The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory.
Karan, Mirko; Liddell, Michael; Prober, Suzanne M; Arndt, Stefan; Beringer, Jason; Boer, Matthias; Cleverly, James; Eamus, Derek; Grace, Peter; Van Gorsel, Eva; Hero, Jean-Marc; Hutley, Lindsay; Macfarlane, Craig; Metcalfe, Dan; Meyer, Wayne; Pendall, Elise; Sebastian, Alvin; Wardlaw, Tim
2016-10-15
Ecosystem monitoring networks aim to collect data on physical, chemical and biological systems and their interactions that shape the biosphere. Here we introduce the Australian SuperSite Network that, along with complementary facilities of Australia's Terrestrial Ecosystem Research Network (TERN), delivers field infrastructure and diverse, ecosystem-related datasets for use by researchers, educators and policy makers. The SuperSite Network uses infrastructure replicated across research sites in different biomes, to allow comparisons across ecosystems and improve scalability of findings to regional, continental and global scales. This conforms with the approaches of other ecosystem monitoring networks such as Critical Zone Observatories, the U.S. National Ecological Observatory Network; Analysis and Experimentation on Ecosystems, Europe; Chinese Ecosystem Research Network; International Long Term Ecological Research network and the United States Long Term Ecological Research Network. The Australian SuperSite Network currently involves 10 SuperSites across a diverse range of biomes, including tropical rainforest, grassland and savanna; wet and dry sclerophyll forest and woodland; and semi-arid grassland, woodland and savanna. The focus of the SuperSite Network is on using vegetation, faunal and biophysical monitoring to develop a process-based understanding of ecosystem function and change in Australian biomes; and to link this with data streams provided by the series of flux towers across the network. The Australian SuperSite Network is also intended to support a range of auxiliary researchers who contribute to the growing body of knowledge within and across the SuperSite Network, public outreach and education to promote environmental awareness and the role of ecosystem monitoring in the management of Australian environments. Copyright © 2016 Elsevier B.V. All rights reserved.
The Long-Term Agro-Ecosystem Research (LTAR) Network: A New In-Situ Data Network For Agriculture
NASA Astrophysics Data System (ADS)
Walbridge, M. R.
2014-12-01
Agriculture in the 21st Century faces significant challenges due to increases in the demand for agricultural products from a global population expected to reach 9.5 billion by 2050, changes in land use that are reducing the area of arable land worldwide, and the uncertainties associated with increasing climate variability and change. There is broad agreement that meeting these challenges will require significant changes in agro-ecosystem management at the landscape scale. In 2012, the USDA/ARS announced the reorganization of 10 existing benchmark watersheds, experimental ranges, and research farms into a Long-Term Agro-ecosystem Research (LTAR) network. Earlier this year, the LTAR network expanded to 18 sites, including 3 led by land grant universities and/or private foundations. The central question addressed by the LTAR network is, "How do we sustain or enhance productivity, profitability, and ecosystem services in agro-ecosystems and agricultural landscapes"? All 18 LTAR sites possess rich historical databases that extend up to 100 years into the past. However as LTAR moves forward, the focus is on collecting a core set of common measurements over the next 30-50 years that can be used to draw inferences regarding the nature of agricultural sustainability and how it varies across regional and continental-scale gradients. As such, LTAR is part long-term research network and part observatory network. Rather than focusing on a single site, each LTAR has developed regional partnerships that allow it to address agro-ecosystem function in the large basins and eco-climatic zones that underpin regional food production systems. Partners include other long-term in-situ data networks (e.g., Ameriflux, CZO, GRACEnet, LTER, NEON). 'Next steps' include designing and implementing a cross-site experiment addressing LTAR's central question.
LTAR linkages with other research networks: Capitalizing on network interconnections
USDA-ARS?s Scientific Manuscript database
The USDA ARS Research Unit based at the Jornada Experimental Range outside of Las Cruces, NM, is a member of the USDA’s Long Term Agro-ecosystem Research (LTAR) Network, the National Science Foundation’s Long Term Ecological Research (LTER) Network, the National Ecological Observation Network (NEON)...
NASA Astrophysics Data System (ADS)
HEld, A. A.; Phinn, S. R.
2012-12-01
TERN is Australia's Terrestrial Ecosystem Research Network (www.tern.org.au) is one of several environmental data collection, storage and sharing projects developed through the government's research infrastructure programs 2008-2014. This includes terrestrial and coastal ecosystem data collection infrastructure across multiple disciplines, hardware, software and processes used to store, analyse and integrate data sets. TERN's overall objective is to build the collaborations, infrastructure and programs to meet the needs of ecosystem science communities in Australia in the long term, through institutional frameworks necessary to establish a national terrestrial ecosystem site and observational network, coordinated networks enabling cooperation and operational experience; public access to quality assured and appropriately licensed data; and allowing the terrestrial ecosystem research community to define and sustain the terrestrial observing paradigm into the longer term. This paper explains how TERN was originally established, and now operates, along with plans to sustain itself in the future. TERN is implemented through discipline/technical groups referred to as "TERN Facilities". Combined, the facilities provide observations of surface mass and energy fluxes over key ecosystems, biophysical remote sensing data, ecological survey plots, soils information, and coastal ecosystems and associated water quality variables across Australia. Additional integrative facilities cover elements of ecoinformatics, data-scaling and modelling, and linking science to management. A central coordination and portal facility provides meta-data storage, data identification, legal and licensing support. Data access, uploading, meta-data generation, DOI attachment and licensing is completed at each facility's own portal level. TERN also acts as the open-data repository of choice for Australian scientists required to publish their data. Several key lessons we have learnt, will be presented during the talk.
Long term agro-ecosystem research: The Southern Plains partnership
USDA-ARS?s Scientific Manuscript database
The USDA Agricultural Research Service (ARS) is coordinating ten well-established research sites as a Long Term Agro-ecosystem Research (LTAR) Network. The goal of the LTAR is to sustain a land-based infrastructure for research, environmental management testing, and education, that enables understan...
The USDA Long-Term Agro-ecosystems Research (LTAR) Network
NASA Astrophysics Data System (ADS)
Goodrich, D. C.; Walthall, C. L.; Campbell, J. D.; Derner, J. D.; Huggins, D. R.; Kleinman, P. J. A.; Locke, M. A.; Sadler, J.; Steiner, J. L.; Strickland, T.; Swain, H.
2016-12-01
The USDA-Agricultural Research Service (ARS) has a multi-decadal to century long history of experimental watersheds, ranges and research farms throughout the USA. Many of these ARS research facilities, as well as three led by private foundations or land grant universities, are now part of the USDA Long-Term Agro-ecosystem Research (LTAR) network that currently has 18 locations. These 18 locations encompass a diversity of agricultural systems as well as provide a research platform for regional to national scale assessments and modeling scenarios of ecosystem goods and services for society. A central challenge that LTAR will address is: How can we sustain or enhance agricultural productivity, profitability, and ecosystem services to feed 9 billion people by 2050? Each LTAR location is designing a common experiment that consists of comparing "business as usual" to "aspirational agriculture" management strategies that reflect prevailing local to regional agricultural systems. The "aspirational agriculture" management strategy for each location will be forward-looking with innovative incorporations of cutting-edge technology, social-ecological systems involving human dimensions and economics, ecosystem services such as pollinator habitat and soil health, and paradigm shifting agricultural enterprise transformations. To accomplish the central challenge, LTAR locations will leverage existing historical data with new network-level initiatives such as wind erosion, phenology, water/carbon/nutrient/energy fluxes, complete water balances, greenhouse gas fluxes and remote sensing/modeling efforts to determine the sustainability of US agriculture across regional to continental scales. This presentation will provide an overview of the current status of the LTAR network, describe several common experiments, showcase the data management systems and web presentations of this data, as well as recent network findings.
NASA Astrophysics Data System (ADS)
Havránková, Kateřina; Taufarová, Klára; Šigut, Ladislav; McGloin, Ryan; Acosta, Manuel; Dušek, Jiří; Krupková, Lenka; Macálková-Mžourková, Lenka; Pavelka, Marian; Dařenová, Eva; Yadav, Shilpi; Nguyen, Vinh; Guerra, Carlos; Janous, Dalibor; Marek, Michal V.
2017-04-01
The Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe) have established a well-equipped network of ecosystem stations, with modern instrumentation for eco-physiological, plant physiological and micrometeorological studies, and estimation of GHG emissions. The network of stations (CzeCOS) covers the main terrestrial ecosystems of the Czech Republic (young and old coniferous forest, deciduous forest, mixed floodplain forest, grassland, wetland and cropland). The ecosystem stations are equipped with eddy covariance systems, soil and stem chamber systems for CO2 efflux and instruments for making micrometeorological measurements. The network enables detailed research to be conducted on topics such as: the carbon balance of different ecosystems, energy balance closure, the impact of current climate conditions on production and ecosystem disturbances during extreme weather conditions (drought, floods, winter storms, etc.) at regional, national and international scales. As a part of global networks (Fluxnet, ANAEe, ICOS), CzeCOS participates in evaluating and predicting environmental change and helps in the proposal of mitigation measures. Another important issue studied at some of the CzeCOS sites is the use of the eddy covariance method in sloping terrain in order to improve eddy covariance data processing for sites in this kind of terrain. Here we show specific results from the sites and outline the importance of the regional/national network for improving our knowledge about the exchange of matter and energy fluxes at different ecosystems. This study was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), grant number LO1415 and LD 15040. Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme "Projects of Large Research, Development, and Innovations Infrastructures".
USDA-ARS?s Scientific Manuscript database
The USDA Agricultural Research Service (ARS) is coordinating ten well-established research sites as a Long-Term Agro-ecosystem Research (LTAR) Network. The goal of the LTAR is to sustain a land-based infrastructure for research, environmental management testing, and education, that enables understan...
Ball, Lianne C.
2016-07-14
Mangrove ecosystems protect vulnerable coastlines from storm effects, recycle nutrients, stabilize shorelines, improve water quality, and provide habitat for commercial and recreational fish species as well as for threatened and endangered wildlife. U.S. Geological Survey scientists conduct research on mangrove ecosystems to provide reliable scientific information about their ecology, productivity, hydrological processes, carbon storage stress response, and restoration success. The Mangrove Science Network is a collaboration of USGS scientists focused on working with natural resource managers to develop and conduct research to inform decisions on mangrove management and restoration. Information about the Mangrove Science Network can be found at: http://www.usgs.gov/ecosystems/environments/mangroves.html.
USDA-ARS?s Scientific Manuscript database
USDA’s Long-Term Agroecosystem Research (LTAR) Network consists of 18 locations across the continental United States comprised of government, university and NGO supported sites. LTAR research on the sustainability of agricultural production and associated provision of ecosystem services relies upon ...
USDA-ARS?s Scientific Manuscript database
Long-term studies of agro-ecosystems at the continental scale are providing an extraordinary understanding of regional environmental dynamics. The new Long-Term Agro-ecosystem Research (LTAR) network (established in 2013) has designed an explicit research program with multiple USDA experimental wat...
An online database for informing ecological network models: http://kelpforest.ucsc.edu.
Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H; Tinker, Martin T; Black, August; Caselle, Jennifer E; Hoban, Michael; Malone, Dan; Iles, Alison
2014-01-01
Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui).
An Online Database for Informing Ecological Network Models: http://kelpforest.ucsc.edu
Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H.; Tinker, Martin T.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison
2014-01-01
Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui). PMID:25343723
An online database for informing ecological network models: http://kelpforest.ucsc.edu
Beas-Luna, Rodrigo; Tinker, M. Tim; Novak, Mark; Carr, Mark H.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison C.
2014-01-01
Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui).
NASA Astrophysics Data System (ADS)
Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.
2013-12-01
Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.
NASA Astrophysics Data System (ADS)
Kavanagh, K.; Davis, A.; Gessler, P.; Hess, H.; Holden, Z.; Link, T. E.; Newingham, B. A.; Smith, A. M.; Robinson, P.
2011-12-01
Developing sensor networks that are robust enough to perform in the world's remote regions is critical since these regions serve as important benchmarks compared to human-dominated areas. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. We aim to overcome these challenges by developing a three-dimensional sensor network arrayed across a topoclimatic gradient (1100-1800 meters) in a wilderness area in central Idaho. Development of this sensor array builds upon advances in sensing, networking, and power supply technologies coupled with experiences of the multidisciplinary investigators in conducting research in remote mountainous locations. The proposed gradient monitoring network will provide near real-time data from a three-dimensional (3-D) array of sensors measuring biophysical parameters used in ecosystem process models. The network will monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, tree stem growth and leaf wetness at time intervals ranging from seconds to days. The long-term goal of this project is to realize a transformative integration of smart sensor networks adaptively communicating data in real-time to ultimately achieve a 3-D visualization of ecosystem processes within remote mountainous regions. Process models will be the interface between the visualization platforms and the sensor network. This will allow us to better predict how non-human dominated terrestrial and aquatic ecosystems function and respond to climate dynamics. Access to the data will be ensured as part of the Northwest Knowledge Network being developed at the University of Idaho, through ongoing Idaho NSF-funded cyber infrastructure initiatives, and existing data management systems funded by NSF, such as the CUAHSI Hydrologic Information System (HIS). These efforts will enhance cross-disciplinary understanding of natural and anthropogenic influences on ecosystem function and ultimately inform decision-making.
NASA Astrophysics Data System (ADS)
Barrio, I. C.; Hik, D. S.; Jónsdóttir, I. S.; Bueno, C. G.; Mörsdorf, M. A.; Ravolainen, V. T.
2016-09-01
Plant-herbivore interactions are central to the functioning of tundra ecosystems, but their outcomes vary over space and time. Accurate forecasting of ecosystem responses to ongoing environmental changes requires a better understanding of the processes responsible for this heterogeneity. To effectively address this complexity at a global scale, coordinated research efforts, including multi-site comparisons within and across disciplines, are needed. The Herbivory Network was established as a forum for researchers from Arctic and alpine regions to collaboratively investigate the multifunctional role of herbivores in these changing ecosystems. One of the priorities is to integrate sites, methodologies, and metrics used in previous work, to develop a set of common protocols and design long-term geographically-balanced, coordinated experiments. The implementation of these collaborative research efforts will also improve our understanding of traditional human-managed systems that encompass significant portions of the sub-Arctic and alpine areas worldwide. A deeper understanding of the role of herbivory in these systems under ongoing environmental changes will guide appropriate adaptive strategies to preserve their natural values and related ecosystem services.
Mirtl, M; T Borer, E; Djukic, I; Forsius, M; Haubold, H; Hugo, W; Jourdan, J; Lindenmayer, D; McDowell, W H; Muraoka, H; Orenstein, D E; Pauw, J C; Peterseil, J; Shibata, H; Wohner, C; Yu, X; Haase, P
2018-06-01
Since its founding in 1993 the International Long-term Ecological Research Network (ILTER) has gone through pronounced development phases. The current network comprises 44 active member LTER networks representing 700 LTER Sites and ~80 LTSER Platforms across all continents, active in the fields of ecosystem, critical zone and socio-ecological research. The critical challenges and most important achievements of the initial phase have now become state-of-the-art in networking for excellent science. At the same time increasing integration, accelerating technology, networking of resources and a strong pull for more socially relevant scientific information have been modifying the mission and goals of ILTER. This article provides a critical review of ILTER's mission, goals, development and impacts. Major characteristics, tools, services, partnerships and selected examples of relative strengths relevant for advancing ILTER are presented. We elaborate on the tradeoffs between the needs of the scientific community and stakeholder expectations. The embedding of ILTER in an increasingly collaborative landscape of global environmental observation and ecological research networks and infrastructures is also reflected by developments of pioneering regional and national LTER networks such as SAEON in South Africa, CERN/CEOBEX in China, TERN in Australia or eLTER RI in Europe. The primary role of ILTER is currently seen as a mechanism to investigate ecosystem structure, function, and services in response to a wide range of environmental forcings using long-term, place-based research. We suggest four main fields of activities and advancements for the next decade through development/delivery of a: (1) Global multi-disciplinary community of researchers and research institutes; (2) Strategic global framework and strong partnerships in ecosystem observation and research; (3) Global Research Infrastructure (GRI); and (4) a scientific knowledge factory for societally relevant information on sustainable use of natural resources. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Scholes, Robert; Twine, Wayne; Mudau, Azwitamisi; Midgley, Guy; Hickler, Thomas; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; du Toit, Justin; Sankaran, Vaith; Kutsch, Werner
2016-04-01
Sub-Saharan Africa currently experiences significant changes in shrubland, savanna and mixed woodland ecosystems driving degradation, affecting fire frequency and water availability, and eventually fueling climate change. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. For a network of research clusters along an aridity gradient in South Africa, we measure greenhouse gas exchange, ecosystem structure and eco-physiological properties as affected by land use change at paired sites with natural and altered vegetation. We set up dynamic vegetation models and individual-based models to predict ecosystem dynamics under (post) disturbance managements. We monitor vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change. Finally, we investigate livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation of estimates obtained from eddy covariance, model approaches and satellite derivations. We envision our methodological approach on a network of research clusters a valuable means to investigate potential linkages to concepts of adaptive resilience.
Social Network Analysis of the Irish Biotech Industry: Implications for Digital Ecosystems
NASA Astrophysics Data System (ADS)
van Egeraat, Chris; Curran, Declan
This paper presents an analysis of the socio-spatial structures of innovation, collaboration and knowledge flow among SMEs in the Irish biotech sector. The study applies social network analysis to determine the structure of networks of company directors and inventors in the biotech sector. In addition, the article discusses the implications of the findings for the role and contours of a biotech digital ecosystem. To distil these lessons, the research team organised a seminar which was attended by representatives of biotech actors and experts.
Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R
2016-09-01
Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.
Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program
2006-06-01
ORION, NSF’s proposed NEON network) to gain quantitative understanding of ecosystem processes in representative systems and across gradients of...these interactions and subsequent effects expected to vary across gradients of land use (i.e., from unmanaged to managed or urban ecosystems) and...ecosystem processes along a gradient of managed to unmanaged landscapes? How will changes in freshwater inputs affect the coastal oceans? 2.4 How
Implementations of back propagation algorithm in ecosystems applications
NASA Astrophysics Data System (ADS)
Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed
2015-05-01
Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert ecosystem analyzer for many applications in ecological fields. The pilot ecosystem analyzer shows promising ability for generalization and requires further tuning and refinement of the basis neural network system for optimal performance.
Influence of Gap-Filling to Generate Continuous Datasets on Process Network Analysis
NASA Astrophysics Data System (ADS)
Yun, J.; Kim, J.; Kim, S.; Chun, J.
2013-12-01
The interplay of environmental conditions, energy, matter, and information defines the context and constraints for the set of processes and structures that may emerge during self-organization in complex ecosystems. Following Ruddell and Kumar (2009), we have evaluated statistical measures of characterizing the organization of the information flow in ecohydrological process networks in a deciduous forest ecosystem. We used the time series data obtained in 2008 (normal year) from the KoFlux forest tower site in central Korea. The 30-minute averages of eddy fluxes of energy, water and CO2 were measured at 40m above an oak-dominated old deciduous forest along with other micrometeorological variables. In this analysis, we selected 13 variables: atmospheric pressure (Pa), net ecosystem CO2 exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), latent heat flux (LE), precipitation (Precip), solar radiation (Rg), air temperature (T), vapor pressure deficit (VPD), sensible heat flux (H), canopy temperature (Tc), wind direction (WD), and wind speed (WS). Our results support that a process network approach can be used to formally resolve feedback, time scales, and subsystems that define the complex ecosystem's organization by considering mutual information and transfer entropy simultaneously. We also observed that the turbulent and atmospheric boundary layer subsystems are coupled through feedback loops, and form a regional self-organizing subsystem in August when the forest is in healthy environment. In particular, we noted that the observed feedback loops in the process network disappeared when the time series data were artificially gap-filled for missing data, which is a common practice in post-data processing. In this presentation, we report the influence of gap-filling on the process network analysis by artificially assigning different sizes and periods of missing data and discuss the implication of our results on validation and calibration of ecosystem models. Acknowledgment. This research was supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2013-3030.
[Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].
Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping
2011-05-01
Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.
Understanding interfirm relationships in business ecosystems with interactive visualization.
Basole, Rahul C; Clear, Trustin; Hu, Mengdie; Mehrotra, Harshit; Stasko, John
2013-12-01
Business ecosystems are characterized by large, complex, and global networks of firms, often from many different market segments, all collaborating, partnering, and competing to create and deliver new products and services. Given the rapidly increasing scale, complexity, and rate of change of business ecosystems, as well as economic and competitive pressures, analysts are faced with the formidable task of quickly understanding the fundamental characteristics of these interfirm networks. Existing tools, however, are predominantly query- or list-centric with limited interactive, exploratory capabilities. Guided by a field study of corporate analysts, we have designed and implemented dotlink360, an interactive visualization system that provides capabilities to gain systemic insight into the compositional, temporal, and connective characteristics of business ecosystems. dotlink360 consists of novel, multiple connected views enabling the analyst to explore, discover, and understand interfirm networks for a focal firm, specific market segments or countries, and the entire business ecosystem. System evaluation by a small group of prototypical users shows supporting evidence of the benefits of our approach. This design study contributes to the relatively unexplored, but promising area of exploratory information visualization in market research and business strategy.
Bridgework ahead! Innovation ecosystems vis-à-vis responsible innovation
NASA Astrophysics Data System (ADS)
Foley, Rider; Wiek, Arnim
2017-02-01
Public funding agencies largely support academic research as an effort to stimulate future product commercialization and foster broader societal benefits. Yet, translating research nurtured in academic settings into such outcomes is complex and demands functional interactions between government, academic, and industry, i.e., "triple helix," organizations within an innovation ecosystem. This article argues that in the spirit of responsible innovation, research funding should build bridges that extend beyond the triple helix stakeholders to connect to peripheral organizations. To support that argument, evidence from agent network analysis gathered from two case studies reveals strong and weak connections, as well as gaps within innovation ecosystems in Switzerland and metropolitan Phoenix, USA. This article offers insights on how innovation ecosystems are aligned or misaligned with responsible innovation.
NASA Astrophysics Data System (ADS)
Fuentes, Daniel; Pérez-Luque, Antonio J.; Bonet García, Francisco J.; Moreno-LLorca, Ricardo A.; Sánchez-Cano, Francisco M.; Suárez-Muñoz, María
2017-04-01
The Long Term Ecological Research (LTER) network aims to provide the scientific community, policy makers, and society with the knowledge and predictive understanding necessary to conserve, protect, and manage the ecosystems. LTER is organized into networks ranging from the global to national scale. In the top of network, the International Long Term Ecological Research (ILTER) Network coordinates among ecological researchers and LTER research networks at local, regional and global scales. In Spain, the Spanish Long Term Ecological Research (LTER-Spain) network was built to foster the collaboration and coordination between longest-lived ecological researchers and networks on a local scale. Currently composed by nine nodes, this network facilitates the data exchange, documentation and preservation encouraging the development of cross-disciplinary works. However, most nodes have no specific information systems, tools or qualified personnel to manage their data for continued conservation and there are no harmonized methodologies for long-term monitoring protocols. Hence, the main challenge is to place the nodes in its correct position in the network, providing the best tools that allow them to manage their data autonomously and make it easier for them to access information and knowledge in the network. This work proposes a connected structure composed by four LTER nodes located in southern Spain. The structure is built considering hierarchical approach: nodes that create information which is documented using metadata standards (such as Ecological Metadata Language, EML); and others nodes that gather metadata and information. We also take into account the capacity of each node to manage their own data and the premise that the data and metadata must be maintained where it is generated. The current state of the nodes is a follows: two of them have their own information management system (Sierra Nevada-Granada and Doñana Long-Term Socio-ecological Research Platform) and another has no infrastructure to maintain their data (The Arid Iberian South East LTSER Platform). The last one (Environmental Information Network of Andalusia-REDIAM) acts as the coordinator, providing physical and logical support to other nodes and also gathers and distributes the information "uphill" to the rest of the network (LTER Europe and ILTER). The development of the network has been divided in three stages. First, existing resources and data management requirements are identified in each node. Second, the necessary software tools and interoperable standards to manage and exchange the data have been selected, installed and configured in each participant. Finally, once the network has been set up completely, it is expected to expand it all over Spain with new nodes and its connection to others LTER and similar networks. This research has been funded by ADAPTAMED (Protection of key ecosystem services by adaptive management of Climate Change endangered Mediterranean socioecosystems) Life EU project, Sierra Nevada Global Change Observatory (LTER-site) and eLTER (Integrated European Long Term Ecosystem & Socio-Ecological Research Infrastructure).
Xu, Zhi-Wei; Zhang, Xin-Yu; Sun, Xiao-Min; Yuan, Guo-Fu; Wang, Sheng-Zhong; Liu, Wen-Hua
2011-10-01
The nitrate-N (NO3(-) -N) concentrations of 38 shallow groundwater wells from 31 of the typical terrestrial ecosystems on Chinese Ecosystem Research Network (CERN) were assessed using the monitoring data from 2004 to 2009. The results showed that the average values of NO3(-) -N concentrations were significantly higher in the agricultural (4.85 mg x L(-1) +/- 0.42 mg x L(-1)), desert (oasis) (3.72 mg x L(-1) +/- 0.42 mg x L(-1)) and urban ecosystems (3.77 mg x L(-1) 0.51 mg x L(-1)) than in the grass (1.59 mg x L(-1) +/- 0.35 mg L(-1)) and forest ecosystems (0.39 mg x L(-1) +/- 0.03 mg x L(-1)). Nitrate was the major form of nitrogen, with between 56% to 88% of nitrogen in the nitrate-N form in the shallow groundwater of desert (oasis), urban and agricultural ecosystems. Nitrate-N concentrations for some agricultural ecosystems (Ansai, Yanting, Yucheng) and desert (oasis) ecosystems (Cele, Linze, Akesu) analysis exceeded the 10 mg x L(-1) World Health Organization drinking water standards between 14.3% and 84.6%. Significant seasonality was found in Ansai, Fengqiu, Yanting agricultural ecosystems and the Beijing urban ecosystem using the relatively high frequency monitoring data, with the higher nitrate concentrations usually found during summer and winter months. The monitoring results indicated that the shallow groundwater of agricultural ecosystems was contaminated by agricultural management practices, i.e. fertilization, while the shallow groundwater of forest ecosystems was under natural condition with no contamination from human activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, B E
Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives ofmore » integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.« less
Landscape contexts and commonalities: building the LTAR network
USDA-ARS?s Scientific Manuscript database
The United States Department of Agriculture has established a Long-Term Agroecosystem Research Network to provide a coordinated framework to, “Enable understanding and forecasting of regional landscape capacities to provide agricultural commodities and ecosystem services under changing conditions.” ...
A Proposal for Modeling Real Hardware, Weather and Marine Conditions for Underwater Sensor Networks
Climent, Salvador; Capella, Juan Vicente; Blanc, Sara; Perles, Angel; Serrano, Juan José
2013-01-01
Network simulators are useful for researching protocol performance, appraising new hardware capabilities and evaluating real application scenarios. However, these tasks can only be achieved when using accurate models and real parameters that enable the extraction of trustworthy results and conclusions. This paper presents an underwater wireless sensor network ecosystem for the ns-3 simulator. This ecosystem is composed of a new energy-harvesting model and a low-cost, low-power underwater wake-up modem model that, alongside existing models, enables the performance of accurate simulations by providing real weather and marine conditions from the location where the real application is to be deployed. PMID:23748171
Toward a Mexican eddy covariance network for carbon cycle science
NASA Astrophysics Data System (ADS)
Vargas, Rodrigo; Yépez, Enrico A.
2011-09-01
First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.
Testing paradigms of ecosystem change under climate warming in Antarctica.
Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben
2013-01-01
Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations-or "paradigms of change"-that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth's most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields.
Testing Paradigms of Ecosystem Change under Climate Warming in Antarctica
Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben
2013-01-01
Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations–or “paradigms of change”–that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth’s most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields. PMID:23405116
Global Change Network: Combine Nutrient Network and Drought Net in China
NASA Astrophysics Data System (ADS)
Yu, Q.; Wang, C.; Zhu, J.; Xu, X.; Yang, H.; Wei, C.; Cong, N.; Wu, H.; Li, H.; Tian, D.; An, H.; Yu, G.
2017-12-01
Globally, all ecosystems will be impacted to some extent by changes in climate means and more frequent and severe periods of climatic extremes. Although there have been numerous studies examining the effects of changes in climatic means on ecological processes and ecosystems, research on climate extremes is far less common and is only now emerging as a distinct research field in ecology. Furthermore, although we have learned much in the past 20 years about how individual ecosystems are likely to respond to climate change, extending this knowledge to regional and continental scales has been a far greater challenge because of the inconsistent design of experiments and ecological complexity. In order to better forecast how entire regions will respond to eutrophication and extreme drought, two key network has been set up, i.e. Nutrient Network, Drought Net. However, there were few sites in China in the network studies, where locates Eurasian Steppe (the biggest grassland in the world) and Tibetan Plateau grassland (the world's highest and largest plateau grassland). To fill the great gap, we have set up ten sites in China (including 5 sites in Eurasia Steppe and 5 site in Tibetan Plateau), combing Nutrient Network and Drought Net treatments and also increased precipitation, called Global Change Network. There are 16 treatments with 6 repeats, and thus 96 plots in the global change network. The nutrient addition treatments are the same with Nutrient Network, i.e. 10 treatments. Precipitation change treatments include an extreme drought (the same with Drought Net) and a water addition (the amount is the same with drought treatment) treatment. The interactive treatments were only conducted in control N and NPK.
Morris, Rebecca J.
2010-01-01
Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318
Rogora, M; Frate, L; Carranza, M L; Freppaz, M; Stanisci, A; Bertani, I; Bottarin, R; Brambilla, A; Canullo, R; Carbognani, M; Cerrato, C; Chelli, S; Cremonese, E; Cutini, M; Di Musciano, M; Erschbamer, B; Godone, D; Iocchi, M; Isabellon, M; Magnani, A; Mazzola, L; Morra di Cella, U; Pauli, H; Petey, M; Petriccione, B; Porro, F; Psenner, R; Rossetti, G; Scotti, A; Sommaruga, R; Tappeiner, U; Theurillat, J-P; Tomaselli, M; Viglietti, D; Viterbi, R; Vittoz, P; Winkler, M; Matteucci, G
2018-05-15
Mountain ecosystems are sensitive and reliable indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers from a broad ecological perspective. Mountain research sites within the LTER (Long-Term Ecological Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria covering in most cases more than two decades of observations. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular plant species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change, with site-specific characteristics and rates. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were also observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for (i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, (ii) carrying out further studies, in particular short-term analyses with fine spatial and temporal resolutions to improve our understanding of responses to extreme events, and (iii) increasing comparability and standardizing protocols across networks to distinguish local patterns from global patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhancing wind erosion monitoring and assessment for U.S. rangelands
Webb, Nicholas P.; Van Zee, Justin W.; Karl, Jason W.; Herrick, Jeffrey E.; Courtright, Ericha M.; Billings, Benjamin J.; Boyd, Robert C.; Chappell, Adrian; Duniway, Michael C.; Derner, Justin D.; Hand, Jenny L.; Kachergis, Emily; McCord, Sarah E.; Newingham, Beth A.; Pierson, Frederick B.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Van Pelt, R. Scott
2017-01-01
On the GroundWind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production, and air quality.Despite its significance, little is known about which landscapes are eroding, by how much, and when.The National Wind Erosion Research Network was established in 2014 to develop tools for monitoring and assessing wind erosion and dust emissions across the United States.The Network, currently consisting of 13 sites, creates opportunities to enhance existing rangeland soil, vegetation, and air quality monitoring programs.Decision-support tools developed by the Network will improve the prediction and management of wind erosion across rangeland ecosystems.
Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes
NASA Astrophysics Data System (ADS)
Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.
2011-12-01
Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.
Could ecosystem management provide a new framework for Alzheimer's disease?
Hubin, Ellen; Vanschoenwinkel, Bram; Broersen, Kerensa; De Deyn, Peter P; Koedam, Nico; van Nuland, Nico A; Pauwels, Kris
2016-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that involves a plethora of molecular pathways. In the context of therapeutic treatment and biomarker profiling, the amyloid-beta (Aβ) peptide constitutes an interesting research avenue that involves interactions within a complex mixture of Aβ alloforms and other disease-modifying factors. Here, we explore the potential of an ecosystem paradigm as a novel way to consider AD and Aβ dynamics in particular. We discuss the example that the complexity of the Aβ network not only exhibits interesting parallels with the functioning of complex systems such as ecosystems but that this analogy can also provide novel insights into the neurobiological phenomena in AD and serve as a communication tool. We propose that combining network medicine with general ecosystem management principles could be a new and holistic approach to understand AD pathology and design novel therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Phenology cameras observing boreal ecosystems of Finland
NASA Astrophysics Data System (ADS)
Peltoniemi, Mikko; Böttcher, Kristin; Aurela, Mika; Kolari, Pasi; Tanis, Cemal Melih; Linkosalmi, Maiju; Loehr, John; Metsämäki, Sari; Nadir Arslan, Ali
2016-04-01
Cameras have become useful tools for monitoring seasonality of ecosystems. Low-cost cameras facilitate validation of other measurements and allow extracting some key ecological features and moments from image time series. We installed a network of phenology cameras at selected ecosystem research sites in Finland. Cameras were installed above, on the level, or/and below the canopies. Current network hosts cameras taking time lapse images in coniferous and deciduous forests as well as at open wetlands offering thus possibilities to monitor various phenological and time-associated events and elements. In this poster, we present our camera network and give examples of image series use for research. We will show results about the stability of camera derived color signals, and based on that discuss about the applicability of cameras in monitoring time-dependent phenomena. We will also present results from comparisons between camera-derived color signal time series and daily satellite-derived time series (NVDI, NDWI, and fractional snow cover) from the Moderate Resolution Imaging Spectrometer (MODIS) at selected spruce and pine forests and in a wetland. We will discuss the applicability of cameras in supporting phenological observations derived from satellites, by considering the possibility of cameras to monitor both above and below canopy phenology and snow.
NASA Astrophysics Data System (ADS)
Hotchkiss, E. R.
2017-12-01
Freshwater biological processes can alter the quantity and quality of organic carbon (OC) inputs from land before they are transported downstream, but the relative role of hydrologic transport and in-stream processing is still not well quantified at the scale of fluvial networks. Despite much research on the role of biology and hydrology in governing the form and fate of C in inland waters, conclusions about the function of freshwater ecosystems in modifying OC still largely depend on where we draw our ecosystem boundaries, i.e., the spatial scale of measurements used to assess OC transformations. Here I review freshwater OC uptake rates derived from bioassay incubations, synoptic modeling, reach-scale experiments, and ecosystem OC spiraling estimates. Median OC uptake velocities from standard bioassay incubations (0.02 m/d) and synoptic modeling (0.04 m/d) are 1-2 orders of magnitude lower than reach-scale experimental DOC additions and ecosystem OC spiraling estimates (2.2 and 0.27 m/d, respectively) in streams and rivers. Together, ecosystem metabolism and OC fluxes can be used to estimate the distance OC travels before being consumed and respired as CO2 through biological processes (i.e., OC spiraling), allowing for a more mechanistic understanding of the role of ecosystem processes and hydrologic fluxes in modifying downstream OC transport. Beyond the reach scale, data from stream network and stream-lake-river modeling simulations show how we may use linked sampling sites within networks to better understand the integrated sources and fate of OC in freshwaters. We currently underestimate the role of upstream processes in contributing to downstream fluxes: moving from single-ecosystem comparisons to linked-ecosystem simulations increases the contribution of in situ OC processing to CO2 emissions from 30% to >40%. Insights from literature reviews, ecosystem process measurements, and model simulations provide a framework for future considerations of integrated C transport, transformations, and fate when scaling patterns and processes in inland waters.
Research frontiers for improving our understanding of drought‐induced tree and forest mortality
Hartmann, Henrik; Moura, Catarina; Anderegg, William R. L.; Ruehr, Nadine; Salmon, Yann; Allen, Craig D.; Arndt, Stefan K.; Breshears, David D.; Davi, Hendrik; Galbraith, David; Ruthrof, Katinka X.; Wunder, Jan; Adams, Henry D.; Bloemen, Jasper; Cailleret, Maxime; Cobb, Richard; Gessler, Arthur; Grams, Thorsten E. E.; Jansen, Steven; Kautz, Markus; Lloret, Francisco; O’Brien, Michael
2018-01-01
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die‐off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die‐off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought‐induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
Tobner, Cornelia M; Paquette, Alain; Reich, Peter B; Gravel, Dominique; Messier, Christian
2014-03-01
Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species' functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity-ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.
Xia, Shaoxia; Liu, Yu; Yu, Xiubo; Fu, Bojie
2018-08-15
Environmental assessments estimate, evaluate and predict the consequences of natural processes and human activities on the environment. Long-term ecosystem observation and research networks (LTERs) are potentially valuable infrastructure to support environmental assessments. However, very few environmental assessments have successfully incorporated them. In this study, we try to reveal the current status of coupling LTERs with environmental assessments and look at the challenges involved in improving this coupling through exploring the role that Chinese Ecological Research Network (CERN), the LTER of China, currently plays in regional environment assessments. A review of official protocols and standards, regional assessments and CERN researches related to ecosystems and environment shows that there is great potential for coupling CERN with environment assessments. However in practice, CERN does not currently play the expected role. Remote sensing and irregular inventory data are still the main data sources currently used in regional assessments. Several causes led to the present situation: (1) insufficient cross-site research and failure to scale up site-level variables to the regional scale; (2) data barriers resulting from incompatible protocols and low data usability due to lack of data assimilation and scaling; and (3) absence of indicators relevant to human activities in existing monitoring protocols. For these reasons, enhancing cross-site monitoring and research, data assimilation and scaling up are critical steps required to improve coupling of LTER with environmental assessments. Site-focused long-term monitoring should be combined with wide-scale ground surveys and remote sensing to establish an effective connection between different environmental monitoring platforms for regional assessments. It is also necessary to revise the current monitoring protocols to include human activities and their impacts on the ecosystem, or change the LTERs into Long-Term Socio-Ecological Research (LTSER) networks. Copyright © 2018 Elsevier B.V. All rights reserved.
Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2005-01-01
Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.
Steward T.A. Pickett; Mary L. Cadenasso; J. Morgan Grove; Peter M. Groffman; Lawrence E. Band; Christopher G. Boone; William R., Jr. Burch; Susan B. Grimmond; John Hom; Jennifer C. Jenkins; Neely L. Law; Charles H. Nilon; Richard V. Pouyat; Katalin Szlavecz; Paige S. Warren; Matthew A. Wilson
2008-01-01
The emerging discipline of urban ecology is shifting focus from ecological processes embedded within cities to integrative studies of large urban areas as biophysical-social complexes. Yet this discipline lacks a theory. Results from the Baltimore Ecosystem Study, part of the Long Term Ecological Research Network, expose new assumptions and test existing assumptions...
Mougin, Christian; Azam, Didier; Caquet, Thierry; Cheviron, Nathalie; Dequiedt, Samuel; Le Galliard, Jean-François; Guillaume, Olivier; Houot, Sabine; Lacroix, Gérard; Lafolie, François; Maron, Pierre-Alain; Michniewicz, Radika; Pichot, Christian; Ranjard, Lionel; Roy, Jacques; Zeller, Bernd; Clobert, Jean; Chanzy, André
2015-10-01
The infrastructure for Analysis and Experimentation on Ecosystems (AnaEE-France) is an integrated network of the major French experimental, analytical, and modeling platforms dedicated to the biological study of continental ecosystems (aquatic and terrestrial). This infrastructure aims at understanding and predicting ecosystem dynamics under global change. AnaEE-France comprises complementary nodes offering access to the best experimental facilities and associated biological resources and data: Ecotrons, seminatural experimental platforms to manipulate terrestrial and aquatic ecosystems, in natura sites equipped for large-scale and long-term experiments. AnaEE-France also provides shared instruments and analytical platforms dedicated to environmental (micro) biology. Finally, AnaEE-France provides users with data bases and modeling tools designed to represent ecosystem dynamics and to go further in coupling ecological, agronomical, and evolutionary approaches. In particular, AnaEE-France offers adequate services to tackle the new challenges of research in ecotoxicology, positioning its various types of platforms in an ecologically advanced ecotoxicology approach. AnaEE-France is a leading international infrastructure, and it is pioneering the construction of AnaEE (Europe) infrastructure in the field of ecosystem research. AnaEE-France infrastructure is already open to the international community of scientists in the field of continental ecotoxicology.
Operationalizing Network Theory for Ecosystem Service Assessments.
Dee, Laura E; Allesina, Stefano; Bonn, Aletta; Eklöf, Anna; Gaines, Steven D; Hines, Jes; Jacob, Ute; McDonald-Madden, Eve; Possingham, Hugh; Schröter, Matthias; Thompson, Ross M
2017-02-01
Managing ecosystems to provide ecosystem services in the face of global change is a pressing challenge for policy and science. Predicting how alternative management actions and changing future conditions will alter services is complicated by interactions among components in ecological and socioeconomic systems. Failure to understand those interactions can lead to detrimental outcomes from management decisions. Network theory that integrates ecological and socioeconomic systems may provide a path to meeting this challenge. While network theory offers promising approaches to examine ecosystem services, few studies have identified how to operationalize networks for managing and assessing diverse ecosystem services. We propose a framework for how to use networks to assess how drivers and management actions will directly and indirectly alter ecosystem services. Copyright © 2016 Elsevier Ltd. All rights reserved.
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman
2014-01-01
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...
USDA-ARS?s Scientific Manuscript database
As data collection ramps up across the LTAR Network, the “information ecosystem” (Kaplan et al. 2016 and Nardi and O’Day, 1999) must support three domains of sustainable agriculture, and data flow needs to be operationalized. Approaches to prioritizing, designing, and developing shared cyberinfrastr...
NASA Astrophysics Data System (ADS)
Duffy, J. E.
2016-02-01
Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key remaining challenges include consensus on protocols; integration of historical data; data management and access; and informatics. These challenges are common to other fields and prospects for progress in the near future are good.
NASA Astrophysics Data System (ADS)
Pedersen, Morten Gram
2018-03-01
Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.
NASA Astrophysics Data System (ADS)
Lappalainen, Hanna K.; Petäjä, Tuukka; Zaytzeva, Nina; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolay; Bondur, Valery; Matvienko, Gennady; Zilitinkevich, Sergej; Kulmala, Markku
2014-05-01
Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions (Kulmala et al. 2011). The main goal of PEEX Research agenda is to contribute to solving the scientific questions that are specifically important for the Pan-Eurasian region in the coming years, in particular the global climate change and its consequences to nature and human society. Pan Eurasian region represents one the Earth most extensive areas of boreal forest (taiga) and the largest natural wetlands, thus being a significant source area of trace gas emissions, biogenic aerosol particles, and source and sink area for the greenhouse gas (GHG) exchange in a global scale (Guenther et al. 1995, Timkovsky et al. 2010, Tunved et al. 2006, Glagolev et al. 2010). One of the first activities of the PEEX initiative is to establish a process towards high level Pan-Eurasian Observation Networks. Siberian region is currently lacking a coordinated, coherent ground based atmosphere-ecosystem measurement network, which would be crucial component for observing and predicting the effects of climate change in the Northern Pan- Eurasian region The vision of the Pan-Eurasion network will be based on a hierarchical SMEAR-type (Stations Measuring Atmosphere-Ecosystem Interactions) integrated land-atmosphere observation system (Hari et al. 2009). A suite of stations have been selected for the Preliminary Phase of PEEX Observation network. These Preliminary Phase stations includes the SMEAR-type stations in Finland (SMEAR-I-II-II-IV stations), in Estonia (SMEAR-Järviselja) and in China (SMEAR-Nanjing) and selected stations in Russia and ecosystem station network in China. PEEX observation network will fill in the current observational gap in the Siberian region and bring the Siberian observation setup into international context with the with standardized or comparable procedures. It will prove a basis for the long-term continuation of advanced measurements on aerosols, clouds, GHGs and trace gases in Northern Pan- Eurasian area to be operated by PEEX educated technical staff.
Innovation networks for improving access and quality across the healthcare ecosystem.
Carroll, Mark; James, Judith A; Lardiere, Michael R; Proser, Michelle; Rhee, Kyu; Sayre, Michael H; Shore, Jay H; Ternullo, Joseph
2010-01-01
Partnerships between patient communities, healthcare providers, and academic researchers are key to stepping up the pace and public health impact of clinical and translational research supported by the National Institutes of Health. With emphasis shifting toward community engagement and faster translation of research advances into clinical practice, academic researchers have a vital stake in widening the use of health information technology systems and telehealth networks to support collaboration and innovation. However, limited interaction between academic institutions and healthcare providers hinders the ability to form and sustain the integrated networks that are needed to conduct meaningful community-engaged research that improves public health outcomes. Healthcare providers, especially those affiliated with smaller practices, will need sustainable infrastructure and real incentives to utilize such networks, as well as training and additional resources for ongoing technical assistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Autonomic Intelligent Cyber Sensor (AICS) provides cyber security and industrial network state awareness for Ethernet based control network implementations. The AICS utilizes collaborative mechanisms based on Autonomic Research and a Service Oriented Architecture (SOA) to: 1) identify anomalous network traffic; 2) discover network entity information; 3) deploy deceptive virtual hosts; and 4) implement self-configuring modules. AICS achieves these goals by dynamically reacting to the industrial human-digital ecosystem in which it resides. Information is transported internally and externally on a standards based, flexible two-level communication structure.
Long-Term Environmental Research Programs - Evolving Capacity for Discovery
NASA Astrophysics Data System (ADS)
Swanson, F. J.
2008-12-01
Long-term forestry, watershed, and ecological research sites have become critical, productive nodes for environmental science research and in some cases for work in the social sciences and humanities. The Forest Service's century-old Experimental Forests and Ranges and the National Science Foundation's 28- year-old Long-Term Ecological Research program have been remarkably productive in both basic and applied sciences, including characterization of acid rain and old-growth ecosystems and development of forest, watershed, and range management systems for commercial and other land use objectives. A review of recent developments suggests steps to enhance the function of collections of long-term research sites as interactive science networks. The programs at these sites have evolved greatly, especially over the past few decades, as the questions addressed, disciplines engaged, and degree of science integration have grown. This is well displayed by small, experimental watershed studies, which first were used for applied hydrology studies then more fundamental biogeochemical studies and now examination of complex ecosystem processes; all capitalizing on the legacy of intensive studies and environmental monitoring spanning decades. In very modest ways these collections of initially independent sites have functioned increasingly as integrated research networks addressing inter-site questions by using common experimental designs, being part of a single experiment, and examining long-term data in a common analytical framework. The network aspects include data sharing via publicly-accessible data-harvester systems for climate and streamflow data. The layering of one research or environmental monitoring network upon another facilitates synergies. Changing climate and atmospheric chemistry highlight a need to use these networks as continental-scale observatory systems for assessing the impacts of environmental change on ecological services. To better capitalize on long-term research sites and networks, agencies and universities 1) need to encourage collaboration among sites and between science and land manager communities while 2) maintaining long- term studies and monitoring efforts, and staffing the collaboration in each partner organization, including positions specifically designated as liaisons among the participating communities.
The robustness of ecosystems to the species loss of community
NASA Astrophysics Data System (ADS)
Cai, Qing; Liu, Jiming
2016-10-01
To study the robustness of ecosystems is crucial to promote the sustainable development of human society. This paper aims to analyze the robustness of ecosystems from an interesting viewpoint of the species loss of community. Unlike the existing definitions, we first introduce the notion of a community as a population of species belonging to the same trophic level. We then put forward a novel multiobjective optimization model which can be utilized to discover community structures from arbitrary unipartite networks. Because an ecosystem is commonly represented as a multipartite network, we further introduce a mechanism of competition among species whereby a multipartite network is transformed into a unipartite signed network without loss of species interaction information. Finally, we examine three strategies to test the robustness of an ecosystem. Our experiments indicate that ecosystems are robust to random species loss of community but fragile to target ones. We also investigate the relationships between the robustness of an ecosystem and that of its community composed network both to species loss. Our experiments indicate that the robustness analysis of a large-scale ecosystem to species loss may be akin to that of its community composed network which is usually small in size.
Schmitt, Laetitia Helene Marie; Brugere, Cecile
2013-01-01
Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876
NASA Technical Reports Server (NTRS)
Angelici, Gary; Popovici, Lidia; Skiles, Jay
1991-01-01
The Pilot Land Data System (PLDS) is a data and information system serving NASA-supported investigators in the land science community. The three nodes of the PLDS, one each at the Ames Research Center (ARC), the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL), cooperate in providing consistent information describing the various data holding in the hardware and software (accessible via network and modem) that provide information about and access to PLDS-held data, which is available for distribution. A major new activity of the PLDS node at the Ames Research Center involves the interaction of the PLDS with an active NASA ecosystem science project, the Oregon Transect Ecosystems Research involves the management of, access to, and distribution of the large volume of widely-varying aircraft data collected by OTTER. The OTTER project, is managed by researchers at the Ames Research Center and Oregon State University. Its principal objective is to estimate major fluxes of carbon, nitrogen, and water of forest ecosystems using an ecosystem process model driven by remote sensing data. Ten researchers at NASA centers and universities are analyzing data for six sites along a temperature-moisture gradient across the western half of central Oregon (called the Oregon Transect). Sensors mounted on six different aircraft have acquired data over the Oregon Transect in support of the OTTER project.
Progress Towards an Open Data Ecosystem for Australian Geochemistry and Geochronology Data
NASA Astrophysics Data System (ADS)
McInnes, B.; Rawling, T.; Brown, W.; Liffers, M.; Wyborn, L. A.; Brown, A.; Cox, S. J. D.
2016-12-01
Technological improvements in laboratory automation and microanalytical methods are producing an unprecedented volume of high-value geochemical data for use by geoscientists in understanding geological and planetary processes. In contrast, the research infrastructure necessary to systematically manage, deliver and archive analytical data has not progressed much beyond the minimum effort necessary to produce a peer-reviewed publication. Anecdotal evidence indicates that the majority of publically funded data is underreported, and what is published is relatively undiscoverable to experienced researchers let alone the general public. Government-funded "open data" initiatives have a role to play in the development of networks of data management and delivery ecosystems and practices allowing access to publically funded data. This paper reports on progress in Australia towards creation of an open data ecosystem involving multiple academic and government research institutions cooperating to create an open data architecture linking researchers, physical samples, sample metadata, laboratory metadata, analytical data and consumers.
Poverty, development, and Himalayan ecosystems.
Sandhu, Harpinder; Sandhu, Sukhbir
2015-05-01
The Himalayas are rich in biodiversity but vulnerable to anthropogenic pressures. They are also host to growing number of rural poor who are dependent on forest and ecosystem services for their livelihood. Local and global efforts to integrate poverty alleviation and biodiversity conservation in the Himalayas remain elusive so far. In this work, we highlight two key impediments in achieving sustainable development in the Himalayas. On the positive side, we also highlight the work of Ashoka Trust for Research in Ecology and the Environment (ATREE), a research organization based in India that seeks to integrate biodiversity concerns with livelihood security. For impediments, we draw on two examples from the Darjeeling district, India, in Eastern Himalayan region to illustrate how development organizations are failing to simultaneously address poverty and environmental issues. Based on the success of ATREE, we then propose a conceptual framework to integrate livelihood generating activities with sustainable and equitable development agenda. We recommend developing a Hindu-Kush Himalayan Ecosystem Services Network in the region to formulate a strategy for further action. We conclude by offering measures to address the challenge of integrating livelihood and environment issues through this network.
Nutrient responses to ecosystem disturbances from annual to multi-millennial timescales
B. Buma
2014-01-01
The Novus Network annual meeting was held at H. J. Andrews Experimental Forest in Oregon, USA, from 22 May to 24 May 2013. The topic was: âNutrient responses to ecosystem disturbances from annual to multi-millennial timescalesâ. The 2013 workshop brought together 28 researchers from 21 institutions spread across three continents. The participants â 17 faculty members,...
Larigauderie, Anne; Prieur-Richard, Anne-Hélène; Mace, Georgina M; Lonsdale, Mark; Mooney, Harold A; Brussaard, Lijbert; Cooper, David; Cramer, Wolfgang; Daszak, Peter; Díaz, Sandra; Duraiappah, Anantha; Elmqvist, Thomas; Faith, Daniel P; Jackson, Louise E; Krug, Cornelia; Leadley, Paul W; Le Prestre, Philippe; Matsuda, Hiroyuki; Palmer, Margaret; Perrings, Charles; Pulleman, Mirjam; Reyers, Belinda; Rosa, Eugene A; Scholes, Robert J; Spehn, Eva; Turner, Bl; Yahara, Tetsukazu
2012-02-01
DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: "Biodiversity and Ecosystem Services Science for a Sustainable Planet". This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network - GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services - IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011-2020). This article presents the vision and its core scientific challenges.
NASA Astrophysics Data System (ADS)
Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Zeng, Fanjiang; Mao, Donglei; Zhang, Zhiwei
2017-11-01
There is an increasing consensus on the importance of coupling ecosystem services (ES) into integrated water resource management (IWRM), due to a wide range of benefits to human from the ES. This paper proposes an ES-based IWRM framework within which a participatory Bayesian network (BN) model is developed to assist with the coupling between ES and IWRM. The framework includes three steps: identifying water-related services of ecosystems; analysis of the tradeoff and synergy among users of water; and ES-based IWRM implementation using the participatory BN model. We present the development, evaluation and application of the participatory BN model with the involvement of four participant groups (stakeholders, water manager, water management experts, and research team) in Qira oasis area, Northwest China. As a typical catchment-scale region, the Qira oasis area is facing severe water competition between the demands of human activities and natural ecosystems. Results demonstrate that the BN model developed provides effective integration of ES into a quantitative IWMR framework via public negotiation and feedback. The network results, sensitivity evaluation, and management scenarios are broadly accepted by the participant groups. The intervention scenarios from the model conclude that any water management measure remains unable to sustain the ecosystem health in water-related ES. Greater cooperation among the stakeholders is highly necessary for dealing with such water conflicts. In particular, a proportion of the agricultural water saved through improving water-use efficiency should be transferred to natural ecosystems via water trade. The BN model developed is appropriate for areas throughout the world in which there is intense competition for water between human activities and ecosystems.
Disrupting the Networks of Cancer
Camacho, Daniel F.; Pienta, Kenneth J.
2014-01-01
Ecosystems are interactive systems involving communities of species and their abiotic environment. Tumors are ecosystems in which cancer cells act as invasive species interacting with native host cell species in an established microenvironment within the larger host biosphere. At its heart, to study ecology is to study interconnectedness. In ecologic science, an ecologic network is a representation of the biotic interactions in an ecosystem in which species (nodes) are connected by pairwise interactions (links). Ecologic networks and signaling network models have been used to describe and compare the structures of ecosystems. It has been shown that disruption of ecologic networks through the loss of species or disruption of interactions between them can lead to the destruction of the ecosystem. Often, the destruction of a single node or link is not enough to disrupt the entire ecosystem. The more complex the network and its interactions, the more difficult it is to cause the extinction of a species, especially without leveraging other aspects of the ecosystem. Similarly, successful treatment of cancer with a single agent is rarely enough to cure a patient without strategically modifying the support systems conducive to survival of cancer. Cancer cells and the ecologic systems they reside in can be viewed as a series of nested networks. The most effective new paradigms for treatment will be developed through application of scaled network disruption. PMID:22442061
Disrupting the networks of cancer.
Camacho, Daniel F; Pienta, Kenneth J
2012-05-15
Ecosystems are interactive systems involving communities of species and their abiotic environment. Tumors are ecosystems in which cancer cells act as invasive species interacting with native host cell species in an established microenvironment within the larger host biosphere. At its heart, to study ecology is to study interconnectedness. In ecologic science, an ecologic network is a representation of the biotic interactions in an ecosystem in which species (nodes) are connected by pairwise interactions (links). Ecologic networks and signaling network models have been used to describe and compare the structures of ecosystems. It has been shown that disruption of ecologic networks through the loss of species or disruption of interactions between them can lead to the destruction of the ecosystem. Often, the destruction of a single node or link is not enough to disrupt the entire ecosystem. The more complex the network and its interactions, the more difficult it is to cause the extinction of a species, especially without leveraging other aspects of the ecosystem. Similarly, successful treatment of cancer with a single agent is rarely enough to cure a patient without strategically modifying the support systems conducive to survival of cancer. Cancer cells and the ecologic systems they reside in can be viewed as a series of nested networks. The most effective new paradigms for treatment will be developed through application of scaled network disruption. ©2012 AACR.
Enhancing a Socio-technical Data Ecosystem for Societally Relevant, Sustained Arctic Observing
NASA Astrophysics Data System (ADS)
Pulsifer, P. L.
2017-12-01
In recent years, much has been learned about the state of data and related systems for the Arctic region, however work remains to be done to achieve an envisioned integrated and well-defined pan-Arctic observing and data network. The envisioned comprehensive network will enables access to high quality data, expertise and information in support of scientific understanding, stakeholder needs, and agency operations. In this paper we argue that priorities for establishing such a network are in the areas of better understanding the current system, machine-enhanced data discovery and mediation, and the human aspects of community building. The author has engaged extensively in international, Canadian and U.S.-based data coordination and system design efforts. This includes a series of meetings, workshops, systems design activities, and publications. The results of these efforts have been analyzed and a synthesis of these analyses are presented here. Analysis reveals that there are a large number of polar data resources interacting in a complex network that functions as a data ecosystem. Understanding this ecosystem is critical and required to guide design. Given the size and complexity of the network, achieving broad data discovery and access and meaningful data integration will require advanced techniques including machine learning, semantic mediation, and the use of highly connected virtual research environments. To achieve the aforementioned goal will require a community of engaged researchers, technologists, and stakeholders to establish requirements and the social and organizational context needed for effective approaches. The results imply that: i) an effective governance mechanism must be established that includes "bottom up" and "top down" control; ii) the established governance mechanism must include effective networking of actors in the system; iii) funders must adopt a long-term, sustainable infrastructure approach to systems development; iv) best practices will include service and application "chaining" to provide solutions for the diverse Arctic community. Establishing cyberinfrastructure for a sustained Arctic observing network that benefits society will require an innovative combination of emerging technologies and community-building across stakeholders.
NASA Astrophysics Data System (ADS)
Rankine, C. J.; Sánchez-Azofeifa, G.
2011-12-01
In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data storage, management, visualization, and retrieval for further analysis. The use of tower and ground-based optical sensor networks and meteorological monitoring instrumentation has proven effective in capturing seasonal growth patterns in primary and secondary forest stands. Furthermore, the observed trends in above and below ground microclimate variables are shown to closely correlate with in-situ vegetative indices (NDVI and EVI) across study sites. These long-term environmental sensory data streams provide valuable insights as to how these threatened semi-arid ecosystems regenerate after disturbances and how they respond to environmental stress such as climate change in the tropical and sub-tropical latitudes.
NASA Astrophysics Data System (ADS)
Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.
2017-12-01
The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.
NASA Astrophysics Data System (ADS)
Millar, C. I.; Fagre, D. B.
2004-12-01
Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate research symposium (MTNCLIM), the first to be held in spring 2005; developing a strategy for climate-monitoring in WNA; installing and networking high-elevation (>3000m) climate-monitoring stations; and completing three target regions (Glacier National Park, MT; Sierra Nevada and White Mountains, CA) of the international GLORIA (Global Observation Research Initiative in Alpine Environments) plant-monitoring project, the first in WNA. CIRMOUNT emphasizes integration at the regional scale in WNA, collaborating with and complementing projects such as the Western Mountain Initiative, whose mandate is more targeted than CIRMOUNT's, and global programs such as GLORIA and the international Mountain Research Initiative. Achievement of continuing success in WNA hinges on the capacity to secure long-term funding and institutional investment. (1) See associated URL for paper and poster pdfs (2) Discussing the future of western U.S. mountains, climate change, and ecosystems. EOS 31 August 2004, 85(35), p. 329
Stottlemyer, R.; Edmonds, R.; Scherbarth, L.; Urbanczyk, K.; Van Miegroet, H.; Zak, J.
2002-01-01
In 1998, the USGS Global Change program funded research for a network of Long-Term Reference Ecosystems initially established in national parks and funded by the National Park Service. The network included Noland Divide, Great Smoky Mountains National Park, Tennessee; Pine Canyon, Big Ben National park, Texas; West Twin Creek, Olympic National Park, Washingtona?? Wallace Lake, Isle Royale National Park, Michigan; and the Asik watershed, Noatak National Preserve, Alaska. The watershed ecosystem model was used since this approach permits additional statistical power in detection of trends among variables, and the watershed in increasingly a land unit used in resource management and planning. The ecosystems represent a major fraction of lands administered by the National Park Service, and were chosen generally for the contrasts among sites. For example, tow of the site, Noland and West Twin, are characterized by high precipitation amounts, but Noland receives some of the highest atmospheric nitrogen (N) inputs in North America. In contrast, Pine Canyon and Asik are warm and cold desert sites respectively. The Asik watershed receives <1% the atmospheric N inputs Noland receives. The Asik site is at the northern extent (treeline) of the boreal biome in the North America while Wallace is at the southern ecotone between boreal and northern hardwoods. The research goal for these sites is to gain a basic understanding of ecosystem structure and function, and the response to global change especially atmospheric inputs and climate.
Beyond the edge: Linking agricultural landscapes, stream networks, and best management practices
Kreiling, Rebecca M.; Thoms, Martin C.; Richardson, William B.
2018-01-01
Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited cohesiveness between agricultural landscape-focused research and river science, despite similar end goals. Interdisciplinary research into stream networks that drain agricultural landscapes is expanding but is fraught with problems. Conceptual frameworks are useful tools to order phenomena, reveal patterns and processes, and in interdisciplinary river science, enable the joining of multiple areas of understanding into a single conceptual–empirical structure. We present a framework for the interdisciplinary study and management of agricultural and riverine landscapes. The framework includes components of an ecosystems approach to the study of catchment–stream networks, resilience thinking, and strategic adaptive management. Application of the framework is illustrated through a study of the Fox Basin in Wisconsin, USA. To fully realize the goal of nutrient reduction in the basin, we suggest that greater emphasis is needed on where best management practices (BMPs) are used within the spatial context of the combined watershed–stream network system, including BMPs within the river channel. Targeted placement of BMPs throughout the riverine landscape would increase the overall buffering capacity of the system to nutrient runoff and thus its resilience to current and future disturbances.
PRIMENET. ULTRAVIOLET RADIATION/AMPHIBIAN POPULATIONS
The PRIMENet (Parks Research and Intensive Monitoring of Ecosystems Network) is a system of 14 national parks (Acadia, Smoky Mountains, Rocky Mountains, Glacier, Sequoia-Kings Canyon, and Olympic National Parks) established as index sites for long-term monitorins of environmental...
Australia's TERN: Advancing Ecosystem Data Management in Australia
NASA Astrophysics Data System (ADS)
Phinn, S. R.; Christensen, R.; Guru, S.
2013-12-01
Globally, there is a consistent movement towards more open, collaborative and transparent science, where the publication and citation of data is considered standard practice. Australia's Terrestrial Ecosystem Research Network (TERN) is a national research infrastructure investment designed to support the ecosystem science community through all stages of the data lifecycle. TERN has developed and implemented a comprehensive network of ';hard' and ';soft' infrastructure that enables Australia's ecosystem scientists to collect, publish, store, share, discover and re-use data in ways not previously possible. The aim of this poster is to demonstrate how TERN has successfully delivered infrastructure that is enabling a significant cultural and practical shift in Australia's ecosystem science community towards consistent approaches for data collection, meta-data, data licensing, and data publishing. TERN enables multiple disciplines, within the ecosystem sciences to more effectively and efficiently collect, store and publish their data. A critical part of TERN's approach has been to build on existing data collection activities, networks and skilled people to enable further coordination and collaboration to build each data collection facility and coordinate data publishing. Data collection in TERN is through discipline based facilities, covering long term collection of: (1) systematic plot based measurements of vegetation structure, composition and faunal biodiversity; (2) instrumented towers making systematic measurements of solar, water and gas fluxes; and (3) satellite and airborne maps of biophysical properties of vegetation, soils and the atmosphere. Several other facilities collect and integrate environmental data to produce national products for fauna and vegetation surveys, soils and coastal data, as well as integrated or synthesised products for modelling applications. Data management, publishing and sharing in TERN are implemented through a tailored data licensing framework suitable for ecosystem data, national standards for metadata, a DOI-minting service, and context-appropriate data repositories and portals. The TERN Data infrastructure is based on loosely coupled 'network of networks.' Overall, the data formats used across the TERN facilities vary from NetCDF, comma-separated values and descriptive documents. Metadata standards include ISO19115, Ecological Metadata Language and rich semantic enabled contextual information. Data services vary from Web Mapping Service, Web Feature Service, OpeNDAP, file servers and KNB Metacat. These approaches enable each data collection facility to maintain their discipline based data collection and storage protocols. TERN facility meta-data are harvested regularly for the central TERN Data Discovery Portal and converted to a national standard format. This approach enables centralised discovery, access, and re-use of data simply and effectively, while maintaining disciplinary diversity. Effort is still required to support the cultural shift towards acceptance of effective data management, publication, sharing and re-use as standard practice. To this end TERN's future activities will be directed to supporting this transformation and undertaking ';education' to enable ecosystem scientists to take full advantage of TERN's infrastructure, and providing training and guidance for best practice data management.
USDA-ARS?s Scientific Manuscript database
Long-term research conducted at multiple scales is critical to assessing the effects of key long term drivers (e.g., global population growth; land-use change; increased competition for natural resources; climate variability and change) on our ability to sustain or enhance agricultural production to...
A Worldwide Web-portal for Aquatic Mesocosm Facilities: WWW.MESOCOSM.EU
NASA Astrophysics Data System (ADS)
Berger, S. A.; Nejstgaard, J. C.
2016-02-01
Experimental mesocosms are valuable tools to fill the gap between highly controlled/replicated lab experiments and uncontrolled/non-replicated natural environments such as rivers, lakes and oceans. WWW.MESOCOSM.EU is an open web-portal for leading aquatic mesocosm facilities around the world. It was created within the FP7 EU-project MESOAQUA (A network of leading MESOcosm facilities to advance the studies of future AQUAtic ecosystems from the Arctic to the Mediterranean). The goal of the portal is to increase international knowledge about existing mesocosm facilities, including information on locations, environment, equipment, contacts, research opportunities and mesocosm-based publications. MESOCOSM.EU specifically aims to be a tool to enhance the quality of research by facilitating international cooperative network building, announcement of new research initiatives, transfer of best practice, and dissemination of knowledge, public information and press releases. As an open platform for all aquatic ecosystem scale science (marine and freshwater), MESOCOSM.EU aims to fill the lack of a centralized, coordinating virtual infrastructure for international aquatic mesocosm research, from the mountains to the ocean and from polar to tropical regions.
Evolving science of marine reserves: New developments and emerging research frontiers
Gaines, Steven D.; Lester, Sarah E.; Grorud-Colvert, Kirsten; Costello, Christopher; Pollnac, Richard
2010-01-01
The field of marine reserve science has matured greatly over the last decade, moving beyond studies of single reserves and beyond perspectives from single disciplines. This Special Feature exemplifies recent advances in marine reserve research, showing insights gained from synthetic studies of reserve networks, long-term changes within reserves, integration of social and ecological science research, and balance between reserve design for conservation as well as fishery and other commercial objectives. This rich body of research helps to inform conservation planning for marine ecosystems but also poses new challenges for further study, including how to best design integrated fisheries management and conservation systems, how to effectively evaluate the performance of entire reserve networks, and how to examine the complex coupling between ecological and socioeconomic responses to reserve networks. PMID:20978212
Mapping of interconnection of climate risks
NASA Astrophysics Data System (ADS)
Yokohata, Tokuta; Tanaka, Katsumasa; Nishina, Kazuya; Takanashi, Kiyoshi; Emori, Seita; Kiguchi, Masashi; Iseri, Yoshihiko; Honda, Yasushi; Okada, Masashi; Masaki, Yoshimitsu; Yamamoto, Akitomo; Shigemitsu, Masahito; Yoshimori, Masakazu; Sueyoshi, Tetsuo; Iwase, Kenta; Hanasaki, Naota; Ito, Akihiko; Sakurai, Gen; Iizumi, Toshichika; Oki, Taikan
2015-04-01
Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by changing the food price or food supply. Changes in river runoff can also make an impact on the hydropower efficiency. Comprehensive pictures of climate risks and their interconnections are clearly shown in a straightforward manner by the network diagram. We will have a discussion how our results can be helpful for our society to recognize the climate risk.
Visualization of the chains of risks under global climate change
NASA Astrophysics Data System (ADS)
Yokohata, T.; Nishina, K.; Takahashi, K.; Kiguchi, M.; Iseri, Y.; Sueyoshi, T.; Yoshimori, M.; Iwase, K.; Yamamoto, A.; Shigemitsu, M.; Honda, Y.; Hanasaki, N.; Masaki, Y.; Ito, A.; Iizumi, T.; Sakurai, G.; Okada, M.; Emori, S.; Oki, T.
2014-12-01
Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by changing the food price or food supply. Changes in river runoff can also make an impact on the hydropower efficiency. Comprehensive pictures of climate risks and their interconnections are clearly shown in a straightforward manner by the network diagram. We will have a discussion how our results can be helpful for our society to recognize the climate risk.
Advances, gaps, and future prospects in biological soil crust research
NASA Astrophysics Data System (ADS)
Weber, Bettina; Büdel, Burkhard; Belnap, Jayne
2017-04-01
Research progress has led to the understanding that biological soil crusts (biocrusts) are often complete miniature ecosystems comprising a variety of photosynthesizers (cyanobacteria, algae, lichens, bryophytes), decomposers like bacteria, fungi, and archaea, and heterotrophic organisms, like protozoa, nematodes, and microarthropods feeding on them. Biocrusts are one of the oldest terrestrial ecosystems, playing central roles in the structure and functioning of dryland ecosystems and presumably also influencing global biogeochemical cycles. On the other hand, biocrusts have been shown to be highly sensitive to global change, being easily destroyed by mechanical disturbance and severely threatened by minor changes in climate patterns. Despite the large increase in biocrust research, we still see major knowledge gaps which need to be tackled. Considering biodiversity studies, there are major regions of potential biocrust occurrence, where hardly any studies have been conducted. Molecular identification techniques are increasingly employed, but genetically characterized entities need to be linked with morphologically identified organisms to identify their ecological roles. Although there is a large body of research on the role of biocrusts in water and nutrient budgets, we are still far from closing the overall cycles. Results suggest that not all mechanisms have been identified, yet, leading to sometimes contradictory results between different studies. Knowledge on how to minimize impact to biocrusts during surface-disturbing activities has hardly been gained, and despite research efforts, instructions on effective biocrust restoration are still exemplary. In order to fill these research gaps, novel scientific approaches are needed. We expect that global research networks could be extremely helpful to answer scientific questions by tackling them within different regions, utilizing the same methodological techniques. Global networks could also be used for long-term monitoring approaches and to conduct meta-analyses on already existing scientific data. Finally, the experimental results obtained during multiple local studies need to be integrated and extrapolated to ecosystem and global scales in order to identify the overall role of biocrusts in the Earth system through time.
A flexible, open, decentralized system for digital pathology networks.
Schuler, Robert; Smith, David E; Kumaraguruparan, Gowri; Chervenak, Ann; Lewis, Anne D; Hyde, Dallas M; Kesselman, Carl
2012-01-01
High-resolution digital imaging is enabling digital archiving and sharing of digitized microscopy slides and new methods for digital pathology. Collaborative research centers, outsourced medical services, and multi-site organizations stand to benefit from sharing pathology data in a digital pathology network. Yet significant technological challenges remain due to the large size and volume of digitized whole slide images. While information systems do exist for managing local pathology laboratories, they tend to be oriented toward narrow clinical use cases or offer closed ecosystems around proprietary formats. Few solutions exist for networking digital pathology operations. Here we present a system architecture and implementation of a digital pathology network and share results from a production system that federates major research centers.
A Flexible, Open, Decentralized System for Digital Pathology Networks
SMITH, David E.; KUMARAGURUPARAN, Gowri; CHERVENAK, Ann; LEWIS, Anne D.; HYDE, Dallas M.; KESSELMAN, Carl
2014-01-01
High-resolution digital imaging is enabling digital archiving and sharing of digitized microscopy slides and new methods for digital pathology. Collaborative research centers, outsourced medical services, and multi-site organizations stand to benefit from sharing pathology data in a digital pathology network. Yet significant technological challenges remain due to the large size and volume of digitized whole slide images. While information systems do exist for managing local pathology laboratories, they tend to be oriented toward narrow clinical use cases or offer closed ecosystems around proprietary formats. Few solutions exist for networking digital pathology operations. Here we present a system architecture and implementation of a digital pathology network and share results from a production system that federates major research centers. PMID:22941985
NASA Astrophysics Data System (ADS)
Cury, Philippe; Baisnée, Pierre-François
2010-05-01
The EUR-OCEANS Consortium is the follow-up structure of the homonym European Network of Excellence (NoE; 2005-2008, FP6 contract number 511106). It is a scientific network, benefiting from and relying upon the institutional commitment of the 27 research performing organisations forming its core (paying) membership. It aims at the long-term harmonization of European research efforts related to ocean ecosystems undergoing anthropogenic and natural forcing. More specifically, its objectives are to facilitate and promote: (1) top-level scientific research on the impacts of anthropogenic and natural forcing on ocean ecosystems, fostering collaborations across the European Research Area; (2) the optimal use of any shared technical infrastructures and scientific facilities; and (3) activities to spread excellence, such as the training of scientific personnel and students, or knowledge dissemination towards the general public and socio-economic users. A particular focus is put during the first scientific coordination mandate on the building of scenarios for marine ecosystems under anthropogenic and natural forcing in the XXI Century, and on the improvement of the science-policy interface. Through calls for projects and networking activities, the Consortium seeks to favour the emergence of coordinated projects on key hot topics on one hand, and the crystallisation of scientific priorities and strategies that could serve as input to ERA-NETs, ESFRI, Joint Programming Initiatives and European Research Planning actors in general. While being an active standalone structure, the Consortium is also engaged in the Euromarine FP7 project (submitted) aiming at the definition of a common coordinating or integrating structure for the three follow-up entities of FP6 marine science NoEs (Marine Genomics Europe, MarBEF, EUR-OCEANS). The 2009-2011 strategy and activity plan of EUR-OCEANS will be presented and the involvement of EUR-OCEANS members in other key projects or programmes will be summarized.
Membership nominations in international scientific assessments
NASA Astrophysics Data System (ADS)
Leifeld, Philip; Fisher, Dana R.
2017-10-01
International scientific assessments are transnational knowledge-based expert networks with a mandate to advise policymakers. A well-known example is the Millennium Ecosystem Assessment (MA), which synthesized research on ecosystem services between 2001 and 2005, utilizing the knowledge of 1,360 expert members. Little, however, is known about the membership composition and the driving forces behind membership nominations in the MA and similar organizations. Here we introduce a survey data set on recruitment in the MA and analyse nomination patterns among experts as a complex network. The results indicate that membership recruitment was governed by prior contacts in other transnational elite organizations and a range of other factors related to personal affinity. Network analysis demonstrates how some core individuals were particularly influential in shaping the overall membership composition of the group. These findings add to recently noted concerns about the lack of diversity of views represented in international scientific assessments.
NASA Astrophysics Data System (ADS)
van Dam, A.; Gettel, G. M.; Kipkemboi, J.; Rahman, M. M.
2011-12-01
Papyrus wetlands in East Africa provide ecosystem services supporting the livelihoods of millions but are rapidly degrading due to economic development. For ecosystem conservation, an integrated understanding of the natural and social processes driving ecosystem change is needed. This research focuses on integrating the causal relationships between hydrology, ecosystem function, and livelihood sustainability in Nyando wetland, western Kenya. Livelihood sustainability is based on ecosystem services that include plant and animal harvest for building material and food, conversion of wetlands to crop and grazing land, water supply, and water quality regulation. Specific objectives were: to integrate studies of hydrology, ecology, and livelihood activities using a Bayesian Network (BN) model and include stakeholder involvement in model development. The BN model (Netica 4.16) had 35 nodes with seven decision nodes describing demography, economy, papyrus market, and rainfall, and two target nodes describing ecosystem function (defined by groundwater recharge, nutrient and sediment retention, and biodiversity) and livelihood sustainability (drinking water supply, crop production, livestock production, and papyrus yield). The conditional probability tables were populated using results of ecohydrological and socio-economic field work and consultations with stakeholders. The model was evaluated for an average year with decision node probabilities set according to data from research, expert opinion, and stakeholders' views. Then, scenarios for dry and wet seasons and for economic development (low population growth and unemployment) and policy development (more awareness of wetland value) were evaluated. In an average year, the probability for maintaining a "good" level of sediment and nutrient retention functions, groundwater recharge, and biodiversity was about 60%. ("Good" is defined by expert opinion based on ongoing field research.) In the dry season, the probability was reduced to about 40% and in the wet season increased to about 85%. Both ecosystem functions and livelihood sustainability were most sensitive to flooding and the human pressure, notably the area of crop conversion, grazing pressure, and papyrus harvest. Flooded conditions limit cropping, livestock herding and vegetation harvesting but have a strong positive effect on ecosystem function. Preliminary results suggest that the effects of economic and policy development on ecosystem function and livelihood sustainability were negligible, but more data on these aspects will be included in further model development. The advantage of this modeling approach, which integrates data from hydrological, ecological, and socio-economic studies, is that it highlights the relative effect of hydrologic conditions and socio-economic pressures on ecosystem function. This model is static, however, with long-term changes in climate and exploitation levels superimposed on seasonal hydrology dynamics. Further work should address this issue as well as further constrain probabilities at each node as field research continues.
Proposal for a telehealth concept in the translational research model.
Silva, Angélica Baptista; Morel, Carlos Médicis; Moraes, Ilara Hämmerli Sozzi de
2014-04-01
To review the conceptual relationship between telehealth and translational research. Bibliographical search on telehealth was conducted in the Scopus, Cochrane BVS, LILACS and MEDLINE databases to find experiences of telehealth in conjunction with discussion of translational research in health. The search retrieved eight studies based on analysis of models of the five stages of translational research and the multiple strands of public health policy in the context of telehealth in Brazil. The models were applied to telehealth activities concerning the Network of Human Milk Banks, in the Telemedicine University Network. The translational research cycle of human milk collected, stored and distributed presents several integrated telehealth initiatives, such as video conferencing, and software and portals for synthesizing knowledge, composing elements of an information ecosystem, mediated by information and communication technologies in the health system. Telehealth should be composed of a set of activities in a computer mediated network promoting the translation of knowledge between research and health services.
Thrush, Simon F; Hewitt, Judi E; Parkes, Samantha; Lohrer, Andrew M; Pilditch, Conrad; Woodin, Sarah A; Wethey, David S; Chiantore, Mariachiara; Asnaghi, Valentina; De Juan, Silvia; Kraan, Casper; Rodil, Ivan; Savage, Candida; Van Colen, Carl
2014-06-01
Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.
Chau, Tom; Moghimi, Saba; Popovic, Milos R
2013-01-01
Rehabilitation engineering is concerned with technology innovations and technology-mediated treatments for the improvement of quality of care and quality of life of individuals with disability. Unlike many other fields of health research, the knowledge translation (KT) cycle of rehabilitation engineering research and development (R&D) is often considered incomplete until a technology product or technology-facilitated therapy is available to target clientele. As such, the KT journey of rehabilitation engineering R&D is extremely challenging, necessarily involving knowledge exchange among numerous players across multiple sectors. In this article, we draw on recent literature about the knowledge trichotomy in technology-based rehabilitation R&D and propose a knowledge ecosystem to frame the rehabilitation engineering KT process from need to product. Identifying the principal process of the ecosystem as one of knowledge flow, we elucidate the roles of repository and networked knowledge, identify key consumers and producers in a trinity of communities of practice, and draw on knowledge management literature to describe different knowledge flows. The article concludes with instantiations of this knowledge ecosystem for 2 local rehabilitation engineering research-development-commercialization endeavors. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Science and society: the role of long-term studies in environmental stewardship
Charles T. Driscoll; Kathleen F. Lambert; F. Stuart Chapin; David J. Nowak; Thomas A. Spies; Frederick J. Swanson; David B. Kittredge; Clarisse M. Hart
2012-01-01
Long-term research should play a crucial role in addressing grand challenges in environmental stewardship. We examine the efforts of five Long Term Ecological Research Network sites to enhance policy, management, and conservation decisions for forest ecosystems. In these case studies, we explore the approaches used to inform policy on atmospheric deposition, public...
Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.
Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro
2016-01-01
Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.
Kerr, Rodrigo; da Cunha, Letícia C; Kikuchi, Ruy K P; Horta, Paulo A; Ito, Rosane G; Müller, Marius N; Orselli, Iole B M; Lencina-Avila, Jannine M; de Orte, Manoela R; Sordo, Laura; Pinheiro, Bárbara R; Bonou, Frédéric K; Schubert, Nadine; Bergstrom, Ellie; Copertino, Margareth S
2016-03-01
An international multi-disciplinary group of 24 researchers met to discuss ocean acidification (OA) during the Brazilian OA Network/Surface Ocean-Lower Atmosphere Study (BrOA/SOLAS) Workshop. Fifteen members of the BrOA Network (www.broa.furg.br) authored this review. The group concluded that identifying and evaluating the regional effects of OA is impossible without understanding the natural variability of seawater carbonate systems in marine ecosystems through a series of long-term observations. Here, we show that the western South Atlantic Ocean (WSAO) lacks appropriate observations for determining regional OA effects, including the effects of OA on key sensitive Brazilian ecosystems in this area. The impacts of OA likely affect marine life in coastal and oceanic ecosystems, with further social and economic consequences for Brazil and neighboring countries. Thus, we present (i) the diversity of coastal and open ocean ecosystems in the WSAO and emphasize their roles in the marine carbon cycle and biodiversity and their vulnerabilities to OA effects; (ii) ongoing observational, experimental, and modeling efforts that investigate OA in the WSAO; and (iii) highlights of the knowledge gaps, infrastructure deficiencies, and OA-related issues in the WSAO. Finally, this review outlines long-term actions that should be taken to manage marine ecosystems in this vast and unexplored ocean region.
Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)
NASA Astrophysics Data System (ADS)
Beringer, Jason; McHugh, Ian; Hutley, Lindsay B.; Isaac, Peter; Kljun, Natascha
2017-03-01
Standardised, quality-controlled and robust data from flux networks underpin the understanding of ecosystem processes and tools necessary to support the management of natural resources, including water, carbon and nutrients for environmental and production benefits. The Australian regional flux network (OzFlux) currently has 23 active sites and aims to provide a continental-scale national research facility to monitor and assess Australia's terrestrial biosphere and climate for improved predictions. Given the need for standardised and effective data processing of flux data, we have developed a software suite, called the Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO), that enables gap-filling and partitioning of the primary fluxes into ecosystem respiration (Fre) and gross primary productivity (GPP) and subsequently provides diagnostics and results. We outline the processing pathways and methodologies that are applied in DINGO (v13) to OzFlux data, including (1) gap-filling of meteorological and other drivers; (2) gap-filling of fluxes using artificial neural networks; (3) the u* threshold determination; (4) partitioning into ecosystem respiration and gross primary productivity; (5) random, model and u* uncertainties; and (6) diagnostic, footprint calculation, summary and results outputs. DINGO was developed for Australian data, but the framework is applicable to any flux data or regional network. Quality data from robust systems like DINGO ensure the utility and uptake of the flux data and facilitates synergies between flux, remote sensing and modelling.
USDA-ARS?s Scientific Manuscript database
The United States Department of Agriculture, Agricultural Research Service Long-Term Agroecosystem Research (LTAR) Network consists of 18 sites across the continental United States. LTAR scientists seek to determine ways to ensure sustainability and enhance food production and ecosystem services at ...
Semiarid ECohydrological Array – SECA 2058
USDA-ARS?s Scientific Manuscript database
The Southwestern ECohydrology Array (SECA) is a multi-user network that serves to assess biosphere / atmospheric exchange processes, as well as surface hydrology in semiarid ecosystems. SECA is administered through the USDA-ARS Southwest Watershed Research Center and the University of Arizona’s B2 E...
NASA Astrophysics Data System (ADS)
Murdoch, P. S.
2007-12-01
The past 30 years of environmental research have shown that our world is not made up of discrete components acting independently, but rather of a mosaic of complex relations among air, land, water, living resources, and human activities. Recent warming of the climate is having a significant effect on the functioning of those systems. A national imperative is developing to quickly establish local, regional, and national systems for anticipating environmental degradation from a changing climate and developing cost-effective adaptation or mitigation strategies. In these circumstances, the debate over research versus monitoring becomes moot--there is a clear need for the integrated application of both across a range of temporal and spatial scales. A national framework that effectively addresses the multiple scales and complex multi-disciplinary processes of climate change is being assembled largely from existing programs through collaboration among Federal, State, local, and NGO organizations. The result will be an observation and research network capable of interpreting complex environmental changes at a range of spatial and temporal scales, but at less cost than if the network were funded as an independent initiative. A pilot implementation of the collaborative framework in the Delaware River Basin yielded multi-scale assessments of carbon storage and flux, and the effects of forest fragmentation and soil calcium depletion on ecosystem function. A prototype of a national climate-effects observation and research network linking research watersheds, regional surveys, remote sensing, and ecosystem modeling is being initiated in the Yukon River Basin where carbon flux associated with permafrost thaw could accelerate global warming.
NASA Astrophysics Data System (ADS)
Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.
2015-12-01
Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.
An introduction to the Australian and New Zealand flux tower network - OzFlux
NASA Astrophysics Data System (ADS)
Beringer, Jason; Hutley, Lindsay B.; McHugh, Ian; Arndt, Stefan K.; Campbell, David; Cleugh, Helen A.; Cleverly, James; Resco de Dios, Víctor; Eamus, Derek; Evans, Bradley; Ewenz, Cacilia; Grace, Peter; Griebel, Anne; Haverd, Vanessa; Hinko-Najera, Nina; Huete, Alfredo; Isaac, Peter; Kanniah, Kasturi; Leuning, Ray; Liddell, Michael J.; Macfarlane, Craig; Meyer, Wayne; Moore, Caitlin; Pendall, Elise; Phillips, Alison; Phillips, Rebecca L.; Prober, Suzanne M.; Restrepo-Coupe, Natalia; Rutledge, Susanna; Schroder, Ivan; Silberstein, Richard; Southall, Patricia; Yee, Mei Sun; Tapper, Nigel J.; van Gorsel, Eva; Vote, Camilla; Walker, Jeff; Wardlaw, Tim
2016-10-01
OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m-2 yr-1) and the natural raised peat bog site having a very low GPP (820 gC m-2 yr-1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.
Are Urban Ecosystem Services Useful for a Sustainable City?
NASA Astrophysics Data System (ADS)
Jenerette, D.
2014-12-01
In meeting the needs of rapidly expanding city residents, ecosystem functioning within the urban boundary may provide several key services ranging from life-sustaining services such as climate regulation and food production to services associated with recreation and aesthetics. In contrast, ecosystem disservices are associated with ecosystem characteristics that have a negative impact on residents and range from potentially injurious components such as increasing pollutant exposure or additional resource requirements such as irrigation water. Identifying trade-offs in both services and disservices is a priority for assessing how ecosystem functioning influences urban residents. Such assessments require a baseline understanding of their rates of production and acutely need expanded monitoring and modeling. Recent efforts at quantifying ecosystem services and disservices have relied on combinations of direct field surveys, in-situ environmental sensor networks, and remotely sensed vegetation. While much work has been conducted within single metropolitan regions, expanded efforts are underway to analyze networks of urban sites. Here I highlight recent findings associated with urban ecosystem services associated with variation in urban forests and urban gardens as two contrasting ecosystem types within a city. These research efforts are leading to improved understanding of the variation in the production of and specific desires for ecosystem services and disservices. Initial data across several studies suggests desires for services show sensitivity to both socioeconomic status as suggested by a hierarchy of needs hypothesis and local environmental conditions as suggested by an environmental determinism hypothesis. Consequently, the production of ecosystem services also varies dramatically across socioeconomic and climate gradients. Future projections of the rates of service production are highly uncertain with likely strong nonlinearities in responses to urban conditions. Designing for sustainable ecosystem services within cities such that benefits are maximized and costs are minimized as we prepare for a near future with 2.5 billion more urban residents.
Ochoa-Hueso, Raúl; Munzi, Silvana; Alonso, Rocío; Arróniz-Crespo, María; Avila, Anna; Bermejo, Victoria; Bobbink, Roland; Branquinho, Cristina; Concostrina-Zubiri, Laura; Cruz, Cristina; Cruz de Carvalho, Ricardo; De Marco, Alessandra; Dias, Teresa; Elustondo, David; Elvira, Susana; Estébanez, Belén; Fusaro, Lina; Gerosa, Giacomo; Izquieta-Rojano, Sheila; Lo Cascio, Mauro; Marzuoli, Riccardo; Matos, Paula; Mereu, Simone; Merino, José; Morillas, Lourdes; Nunes, Alice; Paoletti, Elena; Paoli, Luca; Pinho, Pedro; Rogers, Isabel B; Santos, Arthur; Sicard, Pierre; Stevens, Carly J; Theobald, Mark R
2017-08-01
Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O 3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz
2017-04-01
The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the flux sites, two abnormally dry years (2015 and 2016) occurred. Fluxes from these years are evaluated in detail here. These data are additionally used to evaluate the drought assessment of the German Drought Monitor (www.ufz.de/droughtmonitor).
Using food-web theory to conserve ecosystems
McDonald-Madden, E.; Sabbadin, R.; Game, E. T.; Baxter, P. W. J.; Chadès, I.; Possingham, H. P.
2016-01-01
Food-web theory can be a powerful guide to the management of complex ecosystems. However, we show that indices of species importance common in food-web and network theory can be a poor guide to ecosystem management, resulting in significantly more extinctions than necessary. We use Bayesian Networks and Constrained Combinatorial Optimization to find optimal management strategies for a wide range of real and hypothetical food webs. This Artificial Intelligence approach provides the ability to test the performance of any index for prioritizing species management in a network. While no single network theory index provides an appropriate guide to management for all food webs, a modified version of the Google PageRank algorithm reliably minimizes the chance and severity of negative outcomes. Our analysis shows that by prioritizing ecosystem management based on the network-wide impact of species protection rather than species loss, we can substantially improve conservation outcomes. PMID:26776253
The NEON Aquatic Network: Expanding the Availability of Biogeochemical Data
NASA Astrophysics Data System (ADS)
Vance, J. M.; Bohall, C.; Fitzgerald, M.; Utz, R.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; McLaughlin, B.
2013-12-01
Aquatic ecosystems are facing unprecedented pressure from climate change and land-use practices. Invasive species, whether plant, animal, insect or microbe present additional threat to aquatic ecosystem services. There are significant scientific challenges to understanding how these forces will interact to affect aquatic ecosystems, as the flow of energy and materials in the environment is driven by multivariate and non-linear biogeochemical cycles. The National Ecological Observatory Network (NEON) will collect and provide observational data across multiple scales. Sites were selected to maximize representation of major North American ecosystems using a multivariate geographic clustering method that partitioned the continental US, AK, HI, and Puerto Rico into 20 eco-climatic domains. The NEON data collection systems and methods are designed to yield standardized, near real-time data subjected to rigorous quality controls prior to public dissemination through an online data portal. NEON will collect data for 30 years to facilitate spatial-temporal analysis of environmental responses and drivers of ecosystem change, ranging from local through continental scales. Here we present the NEON Aquatic Network, a multi-parameter network consisting of a combination of in situ sensor and observational data. This network will provide data to examine biogeochemical, biological, hydrologic and geomorphic metrics at 36 sites, which are a combination of small 1st/2nd order wadeable streams, large rivers and lakes. A typical NEON Aquatic site will host up to two in-stream sensor sets designed to collect near-continuous water quality data (e.g. pH/ORP, temperature, conductivity, dissolved oxygen, CDOM) along with up to 8 shallow groundwater monitoring wells (level, temp., cond.), and a local meteorological station (e.g. 2D wind speed, PAR, barometric pressure, temperature, net radiation). These coupled sensor suites will be complemented by observational data (e.g. water/sediment chemistry, aquatic organisms, geomorphology). The aquatic network will produce ~212 low-level data products for each site. NEON will produce several higher level data products such as measurements of whole-stream metabolism, gross primary productivity, ecosystem respiration, and fluxes of nitrogen, phosphorous and carbon that will enable users to analyze processes on a gross scale. These data may be integrated with NEON's terrestrial and airborne networks to bridge the gap between aquatic and terrestrial biogeochemical research. The NEON Aquatic Network is poised to greatly expand our ability to create more robust biogeochemical models. For example, hydrologic and stable isotope data will allow investigation of terrestrial-aquatic carbon flux. Constraints provided by NEON's terrestrial and atmospheric data concurrent with remotely sensed data will facilitate the scaling to regional and continental scales, potentially leading to greater accuracy in the global carbon budget. The NEON Aquatic Network represents a powerful tool that will give the scientific community access to standardized data over spatiotemporal scales that are needed to answer fundamental questions about natural ecological variability and responses to changes in the environment.
Life+ EnvEurope DEIMS - improving access to long-term ecosystem monitoring data in Europe
NASA Astrophysics Data System (ADS)
Kliment, Tomas; Peterseil, Johannes; Oggioni, Alessandro; Pugnetti, Alessandra; Blankman, David
2013-04-01
Long-term ecological (LTER) studies aim at detecting environmental changes and analysing its related drivers. In this respect LTER Europe provides a network of about 450 sites and platforms. However, data on various types of ecosystems and at a broad geographical scale is still not easily available. Managing data resulting from long-term observations is therefore one of the important tasks not only for an LTER site itself but also on the network level. Exchanging and sharing the information within a wider community is a crucial objective in the upcoming years. Due to the fragmented nature of long-term ecological research and monitoring (LTER) in Europe - and also on the global scale - information management has to face several challenges: distributed data sources, heterogeneous data models, heterogeneous data management solutions and the complex domain of ecosystem monitoring with regard to the resulting data. The Life+ EnvEurope project (2010-2013) provides a case study for a workflow using data from the distributed network of LTER-Europe sites. In order to enhance discovery, evaluation and access to data, the EnvEurope Drupal Ecological Information Management System (DEIMS) has been developed. This is based on the first official release of the Drupal metadata editor developed by US LTER. EnvEurope DEIMS consists of three main components: 1) Metadata editor: a web-based client interface to manage metadata of three information resource types - datasets, persons and research sites. A metadata model describing datasets based on Ecological Metadata Language (EML) was developed within the initial phase of the project. A crosswalk to the INSPIRE metadata model was implemented to convey to the currently on-going European activities. Person and research site metadata models defined within the LTER Europe were adapted for the project needs. The three metadata models are interconnected within the system in order to provide easy way to navigate the user among the related resources. 2) Discovery client: provides several search profiles for datasets, persons, research sites and external resources commonly used in the domain, e.g. Catalogue of Life , based on several search patterns ranging from simple full text search, glossary browsing to categorized faceted search. 3) Geo-Viewer: a map client that portrays boundaries and centroids of the research sites as Web Map Service (WMS) layers. Each layer provides a link to both Metadata editor and Discovery client in order to create or discover metadata describing the data collected within the individual research site. Sharing of the dataset metadata with DEIMS is ensured in two ways: XML export of individual metadata records according to the EML schema for inclusion in the international DataOne network, and periodic harvesting of metadata into GeoNetwork catalogue, thus providing catalogue service for web (CSW), which can be invoked by remote clients. The final version of DEIMS will be a pilot implementation for the information system of LTER-Europe, which should establish a common information management framework within the European ecosystem research domain and provide valuable environmental information to other European information infrastructures as SEIS, Copernicus and INSPIRE.
The Swedish Research Infrastructure for Ecosystem Science - SITES
NASA Astrophysics Data System (ADS)
Lindroth, A.; Ahlström, M.; Augner, M.; Erefur, C.; Jansson, G.; Steen Jensen, E.; Klemedtsson, L.; Langenheder, S.; Rosqvist, G. N.; Viklund, J.
2017-12-01
The vision of SITES is to promote long-term field-based ecosystem research at a world class level by offering an infrastructure with excellent technical and scientific support and services attracting both national and international researchers. In addition, SITES will make data freely and easily available through an advanced data portal which will add value to the research. During the first funding period, three innovative joint integrating facilities were established through a researcher-driven procedure: SITES Water, SITES Spectral, and SITES AquaNet. These new facilities make it possible to study terrestrial and limnic ecosystem processes across a range of ecosystem types and climatic gradients, with common protocols and similar equipment. In addition, user-driven development at the nine individual stations has resulted in e.g. design of a long-term agricultural systems experiment, and installation of weather stations, flux systems, etc. at various stations. SITES, with its integrative approach and broad coverage of climate and ecosystem types across Sweden, constitutes an excellent platform for state-of-the-art research projects. SITES' support the development of: A better understanding of the way in which key ecosystems function and interact with each other at the landscape level and with the climate system in terms of mass and energy exchanges. A better understanding of the role of different organisms in controlling different processes and ultimately the functioning of ecosystems. New strategies for forest management to better meet the many and varied requirements from nature conservation, climate and wood, fibre, and energy supply points of view. Agricultural systems that better utilize resources and minimize adverse impacts on the environment. Collaboration with other similar infrastructures and networks is a high priority for SITES. This will enable us to make use of each others' experiences, harmonize metadata for easier exchange of data, and support each other to widen the user community.
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson-Teixeira, Kristina J.; Davies, Stuart J.; Bennett, Amy C.
2014-09-25
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forestmore » diversity and dynamics in a era of global change« less
Proposal for a telehealth concept in the translational research model
Silva, Angélica Baptista; Morel, Carlos Médicis; de Moraes, Ilara Hämmerli Sozzi
2014-01-01
OBJECTIVE To review the conceptual relationship between telehealth and translational research. METHODS Bibliographical search on telehealth was conducted in the Scopus, Cochrane BVS, LILACS and MEDLINE databases to find experiences of telehealth in conjunction with discussion of translational research in health. The search retrieved eight studies based on analysis of models of the five stages of translational research and the multiple strands of public health policy in the context of telehealth in Brazil. The models were applied to telehealth activities concerning the Network of Human Milk Banks, in the Telemedicine University Network. RESULTS The translational research cycle of human milk collected, stored and distributed presents several integrated telehealth initiatives, such as video conferencing, and software and portals for synthesizing knowledge, composing elements of an information ecosystem, mediated by information and communication technologies in the health system. CONCLUSIONS Telehealth should be composed of a set of activities in a computer mediated network promoting the translation of knowledge between research and health services. PMID:24897057
Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary
2012-01-01
Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.
NDEx: A Community Resource for Sharing and Publishing of Biological Networks.
Pillich, Rudolf T; Chen, Jing; Rynkov, Vladimir; Welker, David; Pratt, Dexter
2017-01-01
Networks are a powerful and flexible paradigm that facilitate communication and computation about interactions of any type, whether social, economic, or biological. NDEx, the Network Data Exchange, is an online commons to enable new modes of collaboration and publication using biological networks. NDEx creates an access point and interface to a broad range of networks, whether they express molecular interactions, curated relationships from literature, or the outputs of systematic analysis of big data. Research organizations can use NDEx as a distribution channel for networks they generate or curate. Developers of bioinformatic applications can store and query NDEx networks via a common programmatic interface. NDEx can also facilitate the integration of networks as data in electronic publications, thus making a step toward an ecosystem in which networks bearing data, hypotheses, and findings flow seamlessly between scientists.
Using Bayesian Networks to Evaluate Management Alternatives Based on Ecosystem Service Tradeoffs
In 2008, the U.S. Coral Reef Task Force launched a research initiative to address the effects of land management decisions on coastal resources in the Guánica Bay watershed. While municipal and agricultural growth in the Guánica area has provided social and economic...
USDA-ARS?s Scientific Manuscript database
The USDA Long Term Agroecosystem Research (LTAR) network exists to build knowledge required for “sustainable intensification of agriculture, increasing yields from the current agricultural land base while minimizing or reversing agriculture’s adverse environmental impacts.” Of the 18 current LTAR lo...
Burial affects the biogeochemistry of headwater streams in a midwestern US metropolitan area
Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban basins. Urban stream burial has only recently been recognized by ecologists and little research has addressed the extent to whi...
NASA Astrophysics Data System (ADS)
Goetz, S. J.; Rogers, B. M.; Mack, M. C.; Goulden, M.; Pastick, N. J.; Berner, L. T.; Fisher, J.
2017-12-01
The Arctic and boreal forest biomes have global significance in terms of climate feedbacks associated with land surface interactions with the atmosphere. Changes in Arctic tundra and boreal forest ecosystem productivity and fire disturbance feedbacks have been well documented in recent years, but findings are often only locally relevant and are sometimes inconsistent among research teams. Part of these inconsistencies lie in utilization of different data sets and time periods considered. Integrated approaches are thus needed to adequately address changes in these ecosystems in order to assess consistency and variability of change, as well as ecosystem vulnerability and resiliency across spatial and temporal scales. Ultimately this can best be accomplished via multiple lines of evidence including remote sensing, field measurements and various types of data-constrained models. We will discuss some recent results integrating multiple lines of evidence for directional ecosystem change in the Arctic and boreal forest biomes of North America. There is increasing evidence for widespread spatial and temporal variability in Arctic and boreal ecosystem productivity changes that are strongly influenced by cycles of changing fire disturbance severity and its longer-term implications (i.e legacy effects). Integrated, multi-approach research, like that currently underway as part of the NASA-led Arctic Boreal Vulnerability Experiment (above.nasa.gov), is an effective way to capture the complex mechanisms that drive patterns and directionality of ecosystem structure and function, and ultimately determine feedbacks to environmental change, particularly in the context of global climate change. Additional ongoing ABoVE research will improve our understanding of the consequences of environmental changes underway, as well as increase our confidence in making projections of the ecosystem responses, vulnerability and resilience to change. ABoVE will also build a lasting legacy of collaboration through an expanded knowledge base, provision of key datasets to a broader network of researchers and resource managers, and the development of data products and knowledge designed to foster decision support and applied research partnerships with broad societal relevance.
NASA Astrophysics Data System (ADS)
Baez, S.; Cuesta, F. X.; Malizia, A.; Carilla, J.; Bustamante, M.; Yepes, A.
2013-05-01
A workshop held in October 2012 in Lima, Peru, brought together more than 40 scientists and policy makers working in Andean forest ecosystems, one of the richer and most threatened ecosystems of the world. Among the various results of the workshop, there is the formation of the network "Red de Bosques Andinos". The goals of the network include to stimulate scientific research in Andean forest ecosystems by promoting collaboration among scientists, and to serve as a platform to facilitate applied research and communication between scientists and policy makers. Current members of the network include scientists of Argentina, Colombia, Ecuador, Germany, Peru, USA, and representatives of Ministries of Environment and the National Climate Change Adaptation Programs of Colombia, Bolivia, Ecuador, and Peru. The network has started to work in two critical documents for the region. The first one is an extended protocol to monitor diversity and carbon in Andean forests. This protocol, partly based on unpublished efforts, has been developed by the Instituto de Ecología Regional, Universidad de Tucuman, Argentina, and has been revised and improved by experts working in the Andes. The document describe methods to document ecological changes that take place over mid- and long periods of time. It focuses on monitoring changes on the diversity and growth of trees, shrubs and lianas, cover of herbaceous species, and carbon content in forests. This extended protocol will be a useful tool for students and researchers interested in conducting long-term ecological research. Moreover, the use of this tool will produce standardized data needed to understand ecological processes that take place at large spatial scales. The document will be freely available at www.condesan.org. The second document consists of an analysis of the dynamics of trees and carbon in the Andean region. The members of the network have contributed with data of more than 70 permanent forest plots located from Colombia to Argentina, some of them monitored since 1990. The initial results indicate that warmer, wetter, and more seasonal forests had higher rates of turnover of individuals, and biomass. Most of these patterns held for both, tropical and subtropical forest plots. The study will be completed in 2013, and will be the first study of forest dynamics and carbon content for the countries in the region. Finally, it is the aim of the Andean Forest Network to bring together scientists and policy-makers interested in research, management and conservation of the Andean forest. The creation of the network and the development of its first two products have been possible thanks to the financial support of the Swiss Agency of International Cooperation (COSUDE) through the CIMA project, the Dutch Technical Agency (GIZ), and the endorsement of the Secretaría General de Naciones (SG-CAN). The coordination of the network is currently held by Selene Báez, at CONDESAN (selene.baez@condesan.org). Please contact us if you need more information or if you are interested in becoming part of the network.
Iansiti, Marco; Levien, Roy
2004-03-01
Microsoft's and Wal-Mart's preeminence in modern business has been attributed to any number of factors--from the vision and drive of their founders to the companies' aggressive competitive practices. But the authors maintain that the success realized by these two very different companies is due only partly to the organizations themselves; a bigger factor is the success of the networks of companies with which Microsoft and Wal-Mart do business. Most companies today inhabit ecosystems--loose networks of suppliers, distributors, and outsourcers; makers of related products or services; providers of relevant technology; and other organizations that affect, and are affected by, the creation and delivery of a company's own offering. Despite being increasingly central to modern business, ecosystems are still poorly understood and even more poorly managed. The analogy between business networks and biological ecosystems can aid this understanding by vividly highlighting certain pivotal concepts. The moves that a company makes will, to varying degrees, affect the health of its business network, which in turn will ultimately affect the organization's performance--for ill as well as for good. Because a company, like an individual species in a biological ecosystem, ultimately shares its fate with the network as a whole, smart firms pursue strategies that will benefit everyone. So how can you promote the health and the stability of your own ecosystem, determine your place in it, and develop a strategy to match your role, thereby helping to ensure your company's well-being? It depends on your role--current and potential--within the network. Is your company a niche player, a keystone, or a dominator? The answer to this question may be different for different parts of your business. It may also change as your ecosystem changes. Knowing what to do requires understanding the ecosystem and your organization's role in it.
Stable isotope views on ecosystem function: challenging or challenged?
Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando
2010-06-23
Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.
Stable isotope views on ecosystem function: challenging or challenged?
Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando
2010-01-01
Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858
Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services
Bagstad, Kenneth J.; Johnson, Gary W.; Voigt, Brian; Villa, Ferdinando
2013-01-01
Recent ecosystem services research has highlighted the importance of spatial connectivity between ecosystems and their beneficiaries. Despite this need, a systematic approach to ecosystem service flow quantification has not yet emerged. In this article, we present such an approach, which we formalize as a class of agent-based models termed “Service Path Attribution Networks” (SPANs). These models, developed as part of the Artificial Intelligence for Ecosystem Services (ARIES) project, expand on ecosystem services classification terminology introduced by other authors. Conceptual elements needed to support flow modeling include a service's rivalness, its flow routing type (e.g., through hydrologic or transportation networks, lines of sight, or other approaches), and whether the benefit is supplied by an ecosystem's provision of a beneficial flow to people or by absorption of a detrimental flow before it reaches them. We describe our implementation of the SPAN framework for five ecosystem services and discuss how to generalize the approach to additional services. SPAN model outputs include maps of ecosystem service provision, use, depletion, and flows under theoretical, possible, actual, inaccessible, and blocked conditions. We highlight how these different ecosystem service flow maps could be used to support various types of decision making for conservation and resource management planning.
NASA Astrophysics Data System (ADS)
Beranzoli, L.; Best, M.; Embriaco, D.; Favali, P.; Juniper, K.; Lo Bue, N.; Lara-Lopez, A.; Materia, P.; Ó Conchubhair, D.; O'Rourke, E.; Proctor, R.; Weller, R. A.
2017-12-01
Understanding effects on marine ecosystems of multiple drivers at various scales; from regional such as climate and ocean circulation, to local, such as seafloor gas emissions and harmful underwater noise, requires long time-series of integrated and standardised datasets. Large-scale research infrastructures for ocean observation are able to provide such time-series for a variety of ocean process physical parameters (mass and energy exchanges among surface, water column and benthic boundary layer) that constitute important and necessary measures of environmental conditions and change/development over time. Information deduced from these data is essential for the study, modelling and prediction of marine ecosystems changes and can reveal and potentially confirm deterioration and threats. The COOPLUS European Commission project brings together research infrastructures with the aim of coordinating multilateral cooperation among RIs and identifying common priorities, actions, instruments, resources. COOPLUS will produce a Strategic Research and Innovation Agenda (SRIA) which will be a shared roadmap for mid to long-term collaboration. In particular, marine RIs collaborating in COOPLUS, namely the European Multidisciplinary Seafloor and water column Observatory: EMSO (Europe), the Ocean Observatories Initiative (OOI, USA), Ocean Networks Canada (ONC), and the Integrated Marine Observing System (IMOS, Australia), can represent a source of important data for researchers of marine ecosystems. The RIs can then, in turn, receive suggestions from researchers for implementing new measurements and stimulating cross-cutting collaborations and data integration and standardisation from their user community. This poster provides a description of EMSO, OOI, ONC and IMOS for the benefit of marine ecosystem studies and presents examples of where the analyses of time-series have revealed noteworthy environmental conditions, temporal trends and events.
Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.
2013-01-01
During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.
NASA Astrophysics Data System (ADS)
Bonner, J.; Brezonik, P.; Clesceri, N.; Gouldman, C.; Jamail, R.; Zilkoski, D.
2006-12-01
The Integrated Ocean Observing System (IOOS), established through the efforts of the National Office for Integrated and Sustained Ocean Observations (Oceans.US) provides quality controlled data and information on a routine and continuous basis regarding current and future states of the oceans and Great Lakes at scales from global ocean basins to coastal ecosystems. The seven societal goals of IOOS are outlined in this paper. The Engineering and Geosciences Directorates at the National Science Foundation (NSF) are collaborating in planning the WATERS (WATer Environmental Research System) Network, an outgrowth of earlier, separate initiatives of the two directorates: CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) and Hydrologic Observatories. WATERS Network is being developed by engineers and scientists in the academic community who recognize the need for an observation and research network to enable better understanding of human-dominated water-environments, their stressors, and the links between them. The WATERS Network model is based on a research framework anchored in a distributed, cyber-based network supporting: 1) data collection; 2) data aggregation; 3) analytical and exploratory tools; and 4) a computational environment supporting predictive modeling and policy analysis on water resource systems. Within IOOS, the U.S. coastal margin is divided into Regional Associations (RAs), organizational units that are conceptually linked through planned data collection and analysis activities for resolving fundamental coastal margin ecosystem questions and addressing RA concerns. Under the WATERS Network scheme, a Coastal Margin Regional Environmental System (RES) for coastal areas would be defined conceptually based on geomorphologic considerations of four major water bodies; Atlantic and Pacific Oceans, Gulf of Mexico, and Laurentian Great Lakes. Within this framework, each coastal margin would operate one or more local environmental field facilities (or observatories). Mutual coordination and collaboration would exist among these coasts through RES interactions based on a cyberinfrastructure supporting all aspects of quantitative analysis. Because the U.S. Ocean Action Plan refers to the creation of a National Water Quality Monitoring Network, a close liaison between IOOS and WATERS Network could be mutually advantageous considering the shared visions, goals and objectives. A focus on activities and initiatives involving sensor and sensor networks for coastal margin observation and assessment would be a specific instance of this liaison, leveraging the infrastructural base of both organizations to maximize resource allocation. This coordinated venture with intelligent environmental systems would include new specialized coastal monitoring networks, and management of near-real-time data, including data assimilation models. An ongoing NSF planning grant aimed at environmental observatory design for coastal margins is a component of the broader WATERS Network planning for collaborative research to support adaptive and sustainable environmental management. We propose a collaborative framework between IOOS and WATERS Network wherein collaborative research will be enabled by cybernetworks to support adaptive and sustainable management of the coastal regions.
Li, Bo; Han, Zeng-Lin; Tong, Lian-Jun
2009-05-01
By the methods of in situ investigation and regional ecological planning, the present ecological environment, ecosystem vulnerability, and ecological environment sensitivity in "Ji Triangle" Region were analyzed, and the ecological network of the study area was constructed. According to the ecological resources abundance degree, ecological recovery, farmland windbreak system, environmental carrying capacity, forestry foundation, and ecosystem integrity, the study area was classified into three regional ecological function ecosystems, i. e., east low hill ecosystem, middle plain ecosystem, and west plain wetland ecosystem. On the basis of marking regional ecological nodes, the regional ecological corridor (Haerbin-Dalian regional axis, Changchun-Jilin, Changchun-Songyuan, Jilin-Songyuan, Jilin-Siping, and Songyuan-Siping transportation corridor) and regional ecological network (one ring, three links, and three belts) were constructed. Taking the requests of regional ecological security into consideration, the ecological environment security system of "Ji Triangle" Region, including regional ecological conservation district, regional ecological restored district, and regional ecological management district, was built.
Soil water sensing for climate change studies; Applicability of COSMOS and local sensor networks
USDA-ARS?s Scientific Manuscript database
Soil water sensors are used to characterize water content in the near-surface, the root zone and below for agricultural and ecosystem management, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Labor...
Initiating Long-Term Soil Productivity Research in Missouri
Felix Ponder
1997-01-01
Management practices necessary for sustaining long-term soil productivity (LTSP) afforest lands are being defined from a network of coordinated, long-term experiments established in vartous ecosystems across the United States and British Columbia according to the same basic study plan. The study was established in the Ozark Region of southeastem Missouri in Shannon...
Uncertainty and inference in the world of paleoecological data
NASA Astrophysics Data System (ADS)
McLachlan, J. S.; Dawson, A.; Dietze, M.; Finley, M.; Hooten, M.; Itter, M.; Jackson, S. T.; Marlon, J. R.; Raiho, A.; Tipton, J.; Williams, J.
2017-12-01
Proxy data in paleoecology and paleoclimatology share a common set of biases and uncertainties: spatiotemporal error associated with the taphonomic processes of deposition, preservation, and dating; calibration error between proxy data and the ecosystem states of interest; and error in the interpolation of calibrated estimates across space and time. Researchers often account for this daunting suite of challenges by applying qualitave expert judgment: inferring the past states of ecosystems and assessing the level of uncertainty in those states subjectively. The effectiveness of this approach can be seen by the extent to which future observations confirm previous assertions. Hierarchical Bayesian (HB) statistical approaches allow an alternative approach to accounting for multiple uncertainties in paleo data. HB estimates of ecosystem state formally account for each of the common uncertainties listed above. HB approaches can readily incorporate additional data, and data of different types into estimates of ecosystem state. And HB estimates of ecosystem state, with associated uncertainty, can be used to constrain forecasts of ecosystem dynamics based on mechanistic ecosystem models using data assimilation. Decisions about how to structure an HB model are also subjective, which creates a parallel framework for deciding how to interpret data from the deep past.Our group, the Paleoecological Observatory Network (PalEON), has applied hierarchical Bayesian statistics to formally account for uncertainties in proxy based estimates of past climate, fire, primary productivity, biomass, and vegetation composition. Our estimates often reveal new patterns of past ecosystem change, which is an unambiguously good thing, but we also often estimate a level of uncertainty that is uncomfortably high for many researchers. High levels of uncertainty are due to several features of the HB approach: spatiotemporal smoothing, the formal aggregation of multiple types of uncertainty, and a coarseness in statistical models of taphonomic process. Each of these features provides useful opportunities for statisticians and data-generating researchers to assess what we know about the signal and the noise in paleo data and to improve inference about past changes in ecosystem state.
Dearing, Andrew
2007-01-19
As activities that relate to innovation become increasingly global and open and so draw the private and public sectors into complex networks of partnerships, these activities also tend to concentrate where the ecosystem is most supportive. European public policy, which in recent years has emphasized the importance of research and development (R&D) in achieving competitive knowledge-based societies, is shifting toward approaches that address the broader qualities required of favorable ecosystems for innovation in a global economy, thereby incorporating the roles of market demand, public procurement, and regulation, as well as science, education, and industrial R&D, as part of determining effective innovation policies.
NASA Astrophysics Data System (ADS)
Papale, D.; Baldocchi, D. D.; Loescher, H. W.; Torn, M. S.
2014-12-01
Small networks of eddy covariance sites measuring exchanges of CO2, water and energy between ecosystems and atmosphere started to be organized in Europe and USA more than 15 years ago with the AmeriFlux and EuroFlux initiatives. They were composed by less than 20 sites each, mainly over undisturbed forest and without a strong coordination between sites, in particular across the ocean. In the following years the networks grew exponentially both at continental and global level, reaching more than 500 sites few years ago and expanding the eddy covariance measurement to different ecosystem types, climate regions and management/disturbance regimes. At the same time, important steps were done in terms of cooperation and harmonization related to data processing, data description and data sharing policies, leading to inter-continental and global activities under the FLUXNET framework. Today the networks are facing a new evolution step, moving from pure research activities to something that includes also monitoring and research infrastructure characteristics. AmeriFlux and NEON (National Ecological Observatory Network) in USA and ICOS (Integrated Carbon Observation System) in Europe are opening a new phase in the eddy covariance networks: with a long term perspective, increased level of standardization and a completely open access policy, will hopefully stimulate even more global synthesis studies and a wider use of the flux measurements by other scientific communities. AmeriFlux, NEON and ICOS are also strongly involved in cross-networks harmonization activities in terms of data acquisition, data processing and data format, in order to simplify and encourage the joint use of their measurements. A brief history of the development, challenges and solutions in the organization of the different networks and their common activities will be presented, to focus then on selected scientific results that have been possible only thanks to the global integration and international collaboration and finally discuss future developments and current ongoing activities in terms of data harmonization/standardization and sharing.
Insights and Challenges to Integrating Data from Diverse Ecological Networks
NASA Astrophysics Data System (ADS)
Peters, D. P. C.
2014-12-01
Many of the most dramatic and surprising effects of global change occur across large spatial extents, from regions to continents, that impact multiple ecosystem types across a range of interacting spatial and temporal scales. The ability of ecologists and inter-disciplinary scientists to understand and predict these dynamics depend, in large part, on existing site-based research infrastructures that developed in response to historic events. Integrating these diverse sources of data is critical to addressing these broad-scale questions. A conceptual approach is presented to synthesize and integrate diverse sources and types of data from different networks of research sites. This approach focuses on developing derived data products through spatial and temporal aggregation that allow datasets collected with different methods to be compared. The approach is illustrated through the integration, analysis, and comparison of hundreds of long-term datasets from 50 ecological sites in the US that represent ecosystem types commonly found globally. New insights were found by comparing multiple sites using common derived data. In addition to "bringing to light" many dark data in a standardized, open access, easy-to-use format, a suite of lessons were learned that can be applied to up and coming research networks in the US and internationally. These lessons will be described along with the challenges, including cyber-infrastructure, cultural, and behavioral constraints associated with the use of big and little data, that may keep ecologists and inter-disciplinary scientists from taking full advantage of the vast amounts of existing and yet-to-be exposed data.
There are 3 new funding opportunity announcements about the Pre-Cancer Atlas associated with the Beau Biden Cancer MoonshotSM Initiative that are intended to accelerate cancer research. The purpose of the FOAs is to promote research that results in a comprehensive view of the dynamic, multidimensional tumor ecosystem and is a direct response to the Moonshot Blue Ribbon Panel
Fishing-induced life-history changes degrade and destabilize harvested ecosystems.
Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S; Lassaux, Hélène; Martinez, Neo D
2016-02-26
Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes' food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes' resilience to fishing and ecosystems' resistance to environmental variations.
Wireless sensor networks to assess the impacts of global change in Sierra Nevada (Spain) mountains
NASA Astrophysics Data System (ADS)
Sánchez-Cano, Francisco M.; Bonet-García, Francisco J.; Pérez-Luque, Antonio J.; Suárez-Muñoz, María
2017-04-01
Sierra Nevada Global Change Observatory (southern Spain) aims to improve the ability of ecosystems to address the impacts of global change. To this end, a monitoring program has been implemented based on the collection of long time series on a multitude of biophysical variables. This initiative is part of the Long Term Ecological Research network and is connected to similar ones at national and international level. One of the specific objectives of this LTER site is to improve understanding of the relationships between abiotic factors and ecosystem functioning / structure. Wireless sensor networks are a key instrument for achieving this aim. This contribution describes the design and management of a sensor network that is intended to monitor several biophysical variables with high temporal and spatial resolution in Quercus pyrenaica forests located in this mountain region. The following solution has been adopted in order to obtain the observational data (physical and biological variables). The biological variables will be monitored by PAR sensors (photosynthetically active radiation), and the physical variables will be acquired by a meteorological station and a sensor network composed of temperature and soil moisture sensors, as well as air temperature and humidity ones. To complete the monitoring of the biological variables, a NDVI (Normalized Difference Vegetation Index) camera will be deployed focusing to a Quercus pyrenaica forest from the opposite slope. It should be noted that all monitoring systems exposed will be powered by solar energy. The management of the sensor network covers the deployment of more than 100 sensors, guaranteeing both remote accessibility and reliability of the data. The chosen solution is provided by the company Adevice whose ONE-GO communication system ensures a consistent and efficient sending of those values read by the different sensors towards a central point, from where the information (RAW data) is accessible through WiFi/3G. RAW data is dumped daily in our data center for further processing with the open source software Get-IT. Get-IT was developed by the CNR (National Research Council of Italy) in the context of the RITMARE Flagship Project and LifeWatch Italy in order to combine geographic information with observational data by coupling GeoNode with SOS implementation by 52° North. This solution conforms to our requirements for two reasons, the first is that it provides data persistence, metadata editing and data visualisation tools. The second is that it is the solution adopted by LTER, platform previously mentioned in which we are integrated. This research has been funded by eLTER (Integrated European Long-Term Ecosystem & Socio-Ecological Research Infrastructure) Horizon 2020 EU project, and Sierra Nevada Global Change Observatory (LTER-site).
Using networks to detect regime changes in aquatic communities across nutrient gradients
NASA Astrophysics Data System (ADS)
Taranu, Z. E.
2015-12-01
Networks capture links or interactions between organisms within ecological webs. When an environmental stress occurs, rapid changes in ecosystem state are expected in food webs with highly connected networks and functionally redundant species. These networks can dissipate local disturbances quickly and provide resistance to change at first until a threshold is reached, at which point, a critical transition occurs (nodes shift in synchrony). In contrast, in low connectivity (modular) heterogeneous networks, the response in ecosystem state to an environmental stressor is gradual. Given that these ecosystem-level shifts can be difficult to predict, hard to reverse and can have undesirable consequences, there is considerable interest in identifying what type of response (gradual vs. hysteresis) is most likely in nature. In this work, we thus aimed to test for the support for a bifurcated response in aquatic ecosystem across a landscape of human impact and track which of the above scenarios was most common. More specifically, using the US EPA National Lake Assessment water quality dataset (2007 sampling), we quantified differences in food-web structures across a spatial gradient of human impact (eutrophication). Preliminary results indicate that certain network properties vary nonlinearly with respect to nutrient enrichment.
Parallel ecological networks in ecosystems
Olff, Han; Alonso, David; Berg, Matty P.; Eriksson, B. Klemens; Loreau, Michel; Piersma, Theunis; Rooney, Neil
2009-01-01
In ecosystems, species interact with other species directly and through abiotic factors in multiple ways, often forming complex networks of various types of ecological interaction. Out of this suite of interactions, predator–prey interactions have received most attention. The resulting food webs, however, will always operate simultaneously with networks based on other types of ecological interaction, such as through the activities of ecosystem engineers or mutualistic interactions. Little is known about how to classify, organize and quantify these other ecological networks and their mutual interplay. The aim of this paper is to provide new and testable ideas on how to understand and model ecosystems in which many different types of ecological interaction operate simultaneously. We approach this problem by first identifying six main types of interaction that operate within ecosystems, of which food web interactions are one. Then, we propose that food webs are structured among two main axes of organization: a vertical (classic) axis representing trophic position and a new horizontal ‘ecological stoichiometry’ axis representing decreasing palatability of plant parts and detritus for herbivores and detrivores and slower turnover times. The usefulness of these new ideas is then explored with three very different ecosystems as test cases: temperate intertidal mudflats; temperate short grass prairie; and tropical savannah. PMID:19451126
Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)
NASA Astrophysics Data System (ADS)
Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.
2013-12-01
Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.
Towards a holistic understanding of the beneficial interactions across the Populus microbiome
Hacquard, Stéphane; Schadt, Christopher W.
2014-11-24
Interactions between trees and microorganisms are extremely complex and the multispecies networks resulting from these associations have consequences for plant growth and productivity. However, a more holistic view is needed to better understand trees as ecosystems and superorganisms, where many interacting species contribute to the overall stability of the system. While much progress has been made on microbial communities associated with individual tree niches and the molecular interactions between model symbiotic partners, there is still a lack of knowledge of the multi-component interactions necessary for holistic ecosystem-level understanding. Finally, we review recent studies in Populus to emphasize the importance ofmore » such holistic efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these important ecosystems.« less
Network Skewness Measures Resilience in Lake Ecosystems
NASA Astrophysics Data System (ADS)
Langdon, P. G.; Wang, R.; Dearing, J.; Zhang, E.; Doncaster, P.; Yang, X.; Yang, H.; Dong, X.; Hu, Z.; Xu, M.; Yanjie, Z.; Shen, J.
2017-12-01
Changes in ecosystem resilience defy straightforward quantification from biodiversity metrics, which ignore influences of community structure. Naturally self-organized network structures show positive skewness in the distribution of node connections. Here we test for skewness reduction in lake diatom communities facing anthropogenic stressors, across a network of 273 lakes in China containing 452 diatom species. Species connections show positively skewed distributions in little-impacted lakes, switching to negative skewness in lakes associated with human settlement, surrounding land-use change, and higher phosphorus concentration. Dated sediment cores reveal a down-shifting of network skewness as human impacts intensify, and reversal with recovery from disturbance. The appearance and degree of negative skew presents a new diagnostic for quantifying system resilience and impacts from exogenous forcing on ecosystem communities.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Rustad, L.; Templer, P. H.; Jennings, K.; Phillips, R.; Smith, M.
2014-12-01
Recent trends and projections for future change for the U.S. northern forests suggest that the region's climate is becoming warmer, wetter, and, ironically, drier, with more precipitation occurring as large events, separated by longer periods with no precipitation. However, to date, precipitation manipulation experiments conducted in forest ecosystems represent only ~5% of all such experiments worldwide, and our understanding of how the mesic-adapted northern forest will respond to greater frequency and intensity of drought in the future is especially poor. Several important challenges have hampered previous research efforts to conduct forest drought experiments and draw robust conclusions, including difficulties in reducing water uptake by deep and lateral tree roots, logistical and financial constraints to establishing and maintaining large-scale field experiments, and the lack of standardized approaches for determining the appropriate precipitation manipulation treatment (e.g., amount and timing of throughfall displacement), designing and constructing the throughfall displacement infrastructure, identifying key response variables, and collecting and analyzing the field data. The overarching goal of this project is to establish a regional research coordination network - Northern Forest DroughtNet - to investigate the impacts of changes in the amount and distribution of precipitation on the hydrology, biogeochemistry, and carbon (C) cycling dynamics of northern temperate forests. Specific objectives include the development of a standard prototype for conducting precipitation manipulation studies in forest ecosystems (in collaboration with the international DroughtNet-RCN) and the implementation of this prototype drought experiment at the Hubbard Brook Experimental Forest. Here, we present the advances made thus far towards achieving the objectives of Northern Forest DroughtNet, plans for future work, and an invitation to the larger scientific community interested in precipitation manipulation experiments in forest ecosystems to participate in the network.
Impacts of aquatic nonindigenous invasive species on the Lake Erie ecosystem
Austen, Madeline J.W.; Ciborowski, Jan J.H.; Corkum, Lynda D.; Johnson, Tim B.; MacIsaac, Hugh J.; Metcalfe-Smith, Janice L.; Schloesser, Donald W.; George, Sandra E.
2002-01-01
Lake Erie is particularly vulnerable to the introduction and establishment of aquatic nonindigenous invasive species (NIS) populations. A minimum of 144 aquatic NIS have been recorded in the Lake Erie basin including several species [e.g., Eurasian watermilfoil (Myriophyllum spicatum); zebra mussel (Dreissena polymorpha); quagga mussel (Dreissena bugensis); an amphipod (Echinogammarus ischnus); round goby (Neogobius melanostomus); and sea lamprey (Petromyzon marinus)] that have had discernible impacts on the lake's ecology. NIS pose threats to the Lake Erie ecosystem for a variety of reasons including their ability to proliferate quickly, compete with native species, and transfer contaminants (e.g., PCBs) and disease through the food web. Six of the 14 beneficial use impairments listed in Annex 2 of the Great Lakes Water Quality Agreement are impaired in Lake Erie, in part as a result of the introduction of NIS. The Lake Erie Lakewide Management Plan (LaMP) has adopted an ecosystem approach to restore beneficial use impairments in the lake. Furthermore, a research consortium, known as the Lake Erie Millennium Network, is working alongside the LaMP, to address research problems regarding NIS, the loss of habitat, and the role of contaminants in the Lake Erie ecosystem.
Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.
Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G
2016-02-01
Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.
Great Lakes rivermouth ecosystems: scientific synthesis and management implications
Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.
2013-01-01
At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.
Understanding variation in ecosystem pulse responses to wetting: Benefits of data-model coupling
NASA Astrophysics Data System (ADS)
Jenerette, D.
2011-12-01
Metabolic pulses of activity are a common ecological response to intermittently available resources and in water-limited ecosystems these pulses often occur in response to wetting. Net ecosystem CO2 exchange (NEE) in response to episodic wetting events is hypothesized to have a complex trajectory reflecting the distinct responses, or "pulses", of respiration and photosynthesis. To help direct research activities a physiological-based model of whole ecosystem metabolic activity up- and down-regulation was developed to investigate ecosystem energy balance and gas exchange pulse responses following precipitation events. This model was to investigate pulse dynamics from a local network of sites in southern Arizona, a global network of eddy-covariance ecosystem monitoring sites, laboratory incubation studies, and field manipulations. Pulse responses were found to be ubiquitous across ecosystem types. These pulses had a highly variable influence on NEE following wetting, ranging from large net sinks to sources of CO2 to the atmosphere. Much of the variability in pulse responses of NEE could be described through a coupled up- and down-regulation pulse response model. Respiration pulses were hypothesized to occur through a reduction in whole ecosystem activation energy; this model was both useful and corroborated through laboratory incubation studies of soil respiration. Using the Fluxnet eddy-covariance measurement database event specific responses were combined with the pulse model into an event specific twenty-five day net flux calculation. Across all events observed a general net accumulation of CO2 following a precipitation event, with the largest net uptake within deciduous broadleaf forests and smallest within grasslands. NEE pulses favored greater uptake when pre-event ecosystem respiration rates and total precipitation were higher. While the latter was expected, the former adds to previous theory by suggesting a larger net uptake of CO2 when pre-event metabolic activity is higher. Scenario analyses of precipitation regimes suggested increased uptake with increasing total precipitation while more complex NEE responses to increasing number of events and interval between events. Pulse dynamics provides a general framework for understanding ecosystem responses to intermittent wetting projected to occur more frequently in future climates. Pulse dynamics also provides an opportunity to evaluate processes spanning cellular upregulation to global change.
Hansen, Rieke; Pauleit, Stephan
2014-05-01
Green infrastructure (GI) and ecosystem services (ES) are promoted as concepts that have potential to improve environmental planning in urban areas based on a more holistic understanding of the complex interrelations and dynamics of social-ecological systems. However, the scientific discourses around both concepts still lack application-oriented frameworks that consider such a holistic perspective and are suitable to mainstream GI and ES in planning practice. This literature review explores how multifunctionality as one important principle of GI planning can be operationalized by approaches developed and tested in ES research. Specifically, approaches developed in ES research can help to assess the integrity of GI networks, balance ES supply and demand, and consider trade-offs. A conceptual framework for the assessment of multifunctionality from a social-ecological perspective is proposed that can inform the design of planning processes and support stronger exchange between GI and ES research.
[Strengths, weaknesses, and opportunities of French research in trophic ecology].
Perga, Marie-Élodie; Danger, Michael; Dubois, Stanislas; Fritch, Clémentine; Gaucherel, Cédric; Hubas, Cedric; Jabot, Franck; Lacroix, Gérard; Lefebvre, Sébastien; Marmonier, Pierre; Bec, Alexandre
2018-05-30
The French National Institute of Ecology and Environment (INEE) aims at fostering pluridisciplinarity in Environmental Science and, for that purpose, funds ex muros research groups (GDR) on thematic topics. Trophic ecology has been identified as a scientific field in ecology that would greatly benefit from such networking activity, as being profoundly scattered. This has motivated the seeding of a GDR, entitled "GRET". The contours of the GRET's action, and its ability to fill these gaps within trophic ecology at the French national scale, will depend on the causes of this relative scattering. This study relied on a nationally broadcasted poll aiming at characterizing the field of trophic ecology in France. Amongst all the unique individuals that fulfilled the poll, over 300 belonged at least partly to the field of trophic ecology. The sample included all French public research institutes and career stages. Three main disruptions within the community of scientist in trophic ecology were identified. The first highlighted the lack of interfaces between microbial and trophic ecology. The second evidenced that research questions were strongly linked to single study fields or ecosystem type. Last, research activities are still quite restricted to the ecosystem boundaries. All three rupture points limit the conceptual and applied progression in the field of trophic ecology. Here we show that most of the disruptions within French Trophic Ecology are culturally inherited, rather than motivated by scientific reasons or justified by socio-economic stakes. Comparison with the current literature confirms that these disruptions are not necessarily typical of the French research landscape, but instead echo the general weaknesses of the international research in ecology. Thereby, communication and networking actions within and toward the community of trophic ecologists, as planned within the GRET's objectives, should contribute to fill these gaps, by reintegrating microbes within trophic concepts and setting the seeds for trans- and meta-ecosystemic research opportunities. Once the community of trophic ecologists is aware of the scientific benefit in pushing its boundaries forwards, turning words and good intentions into concrete research projects will depend on the opportunities to obtain research funding. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
MERINOVA: Meteorological risks as drivers of environmental innovation in agro-ecosystem management
NASA Astrophysics Data System (ADS)
Gobin, Anne; Oger, Robert; Marlier, Catherine; Van De Vijver, Hans; Vandermeulen, Valerie; Van Huylenbroeck, Guido; Zamani, Sepideh; Curnel, Yannick; Mettepenningen, Evi
2013-04-01
The BELSPO funded project 'MERINOVA' deals with risks associated with extreme weather phenomena and with risks of biological origin such as pests and diseases. The major objectives of the proposed project are to characterise extreme meteorological events, assess the impact on Belgian agro-ecosystems, characterise their vulnerability and resilience to these events, and explore innovative adaptation options to agricultural risk management. The project comprises of five major parts that reflect the chain of risks: (i) Hazard: Assessing the likely frequency and magnitude of extreme meteorological events by means of probability density functions; (ii) Impact: Analysing the potential bio-physical and socio-economic impact of extreme weather events on agro-ecosystems in Belgium using process-based modelling techniques commensurate with the regional scale; (iii) Vulnerability: Identifying the most vulnerable agro-ecosystems using fuzzy multi-criteria and spatial analysis; (iv) Risk Management: Uncovering innovative risk management and adaptation options using actor-network theory and fuzzy cognitive mapping techniques; and, (v) Communication: Communicating to research, policy and practitioner communities using web-based techniques. The different tasks of the MERINOVA project require expertise in several scientific disciplines: meteorology, statistics, spatial database management, agronomy, bio-physical impact modelling, socio-economic modelling, actor-network theory, fuzzy cognitive mapping techniques. These expertises are shared by the four scientific partners who each lead one work package. The MERINOVA project will concentrate on promoting a robust and flexible framework by demonstrating its performance across Belgian agro-ecosystems, and by ensuring its relevance to policy makers and practitioners. Impacts developed from physically based models will not only provide information on the state of the damage at any given time, but also assist in understanding the links between different factors causing damage and determining bio-physical vulnerability. Socio-economic impacts will enlarge the basis for vulnerability mapping, risk management and adaptation options. A strong expert and end-user network will be established to help disseminating and exploiting project results to meet user needs.
NASA Astrophysics Data System (ADS)
Bring, Arvid; Kalantari, Zahra
2017-04-01
Natural ecological functions provide essential and fundamental benefits to mankind, but can also be actively employed in nature-based solutions to specific challenges in society. For example, water-related ecosystem services have a role in such societal benefits as flood protection, erosion control, and excess nutrient removal. Ecosystem services may be produced and consumed in different locations, and research has recently attempted to formalize this discrepancy in identifying service providing areas (SPAs), service benefitting areas (SBAs), and service connecting areas (SCAs). However, in terms of water-related services, there is a lack of formal evaluation of how SPAs, SBAs, and SCAs are related to hydrological measures such as discharge, flood recurrence, excess nutrient removal, etc. We seek to map SPAs, SBAs and SCAs for a number of key ecosystem services in the Nordic and Arctic region though established ecological definitions (typically, based on land use) and evaluate the findings alongside metrics of hydrological connectivity (river networks), provisioning areas (runoff generating areas), and benefitting areas (river stretches where water flow is moderated). We make use of extensive GIS analysis using both high-resolution land cover data and river network maps. In the end, the results are expected to contribute to identifying how water-related ecosystem services can be employed as nature-based solutions for hydro-meteorological risk reduction and nutrient removal in a changing climate in the Nordic and Arctic regions.
Toward a phenology network in Turkey
NASA Astrophysics Data System (ADS)
Dalfes, H. N.; Ülgen, H.; Zeydanli, U.; Durak, A. T.
2012-04-01
All climate projections indicate that drastic changes are to occur in the Mediterranean Basin and Southwestern Asia. Detailed studies also foresee strong patterns of change in seasonality for most climate fields all across the country, threatening Turkey's rich biodiversity and diverse ecosystems already in trouble due to massive land use changes and careless resource extraction projects. It is therefore obvious that climate impact studies can benefit from detailed and continuous monitoring of relationships between climate and natural systems. Recently started efforts to build a phenology network for Turkey will hopefully constitute a component of a more comprehensive ecological observation infrastructure. The Phenology Network of Turkey Project saw its debut as a joint initiative of an academic institution (Istanbul Technical University) and a research NGO (Nature Conservation Center). It has been decided from the very beginning to rely a much as possible on Internet technologies (provided by the National High Performance Computing Center of Turkey). The effort is also inspired by and collaborates with already established networks in general and USA National Phenology Network in particular. Many protocols, instructional materials and Nature's Notebook application has been barrowed from the USA NPN. The project has been designed from the start as a two-faceted effort: an infrastructure to accumulate/provide useful data to climate/ecosystem research communities and a 'citizen science' project to raise nature and climate change awareness among all components of the society in Turkey in general and secondary education teachers and students in particular. It has been opted to start by gathering plant phenological data. A set with 20 plant species has been designed to serve as a countrywide 'calibration set'. It is also anticipated to salvage and extend as much of possible historical animal (especially bird and butterfly) observations.
Schmeltz, D.; Evers, D.C.; Driscoll, C.T.; Artz, R.; Cohen, M.; Gay, D.; Haeuber, R.; Krabbenhoft, D.P.; Mason, R.; Morris, K.; Wiener, J.G.
2011-01-01
A partnership of federal and state agencies, tribes, industry, and scientists from academic research and environmental organizations is establishing a national, policy-relevant mercury monitoring network, called MercNet, to address key questions concerning changes in anthropogenic mercury emissions and deposition, associated linkages to ecosystem effects, and recovery from mercury contamination. This network would quantify mercury in the atmosphere, land, water, and biota in terrestrial, freshwater, and coastal ecosystems to provide a national scientific capability for evaluating the benefits and effectiveness of emission controls. Program development began with two workshops, convened to establish network goals, to select key indicators for monitoring, to propose a geographic network of monitoring sites, and to design a monitoring plan. MercNet relies strongly on multi-institutional partnerships to secure the capabilities and comprehensive data that are needed to develop, calibrate, and refine predictive mercury models and to guide effective management. Ongoing collaborative efforts include the: (1) development of regional multi-media databases on mercury in the Laurentian Great Lakes, northeastern United States, and eastern Canada; (2) syntheses and reporting of these data for the scientific and policy communities; and (3) evaluation of potential monitoring sites. The MercNet approach could be applied to the development of other monitoring programs, such as emerging efforts to monitor and assess global mercury emission controls. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
Ecosystem services in the Great Lakes
Steinman, Alan D.; Cardinale, Bradley J; Munns Jr, Wayne R; Ogdahl, Mary E.; Allan, David J; Angadi, Ted; Bartlett, Sarah; Brauman, Kate; Byappanahalli, Muruleedhara; Doss, Matt; Dupont, Diane; Johns, Annie; Kashian, Donna; Lupi, Frank; McIntyre, Peter B.; Miller, Todd; Moore, Michael P.; Muenich, Rebecca Logsdon; Poudel, Rajendra; Price, James; Provencher, Bill; Rea, Anne; Read, Jennifer; Renzetti, Steven; Sohngen, Brent; Washburn, Erica
2017-01-01
A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided misguided resource management decisions in the past that resulted in negative legacies inherited by future generations. Given the interest in ecosystem services and lack of a coherent approach to addressing this topic in the Great Lakes, a summit was convened involving 28 experts working on various aspects of ecosystem services in the Great Lakes. The invited attendees spanned a variety of social and natural sciences. Given the unique status of the Great Lakes as the world's largest collective repository of surface freshwater, and the numerous stressors threatening this valuable resource, timing was propitious to examine ecosystem services. Several themes and recommendations emerged from the summit. There was general consensus that: 1) a comprehensive inventory of ecosystem services throughout the Great Lakes is a desirable goal but would require considerable resources; 2) more spatially and temporally intensive data are needed to overcome our data gaps, but the arrangement of data networks and observatories must be well-coordinated; 3) trade-offs must be considered as part of ecosystem services analyses; and 4) formation of a Great Lakes Institute for Ecosystem Services, to provide a hub for research, meetings, and training is desirable. Several challenges also emerged during the summit, which are discussed.
Urban transitions: on urban resilience and human-dominated ecosystems.
Ernstson, Henrik; van der Leeuw, Sander E; Redman, Charles L; Meffert, Douglas J; Davis, George; Alfsen, Christine; Elmqvist, Thomas
2010-12-01
Urbanization is a global multidimensional process paired with increasing uncertainty due to climate change, migration of people, and changes in the capacity to sustain ecosystem services. This article lays a foundation for discussing transitions in urban governance, which enable cities to navigate change, build capacity to withstand shocks, and use experimentation and innovation in face of uncertainty. Using the three concrete case cities--New Orleans, Cape Town, and Phoenix--the article analyzes thresholds and cross-scale interactions, and expands the scale at which urban resilience has been discussed by integrating the idea from geography that cities form part of "system of cities" (i.e., they cannot be seen as single entities). Based on this, the article argues that urban governance need to harness social networks of urban innovation to sustain ecosystem services, while nurturing discourses that situate the city as part of regional ecosystems. The article broadens the discussion on urban resilience while challenging resilience theory when addressing human-dominated ecosystems. Practical examples of harnessing urban innovation are presented, paired with an agenda for research and policy.
Fishing-induced life-history changes degrade and destabilize harvested ecosystems
NASA Astrophysics Data System (ADS)
Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S.; Lassaux, Hélène; Martinez, Neo D.
2016-02-01
Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes’ food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes’ resilience to fishing and ecosystems’ resistance to environmental variations.
Is U.S. climatic diversity well represented within the existing federal protection network?
Enric Batllori; Carol Miller; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz
2014-01-01
Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans....
GSD Update: All together now: Collaboration in research and stewardship for our 21st century lands
Lisa-Natalie Anjozian
2012-01-01
Collaboration is the way the USDA Forest Service operates in this new era, where the challenges in our natural world - to soil, air, plants, animals, watersheds - require the talents of devoted scientists, managers, citizens, communities. Conservation of terrestrial and aquatic ecosystems depends on the success of these networks of involved participants in finding...
[Advances in studies on the structure of farmland shelterbelt ecosystem].
Li, Chunping; Guan, Wenbin; Fan, Zhiping; Su, Fanxin; Wang, Xilin
2003-11-01
The ecological function of farmland shelterbelt system is determined by its structure. The spatio-temporal structure is a key aspect in related researches, which is very necessary to study the integrity, stability and durability of shelterbelt modules. In this article, the researches on the structure of farmland shelterbelt ecosystem were reviewed from the four scales of tree structure, shelterbelt structure, shelterbelts network and landscape structure. The principles, methods and productions of each scale were summarized, and the prospects were also discussed. Dynamic simulation of tree growth process in shelterbelts could be conducted by the theory of form and quality structure of tree and by fractal graphics, which were helpful to study the mechanism of individual trees and belts based on photosynthetic and transpiration mechanism of individual trees. The mechanism model of shelterbelt porosity should be conducted, so that, the sustainable yield model of shelterbelt management could be established, and the optimized model of shelterbelt networks with multi-special and multi-hierarchical structure could also be formed. Evaluating the reasonability, stability and durability of shelterbelt landscape based on the theories and methods of landscape ecology was an important task in the future studies.
A Brazilian network of carbon flux stations
NASA Astrophysics Data System (ADS)
Roberti, Débora R.; Acevedo, Otávio C.; Moraes, Osvaldo L. L.
2012-05-01
First Brasflux Workshop; Santa Maria, Rio Grande do Sul, Brazil, 14-15 November 2011 Last November, 33 researchers participated in a workshop to establish Brasflux, the Brazilian network of carbon flux stations, with the objective of integrating previous efforts and planning for the future. Among the participants were those leading ongoing flux observation projects and others planning to establish flux stations in the near future. International scientists also participated to share the experiences gained with other networks. The need to properly characterize terrestrial ecosystems for their roles in the global carbon, water, and energy budgets has motivated the implementation of hundreds of micrometeorological research sites throughout the world in recent years. The eddy covariance (EC) technique for turbulent flux determination is the preferred method to provide integral information on ecosystematmosphere exchanges. Integrating the observations regionally and globally has proven to be an effective approach to maximizing the usefulness of this technique for carbon cycle studies at multiple scales.
Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.
O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F
2017-08-31
In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.
An Update on NASA's Arctic Boreal Vulnerability Experiment
NASA Astrophysics Data System (ADS)
Goetz, S. J.; Miller, C. E.; Griffith, P. C.; Larson, E. K.; Kasischke, E. S.; Margolis, H. A.
2016-12-01
ABoVE is a NASA-led field campaign taking place in Alaska and western Canada over the next 8-10 years, with a wide range of interdisciplinary science objectives designed to address the extent to which ecosystems and society are vulnerable, or resilient, to environmental changes underway and expected. The first phase of ABoVE is underway, with a focus on ecosystem dynamics and ecosystem services objectives. Some 45 core and affiliated projects are currently included, and another 10-20 will be added in late 2016 with initiation of the airborne science component. The ABoVE leadership is fostering partnerships with several other major arctic and boreal research, management and policy initiatives. The Science Team is organized around science themes, with Working Groups (WGs) on vegetation, permafrost and hydrology, disturbance, carbon dynamics, wildlife and ecosystem services, and modeling. Despite the disciplinary science WGs, ABoVE research broadly focuses the complex interdependencies and feedbacks across disciplines. Additional WGs focus on airborne science, geospatial products, core variables and standards, and stakeholder engagement - all supplemented by a range of infrastructure activities such as data management, cloud computing, laboratory and field support. Ultimately ABoVE research will improve our understanding of the consequences of environmental changes occurring across the study domain, as well as increase our confidence in making projections of the ecosystem responses and vulnerability to changes taking place both within and outside the domain. ABoVE will also build a lasting legacy of research through an expanded knowledge base, the provision of key datasets archived for a broader network of researchers and resource managers, and the development of data products and knowledge designed to foster decision support and applied research partnerships with broad societal relevance. We will provide a brief status update of ABoVE activities and plans, including the upcoming airborne campaigns, science team meetings, and the potential for partnerships and engagement.
Santora, Jarrod A; Zeno, Ramona; Dorman, Jeffrey G; Sydeman, William J
2018-05-15
Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.
Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010.
Zhang, Xinyu; Xu, Zhiwei; Sun, Xiaomin; Dong, Wenyi; Ballantine, Deborah
2013-05-01
The nitrate-nitrogen (NO3(-)-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations, representing typical agro- and forest ecosystems, were assessed using monitoring data collected between 2004 and 2010. Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater, and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made. Results indicated that most of the NO3(-)-N concentrations in groundwater from the agro- and forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard: Quality Standard for Ground Water (< or = 20 mg/L). Over the study period, the average NO3(-)-N concentrations were significantly higher in agro-ecosystems (4.1 +/- 0.33 mg/L) than in forest ecosystems (0.5 +/- 0.04 mg/L). NO3(-)-N concentrations were relatively higher (> 10 mg N /L) in 10 of the 43 wells sampled in the agricultural ecosystems. These elevated concentrations occurred mainly in the Ansai, Yucheng, Linze, Fukang, Akesu, and Cele field sites, which were located in arid and semi-arid areas where irrigation rates are high. We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations.
Causal Relationships Among Time Series of the Lange Bramke Catchment (Harz Mountains, Germany)
NASA Astrophysics Data System (ADS)
Aufgebauer, Britta; Hauhs, Michael; Bogner, Christina; Meesenburg, Henning; Lange, Holger
2016-04-01
Convergent Cross Mapping (CCM) has recently been introduced by Sugihara et al. for the identification and quantification of causal relationships among ecosystem variables. In particular, the method allows to decide on the direction of causality; in some cases, the causality might be bidirectional, indicating a network structure. We extend this approach by introducing a method of surrogate data to obtain confidence intervals for CCM results. We then apply this method to time series from stream water chemistry. Specifically, we analyze a set of eight dissolved major ions from three different catchments belonging to the hydrological monitoring system at the Bramke valley in the Harz Mountains, Germany. Our results demonstrate the potentials and limits of CCM as a monitoring instrument in forestry and hydrology or as a tool to identify processes in ecosystem research. While some networks of causally linked ions can be associated with simple physical and chemical processes, other results illustrate peculiarities of the three studied catchments, which are explained in the context of their special history.
Varela Minder, Elda; Padgett, Holly A.
2016-04-07
2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.
River rehabilitation for the delivery of multiple ecosystem services at the river network scale.
Gilvear, David J; Spray, Chris J; Casas-Mulet, Roser
2013-09-15
This paper presents a conceptual framework and methodology to assist with optimising the outcomes of river rehabilitation in terms of delivery of multiple ecosystem services and the benefits they represent for humans at the river network scale. The approach is applicable globally, but was initially devised in the context of a project critically examining opportunities and constraints on delivery of river rehabilitation in Scotland. The spatial-temporal approach highlighted is river rehabilitation measure, rehabilitation scale, location on the stream network, ecosystem service and timescale specific and could be used as initial scoping in the process of planning rehabilitation at the river network scale. The levels of service delivered are based on an expert-derived scoring system based on understanding how the rehabilitation measure assists in reinstating important geomorphological, hydrological and ecological processes and hence intermediate or primary ecosystem function. The framework permits a "total long-term (>25 years) ecosystem service score" to be calculated which is the cumulative result of the combined effect of the number of and level of ecosystem services delivered over time. Trajectories over time for attaining the long-term ecosystem service score for each river rehabilitation measures are also given. Scores could also be weighted according to societal values and economic valuation. These scores could assist decision making in relation to river rehabilitation at the catchment scale in terms of directing resources towards alternative scenarios. A case study is presented of applying the methodology to the Eddleston Water in Scotland using proposed river rehabilitation options for the catchment to demonstrate the value of the approach. Our overall assertion is that unless sound conceptual frameworks are developed that permit the river network scale ecosystem services of river rehabilitation to be evaluated as part of the process of river basin planning and management, the total benefit of river rehabilitation may well be reduced. River rehabilitation together with a 'vision' and framework within which it can be developed, is fundamental to future success in river basin management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich
2015-05-01
Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Emergy evaluations of three benthic ecosystem networks found in Mejillones, Antofagasta and Tongoy Bays, located on the coast of northern Chile, were carried out with the intent of documenting the contributions of these coastal ecosystems to the economy. The productivity of these...
Systems biology approach to bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.
2012-06-01
Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potentialmore » for making bioremediation breakthroughs and illuminating the ‘black box’.« less
Ecological Network Indicators of Ecosystem Status and Change in the Baltic Sea
Tomczak, Maciej T.; Heymans, Johanna J.; Yletyinen, Johanna; Niiranen, Susa; Otto, Saskia A.; Blenckner, Thorsten
2013-01-01
Several marine ecosystems under anthropogenic pressure have experienced shifts from one ecological state to another. In the central Baltic Sea, the regime shift of the 1980s has been associated with food-web reorganization and redirection of energy flow pathways. These long-term dynamics from 1974 to 2006 have been simulated here using a food-web model forced by climate and fishing. Ecological network analysis was performed to calculate indices of ecosystem change. The model replicated the regime shift. The analyses of indicators suggested that the system’s resilience was higher prior to 1988 and lower thereafter. The ecosystem topology also changed from a web-like structure to a linearized food-web. PMID:24116045
Swan, Melanie
2012-03-07
Crowdsourced health research studies are the nexus of three contemporary trends: 1) citizen science (non-professionally trained individuals conducting science-related activities); 2) crowdsourcing (use of web-based technologies to recruit project participants); and 3) medicine 2.0 / health 2.0 (active participation of individuals in their health care particularly using web 2.0 technologies). Crowdsourced health research studies have arisen as a natural extension of the activities of health social networks (online health interest communities), and can be researcher-organized or participant-organized. In the last few years, professional researchers have been crowdsourcing cohorts from health social networks for the conduct of traditional studies. Participants have also begun to organize their own research studies through health social networks and health collaboration communities created especially for the purpose of self-experimentation and the investigation of health-related concerns. The objective of this analysis is to undertake a comprehensive narrative review of crowdsourced health research studies. This review will assess the status, impact, and prospects of crowdsourced health research studies. Crowdsourced health research studies were identified through a search of literature published from 2000 to 2011 and informal interviews conducted 2008-2011. Keyword terms related to crowdsourcing were sought in Medline/PubMed. Papers that presented results from human health studies that included crowdsourced populations were selected for inclusion. Crowdsourced health research studies not published in the scientific literature were identified by attending industry conferences and events, interviewing attendees, and reviewing related websites. Participatory health is a growing area with individuals using health social networks, crowdsourced studies, smartphone health applications, and personal health records to achieve positive outcomes for a variety of health conditions. PatientsLikeMe and 23andMe are the leading operators of researcher-organized, crowdsourced health research studies. These operators have published findings in the areas of disease research, drug response, user experience in crowdsourced studies, and genetic association. Quantified Self, Genomera, and DIYgenomics are communities of participant-organized health research studies where individuals conduct self-experimentation and group studies. Crowdsourced health research studies have a diversity of intended outcomes and levels of scientific rigor. Participatory health initiatives are becoming part of the public health ecosystem and their rapid growth is facilitated by Internet and social networking influences. Large-scale parameter-stratified cohorts have potential to facilitate a next-generation understanding of disease and drug response. Not only is the large size of crowdsourced cohorts an asset to medical discovery, too is the near-immediate speed at which medical findings might be tested and applied. Participatory health initiatives are expanding the scope of medicine from a traditional focus on disease cure to a personalized preventive approach. Crowdsourced health research studies are a promising complement and extension to traditional clinical trials as a model for the conduct of health research.
2012-01-01
Background Crowdsourced health research studies are the nexus of three contemporary trends: 1) citizen science (non-professionally trained individuals conducting science-related activities); 2) crowdsourcing (use of web-based technologies to recruit project participants); and 3) medicine 2.0 / health 2.0 (active participation of individuals in their health care particularly using web 2.0 technologies). Crowdsourced health research studies have arisen as a natural extension of the activities of health social networks (online health interest communities), and can be researcher-organized or participant-organized. In the last few years, professional researchers have been crowdsourcing cohorts from health social networks for the conduct of traditional studies. Participants have also begun to organize their own research studies through health social networks and health collaboration communities created especially for the purpose of self-experimentation and the investigation of health-related concerns. Objective The objective of this analysis is to undertake a comprehensive narrative review of crowdsourced health research studies. This review will assess the status, impact, and prospects of crowdsourced health research studies. Methods Crowdsourced health research studies were identified through a search of literature published from 2000 to 2011 and informal interviews conducted 2008-2011. Keyword terms related to crowdsourcing were sought in Medline/PubMed. Papers that presented results from human health studies that included crowdsourced populations were selected for inclusion. Crowdsourced health research studies not published in the scientific literature were identified by attending industry conferences and events, interviewing attendees, and reviewing related websites. Results Participatory health is a growing area with individuals using health social networks, crowdsourced studies, smartphone health applications, and personal health records to achieve positive outcomes for a variety of health conditions. PatientsLikeMe and 23andMe are the leading operators of researcher-organized, crowdsourced health research studies. These operators have published findings in the areas of disease research, drug response, user experience in crowdsourced studies, and genetic association. Quantified Self, Genomera, and DIYgenomics are communities of participant-organized health research studies where individuals conduct self-experimentation and group studies. Crowdsourced health research studies have a diversity of intended outcomes and levels of scientific rigor. Conclusions Participatory health initiatives are becoming part of the public health ecosystem and their rapid growth is facilitated by Internet and social networking influences. Large-scale parameter-stratified cohorts have potential to facilitate a next-generation understanding of disease and drug response. Not only is the large size of crowdsourced cohorts an asset to medical discovery, too is the near-immediate speed at which medical findings might be tested and applied. Participatory health initiatives are expanding the scope of medicine from a traditional focus on disease cure to a personalized preventive approach. Crowdsourced health research studies are a promising complement and extension to traditional clinical trials as a model for the conduct of health research. PMID:22397809
Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems
NASA Astrophysics Data System (ADS)
Manzalini, Antonio; Minerva, Roberto; Moiso, Corrado
Today, people are making use of several devices for communications, for accessing multi-media content services, for data/information retrieving, for processing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras, mp3 players, smart cards and smart appliances. One of the most attracting service scenarios for future Telecommunications and Internet is the one where people will be able to browse any object in the environment they live: communications, sensing and processing of data and services will be highly pervasive. In this vision, people, machines, artifacts and the surrounding space will create a kind of computational environment and, at the same time, the interfaces to the network resources. A challenging technological issue will be interconnection and management of heterogeneous systems and a huge amount of small devices tied together in networks of networks. Moreover, future network and service infrastructures should be able to provide Users and Application Developers (at different levels, e.g., residential Users but also SMEs, LEs, ASPs/Web2.0 Service roviders, ISPs, Content Providers, etc.) with the most appropriate "environment" according to their context and specific needs. Operators must be ready to manage such level of complication enabling their latforms with technological advanced allowing network and services self-supervision and self-adaptation capabilities. Autonomic software solutions, enhanced with innovative bio-inspired mechanisms and algorithms, are promising areas of long term research to face such challenges. This chapter proposes a bio-inspired autonomic middleware capable of leveraging the assets of the underlying network infrastructure whilst, at the same time, supporting the development of future Telecommunications and Internet Ecosystems.
NASA Astrophysics Data System (ADS)
Grippo, Mark; Hayse, John W.; O'Connor, Ben L.
2015-01-01
The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.
Grippo, Mark; Hayse, John W; O'Connor, Ben L
2015-01-01
The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change.
Anderson-Teixeira, Kristina J; Davies, Stuart J; Bennett, Amy C; Gonzalez-Akre, Erika B; Muller-Landau, Helene C; Wright, S Joseph; Abu Salim, Kamariah; Almeyda Zambrano, Angélica M; Alonso, Alfonso; Baltzer, Jennifer L; Basset, Yves; Bourg, Norman A; Broadbent, Eben N; Brockelman, Warren Y; Bunyavejchewin, Sarayudh; Burslem, David F R P; Butt, Nathalie; Cao, Min; Cardenas, Dairon; Chuyong, George B; Clay, Keith; Cordell, Susan; Dattaraja, Handanakere S; Deng, Xiaobao; Detto, Matteo; Du, Xiaojun; Duque, Alvaro; Erikson, David L; Ewango, Corneille E N; Fischer, Gunter A; Fletcher, Christine; Foster, Robin B; Giardina, Christian P; Gilbert, Gregory S; Gunatilleke, Nimal; Gunatilleke, Savitri; Hao, Zhanqing; Hargrove, William W; Hart, Terese B; Hau, Billy C H; He, Fangliang; Hoffman, Forrest M; Howe, Robert W; Hubbell, Stephen P; Inman-Narahari, Faith M; Jansen, Patrick A; Jiang, Mingxi; Johnson, Daniel J; Kanzaki, Mamoru; Kassim, Abdul Rahman; Kenfack, David; Kibet, Staline; Kinnaird, Margaret F; Korte, Lisa; Kral, Kamil; Kumar, Jitendra; Larson, Andrew J; Li, Yide; Li, Xiankun; Liu, Shirong; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Maddalena, Damian M; Makana, Jean-Remy; Malhi, Yadvinder; Marthews, Toby; Mat Serudin, Rafizah; McMahon, Sean M; McShea, William J; Memiaghe, Hervé R; Mi, Xiangcheng; Mizuno, Takashi; Morecroft, Michael; Myers, Jonathan A; Novotny, Vojtech; de Oliveira, Alexandre A; Ong, Perry S; Orwig, David A; Ostertag, Rebecca; den Ouden, Jan; Parker, Geoffrey G; Phillips, Richard P; Sack, Lawren; Sainge, Moses N; Sang, Weiguo; Sri-Ngernyuang, Kriangsak; Sukumar, Raman; Sun, I-Fang; Sungpalee, Witchaphart; Suresh, Hebbalalu Sathyanarayana; Tan, Sylvester; Thomas, Sean C; Thomas, Duncan W; Thompson, Jill; Turner, Benjamin L; Uriarte, Maria; Valencia, Renato; Vallejo, Marta I; Vicentini, Alberto; Vrška, Tomáš; Wang, Xihua; Wang, Xugao; Weiblen, George; Wolf, Amy; Xu, Han; Yap, Sandra; Zimmerman, Jess
2015-02-01
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Metzger, M.; Brown, C.; Pérez-Soba, M.; Rounsevell, M.; Verweij, P.; Delbaere, B.; Cojocaru, G.; Saarikoski, H.; Harrison, P.; Zellmer, K.
2014-12-01
The ecosystem services concept is seen by many as a useful paradigm to support decision-making at the complex interface between science, policy and practice. However, to be successful, it requires a strong willingness for collaboration and joint understanding. In support of this aspiration, OPPLA is being developed as a web portal to enable European communities to better manage ecosystems for human well-being and livelihoods. OPPLA will provide access to a variety of online resources such as tools, case studies, lessons learned, videos, manuals and training and educational materials. It will also provide expert forums and spaces for discussions between researchers, practitioners and decision makers. Hence a critical aspect of the success of OPPLA is the co-evolution of communities of practice. An example of a community of practice is the recently launched Ecosystem Services Community - Scotland (ESCom-Scotland; escomscotland.wordpress.com). ESCom-Scotland aims to support better management of Scotland's natural resources by helping to establish a community of practice between individuals and groups involved in the science, policy and practice behind sustainable ecosystem management. It aspires to encourage the sharing of ideas, increase collaboration and to initiate a support network for those engaging with the ecosystem services concept and it will use the OPPLA resources to support these activities. OPPLA is currently at the developmental stage and was instigated by two large European Commission funded research projects: OPERAs (www.operas-project.eu) and OpenNESS (www.openness-project.eu), with a combined budget of ca. €24m. These projects aim to improve understanding of how ecosystem services contribute to human well-being in different social-ecological systems. Research will establish whether, how and under what conditions the ecosystem services concept can move beyond the academic domain towards practical implementation in support of sustainable ecosystem management. New insights, and improved or novel tools and instruments, will be tested in practice in case studies that cover a range of socio-ecological systems across locales, sectors, scales and time. This presentation will discuss the development of OPPLA and the communities of practice that are emerging around it.
CADC and CANFAR: Extending the role of the data centre
NASA Astrophysics Data System (ADS)
Gaudet, Severin
2015-12-01
Over the past six years, the CADC has moved beyond the astronomy archive data centre to a multi-service system for the community. This evolution is based on two major initiatives. The first is the adoption of International Virtual Observatory Alliance (IVOA) standards in both the system and data architecture of the CADC, including a common characterization data model. The second is the Canadian Advanced Network for Astronomical Research (CANFAR), a digital infrastructure combining the Canadian national research network (CANARIE), cloud processing and storage resources (Compute Canada) and a data centre (Canadian Astronomy Data Centre) into a unified ecosystem for storage and processing for the astronomy community. This talk will describe the architecture and integration of IVOA and CANFAR services into CADC operations, the operational experiences, the lessons learned and future directions
Xu, Zhiwei; Zhang, Xinyu; Xie, Juan; Yuan, Guofu; Tang, Xinzhai; Sun, Xiaomin; Yu, Guirui
2014-01-01
We assessed the total nitrogen (N) concentrations of 28 still surface water (lake and pond), and 42 flowing surface water (river), monitoring sites under 29 typical terrestrial ecosystems of the Chinese Ecosystem Research Network (CERN) using monitoring data collected between 2004 and 2009. The results showed that the median total N concentrations of still surface water were significantly higher in the agro- (1.5 mg·L−1) and oasis agro- ecosystems (1.8 mg·L−1) than in the forest ecosystems (1.0 mg·L−1). This was also the case for flowing surface water, with total N concentrations of 2.4 mg·L−1, 1.8 mg·L−1 and 0.5 mg·L−1 for the agro-, oasis agro- and forest ecosystems, respectively. In addition, more than 50% of the samples in agro- and oasis agro- ecosystems were seriously polluted (>1.0 mg·L−1) by N. Spatial analysis showed that the total N concentrations in northern and northwestern regions were higher than those in the southern region for both still and flowing surface waters under agro- and oasis agro- ecosystems, with more than 50% of samples exceeding 1.0 mg·L−1 (the Class III limit of the Chinese National Quality Standards for Surface Waters) in surface water in the northern region. Nitrogen pollution in agro- ecosystems is mainly due to fertilizer applications, while the combination of fertilizer and irrigation exacerbates nitrogen pollution in oasis agro- ecosystems. PMID:24667701
The Walnut Gulch - Santa Rita Wildland Watershed-Scale LTAR Sites
NASA Astrophysics Data System (ADS)
Goodrich, D. C.; Heilman, P.; Scott, R. L.; Nearing, M. A.; Moran, M. S.; Nichols, M.; Vivoni, E. R.; Archer, S. R.; Biederman, J.; Naito, A. T.
2015-12-01
The 150 km2 Walnut Gulch Experimental Watershed (WGEW), a Long-Term Agroecosystem Research (LTAR) site, near Tombstone, Arizona was established in 1953 by the USDA-ARS Southwest Watershed Research Center in Tucson. It is one of the most intensively instrumented semiarid experimental watersheds in the world with elevation ranging from 1220 to 1950 m with mean annual temperature and precipitation equal to 17.7°C and 312 mm. Desert shrubs dominate the lower two thirds of the watershed and grasses the upper third. Spatial variation in precipitation is measured with a network of 88 weighing-type recording rain gauges. Surface runoff is quantified over a range of scales (0.002 to 0.06 km2) to characterize interactions between rainfall intensity, soils and vegetation at nine sub-watersheds. Channel network processes and rainfall spatial variability are studied using 11 nested watersheds (2 to 150 km2). Sediment from the small sub-watersheds is sampled. Meteorological, soil moisture and temperature, and energy/water/CO2 flux measurements are made within two vegetation/soil complexes. Parallel investigations dating back to 1974 have also been conducted on eight small experimental watersheds at the Santa Rita Experimental Range (SRER) 80 km west of Walnut Gulch. In contrast to the creosote bush-grass WGEW, the mesquite-grass SRER is publicly owned, which ensures control and consistent reporting of management for research purposes. A key LTAR objective is to contrast a "business as usual" to an alternate management strategy presumed to have the potential of significantly improving forage and livestock production and diversification of ecosystem services. Consequently, a new ARS-U. of Arizona-Arizona State U. partnership will assess the watershed-scale impacts of brush management, a common land use practice typically applied in conjunction with livestock grazing, on a suite of ecosystem services at the SRER including provisioning (forage production, water yield), supporting (ecosystem primary production, soil moisture), and regulating services (C sequestration, peak flows, sediment yield, land surface-atmosphere interactions). Experimental design, management and monitoring being implemented to quantify these ecosystem services will be presented.
Inferential ecosystem models, from network data to prediction
James S. Clark; Pankaj Agarwal; David M. Bell; Paul G. Flikkema; Alan Gelfand; Xuanlong Nguyen; Eric Ward; Jun Yang
2011-01-01
Recent developments suggest that predictive modeling could begin to play a larger role not only for data analysis, but also for data collection. We address the example of efficient wireless sensor networks, where inferential ecosystem models can be used to weigh the value of an observation against the cost of data collection. Transmission costs make observations ââ...
Indicators of ocean health and human health: developing a research and monitoring framework.
Knap, Anthony; Dewailly, Eric; Furgal, Chris; Galvin, Jennifer; Baden, Dan; Bowen, Robert E; Depledge, Michael; Duguay, Linda; Fleming, Lora E; Ford, Tim; Moser, Fredricka; Owen, Richard; Suk, William A; Unluata, Umit
2002-01-01
We need to critically assess the present quality of the marine ecosystem, especially the connection between ecosystem change and threats to human health. In this article we review the current state of indicators to link changes in marine organisms with eventual effects to human health, identify research opportunities in the use of indicators of ocean and human health, and discuss how to establish collaborations between national and international governmental and private sector groups. We present a synthesis of the present state of understanding of the connection between ocean health and human health, a discussion of areas where resources are required, and a discussion of critical research needs and a template for future work in this field. To understand fully the interactions between ocean health and human health, programs should be organized around a "models-based" approach focusing on critical themes and attributes of marine environmental and public health risks. Given the extent and complex nature of ocean and human health issues, a program networking across geographic and disciplinary boundaries is essential. The overall goal of this approach would be the early detection of potential marine-based contaminants, the protection of marine ecosystems, the prevention of associated human illness, and by implication, the development of products to enhance human well-being. The tight connection between research and monitoring is essential to develop such an indicator-based effort. PMID:12204815
Christoph Kueffer; Curtis Daehler; Hansjörg Dietz; Keith McDougall; Catherine Parks; Aníbal Pauchard; Lisa Rew
2014-01-01
Many modern environmental problems span vastly different spatial scales, from the management of local ecosystems to understanding globally interconnected processes, and addressing them through international policy. MIREN tackles one such âglocalâ (global/local) environmental problem â plant invasions in mountains â through a transdisciplinary, multi-scale learning...
CLEANER-Hydrologic Observatory Joint Science Plan
NASA Astrophysics Data System (ADS)
Welty, C.; Dressler, K.; Hooper, R.
2005-12-01
The CLEANER-Hydrologic Observatory* initiative is a distributed network for research on complex environmental systems that focuses on the intersecting water-related issues of both the CUAHSI and CLEANER communities. It emphasizes research on the nation's water resources related to human-dominated natural and built environments. The network will be comprised of: interacting field sites with an integrated cyberinfrastructure; a centralized technical resource staff and management infrastructure to support interdisciplinary research through data collection from advanced sensor systems, data mining and aggregation from multiple sources and databases; cyber-tools for analysis, visualization, and predictive multi-scale modeling that is dynamically driven. As such, the network will transform 21st century workforce development in the water-related intersection of environmental science and engineering, as well as enable substantial educational and engagement opportunities for all age levels. The scientific goal and strategic intent of the CLEANER-Hydrologic Observatory Network is to transform our understanding of the earth's water cycle and associated biogeochemical cycles across spatial and temporal scales-enabling quantitative forecasts of critical water-related processes, especially those that affect and are affected by human activities. This strategy will develop scientific and engineering tools that will enable more effective adaptive approaches for resource management. The need for the network is based on three critical deficiencies in current abilities to understand large-scale environmental processes and thereby develop more effective management strategies. First we lack basic data and the infrastructure to collect them at the needed resolution. Second, we lack the means to integrate data across scales from different media (paper records, electronic worksheets, web-based) and sources (observations, experiments, simulations). Third, we lack sufficiently accurate modeling and decision-support tools to predict the underlying processes or subsequently forecast the effects of different management strategies. Water is a critical driver for the functioning of all ecosystems and development of human society, and it is a key ingredient for the success of industry, agriculture and, national economy. CLEANER-Hydrologic Observatories will foster cutting-edge science and engineering research that addresses major national needs (public and governmental) related to water and include, for example: (i) water resource problems, such as impaired surface waters, contaminated ground water, water availability for human use and ecosystem needs, floods and floodplain management, urban storm water, agricultural runoff, and coastal hypoxia; (ii) understanding environmental impacts on public health; (iii) achieving a balance of economic and environmental sustainability; (iv) reversing environmental degradation; and (v) protecting against chemical and biological threats. CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) is an ENG initiative; the Hydrologic Observatory Network is GEO initiative through CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.). The two initiatives were merged into a joint, bi-directorate program in December 2004.
Salt marsh vegetation promotes efficient tidal channel networks
Kearney, William S.; Fagherazzi, Sergio
2016-01-01
Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes. Biology feeds back into channel morphodynamics through the influence of vegetation on both flow and the cohesive strength of channel banks. Determining how vegetation affects channel networks is essential in understanding the biological functioning of intertidal ecosystems and their ecosystem services. However, the processes that control the formation of an efficient tidal channel network remain unclear. Here we compare the channel networks of vegetated salt marshes in Massachusetts and the Venice Lagoon to unvegetated systems in the arid environments of the Gulf of California and Yemen. We find that the unvegetated systems are dissected by less efficient channel networks than the vegetated salt marshes. These differences in network geometry reflect differences in the branching and meandering of the channels in the network, characteristics that are related to the density of vegetation on the marsh. PMID:27430165
Water Use Efficiency of China's Terrestrial Ecosystems and Responses to Drought
NASA Astrophysics Data System (ADS)
Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X.
2015-12-01
Yibo Liu1, 2, Jingfeng Xiao2, Weimin Ju3, Yanlian Zhou4, Shaoqiang Wang5, Xiaocui Wu31 Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China, 2Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA, 3 International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China, 4 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China, 5 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg-1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme drought reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity. Keywords: water use efficiency (WUE), drought, carbon sink, ecosystem model, China
Identifying and prioritizing phenological data products and tools
NASA Astrophysics Data System (ADS)
Enquist, Carolyn A. F.; Rosemartin, Alyssa; Schwartz, Mark D.
2012-09-01
USA National Phenology Network Research Coordination Network Meeting; Milwaukee, Wisconsin, 22-23 May 2012 Phenology is the study of reoccurring life cycle events in plants and animals, such as bird migrations, emergence from hibernation, flowering, and carbon cycling. Changes in the timing of phenological events are widely recognized as indicators of the effects of climate change on ecosystems. Phenological data can be used to inform wildlife management, wildfire and pollen forecasting, and the planning of events such as the National Cherry Blossom Festival. Until recently, collection of phenological data using standardized methods was relatively rare, limiting their use in science, management, and decision making.
NASA Astrophysics Data System (ADS)
Friedel, Michael; Buscema, Massimo
2016-04-01
Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.
A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.
Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien
2017-01-01
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
An assessment of long term ecosystem research activities across European socio-ecological gradients.
Metzger, M J; Bunce, R G H; van Eupen, M; Mirtl, M
2010-06-01
Integration of European long term ecosystem research (LTER) would provide important support for the management of the pan-European environment and ecosystems, as well as international policy commitments. This does require appropriate coverage of Europe and standardised frameworks and research methods between countries. Emerging interest in socio-ecological systems prompted the present assessment of the distribution of LTER activities across European socio-ecological gradients. This paper presents a European stratification with a 1 km(2) resolution, delineating 48 broad socio-ecological regions. The dataset is based on an existing biogeophysical stratification constructed using multivariate clustering of mainly climatic variables and a newly developed socio-economic stratification based on an economic density indicator. The coverage of European LTER facilities across the socio-ecological gradients is tested using this dataset. The analysis shows two strong biases in the present LTER effort. Firstly, urban and disturbed regions are consistently under-represented, illustrating a bias for traditional ecological research away from human activity. Secondly, the Mediterranean, for which some of the most extreme global change impacts are projected, is receiving comparatively little attention. Both findings can help guide future investment in the European LTER network - and especially in a Long Term Socio-Ecological Research (LTSER) component- to provide a more balanced coverage. This will provide better scientific understanding of pan-European environmental concerns and support the management of natural resources and international policy commitments in the European Union. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goodman, K. J.; Lunch, C. K.; Baxter, C.; Hall, R.; Holtgrieve, G. W.; Roberts, B. J.; Marcarelli, A. M.; Tank, J. L.
2013-12-01
Recent advances in dissolved oxygen sensing and modeling have made continuous measurements of whole-stream metabolism relatively easy to make, allowing ecologists to quantify and evaluate stream ecosystem health at expanded temporal and spatial scales. Long-term monitoring of continuous stream metabolism will enable a better understanding of the integrated and complex effects of anthropogenic change (e.g., land-use, climate, atmospheric deposition, invasive species, etc.) on stream ecosystem function. In addition to their value in the particular streams measured, information derived from long-term data will improve the ability to extrapolate from shorter-term data. With the need to better understand drivers and responses of whole-stream metabolism come difficulties in interpreting the results. Long-term trends will encompass physical changes in stream morphology and flow regime (e.g., variable flow conditions and changes in channel structure) combined with changes in biota. Additionally long-term data sets will require an organized database structure, careful quantification of errors and uncertainties, as well as propagation of error as a result of the calculation of metabolism metrics. Parsing of continuous data and the choice of modeling approaches can also have a large influence on results and on error estimation. The two main modeling challenges include 1) obtaining unbiased, low-error daily estimates of gross primary production (GPP) and ecosystem respiration (ER), and 2) interpreting GPP and ER measurements over extended time periods. The National Ecological Observatory Network (NEON), in partnership with academic and government scientists, has begun to tackle several of these challenges as it prepares for the collection and calculation of 30 years of continuous whole-stream metabolism data. NEON is a national-scale research platform that will use consistent procedures and protocols to standardize measurements across the United States, providing long-term, high-quality, open-access data from a connected network to address large-scale change. NEON infrastructure will support 36 aquatic sites across 19 ecoclimatic domains. Sites include core sites, which remain for 30 years, and relocatable sites, which move to capture regional gradients. NEON will measure continuous whole-stream metabolism in conjunction with aquatic, terrestrial and airborne observations, allowing researchers to link stream ecosystem function with landscape and climatic drivers encompassing short to long time periods (i.e., decades).
Levels and limits in artificial selection of communities.
Blouin, Manuel; Karimi, Battle; Mathieu, Jérôme; Lerch, Thomas Z
2015-10-01
Artificial selection of individuals has been determinant in the elaboration of the Darwinian theory of natural selection. Nowadays, artificial selection of ecosystems has proven its efficiency and could contribute to a theory of natural selection at several organisation levels. Here, we were not interested in identifying mechanisms of adaptation to selection, but in establishing the proof of principle that a specific structure of interaction network emerges under ecosystem artificial selection. We also investigated the limits in ecosystem artificial selection to evaluate its potential in terms of managing ecosystem function. By artificially selecting microbial communities for low CO2 emissions over 21 generations (n = 7560), we found a very high heritability of community phenotype (52%). Artificial selection was responsible for simpler interaction networks with lower interaction richness. Phenotype variance and heritability both decreased across generations, suggesting that selection was more likely limited by sampling effects than by stochastic ecosystem dynamics. © 2015 John Wiley & Sons Ltd/CNRS.
Semantic Support for Complex Ecosystem Research Environments
NASA Astrophysics Data System (ADS)
Klawonn, M.; McGuinness, D. L.; Pinheiro, P.; Santos, H. O.; Chastain, K.
2015-12-01
As ecosystems come under increasing stresses from diverse sources, there is growing interest in research efforts aimed at monitoring, modeling, and improving understanding of ecosystems and protection options. We aimed to provide a semantic infrastructure capable of representing data initially related to one large aquatic ecosystem research effort - the Jefferson project at Lake George. This effort includes significant historical observational data, extensive sensor-based monitoring data, experimental data, as well as model and simulation data covering topics including lake circulation, watershed runoff, lake biome food webs, etc. The initial measurement representation has been centered on monitoring data and related provenance. We developed a human-aware sensor network ontology (HASNetO) that leverages existing ontologies (PROV-O, OBOE, VSTO*) in support of measurement annotations. We explicitly support the human-aware aspects of human sensor deployment and collection activity to help capture key provenance that often is lacking. Our foundational ontology has since been generalized into a family of ontologies and used to create our human-aware data collection infrastructure that now supports the integration of measurement data along with simulation data. Interestingly, we have also utilized the same infrastructure to work with partners who have some more specific needs for specifying the environmental conditions where measurements occur, for example, knowing that an air temperature is not an external air temperature, but of the air temperature when windows are shut and curtains are open. We have also leveraged the same infrastructure to work with partners more interested in modeling smart cities with data feeds more related to people, mobility, environment, and living. We will introduce our human-aware data collection infrastructure, and demonstrate how it uses HASNetO and its supporting SOLR-based search platform to support data integration and semantic browsing. Further we will present learnings from its use in three relatively diverse large ecosystem research efforts and highlight some benefits and challenges related to our semantically-enhanced foundation.
NASA Astrophysics Data System (ADS)
Neyer, F.; Nocerino, E.; Gruen, A.
2018-05-01
Creating 3-dimensional (3D) models of underwater scenes has become a common approach for monitoring coral reef changes and its structural complexity. Also in underwater archeology, 3D models are often created using underwater optical imagery. In this paper, we focus on the aspect of detecting small changes in the coral reef using a multi-temporal photogrammetric modelling approach, which requires a high quality control network. We show that the quality of a good geodetic network limits the direct change detection, i.e., without any further registration process. As the photogrammetric accuracy is expected to exceed the geodetic network accuracy by at least one order of magnitude, we suggest to do a fine registration based on a number of signalized points. This work is part of the Moorea Island Digital Ecosystem Avatar (IDEA) project that has been initiated in 2013 by a group of international researchers (https://mooreaidea.ethz.ch/).
The Global Invasive Species Information Network: contributing to GEO Task BI-07-01b
NASA Astrophysics Data System (ADS)
Graham, J.; Morisette, J. T.; Simpson, A.
2009-12-01
Invasive alien species (IAS) threaten biodiversity and exert a tremendous cost on society for IAS prevention and eradication. They endanger natural ecosystem functioning and seriously impact biodiversity and agricultural production. The task definition for the GEO task BI-07-01b: Invasive Species Monitoring System is to characterize, monitor, and predict changes in the distribution of invasive species. This includes characterizing the current requirements and capacity for invasive species monitoring and developing strategies for implementing cross-search functionality among existing online invasive species information systems from around the globe. The Task is being coordinated by members of the Global Invasive Species Information Network (GISIN) and their partners. Information on GISIN and a prototype of the network is available at www.gisin.org. This talk will report on the current status of GISIN and review how researchers can either contribute to or utilize data from this network.
Nevada Infrastructure for Climate Change Science, Education, and Outreach
NASA Astrophysics Data System (ADS)
Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.
2008-12-01
The Great Basin is characterized by complex basin and range topography, arid to semiarid climate, and a history of sensitivity to climate change. Mountain areas comprise about 10% of the landscape, yet are the areas of highest precipitation and generate 85% of groundwater recharge and most surface runoff. These characteristics provide an ideal natural laboratory to study the effects of climate change. The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision "to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders." Six major strategies are proposed to develop infrastructure needs and attain our vision: 1) Develop a capability to model climate change at a regional and sub-regional scale(Climate Modeling Component) 2) Analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Assess effects on human systems and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Train teachers and students at all levels and provide public outreach in climate change issues (Education Component). Two new climate observational transects will be established across Great Basin Ranges, one anticipated on a mountain range in southern Nevada and the second to be located in north-central Nevada. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions key to understanding the effects of future climate change on Great Basin mountain ecosystems and the potential management strategies for responding to these changes: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems? Infrastructure developed through this project will provide new interdisciplinary capability to detect, analyze, and model effects of regional climate change in mountainous regions of the west and provide a major contribution to existing climate change research and monitoring networks.
Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone.
Hunsaker, Carolyn; Bytnerowicz, Andrzej; Auman, Jessica; Cisneros, Ricardo
2007-03-21
Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100-2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.
Sack, Lawren; Ball, Marilyn C; Brodersen, Craig; Davis, Stephen D; Des Marais, David L; Donovan, Lisa A; Givnish, Thomas J; Hacke, Uwe G; Huxman, Travis; Jansen, Steven; Jacobsen, Anna L; Johnson, Daniel M; Koch, George W; Maurel, Christophe; McCulloh, Katherine A; McDowell, Nate G; McElrone, Andrew; Meinzer, Frederick C; Melcher, Peter J; North, Gretchen; Pellegrini, Matteo; Pockman, William T; Pratt, R Brandon; Sala, Anna; Santiago, Louis S; Savage, Jessica A; Scoffoni, Christine; Sevanto, Sanna; Sperry, John; Tyerman, Stephen D; Way, Danielle; Holbrook, N Michele
2016-09-01
Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, 'Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts. © 2016 John Wiley & Sons Ltd.
Integrated monitoring of ecological conditions in wetland-upland landscapes
Gallant, Alisa; Sadinski, Walt
2012-01-01
Landscapes of interwoven wetlands and uplands offer a rich set of ecosystem goods and services. Managing lands to maximize ecosystem services requires information that distinguishes change caused by local actions from broader-scale shifts in climate, land use, and other forms of global change. Satellite and airborne sensors collect valuable data for this purpose, especially when the data are analyzed along with data collected from ground-based sensors. The U.S. Geological Survey (USGS) is using remote sensing technology in this way as part of the Terrestrial Wetland Global Change Research Network to assess effects of climate change interacting with land-use change and other potential stressors along environmental gradients of wetland-upland landscapes in the United States and Canada.
Waite, David W; Dsouza, Melissa; Sekiguchi, Yuji; Hugenholtz, Philip; Taylor, Michael W
2018-05-25
The kakapo is a critically endangered, herbivorous parrot endemic to New Zealand. The kakapo hindgut hosts a dense microbial community of low taxonomic diversity, typically dominated by Escherichia fergusonii, and has proven to be a remarkably stable ecosystem, displaying little variation in core membership over years of study. To elucidate mechanisms underlying this robustness, we performed 16S rRNA gene-based co-occurrence network analysis to identify potential interactions between E. fergusonii and the wider bacterial community. Genomic and metagenomic sequencing were employed to facilitate interpretation of potential interactions observed in the network. E. fergusonii maintained very few correlations with other members of the microbiota, and isolates possessed genes for the generation of energy from a wide range of carbohydrate sources, including plant fibres such as cellulose. We surmise that this dominant microorganism is abundant not due to ecological interaction with other members of the microbiota, but its ability to metabolise a wide range of nutrients in the gut. This research represents the first concerted effort to understand the functional roles of the kakapo microbiota, and leverages metagenomic data to contextualise co-occurrence patterns. By combining these two techniques we provide a means for studying the diversity-stability hypothesis in the context of bacterial ecosystems.
The USA National Phenology Network; taking the pulse of our planet
Weltzin, Jake F.
2011-01-01
People have tracked phenology for centuries and for the most practical reasons: it helped them know when to hunt and fish, when to plant and harvest crops, and when to navigate waterways. Now phenology is being used as a tool to assess climate change and its effects on both natural and modified ecosystems. How is the timing of events in plant and animal life cycles, like flowering or migration, responding to climate change? And how are those responses, in turn, affecting people and ecosystems? The USA National Phenology Network (the Network) is working to answer these questions for science and society by promoting a broad understanding of plant and animal phenology and their relationship to environmental change. The Network is a consortium of organizations and individuals that collect, share, and use phenology data, models, and related information to enable scientists, resource managers, and the public to adapt in response to changing climates and environments. In addition, the Network encourages people of all ages and backgrounds to observe and record phenology as a way to discover and explore the nature and pace of our dynamic world. The National Coordinating Office (NCO) of the Network is a resource center that facilitates and encourages widespread collection, integration, and sharing of phenology data and related information (for example, meteorological and hydrological data). The NCO develops and promotes standardized methods for field data collection and maintains several online user interfaces for data upload and download, as well as data exploration, visualization, and analysis. The NCO also facilitates basic and applied research related to phenology, the development of decision-support tools for resource managers and planners, and the design of educational and outreach materials
2012-12-01
flows, diversity, emergence, networks, fusion, strategic planning, information sharing, ecosystem, hierarchy, NJ Regional Operations Intelligence ...Related Information...........................................................................79 viii 3. Production of Disaster Intelligence for... Intelligence for Field Personnel .................80 5. Focused Collection Efforts to Support FEMA and NJ OEM Operations
"Where did my data layer come from?" The semantics of data release
NASA Astrophysics Data System (ADS)
Leadbetter, Adam; Buck, Justin
2015-04-01
In his lecture, "Theory of Creative Fitting" (Margullis, Corner & Holt, 2006), Ian McHarg introduced his vision for cross-disciplinary data and information sharing networks with the end goal of producing detailed overlay maps for the purposes of ecological architectural planning. Within McHarg's networks, experts in various fields, such as hydrology or surface geology, would provide data layers to the final overlay map with full provenance, such that the users of the overlay maps would know the originator of the data, the "value systems" by which the data were created and could place their trust in the outcomes. In the light of McHarg's statements and in order to allow the encoding of value systems in a cyber-GIS, analyses of: data quality (Giarlo, 2013); data publication networks (Reinsfelder, 2012); trust in collaborative research networks (Leadbetter, 2015); and the metaphors of data publication, data release and data ecosystems (Parsons & Fox, 2013) have been synthesised into a logical model of the data release lifecycle. This model concerns the actors in the data release process; the data-information-knowledge ecosystem through the various stages of the data release process and the impact of data release on perceptions of trust through the data release lifecycle. The data-information-knowledge ecosystem described how the collection of data can be presented in new ways to form information products, and how these information products can inform conversations amongst information-consumers who integrate the information into new knowledge. The actors concerned in the process comprise: researchers data publishers academic publishers & academic administrators Finally, the lifecycle of data release involves the initial release of a data-layer, possibly with a Persistent Identifier (PID) more generic than a Digital Object Identifier (DOI). A data description paper can be written about the dataset, which then necessitates the assignment of a DOI to the datasets; the DOI can be seen as an indicator of trust through "benevolence". A technical document citing the dataset may then be informed by the dataset release or the dataset description paper. These citations may show the "competence" (in terms of a trust model) of the original datasets, and the dataset description papers or other technical articles show the integrity of the dataset. The synthesised logical model has been represented in freely available ontologies, such that data layers can be annotated with metadata about their provenance and stage within the data release lifecycle before incorporation into a cyber-GIS, in which distributed data providers provide for a collaborative research environment. References Giarlo, M. (2013). Academic libraries as data quality hubs. Journal of Librarianship and Scholarly Communication 1(3): eP1059. doi: 10.7710/2162-3309.1059 Leadbetter, A. (2015). Examining trust in collaborative research networks. In P. Diviacco, P. Fox, C. Pshenichny, and A. Leadbetter (Eds.) Collaborative Knowledge in Scientific Research Networks, Hershey, PA: IGI Global. doi: 10.4018/978-1-4666-6567-5.ch002 Margulis, L., Corner, J. and Hawthorne, B. (Editors), 2006. Ian McHarg: conversations with students. Dwelling with nature. New York, NY: Princeton Architectural Press. Parsons, M., and Fox, P. (2013). Is data publication the right metaphor? Data Science Journal 12, 32-46. doi:10.2481/dsj.WDS-042 Reinsfelder, T. (2012). Open access publishing practices in a complex environment: conditions, barriers and bases of power. Journal of Librarianship and Scholarly Communication 1(1): eP1029. doi: 10.7710/2162-3309.1029
Integrating Empirical-Modeling Approaches to Improve Understanding of Terrestrial Ecology Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Heather; Luo, Yiqi; Wullschleger, Stan D
Recent decades have seen tremendous increases in the quantity of empirical ecological data collected by individual investigators, as well as through research networks such as FLUXNET (Baldocchi et al., 2001). At the same time, advances in computer technology have facilitated the development and implementation of large and complex land surface and ecological process models. Separately, each of these information streams provides useful, but imperfect information about ecosystems. To develop the best scientific understanding of ecological processes, and most accurately predict how ecosystems may cope with global change, integration of empirical and modeling approaches is necessary. However, true integration - inmore » which models inform empirical research, which in turn informs models (Fig. 1) - is not yet common in ecological research (Luo et al., 2011). The goal of this workshop, sponsored by the Department of Energy, Office of Science, Biological and Environmental Research (BER) program, was to bring together members of the empirical and modeling communities to exchange ideas and discuss scientific practices for increasing empirical - model integration, and to explore infrastructure and/or virtual network needs for institutionalizing empirical - model integration (Yiqi Luo, University of Oklahoma, Norman, OK, USA). The workshop included presentations and small group discussions that covered topics ranging from model-assisted experimental design to data driven modeling (e.g. benchmarking and data assimilation) to infrastructure needs for empirical - model integration. Ultimately, three central questions emerged. How can models be used to inform experiments and observations? How can experimental and observational results be used to inform models? What are effective strategies to promote empirical - model integration?« less
Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model
Baskerville, Edward B.; Dobson, Andy P.; Bedford, Trevor; Allesina, Stefano; Anderson, T. Michael; Pascual, Mercedes
2011-01-01
Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719
Measuring and modelling ecosystem productivity: a PhenoCam-based approach.
NASA Astrophysics Data System (ADS)
Hufkens, K.; Keenan, T. F.; Flanagan, L. B.; Richardson, A. D.
2015-12-01
Phenology controls feedbacks to the climate system through abiotic and biotic forces such as albedo or fluxes of water, energy and CO2. Understanding and modelling these vegetation-climate feedbacks is key to accurately predicting a future climate. For the past 6 years the PhenoCam network, a network of near-surface remote sensing cameras, has consistently monitored vegetation phenology in a wide range of ecoregions, climate zones, and plant functional types. Here we explore the tight coupling between canopy greenness and rates of photosynthesis using two studies. A first study highlights how PhenoCam data can be used to quantify the effect of a late spring frost event on ecosystem productivity, introducing a 7-14% loss in annual gross productivity across 8753 km2 in the northeastern United States. This case study emphasizes the use of the PhenoCam data in estimating productivity loss / the opportunity cost of ecosystem disturbance in areas not covered by ecosystem flux measurement equipment. In a more recent, second, study we developed a PhenoCam data-informed pulse-response model of grassland growth to explore potential responses of grasslands to future climate change across North America. Our findings projected widespread and consistent increase in grassland productivity (for the current range of grassland ecosystems of North American) over the coming century, despite a general increase in aridity projected across most of our study area. Once more PhenoCam data allowed us to inform our modelling efforts with data of a high temporal and spatial resolution. In conclusion, both studies illustrate direct applications of the ever growing PhenoCam network (http://phenocam.sr.unh.edu/webcam/) in scaling the effects of ecosystem disturbances, predicting future ecosystem productivity and underscore the complementary nature of PhenoCam data with ecosystem exchange measurements.
Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction.
Baker, Christopher M; Gordon, Ascelin; Bode, Michael
2017-04-01
Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone-predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka-Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem-wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication. © 2016 Society for Conservation Biology.
Species, habitats, society: an evaluation of research supporting EU's Natura 2000 network.
Popescu, Viorel D; Rozylowicz, Laurentiu; Niculae, Iulian M; Cucu, Adina L; Hartel, Tibor
2014-01-01
The Natura 2000 network is regarded as one of the conservation success stories in the global effort to protect biodiversity. However, significant challenges remain in Natura 2000 implementation, owing to its rapid expansion, and lack of a coherent vision for its future. Scientific research is critical for identifying conservation priorities, setting management goals, and reconciling biodiversity protection and society in the complex political European landscape. Thus, there is an urgent need for a comprehensive evaluation of published Natura 2000 research to highlight prevalent research themes, disciplinary approaches, and spatial entities. We conducted a systematic review of 572 scientific articles and conference proceedings focused on Natura 2000 research, published between 1996 and 2014. We grouped these articles into 'ecological' and 'social and policy' categories. Using a novel application of network analysis of article keywords, we found that Natura 2000 research forms a cohesive small-world network, owing to the emphasis on ecological research (79% of studies, with a strong focus on spatial conservation planning), and the underrepresentation of studies addressing 'social and policy' issues (typically focused on environmental impact assessment, multi-level governance, agri-environment policy, and ecosystem services valuation). 'Ecological' and 'social and policy' research shared only general concepts (e.g., Natura 2000, Habitats Directive) suggesting a disconnection between these disciplines. The UK and the Mediterranean basin countries dominated Natura 2000 research, and there was a weak correlation between number of studies and proportion of national territory protected. Approximately 40% of 'social and policy' research and 26% of 'ecological' studies highlighted negative implications of Natura 2000, while 21% of studies found positive social and biodiversity effects. We emphasize the need for designing inter- and transdisciplinary research in order to promote a social-ecological understanding of Natura 2000, and advance EU conservation policies.
Toward a U.S. National Phenological Assessment
NASA Astrophysics Data System (ADS)
Henebry, Geoffrey M.; Betancourt, Julio L.
2010-01-01
Third USA National Phenology Network (USA-NPN) and Research Coordination Network (RCN) Annual Meeting; Milwaukee, Wisconsin, 5-9 October 2009; Directional climate change will have profound and lasting effects throughout society that are best understood through fundamental physical and biological processes. One such process is phenology: how the timing of recurring biological events is affected by biotic and abiotic forces. Phenology is an early and integrative indicator of climate change readily understood by nonspecialists. Phenology affects the planting, maturation, and harvesting of food and fiber; pollination; timing and magnitude of allergies and disease; recreation and tourism; water quantity and quality; and ecosystem function and resilience. Thus, phenology is the gateway to climatic effects on both managed and unmanaged ecosystems. Adaptation to climatic variability and change will require integration of phenological data and models with climatic forecasts at seasonal to decadal time scales. Changes in phenologies have already manifested myriad effects of directional climate change. As these changes continue, it is critical to establish a comprehensive suite of benchmarks that can be tracked and mapped at local to continental scales with observations and climate models.
Skoulikidis, Nikolaos T; Sabater, Sergi; Datry, Thibault; Morais, Manuela M; Buffagni, Andrea; Dörflinger, Gerald; Zogaris, Stamatis; Del Mar Sánchez-Montoya, Maria; Bonada, Nuria; Kalogianni, Eleni; Rosado, Joana; Vardakas, Leonidas; De Girolamo, Anna Maria; Tockner, Klement
2017-01-15
Non-perennial rivers and streams (NPRS) cover >50% of the global river network. They are particularly predominant in Mediterranean Europe as a result of dry climate conditions, climate change and land use development. Historically, both scientists and policy makers underestimated the importance of NRPS for nature and humans alike, mainly because they have been considered as systems of low ecological and economic value. During the past decades, diminishing water resources have increased the spatial and temporal extent of artificial NPRS as well as their exposure to multiple stressors, which threatening their ecological integrity, biodiversity and ecosystem services. In this paper, we provide a comprehensive overview of the structural and functional characteristics of NPRS in the European Mediterranean, and discuss gaps and problems in their management, concerning their typology, ecological assessment, legislative and policy protection, and incorporation in River Basin Management Plans. Because NPRS comprise highly unstable ecosystems, with strong and often unpredictable temporal and spatial variability - at least as far as it is possible to assess - we outline the future research needs required to better understand, manage and conserve them as highly valuable and sensitive ecosystems. Efficient collaborative activities among multidisciplinary research groups aiming to create innovative knowledge, water managers and policy makers are urgently needed in order to establish an appropriate methodological and legislative background. The incorporation of NPRS in EU-Med River Basin Management Plans in combination with the application of ecological flows is a first step towards enhancing NPRS management and conservation in order to effectively safeguard these highly valuable albeit threatened ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
Inter-annual Variability in Tundra Phenology Captured with Digital Photography
NASA Astrophysics Data System (ADS)
Melendez, M.; Vargas, S. A.; Tweedie, C. E.
2012-12-01
The need to improve multi-scale phenological monitoring of arctic terrestrial ecosystems has been a persistent research challenge. Although there has been a range of advances in remote sensing capacities over the past decade, these present costly, and sometimes logistically challenging and technically demanding solutions for arctic terrestrial ecosystems. In this poster and undergraduate research project, we demonstrate how seasonal and inter-annual variability in landscape phenology can be derived for multiple tundra ecosystems using a low-cost and low-tech kite aerial photography (KAP) system that has been developed as a contribution to the US Arctic Observing Network. Seasonal landscape phenology was observed over the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired with KAP and analyzed for a range of greenness indices. Preliminary results showed that the 2G-RB greenness index correlated the best with NDVI values calculated from ground based hyperspectral reflectance measurements. 2012 had the highest 2G-RB greenness index values for both Barrow and Atqasuk sites, which correlated well with NDVI values acquired from ground-based hyperspectral reflectance measurements. Wet vegetation types showed the most interannual variability at the Atqasuk site based on the 2G-RB greenness index while in Barrow the moist vegetation types showed the most interannual variability. These results show that vegetation indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques. Further analysis using these same techniques is required in order to link relatively small scale vegetation dynamics measured with KAP with those documented at large scales using satellite imagery.
Batt, Ryan D.; Carpenter, Stephen R.; Cole, Jonathan J.; Pace, Michael L.; Johnson, Robert A.
2013-01-01
Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems. PMID:24101479
Batt, Ryan D; Carpenter, Stephen R; Cole, Jonathan J; Pace, Michael L; Johnson, Robert A
2013-10-22
Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems.
Taxis, Tasia M; Wolff, Sara; Gregg, Sarah J; Minton, Nicholas O; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D; Taylor, Jeremy F; Kerley, Monty S; Pires, J Chris; Lamberson, William R; Conant, Gavin C
2015-11-16
By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi
2016-03-01
The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.
Highlighting Relationships of a Smartphone's Social Ecosystem in Potentially Large Investigations.
Andriotis, Panagiotis; Oikonomou, George; Tryfonas, Theo; Li, Shancang
2016-09-01
Social media networks are becoming increasingly popular because they can satisfy diverse needs of individuals (both personal and professional). Modern mobile devices are empowered with increased capabilities, taking advantage of the technological progress that makes them smarter than their predecessors. Thus, a smartphone user is not only the phone owner, but also an entity that may have different facets and roles in various social media networks. We believe that these roles can be aggregated in a single social ecosystem, which can be derived by the smartphone. In this paper, we present our concept of the social ecosystem in contemporary devices and we attempt to distinguish the different communities that occur from the integration of social networking in our lives. In addition, we propose techniques to highlight major actors within the ecosystem. Moreover, we demonstrate our suggested visualization scheme, which illustrates the linking of entities that live in separate communities using data taken from the smartphone. Finally, we extend our concept to include various parallel ecosystems during potentially large investigations and we link influential entities in a vertical fashion. We particularly examine cases where data aggregation is performed by specific applications, producing volumes of textual data that can be analyzed with text mining methods. Our analysis demonstrates the risks of the rising "bring your own device" trend in enterprise environments.
Dupras, Jérôme; Fetue Ndefo, Franck; He, Jie
2016-01-01
This study used a contingent choice method to determine the economic value of improving various ecosystem services (ESs) of the Blue Network of Greater Montreal (Quebec, Canada). Three real projects were used and the evaluation focused on six ESs that are related to freshwater aquatic ecosystems: biodiversity, water quality, carbon sequestration, recreational activities, landscape aesthetics and education services. We also estimated the value associated with the superficies of restored sites. We calculated the monetary value that a household would be willing to pay for each additional qualitative or quantitative unit of different ESs, and these marginal values range from $0.11 to $15.39 per household per unit. Thus, under certain assumptions, we determined the monetary values that all Quebec households would allocate to improve each ES in Greater Montreal by one unit. The most valued ES was water quality ($13.5 million), followed by education services ($10.7 million), recreational activities ($8.9 million), landscape aesthetics ($4.1 million), biodiversity ($1.2 million), and carbon sequestration ($0.1 million). Our results ascribe monetary values to improved (or degraded) aquatic ecosystems in the Blue Network of Greater Montreal, but can also enhance economic analyses of various aquatic ecosystem restoration and management projects. PMID:27513558
Poder, Thomas G; Dupras, Jérôme; Fetue Ndefo, Franck; He, Jie
2016-01-01
This study used a contingent choice method to determine the economic value of improving various ecosystem services (ESs) of the Blue Network of Greater Montreal (Quebec, Canada). Three real projects were used and the evaluation focused on six ESs that are related to freshwater aquatic ecosystems: biodiversity, water quality, carbon sequestration, recreational activities, landscape aesthetics and education services. We also estimated the value associated with the superficies of restored sites. We calculated the monetary value that a household would be willing to pay for each additional qualitative or quantitative unit of different ESs, and these marginal values range from $0.11 to $15.39 per household per unit. Thus, under certain assumptions, we determined the monetary values that all Quebec households would allocate to improve each ES in Greater Montreal by one unit. The most valued ES was water quality ($13.5 million), followed by education services ($10.7 million), recreational activities ($8.9 million), landscape aesthetics ($4.1 million), biodiversity ($1.2 million), and carbon sequestration ($0.1 million). Our results ascribe monetary values to improved (or degraded) aquatic ecosystems in the Blue Network of Greater Montreal, but can also enhance economic analyses of various aquatic ecosystem restoration and management projects.
Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.
2017-01-01
ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. PMID:28476769
Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D
2017-07-15
Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. Copyright © 2017 American Society for Microbiology.
Essays on Innovation Ecosystems in the Enterprise Software Industry
ERIC Educational Resources Information Center
Huang, Peng
2010-01-01
Innovation ecosystem strategy is often adopted by platform technology owners to seek complementary innovation from resources located outside the firm to exploit indirect network effect. In this dissertation I aim to address the issues that are related to the formation and business value of platform innovation ecosystems in the enterprise software…
The ecological health of ecosystems relates to the maintenance or restoration of optimal system function when confronted with a disturbance. A healthy ecosystem is a prerequisite for ecological sustainability. Ecological integrity has been defined as an emergent property of ecosy...
NASA Astrophysics Data System (ADS)
Krause, Keith Stuart
The change, reduction, or extinction of species is a major issue currently facing the Earth. Efforts are underway to measure, monitor, and protect habitats that contain high species diversity. Remote sensing technology shows extreme value for monitoring species diversity by mapping ecosystems and using those land cover maps or other derived data as proxies to species number and distribution. The National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) consists of remote sensing instruments such as an imaging spectrometer, a full-waveform lidar, and a high-resolution color camera. AOP collected data over the Ordway-Swisher Biological Station (OSBS) in May 2014. A majority of the OSBS site is covered by the Sandhill ecosystem, which contains a very high diversity of vegetation species and is a native habitat for several threatened fauna species. The research presented here investigates ways to analyze the AOP data to map ecosystems at the OSBS site. The research attempts to leverage the high spatial resolution data and study the variability of the data within a ground plot scale along with integrating data from the different sensors. Mathematical features are derived from the data and brought into a decision tree classification algorithm (rpart), in order to create an ecosystem map for the site. The hyperspectral and lidar features serve as proxies for chemical, functional, and structural differences in the vegetation types for each of the ecosystems. K-folds cross validation shows a training accuracy of 91%, a validation accuracy of 78%, and a 66% accuracy using independent ground validation. The results presented here represent an important contribution to utilizing integrated hyperspectral and lidar remote sensing data for ecosystem mapping, by relating the spatial variability of the data within a ground plot scale to a collection of vegetation types that make up a given ecosystem.
Diversity of key players in the microbial ecosystems of the human body
Jordán, Ferenc; Lauria, Mario; Scotti, Marco; Nguyen, Thanh-Phuong; Praveen, Paurush; Morine, Melissa; Priami, Corrado
2015-01-01
Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different. PMID:26514870
Diversity of key players in the microbial ecosystems of the human body.
Jordán, Ferenc; Lauria, Mario; Scotti, Marco; Nguyen, Thanh-Phuong; Praveen, Paurush; Morine, Melissa; Priami, Corrado
2015-10-30
Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different.
Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W
2015-05-15
Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.
National Institute for Global Environmental Change. Final Technical Report 1990-2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athanasios Toulopoulos
Research conducted by the six NIGEC Regional Centers during recent years is reported. An overview of the NIGEC program from its beginnings provides a description and evaluation of the program's vision, strategy and major accomplishments. The program's purpose was to support academic research on environmental change in regions of the country that had historically received relatively little federal funding. The overall vision of NIGEC may be stated as the performance of academic research on the regional interactions between ecosystems and climate. NIGEC's research presents important evidence on the impacts of climate variability and change, and in some cases adaptability, formore » a broad range of both managed and unmanaged ecosystems, and has thereby documented significant regional issues on the environmental responses to climate change. NIGEC's research has demonstrated large regional differences in the atmospheric carbon exchange budgets of croplands and forests, that there are significant variations of this exchange on diurnal, synoptic, seasonal and interannual time scales due to atmospheric variability (including temperature, precipitation and cloudiness), and that management practices and past history have predominant effects in grasslands and croplands. It is the mid-latitude forests, however, that have received more attention in NIGEC than any other specific ecosystem, and NIGEC's initiation of and participation in the AmeriFlux program, network of carbon flux measurement sites in North American old-growth forests, is generally considered to be its most significant single accomplishment. By including appendices with complete listings of NIGEC publications, principal investigators and participating institutions, this report may also serve as a useful comprehensive documentation of NIGEC.« less
The founding charter of the Genomic Observatories Network.
Davies, Neil; Field, Dawn; Amaral-Zettler, Linda; Clark, Melody S; Deck, John; Drummond, Alexei; Faith, Daniel P; Geller, Jonathan; Gilbert, Jack; Glöckner, Frank Oliver; Hirsch, Penny R; Leong, Jo-Ann; Meyer, Chris; Obst, Matthias; Planes, Serge; Scholin, Chris; Vogler, Alfried P; Gates, Ruth D; Toonen, Rob; Berteaux-Lecellier, Véronique; Barbier, Michèle; Barker, Katherine; Bertilsson, Stefan; Bicak, Mesude; Bietz, Matthew J; Bobe, Jason; Bodrossy, Levente; Borja, Angel; Coddington, Jonathan; Fuhrman, Jed; Gerdts, Gunnar; Gillespie, Rosemary; Goodwin, Kelly; Hanson, Paul C; Hero, Jean-Marc; Hoekman, David; Jansson, Janet; Jeanthon, Christian; Kao, Rebecca; Klindworth, Anna; Knight, Rob; Kottmann, Renzo; Koo, Michelle S; Kotoulas, Georgios; Lowe, Andrew J; Marteinsson, Viggó Thór; Meyer, Folker; Morrison, Norman; Myrold, David D; Pafilis, Evangelos; Parker, Stephanie; Parnell, John Jacob; Polymenakou, Paraskevi N; Ratnasingham, Sujeevan; Roderick, George K; Rodriguez-Ezpeleta, Naiara; Schonrogge, Karsten; Simon, Nathalie; Valette-Silver, Nathalie J; Springer, Yuri P; Stone, Graham N; Stones-Havas, Steve; Sansone, Susanna-Assunta; Thibault, Kate M; Wecker, Patricia; Wichels, Antje; Wooley, John C; Yahara, Tetsukazu; Zingone, Adriana
2014-03-07
The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.
The founding charter of the Genomic Observatories Network
2014-01-01
The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms. An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated. PMID:24606731
Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2005-01-01
Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.
Forests and Their Canopies: Achievements and Horizons in Canopy Science.
Nakamura, Akihiro; Kitching, Roger L; Cao, Min; Creedy, Thomas J; Fayle, Tom M; Freiberg, Martin; Hewitt, C N; Itioka, Takao; Koh, Lian Pin; Ma, Keping; Malhi, Yadvinder; Mitchell, Andrew; Novotny, Vojtech; Ozanne, Claire M P; Song, Liang; Wang, Han; Ashton, Louise A
2017-06-01
Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO 2 , water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Deciphering the Interdependence between Ecological and Evolutionary Networks.
Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A
2018-05-24
Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Cloud-based Infrastructure and Architecture for Environmental System Research
NASA Astrophysics Data System (ADS)
Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.
2016-12-01
The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.
Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio
2014-01-01
Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”. PMID:25390795
Ge Sun; Peter Caldwell; Asko Noormets; Steven G. McNulty; Erika Cohen; al. et.
2011-01-01
We developed a waterâcentric monthly scale simulation model (WaSSIâC) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSIâC model was evaluated with basinâscale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE)...
The role of fish, wildlife, and plant research in ecosystem management
Susan C. Loeb; Michael R. Lennartz; Robert C. Szaro
1998-01-01
This paper examines the concepts of ecology, ecosystems, and ecosystem management and then further examines the role of fish, wildlife, and plant ecology research in ecosystem management, past, present, and future. It is often assumed that research in support of ecosystem management will entail comprehensive studies of entire ecosystems, whereas research programs that...
The Gulf of California: Review of ecosystem status and sustainability challenges
NASA Astrophysics Data System (ADS)
Lluch-Cota, Salvador E.; Aragón-Noriega, Eugenio A.; Arreguín-Sánchez, Francisco; Aurioles-Gamboa, David; Jesús Bautista-Romero, J.; Brusca, Richard C.; Cervantes-Duarte, Rafael; Cortés-Altamirano, Roberto; Del-Monte-Luna, Pablo; Esquivel-Herrera, Alfonso; Fernández, Guillermo; Hendrickx, Michel E.; Hernández-Vázquez, Sergio; Herrera-Cervantes, Hugo; Kahru, Mati; Lavín, Miguel; Lluch-Belda, Daniel; Lluch-Cota, Daniel B.; López-Martínez, Juana; Marinone, Silvio G.; Nevárez-Martínez, Manuel O.; Ortega-García, Sofia; Palacios-Castro, Eduardo; Parés-Sierra, Alejandro; Ponce-Díaz, Germán; Ramírez-Rodríguez, Mauricio; Salinas-Zavala, Cesar A.; Schwartzlose, Richard A.; Sierra-Beltrán, Arturo P.
2007-04-01
The Gulf of California is unique because of its geographical location and conformation. It hosts diverse ecosystems and important fisheries that support industry and provide livelihood to coastal settlements. It is also the site of interests and problems, and an intense interaction among managers, producers, and conservationists. In this report, we scrutinize the abiotic (hydrography, climate, ocean circulation, and chemistry) and biotic (phyto- and zooplankton, fish, invertebrates, marine mammals, birds, and turtles) components of the marine ecosystem, and some particular aspects of climate variability, endemisms, harmful algal blooms, oxygen minimum layer, and pollution. We also review the current conditions and conflicts around the main fisheries (shrimp, small and large pelagic fishes, squid, artisanal and sportfishing), the most important human activity in the Gulf of California. We cover some aspects of management and conservation of fisheries, especially the claimed overexploitation of fish resources and the ecosystems, and review proposals for creating networks of marine protected areas. We conclude by identifying main needs for information and research, particularly the integration of data bases, the implementation of models and paleoreconstructions, establishment of monitoring programs, and the evaluation of fishing impacts and management actions.
Plant responses, climate pivot points, and trade-offs in water-limited ecosystems
NASA Astrophysics Data System (ADS)
Munson, S. M.; Bunting, E.
2017-12-01
Ecosystem transitions and thresholds are conceptually well-defined and have become a framework to address vegetation response to climate change and land-use intensification, yet there are few approaches to define the environmental conditions which can lead to them. We demonstrate a novel climate pivot point approach using long-term monitoring data from a broad network of permanent plots, satellite imagery, and experimental treatments across the southwestern U.S. The climate pivot point identifies conditions that lead to decreased plant performance and serves as an early warning sign of increased vulnerability of crossing a threshold into an altered ecosystem state. Plant responses and climate pivot points aligned with the lifespan and structural characteristics of species, were modified by soil and landscape attributes of a site, and had non-linear dynamics in some cases. Species with strong increases in abundance when water was available were most susceptible to losses during water shortages, reinforcing plant energetic and physiological tradeoffs. Future research to uncover the heterogeneity of plant responses and climate pivot points at multiple scales can lead to greater understanding of shifts in ecosystem productivity and vulnerability to climate change.
A Methodology to Develop Entrepreneurial Networks: The Tech Ecosystem of Six African Cities
2014-11-01
Information Center. Greve, A. and Salaff, J. W. (2003), Social Networks and Entrepreneurship . Entrepreneurship Theory and Practice, 28: 1–22. doi...methodology enables us to accurately measure social capital and circumvents the massive effort of mapping an individual’s social network before...locating the social resources in it. 15. SUBJECT TERMS Network Analysis, Economic Networks, Network Topology, Network Classification 16. SECURITY
Stubbington, Rachel; Chadd, Richard; Cid, Núria; Csabai, Zoltán; Miliša, Marko; Morais, Manuela; Munné, Antoni; Pařil, Petr; Pešić, Vladimir; Tziortzis, Iakovos; Verdonschot, Ralf C M; Datry, Thibault
2018-03-15
Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status. We report the results of a survey completed by representatives from 20 European countries to identify current challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that distinguish between contrasting IRES; 3. difficulties in defining the 'reference conditions' that represent unimpacted dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities. Despite these challenges, we recognize examples of innovative practice that can inform modification of current biomonitoring activity to promote effective IRES status classification. Priorities for future research include reconceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community composition, and modification of indices of ecosystem health to recognize both taxon-specific sensitivities to intermittence and dispersal abilities, within a landscape context. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A Low-Power Sensor Network for Long Duration Monitoring in Deep Caves
NASA Astrophysics Data System (ADS)
Silva, A.; Johnson, I.; Bick, T.; Winclechter, C.; Jorgensen, A. M.; Teare, S. W.; Arechiga, R. O.
2010-12-01
Monitoring deep and inaccessible caves is important and challenging for a variety of reasons. It is of interest to study caves environments for understanding cave ecosystems, and human impact on the ecosystems. Caves may also hold clues to past climate changes. Cave instrumentation must however carry out its job with minimal human intervention and without disturbing the fragile environment. This requires unobtrusive and autonomous instrumentation. Earth-bound caves can also serve as analogs for caves on other planets and act as testbeds for autonomous sensor networks. Here we report on a project to design and implement a low-power, ad-hoc, wireless sensor network for monitoring caves and similar environments. The implemented network is composed of individual nodes which consist of a sensor, processing unit, memory, transceiver and a power source. Data collected at these nodes is transmitted through a wireless ZigBee network to a central data collection point from which the researcher may transfer collected data to a laptop for further analysis. The project accomplished a node design with a physical footprint of 2 inches long by 3 inches wide. The design is based on the EZMSP430-RF2480, a Zigbee hardware base offered by Texas Instruments. Five functioning nodes have been constructed at very low cost and tested. Due to the use of an external analog-to-digital converter the design was able to achieve a 16-bit resolution. The operational time achieved by the prototype was calculated to be approximately 80 days of autonomous operation while sampling once per minute. Each node is able to support and record data from up to four different sensors.
NASA Astrophysics Data System (ADS)
Goodrich, D. C.; Kustas, W. P.; Cosh, M. H.; Moran, S. M.; Marks, D. G.; Jackson, T. J.; Bosch, D. D.; Rango, A.; Seyfried, M. S.; Scott, R. L.; Prueger, J. H.; Starks, P. J.; Walbridge, M. R.
2014-12-01
The USDA-Agricultural Research Service has led, or been integrally involved in, a myriad of interdisciplinary field campaigns in a wide range of locations both nationally and internationally. Many of the shorter campaigns were anchored over the existing national network of ARS Experimental Watersheds and Rangelands. These long-term outdoor laboratories provided a critical knowledge base for designing the campaigns as well as historical data, hydrologic and meteorological infrastructure coupled with shop, laboratory, and visiting scientist facilities. This strong outdoor laboratory base enabled cost-efficient campaigns informed by historical context, local knowledge, and detailed existing watershed characterization. These long-term experimental facilities have also enabled much longer term lower intensity experiments, observing and building an understanding of both seasonal and inter-annual biosphere-hydrosphere-atmosphere interactions across a wide range of conditions. A sampling of these experiments include MONSOON'90, SGP97, SGP99, Washita'92, Washita'94, SMEX02-05 and JORNEX series of experiments, SALSA, CLASIC and longer-term efforts over the ARS Little Washita, Walnut Gulch, Little River, Reynolds Creek, and OPE3 Experimental Watersheds. This presentation will review some of the highlights and key findings of these campaigns and long-term efforts including the inclusion of many of the experimental watersheds and ranges in the Long-Term Agro-ecosystems Research (LTAR) network. The LTAR network also contains several locations that are also part of other observational networks including the CZO, LTER, and NEON networks. Lessons learned will also be provided for scientists initiating their participation in large-scale, multi-site interdisciplinary science.
EPA's Southwest Ecosystem Services Research Program
EPA's Ecosystem Services Research Program (ESRP) in the Office of Research and Development (ORD) is studying ecosystem services and the benefits to human well-being provided by ecological services. As part of this research effort, the Southwest Ecosystem Services Research Progra...
Advancing Ocean Science Through Coordination, Community Building, and Outreach
NASA Astrophysics Data System (ADS)
Benway, H. M.
2016-02-01
The US Ocean Carbon and Biogeochemistry (OCB) Program (www.us-ocb.org) is a dynamic network of scientists working across disciplines to understand the ocean's role in the global carbon cycle and how marine ecosystems and biogeochemical cycles are responding to environmental change. The OCB Project Office, which is based at the Woods Hole Oceanographic Institution (WHOI), serves as a central information hub for this network, bringing different scientific disciplines together and cultivating partnerships with complementary US and international programs to address high-priority research questions. The OCB Project Office plays multiple important support roles, such as hosting and co-sponsoring workshops, short courses, working groups, and synthesis activities on emerging research issues; engaging with relevant national and international science planning initiatives; and developing education and outreach activities and products with the goal of promoting ocean carbon science to broader audiences. Current scientific focus areas of OCB include ocean observations (shipboard, autonomous, satellite, etc.); changing ocean chemistry (acidification, expanding low-oxygen conditions, etc.); ocean carbon uptake and storage; estuarine and coastal carbon cycling; biological pump and associated biological and biogeochemical processes and carbon fluxes; and marine ecosystem response to environmental and evolutionary changes, including physiological and molecular-level responses of individual organisms, as well as shifts in community structure and function. OCB is a bottom-up organization that responds to the continually evolving priorities and needs of its network and engages marine scientists at all career stages. The scientific leadership of OCB includes a scientific steering committee and subcommittees on ocean time-series, ocean acidification, and ocean fertilization. This presentation will highlight recent OCB activities and products of interest to the ocean science community.
A decade of insights into grassland ecosystem responses to global environmental change
Borer, Elizabeth T.; Grace, James B.; Harpole, W. Stanley; MacDougall, Andrew S.; Seabloom, Eric W.
2017-01-01
Earth’s biodiversity and carbon uptake by plants, or primary productivity, are intricately interlinked, underlie many essential ecosystem processes, and depend on the interplay among environmental factors, many of which are being changed by human activities. While ecological theory generalizes across taxa and environments, most empirical tests of factors controlling diversity and productivity have been observational, single-site experiments, or meta-analyses, limiting our understanding of variation among site-level responses and tests of general mechanisms. A synthesis of results from ten years of a globally distributed, coordinated experiment, the Nutrient Network (NutNet), demonstrates that species diversity promotes ecosystem productivity and stability, and that nutrient supply and herbivory control diversity via changes in composition, including invasions of non-native species and extinction of native species. Distributed experimental networks are a powerful tool for tests and integration of multiple theories and for generating multivariate predictions about the effects of global changes on future ecosystems.
The Ocean Tracking Network and its contribution to ocean biological observation
NASA Astrophysics Data System (ADS)
Whoriskey, F. G.
2016-02-01
Animals move to meet their needs for food, shelter, reproduction and to avoid unfavorable environments. In aquatic systems, it is essential that we understand these movements if we are to sustainably manage populations and maintain healthy ecosystems. Thus the ability to document and monitor changes in aquatic animal movements is a biological observing system need. The Ocean Tracking Network (OTN) is a global research, technology development, and data management platform headquartered at Dalhousie University, in Halifax, Nova Scotia working to fill this need. OTN uses electronic telemetry to document the local-to-global movements and survival of aquatic animals, and to correlate them to oceanographic or limnological variables that are influencing movements. Such knowledge can assist with planning for and managing of anthropogenic impacts on present and future animal distributions, including those due to climate change. OTN works with various tracking methods including satellite and data storage tag systems, but its dominant focus is acoustic telemetry. OTN is built on global partnerships for the sharing of equipment and data, and has stimulated technological development in telemetry by bringing researchers with needs for new capabilities together with manufacturers to generate, test, and operationalize new technologies. This has included pioneering work into the use of marine autonomous vehicles (Slocum electric gliders; Liquid Robotics Wave Glider) in animal telemetry research. Similarly, OTN scientists worked with the Sea Mammal Research Unit to develop mobile acoustic receiver that have been placed on grey seals and linked via Bluetooth to a satellite transmitter/receiver. This provided receiver coverage in areas occupied by the seals during their typically extensive migrations and allowed for the examination of ecosystem linkages by documenting behavioral interactions the seals had with the physical environment, conspecifics, and other tagged species.
Correa, Sandra Bibiana; Arujo, Joisiane K; Penha, Jerry; Nunes da Cunha, Catia; Bobier, Karen E; Anderson, Jill T
2016-08-31
When species within guilds perform similar ecological roles, functional redundancy can buffer ecosystems against species loss. Using data on the frequency of interactions between fish and fruit, we assessed whether co-occurring frugivores provide redundant seed dispersal services in three species-rich Neotropical wetlands. Our study revealed that frugivorous fishes have generalized diets; however, large-bodied fishes had greater seed dispersal breadth than small species, in some cases, providing seed dispersal services not achieved by smaller fish species. As overfishing disproportionately affects big fishes, the extirpation of these species could cause larger secondary extinctions of plant species than the loss of small specialist frugivores. To evaluate the consequences of frugivore specialization for network stability, we extracted data from 39 published seed dispersal networks of frugivorous birds, mammals and fish (our networks) across ecosystems. Our analysis of interaction frequencies revealed low frugivore specialization and lower nestedness than analyses based on binary data (presence-absence of interactions). In that case, ecosystems may be resilient to loss of any given frugivore. However, robustness to frugivore extinction declines with specialization, such that networks composed primarily of specialist frugivores are highly susceptible to the loss of generalists. In contrast with analyses of binary data, recently developed algorithms capable of modelling interaction strengths provide opportunities to enhance our understanding of complex ecological networks by accounting for heterogeneity of frugivore-fruit interactions. © 2016 The Author(s).
Arujo, Joisiane K.; Penha, Jerry; Nunes da Cunha, Catia
2016-01-01
When species within guilds perform similar ecological roles, functional redundancy can buffer ecosystems against species loss. Using data on the frequency of interactions between fish and fruit, we assessed whether co-occurring frugivores provide redundant seed dispersal services in three species-rich Neotropical wetlands. Our study revealed that frugivorous fishes have generalized diets; however, large-bodied fishes had greater seed dispersal breadth than small species, in some cases, providing seed dispersal services not achieved by smaller fish species. As overfishing disproportionately affects big fishes, the extirpation of these species could cause larger secondary extinctions of plant species than the loss of small specialist frugivores. To evaluate the consequences of frugivore specialization for network stability, we extracted data from 39 published seed dispersal networks of frugivorous birds, mammals and fish (our networks) across ecosystems. Our analysis of interaction frequencies revealed low frugivore specialization and lower nestedness than analyses based on binary data (presence–absence of interactions). In that case, ecosystems may be resilient to loss of any given frugivore. However, robustness to frugivore extinction declines with specialization, such that networks composed primarily of specialist frugivores are highly susceptible to the loss of generalists. In contrast with analyses of binary data, recently developed algorithms capable of modelling interaction strengths provide opportunities to enhance our understanding of complex ecological networks by accounting for heterogeneity of frugivore–fruit interactions. PMID:27581879
The Coupling of Ecosystem Productivity and Water Availability in Dryland Regions
NASA Astrophysics Data System (ADS)
Scott, R. L.; Biederman, J. A.; Barron-Gafford, G.
2014-12-01
Land cover and climatic change will alter biosphere-atmosphere exchanges of water vapor and carbon dioxide depending, in part, on feedbacks between biotic activity and water availability. Eddy covariance observations allow us to estimate ecosystem-scale productivity and respiration, and these datasets are now becoming sufficiently mature to advance understanding of these ecohydrological interactions. Here we use a network of sites in semiarid western North America representing gradients of water availability and functional plant type. We examine how precipitation (P) controls evapotranspiration (ET), net ecosystem production (NEP), and its component fluxes of ecosystem respiration (Reco) and gross ecosystem production (GEP). Despite the high variability in seasonal and annual precipitation timing and amounts that we expect to influence ecosystem function, we find persistent overall relationships between P or ET and the fluxes of NEP, Reco and GEP across the network, indicating a commonality and resilience in ecosystem soil and plant response to water availability. But we also observe several important site differences such as prior seasonal legacy effects on subsequent fluxes which vary depending on dominant plant functional type. For example, multiyear droughts, episodic cool-season droughts, and hard winter freezes seem to affect the herbaceous species differently than the woody ones. Nevertheless, the overall, strong coupling between hydrologic and ecologic processes at these sites bolsters our ability to predict the response of dryland ecosystems to future precipitation change.
NASA Astrophysics Data System (ADS)
Spence, P. L.; Jordan, S. J.
2011-12-01
Increased reactive nitrogen (Nr) inputs to freshwater wetlands resulting from infrastructure development due to population growth along with intensive agricultural practices associated with food production can threaten regulating (i.e. climate change, water purification, and waste treatment) and supporting (i.e. nutrient cycling) ecosystem services. Wetlands generally respond both by sequestering Nr (i.e. soil accumulation and biomass assimilation) and converting Nr into inert gaseous forms via biogeochemical processes. It is important for wetlands to be efficient in removing excessive Nr inputs from polluted waters to reduce eutrophication in downstream receiving water bodies while producing negligible amounts of nitrous oxide (N2O), a potent greenhouse gas, which results from incomplete denitrification. Wetlands receiving excessive Nr lose their ability to provide a constant balance between regulating water quality and mitigating climate change. The purpose of this study is to explore the effects of Nr inputs on ecosystem services provided by wetlands using a Bayesian Belief Network (BBN). The network was developed from established relationships between a variety of wetland function indicators and biogeochemical process associated with Nr removal. Empirical data for 34 freshwater wetlands were gathered from a comprehensive review of published peer-reviewed and gray literature. The BBN was trained using 30 wetlands (88% of the freshwater wetland case file) and tested using 4 wetlands (12% of the freshwater wetland case file). Sensitivity analysis suggested that Nr removal, water quality, soil Nr accumulation and N2O emissions had the greatest influence on ecosystem service tradeoffs. The magnitude of Nr inputs did not affect ecosystem services. The network implies that Nr removal efficiency has a greater influence on final ecosystem services associated with water quality impairment and atmospheric pollution. A very low error rate, which was based on 4 wetland cases, indicated that a larger dataset is required to provide robust predictions. These findings are considered preliminary and could change as the model is updated.
Effects of acid deposition on ecosystems: Advances in the state of the science
Burns, Douglas A.; Fenn, Mark E.; Baron, Jill S.
2011-01-01
Chapter 2 focused on the environmental results of the ARP, presenting data from national monitoring networks on SO2 and NOx emissions, air quality, atmospheric deposition, surface water chemistry, and visibility. This chapter expands on this information by examining the most recent research into how ecosystems respond to acid deposition, especially the processes that control the recovery of ecosystems as acid deposition decreases. In Chapter 2, two general trends were discussed regarding the current recovery status of affected ecosystems: (1) these ecosystems are trending generally towards recovery, but improvements in ecosystem condition shown by surface water chemistry monitoring data thus far have been less than the improvements in deposition; and (2) ecosystem impacts and trends vary widely by geographic region, but the evidence of improvement is strongest and most evident in the Northeast. These trends are not uniform across the United States, however, and in some regions (e.g., central Appalachian Mountain region), trends in improved water quality are generally not evident. Despite the strong link in many areas between reduced emissions and reduced acidity of atmospheric deposition, the link is less clear between reduced acidity and recovery of the biological communities that live in aquatic and terrestrial ecosystems that have experienced deleterious effects from acid deposition. The recovery of these communities is proceeding at a slower pace than, for example, the improvements in stream and lake ANC would indicate. The goal of this chapter is to synthesize the science in a weightof-evidence manner to provide policy makers with tangible evidence and likely causative factors regarding ecosystem status and recovery patterns to date. This chapter serves as an update to the 2005 NAPAP RTC (NSTC, 2005), with an emphasis on scientific studies and monitoring since 2003, which was the last year for consideration of research results in the 2005 report. Several issues pertinent to ecosystem response to emission controls and acid deposition are receiving increasing attention in the scientific literature and will be discussed in this chapter, including the (1) observed delay in ecosystem recovery in the eastern United States, even with decreases in emissions and deposition over the past 30 years; (2) emerging ecosystem impacts of nitrogen deposition in the western United States; (3) the application of critical deposition loads as a tool for scientists to better inform air quality policies; (4) the role of changes in climate and the carbon cycle as factors that affect the response of ecosystems to acid deposition; and (5) the interaction of multiple pollutants in ecosystems. Throughout this chapter, the value of long-term environmental monitoring data in informing air quality policy will be highlighted, including the limitations of assessing the current status of some ecosystem indicators for which continuous, long-term data are lacking.
NASA Astrophysics Data System (ADS)
Richardson, A. D.
2015-12-01
Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is highly sensitive to climate change and variability, and is thus a key aspect of global change ecology. The goal of the PhenoCam network is to serve as a long-term, continental-scale, phenological observatory. The network uses repeat digital photography—images captured using conventional, visible-wavelength, automated digital cameras—to characterize vegetation phenology in diverse ecosystems across North America and around the world. At present, imagery from over 200 research sites, spanning a wide range of ecoregions, climate zones, and plant functional types, is currently being archived and processed in near-real-time through the PhenoCam project web page (http://phenocam.sr.unh.edu/). Data derived from PhenoCam imagery have been previously used to evaluate satellite phenology products, to constrain and test new phenology models, to understand relationships between canopy phenology and ecosystem processes, and to study the seasonal changes in leaf-level physiology that are associated with changes in leaf color. I will describe a new, publicly-available phenological dataset, derived from over 600 site-years of PhenoCam imagery. For each archived image (ca. 5 million), we extracted RGB (red, green, blue) color channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 minute) imagery, we derived time series characterizing vegetation color, including "canopy greenness", processed to 1- and 3-day intervals. For ecosystems with a single annual cycle of vegetation activity, we derived estimates, with uncertainties, for the start, middle, and end of spring and autumn phenological transitions. Given the lack of multi-year, standardized, and geographically distributed phenological data for North America, we anticipate that these datasets will be widely used by researchers in a variety of fields. Shifts in phenology are a particularly tangible example of the biological impacts of climate change, and thus these data may also find use in science education and outreach to the general public.
Decision support system based on DPSIR framework for a low flow Mediterranean river basin
NASA Astrophysics Data System (ADS)
Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta
2013-04-01
The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river basins. While InVEST is a spatially explicit tool, used to model and map a suite of ecosystem services caused by land cover changes or climate change impacts. Moreover, results obtained from low-flow hydrological simulation and ecosystem services models serves as useful tools to develop decision support system based on DPSIR framework by integrating models. Bayesian Networks is used as a knowledge integration and visualization tool to summarize the outcomes of hydrological and ecosystem services models at the "Response" stage of DPSIR. Bayesian Networks provide a framework for modelling the logical relationship between catchment variables and decision objectives by quantifying the strength of these relationships using conditional probabilities. Participatory nature of this framework can provide better communication of water research, particularly in the context of a perceived lack of future awareness-raising with the public that helps to develop more sustainable water management strategies. Acknowledgements The present study was financially supported by Spanish Ministry of Economy and Competitiveness for its financial support through the project SCARCE (Consolider-Ingenio 2010 CSD2009-00065). R. F. Bangash also received PhD fellowship from AGAUR (Commissioner for Universities and Research of the Department of Innovation, Universities and Enterprise of the "Generalitat de Catalunya" and the European Social Fund).
Barney, Jacob N; Tekiela, Daniel R; Barrios-Garcia, Maria Noelia; Dimarco, Romina D; Hufbauer, Ruth A; Leipzig-Scott, Peter; Nuñez, Martin A; Pauchard, Aníbal; Pyšek, Petr; Vítková, Michaela; Maxwell, Bruce D
2015-07-01
Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN framework is to create a standard yet flexible platform for understanding the ecological impacts of invasive plants, allowing both individual and synthetic analyses across a range of taxa and ecosystems. If broadly adopted, this standard approach will offer unique insight into the ecological impacts of invasive plants at local, regional, and global scales.
Barney, Jacob N; Tekiela, Daniel R; Barrios-Garcia, Maria Noelia; Dimarco, Romina D; Hufbauer, Ruth A; Leipzig-Scott, Peter; Nuñez, Martin A; Pauchard, Aníbal; Pyšek, Petr; Vítková, Michaela; Maxwell, Bruce D
2015-01-01
Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN framework is to create a standard yet flexible platform for understanding the ecological impacts of invasive plants, allowing both individual and synthetic analyses across a range of taxa and ecosystems. If broadly adopted, this standard approach will offer unique insight into the ecological impacts of invasive plants at local, regional, and global scales. PMID:26306173
NASA Astrophysics Data System (ADS)
Wang, Shaoqiang
2014-05-01
Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and future climate change.
So what exactly are social-ecological network studies? Findings from a literature review
To solve most environmental management problems academics and practitioners must work across traditionally compartmentalized management arenas (e.g., food, water, and wildlife) and among spatially distant ecosystems and resource users. Managing interdependent ecosystem services, ...
DeAngelis, Donald L.
2005-01-01
Review info: Modeling community structure in freshwater ecosystems. Edited by Sovan Lek, Michele Scardi, Piet F.M. Verdonschot, Jean-Pierre Descy, and Young-Seuk Park, 2005. ISBN: 3-540-23940-5, 518 pp.
NASA Astrophysics Data System (ADS)
Battin, Tom J.; Dzubakova, Katharina; Boodoo, Kyle; Ulseth, Amber
2017-04-01
Streams and rivers are increasingly exposed to environmental change across various spatial and temporal scales. Consequently, ecosystem health and integrity are becoming compromised. Most management strategies designed to recover and maintain stream ecosystem health involve engineering measures of geomorphology. The success of such engineering measures relies on a thorough understanding of the underlying physical, chemical and biological process coupling across scales. First, we present results from experimental work unraveling the relevance of streambed heterogeneity for the resilience of phototrophic biofilms. This is critical as phototrophic biofilms are key for nutrient removal and hence for keeping the water clean. These biofilms are also the machinery of primary production and related carbon fluxes in stream ecosystems. Next, we show how climate change may affect primary production, including CO2, in streams and the networks they form. In fact, streams are now recognized as major sources of CO2 to the atmosphere and contributors to the global carbon cycle. Despite this, we do not yet understand how geomorphological features, themselves continuously reworked by hydrology and sedimentary dynamics, affect CO2 fluxes in streams. We show that gravel bars, clearly conspicuous geomorphological features, are hotspots of CO2 fluxes compared to the streamwater itself. This has major implications for carbon cycling and stream ecosystem functioning. Finally, we discuss what stream management could learn from ecohydraulic insights from young scientists doing excellent basic research.
Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang
2015-11-01
In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods.
The dissimilarity of species interaction networks.
Poisot, Timothée; Canard, Elsa; Mouillot, David; Mouquet, Nicolas; Gravel, Dominique
2012-12-01
In a context of global changes, and amidst the perpetual modification of community structure undergone by most natural ecosystems, it is more important than ever to understand how species interactions vary through space and time. The integration of biogeography and network theory will yield important results and further our understanding of species interactions. It has, however, been hampered so far by the difficulty to quantify variation among interaction networks. Here, we propose a general framework to study the dissimilarity of species interaction networks over time, space or environments, allowing both the use of quantitative and qualitative data. We decompose network dissimilarity into interactions and species turnover components, so that it is immediately comparable to common measures of β-diversity. We emphasise that scaling up β-diversity of community composition to the β-diversity of interactions requires only a small methodological step, which we foresee will help empiricists adopt this method. We illustrate the framework with a large dataset of hosts and parasites interactions and highlight other possible usages. We discuss a research agenda towards a biogeographical theory of species interactions. © 2012 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Gobin, Anne; Van de vijver, Hans; Zamani, Sepideh; Curnel, Yannick; Planchon, Viviane; Verspecht, Ann; Van Huylenbroeck, Guido
2014-05-01
Devastating weather-related events have captured the interest of the general public in Belgium. Extreme weather events such as droughts, heat waves and rain storms are projected to increase both in frequency and magnitude with climate change. Since more than half of the Belgian territory is managed by the agricultural sector, extreme events may have significant impacts on agro-ecosystem services and pose severe limitations to sustainable agricultural land management. The research hypothesis of the MERINOVA project is that meteorological risks act as drivers of environmental innovation in agro-ecosystem management. The major objectives are to characterise extreme meteorological events, assess the impact on Belgian agro-ecosystems, characterise their vulnerability and resilience to these events, and explore innovative adaptation options to agricultural risk management. The project comprises of five major parts that reflect the chain of risks: the hazard, its impact on different agro-ecosystems, vulnerability, risk management and risk communication. Impacts developed from physically based models not only provide information on the state of the damage at any given time, but also assist in understanding the links between different factors causing damage and determining bio-physical vulnerability. Socio-economic impacts enlarge the basis for vulnerability mapping, risk management and adaptation options. The perspective of rising risk-exposure is exacerbated further by more limits to aid received for agricultural damage and an overall reduction of direct income support to farmers. The main findings of each of these project building blocks will be communicated. MERINOVA provides for a robust and flexible framework by demonstrating its performance across Belgian agro-ecosystems, and by ensuring its relevance to policy makers and practitioners. A strong expert and end-user network is established to help disseminating and exploiting project results to meet user needs. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A. https://merinova.vito.be
Progress Report on the US Critical Zone Observatory Program
NASA Astrophysics Data System (ADS)
Barrera, E. C.
2014-12-01
The Critical Zone Observatory (CZO) program supported by the National Science Foundation originated from the recommendation of the Earth Science community published in the National Research Council report "Basic Research Opportunities in Earth Sciences" (2001) to establish natural laboratories to study processes and systems of the Critical Zone - the surface and near-surface environment sustaining nearly all terrestrial life. After a number of critical zone community workshops to develop a science plan, the CZO program was initiated in 2007 with three sites and has now grown to 10 sites and a National Office, which coordinates research, education and outreach activities of the network. Several of the CZO sites are collocated with sites supported by the US Long Term Ecological Research (LTER) and the Long Term Agricultural Research (LTAR) programs, and the National Ecological Observatory Network (NEON). Future collaboration with additional sites of these networks will add to the potential to answer questions in a more comprehensive manner and in a larger regional scale about the critical zone form and function. At the international level, CZOs have been established in many countries and strong collaborations with the US program have been in place for many years. The next step is the development of a coordinated international program of critical zone research. The success of the CZO network of sites can be measured in transformative results that elucidate properties and processes controlling the critical zone and how the critical zone structure, stores and fluxes respond to climate and land use change. This understanding of the critical zone can be used to enhance resilience and sustainability, and restore ecosystem function. Thus, CZO science can address major societal challenges. The US CZO network is a facility open to research of the critical zone community at large. Scientific data and information about the US program are available at www.criticalzone.org.
Singh, Gerald G; Sinner, Jim; Ellis, Joanne; Kandlikar, Milind; Halpern, Benjamin S; Satterfield, Terre; Chan, Kai M A
2017-09-01
Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits - fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity-addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for approaches like this to understand mechanisms of impact, in order to develop strategies to manage them. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ashbrook, Peggy
2007-01-01
"Community," "assemblage," "network," "complex," "interdependent," "web," and "synergism"--definitions of an ecosystem often include these words to highlight the dynamic interrelated workings of plants and animals with their physical environment. Young children don't understand the complexities of ecosystems, but they can begin to understand that…
ERIC Educational Resources Information Center
Liljeström, Anu; Enkenberg, Jorma; Vanninen, Petteri; Vartiainen, Henriikka; Pöllänen, Sinikka
2014-01-01
This paper discusses the OpenForest portal and its related multidisciplinary learning project. The OpenForest portal is an open learning environment and ecosystem, in which students can participate in co-developing and co-creating practices. The aim of the OpenForest ecosystem is to create an extensive interactive network of diverse learning…
NASA Astrophysics Data System (ADS)
Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.
2010-12-01
We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.
Ecosystem services and economic theory: integration for policy-relevant research.
Fisher, Brendan; Turner, Kerry; Zylstra, Matthew; Brouwer, Roy; de Groot, Rudolf; Farber, Stephen; Ferraro, Paul; Green, Rhys; Hadley, David; Harlow, Julian; Jefferiss, Paul; Kirkby, Chris; Morling, Paul; Mowatt, Shaun; Naidoo, Robin; Paavola, Jouni; Strassburg, Bernardo; Yu, Doug; Balmford, Andrew
2008-12-01
It has become essential in policy and decision-making circles to think about the economic benefits (in addition to moral and scientific motivations) humans derive from well-functioning ecosystems. The concept of ecosystem services has been developed to address this link between ecosystems and human welfare. Since policy decisions are often evaluated through cost-benefit assessments, an economic analysis can help make ecosystem service research operational. In this paper we provide some simple economic analyses to discuss key concepts involved in formalizing ecosystem service research. These include the distinction between services and benefits, understanding the importance of marginal ecosystem changes, formalizing the idea of a safe minimum standard for ecosystem service provision, and discussing how to capture the public benefits of ecosystem services. We discuss how the integration of economic concepts and ecosystem services can provide policy and decision makers with a fuller spectrum of information for making conservation-conversion trade-offs. We include the results from a survey of the literature and a questionnaire of researchers regarding how ecosystem service research can be integrated into the policy process. We feel this discussion of economic concepts will be a practical aid for ecosystem service research to become more immediately policy relevant.
López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor
2014-01-01
Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790
Evidence for network evolution in an arabidopsis interactome map
USDA-ARS?s Scientific Manuscript database
Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the pl...
Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation
NASA Astrophysics Data System (ADS)
Brasseur, L. H.; Banahan, S.; Cowles, T.
2009-05-01
The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.
NASA Astrophysics Data System (ADS)
Tenhunen, J.; Huwe, B.; Kim, B.; Kim, J.; Nguyen, T.; Pham, V. D.; Reineking, B.; Seo, B.; Shin, H.; Shope, C.
2012-04-01
Sustainability challenges are transforming science and its role in society. Achieving sustainable use of resources that best supports human well-being requires wise planning of land use and management practices at landscape to regional scales. At regional scale, supportive services from natural resource use are of two types: locally derived via ecosystem production processes (cf. agriculture and forest products, etc.) and integratively derived via regional landscape response (cf. water supply). Research in the International Biological Program (IBP) demonstrated that modification in local ecosystem services (accompanying altered land use, due to agricultural intensification, or due to climate change) are associated with changes in land-surface to atmosphere gas exchange (water, carbon and trace gas emissions), in nutrient cycles and turnover, in the seasonal course of soil resource stores, in resource use efficiencies, and in the export of nutrients and carbon into river systems. Researchers at the Coweeta Hydrologic Laboratory in North Carolina summarized integrative changes in services that accompany land use and climate change, stating that "the quantity, timing, and quality of streamflow provide an integrated measure of the success or failure of land management practices." The international consortium project TERRECO (Complex Terrain and Ecological Heterogeneity; www.bayceer.uni-bayreuth.de/terreco) focuses on linking (1) spatial patterns in local ecosystem performance in complex terrain of the Soyang Lake Watershed, the largest reservoir system in South Korea, with (2) integrated ecosystem services derived from Soyang Lake, and with (3) economic evaluations of the services supplied. Field-based meteorology, plant production, soil physics, solute and sediment transport, hydrology, social behavior, and economic assessments are used to parameterize a suite of models that describe landscape and regional level flow networks for carbon, water, and nutrients, but in addition monetary flows associated with gains and losses in ecosystem services. The description is embedded within a framework which examines the trade-offs between agricultural intensification versus yield of high quality water to reservoirs for drinking water supply. The models also quantify hypothetical changes in flow networks that would occur in the context of climate, land use and social change scenarios. The research is viewed as a critical step in shaping the context for interactions between environmental scientists and resource managers. A project partnership is currently being built with agencies that have the mission to carry out land use planning and to advise in policy making. A common interest is found among TERRECO project participants and agency planners in evaluating scenarios to quantify the effects of land use decisions possibly made in compliance with stakeholder demands.
CHAPTER 17: VIVANTARY RESPONSIBLITY AND EMERGY ACCOUNTING
Ecosystem processes represented by manifold material cycles and energy flows are a necessary condition of life on Earth. Though our species is embedded in a matrix of ecosystem processes mediated by networks involving millions of other species, human activities per se account fo...
Great Lakes rivermouth ecosystems: scientific synthesis and management implications
Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...
Network structure and influence of the climate change counter-movement
NASA Astrophysics Data System (ADS)
Farrell, Justin
2016-04-01
Anthropogenic climate change represents a global threat to human well-being and ecosystem functioning. Yet despite its importance for science and policy, our understanding of the causes of widespread uncertainty and doubt found among the general public remains limited. The political and social processes driving such doubt and uncertainty are difficult to rigorously analyse, and research has tended to focus on the individual-level, rather than the larger institutions and social networks that produce and disseminate contrarian information. This study presents a new approach by using network science to uncover the institutional and corporate structure of the climate change counter-movement, and machine-learning text analysis to show its influence in the news media and bureaucratic politics. The data include a new social network of all known organizations and individuals promoting contrarian viewpoints, as well as the entirety of all written and verbal texts about climate change from 1993-2013 from every organization, three major news outlets, all US presidents, and every occurrence on the floor of the US Congress. Using network and computational text analysis, I find that the organizational power within the contrarian network, and the magnitude of semantic similarity, are both predicted by ties to elite corporate benefactors.
Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?
Chan, Kai M. A.; Hoshizaki, Lara; Klinkenberg, Brian
2011-01-01
There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost and with greater co-benefits. PMID:21915318
An experimental analysis of granivory in a desert ecosystem: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.H.
1987-03-01
Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less
Trends in ecosystem service research: early steps and current drivers.
Vihervaara, Petteri; Rönkä, Mia; Walls, Mari
2010-06-01
Over the past 50 years, human beings have influenced ecosystems more rapidly than at any similar time in human history, drastically altering ecosystem functioning. Along with ecosystem transformation and degradation, a number of studies have addressed the functioning, assessment and management of ecosystems. The concept of ecosystem services has been developed in the scientific literature since the end of the 1970s. However, ecosystem service research has focused on certain service categories, ecosystem types, and geographical areas, while substantial knowledge gaps remain concerning several aspects. We assess the development and current status of ecosystem service research on the basis of publications collected from the Web of Science. The material consists of (1) articles (n = 353) from all the years included in the Web of Science down to the completion of the Millennium Ecosystem Assessment and (2) more recent articles (n = 687) published between 2006 and 2008. We also assess the importance of international processes, such as the Convention on Biological Diversity, the Kyoto Protocol and the Millennium Ecosystem Assessment, as drivers of ecosystem service research. Finally, we identify future prospects and research needs concerning the assessment and management of ecosystem services.
Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems
Ashley M. Helton; Geoffrey C. Poole; Judy L. Meyer; Wilfred M. Wollheim; Bruce J. Peterson; Patrick J. Mulholland; Emily S. Bernhardt; Jack A. Stanford; Clay Arango; Linda R. Ashkenas; Lee W. Cooper; Walter K. Dodds; Stanley V. Gregory; Robert O. Hall; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Jody D. Potter; Jennifer L. Tank; Suzanne M. Thomas; H. Maurice Valett; Jackson R. Webster; Lydia Zeglin
2011-01-01
Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate...
Non-Deterministic Modelling of Food-Web Dynamics
Planque, Benjamin; Lindstrøm, Ulf; Subbey, Sam
2014-01-01
A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem functions. To date, and despite the importance of these conclusions, this work has received little attention. The objective of the present paper is to replicate this original model and evaluate the conclusions that were derived from its simulations. For this purpose, we revisit the equations and input parameters that form the structure of the original model and implement a comparable simulation model. We restate the model principles and provide a detailed account of the model structure, equations, and parameters. Our model can reproduce several ecosystem dynamic patterns: pseudo-cycles, variation and volatility, diet, stock-recruitment relationships, and correlations between species biomass series. The original conclusions are supported to a large extent by the current replication of the model. Model parameterisation and computational aspects remain difficult and these need to be investigated further. Hopefully, the present contribution will make this approach available to a larger research community and will promote the use of non-deterministic-network-dynamics models as ‘null models of food-webs’ as originally advocated. PMID:25299245
Systemic solutions for multi-benefit water and environmental management.
Everard, Mark; McInnes, Robert
2013-09-01
The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and researchers working on ways to quantify and optimise delivery of ecosystem services. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.
2017-12-01
Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.
Common Technologies for Environmental Research Infrastructures in ENVRIplus
NASA Astrophysics Data System (ADS)
Paris, Jean-Daniel
2016-04-01
Environmental and geoscientific research infrastructures (RIs) are dedicated to distinct aspects of the ocean, atmosphere, ecosystems, or solid Earth research, yet there is significant commonality in the way they conceive, develop, operate and upgrade their observation systems and platforms. Many environmental Ris are distributed network of observatories (be it drifting buoys, geophysical observatories, ocean-bottom stations, atmospheric measurements sites) with needs for remote operations. Most RIs have to deal with calibration and standardization issues. RIs use a variety of measurements technologies, but this variety is based on a small, common set of physical principles. All RIs have set their own research and development priorities, and developed their solution to their problems - however many problems are common across RIs. Finally, RIs may overlap in terms of scientific perimeter. In ENVRIplus we aim, for the first time, to identify common opportunities for innovation, to support common research and development across RIs on promising issues, and more generally to create a forum to spread state of the art techniques among participants. ENVRIplus activities include 1) measurement technologies: where are the common types of measurement for which we can share expertise or common development? 2) Metrology : how do we tackle together the diversified challenge of quality assurance and standardization? 3) Remote operations: can we address collectively the need for autonomy, robustness and distributed data handling? And 4) joint operations for research: are we able to demonstrate that together, RIs are able to provide relevant information to support excellent research. In this process we need to nurture an ecosystem of key players. Can we involve all the key technologists of the European RIs for a greater mutual benefit? Can we pave the way to a growing common market for innovative European SMEs, with a common programmatic approach conducive to targeted R&D? Can we develop a common metrological language adapted to the observation of our environment? We aim at creating a space for exchange on the "hardware" issues of our networks of observatories, a forum that allows fast transmission across RIs of best practices and state of the art technology, a laboratory for joint research and co-development, where research infrastructures and their communities join efforts on well-identified objectives.
Brazilian LTER: ecosystem and biodiversity information in support of decision-making.
Barbosa, F A R; Scarano, F R; Sabará, M G; Esteves, F A
2004-01-01
Brazil officially joined the International Long Term Ecological Research (ILTER) network in January 2000, when nine research sites were created and funded by the Brazilian Council for Science and Technology (CNPq). Two-years later some positive signs already emerge of the scientific, social and political achievements of the Brazilian LTER program. We discuss examples of how ecosystem and biodiversity information gathered within a long-term research approach are currently subsidizing decision-making as regards biodiversity conservation and watershed management at local and regional scales. Success in this respect has often been related to satisfactory communication between scientists, private companies, government and local citizens. Environmental education programs in the LTER sites are playing an important role in social and political integration. Most examples of integration of ecological research to decision-making in Brazil derive from case studies at local or regional scale. Despite the predominance of a bottom-up integrative pathway (from case studies to models; from local to national scale), some top-down initiatives are also in order, such as the construction of a model to estimate the inpact of different macroeconomic policies and growth trajectories on land use. We believe science and society in Brazil will benefit of the coexistence of bottom-up and top-down integrative approaches.
Challenges, developments and perspectives in intermittent ...
Although more than half the world's river networks comprise channels that periodically cease to flow and dry [intermittent rivers (IRs)], river ecology was largely developed from and for perennial systems. Ecological knowledge of IRs is rapidly increasing, so there is a need to synthesise this knowledge and deepen ecological understanding.In this Special Issue, we bring together 13 papers spanning observational case studies, field and laboratory experiments and reviews to guide research and management in this productive field of freshwater science. We summarise new developments in IR ecology, identify research gaps and needs, and address how the study of IRs as highly dynamic ecosystems informs ecological understanding more broadly.This series of articles reveals that contemporary IR ecology is a multifaceted and maturing field of research at the interface between aquatic and terrestrial ecology. This research contributes to fresh water and general ecology by testing concepts across a range of topics, including disturbance ecology, metacommunity ecology and coupled aquatic-terrestrial ecosystems.Drying affects flow continuity through time and flow connectivity across longitudinal, lateral and vertical dimensions of space, which aligns well with the recent emphasis of mainstream ecology on meta-system perspectives. Although most articles here focus on the wet phase, there is growing interest in dry phases, and in the terrestrial vegetation and invertebrate assemb
An agronomic field-scale sensor network for monitoring soil water and temperature variation
NASA Astrophysics Data System (ADS)
Brown, D. J.; Gasch, C.; Brooks, E. S.; Huggins, D. R.; Campbell, C. S.; Cobos, D. R.
2014-12-01
Environmental sensor networks have been deployed in a variety of contexts to monitor plant, air, water and soil properties. To date, there have been relatively few such networks deployed to monitor dynamic soil properties in cropped fields. Here we report on experience with a distributed soil sensor network that has been deployed for seven years in a research farm with ongoing agronomic field operations. The Washington State University R. J. Cook Agronomy Farm (CAF), Pullman, WA, USA has recently been designated a United States Department of Agriculture (USDA) Long-Term Agro-Ecosystem Research (LTAR) site. In 2007, 12 geo-referenced locations at CAF were instrumented, then in 2009 this network was expended to 42 locations distributed across the 37-ha farm. At each of this locations, Decagon 5TE probes (Decagon Devices Inc., Pullman, WA, USA) were installed at five depths (30, 60, 90, 120, and 150 cm), with temperature and volumetric soil moisture content recorded hourly. Initially, data loggers were wirelessly connected to a data station that could be accessed through a cell connection, but due to the logistics of agronomic field operations, we later buried the dataloggers at each site and now periodically download data via local radio transmission. In this presentation, we share our experience with the installation, maintenance, calibration and data processing associated with an agronomic soil monitoring network. We also present highlights of data derived from this network, including seasonal fluctuations of soil temperature and volumetric water content at each depth, and how these measurements are influenced by crop type, soil properties, landscape position, and precipitation events.
NASA Astrophysics Data System (ADS)
Simkins, J.; Desai, A. R.; Cowdery, E.; Dietze, M.; Rollinson, C.
2016-12-01
The terrestrial biosphere assimilates nearly one fourth of anthropogenic carbon dioxide emissions, providing a significant ecosystem service. Anthropogenic climate changes that influence the distribution and frequency of weather extremes and can have a momentous impact on this useful function that ecosystems provide. However, most analyses of the impact of extreme events on ecosystem carbon uptake do not integrate across the wide range of structural, parametric, and driver uncertainty that needs to be taken into account to estimate probability of changes to ecosystem function under shifts in climate patterns. In order to improve ecosystem model forecasts, we integrated and estimated these sources of uncertainty using an open-sourced informatics workflow, the Predictive ECosystem Analyzer (PEcAn, http://pecanproject.org). PEcAn allows any researcher to parameterize and run multiple ecosystem models and automate extraction of meteorological forcing and estimation of its uncertainty. Trait databases and a uniform protocol for parameterizing and driving models were used to test parametric and structural uncertainty. In order to sample the uncertainty in future projected meteorological drivers, we developed automated extraction routines to acquire site-level three-hourly Coupled Model Intercomparison Project 5 (CMIP5) forcing data from the Geophysical Fluid Dynamics Laboratory general circulation models (CM3, ESM2M, and ESM2G) across the r1i1p1, r3i1p1 and r5i1p1 ensembles and AR5 emission scenarios. We also implemented a site-level high temporal resolution downscaling technique for these forcings calibrated against half-hourly eddy covariance flux tower observations. Our hypothesis claims that parametric and driver uncertainty dominate over the model structural uncertainty. In order to test this, we partition the uncertainty budget on the ChEAS regional network of towers in Northern Wisconsin, USA where each tower is located in forest and wetland ecosystems.
Multidimensional Convergence in Future 5G Networks
NASA Astrophysics Data System (ADS)
Ruffini, Marco
2017-02-01
Future 5G services are characterised by unprecedented need for high rate, ubiquitous availability, ultra-low latency and high reliability. The fragmented network view that is widespread in current networks will not stand the challenge posed by next generations of users. A new vision is required, and this paper provides an insight on how network convergence and application-centric approaches will play a leading role towards enabling the 5G vision. The paper, after expressing the view on the need for an end-to-end approach to network design, brings the reader into a journey on the expected 5G network requirements and outlines some of the work currently carried out by main standardisation bodies. It then proposes the use of the concept of network convergence for providing the overall architectural framework to bring together all the different technologies within a unifying and coherent network ecosystem. The novel interpretation of multi-dimensional convergence we introduce leads us to the exploration of aspects of node consolidation and converged network architectures, delving into details of optical-wireless integration and future convergence of optical data centre and access-metro networks. We then discuss how ownership models enabling network sharing will be instrumental in realising the 5G vision. The paper concludes with final remarks on the role SDN will play in 5G and on the need for new business models that reflect the application-centric view of the network. Finally, we provide some insight on growing research areas in 5G networking.
NASA Astrophysics Data System (ADS)
Hatala, J.; Sonnentag, O.; Detto, M.; Runkle, B.; Vargas, R.; Kelly, M.; Baldocchi, D. D.
2009-12-01
Ground-based, visible light imagery has been used for different purposes in agricultural and ecological research. A series of recent studies explored the utilization of networked digital cameras to continuously monitor vegetation by taking oblique canopy images at fixed view angles and time intervals. In our contribution we combine high temporal resolution digital camera imagery, eddy-covariance, and meteorological measurements with weekly field-based hyperspectral and LAI measurements to gain new insights on temporal changes in canopy structure and functioning of two managed ecosystems in California’s Sacramento-San Joaquin River Delta: a pasture infested by the invasive perennial pepperweed (Lepidium latifolium) and a rice plantation (Oryza sativa). Specific questions we address are: a) how does year-round grazing affect pepperweed canopy development, b) is it possible to identify phenological key events of managed ecosystems (pepperweed: flowering; rice: heading) from the limited spectral information of digital camera imagery, c) is a simple greenness index derived from digital camera imagery sufficient to track leaf area index and canopy development of managed ecosystems, and d) what are the scales of temporal correlation between digital camera signals and carbon and water fluxes of managed ecosystems? Preliminary results for the pasture-pepperweed ecosystem show that year-round grazing inhibits the accumulation of dead stalks causing earlier green-up and that digital camera imagery is well suited to capture the onset of flowering and the associated decrease in photosynthetic CO2 uptake. Results from our analyses are of great relevance from both a global environmental change and land management perspective.
Small watershed-scale research and the challenges ahead
NASA Astrophysics Data System (ADS)
Larsen, M. C.; Glynn, P. D.
2008-12-01
For the past century, Federal mission science agencies (eg. USFS, NRCS, ARS, USGS) have had the long- term agency goals, infrastructure, and research staff to conduct research and data collection in small watersheds as well as support these activities for non-Federal partners. The National Science Foundation has been a strong partner with the Federal mission science agencies, through the LTER network, which is dependent on Federally supported research sites, and more recently with the emerging CUAHSI, WATERS, CZEN, and NEON initiatives. Much of the NSF-supported research builds on the foundations provided by their Federally supported partners, who sustain the long-term, extensive monitoring activity and research sites, including making long-term data available to all users via public interfaces. The future of these programs, and their enhancement/expansion to face the intensifying concurrent challenges of population growth, land-use change, and climate change, is dependent on a well-funded national commitment to basic science. Such a commitment will allow the scientific community to advance our understanding of these scientific challenges and to synthesize our understanding among research sites and at the national scale. Small watersheds serve as essential platforms where hypotheses can be tested, as sentinels for climate change, and as a basis for comparing and scaling up local information and syntheses to regional and continental scales. The science guides resource management and mitigation decisions and is fundamental to the development of predictive models. Furthermore, small-watershed research and monitoring programs are generally undervalued because many research questions that can be addressed now or in the future were not anticipated when the sites were initiated. Some examples include: 1) the quantification, characterization, and understanding of how emerging contaminants, personal care products, and endocrine disruptors affect organisms - substances that could not be detected until the recent increased sensitivity of modern techniques; 2) the recognition of changing climate and its effects on already-stressed water resources and ecosystems; 3) more integrated monitoring and modeling of ecosystem processes and quantification of ecosystem services. Historical hydrological and biogeochemical information available at USGS and other watershed-research and -monitoring sites can now be used in conjunction with active monitoring of biota and biological processes (especially those involving plants, invertebrates and microbes). The results will help provide a more nationally consistent framework for evaluating ecosystem health, and assessing ecosystem services, in the face of changing climate and land-use. These, and related science questions and societal issues are complex and require strong collaborations across disciplinary and organizational boundaries. Along with a well-funded national commitment to basic watershed research, the USGS continually seeks to strengthen its small-watershed and ecosystem-science programs through partnerships with NSF, State, and Federal agencies. Given the growing U.S. population, continual development in water-scarce regions, and general water- and soil-resource stress under competing national interests and priorities, the role of basic watershed-scale research and monitoring is essential because of its unique niche in the development of the improved environmental understanding and predictive models needed by resource managers.
Is U.S. climatic diversity well represented within the existing federal protection network?
Batllori, Enric; Miller, Carol; Parisien, Marc-Andre; Parks, Sean A; Moritz, Max A
Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans. The conterminous United States of America (CONUS) has an extensive system of protected areas managed by federal agencies, but a comprehensive assessment of how this network represents CONUS climate is lacking. We present a quantitative classification of the climate space that is independent from the geographic locations to evaluate the climatic representation of the existing protected area network. We use this classification to evaluate the coverage of each agency's jurisdiction and to identify current conservation deficits. Our findings reveal that the existing network poorly represents CONUS climatic diversity. Although rare climates are generally well represented by the network, the most common climates are particularly underrepresented. Overall, 83% of the area of the CONUS corresponds to climates underrepresented by the network. The addition of some currently unprotected federal lands to the network would enhance the coverage of CONUS climates. However, to fully palliate current conservation deficits, large-scale private-land conservation initiatives will be critical.
Jacobsen, Rannveig M; Sverdrup-Thygeson, Anne; Kauserud, Håvard; Birkemoe, Tone
2018-04-11
Ecological networks are composed of interacting communities that influence ecosystem structure and function. Fungi are the driving force for ecosystem processes such as decomposition and carbon sequestration in terrestrial habitats, and are strongly influenced by interactions with invertebrates. Yet, interactions in detritivore communities have rarely been considered from a network perspective. In the present study, we analyse the interaction networks between three functional guilds of fungi and insects sampled from dead wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of interactions differing in specificity in the detritivore networks, involving three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in their interactions with insects inhabiting dead wood, while interactions between the insects and wood-decay fungi exhibited the highest degree of specialization, which was similar to estimates for animal-mediated seed dispersal networks in previous studies. The low degree of specialization for insect symbiont fungi was unexpected. In general, the pooled insect-fungus networks were significantly more specialized, more modular and less nested than randomized networks. Thus, the detritivore networks had an unusual anti-nested structure. Future studies might corroborate whether this is a common aspect of networks based on interactions with fungi, possibly owing to their often intense competition for substrate. © 2018 The Author(s).
Interfacing with in-Situ Data Networks during the Arctic Boreal Vulnerability Experiment (ABoVE)
NASA Astrophysics Data System (ADS)
McInerney, M.; Griffith, P. C.; Duffy, D.; Hoy, E.; Schnase, J. L.; Sinno, S.; Thompson, J. H.
2014-12-01
The Arctic Boreal Vulnerability Experiment (ABoVE) is designed to improve understanding of the causes and impacts of ecological changes in Arctic/boreal regions, and will integrate field-based studies, modeling, and data from airborne and satellite remote sensing. ABoVE will result in a fuller understanding of ecosystem vulnerability and resilience to environmental change in the Arctic and boreal regions of western North America, and provide scientific information required to develop options for societal responses to the impacts of these changes. The studies sponsored by NASA during ABoVE will be coordinated with research and in-situ monitoring activities being sponsored by a number of national and international partners. The NASA Center for Climate Simulation at the Goddard Space Flight Center has partnered with the NASA Carbon Cycle & Ecosystems Office to create a science cloud designed for this field campaign - the ABoVE Science Cloud (ASC). The ASC combines high performance computing with emerging technologies to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage with integrated data management, and integration of core variables from in-situ networks identified by the ABoVE Science Definition Team. In this talk, we will present the scientific requirements driving the development of the ABoVE Science Cloud, discuss the necessary interfaces, both computational and human, with in-situ monitoring networks, and show examples of how the ASC is being used to meet the needs of the ABoVE campaign.
NASA Astrophysics Data System (ADS)
Gosz, J.
2001-12-01
The network dedicated to Long Term Ecological Research (LTER) in the United States has grown to 24 sites since it was formed in 1980. Long-term research and monitoring are performed on parameters thatare basic to all ecosystems and are required to understand patterns, processes, and relationship to change. Collectively, the sites in the LTER Network provide opportunities to contrast marine, coastal, and continental regions, the full range of climatic gradients existing in North America, and aquatic and terrestrial habitats in a range of ecosystem types. The combination of common core areas and long-term research and monitoring in many habitats have allowed unprecedented abilities to understand and compare complex temporal and spatial dynamics associated with issues like climate change, effects of pollution, biodiversity and landuse. For example, McMurdo Dry Valley in the Antarctic has demonstrated an increase in glacier mass since 1993 which coincides with a period of cooler than normal summers and more than average snowfall. In contrast, the Bonanza Creek and Toolik Lake sites in Alaska have recorded a warming period unprecedented in the past 200 years. Nitrogen deposition effects have been identified through long-term watershed studies on biogeochemical cycles, especially at Coweeta Hydrological Lab, Harvard Forest, and the Hubbard Brook Experimental Forest. In aquatic systems, such as the Northern Temperate Lakes site, long-term data revealed time lags in effects of invaders and disturbance on lake communities. Biological recovery from an effect such as lake acidification was shown to lag behind chemical recovery. The long-term changes documented over 2 decades have been instrumental in influencing management practices in many of the LTER areas. In Puerto Rico, the Luquillo LTER demonstrated that dams obstruct migrations of fish and freshwater shrimp and water abstraction at low flows can completely obliterate downstream migration of juveniles and damage estuaries below by removing all incoming freshwater. At Toolik Lake, long-term experiments of removing top predators from the good web of lakes showed dramatic alterations of lake populations of small fish and zooplankton. In New Mexico, LTER research on small mammal populations is successfully predicting rodent increases and the potential for increased zoonotic diseases such as Hantavirus and bubonic plague. This ability to forecast based on El Nino prediction is being used to increase scientific awareness and public health awareness through media based communication with the public. In Oregon, the Andrews Forest LTER program has had long, strong links with natural resource policy and management. Basic understanding of forest-stream interactions, characteristics of old-growth forests, roles of woody debris in temperate forest ecosystems, invertebrate biodiversity and ecosystem function have been incorporated in management guidelines, plans and regulations for public and private lands throughout the Pacific Northwest. Other examples of the values of long-term research and monitoring will be presented.
Ecological issues related to N deposition to natural ecosystems: research needs.
Adams, Mary Beth
2003-06-01
There has and continues to be concern about the effects of elevated nitrogen (N) deposition on natural ecosystems. In this paper, research on natural ecosystems, including wetlands, heathlands, grasslands, steppe, naturally regenerated forests and deserts, is evaluated to determine what is known about nitrogen cycling in these ecosystems, the effects of elevated nitrogen on them and to identify research gaps. Aquatic ecosystems are not included in this review, except as they are part of the larger ecosystem. Research needs fall into several categories: (1) improved understanding and quantification of the N cycle, particularly relatively unstudied processes such as dry deposition, N fixation and decomposition/mineralization; (2) carbon cycling as affected by increased N deposition; (3) effects on arid ecosystems and other "neglected" ecosystems; (4) effects on complex ecosystems and interactions with other pollutants; (5) indicators and assessment tools for natural ecosystems.
SWMPr: An R Package for Retrieving, Organizing, and ...
The System-Wide Monitoring Program (SWMP) was implemented in 1995 by the US National Estuarine Research Reserve System. This program has provided two decades of continuous monitoring data at over 140 fixed stations in 28 estuaries. However, the increasing quantity of data provided by the monitoring network has complicated broad-scale comparisons between systems and, in some cases, prevented simple trend analysis of water quality parameters at individual sites. This article describes the SWMPr package that provides several functions that facilitate data retrieval, organization, andanalysis of time series data in the reserve estuaries. Previously unavailable functions for estuaries are also provided to estimate rates of ecosystem metabolism using the open-water method. The SWMPr package has facilitated a cross-reserve comparison of water quality trends and links quantitative information with analysis tools that have use for more generic applications to environmental time series. The manuscript describes a software package that was recently developed to retrieve, organize, and analyze monitoring data from the National Estuarine Research Reserve System. Functions are explained in detail, including recent applications for trend analysis of ecosystem metabolism.
Is Ecosystem-Atmosphere Observation in Long-Term Networks actually Science?
NASA Astrophysics Data System (ADS)
Schmid, H. P. E.
2015-12-01
Science uses observations to build knowledge by testable explanations and predictions. The "scientific method" requires controlled systematic observation to examine questions, hypotheses and predictions. Thus, enquiry along the scientific method responds to questions of the type "what if …?" In contrast, long-term observation programs follow a different strategy: we commonly take great care to minimize our influence on the environment of our measurements, with the aim to maximize their external validity. We observe what we think are key variables for ecosystem-atmosphere exchange and ask questions such as "what happens next?" or "how did this happen?" This apparent deviation from the scientific method begs the question whether any explanations we come up with for the phenomena we observe are actually contributing to testable knowledge, or whether their value remains purely anecdotal. Here, we present examples to argue that, under certain conditions, data from long-term observations and observation networks can have equivalent or even higher scientific validity than controlled experiments. Internal validity is particularly enhanced if observations are combined with modeling. Long-term observations of ecosystem-atmosphere fluxes identify trends and temporal scales of variability. Observation networks reveal spatial patterns and variations, and long-term observation networks combine both aspects. A necessary condition for such observations to gain validity beyond the anecdotal is the requirement that the data are comparable: a comparison of two measured values, separated in time or space, must inform us objectively whether (e.g.) one value is larger than the other. In turn, a necessary condition for the comparability of data is the compatibility of the sensors and procedures used to generate them. Compatibility ensures that we compare "apples to apples": that measurements conducted in identical conditions give the same values (within suitable uncertainty intervals). In principle, a useful tool to achieve comparability and compatibility is the standardization of sensors and methods. However, due to the diversity of ecosystems and settings, standardization in ecosystem-atmosphere exchange is difficult. We discuss some of the challenges and pitfalls of standardization across networks.
Mutualism supports biodiversity when the direct competition is weak
Pascual-García, Alberto; Bastolla, Ugo
2017-01-01
A key question of theoretical ecology is which properties of ecosystems favour their stability and help maintaining biodiversity. This question recently reconsidered mutualistic systems, generating intense controversy about the role of mutualistic interactions and their network architecture. Here we show analytically and verify with simulations that reducing the effective interspecific competition and the propagation of perturbations positively influences structural stability against environmental perturbations, enhancing persistence. Noteworthy, mutualism reduces the effective interspecific competition only when the direct interspecific competition is weaker than a critical value. This critical competition is in almost all cases larger in pollinator networks than in random networks with the same connectance. Highly connected mutualistic networks reduce the propagation of environmental perturbations, a mechanism reminiscent of MacArthur’s proposal that ecosystem complexity enhances stability. Our analytic framework rationalizes previous contradictory results, and it gives valuable insight on the complex relationship between mutualism and biodiversity. PMID:28232740
Dry, drier, driest: An Australian story of extreme years and potential ecosystem collapse
NASA Astrophysics Data System (ADS)
Wardle, G. M.; Dickman, C. R.; Greenville, A. C.
2016-12-01
Ecosystems are expected to undergo large changes due to an increase in the frequency and intensity of extreme events. We can expect droughts to be longer, flooding to be more intense, and heatwaves and fires to increase. Importantly, at the regional scale these projections which are based on global climate models come with additional uncertainties that challenge how we can plan and evaluate options for adaptation. For many ecosystems, the understanding of the interdependencies and function is still limited, and particularly so for areas such as inland Australia that already exhibit unpredictable rainfall and lack strong seasonality. These drylands are water-limited and operate differently in dry, or wet years, when episodic pulses of resources drive increases in productivity. Increased extremes have the potential to disrupt the function of these highly dynamic and complex systems through feedbacks, synergies and through memory or delayed responses to change. Using our long-term work in the Simpson Desert as a case study, we explore the trends in productivity, the responses of flora and fauna to these opportunities and the spatial connectedness and heterogeneities that support the persistence of the ecosystem through dry times. Theory tells us that ecosystems may shift states abruptly when they cross critical thresholds. For example, arid grasslands may no longer have the capacity to return to a productive state following good rains. This happens under desertification, where plant cover and growth is limited — with flow on consequences for the entire ecosystem. Forecasting such changes is crucial but the fundamental knowledge relies on information that spans both long time scales and large spatial scales. We examine the knowledge gaps in quantifying ecosystem collapse using our IUCN ecosystem risk assessment of the Georgina gidgee woodlands. We conclude by arguing that without long-term data on trends and integration across the biophysical and and biological components at large spatial scales we cannot hope to anticipate ecosystem collapse and take appropriate action. The Terrestrial Ecosystem Research Network is leading the way for Australia to contribute to this important global ecosystem capability.
Surface-subsurface flow modeling: an example of large-scale research at the new NEON user facility
NASA Astrophysics Data System (ADS)
Powell, H.; McKnight, D. M.
2009-12-01
Climate change is predicted to alter surface-subsurface interactions in freshwater ecosystems. These interactions are hypothesized to control nutrient release at diel and seasonal time scales, which may then exert control over epilithic algal growth rates. The mechanisms underlying shifts in complex physical-chemical-biological patterns can be elucidated by long-term observations at sites that span hydrologic and climate gradients across the continent. Development of the National Ecological Observatory Network (NEON) will provide researchers the opportunity to investigate continental-scale patterns by combining investigator-driven measurements with Observatory data. NEON is a national-scale research platform for analyzing and understanding the impacts of climate change, land-use change, and invasive species on ecology. NEON features sensor networks and experiments, linked by advanced cyberinfrastructure to record and archive ecological data for at least 30 years. NEON partitions the United States into 20 ecoclimatic domains. Each domain hosts one fully instrumented Core Aquatic site in a wildland area and one Relocatable site, which aims to capture ecologically significant gradients (e.g. landuse, nitrogen deposition, urbanization). In the current definition of NEON there are 36 Aquatic sites: 30 streams/rivers and 6 ponds/lakes. Each site includes automated, in-situ sensors for groundwater elevation and temperature; stream flow (discharge and stage); pond water elevation; atmospheric chemistry (Tair, barometric pressure, PAR, radiation); and surface water chemistry (DO, Twater, conductivity, pH, turbidity, cDOM, nutrients). Groundwater and surface water sites shall be regularly sampled for selected chemical and isotopic parameters. The hydrologic and geochemical monitoring design provides basic information on water and chemical fluxes in streams and ponds and between groundwater and surface water, which is intended to support investigator-driven modeling studies. Theoretical constructs, such as the River Continuum Concept, that aim to elucidate general mechanistic underpinnings of freshwater ecosystem function via testable hypotheses about relative rates of photosynthesis and respiration, for example, may be readily examined using data collected at hourly time scales at the NEON facility once constructed. By taking advantage of NEON data and adding PI-driven research to the Observatory, we can further our understanding of the relative roles of water flow, nutrients, temperature, and light on freshwater ecosystem function and structure.
Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.
Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue
2013-03-01
The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.
Longevity extension by phytochemicals.
Leonov, Anna; Arlia-Ciommo, Anthony; Piano, Amanda; Svistkova, Veronika; Lutchman, Vicky; Medkour, Younes; Titorenko, Vladimir I
2015-04-13
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Community Based Demonstration Projects: Willamette Ecosystem Services Project (WESP)
EPA’s Ecosystem Services Research Program in the Office of Research and Development is focused on the study of ecosystem services and the benefits to human well-being provided by ecological systems. As part of this research effort, the Willamette Ecosystems Services Project (WE...
Digital Identity Formation: Socially Being Real and Present on Digital Networks
ERIC Educational Resources Information Center
Bozkurt, Aras; Tu, Chih-Hsiung
2016-01-01
Social networks have become popular communication and interaction environments recently. As digital environments, so as ecosystems, they have potential in terms of networked learning as they fulfill some roles such as mediating an environment for digital identity formation and providing social and emotional presence. Based on this phenomenon, the…
NASA Astrophysics Data System (ADS)
Phinn, S. R.; Armston, J.; Scarth, P.; Johansen, K.; Schaefer, M.; Suarez, L.; Soto-Berelov, M.; Muir, J.; Woodgate, W.; Jones, S.; Held, A. A.
2015-12-01
Vegetation structural information is critical for environmental monitoring, management and compliance assessment. In this context we refer to vegetation structural properties as vertical, horizontal and volumetric dimensions, including: canopy height; amount and distribution of vegetation by height; foliage projective cover (FPC); leaf area index (LAI); and above ground biomass. Our aim was to determine if there were significant differences between vegetation structural properties across 11 ecosystem types in Australia as measured by terrestrial laser scanner (TLS) structure metrics. The ecosystems sampled included: mesophyll vineforest, wet-dry tropical savannah, mallee woodland, subtropical eucalypt forest, mulga woodland/grassland, wet eucalypt forest, dry eucalypt forest, tall and wet eucalypt forest, and desert grassland/shrublands. Canopy height, plant area-height profiles and LAI were calculated from consistently processed TLS data using Australia's Terrestrial Ecosystem Research Network's (TERN) Supersites by the TERN AusCover remote sensing field teams from 2012-2015. The Supersites were sampled using standardised field protocols within a core set of 1 ha plots as part of a 5 km x 5 km uniform area using a RIEGL-VZ400 waveform recording TLS. Four to seven scans were completed per plot, with one centre point and then at 25 m away from the centre point along transect lines at 0o, 60o and 240o. Individual foliage profiles were sensitive to spatial variation in the distribution of plant materials. Significant differences were visible between each of the vegetation communities assessed when aggregated to plot and ecosystem type scales. Several of the communities exhibited simple profiles with either grass and shrubs (e.g. desert grassland) or grass and trees (e.g. mallee woodland). Others had multiple vegetation forms at different heights, contributing to the profile (e.g. wet eucalypt forest). The TLS data provide significantly more detail about the relative vertical and horizontal distribution of plant materials. TLS data are providing a step change in satellite image based vegetation mapping, and refining our knowledge of vegetation structure and its phenological variability. Open access plot scale TLS measurements are available through the TERN Auscover data portal.
NASA Astrophysics Data System (ADS)
Bowden, W. B.; Parker, S.; Song, C.
2016-12-01
Stream ecologists have used various formulations of an oxygen budget approach as a surrogate to measure "whole-stream metabolism" (WSM) of carbon in rivers and streams. Improvements in sensor technologies that provide reliable, high-frequency measurements of dissolved oxygen concentrations in adverse field conditions has made it much easier to acquire the basic data needed to estimate WSM in remote locations over long periods (weeks to months). However, accurate estimates of WSM require reliable measurements or estimates of the reaeration coefficient (k). Small errors in estimates of k can lead to large errors in estimates of gross ecosystem production and ecosystem respiration and so the magnitude of the biological flux of CO2 to or from streams. This is an especially challenging problem in unproductive, oligotrophic streams. Unfortunately, current methods to measure reaeration directly (gas evasion) are expensive, labor-intensive, and time-consuming. As a consequence, there is a substantial mismatch between the time steps at which we can measure reaeration versus most of the other variables required to calculate WSM. As a part of the NSF Arctic Long-Term Ecological Research Project we have refined methods to measure WSM in Arctic streams and found a good relationship between measured k values and those calculated by the Energy Dissipation Model (EDM). Other researchers have also noted that this equation works well for both low- and high-order streams. The EDM is dependent on stream slope (relatively constant) and velocity (which is related to discharge or stage). These variables are easy to measure and can be used to estimate k a high frequency (minutes) over large areas (river networks). As a key part of the NSF MacroSystems Biology SCALER project we calculated WSM for multiple reaches in nested stream networks in six biomes across the United States and Australia. We calculated k by EDM and fitted k via a Bayesian model for WSM. The relationships between measured k and calculated (EDM) k (standardized to 20°C) were variable but useful. The relationships between calculated (EDM) k and inferred (Bayesian) k were inconsistent, suggesting that there are additional factors we need to understand to better refine estimates of whole-stream metabolic C exchange over river networks and among regions.
Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.
2009-01-01
Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape.
NASA Astrophysics Data System (ADS)
Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André
2009-04-01
SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.
Designing Industrial Networks Using Ecological Food Web Metrics.
Layton, Astrid; Bras, Bert; Weissburg, Marc
2016-10-18
Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.
Coral reefs are highly valued ecosystems that are currently imperiled. Although the value of coral reefs to human societies is only just being investigated and better understood, for many local and global economies coral reefs are important providers of ecosystem services that su...
Designing Informal Learning Experiences for Early Career Academics Using a Knowledge Ecosystem Model
ERIC Educational Resources Information Center
Miller, Faye; Partridge, Helen; Bruce, Christine; Hemmings, Brian
2017-01-01
This article presents a "knowledge ecosystem" model of how early career academics experience using information to learn while building their social networks for developmental purposes. Developed using grounded theory methodology, the model offers a way of conceptualising how to empower early career academics through (1) agency…
Making inferences on risks to ecosystem services (ES) from ecological crises may be improved using decision science tools. Influence diagrams (IDs) are probabilistic networks that explicitly represent the decisions related to a problem and evidence of their influence on desired o...
Laursen, Scott; Puniwai, Noelani; Genz, Ayesha S; Nash, Sarah A B; Canale, Lisa K; Ziegler-Chong, Sharon
2018-05-30
Complex socio-ecological issues, such as climate change have historically been addressed through technical problem solving methods. Yet today, climate science approaches are increasingly accounting for the roles of diverse social perceptions, experiences, cultural norms, and worldviews. In support of this shift, we developed a research program on Hawai'i Island that utilizes knowledge coproduction to integrate the diverse worldviews of natural and cultural resource managers, policy professionals, and researchers within actionable science products. Through their work, local field managers regularly experience discrete land and waterscapes. Additionally, in highly interconnected rural communities, such as Hawai'i Island, managers often participate in the social norms and values of communities that utilize these ecosystems. Such local manager networks offer powerful frameworks within which to co-develop and implement actionable science. We interviewed a diverse set of local managers with the aim of incorporating their perspectives into the development of a collaborative climate change research agenda that builds upon existing professional networks utilized by managers and scientists while developing new research products. We report our manager needs assessment, the development process of our climate change program, our interactive forums, and our ongoing research products. Our needs assessment showed that the managers' primary source of information were other professional colleagues, and our in-person forums informed us that local managers are very interested in interacting with a wider range of networks to build upon their management capacities. Our initial programmatic progress suggests that co-created research products and in-person forums strengthen the capacities of local managers to adapt to change.
Landuyt, Dries; Lemmens, Pieter; D'hondt, Rob; Broekx, Steven; Liekens, Inge; De Bie, Tom; Declerck, Steven A J; De Meester, Luc; Goethals, Peter L M
2014-12-01
Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pre-Launch Tasks Proposed in our Contract of December 1991
NASA Technical Reports Server (NTRS)
1998-01-01
We propose, during the pre-EOS phase to: (1) develop, with other MODIS Team Members, a means of discriminating different major biome types with NDVI and other AVHRR-based data; (2) develop a simple ecosystem process model for each of these biomes, BIOME-BGC; (3) relate the seasonal trend of weekly composite NDVI to vegetation phenology and temperature limits to develop a satellite defined growing season for vegetation; and (4) define physiologically based energy to mass conversion factors for carbon and water for each biome. Our final core at-launch product will be simplified, completely satellite driven biome specific models for net primary production. We will build these biome specific satellite driven algorithms using a family of simple ecosystem process models as calibration models, collectively called BIOME-BGC, and establish coordination with an existing network of ecological study sites in order to test and validate these products. Field datasets will then be available for both BIOME-BGC development and testing, use for algorithm developments of other MODIS Team Members, and ultimately be our first test point for MODIS land vegetation products upon launch. We will use field sites from the National Science Foundation Long-Term Ecological Research network, and develop Glacier National Park as a major site for intensive validation.
Pre-Launch Tasks Proposed in our Contract of December 1991
NASA Technical Reports Server (NTRS)
Running, Steven W.; Nemani, Ramakrishna R.; Glassy, Joseph
1997-01-01
We propose, during the pre-EOS phase to: (1) develop, with other MODIS Team Members, a means of discriminating different major biome types with NDVI and other AVHRR-based data. (2) develop a simple ecosystem process model for each of these biomes, BIOME-BGC (3) relate the seasonal trend of weekly composite NDVI to vegetation phenology and temperature limits to develop a satellite defined growing season for vegetation; and (4) define physiologically based energy to mass conversion factors for carbon and water for each biome. Our final core at-launch product will be simplified, completely satellite driven biome specific models for net primary production. We will build these biome specific satellite driven algorithms using a family of simple ecosystem process models as calibration models, collectively called BIOME-BGC, and establish coordination with an existing network of ecological study sites in order to test and validate these products. Field datasets will then be available for both BIOME-BGC development and testing, use for algorithm developments of other MODIS Team Members, and ultimately be our first test point for MODIS land vegetation products upon launch. We will use field sites from the National Science Foundation Long-Term Ecological Research network, and develop Glacier National Park as a major site for intensive validation.
NASA Astrophysics Data System (ADS)
Brock, J. T.; Utz, R.; McLaughlin, B.
2013-12-01
The STReam Experimental Observatory Network is a large-scale experimental effort that will investigate the effects of eutrophication and loss of large consumers in stream ecosystems. STREON represents the first experimental effort undertaken and supported by the National Ecological Observatory Network (NEON).Two treatments will be applied at 10 NEON sites and maintained for 10 years in the STREON program: the addition of nitrate and phosphate to enrich concentrations by five times ambient levels and electrical fields that exclude top consumers (i.e., fish or invertebrates) of the food web from the surface of buried sediment baskets. Following a 3-5 week period, the sediment baskets will be extracted and incubated in closed, recirculating metabolic chambers to measure rates of respiration, photosynthesis, and nutrient uptake. All STREON-generated data will be open access and available on the NEON web portal. The recirculation chamber represents a critical infrastructural component of STREON. Although researchers have applied such chambers for metabolic and nutrient uptake measurements in the past, the scope of STREON demands a novel design that addresses multiple processes often neglected by earlier models. The STREON recirculation chamber must be capable of: 1) incorporating hyporheic exchange into the flow field to ensure measurements of respiration include the activity of subsurface biota, 2) operating consistently with heterogeneous sediments from sand to cobble, 3) minimizing heat exchange from the motor and external environment, 4) delivering a reproducible uniform flow field over the surface of the sediment basket, and 5) efficient assembly/disassembly with minimal use of tools. The chamber also required a means of accommodating an optical dissolved oxygen probe and a means to inject/extract water. A prototype STREON chamber has been designed and thoroughly tested. The flow field within the chamber has been mapped using particle imaging velocimetry (PIV) under various velocity settings. The extent of exchange with the sediment was assessed by means of a saline tracer injection and adjustment using flow-regulating components was explored. Performance under a broad range of temperatures (1 to 30 °C) was assessed. Finally, a novel heat-exchange mechanism meant to minimize warming during operations was evaluated. All prototype assessments demonstrate the applicability of the STREON chamber under a broad range of conditions. Though the STREON recirculation chamber has been designed to satisfy the specific needs of the STREON program, the open-access nature of the NEON network should facilitate scope expansion in the coming decades. The STREON recirculation chamber design and all prototype testing data will be accessible to facilitate chamber use elsewhere. The large number of chamber assemblies required for STREON operations should facilitate the acquisition of units by researchers working outside of the NEON network. Furthermore, the current scope of STREON includes the use of the chambers only once annually, thus a valuable tool for stream ecosystem measurements will be readily available at STREON sites for potential use by researchers interested in such measurements.
Southwest Ecosystem Services Project (SwESP): Identifying Ecosystems Services Based on Tribal Values
USEPA Office of Research Development (ORD) new strategic focus is the measurement of benefits and services of ecosystem. The primary objective of the Ecosystem Services Research Program (ESRP) is to identify, measure, monitor, model and map ecosystem services and to enable their ...
The National Atlas of Ecosystem Services: Spatially Explicit Characterization of Ecosystem Services
The US EPA’s Ecosystem Services Research Program (ESRP) is conducting transdisciplinary research to develop tools to enable decision-makers at all levels of governance to proactively conserve ecosystem services. One of these tools is a National Atlas of Ecosystem Services which ...
Architecture of marine food webs: To be or not be a 'small-world'.
Marina, Tomás Ignacio; Saravia, Leonardo A; Cordone, Georgina; Salinas, Vanesa; Doyle, Santiago R; Momo, Fernando R
2018-01-01
The search for general properties in network structure has been a central issue for food web studies in recent years. One such property is the small-world topology that combines a high clustering and a small distance between nodes of the network. This property may increase food web resilience but make them more sensitive to the extinction of connected species. Food web theory has been developed principally from freshwater and terrestrial ecosystems, largely omitting marine habitats. If theory needs to be modified to accommodate observations from marine ecosystems, based on major differences in several topological characteristics is still on debate. Here we investigated if the small-world topology is a common structural pattern in marine food webs. We developed a novel, simple and statistically rigorous method to examine the largest set of complex marine food webs to date. More than half of the analyzed marine networks exhibited a similar or lower characteristic path length than the random expectation, whereas 39% of the webs presented a significantly higher clustering than its random counterpart. Our method proved that 5 out of 28 networks fulfilled both features of the small-world topology: short path length and high clustering. This work represents the first rigorous analysis of the small-world topology and its associated features in high-quality marine networks. We conclude that such topology is a structural pattern that is not maximized in marine food webs; thus it is probably not an effective model to study robustness, stability and feasibility of marine ecosystems.
NASA Astrophysics Data System (ADS)
Muller-Karger, F. E.; Iken, K.; Miller, R. J.; Duffy, J. E.; Chavez, F.; Montes, E.
2016-02-01
The U.S. Federal government (NOAA, NASA, BOEM, and the Smithsonian Institution), academic researchers, and private partners are laying the foundation for a Marine Biodiversity Observation Network (MBON). The goals of the network are to: 1) Observe and understand life, from microbes to whales, in different coastal and continental shelf habitats; 2) Define an efficient set of observations required for implementing a useful MBON; 3) Develop technology for biodiversity assessments including emerging environmental DNA (eDNA), remote sensing, and image analysis methods to coordinate with classical sampling; 4) Integrate and synthesize information in coordination with the Integrated Ocean Observing System (IOOS), the international Group on Earth Observations Biodiversity Observation Network(GEO BON), and the Ocean Biogeographic Information System (OBIS) sponsored by UNESCO's Intergovernmental Oceanographic Commission (IOC); and 5) Understand the linkages between marine biodiversity, ecosystem processes, and the social-economic context of a region. Pilot projects have been implemented within three NOAA National Marine Sanctuaries (Florida Keys, Monterey Bay, and Channel Islands), the wider Santa Barbara Channel, in the Chukchi Sea, and through the Smithsonian's Tennenbaum Marine Observatories Network (TMON) at several sites in the U.S. and collaborating countries. Together, these MBON sites encompass a wide range of marine environments, including deep sea, continental shelves, and coastal habitats including estuaries, wetlands, and coral reefs. The present MBON partners are open to growth of the MBON through additional collaborations. Given these initiatives, GEO BON is proposing an MBON effort that spans from pole to pole, with a pathfinder effort among countries in the Americas. By specializing in coastal ecosystems—where marine biodiversity and people are concentrated and interact most—the MBON and TMON initiatives aim to provide policymakers with the science to support innovative solutions and advance management and protection of our oceans. The initiative contributes to addressing U.N. Sustainable Development Goal 14 to conserve and sustainably use marine resources. The MBON will facilitate and enable regional biodiversity assessments.
Modeling Nitrogen Processing in Northeast US River Networks
NASA Astrophysics Data System (ADS)
Whittinghill, K. A.; Stewart, R.; Mineau, M.; Wollheim, W. M.; Lammers, R. B.
2013-12-01
Due to increased nitrogen (N) pollution from anthropogenic sources, the need for aquatic ecosystem services such as N removal has also increased. River networks provide a buffering mechanism that retains or removes anthropogenic N inputs. However, the effectiveness of N removal in rivers may decline with increased loading and, consequently, excess N is eventually delivered to estuaries. We used a spatially distributed river network N removal model developed within the Framework for Aquatic Modeling in the Earth System (FrAMES) to examine the geography of N removal capacity of Northeast river systems under various land use and climate conditions. FrAMES accounts for accumulation and routing of runoff, water temperatures, and serial biogeochemical processing using reactivity derived from the Lotic Intersite Nitrogen Experiment (LINX2). Nonpoint N loading is driven by empirical relationships with land cover developed from previous research in Northeast watersheds. Point source N loading from wastewater treatment plants is estimated as a function of the population served and the volume of water discharged. We tested model results using historical USGS discharge data and N data from historical grab samples and recently initiated continuous measurements from in-situ aquatic sensors. Model results for major Northeast watersheds illustrate hot spots of ecosystem service activity (i.e. N removal) using high-resolution maps and basin profiles. As expected, N loading increases with increasing suburban or agricultural land use area. Network scale N removal is highest during summer and autumn when discharge is low and river temperatures are high. N removal as the % of N loading increases with catchment size and decreases with increasing N loading, suburban land use, or agricultural land use. Catchments experiencing the highest network scale N removal generally have N inputs (both point and non-point sources) located in lower order streams. Model results can be used to better predict nutrient loading to the coastal ocean across a broad range of current and future climate variability.
The big data-big model (BDBM) challenges in ecological research
NASA Astrophysics Data System (ADS)
Luo, Y.
2015-12-01
The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple, heterogeneous data sets; intractability of structural complexity of big models; equifinality of model structure selection and parameter estimation; and computational demand of global optimization with Big Models.
The Bitterroot Ecosystem Management Research Project: What we have learned
Helen Y. Smith
2000-01-01
The varied topics presented in these symposium proceedings represent the diverse nature of the Bitterroot Ecosystem Management Research Project (BEMRP). Separated into six sections, the papers cover the different themes researched by BEMRP collaborators as well as brief overviews of five other ecosystem management projects. The sections are: Understanding the Ecosystem...
NASA Astrophysics Data System (ADS)
McKnight, D. M.; Lyons, W. B.; Fountain, A. G.; Gooseff, M. N.; Doran, P. T.; Wall, D. H.; Virginia, R. A.; Priscu, J. C.; Adams, B.; Vesbach-Takacs, C.; Barrett, J. E.; Howkins, A.
2014-12-01
The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and permanently ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. These valleys were first explored by Robert Scott and his party in 1903. In 1968 the New Zealand Antarctic Program began a gauging network on the Onyx River, a 32 km river in Wright Valley which is the longest river in Antarctica. As part of the McMurdo Dry Valleys Long-Term Ecological research project our research group has monitored meteorological conditions, glacial mass balance, lake level and streamflow in the adjacent Taylor Valley. The extent of liquid water throughout the landscape is strongly controlled by summer climate, and the availability of liquid water in turn is a limitation to the microscopic life that is present in the diverse habitats in the valleys. We have studied the responses of soil, lake, stream and cryoconite ecosystems through a sustained cooling period that has been driven by atmospheric changes associated with the ozone hole. In the past decade, this cooling period appears to have ceased and summer conditions have become more variable. Three warm sunny summers have occurred since 2001/02. These conditions have created weeks long "flood events" in the valleys, causing wet areas to emerge in the soils, thermokarsting in some stream channels and increases in lake level. These flood events can be considered as pulse events that drive an increase in ecosystem connectivity, changing rates of biogeochemical processes and the distribution of biota. Collectively the ecosystems of the McMurdo Dry Valleys are highly responsive to dynamic climatic influences associated with the ozone hole and global warming.
Özdemir, Vural; Springer, Simon
2018-03-01
Diversity is increasingly at stake in early 21st century. Diversity is often conceptualized across ethnicity, gender, socioeconomic status, sexual preference, and professional credentials, among other categories of difference. These are important and relevant considerations and yet, they are incomplete. Diversity also rests in the way we frame questions long before answers are sought. Such diversity in the framing (epistemology) of scientific and societal questions is important for they influence the types of data, results, and impacts produced by research. Errors in the framing of a research question, whether in technical science or social science, are known as type III errors, as opposed to the better known type I (false positives) and type II errors (false negatives). Kimball defined "error of the third kind" as giving the right answer to the wrong problem. Raiffa described the type III error as correctly solving the wrong problem. Type III errors are upstream or design flaws, often driven by unchecked human values and power, and can adversely impact an entire innovation ecosystem, waste money, time, careers, and precious resources by focusing on the wrong or incorrectly framed question and hypothesis. Decades may pass while technology experts, scientists, social scientists, funding agencies and management consultants continue to tackle questions that suffer from type III errors. We propose a new diversity metric, the Frame Diversity Index (FDI), based on the hitherto neglected diversities in knowledge framing. The FDI would be positively correlated with epistemological diversity and technological democracy, and inversely correlated with prevalence of type III errors in innovation ecosystems, consortia, and knowledge networks. We suggest that the FDI can usefully measure (and prevent) type III error risks in innovation ecosystems, and help broaden the concepts and practices of diversity and inclusion in science, technology, innovation and society.
Barlow, Jos; Ewers, Robert M; Anderson, Liana; Aragao, Luiz E O C; Baker, Tim R; Boyd, Emily; Feldpausch, Ted R; Gloor, Emanuel; Hall, Anthony; Malhi, Yadvinder; Milliken, William; Mulligan, Mark; Parry, Luke; Pennington, Toby; Peres, Carlos A; Phillips, Oliver L; Roman-Cuesta, Rosa Maria; Tobias, Joseph A; Gardner, Toby A
2011-05-01
Developing high-quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini-reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth-atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub-disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large-scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
Matyssek, R; Kozovits, A R; Wieser, G; King, J; Rennenberg, H
2017-06-01
Forests store the largest terrestrial pools of carbon (C), helping to stabilize the global climate system, yet are threatened by climate change (CC) and associated air pollution (AP, highlighting ozone (O3) and nitrogen oxides (NOx)). We adopt the perspective that CC-AP drivers and physiological impacts are universal, resulting in consistent stress responses of forest ecosystems across zonobiomes. Evidence supporting this viewpoint is presented from the literature on ecosystem gross/net primary productivity and water cycling. Responses to CC-AP are compared across evergreen/deciduous foliage types, discussing implications of nutrition and resource turnover at tree and ecosystem scales. The availability of data is extremely uneven across zonobiomes, yet unifying patterns of ecosystem response are discernable. Ecosystem warming results in trade-offs between respiration and biomass production, affecting high elevation forests more than in the lowland tropics and low-elevation temperate zone. Resilience to drought is modulated by tree size and species richness. Elevated O3 tends to counteract stimulation by elevated carbon dioxide (CO2). Biotic stress and genomic structure ultimately determine ecosystem responsiveness. Aggrading early- rather than mature late-successional communities respond to CO2 enhancement, whereas O3 affects North American and Eurasian tree species consistently under free-air fumigation. Insect herbivory is exacerbated by CC-AP in biome-specific ways. Rhizosphere responses reflect similar stand-level nutritional dynamics across zonobiomes, but are modulated by differences in tree-soil nutrient cycling between deciduous and evergreen systems, and natural versus anthropogenic nitrogen (N) oversupply. The hypothesis of consistency of forest responses to interacting CC-AP is supported by currently available data, establishing the precedent for a global network of long-term coordinated research sites across zonobiomes to simultaneously advance both bottom-up (e.g., mechanistic) and top-down (systems-level) understanding. This global, synthetic approach is needed because high biological plasticity and physiographic variation across individual ecosystems currently limit development of predictive models of forest responses to CC-AP. Integrated research on C and nutrient cycling, O3-vegetation interactions and water relations must target mechanisms' ecosystem responsiveness. Worldwide case studies must be subject to biostatistical exploration to elucidate overarching response patterns and synthesize the resulting empirical data through advanced modelling, in order to provide regionally coherent, yet globally integrated information in support of internationally coordinated decision-making and policy development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sorani, Marco D
2012-01-01
Information technology (IT) adoption enables biomedical research. Publications are an accepted measure of research output, and network models can describe the collaborative nature of publication. In particular, ecological networks can serve as analogies for publication and technology adoption. We constructed network models of adoption of bioinformatics programming languages and health IT (HIT) from the literature.We selected seven programming languages and four types of HIT. We performed PubMed searches to identify publications since 2001. We calculated summary statistics and analyzed spatiotemporal relationships. Then, we assessed ecological models of specialization, cooperativity, competition, evolution, biodiversity, and stability associated with publications.Adoption of HIT has been variable, while scripting languages have experienced rapid adoption. Hospital systems had the largest HIT research corpus, while Perl had the largest language corpus. Scripting languages represented the largest connected network components. The relationship between edges and nodes was linear, though Bioconductor had more edges than expected and Perl had fewer. Spatiotemporal relationships were weak. Most languages shared a bioinformatics specialization and appeared mutualistic or competitive. HIT specializations varied. Specialization was highest for Bioconductor and radiology systems. Specialization and cooperativity were positively correlated among languages but negatively correlated among HIT. Rates of language evolution were similar. Biodiversity among languages grew in the first half of the decade and stabilized, while diversity among HIT was variable but flat. Compared with publications in 2001, correlation with publications one year later was positive while correlation after ten years was weak and negative.Adoption of new technologies can be unpredictable. Spatiotemporal relationships facilitate adoption but are not sufficient. As with ecosystems, dense, mutualistic, specialized co-habitation is associated with faster growth. There are rapidly changing trends in external technological and macroeconomic influences. We propose that a better understanding of how technologies are adopted can facilitate their development.
The evolution of ecosystem ascendency in a complex systems based model.
Brinck, Katharina; Jensen, Henrik Jeldtoft
2017-09-07
General patterns in ecosystem development can shed light on driving forces behind ecosystem formation and recovery and have been of long interest. In recent years, the need for integrative and process oriented approaches to capture ecosystem growth, development and organisation, as well as the scope of information theory as a descriptive tool has been addressed from various sides. However data collection of ecological network flows is difficult and tedious and comprehensive models are lacking. We use a hierarchical version of the Tangled Nature Model of evolutionary ecology to study the relationship between structure, flow and organisation in model ecosystems, their development over evolutionary time scales and their relation to ecosystem stability. Our findings support the validity of ecosystem ascendency as a meaningful measure of ecosystem organisation, which increases over evolutionary time scales and significantly drops during periods of disturbance. The results suggest a general trend towards both higher integrity and increased stability driven by functional and structural ecosystem coadaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields
ERIC Educational Resources Information Center
Thun, Tim Von
2013-01-01
Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…
GRL-FLUXNET: A network of eddy covariance systems in the southern great plains
USDA-ARS?s Scientific Manuscript database
Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water budgets to develop, evaluate, and enhance hydrologic and crop simulation models and to better understand the potential of terrestrial ecosystems to mi...
A Hybrid Approach for Estimating Total Deposition in the ...
Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Networ
Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir Estuary (Spain)
Navarro, Gabriel; Huertas, Isabel Emma; Costas, Eduardo; Flecha, Susana; Díez-Minguito, Manuel; Caballero, Isabel; López-Rodas, Victoria; Prieto, Laura; Ruiz, Javier
2012-01-01
The temporal variability of hydrological variables in the Guadalquivir estuary was examined during three years through a real-time remote monitoring network (RTRM). The network was developed with the aim of studying the influence of hydrodynamical and hydrological features within the estuary on the functioning of the pelagic ecosystem. Completing this data-gathering network, monthly cruises were performed in order to measure biogeochemical variables that are indicative of the trophic status of the aquatic environment. The results showed that several sources of physical forcing, such as wind, tide-associated currents and river discharge were responsible for the spatio-temporal patterns of dissolved oxygen, salinity and turbidity in the estuary. The analysis was conducted under tidal and flood regime, which allowed us to identify river discharge as the main forcing agent of the hydrology inside the estuary. In particular, episodes of elevated turbidity detected by the network, together with episodes of low salinity and dissolved oxygen were closely related to the increase in water supply from a dam located upstream. The network installed provided accurate data that can be rapidly used for research or educational applications and by policy-makers or agencies in charge of the management of the coastal area. PMID:22438716
A Novel Hybrid Approach for Estimating Total Deposition in ...
Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Networ
NASA Astrophysics Data System (ADS)
Xu, Baodong; Li, Jing; Liu, Qinhuo; Zeng, Yelu; Yin, Gaofei
2014-11-01
Leaf Area Index (LAI) is known as a key vegetation biophysical variable. To effectively use remote sensing LAI products in various disciplines, it is critical to understand the accuracy of them. The common method for the validation of LAI products is firstly establish the empirical relationship between the field data and high-resolution imagery, to derive LAI maps, then aggregate high-resolution LAI maps to match moderate-resolution LAI products. This method is just suited for the small region, and its frequencies of measurement are limited. Therefore, the continuous observing LAI datasets from ground station network are important for the validation of multi-temporal LAI products. However, due to the scale mismatch between the point observation in the ground station and the pixel observation, the direct comparison will bring the scale error. Thus it is needed to evaluate the representativeness of ground station measurement within pixel scale of products for the reasonable validation. In this paper, a case study with Chinese Ecosystem Research Network (CERN) in situ data was taken to introduce a methodology to estimate representativeness of LAI station observation for validating LAI products. We first analyzed the indicators to evaluate the observation representativeness, and then graded the station measurement data. Finally, the LAI measurement data which can represent the pixel scale was used to validate the MODIS, GLASS and GEOV1 LAI products. The result shows that the best agreement is reached between the GLASS and GEOV1, while the lowest uncertainty is achieved by GEOV1 followed by GLASS and MODIS. We conclude that the ground station measurement data can validate multi-temporal LAI products objectively based on the evaluation indicators of station observation representativeness, which can also improve the reliability for the validation of remote sensing products.
NASA Astrophysics Data System (ADS)
Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.
2015-07-01
Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE Project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. To successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are: 1. Data acquisition and control system - set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components. 2. Data collection system - set of hardware and software to deliver data to a central depository for storage and further processing. 3. Data management plan - set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in-situ observations in a remote, harsh environmental location. The approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.
NASA Astrophysics Data System (ADS)
Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.
2015-11-01
Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. To successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following: 1. data acquisition and control system - set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system - set of hardware and software to deliver data to a central depository for storage and further processing; 3. data management plan - set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in situ observations in a remote, harsh environmental location. The approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.
Zhang, Yingying; Wang, Juncheng; Vorontsov, A M; Hou, Guangli; Nikanorova, M N; Wang, Hongliang
2014-01-01
The international marine ecological safety monitoring demonstration station in the Yellow Sea was developed as a collaborative project between China and Russia. It is a nonprofit technical workstation designed as a facility for marine scientific research for public welfare. By undertaking long-term monitoring of the marine environment and automatic data collection, this station will provide valuable information for marine ecological protection and disaster prevention and reduction. The results of some initial research by scientists at the research station into predictive modeling of marine ecological environments and early warning are described in this paper. Marine ecological processes are influenced by many factors including hydrological and meteorological conditions, biological factors, and human activities. Consequently, it is very difficult to incorporate all these influences and their interactions in a deterministic or analysis model. A prediction model integrating a time series prediction approach with neural network nonlinear modeling is proposed for marine ecological parameters. The model explores the natural fluctuations in marine ecological parameters by learning from the latest observed data automatically, and then predicting future values of the parameter. The model is updated in a "rolling" fashion with new observed data from the monitoring station. Prediction experiments results showed that the neural network prediction model based on time series data is effective for marine ecological prediction and can be used for the development of early warning systems.
Long-term monitoring of change in Tropical grasslands- GLORIA network in the Andes
NASA Astrophysics Data System (ADS)
Cuesta, F. X.; Muriel, P.; Halloy, S.; Beck, S.; Meneses, R. I.; Irazabal, J.; Aguirre, N.; Viñas, P.; Suarez, D.; Becerra, M. T.; Gloria-Andes Network
2013-05-01
It has been shown that predicted warming and increased frequency of extreme weather events increase with altitude in the Andean mountains. Combined with enormous topographic (and hence precipitation) heterogeneity, poverty and intensive land use, creates in the region a situation of high vulnerability to global change. Since 2005 the network Global Research Initiative in Alpine Environment (GLORIA) sites have been progressively installed in Andean countries to monitor changes, document the type and magnitude of impacts and provide guidance to develop adaptation strategies for biodiversity, humans, and productive systems. We report the preliminary results from 10 of those sites, in addition to new sites planned in South America. These sites provide baseline data and identify processes and patterns in plant biodiversity across different geographic contexts. These preliminary results show the tremendous singularity of the vegetation and flora patterns in the study sites, suggesting high sensitivity of these ecosystems to climate anomalies. It is expected that the consolidation of this network will support and strengthen long-term observation and monitoring research programs to enable the documentation and understanding of climate change impacts on the Andean biota. Our research considers complementary modules of investigation (e.g. carbon stocks and fluxes, plant responses to experimental manipulation) that contextualize the challenges and opportunities of adaptation for biodiversity and socio-economic components, providing measures of trends as well as effectiveness of adaptive management strategies.
Biology-inspired Architecture for Situation Management
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2006-01-01
Situation Management is a rapidly developing science combining new techniques for data collection with advanced methods of data fusion to facilitate the process leading to correct decisions prescribing action. Current research focuses on reducing increasing amounts of diverse data to knowledge used by decision makers and on reducing time between observations, decisions and actions. No new technology is more promising for increasing the diversity and fidelity of observations than sensor networks. However, current research on sensor networks concentrates on a centralized network architecture. We believe this trend will not realize the full potential of situation management. We propose a new architecture modeled after biological ecosystems where motes are autonomous and intelligent, yet cooperate with local neighborhoods. Providing a layered approach, they sense and act independently when possible, and cooperate with neighborhoods when necessary. The combination of their local actions results in global effects. While situation management research is currently dominated by military applications, advances envisioned for industrial and business applications have similar requirements. NASA has requirements for intelligent and autonomous systems in future missions that can benefit from advances in situation management. We describe requirements for the Integrated Vehicle Health Management program where our biology-inspired architecture provides a layered approach and decisions can be made at the proper level to improve safety, reduce costs, and improve efficiency in making diagnostic and prognostic assessments of the structural integrity, aerodynamic characteristics, and operation of aircraft.
NASA Astrophysics Data System (ADS)
Keenan, T. F.
2017-12-01
Global terrestrial ecosystems absorb about a third of anthropogenic emissions each year, due to the difference between two key processes: photosynthesis and respiration. Despite the importance of these two processes at the global scale, no direct measurement exists of either. Eddy-covariance (EC) measurements have been widely used as the closest `quasi-direct' observation, and the resulting estimates have been used to produce global budgets of photosynthesis and respiration. Recent research, however, suggests that current estimates may be biased by up to 25%, as the methods used to partition observed net carbon fluxes to photosynthesis and respiration do not take into account any inhibition of leaf respiration in light. Yet the prevalence of light-inhibition of leaf respiration remains debated, and impacts on global estimates of photosynthesis and respiration unquantified. Here, we use novel approaches to estimate the extent of light-inhibition across the global FLUXNET EC network, and find strong evidence for an inhibition effect on ecosystem respiration, which varies by season and plant functional type. We develop partitioning methods that allow for inhibition, and find that that diurnal patterns of ecosystem respiration might be markedly different than previously thought. The results call for the reevaluation of global terrestrial carbon cycle models, and also suggest that current global budgets of photosynthesis and respiration may be biased on the order of magnitude of anthropogenic fossil fuel emissions.
Synchronous environmental and cultural change in the prehistory of the northeastern United States.
Munoz, Samuel E; Gajewski, Konrad; Peros, Matthew C
2010-12-21
Climatic changes during the late Quaternary have resulted in substantial, often abrupt, rearrangements of terrestrial ecosystems, but the relationship between these environmental changes and prehistoric human culture and population size remains unclear. Using a database of archaeological radiocarbon dates alongside a network of paleoecological records (sedimentary pollen and charcoal) and paleoclimatic reconstructions, we show that periods of cultural and demographic change in the northeastern United States occurred at the same times as the major environmental-climatic transitions of that region. At 11.6, 8.2, 5.4, and 3.0 kyr BP (10(3) calendar years before present), changes in forest composition altered the distribution, availability, and predictability of food resources which triggered technological adjustments manifested in the archaeological record. Human population level has varied in response to these external changes in ecosystems, but the adoption of maize agriculture during the late Holocene also resulted in a substantial population increase. This study demonstrates the long-term interconnectedness of prehistoric human cultures and the ecosystems they inhabited, and provides a consolidated environmental-cultural framework from which more interdisciplinary research and discussion can develop. Moreover, it emphasizes the complex nature of human responses to environmental change in a temperate region.
NASA Astrophysics Data System (ADS)
Okalebo, J. A.; Das Choudhury, S.; Awada, T.; Suyker, A.; LeBauer, D.; Newcomb, M.; Ward, R.
2017-12-01
The Long-term Agroecosystem Research (LTAR) network is a USDA-ARS effort that focuses on conducting research that addresses current and emerging issues in agriculture related to sustainability and profitability of agroecosystems in the face of climate change and population growth. There are 18 sites across the USA covering key agricultural production regions. In Nebraska, a partnership between the University of Nebraska - Lincoln and ARD/USDA resulted in the establishment of the Platte River - High Plains Aquifer LTAR site in 2014. The site conducts research to sustain multiple ecosystem services focusing specifically on Nebraska's main agronomic production agroecosystems that comprise of abundant corn, soybeans, managed grasslands and beef production. As part of the national LTAR network, PR-HPA participates and contributes near-surface remotely sensed imagery of corn, soybean and grassland canopy phenology to the PhenoCam Network through high-resolution digital cameras. This poster highlights the application, advantages and usefulness of near-surface remotely sensed imagery in agroecosystem studies and management. It demonstrates how both Infrared and Red-Green-Blue imagery may be applied to monitor phenological events as well as crop abiotic stresses. Computer-based algorithms and analytic techniques proved very instrumental in revealing crop phenological changes such as green-up and tasseling in corn. This poster also reports the suitability and applicability of corn-derived computer based algorithms for evaluating phenological development of sorghum since both crops have similarities in their phenology; with sorghum panicles being similar to corn tassels. This later assessment was carried out using a sorghum dataset obtained from the Transportation Energy Resources from Renewable Agriculture Phenotyping Reference Platform project, Maricopa Agricultural Center, Arizona.
NASA Astrophysics Data System (ADS)
Tenhunen, J. D.; Kang, S.
2011-12-01
The Millenium Assessment has provided a broad perspective on the ways and degree to which global change has stressed ecosystems and their potential to deliver goods and services to mankind. Management of natural resources at regional scale requires a clear understanding of the ways that ongoing human activities modify or create new system stressors, leading to net gains or losses in ecosystem services. Ever since information from the International Biological Program (IBP) was summarized in the 1960s, we know that ecosystem stress response, recovery and resilience are related to changes in ecosystem turnover of materials, nutrient retention or loss, resource use efficiencies, and additional ecosystem properties that determine fluxes of carbon, water and nutrients. At landscape or regional scale, changes in system drivers influence land-surface to atmosphere gas exchange (water, carbon and trace gas emissions), the seasonal course of soil resource stores, hydrology, and transport of nutrients and carbon into and through river systems. In today's terminology, shifts in these fluxes indicate a modification of potential ecosystem services provided to us by the landscape or region of interest, and upon which we depend. Ongoing modeling efforts of the TERRECO project carried out in S. Korea focus on describing landscape and regional level flow networks for carbon, water, and nutrients, but in addition monetary flows associated with gains and losses in ecosystem services (cf. Fig. 1). The description is embedded within a framework which examines the trade-offs between agricultural intensification versus yield of high quality water to reservoirs for drinking water supply. The models also quantify hypothetical changes in flow networks that would occur in the context of climate, land use and social change scenarios.
Stormwater management and ecosystem services: a review
NASA Astrophysics Data System (ADS)
Prudencio, Liana; Null, Sarah E.
2018-03-01
Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to measure ecosystem services from green stormwater infrastructure, and better incorporate stormwater management into environmental policy. Our conclusions outline promising future research directions at the intersection of stormwater management and ecosystem services.
NASA Astrophysics Data System (ADS)
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.
Designing marine reserve networks for both conservation and fisheries management.
Gaines, Steven D; White, Crow; Carr, Mark H; Palumbi, Stephen R
2010-10-26
Marine protected areas (MPAs) that exclude fishing have been shown repeatedly to enhance the abundance, size, and diversity of species. These benefits, however, mean little to most marine species, because individual protected areas typically are small. To meet the larger-scale conservation challenges facing ocean ecosystems, several nations are expanding the benefits of individual protected areas by building networks of protected areas. Doing so successfully requires a detailed understanding of the ecological and physical characteristics of ocean ecosystems and the responses of humans to spatial closures. There has been enormous scientific interest in these topics, and frameworks for the design of MPA networks for meeting conservation and fishery management goals are emerging. Persistent in the literature is the perception of an inherent tradeoff between achieving conservation and fishery goals. Through a synthetic analysis across these conservation and bioeconomic studies, we construct guidelines for MPA network design that reduce or eliminate this tradeoff. We present size, spacing, location, and configuration guidelines for designing networks that simultaneously can enhance biological conservation and reduce fishery costs or even increase fishery yields and profits. Indeed, in some settings, a well-designed MPA network is critical to the optimal harvest strategy. When reserves benefit fisheries, the optimal area in reserves is moderately large (mode ≈30%). Assessing network design principals is limited currently by the absence of empirical data from large-scale networks. Emerging networks will soon rectify this constraint.
NASA Astrophysics Data System (ADS)
Mohanty, B.; Moore, G. W.; Miller, G. R.; Quiring, S. M.; Everett, M. E.; Morgan, C.
2015-12-01
The Texas Water Observatory (TWO) is a new distributed network of field observatories for better understanding of the hydrologic flow in the critical zone (encompassing groundwater, soil water, surface water, and atmospheric water) at various space and time scales. Core sites in the network will begin in Brazos River corridor and expand from there westward. Using many advanced observational platforms and real-time / near-real time sensors, this observatory will monitor high frequency data of water stores and fluxes, critical for understanding and modeling the in the state of Texas and Southern USA. Once implemented, TWO will be positioned to support high-impact water science that is highly relevant to societal needs and serve as a regional resource for better understanding and/or managing agriculture, water resources, ecosystems, biodiversity, disasters, health, energy, and weather/climate. TWO infrastructure will span land uses (cultivation agriculture, range/pasture, forest), landforms (low-relief erosional uplands to depositional lowlands), and across climatic and geologic gradients of Texas to investigate the sensitivity and resilience of fertile soils and the ecosystems they support. Besides developing a network of field water observatory infrastructure/capacity for accounting water flow and storage, TWO will facilitate developing a new generation interdisciplinary water professionals (from various TAMU Colleges) with better understanding and skills for attending to future water challenges of the region. This holistic growth will have great impact on TAMU research enterprise related to water resources, leading to higher federal and state level competitiveness for funding and establishing a center of excellence in the region
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2012-12-01
Water sustainability has been recognized as a fundamental problem of science whose solution relies in part on high-performance computing. Stormwater management is a major concern of urban sustainability. Understanding interactions between urban landcover and stormwater nutrient pollution requires consideration of fine-scale residential stormwater management, which in turn requires high-resolution LIDAR and landcover data not provided through national spatial data infrastructure, as well as field observation at the household scale. The objectives of my research are twofold: (1) advance understanding of the relationship between residential stormwater management practices and the export of nutrient pollution from stormwater in urbanized ecosystems; and (2) improve the informatics workflows used in community ecohydrology modeling as applied to heterogeneous urbanized ecosystems. In support of these objectives, I present preliminary results from initial work to: (1) develop an ecohydrology workflow platform that automates data preparation while maintaining data provenance and model metadata to yield reproducible workflows and support model benchmarking; (2) perform field observation of existing patterns of residential rooftop impervious surface connectivity to stormwater networks; and (3) develop Regional Hydro-Ecological Simulation System (RHESSys) models for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program); these models will be used to simulate nitrogen loading resulting from both baseline residential rooftop impervious connectivity and for disconnection scenarios (e.g. roof drainage to lawn v. engineered rain garden, upslope v. riparian). This research builds on work done as part of the NSF EarthCube Layered Architecture Concept Award where a RHESSys workflow is being implemented in an iRODS (integrated Rule-Oriented Data System) environment. Modeling the ecohydrology of urban ecosystems in a reliable and reproducible manner requires a flexible scientific workflow platform that allows rapid prototyping with large-scale spatial datasets and model refinement integrating expert knowledge with local datasets and household surveys.
The art of research: Opportunities for a science-based approach
Silva, Austin Ray; Avina, Glory Emmanuel; Tsao, Jeffrey Y.
2016-02-01
Research, the manufacture of knowledge, is currently practiced largely as an “art,” not a “science.” Just as science (understanding) and technology (tools) have revolutionized the manufacture of other goods and services, it is natural, perhaps inevitable, that they will ultimately also be applied to the manufacture of knowledge. In this article, we present an emerging perspective on opportunities for such application, at three different levels of the research enterprise. At the cognitive science level of the individual researcher, opportunities include: overcoming idea fixation and sloppy thinking, and balancing divergent and convergent thinking. At the social network level of the researchmore » team, opportunities include: overcoming strong links and groupthink, and optimally distributing divergent and convergent thinking between individuals and teams. At the research ecosystem level of the research institution and the larger national and international community of researchers, opportunities include: overcoming GPA and performance fixation, overcoming narrow measures of research impact, and overcoming (or harnessing) existential/social stress.« less
The art of research: Opportunities for a science-based approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Austin Ray; Avina, Glory Emmanuel; Tsao, Jeffrey Y.
Research, the manufacture of knowledge, is currently practiced largely as an “art,” not a “science.” Just as science (understanding) and technology (tools) have revolutionized the manufacture of other goods and services, it is natural, perhaps inevitable, that they will ultimately also be applied to the manufacture of knowledge. In this article, we present an emerging perspective on opportunities for such application, at three different levels of the research enterprise. At the cognitive science level of the individual researcher, opportunities include: overcoming idea fixation and sloppy thinking, and balancing divergent and convergent thinking. At the social network level of the researchmore » team, opportunities include: overcoming strong links and groupthink, and optimally distributing divergent and convergent thinking between individuals and teams. At the research ecosystem level of the research institution and the larger national and international community of researchers, opportunities include: overcoming GPA and performance fixation, overcoming narrow measures of research impact, and overcoming (or harnessing) existential/social stress.« less
Expanding the vision of the Experimental Forest and Range network to urban areas
J. Morgan Grove
2014-01-01
After 100 years, the USDA Forest Service has emerging opportunities to expand the Experimental Forest and Range (EFR) network to urban areas. The purpose of this expansion would be to broaden the types of ecosystems studied, interdisciplinary approaches used, and relevance to society of the EFR network through long-term and large-scale social-ecological projects in...
NASA Astrophysics Data System (ADS)
Girardin, Raphaël; Fulton, Elizabeth A.; Lehuta, Sigrid; Rolland, Marie; Thébaud, Olivier; Travers-Trolet, Morgane; Vermard, Youen; Marchal, Paul
2018-02-01
The ecosystem model Atlantis was used to investigate the key dynamics and processes that structure the Eastern English Channel ecosystem, with a particular focus on two commercial flatfish species, sole (Solea solea) and plaice (Pleuronectes platessa). This complex model was parameterized with data collected from diverse sources (a literature review, survey data, as well as landings and stock assessment information) and tuned so both simulated biomass and catch fit 2002-2011 observations. Here, the outputs are mainly presented for the two focus species and for some other vertebrates found to be important in the trophic network. The calibration process revealed the importance of coastal areas in the Eastern English Channel and of nutrient inputs from estuaries: a lack of river nutrients decreases the productivity of nursery grounds and adversely affects the production of sole and plaice. The role of discards in the trophic network is also highlighted. While sole and plaice did not have a strong influence on the trophic network of vertebrates, they are important predators for benthic invertebrates and compete for food with crustaceans, whiting (Merlangius merlangus) and other demersal fish. We also found that two key species, cod (Gadus morhua) and whiting, thoroughly structured the Eastern English Channel trophic network.
The role of discharge variation in scaling of drainage area and food chain length in rivers
Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.
2010-01-01
Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.
The role of discharge variation in scaling of drainage area and food chain length in rivers.
Sabo, John L; Finlay, Jacques C; Kennedy, Theodore; Post, David M
2010-11-12
Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.
Plans for an Enhanced Terrestrial and Freshwater Environmental Observation Network in South Africa
NASA Astrophysics Data System (ADS)
Everson, C. S.; Bond, W. J.; Moncrieff, G. R.; Everson, T. M.
2015-12-01
There is currently little information in South Africa concerning the influence of terrestrial ecosystems on biosphere-atmosphere interactions and their impact on the earth system. Climate modellers require data on energy exchanges between the soil-plant-atmosphere continuum to develop surface models of carbon, energy and water to scale up from the different biomes in South Africa, to regional and, ultimately, global scales. Atmospheric exchanges of South African biomes (ecosystems) are important due to the large and varied pant diversity they represent. The important ecosystem services (including water) delivered by these natural systems and their potential role in the long-term CO2 uptake from the atmosphere and carbon storage is a key gap in South African research. South Africa is already a water-scarce country so the predicted impacts of climate change on water resources are likely to have devastating effects. It is against this diminishing water supply that the South African government must develop innovative investments in water technologies and infrastructure to mitigate the impacts of growing water shortages due to climate change. The Department of Science and Technology of South Africa is planning a multi-million rand investment in long-term ecological infrastructure with a focus on carbon, water and energy. The terrestrial programme will comprise six to seven landscape-scale 'climate change observatories', some in urban and agricultural situations, with eddy covariance flux towers for carbon water and energy measurements, regular remote sensing, for the long-term collection of environmental, ecological and social data. The South African flux network measurement programme aims to become a key role player in the assessment of the consequences of rapid land use change and future impacts of climate change both regionally and internationally. Key words: flux towers, eddy co-variance, carbon, water and energy
NASA Astrophysics Data System (ADS)
Sturtevant, C. S.; Ruddell, B. L.; Knox, S. H.; Verfaillie, J. G.; Matthes, J. H.; Oikawa, P. Y.; Baldocchi, D. D.
2014-12-01
Restoring agricultural areas to wetlands in the Sacramento-San Joaquin River Delta of California can help reverse subsidence and reduce greenhouse gas (GHG) emissions. Predicting outcomes and developing best practices of wetland management therefore requires a robust understanding of the sensitivity of GHG exchange in these ecosystems to factors such as management and meteorology. However, wetlands can exhibit complex, overlapping, and asynchronous couplings between site characteristics, environmental drivers and GHG exchange. In this research we demonstrate the use of wavelets and information theory (process networks) as sophisticated tools to disentangle and characterize ecosystem couplings to CO2 and CH4 exchange (measured by eddy covariance) in two restored Delta wetlands. Using wavelets we isolated processes acting at different time scales, then used process networks to determine the direction, strength, and lag properties of ecosystem couplings. We found that despite differences in age, architecture and management, CO2 exchange at both wetlands was most sensitive to similar meteorological factors such as radiation and temperature up to a time scale of several days. At the monthly timescale, however, the effect of a more variable water table management in one wetland became dominant, revealing a reduction in net CO2 uptake during long term water table drawdowns. The analysis of CH4 exchange in this wetland revealed a more sensitive and complex coupling with water table. CH4 exchange was sensitive to relatively small, multi-day shifts in water table and displayed a lagged response to larger, longer shifts. With these methods we were able to disentangle the effects of management from meteorology and better understand the sensitivities of GHG exchange. Our results provide important insights for modeling efforts and management practices.
Esslinger, George G.; Esler, Daniel N.; Howlin, S.; Starcevich, L.A.
2015-06-25
After many decades of absence from southeast Alaska, sea otters (Enhydra lutris) are recolonizing parts of their former range, including Glacier Bay, Alaska. Sea otters are well known for structuring nearshore ecosystems and causing community-level changes such as increases in kelp abundance and changes in the size and number of other consumers. Monitoring population status of sea otters in Glacier Bay will help park researchers and managers understand and interpret sea otter-induced ecosystem changes relative to other sources of variation, including potential human-induced impacts such as ocean acidification, vessel disturbance, and oil spills. This report was prepared for the National Park Service (NPS), Southeast Alaska Inventory and Monitoring Network following a request for evaluation of options for monitoring sea otter population status in Glacier Bay National Park and Preserve. To meet this request, we provide a detailed consideration of the primary method of assessment of abundance and distribution, aerial surveys, including analyses of power to detect interannual trends and designs to reduce variation around annual abundance estimates. We also describe two alternate techniques for evaluating sea otter population status—(1) quantifying sea otter diets and energy intake rates, and (2) detecting change in ages at death. In addition, we provide a brief section on directed research to identify studies that would further our understanding of sea otter population dynamics and effects on the Glacier Bay ecosystem, and provide context for interpreting results of monitoring activities.
DOE Network 2025: Network Research Problems and Challenges for DOE Scientists. Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-02-01
The growing investments in large science instruments and supercomputers by the US Department of Energy (DOE) hold enormous promise for accelerating the scientific discovery process. They facilitate unprecedented collaborations of geographically dispersed teams of scientists that use these resources. These collaborations critically depend on the production, sharing, moving, and management of, as well as interactive access to, large, complex data sets at sites dispersed across the country and around the globe. In particular, they call for significant enhancements in network capacities to sustain large data volumes and, equally important, the capabilities to collaboratively access the data across computing, storage, andmore » instrument facilities by science users and automated scripts and systems. Improvements in network backbone capacities of several orders of magnitude are essential to meet these challenges, in particular, to support exascale initiatives. Yet, raw network speed represents only a part of the solution. Indeed, the speed must be matched by network and transport layer protocols and higher layer tools that scale in ways that aggregate, compose, and integrate the disparate subsystems into a complete science ecosystem. Just as important, agile monitoring and management services need to be developed to operate the network at peak performance levels. Finally, these solutions must be made an integral part of the production facilities by using sound approaches to develop, deploy, diagnose, operate, and maintain them over the science infrastructure.« less
A novel hybrid approach for estimating total deposition in the United States
NASA Astrophysics Data System (ADS)
Schwede, Donna B.; Lear, Gary G.
2014-08-01
Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen and sulfur deposition. In the U.S., national monitoring networks exist that provide values of wet and dry deposition at discrete locations. While wet deposition can be interpolated between the monitoring locations, dry deposition cannot. Additionally, monitoring networks do not measure the complete suite of chemicals that contribute to total sulfur and nitrogen deposition. Regional air quality models provide spatially continuous values of deposition of monitored species as well as important unmeasured species. However, air quality modeling values are not generally available for an extended continuous time period. Air quality modeling results may also be biased for some chemical species. We developed a novel approach for estimating dry deposition using data from monitoring networks such as the Clean Air Status and Trends Network (CASTNET), the National Atmospheric Deposition Program (NADP) Ammonia Monitoring Network (AMoN), and the Southeastern Aerosol Research and Characterization (SEARCH) network and modeled data from the Community Multiscale Air Quality (CMAQ) model. These dry deposition values estimates are then combined with wet deposition values from the NADP National Trends Network (NTN) to develop values of total deposition of sulfur and nitrogen. Data developed using this method are made available via the CASTNET website.
Leveraging modern climatology to increase adaptive capacity across protected area networks
Davison, J.E.; Graumlich, L.J.; Rowland, E.L.; Pederson, G.T.; Breshears, D.D.
2012-01-01
Human-driven changes in the global environment pose an increasingly urgent challenge for the management of ecosystems that is made all the more difficult by the uncertain future of both environmental conditions and ecological responses. Land managers need strategies to increase regional adaptive capacity, but relevant and rapid assessment approaches are lacking. To address this need, we developed a method to assess regional protected area networks across biophysically important climatic gradients often linked to biodiversity and ecosystem function. We plot the land of the southwestern United States across axes of historical climate space, and identify landscapes that may serve as strategic additions to current protected area portfolios. Considering climate space is straightforward, and it can be applied using a variety of relevant climate parameters across differing levels of land protection status. The resulting maps identify lands that are climatically distinct from existing protected areas, and may be utilized in combination with other ecological and socio-economic information essential to collaborative landscape-scale decision-making. Alongside other strategies intended to protect species of special concern, natural resources, and other ecosystem services, the methods presented herein provide another important hedging strategy intended to increase the adaptive capacity of protected area networks. ?? 2011 Elsevier Ltd.
Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A.; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel E.; Lane, Robert R.; McKee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai C.; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Greg D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William C.; Willis, Jonathan M.; Wilson, K. Van
2017-01-01
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change. PMID:28902904
Osland, Michael J.; Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel; Lane, Robert R.; Mckee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Gregory D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William; Willis, Jonathan M; Van Wilson, K.
2017-01-01
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.
Osland, Michael J; Griffith, Kereen T; Larriviere, Jack C; Feher, Laura C; Cahoon, Donald R; Enwright, Nicholas M; Oster, David A; Tirpak, John M; Woodrey, Mark S; Collini, Renee C; Baustian, Joseph J; Breithaupt, Joshua L; Cherry, Julia A; Conrad, Jeremy R; Cormier, Nicole; Coronado-Molina, Carlos A; Donoghue, Joseph F; Graham, Sean A; Harper, Jennifer W; Hester, Mark W; Howard, Rebecca J; Krauss, Ken W; Kroes, Daniel E; Lane, Robert R; McKee, Karen L; Mendelssohn, Irving A; Middleton, Beth A; Moon, Jena A; Piazza, Sarai C; Rankin, Nicole M; Sklar, Fred H; Steyer, Greg D; Swanson, Kathleen M; Swarzenski, Christopher M; Vervaeke, William C; Willis, Jonathan M; Wilson, K Van
2017-01-01
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.
The APWES is a place-based study for the U.S. EPA Ecosystem Services Research Program conducted through the collaboration across the EPA Office of Research and Development. The mission of the APWES is to develop ecosystem services science to inform watershed and coastal manageme...
The effects of climatic fluctuations and extreme events on running water ecosystems
Woodward, Guy; Bonada, Núria; Brown, Lee E.; Death, Russell G.; Durance, Isabelle; Gray, Clare; Hladyz, Sally; Ledger, Mark E.; Milner, Alexander M.; Ormerod, Steve J.; Thompson, Ross M.
2016-01-01
Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world. PMID:27114576
Samuel A. Cushman; Tamara Max; Nashelly Meneses; Luke M. Evans; Sharon Ferrier; Barbara Honchak; Thomas G. Whitham; Gerard J. Allan
2014-01-01
Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined...
Carbon dioxide fluxes in a central hardwoods oak-hickory forest ecosystem
Stephen G. Pallardy; Lianhong Gu; Paul J. Hanson; Tilden Myers; Stan D. Wullschleger; Bai Yang; Jeffery S. Riggs; Kevin P. Hosman; Mark Heuer
2007-01-01
A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km2) canopy gas exchange (measured by eddy-covariance methods), vertical CO2 profile sampling and soil respiration along with...
The role of the hyporheic zone across stream networks
Steven M. Wondzell
2011-01-01
Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly...
Robustness and Recovery of Lifeline Infrastructure and Ecosystem Networks
NASA Astrophysics Data System (ADS)
Bhatia, U.; Ganguly, A. R.
2015-12-01
Disruptive events, both natural and man-made, can have widespread impacts on both natural systems and lifeline infrastructure networks leading to the loss of biodiversity and essential functionality, respectively. Projected sea-level rise and climate change can further increase the frequency and severity of large-scale floods on urban-coastal megacities. Nevertheless, Failure in infrastructure systems can trigger cascading impacts on dependent ecosystems, and vice-versa. An important consideration in the behavior of the isolated networks and inter-connected networks following disruptive events is their resilience, or the ability of the network to "bounce back" to a pre-disaster state. Conventional risk analysis and subsequent risk management frameworks have focused on identifying the components' vulnerability and strengthening of the isolated components to withstand these disruptions. But high interconnectedness of these systems, and evolving nature of hazards, particularly in the context of climate extremes, make the component level analysis unrealistic. In this study, we discuss the complex network-based resilience framework to understand fragility and recovery strategies for infrastructure systems impacted by climate-related hazards. We extend the proposed framework to assess the response of ecological networks to multiple species loss and design the restoration management framework to identify the most efficient restoration sequence of species, which can potentially lead to disproportionate gains in biodiversity.
Reactive nitrogen impacts on ecosystem services
The Ecosystem Services Research Program (ESRP) is a new, multi-year research initiative under development by the Environmental Protection Agency (EPA). As one of its components, ESRP has chosen to focus on reactive Nitrogen (Nr) for stressor-specific ecosystem research through a...
Hiking trails and tourism impact assessment in protected area: Jiuzhaigou Biosphere Reserve, China.
Li, Wenjun; Ge, Xiaodong; Liu, Chunyan
2005-09-01
More and more visitors are attracted to protected areas nowadays, which not only bring about economic increase but also seriously adverse impacts on the ecological environment. In protected areas, trails are linkage between visitors and natural ecosystem, so they concentrate most of the adverse impacts caused by visitors. The trampling problems on the trails have been received attentions in the tremendous researches. However, few of them have correlated the environmental impacts to trail spatial patterns. In this project, the trails were selected as assessment objective, the trampling problems trail widening, multiple trail, and root exposure were taken as assessment indicators to assess ecological impacts in the case study area Jiuzhaigou Biosphere Reserve, and two spatial index, connectivity and circularity, were taken to indicate the trail network spatial patterns. The research results showed that the appearing frequency of the trampling problems had inverse correlation with the circularity and connectivity of the trail network, while the problem extent had no correlation with the spatial pattern. Comparing with the pristine trails, the artificial maintenance for the trails such as wooden trails and flagstone trails could prohibit vegetation root from exposure effectively. The research finds will be useful for the future trail design and tourism management.
The science of trail surveys: Recreation ecology provides new tools for managing wilderness trails
Marion, Jeffrey L.; Wimpey, Jeremy F.; Park, Logan O.
2011-01-01
Recreation ecology examines the effects of recreation on protected area ecosystems. One core focus of recreation ecology research is trail science, including the development of efficient protocols to assess and monitor the type and severity of resource impacts, analyses to improve knowledge of factors that influence trail conditions, and studies to assist land managers in improving trail design, maintenance, and visitor management. This article reviews alternative trail survey methodologies most useful for the management of wilderness and backcountry trail networks. Illustrations and implications from survey data for trail planning, design, and management are included.
Prioritization of Ecosystem Services Research: Tampa Bay Demonstration Project.
The Tampa Bay Ecosystem Services Demonstration Project (TBESDP) is a component of the U.S. Environmental Protection Agency’s Ecosystem Services Research Program. The principal objectives of TBESDP are (1) to quantify the ecosystem services of the Tampa Bay watershed, (2) to deter...
Artisanal Fisheries Research: A Need for Globalization?
Oliveira Júnior, José Gilmar C; Silva, Luana P S; Malhado, Ana C M; Batista, Vandick S; Fabré, Nidia N; Ladle, Richard J
2016-01-01
Given limited funds for research and widespread degradation of ecosystems, environmental scientists should geographically target their studies where they will be most effective. However, in academic areas such as conservation and natural resource management there is often a mismatch between the geographic foci of research effort/funding and research needs. The former frequently being focused in the developed world while the latter is greater in the biodiverse countries of the Global South. Here, we adopt a bibliometric approach to test this hypothesis using research on artisanal fisheries. Such fisheries occur throughout the world, but are especially prominent in developing countries where they are important for supporting local livelihoods, food security and poverty alleviation. Moreover, most artisanal fisheries in the Global South are unregulated and unmonitored and are in urgent need of science-based management to ensure future sustainability. Our results indicate that, as predicted, global research networks and centres of knowledge production are predominantly located in developed countries, indicating a global mismatch between research needs and capacity.
Artisanal Fisheries Research: A Need for Globalization?
Batista, Vandick S.; Fabré, Nidia N.
2016-01-01
Given limited funds for research and widespread degradation of ecosystems, environmental scientists should geographically target their studies where they will be most effective. However, in academic areas such as conservation and natural resource management there is often a mismatch between the geographic foci of research effort/funding and research needs. The former frequently being focused in the developed world while the latter is greater in the biodiverse countries of the Global South. Here, we adopt a bibliometric approach to test this hypothesis using research on artisanal fisheries. Such fisheries occur throughout the world, but are especially prominent in developing countries where they are important for supporting local livelihoods, food security and poverty alleviation. Moreover, most artisanal fisheries in the Global South are unregulated and unmonitored and are in urgent need of science-based management to ensure future sustainability. Our results indicate that, as predicted, global research networks and centres of knowledge production are predominantly located in developed countries, indicating a global mismatch between research needs and capacity. PMID:26942936
An integrated approach to manage coastal ecosystems and prevent marine pollution effects
NASA Astrophysics Data System (ADS)
Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco
2016-04-01
This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on benthic biocenosis as relevant spatial unit, and the ESI calculation for Civitavecchia coastal areas, are reported.
NASA Astrophysics Data System (ADS)
Provenzale, Antonello; Beierkuhnlein, Carl; Karnieli, Arnon; Marangi, Carmela; Giamberini, Mariasilvia; Imperio, Simona
2017-04-01
The large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, contributing to GEO and GEOSS - http://www.ecopotential-project.eu/) is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, adopting the view of ecosystems as one physical system with their environment, focusing on geosphere-biosphere interactions, Earth Critical Zone dynamics, Macrosystem Ecology and cross-scale interactions, the effect of extreme events and using Essential (Climate, Biodiversity and Ocean) Variables as descriptors of change. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems. The project focuses on a network of Protected Areas of international relevance, that is representative of the range of environmental and biogeographical conditions characterizing Europe. Some of the activities of the project are devoted to detect and quantify the changes taking place in the Protected Areas, through the analysis of remote sensing observations, in-situ data and gridded climatic datasets. Likewise, the project aims at providing estimates of the future ecosystem conditions in different climate and environmental change scenarios. In all such endeavours, one is faced with cross-scale issues: downscaling of climate information to drive ecosystem response, and upscaling of local ecosystem changes to larger scales. So far, the analysis has been conducted mainly by using traditional methods, but there is wide room for improvement by using more refined approaches. In particular, a crucial question is how to upscale the information gained at single-site scale to larger, regional or continental scale, an issue that could benefit from using, for example, complex network analysis.
The United States Environmental Protection Agency (U.S. EPA) is working with its regional offices, states, tribes, and other entities to establish Regional Monitoring Networks (RMNs) at which biological, thermal, and hydrologic data will be collected from freshwater wadeable stre...
Assessing impacts of roads: Application of a standard assessment protocol
USDA-ARS?s Scientific Manuscript database
Adaptive management of road networks depends on timely data that accurately reflect the impacts of network impacts on ecosystem processes and associated services. In the absence of reliable data, land managers are left with little more than observations and perceptions to support adaptive management...
Early detection network design and search strategy issues
We conducted a series of field and related modeling studies (2005-2012) to evaluate search strategies for Great Lakes coastal ecosystems that are at risk of invasion by non-native aquatic species. In developing a network, we should design to achieve an acceptable limit of detect...
A Bayesian network approach for causal inferences in pesticide risk assessment and management
Pesticide risk assessment and management must balance societal benefits and ecosystem protection, based on quantified risks and the strength of the causal linkages between uses of the pesticide and socioeconomic and ecological endpoints of concern. A Bayesian network (BN) is a gr...
The nitrogen footprint tool network: a multi-institution program ...
Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and the upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions to institution N footprints, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this paper, the first seven institution N footprint results are presented. The institution NFT network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive N released to the environment. Energy use and food purchases are the two largest contributors to institution N footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the N footprint, but the impact of food production on N pollution has not been directly addressed by the higher-ed sustainability community. The NFT Network found that institutions could reduce their N footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as reducing dependence o
Integrated High Resolution Monitoring of Mediterranean vegetation
NASA Astrophysics Data System (ADS)
Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone
2017-04-01
The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals (gcc, ExG) from digital images was also in according to the spectral signature (NDVI) obtained for single species (in particular for Juniperus phoenicea and Pistacia lentiscus). The integrated system developed during this project can provide continuous and high-resolution data, providing a valuable support for both ecological and environmental studies in particular for the analysis of phenological plants responses to environmental and climate changes, and the validation of eco-physiological models, and supporting research on climate change adaptations. This research was funded by the Regional Administration of Sardinia, RAS, L.R. 7/2007 "Scientific Research and Technological Innovation in Sardinia ".
Meta-ecosystem dynamics and functioning on finite spatial networks
Marleau, Justin N.; Guichard, Frédéric; Loreau, Michel
2014-01-01
The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory. PMID:24403323
The Great Lakes Information Network: the region's Internet information service.
Ratza, C A
1996-01-01
Communication is the cornerstone of ecosystem protection and sustainable development efforts in the binational Great Lakes region of North America. Great Lakes environmental protection, remediation, and pollution prevention efforts bring together individuals from across the public sector, business and industry, citizens groups, and academia. The region is now working to enhance communications between these groups and the rest of the world, through the Internet-based Great Lakes Information Network (GLIN). Diverse regional data, information, and human resources located at key agencies and organizations are accessible via GLIN. These online resources span environmental quality, human health effects and other research, resource management, transportation, demographic, and economic data, as well as other resources in the Great Lakes region of the United States and Canada. Federal, state, provincial, and regional agencies and a range of citizen, business, and research organizations are cooperating with the lead agency, the Great Lakes Commission, in developing GLIN into the region's shared Internet resource. GLIN resources are accessible to users of ubiquitous Internet research tools including World Wide Web and Gopher. Statistical information on usage and the region's response to ongoing efforts to build the GLIN system and solicit contributions of data and information indicate that we can continue to build GLIN into a truly regional resource which enhances communication among researchers, policy makers, students, and the general public.
Stormwater Management Effects on Ecosystem Services: A Literature Review
NASA Astrophysics Data System (ADS)
Prudencio, L.; Null, S. E.
2016-12-01
Managing stormwater provides benefits for enhancing water supplies while reducing urban runoff. Yet, there has been little research focused on understanding how stormwater management affects ecosystem services, the benefits that ecosystems provide to humans. Garnering more knowledge of the changes to ecosystem services from stormwater management will ultimately improve management and decision-making. The objective of this research is to review and synthesize published literature on 1) ecosystem services and stormwater management and 2) changes in ecosystem services from anthropogenic impacts and climate warming, to establish a foundation for research at the intersection of ecosystems services, stormwater management, and global environmental change. We outline four research areas for ecosystem services and stormwater management that should be further explored. These four areas, named after the four types of ecosystem services, highlight context-specific research questions and human and climate change effects. We conclude that effective and sustainable stormwater management requires incorporating engineering, social, and environmental criteria to quantify benefits of provisioning, regulating, cultural, and supporting ecosystem services. Lastly, improved current and potential stormwater management policy may better support sustainable stormwater methods at the institutional level. Stormwater quality and monitoring could be improved through the use of the Clean Water Act (e.g. Total Maximum Daily Loads), the Endangered Species Act, and public health measures. Additional policies regulating groundwater quantity and quality have been and may continue to be implemented by states, encouraging sustainable and cleaner stormwater practices.
Visual Analysis of Social Networks in a Counter-Insurgency Context
2011-06-01
Batagelj and Mrvar 2003] specifically focus on the analysis and visualisation of extremely large networks. Moreover, on top of these data about the...and behavioral components of a complex conflict ecosystem, SpringSim: 23. Batagelj , V. & Mrvar , A., (2003), Pajek - analysis and visualisation of...information regarding network patterns and structures, no spatial information is usually encoded. This is despite the fact that already Wellman [ 1996
NASA Astrophysics Data System (ADS)
Peltoniemi, Mikko; Aurela, Mika; Böttcher, Kristin; Kolari, Pasi; Loehr, John; Karhu, Jouni; Kubin, Eero; Linkosalmi, Maiju; Melih Tanis, Cemal; Nadir Arslan, Ali
2017-04-01
Ecosystems' potential to provide services, e.g. to sequester carbon is largely driven by the phenological cycle of vegetation. Timing of phenological events is required for understanding and predicting the influence of climate change on ecosystems and to support various analyses of ecosystem functioning. We established a network of cameras for automated monitoring of phenological activity of vegetation in boreal ecosystems of Finland. Cameras were mounted on 14 sites, each site having 1-3 cameras. In this study, we used cameras at 11 of these sites to investigate how well networked cameras detect phenological development of birches (Betula spp.) along the latitudinal gradient. Birches are interesting focal species for the analyses as they are common throughout Finland. In our cameras they often appear in smaller quantities within dominant species in the images. Here, we tested whether small scattered birch image elements allow reliable extraction of color indices and changes therein. We compared automatically derived phenological dates from these birch image elements to visually determined dates from the same image time series, and to independent observations recorded in the phenological monitoring network from the same region. Automatically extracted season start dates based on the change of green color fraction in the spring corresponded well with the visually interpreted start of season, and field observed budburst dates. During the declining season, red color fraction turned out to be superior over green color based indices in predicting leaf yellowing and fall. The latitudinal gradients derived using automated phenological date extraction corresponded well with gradients based on phenological field observations from the same region. We conclude that already small and scattered birch image elements allow reliable extraction of key phenological dates for birch species. Devising cameras for species specific analyses of phenological timing will be useful for explaining variation of time series of satellite based indices, and it will also benefit models describing ecosystem functioning at species or plant functional type level. With the contribution of the LIFE+ financial instrument of the European Union (LIFE12 ENV/FI/000409 Monimet, http://monimet.fmi.fi)
ECOSYSTEM SERVICES AS A NEW STRATEGIC FOCUS FOR USEPA'S ECOLOGICAL RESEARCH PROGRAM
The USEPA's Office of Research and Development has made ecosystem services the new strategic focus for its ecological research program (ERP). Recognizing that the protection and enhancement of ecosystem services can help maintain and improve human health, economic vitality and ov...
Resilient networks of ant-plant mutualists in Amazonian forest fragments.
Passmore, Heather A; Bruna, Emilio M; Heredia, Sylvia M; Vasconcelos, Heraldo L
2012-01-01
The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions. We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments. We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.
Ecology in a connected world: a vision for a "network of networks"
USDA-ARS?s Scientific Manuscript database
This special issue addresses the importance of connectivity in driving ecosystem dynamics. Connectivity is defined as the transfer of materials by wind, water, humans, and animals. Although it is well-recognized that we live in a connected world, it is less well-appreciated that these interconnectio...
Applications of spatial statistical network models to stream data
Daniel J. Isaak; Erin E. Peterson; Jay M. Ver Hoef; Seth J. Wenger; Jeffrey A. Falke; Christian E. Torgersen; Colin Sowder; E. Ashley Steel; Marie-Josee Fortin; Chris E. Jordan; Aaron S. Ruesch; Nicholas Som; Pascal Monestiez
2014-01-01
Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for...
The AmeriFlux Network: A Coalition of the Willing
USDA-ARS?s Scientific Manuscript database
The AmeriFlux community of scientists were early adopters of a network-enabled approach to ecosystem science that continues to transform the study of land-atmosphere interactions. In the twenty years since its formation, AmeriFlux has grown to include more than 260 flux tower sites in the Americas ...
Feltus, Frank A; Breen, Joseph R; Deng, Juan; Izard, Ryan S; Konger, Christopher A; Ligon, Walter B; Preuss, Don; Wang, Kuang-Ching
2015-01-01
In the last decade, high-throughput DNA sequencing has become a disruptive technology and pushed the life sciences into a distributed ecosystem of sequence data producers and consumers. Given the power of genomics and declining sequencing costs, biology is an emerging "Big Data" discipline that will soon enter the exabyte data range when all subdisciplines are combined. These datasets must be transferred across commercial and research networks in creative ways since sending data without thought can have serious consequences on data processing time frames. Thus, it is imperative that biologists, bioinformaticians, and information technology engineers recalibrate data processing paradigms to fit this emerging reality. This review attempts to provide a snapshot of Big Data transfer across networks, which is often overlooked by many biologists. Specifically, we discuss four key areas: 1) data transfer networks, protocols, and applications; 2) data transfer security including encryption, access, firewalls, and the Science DMZ; 3) data flow control with software-defined networking; and 4) data storage, staging, archiving and access. A primary intention of this article is to orient the biologist in key aspects of the data transfer process in order to frame their genomics-oriented needs to enterprise IT professionals.
Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites
Kell B. Wilson; Dennis Baldocchi; Eva Falge; Marc Aubinet; Paul Berbigier; Christian Bernhofer; Han Dolman; Chris Field; Allen Goldstein; Andre Granier; Dave Hollinger; Gabriel Katul; B.E. Law; Tilden Meyers; John Moncrieff; Russ Monson; John Tenhunen; Riccardo Valentini; Shashi Verma; Steve Wofsy
2003-01-01
Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the...
Alexandra Urza; Peter J. Weisberg; Jeanne C. Chambers; Jessica M. Dhaemers; David Board
2017-01-01
Understanding the drivers of ecosystem responses to disturbance is essential for management aimed at maintaining or restoring ecosystem processes and services, especially where invasive species respond strongly to disturbance. In this study, we used repeat vegetation surveys from a network of prescribed fire treatments at the woodlandâshrubland interface in the...
Small stream ecosystem variability in the Sierra Nevada of California
C.T. Hunsaker; S.M. Eagan
2003-01-01
The quality of aquatic and riparian ecosystems is a function of their condition and the integrity of adjacent uplands in their watersheds. While small streams make up a large proportion of the overall stream network, our knowledge of how they function is still limited. The Kings River Experimental Watershed (KREW) was initiated in 2000 to quantify the variability in...
Natural areas as a basis for assessing ecosystem vulnerability to climate change
Margaret H. Massie; Todd M. Wilson; Anita T. Morzillo; Emilie B. Henderson
2016-01-01
There are more than 580 natural areas in Oregon and Washington managed by 20 federal, state, local, and private agencies and organizations. This natural areas network is unparalleled in its representation of the diverse ecosystems found in the Pacific Northwest, and could prove useful for monitoring long-term ecological responses to climate change. Our objectives were...
Richard V. Pouyat; Ian D. Yesilonis; Miklos Dombos; Katalin Szlavecz; Heikki Setala; Sarel Cilliers; Erzsebet Hornung; D. Johan Kotze; Stephanie Yarwood
2015-01-01
As part of the Global Urban Soil Ecology and Education Network and to test the urban ecosystem convergence hypothesis, we report on soil pH, organic carbon (OC), total nitrogen (TN), phosphorus (P), and potassium (K) measured in four soil habitat types (turfgrass, ruderal, remnant, and reference) in five metropolitan areas (Baltimore, Budapest,...
Effects of roads on elk: implications for management in forested ecosystems.
Mary M. Rowland; Michael J. Wisdom; Bruce K. Johnson; Mark A. Penninger
2004-01-01
The effects of roads on both habitat and population responses of elk (Cervus elaphus) have been of keen interest to foresters and ungulate biologists for the last half century. Increased timber harvest in national forests, beginning in the 1960s, led to a proliferation of road networks in forested ecosystems inhabited by elk (Hieb 1976, Lyon and...
Ecosystem Services: Developing strategic focus for U.S. EPA’s Ecological Research Program
U.S. EPA’s Office of Research and Development has made ecosystem services the new strategic focus for its Ecological Services Research Program (ESRP). Understanding that the protection and enhancement of ecosystem services can help maintain and improve human health, economic vit...
Ecosystem Services: New strategic focus for US EPA’s Ecological Research Program
U.S. EPA’s Office of Research and Development has made ecosystem services the new strategic focus for its Ecological Research Program (ERP). Understanding that the protection and enhancement of ecosystem services can help maintain and improve human health, economic vitality, and...
Ecosystem Services: Priority strategic focus for U.S. EPA’s Ecological Research Program
U.S. EPA’s Office of Research and Development has made ecosystem services the new strategic focus for its Ecological Research Program (ERP). Understanding that the protection and enhancement of ecosystem services can help maintain and improve human health, economic vitality, and...
Soil networks become more connected and take up more carbon as nature restoration progresses.
Morriën, Elly; Hannula, S Emilia; Snoek, L Basten; Helmsing, Nico R; Zweers, Hans; de Hollander, Mattias; Soto, Raquel Luján; Bouffaud, Marie-Lara; Buée, Marc; Dimmers, Wim; Duyts, Henk; Geisen, Stefan; Girlanda, Mariangela; Griffiths, Rob I; Jørgensen, Helene-Bracht; Jensen, John; Plassart, Pierre; Redecker, Dirk; Schmelz, Rűdiger M; Schmidt, Olaf; Thomson, Bruce C; Tisserant, Emilie; Uroz, Stephane; Winding, Anne; Bailey, Mark J; Bonkowski, Michael; Faber, Jack H; Martin, Francis; Lemanceau, Philippe; de Boer, Wietse; van Veen, Johannes A; van der Putten, Wim H
2017-02-08
Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.
Smith, Thomas J.
2004-01-01
Introduction and History Hurricane Andrew, a Category 5 storm, crossed the southern Florida peninsula on the morning of August 24, 1992 (Fig. 1). Following the storm, the National Park Service conducted an environmental damage assessment to gauge the storm's impacts on the natural resources of south Florida Park Service holdings (Pimm et al., 1994). Although hurricanes have impacted Park Service lands such as the Everglades in the past (Houston and Powell, 2003), no systematic, permanent sampling scheme has been established to monitor long-term recovery (or lack thereof) following disturbance. In October 1992, vegetation monitoring plots were established in heavily damaged areas of mangrove forest on the southwest coast of the Everlgades, along the Lostmans and Broad Rivers (Smith et al., 1994, see Fig. 2). As the permanent plot network was being established, funding was awarded for the South Florida Global Climate Change project (SOFL-GCC). This led to the establishment of a network of hydrological monitoring stations (Anderson and Smith, 2004). Finally, sediment elevation tables (SETs) were installed at many locations. SETs provide the means to measure very small changes (2 mm) in the sediment surface elevation accurately over time (Cahoon et al., 2002). We also set up marker horizons to measure accretion of sediment at each site (Smith and Cahoon, 2003). Sampling sites were located along three transects extending from upstream freshwater wetlands to downstream saltwater wetlands along the Shark, Lostmans and Chatham Rivers in Everglades National Park (Fig. 2). While we were developing our sampling network for basic scientific research needs, concern mounted over the health of the Greater Everglades Ecosystem and in particular over the influence of decreased freshwater flows (Smith et al., 1989). Ecosystem restoration planning was begun, resulting in the multi-agency, $8 billion Comprehensive Everglades Restoration Plan (CERP). Our co-located sampling networks Fig. 3) allow us to track the interaction of hydrology, sediment, and vegetation over time, and will provide the opportunity to monitor the progress of the Everglades restoration and to gauge its success. Our earlier research questions have been modified over time to place a major emphasis on CERP needs, while still recognizing the importance of other processes, including disturbance and sea-level rise. Our research addresses processes relevant to the following restoration and related questions: * How will increasing freshwater flow affect wetland primary production? * Will increasing freshwater inflow alter nutrient availability? * Does recovery following disturbance in mangroves depend on freshwater inflow? * Will the position of vegetation ecotones change in response to upstream water management? * What will be the influence of global climate change, such as sea-level rise, on the Everglades restoration? * Will processes of wetlands soil formation be altered by sea-level rise and changed freshwater inflow?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Borde, Amy B.; Sinks, Ian A.
The purpose of this study was to provide science-based information to practitioners and managers of restoration projects in the Columbia Estuary Ecosystem Restoration Program (CEERP) regarding aspects of restoration techniques that currently pose known challenges and uncertainties. The CEERP is a program of the Bonneville Power Administration (BPA) and the U.S. Army Corps of Engineers (Corps), Portland District, in collaboration with the National Marine Fisheries Service and five estuary sponsors implementing restoration. The estuary sponsors are Columbia Land Trust, Columbia River Estuary Study Taskforce, Cowlitz Tribe, Lower Columbia Estuary Partnership, and Washington Department of Fish and Wildlife. The scope ofmore » the research conducted during federal fiscal year 2015 included three aspects of hydrologic reconnection that were selected based on available scientific information and feedback from restoration practitioners during project reviews: the design of mounds (also called hummocks, peninsulas, or berms); the control of reed canarygrass (Phalaris arundinaceae); and aspects of channel network design related to habitat connectivity for juvenile salmonids.« less
From principles to practice: a spatial approach to systematic conservation planning in the deep sea.
Wedding, L M; Friedlander, A M; Kittinger, J N; Watling, L; Gaines, S D; Bennett, M; Hardy, S M; Smith, C R
2013-12-22
Increases in the demand and price for industrial metals, combined with advances in technological capabilities have now made deep-sea mining more feasible and economically viable. In order to balance economic interests with the conservation of abyssal plain ecosystems, it is becoming increasingly important to develop a systematic approach to spatial management and zoning of the deep sea. Here, we describe an expert-driven systematic conservation planning process applied to inform science-based recommendations to the International Seabed Authority for a system of deep-sea marine protected areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal Pacific region targeted for nodule mining (e.g. the Clarion-Clipperton fracture zone, CCZ). Our use of geospatial analysis and expert opinion in forming the recommendations allowed us to stratify the proposed network by biophysical gradients, maximize the number of biologically unique seamounts within each subregion, and minimize socioeconomic impacts. The resulting proposal for an MPA network (nine replicate 400 × 400 km MPAs) covers 24% (1 440 000 km(2)) of the total CCZ planning region and serves as example of swift and pre-emptive conservation planning across an unprecedented area in the deep sea. As pressure from resource extraction increases in the future, the scientific guiding principles outlined in this research can serve as a basis for collaborative international approaches to ocean management.
From principles to practice: a spatial approach to systematic conservation planning in the deep sea
Wedding, L. M.; Friedlander, A. M.; Kittinger, J. N.; Watling, L.; Gaines, S. D.; Bennett, M.; Hardy, S. M.; Smith, C. R.
2013-01-01
Increases in the demand and price for industrial metals, combined with advances in technological capabilities have now made deep-sea mining more feasible and economically viable. In order to balance economic interests with the conservation of abyssal plain ecosystems, it is becoming increasingly important to develop a systematic approach to spatial management and zoning of the deep sea. Here, we describe an expert-driven systematic conservation planning process applied to inform science-based recommendations to the International Seabed Authority for a system of deep-sea marine protected areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal Pacific region targeted for nodule mining (e.g. the Clarion–Clipperton fracture zone, CCZ). Our use of geospatial analysis and expert opinion in forming the recommendations allowed us to stratify the proposed network by biophysical gradients, maximize the number of biologically unique seamounts within each subregion, and minimize socioeconomic impacts. The resulting proposal for an MPA network (nine replicate 400 × 400 km MPAs) covers 24% (1 440 000 km2) of the total CCZ planning region and serves as example of swift and pre-emptive conservation planning across an unprecedented area in the deep sea. As pressure from resource extraction increases in the future, the scientific guiding principles outlined in this research can serve as a basis for collaborative international approaches to ocean management. PMID:24197407
Springer, Yuri P.; Hoekman, David; Johnson, Pieter T. J.; Duffy, Paul A.; Hufft, Rebecca A.; Barnett, David T.; Allan, Brian F.; Amman, Brian R.; Barker, Christopher M.; Barrera, Roberto; Beard, Charles B.; Beati, Lorenza; Begon, Mike; Blackmore, Mark S.; Bradshaw, William E.; Brisson, Dustin; Calisher, Charles H.; Childs, James E.; Diuk-Wasser, Maria A.; Douglass, Richard J.; Eisen, Rebecca J.; Foley, Desmond H.; Foley, Janet E.; Gaff, Holly D.; Gardner, Scott L.; Ginsberg, Howard; Glass, Gregory E.; Hamer, Sarah A.; Hayden, Mary H.; Hjelle, Brian; Holzapfel, Christina M.; Juliano, Steven A.; Kramer, Laura D.; Kuenzi, Amy J.; LaDeau, Shannon L.; Livdahl, Todd P.; Mills, James N.; Moore, Chester G.; Morand, Serge; Nasci, Roger S.; Ogden, Nicholas H.; Ostfeld, Richard S.; Parmenter, Robert R.; Piesman, Joseph; Reisen, William K.; Savage, Harry M.; Sonenshine, Daniel E.; Swei, Andrea; Yabsley, Michael J.
2016-01-01
Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways.
Invertebrates, ecosystem services and climate change.
Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A
2013-05-01
The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Ecological Production Functions: A Theoretical and Practical Exploration
Ecological production functions characterize relationships between ecosystem condition, management practices, and the delivery of economically valuable ecosystem services. Many in the ecosystem service research community view ecological research directed toward developing ecolog...
Changes induced by sea level rise on network properties of restoration areas
NASA Astrophysics Data System (ADS)
Jiménez, Mirian; Castanedo, Sonia; Zhou, Zeng; Coco, Giovanni; Medina, Raúl
2015-04-01
Human actions have been reducing the natural domain of estuarine systems for centuries. In the past, estuaries were perceived as unhealthy areas, source of diseases, which were adapted to human use by drainage and heavy engineering. Our current understanding shows that estuaries are not sources of disease, but rich ecosystems that cover important ecosystem functions. They need to be restored to their natural state. However, restoration actions may induce morphological changes that may change the estuary current behavior. It is thus of the utmost importance to understand the morphodynamic changes induced by restoration actions, more so when the final aim is to predict these changes. Dikes have been the most used mean to enclose and drain areas of estuaries. In this work, we focus our attention on dike removal as a means to restore the areas enclosed by these dikes. Dikes may be removed completely, or only partially (opening one or several breaches), to allow the tidal flow to enter into the area to be restored. Morphodynamic effects of dike removal are simulated numerically using Delft3d. Different dike removal configurations are studied and their effect on the recovery of the estuary quantified. Estuarine tidal networks are characterized by means of a new approach that links network connectivity to the spatial hydrodynamic fields developed in the estuary. The impact of different restorations strategies in the drainage properties of the network has been studied in the short term (5 -10 years) and in the long term (100 years) allowing the connectivity to evolve with time. Results show, for different scenarios, differences not only in the spatial distribution of the tidal network but also in statistical characteristics after different dike removal actions. The new distribution of channels will have implications for the location of the tidal flats, flood patterns and thus biological environments within the tidal networks. These changes in the morphological properties are quantified with the new approach (Jiménez et al.,2014), which allows to highlight the changes that induce deep behavioral changes in the system. The importance of sea level rise in these behavioral changes is also assessed in the study. References: Jiménez, M., S. Castanedo, Z. Zhou, G.Coco, R. Medina, and I. Rodriguez-Iturbe (2014). Scaling properties of tidal networks, Water Resources Research., 50, doi:10.1002/2013WR015006.
The Gulf Ecosystem Restoration Task Force was formed by Executive Order, October 2010. The Task Force leads and coordinates research in support of ecosystem restoration planning and decision-making in the Gulf Coast region. In support of a comprehensive restoration strategy, re...
Ecological issues related to N deposition to natural ecosystems: research needs
Mary Beth Adams
2003-01-01
There has and continues to be concern about the effects of elevated nitrogen (N) deposition on natural ecosystems. In this paper, research on natural ecosystems, including wetlands, heathlands, grasslands, steppe, naturally regenerated forests and deserts, is evaluated to determine what is known about nitrogen cycling in these ecosystems, the effects of elevated...
Applications of spatial statistical network models to stream data
Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal
2014-01-01
Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.
Özdemir, Vural; Hekim, Nezih
2018-01-01
Driverless cars with artificial intelligence (AI) and automated supermarkets run by collaborative robots (cobots) working without human supervision have sparked off new debates: what will be the impacts of extreme automation, turbocharged by the Internet of Things (IoT), AI, and the Industry 4.0, on Big Data and omics implementation science? The IoT builds on (1) broadband wireless internet connectivity, (2) miniaturized sensors embedded in animate and inanimate objects ranging from the house cat to the milk carton in your smart fridge, and (3) AI and cobots making sense of Big Data collected by sensors. Industry 4.0 is a high-tech strategy for manufacturing automation that employs the IoT, thus creating the Smart Factory. Extreme automation until "everything is connected to everything else" poses, however, vulnerabilities that have been little considered to date. First, highly integrated systems are vulnerable to systemic risks such as total network collapse in the event of failure of one of its parts, for example, by hacking or Internet viruses that can fully invade integrated systems. Second, extreme connectivity creates new social and political power structures. If left unchecked, they might lead to authoritarian governance by one person in total control of network power, directly or through her/his connected surrogates. We propose Industry 5.0 that can democratize knowledge coproduction from Big Data, building on the new concept of symmetrical innovation. Industry 5.0 utilizes IoT, but differs from predecessor automation systems by having three-dimensional (3D) symmetry in innovation ecosystem design: (1) a built-in safe exit strategy in case of demise of hyperconnected entrenched digital knowledge networks. Importantly, such safe exists are orthogonal-in that they allow "digital detox" by employing pathways unrelated/unaffected by automated networks, for example, electronic patient records versus material/article trails on vital medical information; (2) equal emphasis on both acceleration and deceleration of innovation if diminishing returns become apparent; and (3) next generation social science and humanities (SSH) research for global governance of emerging technologies: "Post-ELSI Technology Evaluation Research" (PETER). Importantly, PETER considers the technology opportunity costs, ethics, ethics-of-ethics, framings (epistemology), independence, and reflexivity of SSH research in technology policymaking. Industry 5.0 is poised to harness extreme automation and Big Data with safety, innovative technology policy, and responsible implementation science, enabled by 3D symmetry in innovation ecosystem design.
The Bering Sea Project Archive: a Prototype for Improved Discovery and Access
NASA Astrophysics Data System (ADS)
Stott, D.; Mayernik, M. S.; Daniels, M. D.; Moore, J. A.; Williams, S. F.; Allison, J.
2015-12-01
The Bering Sea Project was a research program from 2007 through 2012 that sought to understand the impacts of climate change and dynamic sea ice cover on the eastern Bering Sea ecosystem. More than 100 scientists engaged in field data collection, original research, and ecosystem modeling to link climate, physical oceanography, plankton, fishes, seabirds, marine mammals, humans, traditional knowledge and economic outcomes. Over the six-year period of the program hundreds of multidisciplinary datasets coming from a variety of instrumentation and measurement platforms within thirty-one categories of research were processed and curated by the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL). For the investigator proposing a field project, the researcher performing synthesis, or the modeler seeking data for verification, the easy discovery and access to the most relevant data is of prime importance. The heterogeneous products of oceanographic field programs such as the Bering Sea Project challenge the ability of researchers to identify which data sets, people, or tools might be relevant to their research, and to understand how certain data, instruments, or methods were used to produce particular results.EOL, as a partner in the NSF funded EarthCollab project, is using linked open data to permit the direct interlinking of information and data across platforms and projects. We are leveraging an existing open-source semantic web application, VIVO, to address connectivity gaps across distributed networks of researchers and resources and identify relevant content, independent of location. We will present our approach in connecting ontologies and integrating them within the VIVO system, using the Bering Sea Project datasets as a case study, and will provide insight into how the geosciences can leverage linked data to produce more coherent methods of information and data discovery across large multi-disciplinary projects.
Nitrogen fluxes and retention in urban watershed ecosystems
Groffman, P.M.; Law, N.L.; Belt, K.T.; Band, L.E.; Fisher, G.T.
2004-01-01
Although the watershed approach has long been used to study whole-ecosystem function, it has seldom been applied to study human-dominated systems, especially those dominated by urban and suburban land uses. Here we present 3 years of data on nitrogen (N) losses from one completely forested, one agricultural, and six urban/suburban watersheds, and input-output N budgets for suburban, forested, and agricultural watersheds. The work is a product of the Baltimore Ecosystem Study, a long-term study of urban and suburban ecosystems, and a component of the US National Science Foundation's long-term ecological research (LTER) network. As expected, urban and suburban watersheds had much higher N losses than did the completely forested watershed, with N yields ranging from 2.9 to 7.9 kg N ha-1 y-1 in the urban and suburban watersheds compared with less than 1 kg N ha-1 y -1 in the completely forested watershed. Yields from urban and suburban watersheds were lower than those from an agricultural watershed (13-19.8 kg N ha-1 y-1). Retention of N in the suburban watershed was surprisingly high, 75% of inputs, which were dominated by home lawn fertilizer (14.4 kg N ha-1 y-1) and atmospheric deposition (11.2 kg N ha-1 y-1). Detailed analysis of mechanisms of N retention, which must occur in the significant amounts of pervious surface present in urban and suburban watersheds, and which include storage in soils and vegetation and gaseous loss, is clearly warranted.
Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.
2011-01-01
Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.
Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0
Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun
2016-01-01
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850
Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.
Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun
2016-04-01
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.
Promoting the confluence of tropical cyclone research.
Marler, Thomas E
2015-01-01
Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.
NASA Astrophysics Data System (ADS)
Kearney, K.; Aydin, K.
2016-02-01
Oceanic food webs are often depicted as network graphs, with the major organisms or functional groups displayed as nodes and the fluxes of between them as the edges. However, the large number of nodes and edges and high connectance of many management-oriented food webs coupled with graph layout algorithms poorly-suited to certain desired characteristics of food web visualizations often lead to hopelessly tangled diagrams that convey little information other than, "It's complex." Here, I combine several new graph visualization techniques- including a new node layout alorithm based on a trophic similarity (quantification of shared predator and prey) and trophic level, divided edge bundling for edge routing, and intelligent automated placement of labels- to create a much clearer visualization of the important fluxes through a food web. The technique will be used to highlight the differences in energy flow within three Alaskan Large Marine Ecosystems (the Bering Sea, Gulf of Alaska, and Aleutian Islands) that include very similar functional groups but unique energy pathways.
Dougoud, Michaël; Rohr, Rudolf P.
2018-01-01
The consensus that complexity begets stability in ecosystems was challenged in the seventies, a result recently extended to ecologically-inspired networks. The approaches assume the existence of a feasible equilibrium, i.e. with positive abundances. However, this key assumption has not been tested. We provide analytical results complemented by simulations which show that equilibrium feasibility vanishes in species rich systems. This result leaves us in the uncomfortable situation in which the existence of a feasible equilibrium assumed in local stability criteria is far from granted. We extend our analyses by changing interaction structure and intensity, and find that feasibility and stability is warranted irrespective of species richness with weak interactions. Interestingly, we find that the dynamical behaviour of ecologically inspired architectures is very different and richer than that of unstructured systems. Our results suggest that a general understanding of ecosystem dynamics requires focusing on the interplay between interaction strength and network architecture. PMID:29420532
NASA Astrophysics Data System (ADS)
Yu, Zhongjie; Wang, Dongqi; Li, Yangjie; Deng, Huanguang; Hu, Beibei; Ye, Mingwu; Zhou, Xuhui; Da, Liangjun; Chen, Zhenlou; Xu, Shiyuan
2017-07-01
Evasion of carbon dioxide (CO2) and methane (CH4) in streams and rivers play a critical role in global carbon (C) cycle, offsetting the C uptake by terrestrial ecosystems. However, little is known about CO2 and CH4 dynamics in lowland coastal rivers profoundly modified by anthropogenic perturbations. Here we report results from a long-term, large-scale study of CO2 and CH4 partial pressures (
CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.
2013-12-01
Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought-tolerant species. Ongoing monitoring will be vital to understanding global forest dynamics in an era of climate change.
NASA Astrophysics Data System (ADS)
Hurkuck, M.; Marsh, P.; Quinton, W. L.; Humphreys, E.; Lafleur, P.; Helbig, M.; Hould Gosselin, G.; Sonnentag, O.
2017-12-01
Given their large areal coverage, high carbon densities, unique land surface properties, and disturbance regimes, Canada's diverse high-latitude ecosystems across its multiple Arctic, subarctic and boreal ecozones are integral components of the global and regional climate systems. In northwestern Canada, large portions of these ecozones contain permafrost, i.e., perennially cryotic ground. Here, we describe efforts towards a meso-network of nine eddy covariance towers to measure carbon, water and energy fluxes across the Northwest Territories to shed light on high-latitude carbon and water budgets and their rapidly changing biotic and abiotic controls in response to increasing natural and anthropogenic pressures. Distributed across six research sites (Trail Valley Creek, 68.7°N, 133.3°W; Havikpak Creek, 68.3°N, 133.3°W; Daring Lake, 64.8°N, 111.5°W; Smith Creek, 63.1°N, 123.2°W; Scotty Creek, 63.1°N, 123.2°W; Yellowknife, 62.5°N, 114.4°W), the meso-network spans the central portion of the extended ABoVE Study Domain, covering two ecozones (Taiga Plains, Southern Arctic) with differing permafrost regimes (sporadic, discontinuous, continuous), climatic settings (coastal, interior), and seven high-latitude ecosystem types: forested permafrost peat plateau, permafrost-free collapse-scar bog, subarctic woodland, mixed and dwarf-shrub tundra, and sedge fen. With our contribution, we report on the current status of the meso-network development and present results from various synthesis activities examining the role of climatic setting and resulting tundra carbon and water budgets, quantifying the impact of permafrost thaw and associated wetland expansion on boreal forest carbon and water budgets, and determining the relative importance of treeline advance compared to shrub proliferation on tundra carbon and water budgets.
Modelling ecosystem service flows under uncertainty with stochiastic SPAN
Johnson, Gary W.; Snapp, Robert R.; Villa, Ferdinando; Bagstad, Kenneth J.
2012-01-01
Ecosystem service models are increasingly in demand for decision making. However, the data required to run these models are often patchy, missing, outdated, or untrustworthy. Further, communication of data and model uncertainty to decision makers is often either absent or unintuitive. In this work, we introduce a systematic approach to addressing both the data gap and the difficulty in communicating uncertainty through a stochastic adaptation of the Service Path Attribution Networks (SPAN) framework. The SPAN formalism assesses ecosystem services through a set of up to 16 maps, which characterize the services in a study area in terms of flow pathways between ecosystems and human beneficiaries. Although the SPAN algorithms were originally defined deterministically, we present them here in a stochastic framework which combines probabilistic input data with a stochastic transport model in order to generate probabilistic spatial outputs. This enables a novel feature among ecosystem service models: the ability to spatially visualize uncertainty in the model results. The stochastic SPAN model can analyze areas where data limitations are prohibitive for deterministic models. Greater uncertainty in the model inputs (including missing data) should lead to greater uncertainty expressed in the model’s output distributions. By using Bayesian belief networks to fill data gaps and expert-provided trust assignments to augment untrustworthy or outdated information, we can account for uncertainty in input data, producing a model that is still able to run and provide information where strictly deterministic models could not. Taken together, these attributes enable more robust and intuitive modelling of ecosystem services under uncertainty.
NASA Astrophysics Data System (ADS)
Wegener, Pam; Covino, Tim; Wohl, Ellen
2017-06-01
River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.
Tampekis, Stergios; Sakellariou, Stavros; Samara, Fani; Sfougaris, Athanassios; Jaeger, Dirk; Christopoulou, Olga
2015-11-01
The sustainable management of forest resources can only be achieved through a well-organized road network designed with the optimal spatial planning and the minimum environmental impacts. This paper describes the spatial layout mapping for the optimal forest road network and the environmental impacts evaluation that are caused to the natural environment based on the multicriteria evaluation (MCE) technique at the Mediterranean island of Thassos in Greece. Data analysis and its presentation are achieved through a spatial decision support system using the MCE method with the contribution of geographic information systems (GIS). With the use of the MCE technique, we evaluated the human impact intensity to the forest ecosystem as well as the ecosystem's absorption from the impacts that are caused from the forest roads' construction. For the human impact intensity evaluation, the criteria that were used are as follows: the forest's protection percentage, the forest road density, the applied skidding means (with either the use of tractors or the cable logging systems in timber skidding), the timber skidding direction, the visitors' number and truck load, the distance between forest roads and streams, the distance between forest roads and the forest boundaries, and the probability that the forest roads are located on sights with unstable soils. In addition, for the ecosystem's absorption evaluation, we used forestry, topographical, and social criteria. The recommended MCE technique which is described in this study provides a powerful, useful, and easy-to-use implement in order to combine the sustainable utilization of natural resources and the environmental protection in Mediterranean ecosystems.
Food Web Designer: a flexible tool to visualize interaction networks.
Sint, Daniela; Traugott, Michael
Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.
König, Sara; Worrich, Anja; Banitz, Thomas; Harms, Hauke; Kästner, Matthias; Miltner, Anja; Wick, Lukas Y.; Frank, Karin; Thullner, Martin; Centler, Florian
2018-01-01
Bacterial degradation of organic compounds is an important ecosystem function with relevance to, e.g., the cycling of elements or the degradation of organic contaminants. It remains an open question, however, to which extent ecosystems are able to maintain such biodegradation function under recurrent disturbances (functional resistance) and how this is related to the bacterial biomass abundance. In this paper, we use a numerical simulation approach to systematically analyze the dynamic response of a microbial population to recurrent disturbances of different spatial distribution. The spatially explicit model considers microbial degradation, growth, dispersal, and spatial networks that facilitate bacterial dispersal mimicking effects of mycelial networks in nature. We find: (i) There is a certain capacity for high resistance of biodegradation performance to recurrent disturbances. (ii) If this resistance capacity is exceeded, spatial zones of different biodegradation performance develop, ranging from no or reduced to even increased performance. (iii) Bacterial biomass and biodegradation dynamics respond inversely to the spatial fragmentation of disturbances: overall biodegradation performance improves with increasing fragmentation, but bacterial biomass declines. (iv) Bacterial dispersal networks can enhance functional resistance against recurrent disturbances, mainly by reactivating zones in the core of disturbed areas, even though this leads to an overall reduction of bacterial biomass. PMID:29696013
How habitat-modifying organisms structure the food web of two coastal ecosystems
van der Zee, Els M.; Angelini, Christine; Govers, Laura L.; Christianen, Marjolijn J. A.; Altieri, Andrew H.; van der Reijden, Karin J.; Silliman, Brian R.; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A.; van der Veer, Henk W.; Piersma, Theunis; de Ruiter, Peter C.; Olff, Han; van der Heide, Tjisse
2016-01-01
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. PMID:26962135
How habitat-modifying organisms structure the food web of two coastal ecosystems.
van der Zee, Els M; Angelini, Christine; Govers, Laura L; Christianen, Marjolijn J A; Altieri, Andrew H; van der Reijden, Karin J; Silliman, Brian R; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A; van der Veer, Henk W; Piersma, Theunis; de Ruiter, Peter C; Olff, Han; van der Heide, Tjisse
2016-03-16
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Anderson, T.; Jencso, K. G.; Hoylman, Z. H.; Hu, J.
2015-12-01
Characterizing the mechanisms that lead to differences in forest ecosystem productivity across complex terrain remains a challenge. This difficulty can be partially attributed to the cost of installing networks of proprietary data loggers that monitor differences in the biophysical factors contributing to tree growth. Here, we describe the development and initial application of a network of open source data loggers. These data loggers are based on the Arduino platform, but were refined into a custom printed circuit board (PCB). This reduced the cost and complexity of the data loggers, which made them cheap to reproduce and reliable enough to withstand the harsh environmental conditions experienced in Ecohydrology studies. We demonstrate the utility of these loggers for high frequency, spatially-distributed measurements of sap-flux, stem growth, relative humidity, temperature, and soil water content across 36 landscape positions in the Lubrecht Experimental Forest, MT, USA. This new data logging technology made it possible to develop a spatially distributed monitoring network within the constraints of our research budget and may provide new insights into factors affecting forest productivity across complex terrain.
River networks as ecological corridors: A coherent ecohydrological perspective
NASA Astrophysics Data System (ADS)
Rinaldo, Andrea; Gatto, Marino; Rodriguez-Iturbe, Ignacio
2018-02-01
This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. laboratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially to our understanding of the function of river networks as ecological corridors. Such function proves relevant to: the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease. As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi-Missouri basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species' richness, the zebra mussel invasion of the same Mississippi-Missouri river system, and the spread of proliferative kidney disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape, constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions, i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the authors' view, to future developments in ecohydrologic research.
USA National Phenology Network observational data documentation
Rosemartin, Alyssa H.; Denny, Ellen G.; Gerst, Katharine L.; Marsh, R. Lee; Posthumus, Erin E.; Crimmins, Theresa M.; Weltzin, Jake F.
2018-04-25
The goals of the USA National Phenology Network (USA-NPN, www.usanpn.org) are to advance science, inform decisions, and communicate and connect with the public regarding phenology and species’ responses to environmental variation and climate change. The USA-NPN seeks to advance the science of phenology and facilitate ecosystem stewardship by providing phenological information freely and openly. To accomplish these goals, the USA-NPN National Coordinating Office (NCO) delivers observational data on plant and animal phenology in several formats, including minimally processed status and intensity datasets and derived phenometrics for individual plants, sites, and regions. This document describes the suite of observational data products delivered by the USA National Phenology Network, covering the period 2009–present for the United States and accessible via the Phenology Observation Portal (http://dx.doi.org/10.5066/F78S4N1V) and via an Application Programming Interface. The data described here have been used in diverse research and management applications, including over 30 publications in fields such as remote sensing, plant evolution, and resource management.
Urban retail location: Insights from percolation theory and spatial interaction modeling.
Piovani, Duccio; Molinero, Carlos; Wilson, Alan
2017-01-01
Characterising road networks has been the focus of a large body of research due to it being the main driver of activities in an urban ecosystem and the structuring factor in the dynamics of the city. One of these activities, and one with the largest economical impact in a city, is retail dynamics and its evolution. Therefore, the mathematical modeling of the location of retail activities and of the emergence of clustering in retail centers has as well generated a large number of works. Despite these two interwoven components strongly depending on one another and their fundamental importance in understanding cities, little work has been done in order to compare their local and global properties. Here we compare the road network's hierarchical structure, unveiled through a percolation analysis of the network, with the retail location distribution defined by exploiting a gravity-based retail model. We interpret the great agreement in the city's organizations as it emerges from both methodologies as new evidence of the interdependence of these two crucial dimensions of a city's life.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Scott, R. L.; Goulden, M.
2014-12-01
Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved prediction of terrestrial carbon balance. We will also present results of ongoing work to quantify fast and slow contributions to the relationship between evapotranspiration and precipitation across a precipitation gradient.
Synthesis and Integration of Pre-treatment Results from the Missouri Ozark Forest Ecosystem Project
Wendy K. Gram; Victoria L. Sork; Robert J. Marquis
1997-01-01
Integrating results across disciplines is a critical component of ecosystem management and research. The common research sites, landscape-scale experimental design, and breadth of research subjects in Missouri Ozark Forest Ecosystem Project provide circumstances conducive for addressing multidisciplinary questions. Our objectives were to (1) summarize the treatment and...
Past, present and future of host–parasite co-extinctions
Strona, Giovanni
2015-01-01
Human induced ecosystem alterations and climate change are expected to drive several species to extinction. In this context, the attention of public opinion, and hence conservationists' efforts, are often targeted towards species having emotional, recreational and/or economical value. This tendency may result in a high number of extinctions happening unnoticed. Among these, many could involve parasites. Several studies have highlighted various reasons why we should care about this, that go far beyond the fact that parasites are amazingly diverse. A growing corpus of evidence suggests that parasites contribute much to ecosystems both in terms of biomass and services, and the seemingly paradoxical idea that a healthy ecosystem is one rich in parasites is becoming key to the whole concept of parasite conservation. Although various articles have covered different aspects of host–parasite co-extinctions, I feel that some important conceptual issues still need to be formally addressed. In this review, I will attempt at clarifying some of them, with the aim of providing researchers with a unifying conceptual framework that could help them designing future studies. In doing this, I will try to draw a more clear distinction between the (co-)evolutionary and the ecological dimensions of co-extinction studies, since the ongoing processes that are putting parasites at risk now operate at a scale that is extremely different from the one that has shaped host–parasite networks throughout million years of co-evolution. Moreover, I will emphasize how the complexity of direct and indirect effects of parasites on ecosystems makes it much challenging to identify the mechanisms possibly leading to co-extinction events, and to predict how such events will affect ecosystems in the long run. PMID:26835251
Nitrogen Cycling In Latin America and : Drivers, Impacts And Vulnerabilities
NASA Astrophysics Data System (ADS)
Ometto, J. P.; Bustamante, M.; Forti, M. C.; Peres, T.; Stein, A. F.; Jaramillo, V.; Perez, C.; Pinho, P. F.; Ascarrunz, N.; Austin, A.; Martinelli, L. A.
2015-12-01
Latin America is at a crossroads where a balance should be found between production of the major agricultural commodities, reasonable and planned urbanization and conservation of its natural ecosystems and associated goods and services. Most of the natural biological fixation of the globe occurs in forests of Latin America. On the other hand, Latin America has one of the highest rate of deforestation in the world, and one of the highest increases in the use of nitrogen fertilizers. A better understanding of the responses of the N cycle to human impacts will allow better conservation of biodiversity and natural resources, with an improvement in food security and more effective land use choices in biofuel development. Latin America is a unique region in multiple aspects, and particularly relevant for this proposal are the broad climatic gradient and economic patterns that include a diverse range of natural ecosystems and socio-economic development pathways. Additionally, the region is impaired by the lack of information on actual impacts of human activity on N cycling across this diverse range of ecosystems. Finally, the large expanse of tropical ecosystems and reservoirs of biodiversity juxtaposed with an intense economic incentive for development make our understanding of human impacts in this context particularly important for global change research in the region. An evaluation of current and predicted changes in climate and land use on nitrogen stocks and fluxes in the region what is being develop by the Nnet network (Nitrogen Cycling In Latin America: Drivers, Impacts And Vulnerabilities ). This presentation will bring the latest results of this integrative initiative in Latin America, focusing on the nitrogen budget associated to provision of ecosystem services and climate change.
Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma
NASA Astrophysics Data System (ADS)
Wagle, P.; Gowda, P. H.; Northup, B. K.
2016-12-01
Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.
Ecosystem Restoration Research at GWERD
Ground Water and Ecosystems Restoration Division, Ada, OK Mission: Conduct research and technical assistance to provide the scientific basis to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted b...
James J.T. Connolly; Erika S. Svendsen; Dana R. Fisher; Lindsay K. Campbell
2014-01-01
Urban environmental stewardship groups have become an essential component of the governance structure that regulates ecosystem services in cities. New York City is one example where these groups have grown rapidly in number, size, and visibility since the 1970s. In this article, we combine quantitative survey data with qualitative interview data to examine the...
Promoting the confluence of tropical cyclone research
Marler, Thomas E
2015-01-01
Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community. PMID:26480001
Visualization of metabolic interaction networks in microbial communities using VisANT 5.0
Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...
2016-04-15
Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less
Soil Respiration in Eddy Covariance Footprints: A Critical Look at Researcher Needs
NASA Astrophysics Data System (ADS)
Gabriel, Carrie-Ellen; Nickerson, Nick; Creelman, Chance
2017-04-01
Eddy covariance (EC) systems have been widely used across the globe for more than 20 years, offering researchers invaluable measurements of parameters including Net Ecosystem Exchange and ecosystem respiration. However, recent research suggests that EC assumptions and technical obstacles may cause biased gas exchange estimates. Measurements of soil respiration (RS) at the ground level may help alleviate these biases; for example, by allowing researchers to reconcile nocturnal EC flux data with soil respiration or by providing a means to inform gap-filling models. RS measurements have been used sparingly alongside EC towers because of the large cost required to scale chamber systems to the EC footprint, as well as data integration and processing burdens. Here we present how the Forced Diffusion (FD) method is ideal for the measurement of RS at EC sites. The FD method allows for inexpensive and autonomous measurements, providing a scalable approach to matching the EC footprint compared to other RS systems. Here, we briefly present the methodology and results from a pilot study at the Howland Forest AmeriFlux site (Maine), carried out during the summer and fall of 2016, measuring soil respiration using the FD chamber technique. The emphasis of the remainder of the research is on gathering, interpreting and actualizing feedback from soil scientists and eddy covariance researchers and technicians on aspects of the FD methodology, deployment style, integration with existing infrastructure and data quality. Our goal is to eventually provide a framework for "ideal soil respiration measurements" that can be used by researchers, engineers and companies to develop functional and reliable soil respiration data sets that are easily coupled with data measured by EC users, and larger EC networks such as AmeriFlux and EuroFlux.
Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; ...
2015-11-09
Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO 2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms,more » biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO 2 and CH 4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. In order to successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following; 1. data acquisition and control system – set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system – set of hardware and software to deliver data to a central depository for storage and further processing; and 3. data management plan – set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an efficient data system for managing high volume sources of in situ observations in a remote, harsh environmental location. Finally, the approach covers data flow starting from the sensors and ending at the archival/distribution points, discusses types of hardware and software used, examines design considerations that were used to choose them, and describes the data management practices chosen to control and enhance the value of the data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozas-Vásquez, Daniel, E-mail: danielrozas@gmail.com; Laboratorio de Planificación Territorial, Universidad Católica de Temuco, Rudecindo ortega, 02950 Temuco; Fürst, Christine
Integrating an ecosystem services (ES) approach into Strategic Environmental Assessment (SEA) of spatial plans potentially enhances the consideration of the value of nature in decision making and policy processes. However, there is increasing concern about the institutional context and a lack of a common understanding of SEA and ecosystem services for adopting them as an integrated framework. This paper addresses this concern by analysing the current understanding and network relations in a multi-actor arrangement as a first step towards a successful integration of ES in SEA and spatial planning. Our analysis focuses on a case study in Chile, where wemore » administered a questionnaire survey to some of the main actors involved in the spatial planning process. The questionnaire focused on issues such as network relations among actors and on conceptual understanding, perceptions and challenges for integrating ES in SEA and spatial planning, knowledge on methodological approaches, and the connections and gaps in the science-policy interface. Our findings suggest that a common understanding of SEA and especially of ES in a context of multiple actors is still at an initial stage in Chile. Additionally, the lack of institutional guidelines and methodological support is considered the main challenge for integration. We conclude that preconditions exist in Chile for integrating ES in SEA for spatial planning, but they strongly depend on appropriate governance schemes that promote a close science-policy interaction, as well as collaborative work and learning. - Highlights: • Linking ecosystem services in SEA is an effective framework for sustainability. • Multi-actor understanding and networks in ecosystem services and SEA were analyzed. • Understanding of SEA and especially of ES is still in an initial stage in Chile. • A lack of institutional guidelines is one of the key challenges for this link.« less
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu
2016-04-01
Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non-dominated sorting genetic algorithm II (NSGA-II), Sustainable water resources management, Flow regime, River ecosystem.
Rebecca L. Flitcroft; Kelly M. Burnett; Gordon H. Reeves; Lisa M. Ganio
2012-01-01
Aquatic ecologists are working to develop theory and techniques for analysis of dynamic stream processes and communities of organisms. Such work is critical for the development of conservation plans that are relevant at the scale of entire ecosystems. The stream network is the foundation upon which stream systems are organized. Natural and human disturbances in streams...
Michelle Moorman; Sharon Fitzgerald; Keith Loftin; Elizabeth Fensin
2016-01-01
The U.S. Geological Surveyâs (USGS) is implementing a demonstration project in the Albemarle Sound for the National Monitoring Network for U.S. coastal waters and their tributaries. The goal of the National Monitoring Network is to provide information about the health of our oceans and coastal ecosystems and inland influences on coastal waters for improved resource...
Bailly, Jean-Stéphane; Vinatier, Fabrice
2018-01-01
To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads. PMID:29360857
Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice
2018-01-01
To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads.
Li, Wen-Jie; Zhang, Shi-Huang; Wang, Hui-Min
2011-12-01
Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.
Tidal extension and sea-level rise: recommendations for a research agenda
Ensign, Scott H.; Noe, Gregory
2018-01-01
Sea-level rise is pushing freshwater tides upstream into formerly non-tidal rivers. This tidal extension may increase the area of tidal freshwater ecosystems and offset loss of ecosystem functions due to salinization downstream. Without considering how gains in ecosystem functions could offset losses, landscape-scale assessments of ecosystem functions may be biased toward worst-case scenarios of loss. To stimulate research on this concept, we address three fundamental questions about tidal extension: Where will tidal extension be most evident, and can we measure it? What ecosystem functions are influenced by tidal extension, and how can we measure them? How do watershed processes, climate change, and tidal extension interact to affect ecosystem functions? Our preliminary answers lead to recommendations that will advance tidal extension research, enable better predictions of the impacts of sea-level rise, and help balance the landscape-scale benefits of ecosystem function with costs of response.
[Impacts of cross-habitat resource subsidies on ecosystems: A review.
Zhang, Yi Xin; Xiang, Hong Yong
2017-02-01
The flux of matter, energy and nutrients across ecosystems, i.e., resource subsidy, is a fundamental attribute of ecosystems, as well as one of basic research questions in ecology. Common subsidies include leaf litter and terrestrial insects that fall into waters, the adults of aquatic insects, spawning salmon. The allocthonous input of resource subsidy can influence individual organisms, populations, communities, biodiversity and ecosystem functioning, such as enhancing individual growth, increasing species abundance and diversity, affecting community structure, enhancing secondary productivity, influencing food-chain length and food web. Due to increased human impacts on environments, especially at aspects of land use, climate change and invasive species, the influence of anthropogenic disturbance on cross-ecosystem resource subsidies will be intensified at both spacial and temporary scales, so that ecosystems will face severer threats. Accordingly, future ecological researches in this field should emphasize the following aspects: impacts of single and multiple stressors on subsidies and ecosystems, implementation of dynamic resource subsidies on ecosystem restoration and management, the dark sides of subsidy relating with pollutants, and basic ecological research on cross-ecosystem resource subsidy in tropics and sub-tropics, as well in China.
Ntofon, Okung-Dike; Channegowda, Mayur P; Efstathiou, Nikolaos; Rashidi Fard, Mehdi; Nejabati, Reza; Hunter, David K; Simeonidou, Dimitra
2013-02-25
In this paper, a novel Software-Defined Networking (SDN) architecture is proposed for high-end Ultra High Definition (UHD) media applications. UHD media applications require huge amounts of bandwidth that can only be met with high-capacity optical networks. In addition, there are requirements for control frameworks capable of delivering effective application performance with efficient network utilization. A novel SDN-based Controller that tightly integrates application-awareness with network control and management is proposed for such applications. An OpenFlow-enabled test-bed demonstrator is reported with performance evaluations of advanced online and offline media- and network-aware schedulers.
Dynamical implications of bi-directional resource exchange within a meta-ecosystem.
Messan, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel C; Kang, Yun
2018-05-05
The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018 Elsevier Inc. All rights reserved.
Haruta, Shin; Yoshida, Takehito; Aoi, Yoshiteru; Kaneko, Kunihiko; Futamata, Hiroyuki
2013-01-01
In the past couple of decades, molecular ecological techniques have been developed to elucidate microbial diversity and distribution in microbial ecosystems. Currently, modern techniques, represented by meta-omics and single cell observations, are revealing the incredible complexity of microbial ecosystems and the large degree of phenotypic variation. These studies propound that microbiological techniques are insufficient to untangle the complex microbial network. This minireview introduces the application of advanced mathematical approaches in combination with microbiological experiments to microbial ecological studies. These combinational approaches have successfully elucidated novel microbial behaviors that had not been recognized previously. Furthermore, the theoretical perspective also provides an understanding of the plasticity, robustness and stability of complex microbial ecosystems in nature. PMID:23995424
NASA Astrophysics Data System (ADS)
Halem, M.; Dorband, J.; Rao, R.; Lomonaco, S.; Chapman, D. R.; LeMoigne, J.; Nearing, G. S.; Pelissier, C. S.; Simpson, D. G.; Clune, T.
2014-12-01
Recent aircraft measurements from scattered records have shown long-term, global, seasonal photosynthetic CO2 uptake over land accelerating over the past 50 years. The successful launch of the sun-synchronous Orbiting Carbon Observatory 2 (OCO-2) on July 2, 2014 is expected to provide global, high spatial and spectral resolution datasets of vertical CO2 concentrations with surface spectral resolutions capable of yielding accurate CO2 flux profiles. It is unclear whether the biosphere will continue to act as a sink for anthropogenic CO2 loading of the atmosphere. Since current climate models with detailed terrestrial ecosystems are unable to simulate the observed increase in net ecosystem production (NEP), we will conduct assimilation studies with the derived CO2 fluxes in the GSFC Land Information System hydrological model to validate the generated NEP uptake. Further, we plan to use the OCO-2 CO2 concentrations to train a neural network to enable the calculation of long term trends from a decade of AIRS CO2 concentration data to produce regional NEP. To address this important Big Data science issue, a multi-institutional collaboration was formed to leverage their combined resources and the expertise of the researchers at the NASA GSFC, the Lamont Doherty Earth Observatory and UMBC. We will employ a high speed 10Gb network to connect the collaborating researchers and provide them with remote access to dedicated computational hybrid multicore resources at UMBC, as well as access to an archive containing more than a decade of readily accessible continuous daily gridded AIRS data and ten years of daily MODIS data for each September. The status of the following research efforts is planned to be presented; (i) acquisition and processing of the expected CO2 profile data from OCO-2 for two test sites, a low latitude region over the Amazon and a Boral forest at high latitude, (ii) initial impact of 3-D data assimilation of CO2 fluxes with the advanced Goddard LIS hydrological surface model, (iii) preliminary results in training AIRS CO2 data. In addition, early results of innovative exploration on quantum annealing optimization for 3-D data assimilation, image registration and a Hopfield neural network for training the AIRS CO2 spectral data through UMBC remote access to the D-Wave system in Vancouver, CA, will be introduced.
A strategy to sample nutrient dynamics across the terrestrial-aquatic interface at NEON sites
NASA Astrophysics Data System (ADS)
Hinckley, E. S.; Goodman, K. J.; Roehm, C. L.; Meier, C. L.; Luo, H.; Ayres, E.; Parnell, J.; Krause, K.; Fox, A. M.; SanClements, M.; Fitzgerald, M.; Barnett, D.; Loescher, H. W.; Schimel, D.
2012-12-01
The construction of the National Ecological Observatory Network (NEON) across the U.S. creates the opportunity for researchers to investigate biogeochemical transformations and transfers across ecosystems at local-to-continental scales. Here, we examine a subset of NEON sites where atmospheric, terrestrial, and aquatic observations will be collected for 30 years. These sites are located across a range of hydrological regimes, including flashy rain-driven, shallow sub-surface (perched, pipe-flow, etc), and deep groundwater, which likely affect the chemical forms and quantities of reactive elements that are retained and/or mobilized across landscapes. We present a novel spatial and temporal sampling design that enables researchers to evaluate long-term trends in carbon, nitrogen, and phosphorus biogeochemical cycles under these different hydrological regimes. This design focuses on inputs to the terrestrial system (atmospheric deposition, bulk precipitation), transfers (soil-water and groundwater sources/chemistry), and outputs (surface water, and evapotranspiration). We discuss both data that will be collected as part of the current NEON design, as well as how the research community can supplement the NEON design through collaborative efforts, such as providing additional datasets, including soil biogeochemical processes and trace gas emissions, and developing collaborative research networks. Current engagement with the research community working at the terrestrial-aquatic interface is critical to NEON's success as we begin construction, to ensure that high-quality, standardized and useful data are not only made available, but inspire further, cutting-edge research.
RISK MANAGEMENT RESEARCH PLAN FOR ECOSYSTEM RESTORATION IN WATERSHEDS
This document outlines the scope of National Risk Management Laboratory (NRMRL) risk management research in the area of ecosystem restoration. NRMRL is uniquely positioned to make substantial contributions to ecosystem science because of its in-house expertise relative to surfac...
Identifying Ecosystem Services of Rivers and Streams Through Content Analysis
While much ecosystem services research focuses on analysis such as mapping and/or valuation, fewer research efforts are directed toward in-depth understanding of the specific ecological quantities people value. Ecosystem service monitoring and analysis efforts and communications ...
NASA Astrophysics Data System (ADS)
Wyborn, L. A.; Woodcock, R.
2013-12-01
One of the greatest drivers for change in the way scientific research is undertaken in Australia was the development of the Australian eResearch Infrastructure which was coordinated by the then Australian Government Department of Innovation, Industry, Science and Research. There were two main tranches of funding: the 2007-2013 National Collaborative Research Infrastructure Strategy (NCRIS) and the 2009 Education and Investment Framework (EIF) Super Science Initiative. Investments were in two areas: the Australian e-Research Infrastructure and domain specific capabilities: combined investment in both is 1,452M with at least 456M being invested in eResearch infrastructure. NCRIS was specifically designed as a community-guided process to provide researchers, both academic and government, with major research facilities, supporting infrastructures and networks necessary for world-class research. Extensive community engagement was sought to inform decisions on where Australia could best make strategic infrastructure investments to further develop its research capacity and improve research outcomes over the next 5 to 10years. The current (2007-2014) Australian e-Research Infrastructure has 2 components: 1. The National eResearch physical infrastructure which includes two petascale HPC facilities (one in Canberra and one in Perth), a 10 Gbps national network (National Research Network), a national data storage infrastructure comprising 8 multi petabyte data stores and shared access methods (Australian Access Federation). 2. A second component is focused on research integration infrastructures and includes the Australian National Data Service, which is concerned with better management, description and access to distributed research data in Australia and the National eResearch Collaboration Tools and Resources (NeCTAR) project. NeCTAR is centred on developing problem oriented digital laboratories which provide better and coordinated access to research tools, data environments and workflows. The eResearch Infrastructure Stack is designed to support 12 individual domain-specific capabilities. Four are relevant to the Earth and Space Sciences: (1) AuScope (a national Earth Science Infrastructure Program), (2) the Integrated Marine Observing System (IMOS), (3) the Terrestrial Ecosystems Research Network (TERN) and (4) the Australian Urban Research Infrastructure Network (AURIN). The two main research integration infrastructures, ANDS and NeCTAR, are seen as pivotal to the success of the Australian eResearch Infrastructure. Without them, there was a risk that that the investments in new computers and data storage would provide physical infrastructure, but few would come to use it as the skills barriers to entry were too high. ANDS focused on transforming Australia's research data environment. Its flagship is Research Data Australia, an Internet-based discovery service designed to provide rich connections between data, projects, researchers and institutions, and promote visibility of Australian research data collections in search engines. NeCTAR focused on building eResearch infrastructure in four areas: virtual laboratories, tools, a federated research cloud and a hosting service. Combined, ANDS and NeCTAR are ensuring that people ARE coming and ARE using the physical infrastructures that were built.
Sorani, Marco D.
2012-01-01
Information technology (IT) adoption enables biomedical research. Publications are an accepted measure of research output, and network models can describe the collaborative nature of publication. In particular, ecological networks can serve as analogies for publication and technology adoption. We constructed network models of adoption of bioinformatics programming languages and health IT (HIT) from the literature. We selected seven programming languages and four types of HIT. We performed PubMed searches to identify publications since 2001. We calculated summary statistics and analyzed spatiotemporal relationships. Then, we assessed ecological models of specialization, cooperativity, competition, evolution, biodiversity, and stability associated with publications. Adoption of HIT has been variable, while scripting languages have experienced rapid adoption. Hospital systems had the largest HIT research corpus, while Perl had the largest language corpus. Scripting languages represented the largest connected network components. The relationship between edges and nodes was linear, though Bioconductor had more edges than expected and Perl had fewer. Spatiotemporal relationships were weak. Most languages shared a bioinformatics specialization and appeared mutualistic or competitive. HIT specializations varied. Specialization was highest for Bioconductor and radiology systems. Specialization and cooperativity were positively correlated among languages but negatively correlated among HIT. Rates of language evolution were similar. Biodiversity among languages grew in the first half of the decade and stabilized, while diversity among HIT was variable but flat. Compared with publications in 2001, correlation with publications one year later was positive while correlation after ten years was weak and negative. Adoption of new technologies can be unpredictable. Spatiotemporal relationships facilitate adoption but are not sufficient. As with ecosystems, dense, mutualistic, specialized co-habitation is associated with faster growth. There are rapidly changing trends in external technological and macroeconomic influences. We propose that a better understanding of how technologies are adopted can facilitate their development. PMID:22279593
River Networks As Ecological Corridors for Species, Populations and Pathogens of Water-Borne Disease
NASA Astrophysics Data System (ADS)
Rinaldo, A.
2014-12-01
River basins are a natural laboratory for the study of the integration of hydrological, ecological and geomorphological processes. Moving from morphological and functional analyses of dendritic geometries observed in Nature over a wide range of scales, this Lecture addresses essential ecological processes that take place along dendritic structures, hydrology-driven and controlled, like e.g.: population migrations and human settlements, that historically proceeded along river networks to follow water supply routes; riparian ecosystems composition that owing to their positioning along streams play crucial roles in their watersheds and in the loss of biodiversity proceeding at unprecedented rates; waterborne disease spreading, like epidemic cholera that exhibits epidemic patterns that mirror those of watercourses and of human mobility and resurgences upon heavy rainfall. Moreover, the regional incidence of Schistosomiasis, a parasitic waterborne disease, and water resources developments prove tightly related, and proliferative kidney disease in fish thrives differently in pristine and engineered watercourses: can we establish quantitatively the critical linkages with hydrologic drivers and controls? How does connectivity within a river network affect community composition or the spreading mechanisms? Does the river basin act as a template for biodiversity or for species' persistence? Are there hydrologic controls on epidemics of water-borne disease? Here, I shall focus on the noteworthy scientific perspectives provided by spatially explicit eco-hydrological studies centered on river networks viewed as ecological corridors for species, populations and pathogens of waterborne disease. A notable methodological coherence is granted by the mathematical description of river networks as the support for reactive transport. The Lecture overviews a number of topics idiosyncratically related to my own research work but ideally aimed at a coherent body of materials and methods. A theory is thus argued to emerge on the role of dendritic geometries as environmental support for ecological dynamics and processes - a fun and possibly even instructive novel research field, possibly a hotspot of eco-hydrologic research in the years to come.
The constructed catchment Chicken Creek as Critical Zone Observatory under transition
NASA Astrophysics Data System (ADS)
Gerwin, Werner; Schaaf, Wolfgang; Elmer, Michael; Hinz, Christoph
2014-05-01
The constructed catchment Chicken Creek was established in 2005 as an experimental landscape laboratory for ecosystem research. The 6 ha area with clearly defined horizontal as well as vertical boundary conditions was left for an unrestricted primary succession. All Critical Zone elements are represented at this site, which allows the study of most processes occurring at the interface of bio-, pedo-, geo- and hydrosphere. It provides outstanding opportunities for investigating interactions and feedbacks between different evolving compartments during ecosystem development. The catchment is extensively instrumented since 2005 in order to detect transition stages of the ecosystem. Data recorded with a high spatial and temporal resolution include hydrological, geomorphological, pedological, limnological as well as biological parameters. In contrast to other Critical Zone Observatories, this site offers the unique situation of an early stage ecosystem with highly dynamic system properties. The first years of development were characterized by a fast formation of geomorphological structures due to massive erosion processes at the initially non-vegetated surface. Hydrological processes led to the establishment of a local groundwater body within 5 years. In the following years the influence of biological structures like vegetation patterns gained an increasing importance. Feedbacks between developing vegetation and e.g. hydrological features became more and more dominant. As a result, different phases of ecosystem development could be distinguished until now. This observatory offers manifold possibilities to identify and disentangle complex interactions between Critical Zone processes in situ under natural conditions. The originally low complexity of the system is growing with time facilitating the identification of influences of newly developing structures on system functions. Thus, it is possible to study effects of small-scale processes on the whole system at the landscape scale. In addition, the highly dynamic initial system properties allow the observation of multifaceted changes of Critical Zone properties and functions within short periods of time. Chicken Creek could complement the existing network of Critical Zone Observatories which are usually established at ecosystems in a mature state.
NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH
This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...
Real-Time Communication Support for Underwater Acoustic Sensor Networks †.
Santos, Rodrigo; Orozco, Javier; Micheletto, Matias; Ochoa, Sergio F; Meseguer, Roc; Millan, Pere; Molina, And Carlos
2017-07-14
Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios.
Real-Time Communication Support for Underwater Acoustic Sensor Networks †
Santos, Rodrigo; Orozco, Javier; Micheletto, Matias
2017-01-01
Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios. PMID:28708093
[Research progress of ecosystem service flow.
Liu, Hui Min; Fan, Yu Long; Ding, Sheng Yan
2016-07-01
With the development of social economy, human disturbance has resulted in a variety of ecosystem service degradation or disappearance. Ecosystem services flow plays an important role in delivery, transformation and maintenance of ecosystem services, and becomes one of the new research directions. In this paper, based on the classification of ecosystem services flow, we analyzed ecosystem service delivery carrier, and investigated the mechanism of ecosystem service flow, including the information, property, scale features, quantification and cartography. Moreover, a tentative analysis on cost-effective of ecosystem services flow (such as transportation costs, conversion costs, usage costs and cost of relativity) was made to analyze the consumption cost in ecosystem services flow process. It aimed to analyze dissipation cost in ecosystem services flow process. To a certain extent, the study of ecosystem service flow solved the problem of "double counting" in ecosystem services valuation, which could make a contribution for the sake of recognizing hot supply and consumption spots of ecosystem services. In addition, it would be conducive to maximizing the ecosystem service benefits in the transmission process and putting forward scientific and reasonable ecological compensation.
Green infrastructure and ecosystem services – is the devil in the detail?
Cameron, Ross W. F.; Blanuša, Tijana
2016-01-01
Background Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level, little consideration is given to the composition of the plant communities, yet this is what ultimately defines the extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more fully in identifying those plants that promote various services. Scope Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Conclusions Although research is in its infancy, data are being generated that relate plant traits to specific services, thereby helping identify genotypes that optimize service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few ‘functional’ genotypes. Therefore, further information is required on how to design plant communities where the plants identified (1) provide more than a single benefit (multifunctionality), (B) complement each other in maximizing the range of benefits that can be delivered in one location, and (3) continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and potentially high-impact arena for plant science. PMID:27443302
Green infrastructure and ecosystem services - is the devil in the detail?
Cameron, Ross W F; Blanuša, Tijana
2016-09-01
Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level, little consideration is given to the composition of the plant communities, yet this is what ultimately defines the extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more fully in identifying those plants that promote various services. Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Although research is in its infancy, data are being generated that relate plant traits to specific services, thereby helping identify genotypes that optimize service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few 'functional' genotypes. Therefore, further information is required on how to design plant communities where the plants identified (1) provide more than a single benefit (multifunctionality), (B) complement each other in maximizing the range of benefits that can be delivered in one location, and (3) continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and potentially high-impact arena for plant science. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapid changes in the permafrost soil carbon pool in response to warming
NASA Astrophysics Data System (ADS)
Schuur, E.; Plaza, C.; Pegoraro, E.; Bracho, R. G.; Celis, G.; Crummer, K. G.; Hutchings, J. A.; Hicks Pries, C.; Mauritz, M.; Natali, S.; Salmon, V. G.; Schaedel, C.; Webb, E.
2017-12-01
Current evidence suggests that 5 to 15% of the vast pool of soil carbon stored in northern permafrost zone ecosystems could be emitted as greenhouse gases by 2100 under the current path of global warming. Despite this forecasted release of billions of tons of additional carbon to the atmosphere that would accelerate climate change, direct measurements of change in soil carbon remain scarce and are not typically part of planned Arctic research and observation networks. This is largely because of ground subsidence that occurs as high-ice permafrost (perennially-frozen) soils begin to thaw. Profound physical alterations to the soil profile confound the application of traditional methods for quantifying carbon pool changes to fixed depths or using soil horizons. These issues can be overcome if carbon is quantified in relation to a fixed ash content, which uses the relatively stable mineral component of soil as a metric for pool comparisons through time. Here we apply this approach and show a 26% (95% confidence interval: 12, 39) loss in soil carbon over five years across both experimentally warmed and ambient tundra ecosystems at a site in Alaska where permafrost is degrading due to climate change. Losses were primarily concentrated in the middle of the soil profile, whereas any soil carbon losses from the surface were likely replaced with new carbon inputs from increased plant productivity. These surprisingly large losses overwhelmed increased plant biomass carbon uptake and were not fully detected by measurements of ecosystem-atmosphere carbon dioxide exchange. This research highlights the potential to directly detect changes in the soil carbon pool of this rapidly transforming landscape, and that current methodologies for quantifying ecosystem carbon dynamics may be underestimating soil losses. It also points to the need to make repeat soil carbon pool measurements at sentinel sites across permafrost regions, as this feedback to climate change may be occurring faster than previously thought.
NASA Astrophysics Data System (ADS)
Endalamaw, A. M.; Bolton, W. R.; Young, J. M.; Morton, D.; Hinzman, L. D.
2013-12-01
The sub-arctic environment can be characterized as being located in the zone of discontinuous permafrost. Although the distribution of permafrost is site specific, it dominates many of the hydrologic and ecologic responses and functions including vegetation distribution, stream flow, soil moisture, and storage processes. In this region, the boundaries that separate the major ecosystem types (deciduous dominated and coniferous dominated ecosystems) as well as permafrost (permafrost verses non-permafrost) occur over very short spatial scales. One of the goals of this research project is to improve parameterizations of meso-scale hydrologic models in this environment. Using the Caribou-Poker Creeks Research Watershed (CPCRW) as the test area, simulations of the headwater catchments of varying permafrost and vegetation distributions were performed. CPCRW, located approximately 50 km northeast of Fairbanks, Alaska, is located within the zone of discontinuous permafrost and the boreal forest ecosystem. The Variable Infiltration Capacity (VIC) model was selected as the hydrologic model. In CPCRW, permafrost and coniferous vegetation is generally found on north facing slopes and valley bottoms. Permafrost free soils and deciduous vegetation is generally found on south facing slopes. In this study, hydrologic simulations using fine scale vegetation and soil parameterizations - based upon slope and aspect analysis at a 50 meter resolution - were conducted. Simulations were also conducted using downscaled vegetation from the Scenarios Network for Alaska and Arctic Planning (SNAP) (1 km resolution) and soil data sets from the Food and Agriculture Organization (FAO) (approximately 9 km resolution). Preliminary simulation results show that soil and vegetation parameterizations based upon fine scale slope/aspect analysis increases the R2 values (0.5 to 0.65 in the high permafrost (53%) basin; 0.43 to 0.56 in the low permafrost (2%) basin) relative to parameterization based on coarse scale data. These results suggest that using fine resolution parameterizations can be used to improve meso-scale hydrological modeling in this region.
Bähner, K W; Zweig, K A; Leal, I R; Wirth, R
2017-10-01
Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.
Working with NASA's OSS E/PO Support Network
NASA Astrophysics Data System (ADS)
Miner, E. D.; Lowes, L. L.
2001-11-01
With greater and greater emphasis on the inclusion of a public engagement component in all government-supported research funding, many members of the DPS are finding it difficult to find sufficient time and funding to develop a wide-reaching and effective E/PO program. NASA's Office of Space Science, over the last five years, has built a Support Network to assist its funded scientists to establish partnerships with local and/or national science formal or informal education organizations, who are anxious to connect with and use the expertise of space scientists. The OSS Support Network consists of four theme-based 'Forums,' including the Solar System Exploration (SSE) Forum, specifically designed for working with planetary scientists, and seven regional 'Brokers-Facilitators' who are more familiar with partnership and other potential avenues for involvement by scientists. The services provided by the Support Network are free to both the scientists and their potential partners and is not limited to NASA-funded scientists. In addition to its assistance to space scientists, the Support Network is involved in a number of other overarching efforts, including support of a Solar System Ambassador Program, a Solar System Educator Program, Space Place (web and e-mail science products for libraries and small planetariums and museums), an on-line Space Science Resource Directory, annual reports of Space Science E/PO activity, identifying and filling in 'holes' and 'over-populations' in a solar system E/PO product matrix of grade level versus product versus content, research on product effectiveness, and scientific and educational evaluation of space science products. Forum and Broker-Facilitator contact information is available at http://spacescience.nasa.gov/education/resources/ecosystem/index.htm. Handouts with additional information will be available at the meeting.
Facing uncertainty in ecosystem services-based resource management.
Grêt-Regamey, Adrienne; Brunner, Sibyl H; Altwegg, Jürg; Bebi, Peter
2013-09-01
The concept of ecosystem services is increasingly used as a support for natural resource management decisions. While the science for assessing ecosystem services is improving, appropriate methods to address uncertainties in a quantitative manner are missing. Ignoring parameter uncertainties, modeling uncertainties and uncertainties related to human-environment interactions can modify decisions and lead to overlooking important management possibilities. In this contribution, we present a new approach for mapping the uncertainties in the assessment of multiple ecosystem services. The spatially explicit risk approach links Bayesian networks to a Geographic Information System for forecasting the value of a bundle of ecosystem services and quantifies the uncertainties related to the outcomes in a spatially explicit manner. We demonstrate that mapping uncertainties in ecosystem services assessments provides key information for decision-makers seeking critical areas in the delivery of ecosystem services in a case study in the Swiss Alps. The results suggest that not only the total value of the bundle of ecosystem services is highly dependent on uncertainties, but the spatial pattern of the ecosystem services values changes substantially when considering uncertainties. This is particularly important for the long-term management of mountain forest ecosystems, which have long rotation stands and are highly sensitive to pressing climate and socio-economic changes. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rohde, J. A.; Bowden, S.; Stephenson, S. N.; Starkweather, S.
2015-12-01
The Interagency Arctic Research Policy Committee (IARPC) envisions a prosperous, sustainable, and healthy Arctic understood through innovative and collaborative research coordinated among Federal agencies and domestic and international partners. IARPC's approach is to harnesses the talent of the scientific and stakeholder community through Federally-run but broadly open collaboration teams, and an innovative website that expands the frontiers of collaborative research. The Obama Administration released the five-year Arctic Research Plan: FY2013-2017 in February 2013. The Plan focuses on advancing knowledge and sustainability of the Arctic by improving collaboration in seven priority research areas: sea ice and marine ecosystems, terrestrial ice and ecosystems, atmospheric studies, observing systems, regional climate models, human health studies, and adaptation tools for communities. From these seven research areas, 12 collaboration teams were formed to respond to the 145 milestones laid out in the Plan. The collaboration teams are charged with enhancing inter-institutional and interdisciplinary implementation of scientific research on local, regional, and circumpolar environmental and societal issues in the Arctic. The collaboration teams are co-chaired by Federal program managers, and, in some cases, external partners and are open to research and stakeholder communities. They meet on a regular basis by web- or teleconference to inform one another about ongoing and planned programs and new research results, as well as to inventory existing programs, identify gaps in knowledge and research, and address and implement the Plan's milestones. In-between meetings, team members communicate via our innovative, user-driven, collaboration website. Members share information about their research activities by posting updates, uploading documents, and including events on our calendar, and entering into dialogue about their research activities. Conversations taking place on the website are open to any other member, enabling new talent to enter into conversations and collaborations to form.
Blacklist Ecosystem Analysis Update: 2014
2014-12-01
example, we checked to see if any of the blacklisted IP addresses were known sinkhole IP addresses. This information would essentially invalidate the...indicator as an indicator of malicious activity, since sinkholes are operated by CERTCC-2014-82 4 Blacklist Ecosystem Analysis CERT/CC network defenders who...clean up and collect intelligence on threats. Only one list out of 67, LI_3, contained any sinkhole IP addresses and that list contained only 10. All
Content analysis to document publicly valued ecosystem services of rivers and streams
While much ecosystem services research focuses on analysis such as mapping and/or valuation, fewer research efforts are directed toward in-depth understanding of the specific ecological quantities people value. Ecosystem service monitoring and analysis efforts and communications ...
The objective of the Office of Research and Development (ORD) ecosystem restoration research strategy is to evaluate the effectiveness of restoration and management practices for achieving desired environmental conditions that protect and enhance ecosystem services for society. T...
Status of the US EPA’s National Atlas of Ecosystem Services
The US Environmental Protection Agency’s (USEPA) Ecosystem Services Research Program (ESRP) is focused on transdisciplinary research to develop tools to enable decision-makers at all levels of governance to proactively conserve ecosystems services. A major product from the ESRP ...
Biodiversity and ecosystem functioning in evolving food webs.
Allhoff, K T; Drossel, B
2016-05-19
We use computer simulations in order to study the interplay between biodiversity and ecosystem functioning (BEF) during both the formation and the ongoing evolution of large food webs. A species in our model is characterized by its own body mass, its preferred prey body mass and the width of its potential prey body mass spectrum. On an ecological time scale, population dynamics determines which species are viable and which ones go extinct. On an evolutionary time scale, new species emerge as modifications of existing ones. The network structure thus emerges and evolves in a self-organized manner. We analyse the relation between functional diversity and five community level measures of ecosystem functioning. These are the metabolic loss of the predator community, the total biomasses of the basal and the predator community, and the consumption rates on the basal community and within the predator community. Clear BEF relations are observed during the initial build-up of the networks, or when parameters are varied, causing bottom-up or top-down effects. However, ecosystem functioning measures fluctuate only very little during long-term evolution under constant environmental conditions, despite changes in functional diversity. This result supports the hypothesis that trophic cascades are weaker in more complex food webs. © 2016 The Author(s).
Fournier, Bertrand; Mouly, Arnaud; Gillet, François
2016-01-01
Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754
NASA Astrophysics Data System (ADS)
Sheldon, W.
2013-12-01
Managing data for a large, multidisciplinary research program such as a Long Term Ecological Research (LTER) site is a significant challenge, but also presents unique opportunities for data stewardship. LTER research is conducted within multiple organizational frameworks (i.e. a specific LTER site as well as the broader LTER network), and addresses both specific goals defined in an NSF proposal as well as broader goals of the network; therefore, every LTER data can be linked to rich contextual information to guide interpretation and comparison. The challenge is how to link the data to this wealth of contextual metadata. At the Georgia Coastal Ecosystems LTER we developed an integrated information management system (GCE-IMS) to manage, archive and distribute data, metadata and other research products as well as manage project logistics, administration and governance (figure 1). This system allows us to store all project information in one place, and provide dynamic links through web applications and services to ensure content is always up to date on the web as well as in data set metadata. The database model supports tracking changes over time in personnel roles, projects and governance decisions, allowing these databases to serve as canonical sources of project history. Storing project information in a central database has also allowed us to standardize both the formatting and content of critical project information, including personnel names, roles, keywords, place names, attribute names, units, and instrumentation, providing consistency and improving data and metadata comparability. Lookup services for these standard terms also simplify data entry in web and database interfaces. We have also coupled the GCE-IMS to our MATLAB- and Python-based data processing tools (i.e. through database connections) to automate metadata generation and packaging of tabular and GIS data products for distribution. Data processing history is automatically tracked throughout the data lifecycle, from initial import through quality control, revision and integration by our data processing system (GCE Data Toolbox for MATLAB), and included in metadata for versioned data products. This high level of automation and system integration has proven very effective in managing the chaos and scalability of our information management program.
Design of a water quality monitoring network for the Limpopo River Basin in Mozambique
NASA Astrophysics Data System (ADS)
Chilundo, M.; Kelderman, P.; O´keeffe, J. H.
The measurement of chemical, physical and biological parameters is important for the characterization of streams health. Thus, cost-effective and targeted water quality (WQ) monitoring programmes are required for proper assessment, restoration and protection of such systems. This research proposes a WQ monitoring network for the Limpopo River Basin (LRB) in Mozambique located in Southern Africa, a region prone to severe droughts. In this Basin both anthropogenic and natural driven processes, exacerbated by the increased water demand by the four riparian countries (Botswana, South Africa, Zimbabwe and Mozambique) are responsible for the degradation of surface waters, impairing their downstream use, either for aquatic ecosystem, drinking, industrial or irrigation. Hence, physico-chemical, biological and microbiological characteristics at 23 sites within the basin were studied in November 2006 and January 2007. The physico-chemical and microbiological samples were analyzed according to American Public Health Association (APHA) standard methods, while the biological monitoring working party method (BMWP) was used for biological assessment. The assessment of the final WQ condition at sampled points was done taking into account appropriate indexes, the Mozambican standards for receiving waters and the WHO guidelines for drinking WQ. The assessed data indicated that sites located at proximities to the border with upstream countries were contaminated with heavy metals. The Elephants subcatchment was found with a relatively better WQ, whereas the Changane subcatchment together with the effluent point discharges in the basin were found polluted as indicated by the low dissolved oxygen and high total dissolved solids, electric conductivity, total hardness, sodium adsorption ratio and low benthic macroinvertebrates taxa. Significant differences ( p < 0.05) were found for some parameters when the concentrations recorded in November and January were tested, therefore, indicating possible need for monthly monitoring of WQ. From this study it was concluded that a systematic WQ monitoring network composed of 16 stations would fit the conditions of the LRB. Ambient, earl warning, operational and effluents are the main monitoring types recommended. Additional research at a Basin scale was also recommended to identify the major sources of pollution, their transport and impacts to the downstream ecosystem.
The Nitrogen Footprint Tool Network: A Multi-Institution Program To Reduce Nitrogen Pollution
Leach, Allison M.; Leary, Neil; Baron, Jill; Compton, Jana E.; Galloway, James N.; Hastings, Meredith G.; Kimiecik, Jacob; Lantz-Trissel, Jonathan; de la Reguera, Elizabeth; Ryals, Rebecca
2017-01-01
Abstract Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This article uses the Nitrogen Footprint Tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this article, the first seven completed institution nitrogen footprint results are presented. The Nitrogen Footprint Tool Network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher education sustainability community. The Nitrogen Footprint Tool Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as by reducing dependence on fossil fuels for energy. PMID:29350216
The Nitrogen Footprint Tool network: A multi-institution program to reduce nitrogen pollution
Castner, Elizabeth A.; Leah, Allison M.; Leary, Neal; Baron, Jill S.; Compton, Jana E.; Galloway, James N.; Hastings, Meredith G.; Kimiecik, Jacob; Lantz-Trissel, Jonathan; de la Riguera, Elizabeth; Ryals, Rebecca
2017-01-01
Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this paper, the first seven completed institution nitrogen footprint results are presented. The institution NFT network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher-ed sustainability community. The NFT Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as reducing dependence on fossil fuels for energy.
García-Gómez, H; Garrido, J L; Vivanco, M G; Lassaletta, L; Rábago, I; Àvila, A; Tsyro, S; Sánchez, G; González Ortiz, A; González-Fernández, I; Alonso, R
2014-07-01
The Mediterranean Basin presents an extraordinary biological richness but very little information is available on the threat that air pollution, and in particular reactive nitrogen (N), can pose to biodiversity and ecosystem functioning. This study represents the first approach to assess the risk of N enrichment effects on Spanish ecosystems. The suitability of EMEP and CHIMERE air quality model systems as tools to identify those areas where effects of atmospheric N deposition could be occurring was tested. For this analysis, wet deposition of NO3(-) and NH4(+) estimated with EMEP and CHIMERE model systems were compared with measured data for the period 2005-2008 obtained from different monitoring networks in Spain. Wet N deposition was acceptably predicted by both models, showing better results for oxidized than for reduced nitrogen, particularly when using CHIMERE. Both models estimated higher wet deposition values in northern and northeastern Spain, and decreasing along a NE-SW axis. Total (wet+dry) nitrogen deposition in 2008 reached maxima values of 19.4 and 23.0 kg N ha(-1) year(-1) using EMEP and CHIMERE models respectively. Total N deposition was used to estimate the exceedance of N empirical critical loads in the Natura 2000 network. Grassland habitats proved to be the most threatened group, particularly in the northern alpine area, pointing out that biodiversity conservation in these protected areas could be endangered by N deposition. Other valuable mountain ecosystems can be also threatened, indicating the need to extend atmospheric deposition monitoring networks to higher altitudes in Spain. Copyright © 2014 Elsevier B.V. All rights reserved.
Experimental forests and ranges as a network for for long-term data
Martin Vavra; John Mitchell
2010-01-01
In the new millennium, national leaders and policymakers are facing profound issues regarding people and the environment. Experimental Forests and Ranges (EFRs), managed by the Forest Service, U.S. Department of Agriculture (USDA), form a network of locations amenable to the development of long-term data collection across many major ecosystems of the continental United...
Transnational corporations as 'keystone actors' in marine ecosystems.
Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Crona, Beatrice; Troell, Max; Merrie, Andrew; Rockström, Johan
2015-01-01
Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons) and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems.
Transnational Corporations as ‘Keystone Actors’ in Marine Ecosystems
Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Crona, Beatrice; Troell, Max; Merrie, Andrew; Rockström, Johan
2015-01-01
Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons) and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems. PMID:26017777
Harnessing long-term flux records to better understand ecosystem response to drought
NASA Astrophysics Data System (ADS)
Novick, K. A.; Ficklin, D. L.; Stoy, P. C.; Williams, C. A.; Bohrer, G.; Oishi, A. C.; Papuga, S. A.; Blanken, P.; Noormets, A.; Scott, R. L.; Wang, L.; Roman, D. T.; Yi, K.; Sulman, B. N.; Phillips, R.
2016-12-01
While ongoing climate change affects a number of meteorological drivers relevant to plant functioning, the predicted increase in the frequency and severity of droughts may ultimately have the biggest impact on ecosystem carbon cycling. Because it is difficult to experimentally manipulate all of the meteorological drivers that change during drought (including precipitation, light, temperature, and humidity), our understanding of the mechanisms by which plants respond to drought is generally limited to an understanding of how plants respond to variable soil moisture. As flux tower records grow in length and number, they permit us to harness natural spatial and temporal variability in hydrologic condition to better understand how ecosystems respond to the full suite of meteorological drivers that change during drought stress. Here, a series of case studies are presented that illustrate how long term flux data can be used to disentangle limitations to ecosystem functioning imposed by declining soil moisture as compared to rising atmospheric demand for water during drought. At the site-level, we pair observations from the Morgan-Monroe State Forest Ameriflux tower (active since 1999) with eco-physiological datasets collected during the severe 2012 Midwestern drought. We show that vapor pressure deficit (VPD) limits ecosystem carbon uptake and transpiration as much as soil moisture, but that individual species vary in their sensitivity to these drivers. We then present results from two cross-site Ameriflux syntheses that quantify how VPD as compared to soil moisture limitations to carbon and water cycling vary across broad climate gradients spanning semi-arid to mesic biomes. Informed by these results, we end by highlighting ways that flux network data may be leveraged together with other eco-physiological networks and databases to further expand our understanding of the mechanisms determining ecosystem response to drought.
Albert, Loren P; Keenan, Trevor F; Burns, Sean P; Huxman, Travis E; Monson, Russell K
2017-05-01
Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study's result became the following study's hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a subalpine forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver-response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate-ecosystem interactions at this site than traditional deductive analyses alone.
ESRP approach to using final ecosystem services
The U.S. Environmental Protection Agency has developed the ecosystem Services Research Program (ESRP) as one of its major research efforts. The goal of this program is to create “A comprehensive theory and practice for quantifying ecosystem services so that their value and their...
Jenkins, Kurt; Woodward, Andrea; Schreiner, Ed
2003-01-01
This report is the result of a five-year collaboration between scientists of the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, Olympic Field Station, and the natural resources staff of Olympic National Park to develop a comprehensive strategy for monitoring natural resources of Olympic National Park. Olympic National Park is the National Park Serviceʼs prototype monitoring park, representing parks in the coniferous forest biome. Under the umbrella of the National Park Serviceʼs prototype parks program, U.S. Geological Survey and Olympic National Park staffs are obligated to:develop strategies and designs for monitoring the long-term health and integrity of national park ecosystems with a significant coniferous forest component.design exportable monitoring protocols that can be used by other parks within the coniferous forest biome (i.e., parks having similar environments), andcreate a demonstration area and ʻcenter of excellenceʼ for assisting other parks in developing ecological monitoring programs.Olympic National Park is part of the North Coast and Cascades Network, a network of seven Pacific Northwestern park units created recently by the National Park Serviceʼs Inventory and Monitoring Program to extend the monitoring of ʻvital signsʼ of park health to all National Park Service units. It is our intent and hope that the monitoring strategies and conceptual models described here will meet the overall purpose of the prototype parks monitoring program in proving useful not only to Olympic National Park, but also to parks within the North Coast and Cascades Network and elsewhere. Part I contains the conceptual design and sampling framework for the prototype long-term monitoring program in Olympic National Park. In this section, we explore key elements of monitoring design that help to ensure the spatial, ecological, and temporal integration of monitoring program elements and discuss approaches used to design an ecosystem-based monitoring program. Basic monitoring components include ecosystem drivers, (e.g., climate, atmospheric inputs, human pressures), indicators of ecosystem integrity (e.g., biogeochemical indicators), known threats (e.g., impacts of introduced mountain goats), and focal or ʻkeyʼ species (e.g., rare or listed species, Roosevelt elk). Monitoring system drivers and key indicators of ecosystem integrity provide the long-term baseline needed to judge what constitutes ʻunnaturalʼ variation in park resources and provide the earliest possible warning of unacceptable change. Monitoring effects of known threats and the status of focal species will provide information useful to park managers for dealing with current park issues. In Part I we describe the process of identifying potential indicators of ecological condition and present conceptual models of park ecosystems. In addition we report results from several workshops held in conjunction with Olympic National Park aimed at identifying potential indicators of change in the parkʼs ecosystem. First, we describe the responses of Olympic National Park staff to the generic question, “What is the most important resource to monitor in Olympic National Park and why?” followed by the responses from resource and land managers from areas adjoining the park. We also catalogue the responses of various expert groups that we asked to help identify the most appropriate system drivers and indicators of change in the Olympic National Park ecosystems. Results of the workshops provided the justification for selecting basic indicators of ecosystem integrity, effects of current threats to park resources, and focal resources of parks to detect both the currently evident and unforeseeable changes in park resources. We conclude Part I by exploring several generic statistical issues relevant to monitoring natural resources in Olympic National Park. Specifically we discuss trade-offs associated with sampling extensively versus sampling intensively in smaller geographic regions and describe a conceptual framework to guide development of a generic sampling frame for monitoring. We recommend partitioning Olympic National Park into three zones of decreasing accessibility to maximize monitoring efficiency. We present examples of how the generic sampling frame could be used to help ensure spatial integration of individual monitoring projects. Part II of the report is a record of the potential monitoring questions and indicators identified to date in our workshops. The presentation is organized according to the major system drivers, components, and processes identified in the intermediate-level working model of the Olympic National Park ecosystem. For each component of the park system, we develop the need and justification for monitoring, articulate park management issues, and describe key resources and ecosystem functions. We also present a pictorial conceptual model of each ecological subsystem, identify monitoring questions, and list potential indicators for each monitoring question. We conclude each section by identifying linkages of indicators to other ecological subsystems in our general ecosystem model, spatial and temporal contexts for monitoring (where and how often to monitor), and research and development needs. Part II represents the most current detailed listing of potential indicators—the material for subsequent discussions of monitoring priorities and selection of indicators for protocol development.Collectively, the sections of this report contain a comprehensive list of the important monitoring questions and potential indicators as well as recommendations for designing an integrated monitoring program. In Part I, Chapter 6 we provide recommendations on how to proceed with the important next steps in the design process: establishing priorities among the many possible monitoring questions and indicators, and beginning to research and design effective long-term monitoring protocols.
NASA Astrophysics Data System (ADS)
Power, M. E.; Limm, M.; Finlay, J. C.; Welter, J.; Furey, P.; Lowe, R.; Hondzo, M.; Dietrich, W. E.; Bode, C. A.; National CenterEarth Surface Dynamics
2011-12-01
Riverine biota live within several networks. Organisms are embedded in food webs, whose structure and dynamics respond to environmental changes down river drainages. In sunlit rivers, food webs are fueled by attached algae. Primary producer biomass in the Eel River of Northwestern California, as in many sunlit, temperate rivers worldwide, is dominated by the macroalga Cladophora, which grows as a hierarchical, branched network. Cladophora proliferations vastly amplify the ecological surface area and the diversity microhabitats available to microbes. Environmental conditions (light, substrate age or stability, flow, redox gradients) change in partially predictable ways along both Cladophora fronds and river drainage networks, from the frond tips (or headwaters) to their base (or river mouth). We are interested in the ecological and biogeochemical consequences, at the catchment scale, of cross-scale interactions of microbial food webs on Cladophora with macro-organismal food webs, as these change down river drainages. We are beginning to explore how seasonal, hydrologic and macro-consumer control over the production and fate of Cladophora and its epiphytes could mediate ecosystem linkages of the river, its watershed, and nearshore marine ecosystems. Of the four interacting networks we consider, the web of microbial interactions is the most poorly known, and possibly the least hierarchical due to the prevalence of metabolic processing chains (waste products of some members become resources for others) and mutualisms.
NASA Astrophysics Data System (ADS)
Galvagno, Marta; Gamon, John; Cremonese, Edoardo; Garrity, Steven; Huemmrich, K. Fred; Filippa, Gianluca; Morra di Cella, Umberto; Rossini, Micol
2017-04-01
Automated canopy-level optical sampling in tandem with ecosystem-atmosphere flux observations is continuously carried on at a variety of ecosystems through the Specnet network (http://specnet.info/). Specifically, 9 sites within US and Europe were selected since 2015, to investigate the use of novel NDVI and PRI low-cost sensors for the analysis of ecosystem functioning and phenology. Different plant functional types, such as grasslands, deciduous, and evergreen forests belong to the network, here we present specific data from the larch (Larix decidua Mill.) forest Italian site. Three automated NDVI and three automated PRI spectral reflectance sensors (Decagon Devices Inc.) were installed in 2015 on the top of the 20-meters eddy covariance tower, pointing toward the west, north, and east orientations. An additional system, composed by one NDVI and PRI system was installed to monitor the understory component. The objective of this analysis is the comparison between these in-situ inexpensive sensors, independent NDVI and PRI sensors (Skye Instruments) previously installed on the 20-meters tower and satellite-derived NDVI. Both MODIS and Sentinel NDVI data were used for the comparison. Moreover, the newly derived chlorophyll/carotenoid index (CCI, Gamon et al. 2016), computed as the normalized difference between the NDVI red band and PRI 532 nm band, was tested to estimate the seasonal pattern of daily Gross Primary Productivity (GPP) of the larch forest. Results showed that the seasonality of NDVI was comparable among in-situ sensors and satellite data, though orientation-specific differences were observed. Both NDVI and CCI tracked daily GPP, but with different sensitivity to its seasonality. Future analysis will be directed toward a comparison between this site-based results with the other sites within the Specnet network.
Cross-disciplinarity in the advance of Antarctic ecosystem research.
Gutt, J; Isla, E; Bertler, A N; Bodeker, G E; Bracegirdle, T J; Cavanagh, R D; Comiso, J C; Convey, P; Cummings, V; De Conto, R; De Master, D; di Prisco, G; d'Ovidio, F; Griffiths, H J; Khan, A L; López-Martínez, J; Murray, A E; Nielsen, U N; Ott, S; Post, A; Ropert-Coudert, Y; Saucède, T; Scherer, R; Schiaparelli, S; Schloss, I R; Smith, C R; Stefels, J; Stevens, C; Strugnell, J M; Trimborn, S; Verde, C; Verleyen, E; Wall, D H; Wilson, N G; Xavier, J C
2018-02-01
The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.