seagrass, rather than waiting for recovery via natural processes. This study empirically demonstrates that disturbance to seagrass ecosystems can cause release of ancient carbon, with potentially major global warming consequences. PMID:26490788

  17. Large increases in Arctic biogenic volatile emissions are a direct effect of warming

    NASA Astrophysics Data System (ADS)

    Kramshøj, Magnus; Vedel-Petersen, Ida; Schollert, Michelle; Rinnan, Åsmund; Nymand, Josephine; Ro-Poulsen, Helge; Rinnan, Riikka

    2016-05-01

    Biogenic volatile organic compounds are reactive gases that can contribute to atmospheric aerosol formation. Their emission from vegetation is dependent on temperature and light availability. Increasing temperature, changing cloud cover and shifting composition of vegetation communities can be expected to affect emissions in the Arctic, where the ongoing climate changes are particularly severe. Here we present biogenic volatile organic compound emission data from Arctic tundra exposed to six years of experimental warming or reduced sunlight treatment in a randomized block design. By separately assessing the emission response of the whole ecosystem, plant shoots and soil in four measurements covering the growing season, we have identified that warming increased the emissions directly rather than via a change in the plant biomass and species composition. Warming caused a 260% increase in total emission rate for the ecosystem and a 90% increase in emission rates for plants, while having no effect on soil emissions. Compared to the control, reduced sunlight decreased emissions by 69% for the ecosystem, 61-65% for plants and 78% for soil. The detected strong emission response is considerably higher than observed at more southern latitudes, emphasizing the high temperature sensitivity of ecosystem processes in the changing Arctic.

  18. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest

    PubMed Central

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633

  19. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest.

    PubMed

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.

  20. Stable isotope ecohydrology of semiarid shrubland in northwestern Mexico

    NASA Astrophysics Data System (ADS)

    Yepez, E. A.; Tarin, T.; Garatuza-Payan, J.; Watts, C. J.; Rodriguez, J. C.; Vivoni, E.; Robles-Morua, A.

    2013-05-01

    Ecosystem fluxes in seasonally dry ecosystems are fundamentally driven by availability of water and further ecohydrolgical processes that are triggered during the wet-growing season. One of the initial steps towards defining the functional fate of precipitation in ecosystems (i.e. influence on productivity or decomposition) is to partition evapotranspiration (ET) into its component fluxes. Aided by a real time field monitoring scheme of stable isotopes of water vapor to produce Keeling plots and micromet-driven modeling of the isotopic composition of soil evaporation (E) and transpiration (T) of representative species of a subtropical shrubland, we aimed to partitioning ET at hourly time steps during the peak monsoon season. The study was conducted in the state of Sonora Mexico at a long term eddy covariance monitoring site part of MexFlux. The ecosystem is a legume-rich subtropical shrubland that gets 550 mm of rain yearly with 70% of the total occurring during the summer monsoon season. Preliminary results indicate that on a daily scale in this ecosystem T is the dominant component of ET (T/ET 0.8 to 1) during the early morning (7 to 10 hrs local time) but drops to 60 to 50 % during the warmest part of the day (11 to 15 hrs) when the vegetation down regulate stomatal conductance and solar radiation reaches more directly the soil. Later in the afternoon (16 to 18 hrs), T/ET generally bounces back to 0.8 to 0.9 levels. Although the actual T/ET fraction varies depending on the soil moisture content in shallow soil layers, this general pattern is maintained many days through the warm rainy season and has implications to attribute the influence of rain to ecosystem function.

Top