Science.gov

Sample records for ecosystemic level breakthroughs

  1. Integration of molecular functions at the ecosystemic level: breakthroughs and future goals of environmental genomics and post-genomics

    PubMed Central

    Vandenkoornhuyse, Philippe; Dufresne, Alexis; Quaiser, Achim; Gouesbet, Gwenola; Binet, Françoise; Francez, André-Jean; Mahé, Stéphane; Bormans, Myriam; Lagadeuc, Yvan; Couée, Ivan

    2010-01-01

    Environmental genomics and genome-wide expression approaches deal with large-scale sequence-based information obtained from environmental samples, at organismal, population or community levels. To date, environmental genomics, transcriptomics and proteomics are arguably the most powerful approaches to discover completely novel ecological functions and to link organismal capabilities, organism–environment interactions, functional diversity, ecosystem processes, evolution and Earth history. Thus, environmental genomics is not merely a toolbox of new technologies but also a source of novel ecological concepts and hypotheses. By removing previous dichotomies between ecophysiology, population ecology, community ecology and ecosystem functioning, environmental genomics enables the integration of sequence-based information into higher ecological and evolutionary levels. However, environmental genomics, along with transcriptomics and proteomics, must involve pluridisciplinary research, such as new developments in bioinformatics, in order to integrate high-throughput molecular biology techniques into ecology. In this review, the validity of environmental genomics and post-genomics for studying ecosystem functioning is discussed in terms of major advances and expectations, as well as in terms of potential hurdles and limitations. Novel avenues for improving the use of these approaches to test theory-driven ecological hypotheses are also explored. PMID:20426792

  2. Sustainable development level evaluation based on ecosystem services welfare index

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Shi, Z.

    2015-12-01

    Rapidly economic development makes global ecosystem degradation and ecosystem services descent, which aroused people's concern increasingly. A serious of disastrous weather such as sandstorm, haze, and floods become the focus of public. Take an example of the impact on natural ecosystems, firstly, human are over-dependence on the supply services provided by ecosystem, especially the grain, fibers, forest and so on, resulting other ecosystem services decline. Secondly, the raising artificial ecosystems lead to the simplification of system structure and function. End up with environment pollution and habitat fragmentation, which endanger human well-being. Ecosystem Services Welfare Index was introduced into this study. Evaluating the sustainable development level of regional ecology and society by calculating the efficiency of per unit ecosystem services consumption contributes to the human welfare. Welfare is the degree of human satisfaction, including not only the economic level, but also the education, health, and housing. This study will select the human development index (HDI) as the representation of human welfare, and ecosystem services footprint index (ESFI) presenting the ecosystem services consumption. According the results, 31 province in China could be divided into several different type, "high development- low efficiency- high consumption", "low development - high efficiency- low consumption" and "low development- high efficiency- low consumption", which could be evidence for decision makers.

  3. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.

    PubMed

    Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett

    2015-04-24

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.

  4. Developing micro-level urban ecosystem indicators for sustainability assessment

    SciTech Connect

    Dizdaroglu, Didem

    2015-09-15

    Sustainability assessment is increasingly being viewed as an important tool to aid in the shift towards sustainable urban ecosystems. An urban ecosystem is a dynamic system and requires regular monitoring and assessment through a set of relevant indicators. An indicator is a parameter which provides information about the state of the environment by producing a quantitative value. Indicator-based sustainability assessment needs to be considered on all spatial scales to provide efficient information of urban ecosystem sustainability. The detailed data is necessary to assess environmental change in urban ecosystems at local scale and easily transfer this information to the national and global scales. This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. The proposed indicator framework measures the sustainability performance of urban ecosystem in 3 main categories including: natural environment, built environment, and socio-economic environment which are made up of 9 sub-categories, consisting of 23 indicators. This paper also describes theoretical foundations for the selection of each indicator with reference to the literature [Turkish] Highlights: • As the impacts of environmental problems have multi-scale characteristics, sustainability assessment needs to be considered on all scales. • The detailed data is necessary to assess local environmental change in urban ecosystems to provide insights into the national and global scales. • This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. • This paper also describes theoretical foundations for the selection of each indicator with reference to the literature.

  5. Ecosystem-level controls on root-rhizosphere respiration.

    PubMed

    Hopkins, Francesca; Gonzalez-Meler, Miquel A; Flower, Charles E; Lynch, Douglas J; Czimczik, Claudia; Tang, Jianwu; Subke, Jens-Arne

    2013-07-01

    Recent advances in the partitioning of autotrophic from heterotrophic respiration processes in soils in conjunction with new high temporal resolution soil respiration data sets offer insights into biotic and environmental controls of respiration. Besides temperature, many emerging controlling factors have not yet been incorporated into ecosystem-scale models. We synthesize recent research that has partitioned soil respiration into its process components to evaluate effects of nitrogen, temperature and photosynthesis on autotrophic flux from soils at the ecosystem level. Despite the widely used temperature dependence of root respiration, gross primary productivity (GPP) can explain most patterns of ecosystem root respiration (and to some extent heterotrophic respiration) at within-season time-scales. Specifically, heterotrophi crespiration is influenced by a seasonally variable supply of recent photosynthetic products in the rhizosphere. The contribution of stored root carbon (C) to root respiratory fluxes also varied seasonally, partially decoupling the proportion of photosynthetic C driving root respiration. In order to reflect recent insights, new hierarchical models, which incorporate root respiration as a primary function of GPP and which respond to environmental variables by modifying Callocation belowground, are needed for better prediction of future ecosystem C sequestration. PMID:23943914

  6. Ecosystem-level controls on root-rhizosphere respiration.

    PubMed

    Hopkins, Francesca; Gonzalez-Meler, Miquel A; Flower, Charles E; Lynch, Douglas J; Czimczik, Claudia; Tang, Jianwu; Subke, Jens-Arne

    2013-07-01

    Recent advances in the partitioning of autotrophic from heterotrophic respiration processes in soils in conjunction with new high temporal resolution soil respiration data sets offer insights into biotic and environmental controls of respiration. Besides temperature, many emerging controlling factors have not yet been incorporated into ecosystem-scale models. We synthesize recent research that has partitioned soil respiration into its process components to evaluate effects of nitrogen, temperature and photosynthesis on autotrophic flux from soils at the ecosystem level. Despite the widely used temperature dependence of root respiration, gross primary productivity (GPP) can explain most patterns of ecosystem root respiration (and to some extent heterotrophic respiration) at within-season time-scales. Specifically, heterotrophi crespiration is influenced by a seasonally variable supply of recent photosynthetic products in the rhizosphere. The contribution of stored root carbon (C) to root respiratory fluxes also varied seasonally, partially decoupling the proportion of photosynthetic C driving root respiration. In order to reflect recent insights, new hierarchical models, which incorporate root respiration as a primary function of GPP and which respond to environmental variables by modifying Callocation belowground, are needed for better prediction of future ecosystem C sequestration.

  7. Ecosystem-Level Carbon Stocks in Costa Rican Mangrove Forests

    NASA Astrophysics Data System (ADS)

    Cifuentes, M.

    2012-12-01

    Tropical mangroves provide a wide variety of ecosystem services, including atmospheric carbon sequestration. Because of their high rates of carbon accumulation, the large expected size of their total stocks (from 2 to 5 times greater than those of upland tropical forests), and the alarming rates at which they are being converted to other uses (releasing globally from 0.02 to 0.12 Pg C yr-1), mangroves are receiving increasing attention as additional tools to mitigate climate change. However, data on whole ecosystem-level carbon in tropical mangroves is limited. Here I present the first estimate of ecosystem level carbon stocks in mangrove forests of Central America. I established 28, 125 m-long, sampling transects along the 4 main rivers draining the Térraba-Sierpe National Wetland in the southern Pacific coast of Costa Rica. This area represents 39% of all remaining mangroves in the country (48300 ha). A circular nested plot was placed every 25 m along each transect. Carbon stocks of standing trees, regeneration, the herbaceous layer, litter, and downed wood were measured following internationally-developed methods compatible with IPCC "Good Practice Guidelines". In addition, total soil carbon stocks were determined down to 1 m depth. Together, these carbon estimates represent the ecosystem-carbon stocks of these forests. The average aboveground carbon stocks were 72.5 ± 3.2 MgC ha-1 (range: 9 - 241 MgC ha-1), consistent with results elsewhere in the world. Between 74 and 92% of the aboveground carbon is stored in trees ≥ 5cm dbh. I found a significant correlation between basal area of trees ≥ 5cm dbh and total aboveground carbon. Soil carbon stocks to 1 m depth ranged between 141 y 593 MgC ha-1. Ecosystem-level carbon stocks ranged from 391 MgC ha-1 to 438 MgC ha-1, with a slight increase from south to north locations. Soil carbon stocks represent an average 76% of total ecosystem carbon stocks, while trees represent only 20%. These Costa Rican mangroves

  8. Improving urban ecosystems resilience at a city level

    NASA Astrophysics Data System (ADS)

    Ferreira, António J. D.; Ferrreira, Carla S. S.; Malta, Miguel; Soares, Daniel D. J.; Pardal, João; Vilhena, José

    2013-04-01

    The sustainability of urban communities is at risk in a global change context, where environmental problems and the constraints posed by a limited access to key raw materials, energy and sanitation will cause profound changes on the way we interact with the natural environment. Major changes are expected on processes magnitude and connectivity at various scales, with profound impacts on the environmental and well-being problems posed by the packing of high density of people in restricted areas, that have to be dealt with. The conventional approach is to find technological solutions that are often expensive and inefficient, especially in what concerns the use of energy and raw materials, limiting long term sustainability and urban ecosystems' resilience, and consequent impacts on the quality of life and health of urban populations. To improve city resilience in face of global change threats (climatic change, growing world population, land use change, lower energy availability, reduced mobility as a result of fossil fuels stringency and costs), we need to develop a nested approach binding together various greening actions and management of green infrastructures at various scales (i.e. household, neighbourhood, city and urban/wildland interface). This paper presents the conceptual strategy being developed at the Coimbra City (Centre of Portugal) to increase the resilience of urban ecosystems, using them to reduce natural risk occurrence (such as flash floods), the promotion of human health and increasing city resilience towards an improve food self sufficiency. We present a discussion and evaluation of the different solutions designed and implemented to improve the overall urban sustainability at different scales of intervention, from the household solutions to more structural solutions such as the recover of riparian forests or the preservation and improvement of green corridors. Of paramount importance to improve urban ecosystem resilience is the development of new

  9. Assessing Effects of Rising Carbon Dioxide Levels on Ocean Ecosystems

    NASA Astrophysics Data System (ADS)

    Lance, Veronica P.

    2009-07-01

    Carbon Productivity Responses to Increased Dissolved Inorganic Carbon Concentrations in Surface Ocean: Exploring the Feasibility of an in Situ Mesoscale Carbon Addition Experiment; Palisades, New York, 23-24 March 2009; To assess the effects of future elevated carbon dioxide (CO2) levels on ocean biogeochemistry and ecosystems, it is desirable to mimic such an environment in nature. A workshop to explore an in situ open ocean mesoscale CO2 perturbation experiment that would simulate the oceanic conditions expected toward the end of this century was held at Lamont-Doherty Earth Observatory at Columbia University (LDEO). The objectives were to evaluate the current understanding of the potential effects on open ocean ecosystems and biogeochemical cycling resulting from carbon chemistry and pH changes in response to increased atmospheric partial pressure of carbon dioxide (pCO2) and to examine the scientific justification and logistical feasibility of an in situ open ocean mesoscale CO2/pH perturbation experiment. The 15 participants represented fields of modeling and physical, geochemical, and biological oceanography.

  10. Assessing Potential Propulsion Breakthroughs

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    2005-01-01

    The term, propulsion breakthrough, refers to concepts like propellantless space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations into these goals have begun. From 1996 to 2002, NASA supported the Breakthrough Propulsion Physics Project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging since the breakthroughs are still only notional concepts, but kinetic energy can serve as a basis for comparison. In terms of kinetic energy, a hypothetical space drive could require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than their implications, and (c) reviewers judge credibility rather than feasibility. The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum.

  11. Assessing potential propulsion breakthroughs.

    PubMed

    Millis, Marc G

    2005-12-01

    The term, propulsion breakthrough, refers to concepts like propellantless space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations have begun. During 1996-2002 NASA supported the breakthrough propulsion physics project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging, since the breakthroughs are still only notional concepts, but energy can serve as a basis for comparison. A hypothetical space drive would require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (1) research tasks are constrained to only address the immediate unknowns, curious effects, or critical issues; (2) reliability of assertions is more important than their implications; and (3) reviewers judge credibility rather than feasibility. The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum.

  12. Sulfate threshold target to control methylmercury levels in wetland ecosystems.

    PubMed

    Corrales, Juliana; Naja, Ghinwa M; Dziuba, Catherine; Rivero, Rosanna G; Orem, William

    2011-05-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear(-1), respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear(-1), respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear(-1), and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear(-1). Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL(-1) was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2μgL(-1) criterion for surface water already established by the U.S. Environmental Protection Agency (EPA).

  13. Sulfate threshold target to control methylmercury levels in wetland ecosystems

    USGS Publications Warehouse

    Corrales, J.; Naja, G.M.; Dziuba, C.; Rivero, R.G.; Orem, W.

    2011-01-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear-1, respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear-1, respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear-1, and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear-1. Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL-1 was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2??gL-1 criterion for surface water already established by the U.S. Environmental Protection Agency (EPA). ?? 2011 Elsevier B.V.

  14. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; van der Plas, Fons; Manning, Peter; Prati, Daniel; Gossner, Martin M; Renner, Swen C; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul C; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-08-25

    Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services

  15. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; van der Plas, Fons; Manning, Peter; Prati, Daniel; Gossner, Martin M; Renner, Swen C; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul C; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-08-25

    Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services

  16. 76 FR 12942 - Proposed Information Collection; Comment Request; Defining Target Levels for Ecosystem Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... ecological health and therefore function as ecological indicators. Such indicators can facilitate Ecosystem...; yet, they are critical to the development of sound ecosystem health targets. II. Method of Collection... Target Levels for Ecosystem Components: A Socio-Ecological Approach AGENCY: National Oceanic...

  17. Ecosystem Services in the Restoration of Wetlands in the Humberhead Levels, UK

    NASA Astrophysics Data System (ADS)

    Orgill, Katharine; Moggridge, Helen

    2016-04-01

    The Humberhead Levels (HHL) are undergoing landscape scale wetland restoration after decades of degradation, managed by a partnership involving a range of stakeholders. The concept of ecosystem services is one of the main drivers of where to restore wetlands in this landscape. Through the human lead restoration, specific ecosystem services will be delivered and protected within the landscape. A range of ecosystem services have been mapped and modelled for the HHL, using secondary data from a range of organisations and the InVEST model (Integrated Valuation of Ecosystem Services and Trade-offs). The services include carbon storage and flood mitigation. This information will then be used to inform potential restoration decisions for the landscape, whilst also improving the ecosystem services. This will provide valuable information not just for the Humberhead Levels Partnership, but increase the understanding of ecosystem services for wetland research and as a useful example for including ecosystem services in landscape scale restoration plans.

  18. Photosynthetic properties of boreal bog plant species and their contribution to ecosystem level carbon sink

    NASA Astrophysics Data System (ADS)

    Korrensalo, Aino; Hájek, Tomas; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Mehtätalo, Lauri; Mammarella, Ivan; Tuittila, Eeva-Stiina

    2016-04-01

    Boreal bogs have a low number of plant species, but a large diversity of growth forms. This heterogeneity might explain the seasonally less varying photosynthetic productivity of these ecosystems compared to peatlands with vegetation consisting of fewer growth forms. The differences in photosynthetic properties within bog species and phases of growing season has not been comprehensively studied. Also the role of different plant species for the ecosystem level carbon (C) sink function is insufficiently known. We quantified the seasonal variation of photosynthetic properties in bog plant species and assessed how this variation accounts for the temporal variation in the ecosystem C sink. Photosynthetic light response of 11 vascular plant and 8 Sphagnum moss species was measured monthly over the growing season of 2013. Based on the species' light response parameters, leaf area development and areal coverage, we estimated the ecosystem level gross photosynthesis rate (PG) over the growing season. The level of upscaled PG was verified by comparing it to the ecosystem gross primary production (GPP) estimate calculated based on eddy covariance (EC) measurements. Although photosynthetic parameters differed within plant species and months, these differences were of less importance than expected for the variation in ecosystem level C sink. The most productive plant species at the ecosystem scale were not those with the highest maximum potential photosynthesis per unit of leaf area (Pmax), but those having the largest areal coverage. Sphagnum mosses had 35% smaller Pmax than vascular plants, but had higher photosynthesis at the ecosystem scale throughout the growing season. The contribution of the bog plant species to the ecosystem level PG differed over the growing season. The seasonal variation in ecosystem C sink was mainly controlled by phenology. Sedge PG had a sharp mid-summer peak, but the PG of evergreen shrubs and Sphagna remained rather stable over the growing season

  19. Examining Ecological and Ecosystem Level Impacts of Aquatic Invasive Species in Lake Michigan Using An Ecosystem Productivity Model, LM-Eco

    EPA Science Inventory

    Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...

  20. Gloger's rule in plants: The species and ecosystem levels

    PubMed Central

    Lev-Yadun, Simcha

    2015-01-01

    Gloger's rule posits that darker birds are found more often in humid environments than in arid ones, especially in the tropics. Accordingly, desert-inhabiting animals tend to be light-colored. This rule is also true for certain mammalian groups, including humans. Gloger's rule is manifested at 2 levels: (1) at the species level (different populations of the same species have different pigmentation at different latitudes), and (2) at the species assembly level (different taxa at a certain geography have different pigmentation than other taxa found at different habitats or latitudes). Concerning plants, Gloger's rule was first proposed to operate in many plant species growing in sand dunes, sandy shores and in deserts, because of being white, whitish, or silver colored, based on white trichomes, because of sand grains and clay particles glued to sticky glandular trichomes, or because of light-colored waxes. Recently, Gloger's rule was shown to also be true at the intraspecific level in relation to protection of anthers from UV irradiation. While Gloger's rule is true in certain plant taxa and ecologies, there are others where “anti-Gloger” coloration patterns exist. In some of these the selective agents are known and in others they are not. I present both Gloger and “anti-Gloger” cases and argue that this largely neglected aspect of plant biology deserves much more research attention. PMID:26786012

  1. Gloger's rule in plants: The species and ecosystem levels.

    PubMed

    Lev-Yadun, Simcha

    2015-01-01

    Gloger's rule posits that darker birds are found more often in humid environments than in arid ones, especially in the tropics. Accordingly, desert-inhabiting animals tend to be light-colored. This rule is also true for certain mammalian groups, including humans. Gloger's rule is manifested at 2 levels: (1) at the species level (different populations of the same species have different pigmentation at different latitudes), and (2) at the species assembly level (different taxa at a certain geography have different pigmentation than other taxa found at different habitats or latitudes). Concerning plants, Gloger's rule was first proposed to operate in many plant species growing in sand dunes, sandy shores and in deserts, because of being white, whitish, or silver colored, based on white trichomes, because of sand grains and clay particles glued to sticky glandular trichomes, or because of light-colored waxes. Recently, Gloger's rule was shown to also be true at the intraspecific level in relation to protection of anthers from UV irradiation. While Gloger's rule is true in certain plant taxa and ecologies, there are others where "anti-Gloger" coloration patterns exist. In some of these the selective agents are known and in others they are not. I present both Gloger and "anti-Gloger" cases and argue that this largely neglected aspect of plant biology deserves much more research attention.

  2. Assessment on the Vulnerability of Mangrove Ecosystems in the Guangxi Coastal Zone under Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Li, S.; Ge, Z.; Zhang, L.

    2013-12-01

    Sea level rise caused by global climate change will have significant impacts on coastal zone. The mangrove ecosystems occur at the intertidal zone in tropical and subtropical coasts and are particularly sensitive to sea level rise. To study the responses of mangrove ecosystems to sea level rise, assess the impacts of sea level rise on mangrove ecosystem and formulate the feasible and practical mitigation strategies are the important prerequisites for securing the coastal ecosystems. In this research, taking the mangrove ecosystems in the coastal zone of Guangxi province, China as a case study, the potential impacts of sea level rise on the mangrove ecosystems were analyzed by adopting the SPRC (Source-Pathway- Receptor- Consequence) model. An index system for vulnerability assessment on coastal mangrove ecosystems under sea level rise was worked out, in which rate of sea level rise, subsidence/uplift rate, habitat elevation, daily inundation duration, intertidal slope and sedimentation rate were selected as the key indicators according to the IPCC definition of vulnerability, i.e. the aspects of exposure, sensitivity and adaptation. A quantitatively spatial assessment method based on the GIS platform was established by quantifying each indicator, calculating the vulnerability index and grading the vulnerability. The vulnerability assessment based on the sea-level rise rates of the present trend and IPCC A1F1 scenario were performed for three sets of projections of short-term (2030s), mid-term (2050s) and long-term (2100s). The results showed at the present trend of sea level rise rate of 0.27 cm/a, the mangrove ecosystems in the coastal zone of Guangxi was within the EVI score of 0 in the projections of 2030s, 2050s and 2100s, respectively. As the sedimentation and land uplift could offset the rate of sea level rise and the impact of sea level rise on habitats/species of mangrove ecosystems was negligible. While at the A1F1 scenario with a sea level rise rate of 0

  3. A screening-level mercury deposition model for wetland ecosystems

    SciTech Connect

    Fink, L.E.

    1995-12-31

    A highly aggregated, three-compartment, carbon cycling model was constructed for a screening-level simulation of net carbon, phosphorus, and mercury deposition in the Everglades Nutrient Removal Project, a 3,742-acre constructed wetland in South Florida. The model was initialized using ENR or Everglades values for model variables. The model was calibrated to calculate biomass turnover, decomposition, and release rates that reproduced the observed apparent phosphorus settling rate constant and the observed organic and inorganic carbon and total phosphorus concentrations in surface sediments. The mercury deposition rate was calculated by partitioning water column mercuric ion onto settling organic and inorganic carbon particles using site-specific or literature values for partition coefficients. From the annual mass balance budget for total mercury calculated with site-specific or literature values, the phosphorus-calibrated model reproduced the observed total mercury concentrations in surface sediments from a typical Everglades marsh within screening-level tolerances.

  4. Ecosystem Responses To Plant Phenology Across Scales And Trophic Levels

    NASA Astrophysics Data System (ADS)

    Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.

    2015-12-01

    Plant phenology in arid and semi-arid ecoregions is constrained by water availability and governs the life history characteristics of primary and secondary consumers. We related the behavior, demography, and distribution of mammalian herbivores and their principal predator to remotely sensed vegetation and climatological indices across the western United States for the period 2000-2014. Across scales, terrain and topographic position moderates the effects of climatological drought on primary productivity, resulting in differential susceptibility among plant functional types to water stress. At broad scales, herbivores tie parturition to moist sites during the period of maximum increase in local forage production. Consequently, juvenile mortality is highest in regions of extreme phenological variability. Although decoupled from primary production by one or more trophic levels, carnivore home range size and density is negatively correlated to plant productivity and growing season length. At the finest scales, predation influences the behavior of herbivore prey through compromised habitat selection, in which maternal females trade nutritional benefits of high plant biomass for reduced mortality risk associated with increased visibility. Climate projections for the western United States predict warming combined with shifts in the timing and form of precipitation. Our analyses suggest that these changes will propagate through trophic levels as increased phenological variability and shifts in plant distributions, larger consumer home ranges, altered migration behavior, and generally higher volatility in wildlife populations. Combined with expansion and intensification of human land use across the region, these changes will likely have economic implications stemming from increased human-wildlife conflict (e.g., crop damage, vehicle collisions) and changes in wildlife-related tourism.

  5. Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands

    PubMed Central

    Proulx, Raphaël; Wirth, Christian; Voigt, Winfried; Weigelt, Alexandra; Roscher, Christiane; Attinger, Sabine; Baade, Jussi; Barnard, Romain L.; Buchmann, Nina; Buscot, François; Eisenhauer, Nico; Fischer, Markus; Gleixner, Gerd; Halle, Stefan; Hildebrandt, Anke; Kowalski, Esther; Kuu, Annely; Lange, Markus; Milcu, Alex; Niklaus, Pascal A.; Oelmann, Yvonne; Rosenkranz, Stephan; Sabais, Alexander; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schulze, Ernst-Detlef; Schumacher, Jens; Schwichtenberg, Guido; Soussana, Jean-François; Temperton, Vicky M.; Weisser, Wolfgang W.; Wilcke, Wolfgang; Schmid, Bernhard

    2010-01-01

    The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands. PMID:20967213

  6. Quantitative Models Describing Past and Current Nutrient Fluxes and Associated Ecosystem Level Responses in the Narragansett Bay Ecosystem

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem in Rhode Island/Massachusetts, USA. Managers are interested in understanding the timing and magnitude of these effects, and ecosystem responses to restoration actions. To provid...

  7. Breakthrough Propulsion Physics Research Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    In 1996, a team of government, university and industry researchers proposed a program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that can approach and, if possible, circumvent light speed, and breakthrough methods of energy production to power such devices. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center. Because the breakthrough goals are beyond existing science, a main emphasis of this program is to establish metrics and ground rules to produce near-term credible progress toward these incredible possibilities. An introduction to the emerging scientific possibilities from which such solutions can be sought is also presented.

  8. NASA Breakthrough Propulsion Physics Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  9. Can contaminant transport models predict breakthrough?

    USGS Publications Warehouse

    Peng, Wei-Shyuan; Hampton, Duane R.; Konikow, Leonard F.; Kambham, Kiran; Benegar, Jeffery J.

    2000-01-01

    A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.

  10. Diabetes Treatment Breakthrough.

    ERIC Educational Resources Information Center

    Baker, Shelly; And Others

    1993-01-01

    Eight experts in visual impairment respond briefly to reports that intensive monitoring of blood glucose levels by persons with diabetes can lead to a 70% reduction in the progression of detectable diabetic retinopathy. Comments are generally optimistic, though some cautions are raised. (DB)

  11. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands

    PubMed Central

    Soliveres, Santiago; Maestre, Fernando T.; Eldridge, David J.; Delgado-Baquerizo, Manuel; Quero, José Luis; Bowker, Matthew A.; Gallardo, Antonio

    2015-01-01

    Aim The global spread of woody plants into grasslands is predicted to increase over the coming century. While there is general agreement regarding the anthropogenic causes of this phenomenon, its ecological consequences are less certain. We analyzed how woody vegetation of differing cover affects plant diversity (richness and evenness) and multiple ecosystem functions (multifunctionality) in global drylands, and how this changes with aridity. Location 224 dryland sites from all continents except Antarctica widely differing in their environmental conditions (from arid to dry-subhumid sites) and woody covers (from 0 to 100%). Methods Using a standardized field survey, we measured the cover, richness and evenness of perennial vegetation. At each site, we measured 14 ecosystem functions related to soil fertility and the build-up of nutrient pools. These functions are critical for maintaining ecosystem function in drylands. Results Species richness and ecosystem multifunctionality were strongly influenced by woody vegetation, with both variables peaking at relative woody covers (RWC) of 41-60%. This relationship shifted with aridity. We observed linear positive effects of RWC in dry-subhumid sites. These positive trends shifted to hump-shaped RWC-diversity and multifunctionality relationships under semiarid environments. Finally, hump-shaped (richness, evenness) or linear negative (multifunctionality) effects of RWC were found under the most arid conditions. Main conclusions Plant diversity and multifunctionality peaked at intermediate levels of woody cover, although this relationship became increasingly positive under wetter environments. This comprehensive study accounts for multiple ecosystem attributes across a range of woody covers and environmental conditions. Our results help us to reconcile contrasting views of woody encroachment found in current literature and can be used to improve predictions of the likely effects of encroachment on biodiversity and ecosystem

  12. Development of a concept for non-monetary assessment of urban ecosystem services at the site level.

    PubMed

    Wurster, Daniel; Artmann, Martina

    2014-05-01

    Determining the performance of ecosystem services at the city or regional level cannot accurately take into account the fine differences between green or gray structures. The supply of regulating ecosystem services in, for instance, parks can differ as parks vary in their land cover composition. A comprehensive ecosystem service assessment approach also needs to reflect land use to consider the demands placed on ecosystem services, which are mostly neglected by current research yet important for urban planning. For instance, if a sealed surface is no longer used, it could be unsealed to improve ecosystem service supply. Because of these scientific shortcomings, this article argues for a conceptual framework for the non-monetary assessment of urban ecosystem services at the site scale. This paper introduces a standardized method for selecting representative sites and evaluating their supply of and demand on ecosystem services. The conceptual design is supplemented by examples of Salzburg, Austria.

  13. Growing season ecosystem and leaf-level gas exchange of an exotic and native semiarid bunchgrass.

    PubMed

    Hamerlynck, Erik P; Scott, Russell L; Moran, M Susan; Keefer, Timothy O; Huxman, Travis E

    2010-07-01

    The South African grass, Lehmann lovegrass (Eragrostis lehmanniana), may alter ecosystem processes across extensive semiarid grasslands and savannahs of western North America. We compared volumetric soil moisture (theta), total and green tissue leaf area index (LAI), ecosystem (i.e. whole-plant and soil), and leaf-level gas exchange of Lehmann lovegrass and the native bush muhly (Muhlenbergia porteri) over the 2008 monsoon season in a semiarid savanna in southern Arizona, USA, to see if these were consistent with high productivity associated with lovegrass invasive success. theta across 0-5 and 0-25 cm was higher while evapotranspiration (ET) was similar between lovegrass and bush muhly plots, except shortly after rainfall, when ET was 32-81% higher in lovegrass plots. Lehmann lovegrass had lower, quickly developing LAI with greater leaf proportions than bush muhly. When early season theta was high, net ecosystem CO(2) exchange (NEE) was similar, but as storm frequency and theta declined, NEE was more negative in lovegrass (-0.69 to -3.00 micromol m(-2) s(-1)) than bush muhly (+1.75 to -1.55 micromol m(-2) s(-1)). Ecosystem respiration (R (eco)) responded quickly to monsoon onset and late-season rains, and was lower in lovegrass (2.44-3.74 micromol m(-2) s(-1)) than bush muhly (3.60-5.3 micromol m(-2) s(-1)) across the season. Gross ecosystem photosynthesis (GEP) was greater in Lehmann lovegrass, concurrent with higher leaf-level photosynthesis and stomatal conductance. We conclude that canopy structure facilitates higher theta under Lehmann lovegrass, reducing phenological constraints and stomatal limitations to whole-plant carbon uptake through the short summer monsoon growing season.

  14. Scaling greenhouse gas fluxes in a natural and restored wetland from microsites to ecosystem level

    NASA Astrophysics Data System (ADS)

    Schafer, Karina V. R.; Renninger, Heidi J.; Pal, David S.; Jaffe, Peter R.

    2015-04-01

    Current methane emission models are employing a top down approach in which methane emissions are estimated. However, meteorological, hydrological and ecological drivers of methane and carbon dioxide fluxes in wetlands operate on different spatial and temporal scales, thus necessitating bottom-up and top down assessments to refine model outcomes. Fast methane (CH4) gas analyzers such as the LI7700 are now enabling continuous ecosystem scale (eddy flux) measurements and assessment in conjunction with traditional chamber measurements and localized belowground measurements for microsite contribution (bottom-up) analysis. Here, we have set up two locations, one in a natural and one in a restored tidal salt marsh in the Meadowlands of New Jersey (MNJ) USA, in order to compare ecosystem level methane fluxes with scaled microscale measurements. Continuous methane fluxes were measured at the ecosystem level with the Licor7700 using eddy flux measurements over three growing seasons at the restored site and two growing seasons at the natural wetland site. Concurrently, measurements were collected from chambers and subsurface dialysis samplers, at several microsites in each site as well. Methane and carbon dioxide emissions, and their belowground pools, were highly variable in space and time over the two growing seasons. The temporal dynamics of methane and carbon dioxide fluxes in each of the locations suggest small-scale site-specific controls on methane emissions, but ubiquitous, non-specific controls on carbon dioxide uptake and release. Methane emissions as measured at the ecosystem scale, and confirmed by chamber measurements, increased at the restored site from 2012 to 2013, despite no corresponding increases in dissolved organic carbon or belowground pool measurements. Scaled belowground pool measurements from non-vegetated microsites can estimate the measured chamber methane fluxes, but this is not possible in vegetated microsites. Additionally, methane emissions from

  15. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.

    PubMed

    Holden, Patricia A; Nisbet, Roger M; Lenihan, Hunter S; Miller, Robert J; Cherr, Gary N; Schimel, Joshua P; Gardea-Torresdey, Jorge L

    2013-03-19

    Research into the health and environmental safety of nanotechnology has seriously lagged behind its emergence in industry. While humans have often adopted synthetic chemicals without considering ancillary consequences, the lessons learned from worldwide pollution should motivate making nanotechnology compatible with environmental concerns. Researchers and policymakers need to understand exposure and harm of engineered nanomaterials (ENMs), currently nanotechnology's main products, to influence the ENM industry toward sustainable growth. Yet, how should research proceed? Standard toxicity testing anchored in single-organism, dose-response characterizations does not adequately represent real-world exposure and receptor scenarios and their complexities. Our approach is different: it derives from ecology, the study of organisms' interactions with each other and their environments. Our approach involves the characterization of ENMs and the mechanistic assessment of their property-based effects. Using high throughput/content screening (HTS/HCS) with cells or environmentally-relevant organisms, we measure the effects of ENMs on a subcellular or population level. We then relate those effects to mechanisms within dynamic energy budget (DEB) models of growth and reproduction. We reconcile DEB model predictions with experimental data on organism and population responses. Finally, we use microcosm studies to measure the potential for community- or ecosystem-level effects by ENMs that are likely to be produced in large quantities and for which either HTS/HCS or DEB modeling suggest their potential to harm populations and ecosystems. Our approach accounts for ecological interactions across scales, from within organisms to whole ecosystems. Organismal ENM effects, if propagated through populations, can alter communities comprising multiple populations (e.g., plant, fish, bacteria) within food webs. Altered communities can change ecosystem services: processes that cycle carbon

  16. Ecosystem-level consequences of migratory faunal depletion caused by dams

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Greathouse, E.A.; Freeman, B.J.; Limburg, K.E.; Waldman, J.R.

    2003-01-01

    Humans have been damming rivers for millennia, and our more ambitious efforts over the past century have arguably altered river ecosystems more extensively than any other anthropogenic activity. Effects of damming on river biota include decimation of migratory fauna (e.g., diadromous and potamodromous fishes and crustaceans), lost fisheries, and imperilment of obligate riverine taxa. Although effects of dams on biota have been widely documented, ecosystem-level consequences of faunal depletion caused by dams are only beginning to be appreciated. We discuss consequences to river ecosystems of altering distributions and abundances of migratory fauna, which often provide trophic subsidies and may strongly influence the structure of local habitats and communities. It is well documented that anadromous fishes can provide a major input of nutrients and energy to freshwater systems when spawning adults return from the sea. Other less-studied taxa that migrate between distinct portions of riverine systems (e.g., acipencerids, catostomids, and prochilodontids) may similarly provide trophic transfers within undammed river systems, in addition to modifying local communities and habitats through feeding and spawning activities. Experimental faunal exclusions have demonstrated strong potential effects of some amphidromous shrimps and potamodromous fishes on benthic organic matter and algal and invertebrate communities. Depletion of these animals above dams is likely to significantly affect ecosystem processes such as primary production and detrital processing. The decline of freshwater mussels isolated by dams from their migratory fish hosts has likely lowered stream productivity, nutrient retention and benthic stability. Greater focus on effects of dams on ecosystem processes, as mediated by faunal change, would improve our ability to assess the costs and benefits of future river management strategies.

  17. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels.

    PubMed

    Vellingiri, Kowsalya; Kim, Ki-Hyun; Kwon, Eilhann E; Deep, Akash; Jo, Sang-Hee; Szulejko, Jan E

    2016-01-15

    The sorptive removal properties of a synthetic A4 zeolite were evaluated against sulfur dioxide (SO2) and four reference reduced sulfur compounds (RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethyl sulfide (DMS, (CH3)2S), and dimethyl disulfide (DMDS, CH3SSCH3). To this end, a sorbent bed of untreated (as-received) A4 zeolite was loaded with gaseous standards at four concentration levels (10-100 part-per-billion (ppb (v/v)) at four different volumes (0.1, 0.2, 0.5, and 1 L increments) in both increasing (IO: 0.1-1.0 L) and decreasing volume order (DO: 1.0 to 0.1 L). Morphological properties were characterized by PXRD, FTIR, and BET analysis. The removal efficiency of SO2 decreased from 100% for all concentrations at 0.1 L (initial sample volume) to ∼82% (100 ppb) or ∼96% (10 ppb) at 3.6 L. In contrast, removal efficiency of RSC was near 100% at small loading volumes but then fell sharply, irrespective of concentration (10-100 ppb) (e.g., 32% (DMS) to 52% (H2S) at 100 ppb). The adsorption capacity of zeolite, if expressed in terms of solid-gas partition coefficient (e.g., similar to the Henry's law constant (mmol kg(-1) Pa(-1))), showed moderate variabilities with the standard concentration levels and S compound types such as the minimum of 2.03 for CH3SH (at 20 ppb) to the maximum of 13.9 for SO2 (at 10 ppb). It clearly demonstrated a notable distinction in the removal efficiency of A4 zeolite among the different S species in a mixture with enhanced removal efficiency of SO2 compared to the RSCs.

  18. When ecosystem services interact: crop pollination benefits depend on the level of pest control.

    PubMed

    Lundin, Ola; Smith, Henrik G; Rundlöf, Maj; Bommarco, Riccardo

    2013-02-22

    Pollination is a key ecosystem service which most often has been studied in isolation although effects of pollination on seed set might depend on, and interact with, other services important for crop production. We tested three competing hypotheses on how insect pollination and pest control might jointly affect seed set: independent, compensatory or synergistic effects. For this, we performed a cage experiment with two levels of insect pollination and simulated pest control in red clover (Trifolium pratense L.) grown for seed. There was a synergistic interaction between the two services: the gain in seed set obtained when simultaneously increasing pollination and pest control outweighed the sum of seed set gains obtained when increasing each service separately. This study shows that interactions can alter the benefits obtained from service-providing organisms, and this needs to be considered to properly manage multiple ecosystem services.

  19. Leopard frog PCB levels and evaluation of EROD as a biomarker in Green Bay ecosystem

    SciTech Connect

    Huang, Y.W.; Karasov, W.H.; Patnode, K.P.

    1995-12-31

    The induction of mixed function oxidases has been shown to be a promising biomarker in many taxa of wildlife, though not yet tested for amphibians. The three hypotheses tested in this study were (1) activities of hepatic EROD of leopard frog (Rana pipiens) are induced following exposure to planar chlorinated PCBs, (2) tissue PCB residue levels of leopard frogs are positively correlated with their wetland sediment PCB levels, and (3) EROD activities are positively correlated with tissue PCB concentrations and sediment PCB. In the laboratory, EROD was increased 2--3 times seven days after i.p. injection with PCB 126 at doses {ge} 2.3 ppm (wet mass basis). Leopard frogs from seven sites along the Lower Fox River and Green Bay in 1994--1995 were assayed for hepatic EROD activities and total PCB levels in carcasses. Tissue PCB levels ranged from 3 to 152 ppb (including coplanar congeners) and were highest from sites with higher sediment PCB. EROD activity in frogs collected in August--September was not significantly correlated with frog body mass and was similar among sites with one exception. There was no significant correlation between EROD activity and tissue PCB concentration. This result was consistent with the fact that the frogs collected from the Green Bay ecosystem had relatively low PCB levels compared with what was required for induction in the laboratory. The authors conclude that EROD activity is not a sensitive biomarker of PCB exposure in leopard frogs in this ecosystem.

  20. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    PubMed

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863

  1. Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes

    PubMed Central

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863

  2. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    PubMed

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

  3. Residue levels of organochlorine pesticides in some ecosystem components of Manzala Lake.

    PubMed

    Azab, M M; Darwish, A A; Mahmoud, Hend A; Sdeek, Fayza A

    2013-12-01

    To evaluate the organochlorine pesticide (OCP) contamination of Manzala Lake, its ecosystem was investigated during the winter season (December to March). The studied ecosystem components were water, sediment, aquatic weeds, and fishes in four locations. The samples were analyzed by gas chromatography with electron capture detector. Pollutant levels of total OCPs showed significantly high levels in the water areas of Round road (46.253 ng/ml), Port-Said Damietta road (19.301 ng/ml), followed by Bughas El-Rasoah (5.539 ng/ml), then Ashtoum El Gamel (natural reserve area now) (0.289 ng/ml). Organochlorines were detected in sediment only in Round road (3.359 μg/kg) and Port-Said Damietta road (0.171 μg/kg) by significant order while they were undetectable in Ashtoum El Gamel and Bughas El-Rasoah. Total OCPs in aquatic weeds ranged between 0.194 μg/kg in Port-Said Damietta and 0.026 μg/kg in Ashtoum El Gamel. While OCPs were 0.160 and 0.153 μg/kg in Round road and Bughas El-Rasoah, respectively. Concerning fish muscles OCPs were significantly higher in the Round road area (0.397 μg/kg) followed by the Port-Said Damietta road (0.258 μg/kg), and finally, Ashtoum El Gamel samples (0.126 μg/kg). The results revealed the direct relation for the accumulation of OCPs between studied ecosystem parameters at the Manzala Lake during the winter season. Results also demonstrated that fish samples collected from the Manzala Lake in the studied areas were contaminated with levels of organochlorines, not higher than the maximum permissible level recorded by FAO/WHO, and that the public is not at risk with fish consumption. PMID:23884913

  4. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems.

    PubMed

    Atwood, Trisha B; Hammill, Edd; Richardson, John S

    2014-11-01

    Concern over accelerating rates of species invasions and losses have initiated investigations into how local and global changes to predator abundance mediate trophic cascades that influence CO2 fluxes of aquatic ecosystems. However, to date, no studies have investigated how species additions or losses at other consumer trophic levels influence the CO2 flux of aquatic ecosystems. In this study, we added a large predatory stonefly, detritivorous stonefly, or grazer tadpole to experimental stream food webs and over a 70-day period quantified their effects on community composition, leaf litter decomposition, chlorophyll-a concentrations, and stream CO2 emissions. In general, streams where the large grazer or large detritivore were added showed no change in total invertebrate biomass, leaf litter loss, chlorophyll-a concentrations, or stream CO2 emissions compared with controls; although we did observe a spike in CO2 emissions in the large grazer treatment following a substantial reduction in chlorophyll-a concentrations on day 28. However, the large grazer and large detritivore altered the community composition of streams by reducing the densities of other grazer and detritivore taxa, respectively, compared with controls. Conversely, the addition of the large predator created trophic cascades that reduced total invertebrate biomass and increased primary producer biomass. The cascading effects of the predator additions on the food web ultimately led to decreased CO2 emissions from stream channels by up to 95%. Our results suggest that stream ecosystem processes were more influenced by changes in large predator abundance than large grazer or detritivore abundance, because of a lack of functionally similar large predators. Our study demonstrates that the presence/absence of species with unique functional roles may have consequences for the exchange of CO2 between the ecosystem and the atmosphere.

  5. Linking levels of societal and ecosystems metabolism of water in a Mediterranean watershed

    NASA Astrophysics Data System (ADS)

    Cabello, V.

    2014-12-01

    Water resources degradation is a complex environmental problem that involves multiple dimensions and scales of analysis. The Socio-Ecological Systems Water Metabolism has been proposed as a general holistic framework to deal with integrated analysis of water use sustainability (Madrid and Giampietro 2014). The innovation of the approach is that it sets the research focus beyond the classical supply-demand modeling to societal integrity and ecosystems integrity. To do so, it integrates quantitative grammars of water use (relating water exchange to societal and ecosystems organization) and qualitative methods (discourse analysis). This work presents the first case study focused at a river basin extent: the Upper Andarax, in South-East Spain. Water metabolism is indicated at multiple levels for ecosystems and society. To deal with the interfaces among them, relational indicators of water exploitation, water use and impact over ecosystems are used alongside policies and narratives analysis.While being a rather not intensively exploited river basin (year Water Exploitation Index~0.3 blue water,~0.15 green water), impacts over water bodies are yet important (periodic aquifer overdraft, biological degradation of the river) especially during dry season. Perceived mayor problems of water sustainability are generated by the not integration of different policies at European, national and regional scales: while the water authority establishes a compulsory reduction over water withdrawal to attend environmental flows, agricultural markets force to raise productivity increasing water demands. Adaptation strategies are divided among irrigation efficiency improvement and a reorientation of the economy towards touristic activities. Both of them entail specific trade-offs to be deemed. Aquifer-river interactions and climate change impacts are yet mayor research challenges.

  6. Ecological concerns following Superstorm Sandy: stressor level and recreational activity levels affect perceptions of ecosystem

    PubMed Central

    2015-01-01

    Coastal habitats are vulnerable to storms, and with increasing urbanization, sea level rise, and storm frequency, some urban populations are at risk. This study examined perceptions of respondents in coastal and central New Jersey to Superstorm Sandy, including: 1) concerns about ecological resources and effects (open-ended question), 2) information sources for ecology of the coast (open-ended), and 3) ratings of a list of ecological services as a function of demographics, location (coastal, central Jersey), stressor level (power outages, high winds, flooding) and recreational rates. “Wildlife” and “fish” were the ecological concerns mentioned most often, while beaches and dunes were most often mentioned for environmental concerns. Television, radio, and web/internet were sources trusted for ecological information. The data indicate 1) stressor level was a better predictor of ratings of ecological services than geographical location, but days engaged in recreation contributed the most to variations in ratings, 2) ecological services were rated the highest by respondents with the highest stressor levels, and by those from the coast, compared to others, 3) Caucasians rated ecological services higher than all others, and 4) recreational rates were highest for coastal respondents, and ratings for ecological services increased with recreational rates. Only 20 % of respondents listed specific ecological services as one of their three most important environmental concerns. These data will be useful for increasing preparedness, enhancing educational strategies for shore protection, and providing managers and public policy makers with data essential to developing resiliency strategies. PMID:27011729

  7. Climate change and freshwater ecosystems: impacts across multiple levels of organization

    PubMed Central

    Woodward, Guy; Perkins, Daniel M.; Brown, Lee E.

    2010-01-01

    Fresh waters are particularly vulnerable to climate change because (i) many species within these fragmented habitats have limited abilities to disperse as the environment changes; (ii) water temperature and availability are climate-dependent; and (iii) many systems are already exposed to numerous anthropogenic stressors. Most climate change studies to date have focused on individuals or species populations, rather than the higher levels of organization (i.e. communities, food webs, ecosystems). We propose that an understanding of the connections between these different levels, which are all ultimately based on individuals, can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change. For instance, individual basal metabolic rate scales with body size (which also constrains food web structure and dynamics) and temperature (which determines many ecosystem processes and key aspects of foraging behaviour). In addition, increasing atmospheric CO2 is predicted to alter molar CNP ratios of detrital inputs, which could lead to profound shifts in the stoichiometry of elemental fluxes between consumers and resources at the base of the food web. The different components of climate change (e.g. temperature, hydrology and atmospheric composition) not only affect multiple levels of biological organization, but they may also interact with the many other stressors to which fresh waters are exposed, and future research needs to address these potentially important synergies. PMID:20513717

  8. Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems.

    PubMed

    Riede, Jens O; Brose, Ulrich; Ebenman, Bo; Jacob, Ute; Thompson, Ross; Townsend, Colin R; Jonsson, Tomas

    2011-02-01

    Despite growing awareness of the significance of body-size and predator-prey body-mass ratios for the stability of ecological networks, our understanding of their distribution within ecosystems is incomplete. Here, we study the relationships between predator and prey size, body-mass ratios and predator trophic levels using body-mass estimates of 1313 predators (invertebrates, ectotherm and endotherm vertebrates) from 35 food-webs (marine, stream, lake and terrestrial). Across all ecosystem and predator types, except for streams (which appear to have a different size structure in their predator-prey interactions), we find that (1) geometric mean prey mass increases with predator mass with a power-law exponent greater than unity and (2) predator size increases with trophic level. Consistent with our theoretical derivations, we show that the quantitative nature of these relationships implies systematic decreases in predator-prey body-mass ratios with the trophic level of the predator. Thus, predators are, on an average, more similar in size to their prey at the top of food-webs than that closer to the base. These findings contradict the traditional Eltonian paradigm and have implications for our understanding of body-mass constraints on food-web topology, community dynamics and stability.

  9. Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?.

    PubMed

    Wilcox, Kevin R; Blair, John M; Smith, Melinda D; Knapp, Alan K

    2016-03-01

    Central to understanding global C cycle dynamics is the functional relationship between precipitation and net primary production (NPP). At large spatial (regional) scales, the responsiveness of aboveground NPP (ANPP) to interannual variation in annual precipitation (AP; ANPPsens) is inversely related to site-level ANPP, coinciding with turnover of plant communities along precipitation gradients. Within ecosystems experiencing chronic alterations in water availability, plant community change will also occur with unknown consequences for ANPPsens. To examine the role plant community shifts may play in determining alterations in site-level ANPPPsens, we experimentally increased precipitation by approximately 35% for two decades in a native Central U.S. grassland. Consistent with regional models, ANPPsens decreased initially as water availability and ANPP increased. However, ANPPsens shifted back to ambient levels when mesic species increased in abundance in the plant community. Similarly, in grassland sites with distinct mesic and xeric plant communities and corresponding 50% differences in ANPP, ANPPsens did not differ over almost three decades. We conclude that responses in ANPPsens to chronic alterations in water availability within an ecosystem may not conform to regional AP-ANPP patterns, despite expected changes in ANPP and plant communities. The result is unanticipated functional resistance to climate change at the site scale. PMID:27197383

  10. HIV Vaccination, is Breakthrough Underway?

    PubMed

    Lu, Da-Yong; Wu, Hong-Ying; Lu, Ting-Ren; Xu, Bin; Ding, Jian

    2016-01-01

    After long defeats-almost no marked breakthrough in HIV vaccination campaign has been observed during the past two decades, and we still have not lost our faiths for the development of highly effective and low risk HIV vaccines. Many effective vaccines have been discovered and will certainly enter into the markets within the next 5 to 10 years. In order to promote HIV vaccine developments and clinical HIV therapeutic improvements, this perspective addresses the good and bad sides of currently available HIV vaccines, discusses many subjects of medical significance and finally provides up-to-date information in the field of HIV studies, in particular regarding vaccine developments and HIV pathogenesis.

  11. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems

    NASA Astrophysics Data System (ADS)

    Martínez-Crego, B.; Olivé, I.; Santos, R.

    2014-04-01

    Increasing evidence emphasizes that the effects of human impacts on ecosystems must be investigated using designs that incorporate the responses across levels of biological organization as well as the effects of multiple stressors. Here we implemented a mesocosm experiment to investigate how the effects of CO2 enrichment and its interaction with eutrophication, scale-up from changes in primary producers at the individual- (biochemistry) or population-level (production, reproduction, and/or abundance) to higher levels of community (macroalgae abundance, herbivory, and global metabolism) and ecosystem organization (detritus release and carbon sink capacity). The responses of Zostera noltii seagrass meadows growing in low- and high- nutrient field conditions were compared. In both meadows, the effect of elevated CO2 levels was mediated by epiphyte proliferation (mostly the cyanobacterium Microcoleus spp.), but not through changes in plant biochemistry or population-level traits. In the low-nutrient meadow, epiphyte proliferation suppressed the CO2 benefits on Z. noltii leaf production and led to increased detritus and decreased organic matter in sediment. Faster and stronger responses to nutrients than to CO2 were observed. Nutrient addition enhanced the nutritional quality of Z. noltii (high N, low C : N and phenolics) and the loss of leaves and shoots, while promoted the proliferation of pennate diatoms and purple bacteria. These changes led to a reduced sediment organic matter, but had no significant effects on herbivory nor on community metabolism. Interestingly, the interaction with CO2 attenuated eutrophication effects. In the high-nutrient meadow, a striking shoot decline caused by amphipod overgrazing was observed, with no response to CO2 and nutrient additions. Our results reveal that under future scenarios of CO2, the responses of seagrass ecosystems will be complex, being mediated by epiphyte proliferation rather than by effects on plant biochemistry. The

  12. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems

    NASA Astrophysics Data System (ADS)

    Martínez-Crego, B.; Olivé, I.; Santos, R.

    2014-12-01

    Increasing evidence emphasizes that the effects of human impacts on ecosystems must be investigated using designs that incorporate the responses across levels of biological organization as well as the effects of multiple stressors. Here we implemented a mesocosm experiment to investigate how the individual and interactive effects of CO2 enrichment and eutrophication scale-up from changes in primary producers at the individual (biochemistry) or population level (production, reproduction, and/or abundance) to higher levels of community (macroalgae abundance, herbivory, and global metabolism), and ecosystem organization (detritus release and carbon sink capacity). The responses of Zostera noltii seagrass meadows growing in low- and high-nutrient field conditions were compared. In both meadows, the expected CO2 benefits on Z. noltii leaf production were suppressed by epiphyte overgrowth, with no direct CO2 effect on plant biochemistry or population-level traits. Multi-level meadow response to nutrients was faster and stronger than to CO2. Nutrient enrichment promoted the nutritional quality of Z. noltii (high N, low C : N and phenolics), the growth of epiphytic pennate diatoms and purple bacteria, and shoot mortality. In the low-nutrient meadow, individual effects of CO2 and nutrients separately resulted in reduced carbon storage in the sediment, probably due to enhanced microbial degradation of more labile organic matter. These changes, however, had no effect on herbivory or on community metabolism. Interestingly, individual effects of CO2 or nutrient addition on epiphytes, shoot mortality, and carbon storage were attenuated when nutrients and CO2 acted simultaneously. This suggests CO2-induced benefits on eutrophic meadows. In the high-nutrient meadow, a striking shoot decline caused by amphipod overgrazing masked the response to CO2 and nutrient additions. Our results reveal that under future scenarios of CO2, the responses of seagrass ecosystems will be complex and

  13. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  14. Effect of rising sea level on runoff and groundwater discharge to coastal ecosystems

    USGS Publications Warehouse

    Nuttle, W.K.; Portnoy, J.W.

    1992-01-01

    Rising sea level can cause an increase in surface runoff from coastal areas by raising the watertable and thus increasing the incidence of saturated soil conditions in low-lying areas. As surface runoff increases, less rainfall will infiltrate into the ground and groundwater discharge to the coast will decrease. The link between sea level rise and runoff is critically dependent on the sensitivity of surface runoff to changes in the elevation of the watertable. A significant relation between the two is demonstrated for a coastal watershed on Cape Cod, where it is estimated that a 10 cm rise in the watertable will increase surface runoff by 70% and decrease groundwater discharge by 20%. Effects on near-shore ecosystems include changes in nutrient fluxes and in the salinity of the sediments.

  15. An Integrated Approach Is Needed for Ecosystem Based Fisheries Management: Insights from Ecosystem-Level Management Strategy Evaluation

    PubMed Central

    Fulton, Elizabeth A.; Smith, Anthony D. M.; Smith, David C.; Johnson, Penelope

    2014-01-01

    An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals. PMID:24454722

  16. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation.

    PubMed

    Fulton, Elizabeth A; Smith, Anthony D M; Smith, David C; Johnson, Penelope

    2014-01-01

    An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals.

  17. Lower trophic levels and detrital biomass control the Bay of Biscay continental shelf food web: Implications for ecosystem management

    NASA Astrophysics Data System (ADS)

    Lassalle, G.; Lobry, J.; Le Loc'h, F.; Bustamante, P.; Certain, G.; Delmas, D.; Dupuy, C.; Hily, C.; Labry, C.; Le Pape, O.; Marquis, E.; Petitgas, P.; Pusineri, C.; Ridoux, V.; Spitz, J.; Niquil, N.

    2011-12-01

    The Bay of Biscay (North-East Atlantic) has long been subjected to intense direct and indirect human activities that lead to the excessive degradation and sometimes overexploitation of natural resources. Fisheries management is gradually moving away from single-species assessments to more holistic, multi-species approaches that better respond to the reality of ecosystem processes. Quantitative modelling methods such as Ecopath with Ecosim can be useful tools for planning, implementing and evaluating ecosystem-based fisheries management strategies. The aim of this study was therefore to model the energy fluxes within the food web of this highly pressured ecosystem and to extract practical information required in the diagnosis of ecosystem state/health. A well-described model comprising 30 living and two non-living compartments was successfully constructed with data of local origin, for the Bay of Biscay continental shelf. The same level of aggregation was applied to primary producers, mid-trophic-levels and top-predators boxes. The model was even more general as it encompassed the entire continuum of marine habitats, from benthic to pelagic domains. Output values for most ecosystem attributes indicated a relatively mature and stable ecosystem, with a large proportion of its energy flow originating from detritus. Ecological network analysis also provided evidence that bottom-up processes play a significant role in the population dynamics of upper-trophic-levels and in the global structuring of this marine ecosystem. Finally, a novel metric based on ecosystem production depicted an ecosystem not far from being overexploited. This finding being not entirely consistent over indicators, further analyses based on dynamic simulations are required.

  18. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    PubMed Central

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-01-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks. PMID:27775100

  19. Perfluorinated compounds: levels, trophic web enrichments and human dietary intakes in transitional water ecosystems.

    PubMed

    Renzi, Monia; Guerranti, Cristiana; Giovani, Andrea; Perra, Guido; Focardi, Silvano E

    2013-11-15

    The results of a study on levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), analyzed in terms of HPLC-ESI-MS in water, sediment, macrophyte, bivalve, crustacean and fish samples, are reported here. The aim of the research is to define, for the first time, PFOA/S levels in a heavily human-stressed transitional water ecosystem (Orbetello lagoon, Italy) and evaluate trophic web enrichments and human dietary intakes. The results obtained show that: (i) levels significantly higher than those reported in the literature were found in mussels, clams and crabs; (ii) the river is a significant pollution source; (iii) although absolute levels are relatively low, macroalgae proliferation contributes to redistribute pollutants from river-affected areas throughout the entire lagoon basin; (iv) to the best of our current knowledge, water-filtering species considered in this study are the most exposed to PFOA/S pollution; (v) human daily dietary intakes of PFOA/S through Slow Food-endorsed product consumption are below maximum tolerable levels suggested by the EFSA.

  20. Breakthrough Cancer Pain: Ten Commandments.

    PubMed

    Mercadante, Sebastiano; Cuomo, Arturo

    2016-01-01

    The term "breakthrough cancer pain" (BTcP) was introduced about 25 years ago. Peaks of pain intensity reported in patients with cancer had been invariably examined in the past years, providing relevant information for a better knowledge of this phenomenon and its treatment. The aim of this critical review was to provide the golden rules, namely, the 10 commandments, for a correct diagnostic pathway of BTcP and a consequent personalized pharmacological treatment. These are as follows: 1) assessment of background analgesia, 2) drugs used for background analgesia, 3) BTcP is a frequent phenomenon, 4) characteristics of BTcP, 5) diagnosis of BTcP, 6) continuous assessment, 7) tailored pharmacological treatment of BTcP, 8) selection of BTcP medication, 9) dosing BTcP medications, and 10) education. These steps may help clinicians to recognize and treat BTcP adequately. PMID:27565269

  1. Innovation Impact: Breakthrough Research Results (Brochure)

    SciTech Connect

    Not Available

    2013-07-01

    The Innovation Impact brochure captures key breakthrough results across NREL's primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy, transportation, buildings, analysis, and manufacturing technologies.

  2. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  3. Population-level assessments should be emphasized over community/ecosystem-level assessments. Environmental Sciences Division Publication No. 1535. [Concerning the impact of power plants on fish populations

    SciTech Connect

    Van Winkle, W

    1980-01-01

    Arguments are presented in favor of emphasizing population-level assessments over community/ecosystem-level assessments. The two approaches are compared on each of four issues: (1) the nature of entrainment/impingement impacts; (2) the ability to forecast reliably for a single fish population as contrasted to the ability to forecast for an aquatic community or ecosystem; (3) practical considerations involving money, manpower, time, and the need to make decisions; and (4) the nature of societal and economic concerns. The conclusion on each of these four issues is that population-level assessments provide the optimal approach for evaluating the effects of entrainment and impingement mortality.

  4. Breakthrough cancer pain – still a challenge

    PubMed Central

    Margarit, Cesar; Juliá, Joaquim; López, Rafael; Anton, Antonio; Escobar, Yolanda; Casas, Ana; Cruz, Juan Jesús; Galvez, Rafael; Mañas, Ana; Zaragozá, Francisco

    2012-01-01

    Breakthrough cancer pain is defined as transient pain exacerbation in patients with stable and controlled basal pain. Although variable, the prevalence of breakthrough cancer pain is high (33%–95%). According to the American Pain Foundation, breakthrough pain is observed in 50%–90% of all hospitalized cancer patients, in 89% of all patients admitted to homes for the elderly and terminal-patient care centers, and in 35% of all ambulatory care cancer patients. The management of breakthrough cancer pain should involve an interdisciplinary and multimodal approach. The introduction of new fentanyl formulations has represented a great advance and has notably improved treatment. Among these, the pectin-based intranasal formulation adjusts very well to the profile of breakthrough pain attacks, is effective, has a good toxicity profile, and allows for convenient dosing – affording rapid and effective analgesia with the added advantage of being easily administered by caregivers when patients are unable to collaborate. PMID:23204865

  5. Aquatic ecotoxicology: from the ecosystem to the cellular and molecular levels.

    PubMed Central

    Boudou, A; Ribeyre, F

    1997-01-01

    This review of aquatic ecotoxicology is presented in three parts. First, we discuss the fundamental concepts and stress the importance of its ecological basis and the complexity and diversity of the field of investigation, which result from actions and interactions between the physicochemical characteristics of the biotopes, the structural and functional properties of the living organisms, and the contamination modalities. Ecotoxicological mechanisms, regardless of the level of biological complexity, primarily depend on the bioavailability of the toxic products. Numerous processes control the chemical fate of contaminants in the water column and/or sediment compartments; accessibility to the biological barriers that separate the organisms from their surrounding medium depends directly on bioavailability. Second, we review the principal methodologies of the field, from in situ studies at the ecosystem/ecocomplex level to bioassays or single species tests. Third, we focus on mercury, selected as a reference contaminant, in order to illustrate the main ecotoxicological concepts, the complementarity between field and laboratory studies, and the indispensable multidisciplinarity of the approaches. PMID:9114275

  6. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels

    NASA Astrophysics Data System (ADS)

    Butenschön, Momme; Clark, James; Aldridge, John N.; Icarus Allen, Julian; Artioli, Yuri; Blackford, Jeremy; Bruggeman, Jorn; Cazenave, Pierre; Ciavatta, Stefano; Kay, Susan; Lessin, Gennadi; van Leeuwen, Sonja; van der Molen, Johan; de Mora, Lee; Polimene, Luca; Sailley, Sevrine; Stephens, Nicholas; Torres, Ricardo

    2016-04-01

    The European Regional Seas Ecosystem Model (ERSEM) is one of the most established ecosystem models for the lower trophic levels of the marine food web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic parts of the marine ecosystem, including the microbial food web, the carbonate system, and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case studies of mesocosm-type simulations, water column implementations, and a brief example of a full-scale application for the north-western European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.

  7. Incorporating Ecosystem Services into Community-level Decision-Making: A San Juan, Puerto Rico Case Study

    EPA Science Inventory

    EPA’s Office of Research and Development’s Sustainable and Healthy Communities Research Program is developing tools and approaches to incorporate ecosystem goods and services concepts into community-level decision-making. The San Juan Community Study is one of a serie...

  8. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator.

    PubMed

    Nifong, James C; Layman, Craig A; Silliman, Brian R

    2015-01-01

    Large-bodied, top-predators are often highly mobile, with the potential to provide important linkages between spatially distinct food webs. What biological factors contribute to variation in cross-ecosystem movements, however, have rarely been examined. Here, we investigated how ontogeny (body size), sex and individual-level behaviour impacts intrapopulation variation in cross-ecosystem foraging (i.e. between freshwater and marine systems), by the top-predator Alligator mississippiensis. Field surveys revealed A. mississippiensis uses marine ecosystems regularly and are abundant in estuarine tidal creeks (from 0·3 to 6·3 individuals per km of creek, n = 45 surveys). Alligator mississippiensis captured in marine/estuarine habitats were significantly larger than individuals captured in freshwater and intermediate habitats. Stomach content analysis (SCA) showed that small juveniles consumed marine/estuarine prey less frequently (6·7% of individuals) than did large juveniles (57·8%), subadult (73%), and adult (78%) size classes. Isotopic mixing model analysis (SIAR) also suggests substantial variation in use of marine/estuarine prey resources with differences among and within size classes between sexes and individuals (range of median estimates for marine/estuarine diet contribution = 0·05-0·76). These results demonstrate the importance of intrapopulation characteristics (body size, sex and individual specialization) as key determinants of the strength of predator-driven ecosystem connectivity resulting from cross-ecosystem foraging behaviours. Understanding the factors, which contribute to variation in cross-ecosystem foraging behaviours, will improve our predictive understanding of the effects of top-predators on community structure and ecosystem function.

  9. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels

    NASA Astrophysics Data System (ADS)

    Butenschön, M.; Clark, J.; Aldridge, J. N.; Allen, J. I.; Artioli, Y.; Blackford, J.; Bruggeman, J.; Cazenave, P.; Ciavatta, S.; Kay, S.; Lessin, G.; van Leeuwen, S.; van der Molen, J.; de Mora, L.; Polimene, L.; Sailley, S.; Stephens, N.; Torres, R.

    2015-08-01

    The ERSEM model is one of the most established ecosystem models for the lower trophic levels of the marine food-web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North-Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic part of the marine ecosystem, including the microbial food-web, the carbonate system and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case-studies of mesocosm type simulations, water column implementations and a brief example of a full-scale application for the North-West European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.

  10. Researchers Realize Major Breakthrough in Understanding Endometriosis

    MedlinePlus

    ... 16, 2014 Researchers Realize Major Breakthrough in Understanding Endometriosis Contact Jessica Meade nibibpress@mail.nih.gov 301- ... 10% of women, surprisingly little is known about endometriosis — a disorder that causes uterine tissue to grow ...

  11. The Breakthrough Behind the Chevy Volt Battery

    DOE R&D Accomplishments Database

    Lerner, Louise

    2011-03-28

    A revolutionary breakthrough cathode for lithium-ion batteries—the kind in your cell phone, laptop and new hybrid cars—makes them last longer, run more safely and perform better than batteries currently on the market.

  12. [Eco-value level classification and ecosystem management strategy of broad-leaved Korean pine forest in Changbai Mountain].

    PubMed

    Zheng, Jingming; Jiang, Fengqi; Zeng, Dehui

    2003-06-01

    To realize the sustainable management of forest ecosystems, we should explicitly clarify the types and differences of the ecosystem services provided by different ecosystems under different conditions, with rethinking about the value of forest ecosystems; then solid management strategies and measurements will be enacted and applied to achieve the objects. The broad-leaved Korean pine forest (BLKPF) in Changbai Mountain is a unique and important forest type in China, owing to its many important ecosystem services such as preventing soil erosion, regulating climates, nutrient cycling, providing wood and non-timber forest products, etc. This paper is a preliminary study on the management strategy of BLKPF on the basis of analyzing the characters of the ecosystems and the relative importance of services they provided in this region. Based on the latest research of ecosystem services of BLKPF in Changbai Mountain, an idea of eco-value level (EVL) was introduced, and accordingly, management strategies were summarized by adopting the advanced theories in ecosystem management science and by analyzing field survey data. EVL means the relative amount of the value of ecosystem services provided by certain ecosystem, which can indicate the difference between services in given objects. The EVL classification of BLKPF implies the relative amount of the eco-value of different ecosystems including virgin forest, secondary forest, forest with human disturbance, and man-made forest in the clear-cutting sites. Analytical Hierarchical Processing method was used to formulate the equation for EVL index. Eight factors, namely, slope, soil depth, stability of soil maternal material, coverage of above-ground canopy, species diversity, regeneration rate of the stand, life span of dominant tree species, and intensity of human disturbance were chosen to build the formula. These factors belonged to three aspects affecting ecosystem services including the physical environment, community, and

  13. Nonlinear response of stream ecosystem structure to low-level phosphorus enrichment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthropogenic inputs of nitrogen (N) and phosphorus (P) create novel environmental conditions that alter biological organization and ecosystem functioning in freshwaters. We studied 38 wadeable streams spanning an N and P gradient to contrast responses of algal and fish assemblages to nutrient enric...

  14. PCB levels and trends within the Detroit River-Western Lake Erie basin: a historical perspective of ecosystem monitoring.

    PubMed

    Heidtke, Thomas; Hartig, John H; Zarull, Michael A; Yu, Bonnie

    2006-01-01

    An international workshop held in the spring of 2002 convened a group of technical experts to address monitoring, modeling, and management of PCBs within the Detroit River-Western Lake Erie basin. Participants shared and discussed a diverse set of research data bases pertaining to PCB levels within the region, discussed observed changes within different components of the local ecosystem, and identified several primary issues impacting future PCB management strategies. Results presented at the workshop indicate dramatic reductions in PCB contamination levels have been observed in much of study area between the late 1970s and mid-1990s. Estimates of loadings attributable to water and atmospheric sources have generally declined, as have PCB concentrations in herring gull eggs, smelt and walleye. Nevertheless, additional improvements have not been observed during recent years and elevated contamination levels remain a concern within local hot spots, particularly in the lower Detroit River and Trenton Channel. A primary recommendation broadly supported by workshop participants is the need to maintain, support, and coordinate a comprehensive ecosystem monitoring program for the Detroit River-Western Lake Erie basin, one that incorporates both near-field and far-field monitoring elements. Such a program is crucial to provide necessary data in support of understanding ecosystem trends, calculating annual mass loadings to the system, assessing impacts of remediation actions, developing improved modeling frameworks, and formulating cost-effective management strategies for the future.

  15. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity.

    PubMed

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-09-25

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function.

  16. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity.

    PubMed

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-01-01

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303

  17. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity

    PubMed Central

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-01-01

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303

  18. Breakthrough Propulsion Physics Workshop Preliminary Results

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1997-01-01

    In August, 1997, a NASA workshop was held to assess the prospects emerging from physics that might lead to creating the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, attaining the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Preliminary results of this workshop are presented, along with the status of the Breakthrough Propulsion Physics program that conducted this workshop.

  19. NASA Breakthrough Propulsion Physics Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Editor); Williamson, Gary Scott (Editor)

    1999-01-01

    In August 1997, NASA sponsored a 3-day workshop to assess the prospects emerging from physics that may eventually lead to creating propulsion breakthroughs -the kind of breakthroughs that could revolutionize space flight and enable human voyages to other star systems. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Because the propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research tasks that could make measurable progress toward these grand ambitions. This workshop was one of the first steps for the new NASA Breakthrough Propulsion Physics program led by the NASA Lewis Research Center.

  20. Retention of heavy metals by stormwater filtration systems: breakthrough analysis.

    PubMed

    Hatt, B E; Steinel, A; Deletic, A; Fletcher, T D

    2011-01-01

    Biofiltration systems are widely used to mitigate the impacts of stormwater on receiving waters, however their long-term capacity to retain heavy metals has not previously been assessed. Accelerated-dosing laboratory experiments were used to assess the likelihood of breakthrough occurring for three different types of soil-based filter media that are commonly used in stormwater biofilters. In all cases, breakthrough of zinc (Zn) was observed, but not of cadmium (Cd), copper (Cu) and lead (Pb). If biofiltration systems are sized so that they are large relative to their catchment (at least 2-3% of its area) or have a deep filter layer (at least 0.5 m deep), then breakthrough will not occur for at least ten years and probably longer. However, after the equivalent of 12-15 years of operation, Cd, Cu and Zn had accumulated in the filter media to levels that exceeded human health and/or ecological guidelines. Further, depending on the design, it is possible that spent filter media may be classified as contaminated soil and thus require special disposal.

  1. Evaluation of Breakthrough's "America 2049" Game

    ERIC Educational Resources Information Center

    Diamond, James; Brunner, Cornelia

    2011-01-01

    Breakthrough, a global human rights organization, produced "America 2049," an alternate-reality game set in a dystopian future in which the United States is on the verge of breaking apart because of an inability to tolerate diversity and promote human rights. During the 12-week game launch, players uncovered artifacts related to the persistent…

  2. Breakthroughs in Action Research through Poetry

    ERIC Educational Resources Information Center

    Barrett, Terry

    2011-01-01

    This paper discusses how major breakthroughs in generating, analysing and disseminating action research about problem-based learning were made through the medium of poetry. I used poetry in three ways: as data, as an interpretive device and as a reflective medium. Poetry helped me to disseminate my research in provocative, memorable and…

  3. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    PubMed Central

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  4. A dynamic model describing ecosystem-level changes in the Strait of Georgia from 1960 to 2010

    NASA Astrophysics Data System (ADS)

    Preikshot, Dave; Beamish, Richard J.; Neville, Chrys M.

    2013-08-01

    We developed an ecosystem model of the Strait of Georgia which emulates biomass and mortality changes between 1960 and 2009 to study ecosystem mechanisms governing dynamics in fished species and marine mammals. The model uses hindcast annual variation in bottom-up production, fisheries catches and predator-prey dynamics to simulate observed changes in fish, mammal and bird populations in the Strait of Georgia. This model emulates the timing and magnitude of historic changes in biomass and mortality of Coho and Chinook salmon as well as other major species like Pacific herring, orcas, harbour seals, lingcod, spiny dogfish and marine birds. Simulated production trends indicate the Strait of Georgia had relatively high production from the mid-1970s to late 1980s and entered a lower production regime in the early 1990s that has persisted to 2009. The simulations also indicate that the mean trophic level of vertebrates declined over the period 1990 to 2009. This model provides a tool to evaluate potential ecosystem changes in the Strait of Georgia.

  5. Sun-induced chlorophyll fluorescence reveals strong representation of photosynthesis at ecosystem level in rice paddy field in Japan

    NASA Astrophysics Data System (ADS)

    Kato, T.; Tsujimoto, K.; Nasahara, K. N.; Akitsu, T.; Ono, K.; Miyata, A.

    2015-12-01

    Chlorophyll fluorescence emission from ecosystem induced by sunlight (Sun-Induced Fluorescence: SIF) is now a key factor to accurately estimate the ecosystem-level photosynthesis activity as suggested by satellite studies, and has been recently detected by satellites [Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013] and measured at field stations [Daumard et al., 2010; Porcar-Castell, 2011]. However, the few example of field-based assessment on the representation ability reduces its value for the availability to better understand the dynamics in CO2uptake by land ecosystem. To elucidate the potential of SIF to estimate ecosystem GPP in typical Asian crop type, the canopy-top SIF was calculated from the spectrum data in Japanese rice paddy field in Mase in central Japan (36°03'N, 140°01'E, 11 m a.s.l.), and compared with eddy-tower measured GPP on half-hourly and daily bases during seven years from 2006 to 2012. The rice (Oriza sativa L.; cultivar Koshihikari) was transplanted in May and harvested in September normally. The SIF was estimated from the spectrums of downward Sun irradiance and upward canopy-reflected radiance measured at the height of 3m above ground by HemiSpherical Spectro-Radiometer (HSSR), consisting of the spectroradiometer (MS-700, Eko inc., Tokyo, Japan) with the full-width at half maximum (FWHM) of 10 nm and wavelength interval of 3.3 nm. The SIF around 760nm (O2-A band: Fs760) was calculated according to the Fraunhofer Line Depth principle [Maier et al., 2003] with several additional arrangements. The GPP increased almost linearly as both Fs760 and APAR (Absorbed Photosyntethically Active Radiation) increased based on monthly-averaged diurnal courses during the growing season in 2006. The slopes of their regression lines differed much among the months in APAR, but in Fs760. These nearly constant relationships among the months between GPP and Fs760 were kept for all the observation years. Daily averaged GPP and Fs760

  6. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system

    USGS Publications Warehouse

    Scharler, U.M.; Ulanowicz, Robert E.; Fogel, M.L.; Wooller, M.J.; Jacobson-Meyers, M.E.; Lovelock, C.E.; Feller, I.C.; Frischer, M.; Lee, R.; Mckee, Karen L.; Romero, I.C.; Schmit, J.P.; Shearer, C.

    2015-01-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  7. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system.

    PubMed

    Scharler, U M; Ulanowicz, R E; Fogel, M L; Wooller, M J; Jacobson-Meyers, M E; Lovelock, C E; Feller, I C; Frischer, M; Lee, R; McKee, K; Romero, I C; Schmit, J P; Shearer, C

    2015-11-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels. PMID:26183835

  8. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system.

    PubMed

    Scharler, U M; Ulanowicz, R E; Fogel, M L; Wooller, M J; Jacobson-Meyers, M E; Lovelock, C E; Feller, I C; Frischer, M; Lee, R; McKee, K; Romero, I C; Schmit, J P; Shearer, C

    2015-11-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  9. Whole Ecosystem Low-level 14C Pulse Labeling and CO2 Flux Measurements in a Boreal Forest

    NASA Astrophysics Data System (ADS)

    Carbone, M.; Trumbore, S.; Czimczik, C.; McDuffee, K.; McMillan, A.

    2004-12-01

    We developed a large volume, low level, 14C pulse-chase, field labeling method to determine the timing and contribution of recent photosynthetic products to total ecosystem respiration in a poorly drained black spruce forest stand in Manitoba, Canada. The site is part of a chronosequence of black spruce stands located in the BOREAS Northern Study Area (55N, 98W), and time since fire is 40 years. The radiocarbon addition was designed to produce a 14C signature of ~1500 times Modern for CO2 at ambient levels inside the ~37,000 L volume light chamber. At this level of labeling, the radioactivity in our 14C source (acidified sodium bicarbonate solution with specific activity of ~30 nCi/g) and in the chamber were well below levels that are regulated. We labeled two chambers in August 2004. The vegetation inside the first (37,000 L) chamber included black spruce trees (ranging from seedlings to 4 m tall) with feather moss and shrub understory. A second 14CO2 label was applied in a smaller chamber (500 L) containing only feather mosses. Both chambers were constructed from polyethylene plastic that allowed for 70 percent transmission of PAR. For seven days following the label, we measured the quantity and 14C content of soil respiration with small (10 L) dark chambers, above-ground respiration with branch bags, and total ecosystem respiration with a dark chamber. Live root and moss 14C content were measured by field incubations. Additionally, soil gas 14C content at two depths within the moss/organic layer was measured. Radiocarbon measurements are made using Accelerator Mass Spectrometry, which allows us to easily distinguish the presence of the label in small amounts (mg) of material. We will report the radiocarbon (delta 14C) signature of individual respiration sources. Preliminary results show that we can use these isotopic signatures to follow the labeled contribution of respiration from individual sources (moss, root/root exudates, and needle) to total ecosystem

  10. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    PubMed

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  11. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    PubMed

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  12. Prospects for Breakthrough Propulsion From Physics

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    2004-01-01

    "Space drives", "Warp drives", and "Wormholes:" these concepts may sound like science fiction, but they are being written about in reputable journals. To assess the implications of these emerging prospects for future spaceflight, NASA supported the Breakthrough Propulsion Physics Project from 1996 through 2002. This Project has three grand challenges: (1) Discover propulsion that eliminates the need for propellant; (2) Discover methods to achieve hyper-fast travel; and (3) Discover breakthrough methods to power spacecraft. Because these challenges are presumably far from fruition, and perhaps even impossible, a special emphasis is placed on selecting incremental and affordable research that addresses the critical issues behind these challenges. Of 16 incremental research tasks completed by the project and from other sponsors, about a third were found not to be viable, a quarter have clear opportunities for sequels, and the rest remain unresolved.

  13. Breakthrough pain: definition, prevalence and characteristics.

    PubMed

    Portenoy, R K; Hagen, N A

    1990-06-01

    In the cancer population, the term breakthrough pain typically refers to a transitory flare of pain in the setting of chronic pain managed with opioid drugs. The prevalence and characteristics of this phenomenon have not been defined, and its impact on patient care is unknown. We developed operational definitions for breakthrough pain and its major characteristics, and applied these in a prospective survey of patients with cancer pain. Data were collected during a 3 month period from consecutive patients who reported moderate pain or less for more than 12 h daily and stable opioid dosing for a minimum of 2 consecutive days. Of 63 patients surveyed, 41 (64%) reported breakthrough pain, transient flares of severe or excruciating pain. Fifty-one different pains were described (median 4 pains/day; range 1-3600). Pain characteristics were extremely varied. Twenty-two (43%) pains were paroxysmal in onset; the remainder were more gradual. The duration varied from seconds to hours (median/range: 30 min/1-240 min), and 21 (41%) were both paroxysmal and brief (lancinating pain). Fifteen (29%) of the pains were related to the fixed opioid dose, occurring solely at the end of the dosing interval. Twenty-eight (55%) of the pains were precipitated; of these, 22 were caused by an action of the patient (incident pain), and 6 were associated with a non-volitional precipitant, such as flatulence. The pathophysiology of the pain was believed to be somatic in 17 (33%), visceral in 10 (20%), neuropathic in 14 (27%), and mixed in 10 (20%). Pain was related to the tumor in 42 (82%), the effects of therapy in 7 (14%), and neither in 2 (4%). Diverse interventions were employed to manage these pains, with variable efficacy. These data clarify the spectrum of breakthrough pains and indicate their importance in cancer pain management. PMID:1697056

  14. Breakthrough Propulsion Physics Project: Project Management Methods

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    2004-01-01

    To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.

  15. Decadal-scale variations of trophic levels at high trophic levels in the Yellow Sea and the Bohai Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tang, Q.; Jin, X.

    2007-09-01

    A total of 2759 stomachs collected from a bottom trawl survey carried out by R/V "Bei Dou" in the Yellow Sea between 32°00 and 36°30N in autumn 2000 and spring 2001 were examined. The trophic levels (TL) of eight dominant fish species were calculated based on stomach contents, and trophic levels of 17 dominant species in the Yellow Sea and the Bohai Sea reported in later 1950s and mid-1980s were estimated so as to be comparable. The results indicated that the mean trophic level at high trophic levels declined from 4.06 in 1959-1960 to 3.41 in 1998-1999, or 0.16-0.19·decade - 1 (mean 0.17·decade - 1 ) in the Bohai Sea, and from 3.61 in 1985-1986 to 3.40 in 2000-2001, or 0.14·decade - 1 in the Yellow Sea; all higher than global trend. The dominant species composition in the Yellow Sea and the Bohai Sea changed, with the percentage of planktivorous species increases and piscivorous or omnivorous species decreases, and this was one of the main reasons for the decline in mean trophic level at high tropic levels. Another main reason was intraspecific changes in TL. Similarly, many factors caused decline of trophic levels in the dominant fish species in the Yellow Sea and the Bohai Sea. Firstly, TL of the same prey got lower, and anchovy ( Engraulis japonicus) as prey was most representative. Secondly, TLs of diet composition getting lower resulted in not only decline of trophic levels but also changed feeding habits of some species, such as spotted velvetfish ( Erisphex pottii) and Trichiurus muticus in the Yellow Sea. Thirdly, species size getting smaller also resulted in not only decline of trophic levels but also changed feeding habits of some species, such as Bambay duck ( Harpodon nehereus) and largehead hairtail ( Trichiurus haumela). Furthermore, fishing pressure and climate change may be interfering to cause fishing down the food web in the China coastal ocean.

  16. Interaction between isoprene and ozone fluxes at ecosystem level in a poplar plantation and its impact at European level

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Hendriks, C.; Brilli, F.; Gioli, B.; Portillo Estrada, M.; Schaap, M.; Ceulemans, R.

    2015-12-01

    The emissions of Biogenic volatile organic compounds (BVOCs) from vegetation, mainly in form of isoprenoids, play an important role in the tropospheric ozone (O3) formation. The potential large expansion of isoprene emitter species (e.g. poplar) as biofuels feedstock might impact the ground level O3 formation. Here we report the simultaneous observations, using the eddy covariance (EC) technique, of isoprene, O3 and CO2 fluxes in a short rotation coppice (SRC) of poplar. The impact of current poplar plantations and associated isoprene emissions on ground level ozone concentrations for Europe was evaluated using a chemistry transport model (CTM) LOTOS-EUROS. The isoprene fluxes showed a well-defined seasonal and daily cycle that mirrored with the stomata O3 uptake. The isoprene emission and the stomata O3 uptake showed significant statistical relationship especially at elevated temperature. Isoprene was characterized by a remarkable peak of emissions (e.g. 38 nmol m-2s-1) occurring for few days as a consequence of the rapid variation of the air and surface temperature. During these days the photosynthetic apparatus (i.e. the CO2 fluxes) and transpiration rates did not show significant variation while we did observe a variation of the energy exchange and a reduction of the bowen ratio. The response of isoprene emissions to ambient O3 concentration follows the common form of the hormetic dose-response curve with a considerable reduction of the isoprene emissions at [O3] > 80 ppbv indicating a potential damping effect of the O3 levels on isoprene. Under the current condition the impact of SRC plantations on ozone concentrations / formation is very limited in Europe. Our findings indicate that, even with future scenarios with more SRC, or conventional poplar plantations, the impact on Ozone formation is negligible.

  17. Solute breakthrough during recurrent ponded infiltration into heterogeneous soil

    NASA Astrophysics Data System (ADS)

    Sobotkova, Martina; Snehota, Michal; Dohnal, Michal; Cislerova, Milena

    2010-05-01

    Water flow during recurrent ponded infiltration may be influenced by presence of entrapped air in heterogeneous soils. It is assumed that variations of the entrapped air volume cause changes of the water content and flow patterns, with consequences for the solute transport. The aim of this contribution is to investigate the effect of entrapped air on dispersion by means of experiments in laboratory. Two undisturbed samples of sandy loam soils were collected at the experimental sites in the Šumava Mountains and the Jizera Mountains (Czech Republic). Packed sample of fine quartz sand was used as a reference. Recurrent ponded infiltration, conducted on each soil sample consisted of two or more infiltration runs. The same level of ponding was maintained during each infiltration run at the top of the sample. Water drained freely through the perforated plate at the bottom of the sample. First infiltration run was done into naturally dry soil while subsequent runs were conducted into wetter soil. Suction pressure heads in three heights were continuously measured by tensiometers. Water contents were monitored by TDR probes also in three heights. Outflow fluxes were recorded continuously during the experiments as well as the weight of the sample. During each infiltration run the concentration pulse of potassium bromide solution was applied at the top of the soil core during steady state flow and breakthrough curve was acquired by electrochemical in-line analysis of bromide ions in the effluent. Soil hydraulic properties were obtained by fitting the measured flux, water content and pressure data by the dual permeability model. The dispersion coefficients were determined by fitting a one-dimensional advection-dispersion equation to each breakthrough curve. Differences in the shape of the breakthrough curves obtained for individual infiltration runs will be discussed on the poster. This research has been supported by GACR 103/08/1552.

  18. Solute Breakthrough During Recurrent Ponded Infiltration Into Heterogeneous Soil

    NASA Astrophysics Data System (ADS)

    Sobotkova, M.; Snehota, M.; Cislerova, M.

    2009-12-01

    Water flow during recurrent ponded infiltration may be influenced by presence of entrapped air in heterogeneous soils. It is assumed that variations of the entrapped air volume cause changes of the water content and flow patterns, with consequences for the solute transport. The aim of this contribution is to investigate the effect of entrapped air on dispersion by means of experiments in laboratory. Two undisturbed samples of sandy loam soils were collected at the experimental sites in the Šumava Mountains and the Jizera Mountains (Czech Republic). Recurrent ponded infiltration, conducted on each soil sample consisted of two or more infiltration runs. The same level of ponding was maintained during each infiltration run at the top of the sample. Water drained freely through the perforated plate at the bottom of the sample. First infiltration run was done into naturally dry soil while subsequent runs were conducted into wetter soil. Suction pressure heads in three heights were continuously measured by tensiometers. Water contents were monitored by TDR probes also in three heights. Outflow fluxes were recorded continuously during the experiments as well as the weight of the sample. During each infiltration run the concentration pulse of potassium bromide solution was applied at the top of the soil core during steady state flow and breakthrough curve was acquired by electrochemical in-line analysis of bromide ions in the effluent. Soil hydraulic properties were obtained by fitting the measured flux, water content and pressure data by the dual permeability model. The dispersion coefficients were determined by fitting a one-dimensional advection-dispersion equation to each breakthrough curve. Differences in the shape of the breakthrough curves obtained for individual infiltration runs will be discussed on the poster. This research has been supported by GACR 103/08/1552.

  19. DIATOM INDICES OF STREAM ECOSYSTEM CONDITIONS: COMPARISON OF GENUS VS. SPECIES LEVEL IDENTIFICATIONS

    EPA Science Inventory

    Diatom assemblage data collected between 1993 and 1995 from 233 Mid-Appalachian streams were used to compare indices of biotic integrity based on genus vs. species level taxonomy. Thirty-seven genera and 197 species of diatoms were identified from these samples. Metrics included...

  20. Proposed Methodology for Specifying Atrazine Levels of Concern for Protection of Plant Communities in Freshwater Ecosystems

    EPA Science Inventory

    This document describes a proposed methodology for setting levels of concern (LOCs) for atrazine in natural freshwater systems to prevent unacceptably adverse effects on the aquatic plant communities in those systems. LOCs regarding effects on humans and possible effects on amph...

  1. Bioinnovation Enterprise: An engine driving breakthrough therapies.

    PubMed

    Waldman, S A; Terzic, A

    2016-01-01

    Biological advances have radically expanded our insights into the underpinnings of health and disease. New knowledge has formed the substrate for translation-expedited in turn by the biotechnology and pharmaceutical industry into novel therapeutic solutions impacting the management of patients and populations. Indeed, this Bioinnovation Enterprise has become the dominant growth sector in drug development and the engine driving the translation of breakthrough therapies worldwide. This annual Therapeutic Innovations issue highlights recent exceptional advances by the Bioinnovation Enterprise in translating molecular insights in pathobiology into transformative therapies.

  2. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  3. From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization

    PubMed Central

    Bailey, Joseph K.; Schweitzer, Jennifer A.; Úbeda, Francisco; Koricheva, Julia; LeRoy, Carri J.; Madritch, Michael D.; Rehill, Brian J.; Bangert, Randy K.; Fischer, Dylan G.; Allan, Gerard J.; Whitham, Thomas G.

    2009-01-01

    Using two genetic approaches and seven different plant systems, we present findings from a meta-analysis examining the strength of the effects of plant genetic introgression and genotypic diversity across individual, community and ecosystem levels with the goal of synthesizing the patterns to date. We found that (i) the strength of plant genetic effects can be quite high; however, the overall strength of genetic effects on most response variables declined as the levels of organization increased. (ii) Plant genetic effects varied such that introgression had a greater impact on individual phenotypes than extended effects on arthropods or microbes/fungi. By contrast, the greatest effects of genotypic diversity were on arthropods. (iii) Plant genetic effects were greater on above-ground versus below-ground processes, but there was no difference between terrestrial and aquatic environments. (iv) The strength of the effects of intraspecific genotypic diversity tended to be weaker than interspecific genetic introgression. (v) Although genetic effects generally decline across levels of organization, in some cases they do not, suggesting that specific organisms and/or processes may respond more than others to underlying genetic variation. Because patterns in the overall impacts of introgression and genotypic diversity were generally consistent across diverse study systems and consistent with theoretical expectations, these results provide generality for understanding the extended consequences of plant genetic variation across levels of organization, with evolutionary implications. PMID:19414474

  4. Ecosystem Productivity Responses to Saltwater Intrusion and P Loading As a Result of Future Sea Level Rise in the Coastal Everglades

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Troxler, T.; Gaiser, E.; Kominoski, J. S.; Richards, J.; Servais, S.; Stachelek, J.; Kelly, S.; Sklar, F.; Coronado-Molina, C.; Madden, C.; Davis, S. E., III; Mazzi, V.; Schulte, N.; Bauman, L.

    2014-12-01

    Coastal wetlands, which have immense potential to store carbon (C) in vegetation and sediments, are a vital part of the global C cycle. How C storage in coastal wetlands will be affected by accelerated sea level rise as a result of a warming climate, however, is uncertain. In oligotrophic wetlands such as the Everglades in the southeastern USA, saltwater intrusion will bring ions (Cl-, SO42-) and phosphorus (P), a limiting nutrient for ecosystem productivity. It is hypothesized that shifts in stressors and subsidies can shift the soil carbon balance from a net C sink to a source, stimulating peat collapse, which will, in turn, accelerate the effects of sea level rise. The objective of this study is to investigate how simulated saltwater intrusion into freshwater and oligohaline wetlands will change net ecosystem productivity and affect the soil C balance. Using coupled field and mesocosm experiments beginning in August 2014, we are examining how plant gross primary production, plant respiration, ecosystem respiration, and net ecosystem exchange in freshwater and oligohaline wetlands will change when exposed to saltwater and an increase in P loading. We predict that a higher saltwater load will increase ecosystem respiration while decreasing ecosystem productivity, possibly shifting the C balance of these marshes from a net sink to a source. In contrast, increased P loading has been shown to increase ecosystem productivity in oligotrophic wetlands; sawgrass, the dominant macrophyte in Everglades marshes, increases productivity with increased P, but periphyton decreases productivity. Therefore, it is still unknown how the interaction of an increased P subsidy coupled with saltwater intrusion will affect overall net ecosystem productivity and the C balance. Results from this study will reveal how the soil C balance in freshwater and oligohaline wetlands changes with saltwater intrusion due to sea level rise.

  5. Spatially varying dispersion to model breakthrough curves.

    PubMed

    Li, Guangquan

    2011-01-01

    Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion. PMID:21143474

  6. Pan-Eurasian experiment (PEEX) establishing a process towards high level Pan-Eurasian atmosphere-ecosystem observation networks

    NASA Astrophysics Data System (ADS)

    Lappalainen, Hanna K.; Petäjä, Tuukka; Zaytzeva, Nina; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolay; Bondur, Valery; Matvienko, Gennady; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions (Kulmala et al. 2011). The main goal of PEEX Research agenda is to contribute to solving the scientific questions that are specifically important for the Pan-Eurasian region in the coming years, in particular the global climate change and its consequences to nature and human society. Pan Eurasian region represents one the Earth most extensive areas of boreal forest (taiga) and the largest natural wetlands, thus being a significant source area of trace gas emissions, biogenic aerosol particles, and source and sink area for the greenhouse gas (GHG) exchange in a global scale (Guenther et al. 1995, Timkovsky et al. 2010, Tunved et al. 2006, Glagolev et al. 2010). One of the first activities of the PEEX initiative is to establish a process towards high level Pan-Eurasian Observation Networks. Siberian region is currently lacking a coordinated, coherent ground based atmosphere-ecosystem measurement network, which would be crucial component for observing and predicting the effects of climate change in the Northern Pan- Eurasian region The vision of the Pan-Eurasion network will be based on a hierarchical SMEAR-type (Stations Measuring Atmosphere-Ecosystem Interactions) integrated land-atmosphere observation system (Hari et al. 2009). A suite of stations have been selected for the Preliminary Phase of PEEX Observation network. These Preliminary Phase stations includes the SMEAR-type stations in Finland (SMEAR-I-II-II-IV stations), in Estonia (SMEAR-Järviselja) and in China (SMEAR-Nanjing) and selected stations in Russia and ecosystem station network in China. PEEX observation network will fill in the current observational gap in the Siberian region and bring the Siberian observation setup into international context with the with standardized or

  7. Impact of extreme metal contamination at the supra-individual level in a contaminated bay ecosystem.

    PubMed

    Wu, Bin; Li, Xuegang; Song, Jinming; Hu, Limin; Shi, Xuefa

    2016-07-01

    Anthropogenic stressors impact the global environment and adversely affect the health of organisms and humans. This study was designed as an attempt to evaluate the ecological consequences of severe metal contamination at the supra-individual level based on a field investigation in Jinzhou Bay (JZB), North China in 2010. The chemical results showed high concentrations of metals in the sediment of JZB that were ~129 times greater than the local geochemical background. Furthermore, the measured metals exhibited considerably high toxicity potential indicated by sediment quality guidelines (SQGs). The mean SQGs quotients suggested the overall toxicity incidence was >70% in locations neighboring the Wulihe River mouth. Biomonitoring revealed 116 individuals distributed among a mere 6 species, 4 of which were polychaetes, at 33% of the sampling sites. Thus, few benthic organisms were present in the damaged community structures across the region, which was consistent with the extreme metal contamination. Moreover, the sediment quality assessment, in a weight of evidence framework, demonstrated that the sediment throughout the entire JZB was moderately to severely impaired, especially in the vicinity of the Wulihe River mouth. By synthesizing the present and previous chemical-biological monitoring campaigns, a possible cause-effect relationship between chemical stressors and benthic receptors was established. We also found that the hydrodynamics, sediment sources, and geochemical characteristics of the metals (in addition to the sources of the metals) were responsible for the geochemical distribution of metals in JZB. The significance of the overall finding is that the deleterious responses observed at the community level may possibly be linked to the extreme chemical stress in the sediment of JZB. PMID:26994798

  8. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils

    PubMed Central

    Schmidt, S.K; Reed, Sasha C; Nemergut, Diana R; Stuart Grandy, A; Cleveland, Cory C; Weintraub, Michael N; Hill, Andrew W; Costello, Elizabeth K; Meyer, A.F; Neff, J.C; Martin, A.M

    2008-01-01

    Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of ‘new’ soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4–5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4–5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth. PMID:18755677

  9. Higher Trophic Levels Overwhelm Climate Change Impacts on Terrestrial Ecosystem Functioning

    PubMed Central

    Pelini, Shannon L.; Maran, Audrey M.; Chen, Angus R.; Kaseman, Justine; Crowther, Thomas W.

    2015-01-01

    Forest floor food webs play pivotal roles in carbon cycling, but they are rarely considered in models of carbon fluxes, including soil carbon dioxide emissions (respiration), under climatic warming. The indirect effects of invertebrates on heterotrophic (microbial and invertebrate) respiration through interactions with microbial communities are significant and will be altered by warming. However, the interactive effects of invertebrates and warming on heterotrophic respiration in the field are poorly understood. In this study we combined field and common garden laboratory approaches to examine relationships between warming, forest floor food web structure, and heterotrophic respiration. We found that soil animals can overwhelm the effects of warming (to 5 degrees Celsius above ambient) on heterotrophic respiration. In particular, the presence of higher trophic levels and burrowing detritivores strongly determined heterotrophic respiration rates in temperate forest soils. These effects were, however, context-dependent, with greater effects in a lower-latitude site. Without isolating and including the significant impact of invertebrates, climate models will be incomplete, hindering well-informed policy decisions. PMID:26292214

  10. Response of stream invertebrates to a global-warming thermal regime: An ecosystem-level manipulation

    SciTech Connect

    Hogg, I.D.; Williams, D.D.

    1996-03-01

    We manipulated, in accord with global-warming predictions, the thermal regime of a permanent first-order stream near Toronto, Ontario, Canada. We examined the effects of a 2-3.5{degrees}C water-temperature increase on densities, biomass, species composition, and life histories of resident stream invertebrates. The stream was divided longitudinally at the source into two channels, one control and one experimental, and a before and after (BACI) design was employed such that one pre-manipulation year was followed by 2 yr of the temperature manipulation. Changes in the experimental channel following commencement of the manipulation included: (1) decreased total animal densities, particularly Chironomidae (Diptera); (2) earlier onset of adult insect emergence; (3) increased growth rates and precocious breeding in Hyallella azteca (Amphipoda); (4) smaller size at maturity for Nemoura trispinosa (Plecoptera) and H., azteca and (5) altered sex ratios for Lepidostoma vernale (Trichoptera). These results partially corroborate previous laboratory and field studies. However, variation in the responses of individual target species to the manipulation was unexpected and may have been influenced by the genetic structure of local populations. We conclude that levels of gene flow among habitats may be critical to the degree of impact seen as a result of large-scale thermal perturbation (e.g., global warming). 60 refs., 13 figs., 1 tab.

  11. Ecosystem level assessment of the Grand Calumet Lagoons, Indiana Dunes National Lakeshore

    SciTech Connect

    Stewart, P.M.

    1995-12-31

    The Grand Calumet Lagoons make up the eastern section of the Grand Calumet River (GCR), Indiana Harbor and Ship Canal and nearshore Lake Michigan Area of Concern (AOC). The GCR AOC is the only one of the 42 Great Lakes Areas of Concern identified by the International Joint Commission with all 14 designated uses classified as impaired. Included within the boundaries of the Indiana Dunes National Lakeshore (INDU), is the central section of the Grand Calumet Lagoons. A number of biotic and abiotic factors were tested to determine the effects of an industrial landfill that borders the lagoons to assess the potential impact on park resources. Analysis included water quality testing, assessments of macroinvertebrate, fish, algae and aquatic plant communities and contaminant concentrations in water, sediment and plant and fish tissue. Surface water testing found very few contaminants, but significantly higher nutrient levels were found in the water column closest to the landfill. Macroinvertebrate, aquatic plant and fish communities all showed significant impairment in relationship to their proximity to the landfill. Aquatic plant growth habit became limited next to the landfill with certain growth habits disappearing entirely. Aquatic plants collected close to the landfill had high concentrations of several heavy metals in their stems and shoots. Using the index of biotic integrity (IBI), fish community assessment indicated impairment in the areas adjacent to the landfill. Sediments tested at one site had over 12% polycyclic aromatic hydrocarbons (PAH) and carp (Cyprinus carpio) collected from this site had whole fish tissue concentrations over 1 mg/kg PAH.

  12. Chemical Hydrogeology: Fifty Years of Advances, Breakthroughs, and Innovation

    NASA Astrophysics Data System (ADS)

    Brusseau, M. L.

    2015-12-01

    Chemical hydrogeology focuses on the composition, properties, and biogeochemical processes inherent to water in subsurface environments. Multiple avenues of research coalesced in the 1960's to foment the development of chemical hydrogeology as a distinct field. In the intervening 50 years, chemical hydrogeology principles have been applied to innumerable issues and problems, and concomitantly, the field has continually experienced advances, breakthroughs, and innovations in theory, analysis, and application. An overarching theme to chemical hydrogeology in both theory and application is integration--- integration of disciplines (interdisciplinary, multidisciplinary), integration of approaches (theoretical, experimental, analytical), and integration of scales (spatial, temporal). Chemical hydrogeology has never been more relevant and more challenged as today, as we face critical issues related to for example water scarcity and availability of clean water, impacts of energy development, production and storage, and human interactions with ecosystem services. This presentation will illustrate recent advances in chemical hydrogeology, ranging from application of advanced imaging for characterization of pore-scale multiphase systems to integrated physical and biogeochemical assessments of field-scale contaminant transport.

  13. Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems.

    PubMed

    Meili, Markus; Bishop, Kevin; Bringmark, Lage; Johansson, Kjell; Munthe, John; Sverdrup, Harald; de Vries, Wim

    2003-03-20

    Mercury (Hg) is regarded as a major environmental concern in many regions, traditionally because of high concentrations in freshwater fish, and now also because of potential toxic effects on soil microflora. The predominant source of Hg in most watersheds is atmospheric deposition, which has increased 2- to >20-fold over the past centuries. A promising approach for supporting current European efforts to limit transboundary air pollution is the development of emission-exposure-effect relationships, with the aim of determining the critical level of atmospheric pollution (CLAP, cf. critical load) causing harm or concern in sensitive elements of the environment. This requires a quantification of slow ecosystem dynamics from short-term collections of data. Aiming at an operational tool for assessing the past and future metal contamination of terrestrial and aquatic ecosystems, we present a simple and flexible modelling concept, including ways of minimizing requirements for computation and data collection, focusing on the exposure of biota in forest soils and lakes to Hg. Issues related to the complexity of Hg biogeochemistry are addressed by (1) a model design that allows independent validation of each model unit with readily available data, (2) a process- and scale-independent model formulation based on concentration ratios and transfer factors without requiring loads and mass balance, and (3) an equilibration concept that accounts for relevant dynamics in ecosystems without long-term data collection or advanced calculations. Based on data accumulated in Sweden over the past decades, we present a model to determine the CLAP-Hg from standardized values of region- or site-specific synoptic concentrations in four key matrices of boreal watersheds: precipitation (atmospheric source), large lacustrine fish (aquatic receptor and vector), organic soil layers (terrestrial receptor proxy and temporary reservoir), as well as new and old lake sediments (archives of response

  14. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    PubMed

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency.

  15. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    PubMed

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency. PMID:24820033

  16. Developing standards for breakthrough therapy designation in oncology.

    PubMed

    Horning, Sandra J; Haber, Daniel A; Selig, Wendy K D; Ivy, S Percy; Roberts, Samantha A; Allen, Jeff D; Sigal, Ellen V; Sawyers, Charles L

    2013-08-15

    In July 2012, Congress passed the Food and Drug Administration Safety and Innovation Act (FDASIA). The Advancing Breakthrough Therapies for Patients Act was incorporated into a Title of FDASIA to expedite clinical development of new, potential "breakthrough" drugs or treatments that show dramatic responses in early-phase studies. Using this regulatory pathway, once a promising new drug candidate is designated as a "Breakthrough Therapy", the U.S. Food and Drug Administration (FDA) and sponsor would collaborate to determine the best path forward to abbreviate the traditional three-phase approach to drug development. The breakthrough legislation requires that an FDA guidance be drafted that details specific requirements of the bill to aid FDA in implementing requirements of the Act. In this article, we have proposed criteria to define a product as a Breakthrough Therapy, and discussed critical components of the development process that would require flexibility in order to enable expedited development of a Breakthrough Therapy.

  17. UK fusion breakthrough revealed at last

    NASA Astrophysics Data System (ADS)

    Evans, Roger

    2010-03-01

    Fusion-energy research is commonly associated with huge toroidal magnetic devices such as JET and ITER, surrounded by even larger diagnostic systems and power supplies, all promising cheap energy in 30 years' time. However, increasing attention is now being paid to the complementary field of inertial-confinement fusion, thanks in part to the recent opening of the National Ignition Facility (NIF) in the US. It seeks to focus some 2 MJ of energy from 192 powerful lasers onto a tiny sphere containing deuterium and tritium nuclei, heating them up until they fuse. Having recently announced that they had made a crucial breakthrough in achieving this "laser fusion", researchers at NIF hope to have generated the conditions for a sustained nuclear reaction by the end of the year.

  18. 50 Breakthroughs by America's National Labs

    DOE R&D Accomplishments Database

    2011-01-01

    America's National Laboratory system has been changing and improving the lives of millions for more than 80 years. Born at a time of great societal need, this network of Department of Energy Laboratories has now grown into 17 facilities, working together as engines of prosperity and invention. As this list of 50 Breakthroughs attests, National Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination, and helped to reveal the secrets of the universe. Rooted in the need to be the best and bring the best, America's National Laboratories have put an American stamp on the past century of science. With equal ingenuity and tenacity, they are now engaged in winning the future.

  19. A Screening-Level Approach for Comparing Risks Affecting Aquatic Ecosystem Services over Socio-Environmental Gradients

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.; Conde, D.; Villamizar, S. R.; Reid, B.; Escobar, J.; Rusak, J.; Hoyos, N.; Scordo, F.; Perillo, G. M.; Piccolo, M. C.; Zilio, M.; Velez, M.

    2015-12-01

    Assessing risks to aquatic ecosystems services (ES) is challenging and time-consuming, and effective strategies for prioritizing more detailed assessment efforts are needed. We propose a screening-level risk analysis (SRA) approach that scales ES risk using socioeconomic and environmental indices to capture anthropic and climatic pressures, as well as the capacity for institutional responses to those pressures. The method considers ES within a watershed context, and uses expert input to prioritize key services and the associated pressures that threaten them. The SRA approach focuses on estimating ES risk affect factors, which are the sum of the intensity factors for all hazards or pressures affecting the ES. We estimate the pressure intensity factors in a novel manner, basing them on the nation's (i) human development (proxied by Inequality-adjusted Human Development Index, IHDI), (ii) environmental regulatory and monitoring state (Environmental Performance Index, EPI) and (iii) the current level of water stress in the watershed (baseline water stress, BWS). Anthropic intensity factors for future conditions are derived from the baseline values based on the nation's 10-year trend in IHDI and EPI; ES risks in nations with stronger records of change are rewarded more/penalized less in estimates for good/poor future management scenarios. Future climatic intensity factors are tied to water stress estimates based on two general circulation model (GCM) outcomes. We demonstrate the method for an international array of six sites representing a wide range of socio-environmental settings. The outcomes illustrate novel consequences of the scaling scheme. Risk affect factors may be greater in a highly developed region under intense climatic pressure, or in less well-developed regions due to human factors (e.g., poor environmental records). As a screening-level tool, the SRA approach offers considerable promise for ES risk comparisons among watersheds and regions so that

  20. A Levels-of-Evidence Approach for Assessing Cumulative Ecosystem Response to Estuary and River Restoration Programs

    SciTech Connect

    Diefenderfer, Heida L.; Thom, Ronald M.; Johnson, Gary E.; Skalski, J. R.; Vogt, Kristiina A.; Ebberts, Blaine D.; Roegner, G. Curtis; Dawley, Earl

    2011-03-01

    Even though large-scale ecological restoration programs are beginning to supplement isolated projects implemented on rivers and tidal waterways, the effects of restoration success often continue to be evaluated at project scales or by integration in an additive manner. Today our scientific understanding is sufficient that we can begin to apply lessons learnt from assessing cumulative impacts of anthropogenic stressors on ecosystems to the assessment of ecological restoration. Integration of this knowledge has the potential to increase the efficacy of restoration projects conducted at several locations but co-managed within the confines of a larger integrative program. We introduce here a framework based on a levels-of-evidence approach that facilitates assessment of the cumulative landscape effects of individual restoration actions taken at many different locations. It incorporates data collection at restoration and reference sites, hydrodynamic modeling, geographic information systems, and meta-analyses in a five-stage process: design, data, analysis, synthesis and evaluation, and application. This framework evolved from the need to evaluate the efficacy of restoration projects designed to increase rearing habitat for outmigrating juvenile salmonids, which are being implemented in numerous wetlands on the 235-km tidal portion of the Columbia River, U.S.A.

  1. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level.

    PubMed

    Havens, K E; Jin, K R; Rodusky, A J; Sharfstein, B; Brady, M A; East, T L; Iricanin, N; James, R T; Harwell, M C; Steinman, A D

    2001-04-01

    In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisneria, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake"s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous

  2. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level.

    PubMed

    Havens, K E; Jin, K R; Rodusky, A J; Sharfstein, B; Brady, M A; East, T L; Iricanin, N; James, R T; Harwell, M C; Steinman, A D

    2001-04-01

    In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisneria, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake"s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous

  3. Varicella breakthrough infection and vaccine effectiveness in Taiwan.

    PubMed

    Huang, Wen-Chan; Huang, Li-Min; Chang, I-Shou; Tsai, Fang-Yu; Chang, Luan-Yin

    2011-03-24

    We performed this nationwide retrospective investigation among the recipients of varicella vaccine to evaluate the breakthrough varicella infection rate, factors associated with breakthrough infection and the vaccine effectiveness. The recipients of these vaccinations were identified through Taiwan's National Immunization Information System and data on breakthrough infections among these recipients were collected by using Taiwan's National Health Insurance Claims Database. From 2000 to 2007, 1,057,345 persons received varicella vaccinations in Taiwan. Varicella breakthrough infection occurred among 22,640 (2.1%) vaccinees and 170 (0.016%) required hospitalization for varicella disease. Annual breakthrough infection rates ranged from 0.12% to 2.04%. The mean age of vaccination was 1.6 years (median 1.3 years) and the mean age at breakthrough infection was 3.9 years. The mean interval between vaccination and the breakthrough infection was 2.3 years. The rate was significantly lower in regions where free varicella vaccinations were available than in regions where they were not (P<0.001). Varicella breakthrough infection was significantly more likely to occur at 5 and 6 years of age among the vaccinees, who received vaccination between 12 months and 23 months of age (P<0.001). The vaccine effectiveness against varicella was 82.6% and against varicella-related hospitalization was 85.4% from 2000 to 2005.

  4. Project Breakthrough: A Telecourse Model for the Mountain State.

    ERIC Educational Resources Information Center

    Filek, R. Rudy; Day-Perroots, Sue

    This study assessed educational needs and interests of West Virginia adults related to the proposed extension of distance education through Project Breakthrough. Project Breakthrough will broadcast college credit telecourse via satellite into more than 50,000 home satellite receivers. Results show an overall positive attitude toward additional…

  5. Changes in the flux of carbon between plants and soil microorganisms at elevated CO{sub 2}: Physiological processes with ecosystem-level implications. Progress report

    SciTech Connect

    Zak, D.R.; Pregitzer, K.S.

    1994-05-15

    Our ability to interpret ecosystem response to elevated atmospheric CO{sub 2} is contingent on understanding and integrating a complex of physiological and ecological processes. However, we have a limited understanding of the combined effects of changes in plant carbon (C) allocation, microbial activity, and nitrogen (N) dynamics on the long-term response of terrestrial ecosystems to elevated CO{sub 2}. Individually, these factors are potent modifiers of C and N dynamics, and an in depth understanding of their interactions should provide insight into ecosystem-level responses to global climate change. Our research is aimed at quantifying the physiological mechanisms leading to increased fine root production, microbial biomass and rates of N cycling at elevated atmospheric CO{sub 2}. More specifically, we will experimentally manipulate soil nitrogen availability and atmospheric CO{sub 2} to understand how changes in plant resource availability influence the cycling of carbon between plants and soil microorganisms.

  6. Welcome Biological Breakthroughs, Supply Psychosocial Insights

    PubMed Central

    Tekkalaki, Bheemsain; Tripathi, Adarsh; Trivedi, J. K.

    2014-01-01

    Human behaviour, emotions, and cognition are complex to understand and explain. It is even more difficult to understand the basis for abnormal behaviour, disturbed emotions, and impaired cognitions, something mental health professionals are trying for long. In these pursuits, psychiatry has traversed through eras of humours, witchcraft, spirits, psychoanalysis, and gradually deviated from other medical specialities. Now, with recent biological breakthroughs like advances in psychopharmacology, neuroimaging and genetics, increasingly more emphasis is being given to the biological model of psychiatric disorders. These new biological models have given a more scientific appearance to the speciality. It has also revolutionised the management strategies and outcome of many psychiatric disorders. However, this rapid development in biological understanding of psychiatry also leads to a new wave of reductionism. In an attempt to deduce everything in terms of neurons, neurochemicals, and genes, can we neglect psychosocial aspects of mental health? Patients’ personality, expectations, motives, family background, sociocultural backgrounds continue to affect mental health no matter how much ‘biological’ psychiatry gets. Biological and psychosocial approaches are not mutually exclusive but complementary. Integrating them harmoniously is the skill psychiatry demands for comprehensive understanding of mental and behavioural disorders. PMID:24891799

  7. Eureka!: Scientific Breakthroughs that Changed the World

    NASA Astrophysics Data System (ADS)

    Horvitz, Leslie Alan

    2001-12-01

    The common language of genius: Eureka! While the roads that lead to breakthrough scientific discovery can be as varied and complex as the human mind, the moment of insight for all scientists is remarkably similar. The word "eureka!", attributed to the ancient Greek mathematician Archimedes, has come to express that universal moment of joy, wonder-and even shock-at discovering something entirely new. In this collection of twelve scientific stories, Leslie Alan Horvitz describes the drama of sudden insight as experienced by a dozen distinct personalities, detailing discoveries both well known and obscure. From Darwin, Einstein, and the team of Watson and Crick to such lesser known luminaries as fractal creator Mandelbrot and periodic table mastermind Dmitri Medellev, Eureka! perfectly illustrates Louis Pasteur's quip that chance favors the prepared mind. The book also describes how amateur scientist Joseph Priestley stumbled onto the existence of oxygen in the eighteenth century and how television pioneer Philo Farnsworth developed his idea for a TV screen while plowing his family's Idaho farm.

  8. Welcome biological breakthroughs, supply psychosocial insights.

    PubMed

    Tekkalaki, Bheemsain; Tripathi, Adarsh; Trivedi, J K

    2014-01-01

    Human behaviour, emotions, and cognition are complex to understand and explain. It is even more difficult to understand the basis for abnormal behaviour, disturbed emotions, and impaired cognitions, something mental health professionals are trying for long. In these pursuits, psychiatry has traversed through eras of humours, witchcraft, spirits, psychoanalysis, and gradually deviated from other medical specialities. Now, with recent biological breakthroughs like advances in psychopharmacology, neuroimaging and genetics, increasingly more emphasis is being given to the biological model of psychiatric disorders. These new biological models have given a more scientific appearance to the speciality. It has also revolutionised the management strategies and outcome of many psychiatric disorders. However, this rapid development in biological understanding of psychiatry also leads to a new wave of reductionism. In an attempt to deduce everything in terms of neurons, neurochemicals, and genes, can we neglect psychosocial aspects of mental health? Patients' personality, expectations, motives, family background, sociocultural backgrounds continue to affect mental health no matter how much 'biological' psychiatry gets. Biological and psychosocial approaches are not mutually exclusive but complementary. Integrating them harmoniously is the skill psychiatry demands for comprehensive understanding of mental and behavioural disorders.

  9. Welcome biological breakthroughs, supply psychosocial insights.

    PubMed

    Tekkalaki, Bheemsain; Tripathi, Adarsh; Trivedi, J K

    2014-01-01

    Human behaviour, emotions, and cognition are complex to understand and explain. It is even more difficult to understand the basis for abnormal behaviour, disturbed emotions, and impaired cognitions, something mental health professionals are trying for long. In these pursuits, psychiatry has traversed through eras of humours, witchcraft, spirits, psychoanalysis, and gradually deviated from other medical specialities. Now, with recent biological breakthroughs like advances in psychopharmacology, neuroimaging and genetics, increasingly more emphasis is being given to the biological model of psychiatric disorders. These new biological models have given a more scientific appearance to the speciality. It has also revolutionised the management strategies and outcome of many psychiatric disorders. However, this rapid development in biological understanding of psychiatry also leads to a new wave of reductionism. In an attempt to deduce everything in terms of neurons, neurochemicals, and genes, can we neglect psychosocial aspects of mental health? Patients' personality, expectations, motives, family background, sociocultural backgrounds continue to affect mental health no matter how much 'biological' psychiatry gets. Biological and psychosocial approaches are not mutually exclusive but complementary. Integrating them harmoniously is the skill psychiatry demands for comprehensive understanding of mental and behavioural disorders. PMID:24891799

  10. A breakthrough curve analysis of unstable density-driven flow and transport in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Wood, M.; Simmons, C. T.; Hutson, J. L.

    2004-03-01

    In certain hydrogeological situations, density variations occur because of changes in solute concentration, temperature, and pressure of the fluid. These include seawater intrusion, high-level radioactive waste disposal, groundwater contamination, and geothermal energy production. Under certain conditions, when the density of the invading fluid is greater than that of the ambient one, gravitational instabilities or fingers may lead to transport over larger spatial scales and significantly shorter timescales than compared with diffusion alone. This study has two key objectives: (1) to explore how the nature of a breakthrough curve changes as the density of the invading fluid changes and there is a subsequent transition from stable to unstable behavior and (2) to examine the feasibility of using 1-D advection-dispersion fitting models to fit the experimental data as the density of the invading fluid increases. Thirty-six breakthrough curve experiments were carried out in fully saturated, homogeneous sand columns. Results show that an increase in the density of the source solutions leads to breakthrough curves with lower peak concentrations at breakthrough, earlier peak breakthrough pore volume and time, and an increase in positive skewness of the breakthrough curve. Visual experiments conducted in transparent columns confirm that a transition from stable to unstable behavior occurs as the density of the injectant increases and that backward convective reflux in the high-density cases leads to dilution of the trailing edge of the pulse as evidenced by positively skewed breakthrough curves. These mixed convective systems (controlled by both forced and free convection) are characterized by a mixed convective ratio. Parameter estimation using a 1-D advection-dispersion fitting model suggests that unstable plume migration can be fitted with an apparent pore flow velocity and dispersivity at low-density gradients. However, as the density of the injectant increases, it

  11. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level.

    PubMed

    Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I; Midgley, Guy

    2016-01-01

    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa

  12. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level.

    PubMed

    Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I; Midgley, Guy

    2016-01-01

    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa

  13. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level

    PubMed Central

    Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I.; Midgley, Guy

    2016-01-01

    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa

  14. Breakthrough of cyanobacteria in bank filtration.

    PubMed

    Pazouki, Pirooz; Prévost, Michèle; McQuaid, Natasha; Barbeau, Benoit; de Boutray, Marie-Laure; Zamyadi, Arash; Dorner, Sarah

    2016-10-01

    The removal of cyanobacteria cells in well water following bank filtration was investigated from a source water consisting of two artificial lakes (A and B). Phycocyanin probes used to monitor cyanobacteria in the source and in filtered well water showed an increase of fluorescence values demonstrating a progressive seasonal growth of cyanobacteria in the source water that were correlated with cyanobacterial biovolumes from taxonomic counts (r = 0.59, p < 0.00001). A strong correlation was observed between the cyanobacterial concentrations in the lake water and in the well water as measured by the phycocyanin probe (p < 0.001, 0.73 ≤ r(2) ≤ 0.94). Log removals from bank filtration estimated from taxonomic counts ranged from 0.96 ± (0.5) and varied according to the species of cyanobacteria. Of cyanobacteria that passed through bank filtration, smaller cells were significantly more frequent in well water samples (p < 0.05) than larger cells. Travel times from the lakes to the wells were estimated as 2 days for Lake B and 10 days for Lake A. Cyanobacterial species in the wells were most closely related to species found in Lake B. Thus, a travel time of less than 1 week permitted the breakthrough of cyanobacteria to wells. Winter samples demonstrated that cyanobacteria accumulate within bank filters, leading to continued passage of cells beyond the bloom season. Although no concentrations of total microcystin-LR were above detection limits in filtered well water, there is concern that cyanobacterial cells that reach the wells have the potential to contain intracellular toxins.

  15. Building breakthrough businesses within established organizations.

    PubMed

    Govindarajan, Vijay; Trimble, Chris

    2005-05-01

    Many companies assume that once they've launched a major innovation, growth will soon follow. It's not that simple. High-potential new businesses within established companies face stiff headwinds well after their inception. That's why a company's emphasis must shift: from ideas to execution and from leadership excellence to organizational excellence. The authors spent five years chronicling new businesses at the New York Times Company, Analog Devices, Corning, Hasbro, and other organizations. They found that a breakthrough new business (referred to as NewCo) rarely coexists gracefully with the established business in the company (called CoreCo). The unnatural combination creates three specific challenges--forgetting, borrowing, and learning--that NewCo must meet in order to survive and grow. NewCo must first forget some of what made CoreCo successful. NewCo and CoreCo have elemental differences, so NewCo must leave behind CoreCo's notions about what skills and competencies are most valuable. NewCo must also borrow some of CoreCo's assets--usually in one or two key areas that will give NewCo a crucial competitive advantage. Incremental cost reductions, for example, are never a sufficient justification for borrowing. Finally, NewCo must be prepared to learn some things from scratch. Because strategic experiments are highly uncertain endeavors, NewCo will face several critical unknowns. The more rapidly it can resolve those unknowns--that is, the faster it can learn--the sooner it will zero in on a winning business model or exit a hopeless situation. Managers can accelerate this learning by planning more simply and more often and by comparing predicted and actual trends. PMID:15929404

  16. Breakthrough of cyanobacteria in bank filtration.

    PubMed

    Pazouki, Pirooz; Prévost, Michèle; McQuaid, Natasha; Barbeau, Benoit; de Boutray, Marie-Laure; Zamyadi, Arash; Dorner, Sarah

    2016-10-01

    The removal of cyanobacteria cells in well water following bank filtration was investigated from a source water consisting of two artificial lakes (A and B). Phycocyanin probes used to monitor cyanobacteria in the source and in filtered well water showed an increase of fluorescence values demonstrating a progressive seasonal growth of cyanobacteria in the source water that were correlated with cyanobacterial biovolumes from taxonomic counts (r = 0.59, p < 0.00001). A strong correlation was observed between the cyanobacterial concentrations in the lake water and in the well water as measured by the phycocyanin probe (p < 0.001, 0.73 ≤ r(2) ≤ 0.94). Log removals from bank filtration estimated from taxonomic counts ranged from 0.96 ± (0.5) and varied according to the species of cyanobacteria. Of cyanobacteria that passed through bank filtration, smaller cells were significantly more frequent in well water samples (p < 0.05) than larger cells. Travel times from the lakes to the wells were estimated as 2 days for Lake B and 10 days for Lake A. Cyanobacterial species in the wells were most closely related to species found in Lake B. Thus, a travel time of less than 1 week permitted the breakthrough of cyanobacteria to wells. Winter samples demonstrated that cyanobacteria accumulate within bank filters, leading to continued passage of cells beyond the bloom season. Although no concentrations of total microcystin-LR were above detection limits in filtered well water, there is concern that cyanobacterial cells that reach the wells have the potential to contain intracellular toxins. PMID:27343842

  17. Understanding fog-plant interactions at the ecosystem scale using atmospheric carbonyl sulfide

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Whelan, M.; Stinecipher, J.; Zumkehr, A. L.; Berry, J. A.; Dawson, T. E.; Seibt, U.; Hilton, T. W.; Kulkarni, S.; Commane, R.; Angevine, W. M.; Lu, Y.; Herndon, S. C.; Zahniser, M. S.

    2015-12-01

    Ecosystem metabolism is thought to have powerful feedbacks with the climate system as well as direct impacts on individual taxa that rely on ecosystems for food, water, and shelter. Despite the importance of an ecosystem level understanding, climate change impacts on whole ecosystems remains highly uncertain. In particular, coastal fog-dominated regions are a blind spot for whole ecosystem measurements of the land-air-sea exchange of carbon, water, and energy. To address this critical knowledge gap, our inter-displicary team from the University of California's new Institute for the Study of Ecological Effects of Climate Impacts (ISEECI) has launched a next-generation monitoring program along a gradient of UC Natural Reserve System (NRS) sites. We leverage recent breakthroughs in atmospheric spectroscopy and mechanistic ecosystem models of carbonyl sulfide that provide an unprecedented opportunity to explore the sustainability of coastal systems. Here we present our next-generation monitoring and regional analysis across a North/South transect of UC-NRS sites that has the potential to provide a new window into fog-dominated ecosystems, both currently and under climate change scenarios.

  18. The Use of Bayesian Modeling to Assess the Impact of Altered Precipitation on Leaf-level Carbon Exchange in Four Desert Savanna Ecosystems

    NASA Astrophysics Data System (ADS)

    Patrick, L.; Ogle, K.; Tissue, D.; Cable, J.

    2007-12-01

    Savannas are complex ecosystems with diverse plant communities and spatially variable nutrient and carbon dynamics. In semi-arid regions, savannas are rapidly changing as a result of climate change and/or land-use, both of which have the potential to alter carbon cycling processes. To determine the potential impacts of climate change on savanna systems, it is critical to understand the processes governing vegetation dynamics across the diverse range of savanna ecosystem types. Because water is the primary driver of biological activity in these ecosystems, changes in precipitation frequency and magnitude may significantly affect plant community composition and ecosystem carbon cycling through effects on leaf-level carbon dynamics. Here, we utilized photosynthesis data and models to explore the underlying mechanisms responsible for changes in leaf-level carbon exchange under altered precipitation. Our objective was to determine whether dominant plants in four North American deserts exhibited a common photosynthetic response to precipitation manipulations. In the summer of 2005 and 2006, photosynthetic CO2- and light-response curves were measured on the dominant plant functional groups (grasses and shrubs) in the Great Basin, Mojave, Sonoran, and Chihuahuan deserts. We used a hierarchical Bayesian modeling framework to integrate the extensive field data with a biochemical-based photosynthesis model, yielding estimates of photosynthetic parameters (e.g. rate of daytime respiration, maximum rate of carboxylation, and maximum rate of electron transport). The modeling results indicated that, generally, plant photosynthesis parameters were conserved across all desert sites and plant species. There is, however, evidence that supplemental precipitation affected photosynthetic responses as some species differed in key biochemical parameters under this treatment. This result suggests that in these ecosystems changes in precipitation associated with climate change have the

  19. Breakthrough Time for the Source-Sink Well Doublet

    SciTech Connect

    Menninger, Will; Sageev, Abraham

    1986-01-21

    A pressure transient analysis method is presented for interpreting breakthrough time between two constant rate wells. The wells are modeled as two line source wells in an infinite reservoir. The first well injects at a constant rate and the second well produces at a constant rate. We studied the effects of transient pressure conditions on breakthrough time. The first arrival of injected fluid at the production well may be significantly longer under transient condition than under steady state condition. A correlation of the deviation of the breakthrough time for transient pressure conditions from the steady state condition is presented.

  20. Balancing Broad Ideas with Context: An Evaluation of Student Accuracy in Describing Ecosystem Processes after a System-Level Intervention

    ERIC Educational Resources Information Center

    Jordan, Rebecca C.; Brooks, Wesley R.; Hmelo-Silver, Cindy; Eberbach, Catherine; Sinha, Suparna

    2014-01-01

    Promoting student understanding of ecosystem processes is critical to biological education. Yet, teaching complex life systems can be difficult because systems are dynamic and often behave in a non-linear manner. In this paper, we discuss assessment results from a middle school classroom intervention in which a conceptual representation framework…

  1. Lepidoptera Larvae as an Indicator of Multi-trophic Level Responses to Changing Seasonality in an Arctic Tundra Ecosystem

    NASA Astrophysics Data System (ADS)

    Daly, K. M.; Steltzer, H.; Boelman, N.; Weintraub, M. N.; Darrouzet-Nardi, A.; Wallenstein, M. D.; Sullivan, P.; Gough, L.; Rich, M.; Hendrix, C.; Kielland, K.; Philip, K.; Doak, P.; Ferris, C.; Sikes, D.

    2011-12-01

    Earlier snowmelt and warming temperatures in the Arctic will impact multiple trophic levels through the timing and availability of food resources. Lepidoptera are a vital link within the ecosystem; their roles include pollinator, parasitized host for other pollinating insects, and essential food source for migrating birds and their fledglings. Multiple environmental cues including temperature initiate plant growth, and in turn, trigger the emergence of Lepidoptera and the migrations of birds. If snowmelt is accelerated and temperature is increased, it is expected that the Lepidoptera larvae will respond to early plant growth by increasing their abundance within areas that have accelerated snowmelt and warmer conditions. In May of 2011 in a moist acidic tussock tundra system, we accelerated snowmelt by 15 days through the use of radiation-absorbing fabric and warmed air and soil temperatures using open-top chambers, individually and in combination. Every 1-2 days from May 27th to July 8th, 2 minute searches were performed for Lepidoptera larvae in all treatments; when an animal was found, their micro-habitat, surface temperature, behavior, food source, and time of day were noted. The length, body and head width were measured, and the animals were examined for braconid wasp and tachinid fly parasites. Lepidoptera larvae collected in pitfall traps from May 26th to July 7th were also examined and measured. Total density of parasitized larvae accounted for 54% of observed specimens and 50% of pitfall specimens, indicating that Lepidoptera larvae serve an integral role as a host for other pollinators. Total larvae density was highest within the accelerated snowmelt plots compared to the control plots; 66% of observed live specimens and 63% of pitfall specimens were found within the accelerated snowmelt plots. Ninety percent of the total observed animals were found within the open-top warming chambers. Peak density of animals occurred at Solar Noon between 14:00 -15

  2. A study of the relationship between low—Level jet and inversion layer over an agroforest ecosystem in east china plain

    NASA Astrophysics Data System (ADS)

    Zhong, Zhong; Hanjie, Wang

    2000-06-01

    The relationship between the super low level jet (LLJ) and inversion layer over an agroforest ecosystem on the Huang Huai Hai plain in the eastern China is studied by means of a time independent K closure model. It is found that the intensified inversion near the surface of a luxuriantly growing agroforest ecosystem leads to the formation and development of the LLJ, the more intense the inversion, the stronger is the LLJ. The critical value of inversion intensity index for the LLJ formation is 0.75°C/ 100 m, which relates to the necessary geostraphic wind velocity of 6.0 to 10 m / s at the top level of the model. The numerical calculations show that the roughness length of the underlying surface has considerable effects on the LLJ structure.

  3. Rational polynomial functions for modeling E. coli and bromide breakthrough

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fecal bacteria peak concentrations and breakthrough times through preferential flow to tile drainage systems following irrigation or rainfall events are important when assessing the risk of contamination. Process-based, convective-dispersive modeling of microbial organism transport through preferent...

  4. Use of Laboratory-Supplied Natural Gas in Breakthrough Phenomena.

    ERIC Educational Resources Information Center

    Eiceman, G. A.; And Others

    1985-01-01

    Natural gas from regular commercial lines contains enough carbon-8 and above hydrocarbon contaminants to serve as a satisfactory sample for breakthrough experiments. Procedures used, typical results obtained, and theoretical background information are provided. (JN)

  5. Climate Change and Examples of Combined HyspIRI VSWIR/TIR Advanced Level Products for Urban Ecosystems Analysis

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2010-01-01

    It is estimated that 60-80% of the world population will live in urban environments by the end of this century. This growth of the urban population will effect the climate. This slide presentation examines the use of combined HyspIRI Visible ShortWave Infrared (VSWIR)/Thermal Infrared (TIR) to observe, monitor, measure and model many of the components that comprise urban ecosystems cycles.

  6. Diurnal, seasonal and interannual variability of carbon isotope discrimination at the canopy level in response to environmental factors in a boreal forest ecosystem.

    PubMed

    Chen, Baozhang; Chen, Jing M

    2007-10-01

    Accurate estimation of temporal and spatial variations in photosynthetic discrimination of 13C is critical to carbon cycle research. In this study, a combined ecosystem-boundary layer isotope model, which was satisfactorily validated against intensive campaign data, was used to explore the temporal variability of carbon discrimination in response to environmental driving factors in a boreal ecosystem in the vicinity of Fraserdale Tower, Ontario, Canada (49 degrees 52'30''N, 81 degrees 34'12''W). A 14 year (1990-1996 and 1998-2004) hourly CO2 concentration and meteorological record measured on this tower was used for this purpose. The 14 year mean yearly diurnal amplitude of canopy-level discrimination Delta(canopy) was computed to be 2.8 +/- 0.5 per thousand, and the overall diurnal cycle showed that the greatest Delta(canopy) values occurred at dawn and dusk, while the minima generally appeared in mid-afternoon. The average annual Delta(canopy) varied from 18.3 to 19.7 per thousand with the 14 year average of 19 +/- 0.4 per thousand. The overall seasonality of Delta(canopy) showed a gradually increasing trend from leaf emergence in May-September and with a slight decrease at the end of the growing season in October. Delta(canopy) was negatively correlated to vapour pressure deficit and air temperature across hourly to decadal timescales. A strong climatic control on stomatal regulation of ecosystem isotope discrimination was found in this study. PMID:17727414

  7. Diurnal, seasonal and interannual variability of carbon isotope discrimination at the canopy level in response to environmental factors in a boreal forest ecosystem.

    PubMed

    Chen, Baozhang; Chen, Jing M

    2007-10-01

    Accurate estimation of temporal and spatial variations in photosynthetic discrimination of 13C is critical to carbon cycle research. In this study, a combined ecosystem-boundary layer isotope model, which was satisfactorily validated against intensive campaign data, was used to explore the temporal variability of carbon discrimination in response to environmental driving factors in a boreal ecosystem in the vicinity of Fraserdale Tower, Ontario, Canada (49 degrees 52'30''N, 81 degrees 34'12''W). A 14 year (1990-1996 and 1998-2004) hourly CO2 concentration and meteorological record measured on this tower was used for this purpose. The 14 year mean yearly diurnal amplitude of canopy-level discrimination Delta(canopy) was computed to be 2.8 +/- 0.5 per thousand, and the overall diurnal cycle showed that the greatest Delta(canopy) values occurred at dawn and dusk, while the minima generally appeared in mid-afternoon. The average annual Delta(canopy) varied from 18.3 to 19.7 per thousand with the 14 year average of 19 +/- 0.4 per thousand. The overall seasonality of Delta(canopy) showed a gradually increasing trend from leaf emergence in May-September and with a slight decrease at the end of the growing season in October. Delta(canopy) was negatively correlated to vapour pressure deficit and air temperature across hourly to decadal timescales. A strong climatic control on stomatal regulation of ecosystem isotope discrimination was found in this study.

  8. Influences of changing land use and CO 2 concentration on ecosystem and landscape level carbon and water balances in mountainous terrain of the Stubai Valley, Austria

    NASA Astrophysics Data System (ADS)

    Tenhunen, J.; Geyer, R.; Adiku, S.; Reichstein, M.; Tappeiner, U.; Bahn, M.; Cernusca, A.; Dinh, N. Q.; Kolcun, O.; Lohila, A.; Otieno, D.; Schmidt, M.; Schmitt, M.; Wang, Q.; Wartinger, M.; Wohlfahrt, G.

    2009-05-01

    A process-based spatial simulation model was used to estimate gross primary production, ecosystem respiration, net ecosystem CO 2 exchange and water use by the vegetation in Stubai Valley, Austria at landscape scale. The simulations were run for individual years from early spring to late fall, providing estimates in grasslands for carbon gain, biomass and leaf area development, allocation of photoproducts to the below ground ecosystem compartment, and water use. In the case of evergreen coniferous forests, gas exchange is estimated, but spatial simulation of growth over the single annual cycles is not included. Spatial parameterization of the model is derived for forest LAI based on remote sensing, for soil characteristics by generalization from spatial surveys and for climate drivers from observations at monitoring stations along the elevation gradient and from modelling of incident radiation in complex terrain. Validation of the model was carried out at point scale, and was based on comparison of model output at selected locations with observations along elevation gradients in Stubai Valley and Berchtesgaden National Park, Germany as well as with known trends in ecosystem response documented in the literature. The utility of the model for describing long-term changes in carbon and water balances at landscape scale is demonstrated in the context of land use change that occurred between 1861 and 2002 in Stubai Valley. During this period, coniferous forest increased in extent by ca. 11% of the vegetated area of 1861, primarily in the subalpine zone. Managed grassland decreased by 46%, while abandoned grassland and natural alpine mats increased by 14 and 11%, respectively. At point scale, the formulated model predicts higher canopy conductance in 1861 due to lower atmospheric CO 2 concentration which opens stomata. As a result, water use at point scale decreased by ca. 8% in 2002 in the valley bottoms versus 10% at tree line. At landscape level, the decrease in water

  9. Management of breakthrough pain in children with cancer.

    PubMed

    Friedrichsdorf, Stefan J; Postier, Andrea

    2014-01-01

    Breakthrough pain in children with cancer is an exacerbation of severe pain that occurs over a background of otherwise controlled pain. There are no randomized controlled trials in the management of breakthrough pain in children with cancer, and limited data and considerable experience indicate that breakthrough pain in this pediatric patient group is common, underassessed, and undertreated. An ideal therapeutic agent would be rapid in onset, have a relatively short duration, and would be easy to administer. A less effective pharmacologic strategy would be increasing a patient's dose of scheduled opioids, because this may increase the risk of oversedation. The most common and effective strategy seems to be multimodal analgesia that includes an immediate-release opioid (eg, morphine, fentanyl, hydromorphone, or diamorphine) administered intravenously by a patient-controlled analgesia pump, ensuring an onset of analgesic action within minutes. Intranasal fentanyl (or hydromorphone) may be an alternative, but no pediatric data have been published yet for commercially available fentanyl transmucosal application systems (ie, sublingual tablets/spray, buccal lozenge/tablet/film, and nasal spray), and these products cannot yet be recommended for use with children with cancer and breakthrough pain. The aim of this paper was to emphasize the dearth of available information on treatment of breakthrough pain in pediatric cancer patients, to describe the treatment protocols we currently recommend based on clinical experience, and to suggest future research on this very important and under-researched topic. PMID:24639603

  10. Management of breakthrough pain in children with cancer

    PubMed Central

    Friedrichsdorf, Stefan J; Postier, Andrea

    2014-01-01

    Breakthrough pain in children with cancer is an exacerbation of severe pain that occurs over a background of otherwise controlled pain. There are no randomized controlled trials in the management of breakthrough pain in children with cancer, and limited data and considerable experience indicate that breakthrough pain in this pediatric patient group is common, underassessed, and undertreated. An ideal therapeutic agent would be rapid in onset, have a relatively short duration, and would be easy to administer. A less effective pharmacologic strategy would be increasing a patient’s dose of scheduled opioids, because this may increase the risk of oversedation. The most common and effective strategy seems to be multimodal analgesia that includes an immediate-release opioid (eg, morphine, fentanyl, hydromorphone, or diamorphine) administered intravenously by a patient-controlled analgesia pump, ensuring an onset of analgesic action within minutes. Intranasal fentanyl (or hydromorphone) may be an alternative, but no pediatric data have been published yet for commercially available fentanyl transmucosal application systems (ie, sublingual tablets/spray, buccal lozenge/tablet/film, and nasal spray), and these products cannot yet be recommended for use with children with cancer and breakthrough pain. The aim of this paper was to emphasize the dearth of available information on treatment of breakthrough pain in pediatric cancer patients, to describe the treatment protocols we currently recommend based on clinical experience, and to suggest future research on this very important and under-researched topic. PMID:24639603

  11. Changes in Landscape-level Carbon Balance of an Arctic Coastal Plain Tundra Ecosystem Between 1970-2100, in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.

    2014-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional

  12. Ecosystem Journalism

    ERIC Educational Resources Information Center

    Robertson, Amy; Mahlin, Kathryn

    2005-01-01

    If the organisms in a prairie ecosystem created a newspaper, what would it look like? What important news topics of the ecosystem would the organisms want to discuss? Imaginative and enthusiastic third-grade students were busy pondering these questions as they tried their hands at "ecosystem journalism." The class had recently completed a study of…

  13. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  14. Natural ecosystems

    USGS Publications Warehouse

    Fleishman, Erica; Belnap, Jayne; Cobb, Neil; Enquist, Carolyn A.F.; Ford, Karl; MacDonald, Glen; Pellant, Mike; Schoennagel, Tania; Schmit, Lara M.; Schwartz, Mark; van Drunick, Suzanne; Westerling, Anthony LeRoy; Keyser, Alisa; Lucas, Ryan

    2013-01-01

    Natural Ecosystems analyzes the association of observed changes in climate with changes in the geographic distributions and phenology (the timing of blossoms or migrations of birds) for Southwestern ecosystems and their species, portraying ecosystem disturbances—such as wildfires and outbreaks of forest pathogens—and carbon storage and release, in relation to climate change.

  15. Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in inner Mongolia grassland.

    PubMed

    Gao, Ying Z; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X; Yang, Hai J

    2013-01-01

    Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.

  16. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    SciTech Connect

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  17. Response of Rates and Sources of Ecosystem CO2 Efflux to Increasing Levels of Winter Snow Depth in the High Arctic of Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Thomas, J. S.; Lupascu, M.; Xu, X.; Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.

    2011-12-01

    Arctic soils contain vast amounts of organic carbon (C) that range in age from modern to ancient. These soil C pools may be especially vulnerable to changes in conditions; especially increases in winter snowfall, as deeper snow will insulate soils in winter, and add moisture in summer. While, snowfall is increasing in many parts of the Arctic, how increases in winter precipitation affect C cycling in the High Arctic is largely unknown. In this project, we used a long-term snowpack manipulation to develop a better understanding of current and future soil C cycling under conditions of deep winter snow pack and the associated feedbacks to future atmospheric CO2 levels. We examined the effects of three levels of winter snowpack (ambient (0.25 m), ×2, ×4) on the timing, magnitude and sources of ecosystem CO2 efflux and soil microclimate in prostrate dwarf-shrub tundra on patterned ground in the High Arctic of NW Greenland. From June to August 2010 and 2011 we monitored ecosystem CO2 efflux and soil CO2 concentrations (LI-COR 800 & 840) together with soil temperature and moisture daily and the radiocarbon (14C) content of CO2 monthly. The 14C content of CO2 can be used to infer the dominant source of CO2 (plant vs. microbially-respired) as well as the age of microbially-respired CO2. Initial results indicate that during the 2010 sampling period (Jun 28 - Aug 16), daily CO2 emissions from vegetated areas were higher under ×4 ambient snowpack relative to ambient snowpack (84.9 vs. 53.1 mmol m-2 d-1), but lower under ×2 ambient snowpack (56.7 mmol m-2 d-1). CO2 emissions from bare areas increased with snowpack depth from ambient (8.6 mmol m-2 d-1) to ×2 ambient snowpack (16.5 mmol m-2 d-1) to x4 ambient snowpack (18.9 mmol m-2 d-1). Midsummer ecosystem CO2 emissions were dominated by modern C; additional 14C measurements are in progress. Our findings indicate that increases in snowpack may stimulate C loss from this high arctic ecosystem - probably facilitated by

  18. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  19. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded. PMID:18707753

  20. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    USGS Publications Warehouse

    Larsen, Laurel G.; Serena Moseman,; Alyson Santoro,; Kristine Hopfensperger,; Amy Burgin,

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  1. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida’s Gulf Coast: Implications for Adaptation Planning

    PubMed Central

    Birch, Anne P.; Brenner, Jorge; Gordon, Doria R.

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida’s Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  2. The 2001 HBR list. Breakthrough ideas for today's business agenda.

    PubMed

    2001-04-01

    Business is shaped by ideas. But how do you separate enduring ideas from passing fancies? In this, the first edition of the annual HBR List, our editors spotlight five break-through ideas that are truly shaping the future of business. EVEN A GREAT BUSINESS MODEL IS NOT ENOUGH: The rise and fall of dot-coms left markets reeling and CEOs scratching their heads. The most important lesson of the debacle: squishy thinking about "business models" is no substitute for a distinctive strategy. CHANGE IS CHANGING: In recent years, pundits have urged executives to incite revolutions within their companies. But a growing group of experts now suggests that the best companies actually evolve through incremental change--change that builds on rather than subverts their heritage. EGO MAKES THE LEADER: By looking deeply into executives' psyches, we are beginning to unlock the enigma of leadership. While there will never be a single recipe for successful corporate stewardship, an understanding of the human ego can shed light on leadership's most fundamental components. ONLY CONNECT: In business organizations, what's really important about people is not their individual skills but the relationships they form with one another. By investing in "social capital," companies can often push their performance to a whole new level. THE BIOLOGY CENTURY DAWNS: In the twentieth century, product innovations tended to spring from physics. But in the new century, biology may be the central source of innovation. From genomics to biomimicry, the study of life promises to change what companies sell and even how they operate. PMID:11299688

  3. The 2001 HBR list. Breakthrough ideas for today's business agenda.

    PubMed

    2001-04-01

    Business is shaped by ideas. But how do you separate enduring ideas from passing fancies? In this, the first edition of the annual HBR List, our editors spotlight five break-through ideas that are truly shaping the future of business. EVEN A GREAT BUSINESS MODEL IS NOT ENOUGH: The rise and fall of dot-coms left markets reeling and CEOs scratching their heads. The most important lesson of the debacle: squishy thinking about "business models" is no substitute for a distinctive strategy. CHANGE IS CHANGING: In recent years, pundits have urged executives to incite revolutions within their companies. But a growing group of experts now suggests that the best companies actually evolve through incremental change--change that builds on rather than subverts their heritage. EGO MAKES THE LEADER: By looking deeply into executives' psyches, we are beginning to unlock the enigma of leadership. While there will never be a single recipe for successful corporate stewardship, an understanding of the human ego can shed light on leadership's most fundamental components. ONLY CONNECT: In business organizations, what's really important about people is not their individual skills but the relationships they form with one another. By investing in "social capital," companies can often push their performance to a whole new level. THE BIOLOGY CENTURY DAWNS: In the twentieth century, product innovations tended to spring from physics. But in the new century, biology may be the central source of innovation. From genomics to biomimicry, the study of life promises to change what companies sell and even how they operate.

  4. Fission fragment rockets: A potential breakthrough

    SciTech Connect

    Chapline, G.F.; Dickson, P.W.; Schnitzler, B.G.

    1988-01-01

    A new reactor concept which has the potential of enabling extremely energetic and ambitious space propulsion missions is described. Fission fragments are directly utilized as the propellant by guiding them out of a very low density core using magnetic fields. The very high fission fragment exhaust velocities yield specific impulses of approximately a million seconds while maintaining respectable thrust levels. Specific impulses of this magnitude allow acceleration of significant payload masses to several percent of the velocity of light and enable a variety of interesting missions, e.g., payloads to the nearest star, Alpha Centauri, in about a hundred years for very rapid solar system transport. The parameters reported in this paper are based on a very preliminary analysis. Considerable trade-off studies will be required to find the optimum system. We hope the optimum system proves to be as attractive as our preliminary analysis indicates, although we must admit that our limited effort is insufficient to guarantee any specific level of performance.

  5. Regional differences in mercury levels in aquatic ecosystems: A discussion of possible causal factors with implications for the Tennessee river system and the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Joslin, J. Devereux

    1994-07-01

    Concern about mercury pollution from atmospheric deposition has risen markedly in the last decade because of high levels of mercury in freshwater fish from relatively pristine waters. Whereas high concentrations have been found principally in Canada, the northern United States, and Scandinavia, they have also recently been observed throughout much of Florida. Recent surveys of the Tennessee River system, however, have found no locations where fish levels exceed EPA guidelines for fish consumption. This paper evaluates a number of factors that may cause certain regions in the northern hemisphere to experience unacceptable fish mercury levels while other regions do not. Relevant regional differences include: (1) Waters of the Tennessee River system are generally nonacidic (pH>6) and well buffered, whereas 16%, 22%, and 40% of the lakes in upper Midwest, Northeast, and Florida, respectively, have acid-neutralizing capacities below 50 µeq/liter. Acidity correlates highly with fish mercury levels in a number of lake surveys, and experimental manipulations of acidity have significantly raised fish mercury levels. (2) The ratio of land area to water surface area in the Tennessee Valley averages about 30, whereas it is 15 in the upper Midwest and 6 in Florida. Low ratios allow mercury in precipitation to be directly deposited to aquatic bodies, without an opportunity for the mercury to be sequestered by terrestrial ecosystems. (3) Stream organic matter concentrations in Florida, the upper Midwest, and Sweden are 2 10 times those in the Tennessee Valley. Mercury binds strongly to organic matter, and organic matter transport in runoff is a major pathway by which mercury enters aquatic ecosystems.

  6. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem.

    PubMed Central

    Reid, K.; Croxall, J. P.

    2001-01-01

    Long-term changes in the physical environment in the Antarctic Peninsula region have significant potential for affecting populations of Antarctic krill (Euphausia superba), a keystone food web species. In order to investigate this, we analysed data on krill-eating predators at South Georgia from 1980 to 2000. Indices of population size and reproductive performance showed declines in all species and an increase in the frequency of years of low reproductive output. Changes in the population structure of krill and its relationship with reproductive performance suggested that the biomass of krill within the largest size class was sufficient to support predator demand in the 1980s but not in the 1990s. We suggest that the effects of underlying changes in the system on the krill population structure have been amplified by predator-induced mortality, resulting in breeding predators now regularly operating close to the limit of krill availability. Understanding how krill demography is affected by changes in physical environmental factors and by predator consumption and how, in turn, this influences predator performance and survival, is one of the keys to predicting future change in Antarctic marine ecosystems. PMID:11270434

  7. Impact of global climate change on ecosystem-level interactions among sympatric plants from all three photosynthetic pathways. Terminal report

    SciTech Connect

    Nobel, P.S.

    1997-12-17

    The proposed research will determine biochemical and physiological responses to variations in environmental factors for plants of all three photosynthetic pathways under competitive situations in the field. These responses will be used to predict the effects of global climatic change on an ecosystem in the northwestern Sonoran Desert where the C{sub 3} subshrub Encelia farinosa, the C{sub 4} bunchgrass Hilaria rigida, and the CAM succulent Agave deserti are co-dominants. These perennials are relatively short with overlapping shallow roots facilitating the experimental measurements as well as leading to competition for soil water. Net CO{sub 2} uptake over 24-h periods measured in the laboratory will be analyzed using an environmental productivity index (EPI) that can incorporate simultaneous effects of soil water, air temperature, and light. Based on EPI, net CO{sub 2} uptake and hence plant productivity will be predicted for the three species in the field under various treatments. Activity of the two CO{sub 2} fixation enzymes, Rubisco and PEPCase, will be determined for these various environmental conditions; also, partitioning of carbon to various organs will be measured based on {sup 14}CO{sub 2} labeling and dry weight analysis. Thus, enzymatic and partitioning controls on competition among sympatric model plants representing all three photosynthetic pathways will be investigated.

  8. Permeation of protective clothing materials: comparison of liquid contact, liquid splashes and vapors on breakthrough times.

    PubMed

    Man, V L; Bastecki, V; Vandal, G; Bentz, A P

    1987-06-01

    A disturbing number of common liquid chemicals permeated the best available protective clothing material when evaluated by the ASTM Standard Test Method F739-81. Since this method involved continuous liquid contact during the 3-hr test used by the Coast Guard, it was considered unusually severe. The question then arose as to whether intermittent contact--better approximating conditions likely to be encountered in real-world situations--would give usable breakthrough times (longer than pure liquid). Comparative tests were conducted with liquid exposure for 3 hr, and three levels of intermittent exposure (splashes every 15 min or every 30 min until breakthrough, or a single initial splash), and with saturated vapor at 25 degrees C and 0 degree C [decreasing amounts of exposure]. Chemicals displayed two distinct modes of behavior. In one mode, the results were as might be expected: the more prolonged or concentrated the liquid contact, the faster the breakthrough. In the other mode, there was little difference between a single splash and continuous liquid contact. In the latter case, it was observed that the liquid wet the surface of the clothing material. There are serious implications in the second mode of behaviour, not only for those wearing totally encapsulated suits, but for those wearing protective gloves. The work reported here is the basis for a proposed modification of the standard ASTM permeation test to include intermittent liquid contact (splash testing).

  9. Ecosystem experiments

    SciTech Connect

    Mooney, H.A.; Medina, E.; Schindler, D.W.; Schulze, E.D.; Walker, B.H.

    1991-01-01

    Large scale, human-induced modifications to terrestrial and hydrological systems have been a major factor in contributing to global change. The objective of this book is to explore the potential of ecosystem experimentation as a tool to understanding and predicting more precisely the consequences of our changing biosphere. The papers in this book are the result of two SCOPE workshops to evaluated understanding of the response of ecosystems to large scale perturbations and to design ecosystem experiments to study the impace of increased atmospheric carbon dioxide concentrations on ecosystem processes. The general topics addressed include the following: how changes in driving variables affect different biotic interactions within ecosystems; the human role in modifying forest structure and the resulting ecosystem processes; the role of ecosystem experiments in the study of controlling factors such as hydrological controls, temperature, and biotic controlles; analysis of ecosystem dynamics as a complex and chaotic system; role of ecosystem experiments in the study of the impact of acid deposition; role of ecosystem experimentation in the study of global change impace on the biosphere and the biospheric feedbacks to global environmental change.

  10. John Hardy is the UK's first Breakthrough Prize laureate.

    PubMed

    Martin, Seamus J

    2015-12-01

    John Hardy, Professor of Neuroscience at University College London and Editorial Board member of The FEBS Journal, has been awarded The Breakthrough Prize in Life Sciences in recognition of his work identifying mutations that cause amyloid build-up in the brain--research that has transformed the study of Alzheimer's disease and other major neurodegenerative diseases.

  11. Operation Breakthrough for Continuous Self-Systems Improvement.

    ERIC Educational Resources Information Center

    Given, Barbara K.

    1994-01-01

    Operation Breakthrough, in which graduate student interns teach life skills to adolescents with learning disabilities, provided an impetus for identifying a profile of learning and work habits necessary for production of an agile workforce. Agile learning for self-systems improvement calls for self-empowered learning, collaborative learning,…

  12. Asthma and risk of breakthrough varicella infection in children

    PubMed Central

    Umaretiya, Puja J.; Swanson, Jennifer B.; Kwon, Hyo-Jin; Grose, Charles; Lohse, Christine M.

    2016-01-01

    Background: We recently reported a more rapid waning of vaccine-induced humoral immunity (measles vaccine) in children with asthma. It is unknown if asthma affects susceptibility to vaccine-preventable diseases. Objective: To determine whether asthma is associated with an increased risk of vaccine-preventable disease, e.g., breakthrough varicella infection. Methods: This was a retrospective population-based case-control study that examined cases of breakthrough varicella among children between 2005 and 2011. Children with a diagnosis of breakthrough varicella infection in Olmsted County, Minnesota (infection of >42 days after vaccination) between 2005 and 2011 and two age- and sex-matched controls were enrolled for each case. Asthma status was determined by using predetermined criteria. Conditional logistic regression models were used to calculate matched odds ratios (OR) and their corresponding 95% confidence intervals (CI). Results: Of the 165 cases and their 330 matched controls, 48% were boys and the mean (standard deviation) age at the index date was 6.6 ± 3.5 years for both cases and controls. Of the 330 controls, 80 (24%) had two doses of the varicella vaccine compared with only 23 (14%) of the 165 cases (OR 0.29 [95% CI, 0.14–0.61]; p = 0.001). Children with a history of asthma ever had a higher risk of developing breakthrough varicella compared with those without a history of asthma (adjusted OR 1.63 [95% CI, 1.04–2.55]; p = 0.032) when adjusting for elapsed time since the first varicella vaccination and the number of varicella vaccine doses. Conclusions: A history of asthma might be an unrecognized risk factor for breakthrough varicella infection. Children with asthma should follow the two-dose varicella vaccine policy. PMID:27178889

  13. Estimating leaf-level parameters for ecosystem process models: a study in mixed conifer canopies on complex terrain.

    PubMed

    Duursma, Remko A; Marshall, John D; Nippert, Jesse B; Chambers, Chris C; Robinson, Andrew P

    2005-11-01

    Ecosystem process models are often used to predict carbon flux on a landscape or on a global scale. Such models must be aggregate and canopies are often treated as a uniform unit of foliage. Parameters that are known to vary within the canopy, e.g., nitrogen content and leaf mass per area, are often estimated by a mean value for the canopy. Estimating appropriate means is complicated, especially in mixed-species stands and in complex terrain. We analyzed sources of variation in specific parameters with the goal of testing various simplifying assumptions. The measurements came from mixed-species forests in the northern Rocky Mountains. We found that, for three important parameters (nitrogen concentration and content, and leaf mass per area), a sample taken near the vertical center of the crown provided a good estimate of the mean values for the crown. Altitude (700-1700 m), solar insolation (4200-5400 MJ m(-2) year(-1)) and leaf area index (1-11) had negligible effects on the parameters; only species differences were consistently detected. The correlation between mass-based photosynthetic rates and mass-based nitrogen concentrations was much weaker than the correlation between area-based photosynthetic rates and area-based nitrogen concentration. Comparison of photosynthesis-nitrogen relationships for a wide variety of conifer species and sites revealed a broad general trend that can be used in models. These results suggest important potential simplifications in model parameterization, most notably that canopy means can be estimated with ease, that complex terrain is a minor source of variation in these parameters and that use of one photosynthesis-nitrogen relationship for conifer species does not result in large errors. Species-to-species variation, however, was large and needs to be accounted for when parameterizing process models. PMID:16105802

  14. The effects of landscape-level disturbance on the composition of Minnesota caddisfly (Insecta: Trichoptera) trophic functional groups: evidence for ecosystem homogenization.

    PubMed

    Houghton, David C

    2007-12-01

    Over 300,000 caddisfly specimens representing 249 species were collected from nearly 250 sites throughout Minnesota during 2000 and 2001 to determine the effects of human disturbance on the composition of caddisfly trophic functional groups at the landscape level. Canonical correspondence analysis determined that stream width was the most important variable influencing functional group composition in regions of the state with relatively low disturbance, and that differences in the caddisfly fauna between sizes of streams generally followed trends predicted by the river continuum concept. In regions of the state with moderate disturbance, both stream width and the percentage of disturbed habitat upstream of a site were important variables influencing functional group composition. In highly disturbed regions, no variables corresponded to changes in the composition of caddisfly functional groups. Instead, ecosystems were homogeneous: fine-particle filtering collectors dominated in all sizes of streams. The observed aquatic ecosystem homogenization is attributed mostly to input of fine-particle organic and inorganic sediment from extensive agriculture.

  15. Breakthrough Energy Savings with Waterjet Technology

    SciTech Connect

    Lee W. Saperstein; R. Larry Grayson; David A. Summers; Jorge Garcia-Joo; Greg Sutton; Mike Woodward; T.P. McNulty

    2007-05-15

    turn, reduced the ability to apply detailed statistical tests to the product outcomes. Nonetheless, a regression analysis showed that operating pressures between 105 (10,000psi) and 140 (15,000psi) MegaPascals (MPa) at traverse speeds no greater than 10 cm/min (4 in/min), best generated the target result. Variation in other parameters, rotation speed, nozzle diameter, and nozzle separation angle, during the preliminary tests did not substantially change the product, and so were kept fixed during the ore mining tests. The experimental protocols were developed to include proper treatment of the lead-bearing materials, which may be considered hazardous. In anticipation of the creation of a mineral processing design for separation of the concentrates from the tailings (waste), assays were made of the metal content of each screen size for each of the 21 runs; with three screens and a pan for undersize, to give a total of 84 assays. This information will enable Dr. McNulty, project consultant, to create a flow sheet for the prototype mining machine. As a preliminary component to such a system, the experimental layout included a product-recovery system that delivered all of the fragmented product to the nest of screens which allowed study of the liberation at the different size levels. Where incomplete liberation is found, a secondary process was demonstrated for using pressurized cavitation to further comminute the material. This concept was successfully demonstrated, with a small cavitation chamber illustrating the much smaller space that such a tool requires, relative to conventional ball and rod mills. Additional testing is ongoing, external to this program, to find whether an one-step process using higher jet pressures and longer dwell times to achieve all the required comminution in mining, is more efficient than a two-step process in which normal jet pressures and feed rates do the initial mining, but full particle liberation is achieved only through secondary

  16. Material exchange and food web of seagrass beds in the Sylt-Rømø Bight: how significant are community changes at the ecosystem level?

    NASA Astrophysics Data System (ADS)

    Asmus, H.; Asmus, R.

    2000-07-01

    Material exchange, biodiversity and trophic transfer within the food web were investigated in two different types of intertidal seagrass beds: a sheltered, dense Zostera marina bed and a more exposed, sparse Z. noltii bed, in the Northern Wadden Sea. Both types of Zostera beds show a seasonal development of above-ground biomass, and therefore measurements were carried out during the vegetation period in summer. The exchange of particles and nutrients between seagrass beds and the overlying water was measured directly using an in situ flume. Particle sedimentation [carbon (C), nitrogen (N) and phosphorus (P) constituents] from the water column prevailed in dense seagrass beds. In the sheltered, dense seagrass bed, a net particle uptake was found even on windy days (7-8 Beaufort). Dissolved inorganic N and orthophosphate were mainly taken up by the dense seagrass bed. At times of strong winds, nutrients were released from the benthic community to tidal waters. In a budget calculation of total N and total P, the dense seagrass beds were characterised as a material sink. The seagrass beds with sparse Z. noltii were a source of particles even during calm weather. The uptake of dissolved inorganic N in the sparse seagrass bed was low but significant, while the uptake of inorganic phosphate and silicate by seagrasses and their epiphytes was exceeded by release processes from the sediment into the overlying water. Estimates at the ecosystem level showed that material fluxes of seagrass beds in the Sylt-Rømø Bight are dominated by the dense type of Zostera beds. Therefore, seagrass beds act as a sink for particles and for dissolved inorganic nutrients. During storms, seagrass beds are distinct sources for inorganic nutrients. The total intertidal area of the Sylt-Rømø Bight could be described as a sink for particles and a source for dissolved nutrients. This balance of the material budget was estimated by either including or excluding seagrass beds. Including the

  17. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  18. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover.

    PubMed

    Ng, C W W; Chen, Z K; Coo, J L; Chen, R; Zhou, C

    2015-10-01

    Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas-water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6m or thicker

  19. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover.

    PubMed

    Ng, C W W; Chen, Z K; Coo, J L; Chen, R; Zhou, C

    2015-10-01

    Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas-water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6m or thicker

  20. Data-intensive computing laying foundation for biological breakthroughs

    SciTech Connect

    Straatsma, TP

    2007-06-18

    Biological breakthroughs critical to solving society’s most challenging problems require new and innovative tools and a “different way” to analyze the enormous amounts of data being generated. This article for the Breakthroughs magazine focuses on the Data-Intensive Computing for Complex Biological Systems (Biopilot) project—a joint research effort between the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory funded by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research. The two national laboratories, both of whom are world leaders in computing and computational sciences, are teaming to support areas of biological research in urgent need of data-intensive computing capabilities.

  1. Assessing Stream Ecosystem Metabolism and Nitrate Utilization at Reduced Nitrate Levels Using a Chamber-Based Approach: Looking Below, Scaling Up, and Thinking Inside the Box

    NASA Astrophysics Data System (ADS)

    Reijo, C. J.; Cohen, M. J.

    2014-12-01

    As nitrate levels in lotic systems have increased, nutrient reduction strategies have become the centerpiece of water quality standards to protect and restore stream ecosystems. While reducing anthropogenic nitrate (NO3) loads has many positive effects, we lack a fundamental understanding of how lotic systems respond to changing concentrations and no methods exist to characterize nutrient uptake behavior below ambient levels. Therefore, it is difficult to predict whether nutrient reductions will meet management goals. To fill this knowledge gap, we developed a chamber-based method which allows characterization of NO3 utilization along the two major uptake pathways at reduced NO3 levels. The chamber blocks flow by insertion into upper sediments but allows light in and sediment-water-air interactions to occur. At Gum Slough Springs, Florida, high-resolution in-situ sensors measured water quality while NO3 reduced from ambient levels (1.40 mg N/L) to below regulatory thresholds (ca. 0.20 mg N/L) within one week. Daytime NO3 uptake, resulting from both plant uptake and denitrification, was consistently greater than nighttime uptake, which is denitrification alone. Using this method, we compared NO3 uptake rates (UNO3) and gross primary production (GPP) across three vegetative regimes (i.e. submerged aquatic vegetation (SAV), SAV with epiphytic algae, and algae alone) and related GPP estimates from the chamber to reach scale. Results showed that UNO3 and GPP were greatest in SAV, GPP was negatively correlated to [NO3] in algae, denitrification rates did not vary by vegetation type, and chamber GPP (e.g. 6-8 g O2/m2/day in SAV) was comparable to reach-scale estimates (6-12 g O2/m2/day). Our results suggest UNO3 and GPP differ by vegetation regimes, GPP scales from chamber to reach level, algal presence potentially reduces GPP, and a lack of nutrient limitation even at low [NO3]. Current work includes replicating measurements across systems as well as refining the

  2. Methodology for Examining Potential Technology Breakthroughs for Mitigating CO2 and Application to Centralized Solar Photovoltaics

    EPA Science Inventory

    Aggressive reductions in US greenhouse gas emissions will require radical changes in how society generates and uses energy. Technological breakthroughs will be necessary if we are to make this transition cost effectively. With limited resources, understanding the breakthrough pot...

  3. Determining straining of Escherichia coli from breakthrough curves

    NASA Astrophysics Data System (ADS)

    Foppen, J. W. A.; Mporokoso, A.; Schijven, J. F.

    2005-02-01

    Though coliform bacteria are used world wide as an indication of faecal pollution, the parameters determining the transport of Escherichia coli in aquifers are relatively unknown, especially for the period after the clean bed collision phase brought about by prolonged infiltration of waste water. In this research, the breakthrough curves of E. coli after total flushing of 50-200 pore volumes were studied for various influent concentrations in various sediments at different pore water flow velocities. The results indicated that straining in Dead End Pores (DEPs) was an important process that dominated bacteria breakthrough in fine-grained sediment (0.06-0.2 mm). The filling of the DEP space with bacteria took 5-65 pore volumes and was dependent on concentration. Column breakthrough curves were modelled and from this the DEP volumes were determined. These volumes (0.21-0.35% of total column volume) corresponded well with values calculated with a formula based on purely geometrical considerations and also with values calculated with a pore size density function. For this function the so-called Van Genuchten parameters of the sediments used in the experiments were determined. The results indicate that straining might be a dominant process affecting colloid transport in the natural environment and therefore it is concluded that proper knowledge of the pore size distribution is crucial to an understanding of the retention of bacteria.

  4. Field Micrometeorological Measurements, Process-Level Studies and Modeling of Methane and Carbon Dioxide Fluxes in a Boreal Wetland Ecosystem

    NASA Technical Reports Server (NTRS)

    Verma, S. B.; Arkebauer, T. J.; Ullman, F. G.; Valentine, D. W.; Parton, W. J.; Schimel, D. S.

    1998-01-01

    The main instrumentation platform consisted of eddy correlation sensors mounted on a scaffold tower at a height of 4.2 m above the peat surface. The sensors were attached to a boom assembly which could be rotated into the prevailing winds. The boom assembly was mounted on a movable sled which, when extended, allowed sensors to be up to 2 m away from the scaffolding structure to minimize flow distortion. When retracted, the sensors could easily be installed, serviced or rotated. An electronic level with linear actuators allowed the sensors to be remotely levelled once the sled was extended. Two instrument arrays were installed. A primary (fast-response) array consisted of a three-dimensional sonic anemometer, a methane sensor (tunable diode laser spectrometer), a carbon dioxide/water vapor sensor, a fine wire thermocouple and a backup one-dimensional sonic anemometer. The secondary array consisted of a one-dimensional sonic anemometer, a fine wire thermocouple and a Krypton hygrometer. Descriptions of these sensors may be found in other reports (e.g., Verma; Suyker and Verma). Slow-response sensors provided supporting measurements including mean air temperature and humidity, mean horizontal windspeed and direction, incoming and reflected solar radiation, net radiation, incoming and reflected photosynthetically active radiation (PAR), soil heat flux, peat temperature, water-table elevation and precipitation. A data acquisition system (consisting of an IBM compatible microcomputer, amplifiers and a 16 bit analog-to-digital converter), housed in a small trailer, was used to record the fast response signals. These signals were low-pass filtered (using 8-pole Butterworth active filters with a 12.5 Hz cutoff frequency) and sampled at 25 Hz. Slow-response signals were sampled every 5 s using a network of CR21X (Campbell Scientific, Inc., Logan Utah) data loggers installed in the fen. All signals were averaged over 30-minute periods (runs).

  5. The whole is more than the sum of its parts: Modeling community-level effects of UVR in marine ecosystems.

    PubMed

    Momo, Fernando; Ferrero, Emma; Eöry, Matías; Esusy, Marisol; Iribarren, Julia; Ferreyra, Gustavo; Schloss, Irene; Mostajir, Behzad; Demers, Serge

    2006-01-01

    The effect of UVB radiation (UVBR, 290-320 nm) on the dynamics of the lower levels of the marine plankton community was modeled. The model was built using differential equations and shows a good fit to experimental data collected in mesocosms (defined as large enclosures of 1500 L filled with natural marine waters). Some unexpected results appear to be possible by indirect effects in prey (bacteria, phytoplankton and heterotrophic flagellates). In particular, apparent competition appears between small phytoplankton and bacteria. This effect is caused by a shared predator (ciliates). Another remarkable effect is an increase in bacteria and flagellates populations due to enhanced UVBR. This effect is similar to that observed under mesocosm experimental conditions and is related to the decrease of predation due to the direct damage to predators (ciliates) by UVBR. The effect of UVBR changing interaction coefficients may be dramatic on the community structure, producing big changes in equilibrium populations, as demonstrated by sensitivity analysis of the model. In order to generalize these results to field conditions it will be necessary to increase model complexity and include extra organic mater sources, mixing and sinking effects and predation by large zooplankton. This work shows that UVBR may produce community global responses that are consequence of both direct and indirect effects among populations.

  6. List identifies threatened ecosystems

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  7. Vulnerability assessment and risk level of ecosystem services for climate change impacts and adaptation in the High-Atlas mountain of Morocco

    NASA Astrophysics Data System (ADS)

    Messouli, Mohammed; Bounoua, Lahouari; Babqiqi, Abdelaziz; Ben Salem, Abdelkrim; Yacoubi-Khebiza, Mohammed

    2010-05-01

    Moroccan mountain biomes are considered endangered due to climate change that affects directly or indirectly different key features (biodiversity, snow cover, run-off processes, and water availability). The present article describes the strategy for achieving collaboration between natural and social scientists, stakeholders, decision-makers, and other societal groups, in order to carry out an integrated assessment of climate change in the High-Atlas Mountains of Morocco, with an emphasis on vulnerability and adaptation. We will use a robust statistical technique to dynamically downscale outputs from the IPCC climates models to the regional study area. Statistical downscaling provides a powerful method for deriving local-to-regional scale information on climate variables from large-scale climate model outputs. The SDSM will be used to produce the high resolution climate change scenarios from climate model outputs at low resolution. These data will be combined with socio-economic attributes such as the amount of water used for irrigation of agricultural lands, agricultural practices and phenology, cost of water delivery and non-market values of produced goods and services. This study, also analyzed spatial and temporal in land use/land cover changes (LUCC) in a typical watershed covering an area of 203 km2 by comparing classified satellite images from 1976, 1989 and 2000 coupled by GIS analyses and also investigated changes in the shape of land use patches over the period. The GIS-platform, which compiles gridded spatial and temporal information of environmental, socio-economic and biophysical data is used to map vulnerability assessment and risk levels over a wide region of Southern High-Atlas. For each scenario, we will derive and analyze near future (10-15 years) key climate indicators strongly related to sustainable management of ecosystem goods and services. Forest cover declined at an average rate of 0.35 ha per year due to timber extraction, cultivation

  8. Formulating an ecosystem approach to environmental protection

    NASA Astrophysics Data System (ADS)

    Gonzalez, Otto J.

    1996-09-01

    The U.S. Environmental Protection Agency (EPA) has embraced a new strategy of environmental protection that is place-driven rather than program-driven. This new approach focuses on the protection of entire ecosystems. To develop an effective strategy of ecosystem protection, however, EPA will need to: (1) determine how to define and delineate ecosystems and (2) categorize threats to individual ecosystems and priority rank ecosystems at risk. Current definitions of ecosystem in use at EPA are inadequate for meaningful use in a management or regulatory context. A landscape-based definition that describes an ecosystem as a volumetric unit delineated by climatic and landscape features is suggested. Following this definition, ecosystems are organized hierarchically, from megaecosystems, which exist on a continental scale (e.g., Great Lakes), to small local ecosystems. Threats to ecosystems can generally be categorized as: (1) ecosystem degradation (occurs mainly through pollution) (2) ecosystem alteration (physical changes such as water diversion), and (3) ecosystem removal (e.g., conversion of wetlands or forest to urban or agricultural lands). Level of threat (i.e., how imminent), and distance from desired future condition are also important in evaluating threats to ecosystems. Category of threat, level of threat, and “distance” from desired future condition can be combined into a three-dimensional ranking system for ecosystems at risk. The purpose of the proposed ranking system is to suggest a preliminary framework for agencies such as EPA to prioritize responses to ecosystems at risk.

  9. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  10. Breakthroughs in photonics 2013: X-ray optics

    DOE PAGES

    Soufli, Regina

    2014-04-01

    Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.

  11. Microbial ecosystem and fermentation traits in the caecum of growing rabbits given diets varying in neutral detergent soluble and insoluble fibre levels.

    PubMed

    Rodríguez-Romero, Norelys; Abecia, Leticia; Fondevila, Manuel

    2013-04-01

    The effect of the level of neutral detergent fibre (NDF: 0.35, LI and 0.42, HI) and neutral detergent soluble fibre (NDSF: 0.14, LS and 0.17, HS) in the caecal ecosystem was studied in 24 weaned (28 days of age) rabbits, weighing 630 ± 80.2 g in a 2 × 2 factorial design. After 22 days, rabbits were slaughtered and their caecal contents sampled. The caecal pH (on average 6.2) and molar volatile fatty acids (VFA) proportions were not affected by dietary treatments, but total VFA concentration tended to be lower with NDF (84.7 vs. 74.1 mmol/l; P = 0.095). The amount of total bacteria tended (P = 0.075) to increase with NDSF, but only in diets with 0.35 NDF. The caecal proportions of Ruminococcus albus and Fibrobacter succinogenes were not affected by type or level of fibre, but Butyrivibrio fibrisolvens decreased (P = 0.055) with the NDF proportion in LS diets. Denaturing gradient gel electrophoresis (DGGE) analysis showed that bacterial communities clustered according to each combination of NDF and NDSF, but did not greatly differ among diets (similarity indexes between 0.67 and 0.70), nor biodiversity was affected (average Shannon and richness indexes 3.50 and 33.1; P > 0.10). Archaeal population revealed changes in the amount and composition that were particularly evident in HS diets, decreasing in concentration (from 4.37 to 4.12 log10 gene copy number/g) and biodiversity (Shannon index from 3.14 to 2.52 and richness index from 23.7 to 13.9) compared to LS. The type and level of dietary fibre had a minor impact on caecal fermentation traits or caecal bacterial community. However, the increase in NDSF from 0.14 to 0.17 reduced concentration and diversity of methanogenic archaea.

  12. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record.

    PubMed

    Currano, Ellen D; Laker, Rachel; Flynn, Andrew G; Fogt, Kari K; Stradtman, Hillary; Wing, Scott L

    2016-07-01

    Paleoecological studies document the net effects of atmospheric and climate change in a natural laboratory over timescales not accessible to laboratory or ecological studies. Insect feeding damage is visible on well-preserved fossil leaves, and changes in leaf damage through time can be compared to environmental changes. We measured percent leaf area damaged on four fossil leaf assemblages from the Bighorn Basin, Wyoming, that range in age from 56.1 to 52.65 million years (Ma). We also include similar published data from three US sites 49.4 to ~45 Ma in our analyses. Regional climate was subtropical or warmer throughout this period, and the second oldest assemblage (56 Ma) was deposited during the Paleocene-Eocene Thermal Maximum (PETM), a geologically abrupt global warming event caused by massive release of carbon into the atmosphere. Total and leaf-chewing damage are highest during the PETM, whether considering percent area damaged on the bulk flora, the average of individual host plants, or a single plant host that occurs at multiple sites. Another fossil assemblage in our study, the 52.65 Ma Fifteenmile Creek paleoflora, also lived during a period of globally high temperature and pCO 2, but does not have elevated herbivory. Comparison of these two sites, as well as regression analyses conducted on the entire dataset, demonstrates that, over long timescales, temperature and pCO 2 are uncorrelated with total insect consumption at the ecosystem level. Rather, the most important factor affecting herbivory is the relative abundance of plants with nitrogen-fixing symbionts. Legumes dominate the PETM site; their prevalence would have decreased nitrogen limitation across the ecosystem, buffering generalist herbivore populations against decreased leaf nutritional quality that commonly occurs at high pCO 2. We hypothesize that nitrogen concentration regulates the opposing effects of elevated temperature and CO 2 on insect abundance and thereby total insect consumption

  13. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record.

    PubMed

    Currano, Ellen D; Laker, Rachel; Flynn, Andrew G; Fogt, Kari K; Stradtman, Hillary; Wing, Scott L

    2016-07-01

    Paleoecological studies document the net effects of atmospheric and climate change in a natural laboratory over timescales not accessible to laboratory or ecological studies. Insect feeding damage is visible on well-preserved fossil leaves, and changes in leaf damage through time can be compared to environmental changes. We measured percent leaf area damaged on four fossil leaf assemblages from the Bighorn Basin, Wyoming, that range in age from 56.1 to 52.65 million years (Ma). We also include similar published data from three US sites 49.4 to ~45 Ma in our analyses. Regional climate was subtropical or warmer throughout this period, and the second oldest assemblage (56 Ma) was deposited during the Paleocene-Eocene Thermal Maximum (PETM), a geologically abrupt global warming event caused by massive release of carbon into the atmosphere. Total and leaf-chewing damage are highest during the PETM, whether considering percent area damaged on the bulk flora, the average of individual host plants, or a single plant host that occurs at multiple sites. Another fossil assemblage in our study, the 52.65 Ma Fifteenmile Creek paleoflora, also lived during a period of globally high temperature and pCO 2, but does not have elevated herbivory. Comparison of these two sites, as well as regression analyses conducted on the entire dataset, demonstrates that, over long timescales, temperature and pCO 2 are uncorrelated with total insect consumption at the ecosystem level. Rather, the most important factor affecting herbivory is the relative abundance of plants with nitrogen-fixing symbionts. Legumes dominate the PETM site; their prevalence would have decreased nitrogen limitation across the ecosystem, buffering generalist herbivore populations against decreased leaf nutritional quality that commonly occurs at high pCO 2. We hypothesize that nitrogen concentration regulates the opposing effects of elevated temperature and CO 2 on insect abundance and thereby total insect consumption

  14. (Mis)understanding Science: The Problem with Scientific Breakthroughs.

    PubMed

    Evans, James P

    2016-09-01

    On Saturday morning, February 28, 1953, the mystery of heredity appeared secure. Humans hadn't the faintest idea of how genetic information was transmitted-how the uncanny resemblance between mother and daughter, grandfather and grandson was conveyed across generations. Yet, by that Saturday afternoon, two individuals, James Watson and Francis Crick, had glimpsed the solution to these mysteries. The story of Watson and Crick's great triumph has been told and retold and has rightly entered the pantheon of scientific legend. But Watson and Crick's breakthrough was just that: a rupture and dramatic discontinuity in human knowledge that solved a deep mystery, the likes of which occurs, perhaps, a couple of times each century. And that's the problem. The story is just so good and so irresistible that it has misled generations of scientists about what to expect regarding a life in science. And more damaging, the resulting breakthrough mentality misleads the public, the media, and society's decision-makers about how science really works, all to the detriment of scientific progress and our society's well-being. PMID:27649823

  15. Turning Regenerative Medicine Breakthrough Ideas and Innovations into Commercial Products.

    PubMed

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Culme-Seymour, Emily; Mason, Chris; Stroemer, Paul; Najimi, Mustapha; Sokal, Etienne; Wilson, Clayton; Barone, Joe; Aras, Rahul; Chiesi, Andrea

    2015-12-01

    The TERMIS-Europe (EU) Industry committee intended to address the two main critical issues in the clinical/commercial translation of Advanced Therapeutic Medicine Products (ATMP): (1) entrepreneurial exploitation of breakthrough ideas and innovations, and (2) regulatory market approval. Since January 2012, more than 12,000 publications related to regenerative medicine and tissue engineering have been accepted for publications, reflecting the intense academic research activity in this field. The TERMIS-EU 2014 Industry Symposium provided a reflection on the management of innovation and technological breakthroughs in biotechnology first proposed to contextualize the key development milestones and constraints of allocation of financial resources, in the development life-cycle of radical innovation projects. This was illustrated with the biofuels story, sharing similarities with regenerative medicine. The transition was then ensured by an overview of the key identified challenges facing the commercialization of cell therapy products as ATMP examples. Real cases and testimonies were then provided by a palette of medical technologies and regenerative medicine companies from their commercial development of cell and gene therapy products. Although the commercial development of ATMP is still at the proof-of-concept stage due to technology risks, changing policies, changing markets, and management changes, the sector is highly dynamic with a number of explored therapeutic approaches, developed by using a large diversity of business models, both proposed by the experience, pitfalls, and successes of regenerative medicine pioneers, and adapted to the constraint resource allocation and environment in radical innovation projects.

  16. (Mis)understanding Science: The Problem with Scientific Breakthroughs.

    PubMed

    Evans, James P

    2016-09-01

    On Saturday morning, February 28, 1953, the mystery of heredity appeared secure. Humans hadn't the faintest idea of how genetic information was transmitted-how the uncanny resemblance between mother and daughter, grandfather and grandson was conveyed across generations. Yet, by that Saturday afternoon, two individuals, James Watson and Francis Crick, had glimpsed the solution to these mysteries. The story of Watson and Crick's great triumph has been told and retold and has rightly entered the pantheon of scientific legend. But Watson and Crick's breakthrough was just that: a rupture and dramatic discontinuity in human knowledge that solved a deep mystery, the likes of which occurs, perhaps, a couple of times each century. And that's the problem. The story is just so good and so irresistible that it has misled generations of scientists about what to expect regarding a life in science. And more damaging, the resulting breakthrough mentality misleads the public, the media, and society's decision-makers about how science really works, all to the detriment of scientific progress and our society's well-being.

  17. The pricing of breakthrough drugs: theory and policy implications.

    PubMed

    Levy, Moshe; Rizansky Nir, Adi

    2014-01-01

    Pharmaceutical sales exceed $850 billion a year, of which 84% are accounted for by brand drugs. Drug prices are the focus of an ongoing heated debate. While some argue that pharmaceutical companies exploit monopolistic power granted by patent protection to set prices that are "too high", others claim that these prices are necessary to motivate the high R&D investments required in the pharmaceutical industry. This paper employs a recently documented utility function of health and wealth to derive the theoretically optimal pricing of monopolistic breakthrough drugs. This model provides a framework for a quantitative discussion of drug price regulation. We show that mild price regulation can substantially increase consumer surplus and the number of patients who purchase the drug, while having only a marginal effect on the revenues of the pharmaceutical company.

  18. Breakthroughs in computational modeling of cartilage regeneration in perfused bioreactors.

    PubMed

    Raimondi, Manuela T; Causin, Paola; Mara, Andrea; Nava, Michele; Laganà, Matteo; Sacco, Riccardo

    2011-12-01

    We report about two specific breakthroughs, relevant to the mathematical modeling and numerical simulation of tissue growth in the context of cartilage tissue engineering in vitro. The proposed models are intended to form the building blocks of a bottom-up multiscale analysis of tissue growth, the idea being that a full microscale analysis of the construct, a 3-D partial differential equation (PDE) problem with internal moving boundaries, is computationally unaffordable. We propose to couple a PDE microscale model of a single functional tissue subunit with the information computed at the macroscale by 2-D-0-D models of reduced computational cost. Preliminary results demonstrate the effectiveness of the proposed models in describing the interplay among interstitial perfusion flow, nutrient delivery, and consumption and tissue growth in realistic scaffold geometries.

  19. Ecosystem overfishing in the ocean.

    PubMed

    Coll, Marta; Libralato, Simone; Tudela, Sergi; Palomera, Isabel; Pranovi, Fabio

    2008-01-01

    Fisheries catches represent a net export of mass and energy that can no longer be used by trophic levels higher than those fished. Thus, exploitation implies a depletion of secondary production of higher trophic levels (here the production of mass and energy by herbivores and carnivores in the ecosystem) due to the removal of prey. The depletion of secondary production due to the export of biomass and energy through catches was recently formulated as a proxy for evaluating the ecosystem impacts of fishing-i.e., the level of ecosystem overfishing. Here we evaluate the historical and current risk of ecosystem overfishing at a global scale by quantifying the depletion of secondary production using the best available fisheries and ecological data (i.e., catch and primary production). Our results highlight an increasing trend in the number of unsustainable fisheries (i.e., an increase in the risk of ecosystem overfishing) from the 1950s to the 2000s, and illustrate the worldwide geographic expansion of overfishing. These results enable to assess when and where fishing became unsustainable at the ecosystem level. At present, total catch per capita from Large Marine Ecosystems is at least twice the value estimated to ensure fishing at moderate sustainable levels.

  20. Biocomplexity in mangrove ecosystems.

    PubMed

    Feller, I C; Lovelock, C E; Berger, U; McKee, K L; Joye, S B; Ball, M C

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems. PMID:21141670

  1. Biocomplexity in Mangrove Ecosystems

    NASA Astrophysics Data System (ADS)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  2. Balancing feedstock economics and ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this analysis is to examine the economic balance between production of cellulosic biofuel feedstocks and ecosystem services at the farm level. A literature review of the economics of ecosystem services, ecosystem service impacts of biofuel production, and economic factors influencing ...

  3. Process-Based Thinking in Ecosystem Education

    ERIC Educational Resources Information Center

    Jordan, Rebecca C.; Gray, Steven A.; Brooks, Wesley R.; Honwad, Sameer; Hmelo-Silver, Cindy E.

    2013-01-01

    Understanding complex systems such as ecosystems is difficult for young K-12 students, and students' representations of ecosystems are often limited to nebulously defined relationships between macro-level structural components inherent to the ecosystem in focus (rainforest, desert, pond, etc.) instead of generalizing processes across ecosystems…

  4. Characterisation of flow paths and saturated conductivity in a soil block in relation to chloride breakthrough

    NASA Astrophysics Data System (ADS)

    Deeks, L. K.; Bengough, A. G.; Stutter, M. I.; Young, I. M.; Zhang, X. X.

    2008-01-01

    SummaryThe nature of flow paths, determined by soil structural features, may greatly influence solute breakthrough in a soil profile. We compared two contrasting methods of characterising flow within an upland soil with distinct organic and mineral horizons: saturated conductivity measured on cores sampled destructively; and breakthrough measurements for chloride in 2.4 × 3.4 × 1 m in situ lysimeter. Chloride tracer was applied to the soil surface, and soil solution samples collected at 20 known locations using suction cup samplers. Breakthrough curves were classified into statistically distinct pathway types using Principal Coordinate Analysis, according to peak concentration and the time to peak concentration. Of the 20 locations, two exhibited rapid macropore flow, two intermediate mesopore flow, and seven slower micropore flow. The remaining nine samplers did not register breakthrough within the 16-day duration of the experiment. Destructive core (6 cm diameter by 6 cm deep) sampling was used to characterise saturated hydraulic conductivity at 116 locations within the soil block. Solute breakthrough speed was linearly related to kriged values of saturated conductivity for the meso and micropore flow paths ( r = 0.88 for initial breakthrough; r = 0.85 for peak concentration breakthrough), but not for macropore flow. This indicates that kriged saturated conductivities provided good prediction of the speed of the meso and micro flow paths. Frequency distributions of saturated hydraulic conductivities and breakthrough speeds did not differ significantly, although the breakthrough speed distribution was truncated by the limited duration of the lysimeter experiment. Lysimeter breakthrough for macropore pathways was faster than predicted from the core conductivities, indicating that the locations of these fast flow paths were not predicted accurately by the kriged saturated conductivities. Longer duration lysimeter experiments would be required to characterise

  5. Breakthrough varicella in a cancer patient with persistent varicella antibody after one varicella vaccination.

    PubMed

    Yamada, Masaki; Kamberos, Natalie; Grose, Charles

    2013-11-01

    A boy with Hodgkin disease contracted breakthrough varicella from his father, who had chickenpox. The boy had received a single varicella vaccination and was seropositive by enzyme-linked immunosorbent assay before being diagnosed with breakthrough varicella. Seropositivity after a single varicella vaccination does not guarantee complete protection in an immunocompromised child.

  6. Formulating an Ecosystem Approach to Environmental Protection

    PubMed

    Gonzalez

    1996-09-01

    The U.S. Environmental Protection Agency (EPA) has embraced a new strategy of environmental protection that is place-driven rather than program-driven. This new approach focuses on the protection of entire ecosystems. To develop an effective strategy of ecosystem protection, however, EPA will need to: (1) determine how to define and delineate ecosystems and (2) categorize threats to individual ecosystems and priority rank ecosystems at risk. Current definitions of ecosystem in use at EPA are inadequate for meaningful use in a management or regulatory context. A landscape-based definition that describes an ecosystem as a volumetric unit delineated by climatic and landscape features is suggested. Following this definition, ecosystems are organized hierarchically, from megaecosystems, which exist on a continental scale (e.g., Great Lakes), to small local ecosystems.Threats to ecosystems can generally be categorized as: (1) ecosystem degradation (occurs mainly through pollution) (2) ecosystem alteration (physical changes such as water diversion), and (3) ecosystem removal (e.g., conversion of wetlands or forest to urban or agricultural lands). Level of threat (i.e., how imminent), and distance from desired future condition are also important in evaluating threats to ecosystems. Category of threat, level of threat, and "distance" from desired future condition can be combined into a three-dimensional ranking system for ecosystems at risk. The purpose of the proposed ranking system is to suggest a preliminary framework for agencies such as EPA to prioritize responses to ecosystems at risk.KEY WORDS: Ecosystem approach; Ecological risk assessment; Environmental protection; EPA

  7. Recent breakthroughs on C-2U: Norman's legacy

    NASA Astrophysics Data System (ADS)

    Binderbauer, M. W.; Tajima, T.; Tuszewski, M.; Schmitz, L.; Smirnov, A.; Gota, H.; Garate, E.; Barnes, D.; Deng, B. H.; Trask, E.; Yang, X.; Putvinski, S.; Andow, R.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Dettrick, S. A.; Douglass, J. D.; Feng, P.; Galeotti, L.; Giammanco, F.; Granstedt, E.; Gupta, D.; Gupta, S.; Ivanov, A. A.; Kinley, J. S.; Knapp, K.; Korepanov, S.; Hollins, M.; Magee, R.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Onofri, M.; Osin, D.; Rath, N.; Roche, T.; Romero, J.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Steinhauer, L. C.; Thompson, M. C.; Van Drie, A. D.; Walters, J. K.; Waggoner, W.; Yushmanov, P.; Zhai, K.

    2016-03-01

    Conventional field-reversed configurations (FRC) face notable stability and confinement concerns, which can be ameliorated by introducing and maintaining a significant fast ion population in the system. This is the conjecture first introduced by Norman Rostoker multiple decades ago and adopted as the central design tenet in Tri Alpha Energy's advanced beam driven FRC concept. In fact, studying the physics of such neutral beam (NB) driven FRCs over the past decade, considerable improvements were made in confinement and stability. Next to NB injection, the addition of axially streaming plasma guns, magnetic end plugs, as well as advanced surface conditioning lead to dramatic reductions in turbulence driven losses and greatly improved stability. In turn, fast ion confinement improved significantly and allowed for the build-up of a dominant fast particle population. This recently led to the breakthrough of sustaining an advanced beam driven FRC, thereby demonstrating successful maintenance of trapped magnetic flux, plasma dimensions and total pressure inventory for times much longer than all characteristic system time scales and only limited by hardware and electric supply constraints.

  8. The Top Ten Astronomical "breakthroughs" of the 20th century

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.; de Grijs, R.

    2007-10-01

    Astronomy was revolutionized in the 20th century. The electron was discovered in 1897 and this transformed spectroscopy and introduced plasma and magnetohydrodynamic physics and astro-chemistry. Einstein's E = mc2, solved the problem of stellar energy generation and spawned the study of elemental nuclear synthesis. Large telescopes led to a boom in astronomical spectroscopic and photometric data collection, leading to such cornerstones as the Hertzprung-Russell diagram and the mass-luminosity relationship, and to the realization that the Universe contained a multitude of galaxies and was expanding. Radio astronomy was introduced and the advent of the space age saw the astronomical wavelength range expand into the ultraviolet, X-ray and gamma-ray regions, as well as the infrared and millimetre. We also started wandering around roaming the Solar System instead of merely glimpsing its members from the bottom of our warm, turbulent atmosphere. Astronomical "breakthroughs" abounded. We have asked astronomers to select their "top ten" and these are listed and discussed in this paper.

  9. Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

    SciTech Connect

    Perry, T. D., IV; Miller, M.; Fleming, L.; Younge, K.; Newcomb, J.

    2011-03-01

    Low-carbon energy innovation is essential to combat climate change, promote economic competitiveness, and achieve energy security. Using U.S. patent data and additional patent-relevant data collected from the Internet, we map the landscape of low-carbon energy innovation in the United States since 1975. We isolate 10,603 renewable and 10,442 traditional energy patents and develop a database that characterizes proxy measures for technical and commercial impact, as measured by patent citations and Web presence, respectively. Regression models and multivariate simulations are used to compare the social, institutional, and geographic drivers of breakthrough clean energy innovation. Results indicate statistically significant effects of social, institutional, and geographic variables on technical and commercial impacts of patents and unique innovation trends between different energy technologies. We observe important differences between patent citations and Web presence of licensed and unlicensed patents, indicating the potential utility of using screened Web hits as a measure of commercial importance. We offer hypotheses for these revealed differences and suggest a research agenda with which to test these hypotheses. These preliminary findings indicate that leveraging empirical insights to better target research expenditures would augment the speed and scale of innovation and deployment of clean energy technologies.

  10. Canadian recommendations for the management of breakthrough cancer pain

    PubMed Central

    Daeninck, P.; Gagnon, B.; Gallagher, R.; Henderson, J.D.; Shir, Y.; Zimmermann, C.; Lapointe, B.

    2016-01-01

    Breakthrough cancer pain (btcp) represents an important element in the spectrum of cancer pain management. Because most btcp episodes peak in intensity within a few minutes, speed of medication onset is crucial for proper control. In Canada, several current provincial guidelines for the management of cancer pain include a brief discussion about the treatment of btcp; however, there are no uniform national recommendations for the management of btcp. That lack, accompanied by unequal access to pain medication across the country, contributes to both regional and provincial variability in the management of btcp. Currently, immediate-release oral opioids are the treatment of choice for btcp. This approach might not always offer optimal speed for onset of action and duration to match the rapid nature of an episode of btcp. Novel transmucosal fentanyl formulations might be more appropriate for some types of btcp, but limited access to such drugs hinders their use. In addition, the recognition of btcp and its proper assessment, which are crucial steps toward appropriate treatment selection, remain challenging for many health care professionals. To facilitate appropriate management of btcp, a group of prominent Canadian specialists in palliative care, oncology, and anesthesiology convened to develop a set of recommendations and suggestions to assist Canadian health care providers in the treatment of btcp and the alleviation of the suffering and discomfort experienced by adult cancer patients. PMID:27122974

  11. Canadian recommendations for the management of breakthrough cancer pain.

    PubMed

    Daeninck, P; Gagnon, B; Gallagher, R; Henderson, J D; Shir, Y; Zimmermann, C; Lapointe, B

    2016-04-01

    Breakthrough cancer pain (btcp) represents an important element in the spectrum of cancer pain management. Because most btcp episodes peak in intensity within a few minutes, speed of medication onset is crucial for proper control. In Canada, several current provincial guidelines for the management of cancer pain include a brief discussion about the treatment of btcp; however, there are no uniform national recommendations for the management of btcp. That lack, accompanied by unequal access to pain medication across the country, contributes to both regional and provincial variability in the management of btcp. Currently, immediate-release oral opioids are the treatment of choice for btcp. This approach might not always offer optimal speed for onset of action and duration to match the rapid nature of an episode of btcp. Novel transmucosal fentanyl formulations might be more appropriate for some types of btcp, but limited access to such drugs hinders their use. In addition, the recognition of btcp and its proper assessment, which are crucial steps toward appropriate treatment selection, remain challenging for many health care professionals. To facilitate appropriate management of btcp, a group of prominent Canadian specialists in palliative care, oncology, and anesthesiology convened to develop a set of recommendations and suggestions to assist Canadian health care providers in the treatment of btcp and the alleviation of the suffering and discomfort experienced by adult cancer patients. PMID:27122974

  12. On the formation of multiple local peaks in breakthrough curves

    NASA Astrophysics Data System (ADS)

    Siirila-Woodburn, Erica R.; Sanchez-Vila, Xavier; Fernández-Garcia, Daniel

    2015-04-01

    The analysis of breakthrough curves (BTCs) is of interest in hydrogeology as a way to parameterize and explain processes related to anomalous transport. Classical BTCs assume the presence of a single peak in the curve, where the location and size of the peak and the slope of the receding limb has been of particular interest. As more information is incorporated into BTCs (for example, with high-frequency data collection, supercomputing efforts), it is likely that classical definitions of BTC shapes will no longer be adequate descriptors for contaminant transport problems. We contend that individual BTCs may display multiple local peaks depending on the hydrogeologic conditions and the solute travel distance. In such cases, classical definitions should be reconsidered. In this work, the presence of local peaks in BTCs is quantified from high-resolution numerical simulations in synthetic fields with a particle tracking technique and a kernel density estimator to avoid either overly jagged or smoothed curves that could mask the results. Individual BTCs from three-dimensional heterogeneous hydraulic conductivity fields with varying combinations of statistical anisotropy, heterogeneity models, and local dispersivity are assessed as a function of travel distance. The number of local peaks, their corresponding slopes, and a transport connectivity index are shown to strongly depend on statistical anisotropy and travel distance. Results show that the choice of heterogeneity model also affects the frequency of local peaks, but the slope is less sensitive to model selection. We also discuss how solute shearing and rerouting can be determined from local peak quantification.

  13. Enabling Breakthrough Kinetic Simulations of the Magnetosphere Using Petascale Computing

    NASA Astrophysics Data System (ADS)

    Vu, H. X.; Karimabadi, H.; Omelchenko, Y.; Tatineni, M.; Majumdar, A.; Krauss-Varban, D.; Dorelli, J.

    2009-12-01

    Currently global magnetospheric simulations are predominantly based on single-fluid magnetohydrodynamics (MHD). MHD simulations have proven useful in studies of the global dynamics of the magnetosphere with the goal of predicting eminent features of substorms and other global events. But it is well known that the magnetosphere is dominated by ion kinetic effects, which is ignored in MHD simulations, and many key aspects of the magnetosphere relating to transport and structure of boundaries await global kinetic simulations. We are using our recent innovations in hybrid (electron fluid, kinetic ions) simulations, as being developed in our Hybrid3D (H3D) code, and the power of massively parallel machines to make, breakthrough 3D global kinetic simulations of the magnetosphere. The innovations include (i) multi-zone (asynchronous) algorithm, (ii) dynamic load balancing, and (iii) code adaptation and optimization to large number of processors. In this presentation we will show preliminary results of our progress to date using from 512 to over 8192 cores. In particular, we focus on what we believe to be the first demonstration of the formation of a flux rope in 3D global hybrid simulations. As in the MHD simulations, the resulting flux rope has a very complex structure, wrapping up field lines from different regions and appears to be connected on at least one end to Earth. Magnetic topology of the FTE is examined to reveal the existence of several separators (3D X-lines). The formation and growth of this structure will be discussed and spatial profile of the magnetic and plasma variables will be compared with those from MHD simulations.

  14. Single-dose fentanyl sublingual spray for breakthrough cancer pain.

    PubMed

    Taylor, Donald R

    2013-01-01

    Breakthrough cancer pain (BTCP) is defined as a transient exacerbation of pain that arises in patients with otherwise controlled persistent pain. BTCP typically has a rapid onset and relatively short duration, but it causes a significant amount of physical and psychological distress for patients. Several rapid-onset fentanyl formulations have been introduced in the USA to replace traditional oral opioids for the treatment of BTCP: a transmucosal lozenge, a sublingual orally disintegrating tablet, a buccal tablet, a buccal soluble film, a pectin nasal spray and, the newest formulation to enter the market, a sublingual spray. This article reviews the six rapid-onset formulations of fentanyl approved in the USA for the management of BTCP with emphasis on describing the published literature on fentanyl sublingual spray. The different fentanyl formulations vary in pharmacokinetic properties and ease of use, but all have a rapid onset and a relatively short duration of analgesia. Fentanyl sublingual spray has demonstrated absorption within 5 minutes of administration, with fentanyl plasma concentrations increasing over the first 30 minutes and remaining elevated for 60-90 minutes in pharmacokinetic studies in healthy subjects. Fentanyl sublingual spray shows linear dose proportionality, and changes in the temperature or acidity of the oral cavity do not alter its pharmacokinetic properties. In patients with BTCP, statistically significant pain relief is measurable at 5 minutes after administration of fentanyl sublingual spray, when compared with placebo, with significant pain relief lasting at least 60 minutes after administration. Adverse events are typical of opioid treatment and are considered mild to moderate in intensity. In summary, fentanyl sublingual spray provides rapid onset of analgesia and is a tolerable and effective treatment for BTCP. PMID:23901300

  15. Single-dose fentanyl sublingual spray for breakthrough cancer pain

    PubMed Central

    Taylor, Donald R

    2013-01-01

    Breakthrough cancer pain (BTCP) is defined as a transient exacerbation of pain that arises in patients with otherwise controlled persistent pain. BTCP typically has a rapid onset and relatively short duration, but it causes a significant amount of physical and psychological distress for patients. Several rapid-onset fentanyl formulations have been introduced in the USA to replace traditional oral opioids for the treatment of BTCP: a transmucosal lozenge, a sublingual orally disintegrating tablet, a buccal tablet, a buccal soluble film, a pectin nasal spray and, the newest formulation to enter the market, a sublingual spray. This article reviews the six rapid-onset formulations of fentanyl approved in the USA for the management of BTCP with emphasis on describing the published literature on fentanyl sublingual spray. The different fentanyl formulations vary in pharmacokinetic properties and ease of use, but all have a rapid onset and a relatively short duration of analgesia. Fentanyl sublingual spray has demonstrated absorption within 5 minutes of administration, with fentanyl plasma concentrations increasing over the first 30 minutes and remaining elevated for 60–90 minutes in pharmacokinetic studies in healthy subjects. Fentanyl sublingual spray shows linear dose proportionality, and changes in the temperature or acidity of the oral cavity do not alter its pharmacokinetic properties. In patients with BTCP, statistically significant pain relief is measurable at 5 minutes after administration of fentanyl sublingual spray, when compared with placebo, with significant pain relief lasting at least 60 minutes after administration. Adverse events are typical of opioid treatment and are considered mild to moderate in intensity. In summary, fentanyl sublingual spray provides rapid onset of analgesia and is a tolerable and effective treatment for BTCP. PMID:23901300

  16. Astronomical Ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  17. Breakthrough of methyethylketone and benzene vapors in activated carbon fiber beds.

    PubMed

    Huang, Zheng-Hong; Kang, Feiyu; Liang, Kai-Ming; Hao, Jiming

    2003-03-17

    The breakthrough of low concentration methyethylketone (MEK) and benzene vapors in beds packed with rayon-based activated carbon fiber (ACF) with different surface areas was investigated. The breakthrough characteristics depend on the properties of the ACF and the vapors, as well as on the adsorption conditions. The results of dynamic adsorption in an ACF bed were consistent with those of equilibrium adsorption by gravimetric methods. The breakthrough adsorption indicates that ACF, with an appropriate surface area, could be utilized in controlling volatile organic compounds (VOCs) in indoor air.

  18. The National Atlas of Ecosystem Services: Spatially Explicit Characterization of Ecosystem Services

    EPA Science Inventory

    The US EPA’s Ecosystem Services Research Program (ESRP) is conducting transdisciplinary research to develop tools to enable decision-makers at all levels of governance to proactively conserve ecosystem services. One of these tools is a National Atlas of Ecosystem Services which ...

  19. Columbia River Estuary Ecosystem Classification Ecosystem Complex

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith Marcoe

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  20. [Ecosystem health and human health].

    PubMed

    Cecchi, Giuliano; Mancini, Laura

    2005-01-01

    The study of ecosystem health is a relatively recent discipline that has already provided new insights into numerous aspects of environmental management. One of the most interesting fields of study is the one investigating the relationships between ecosystem and human heath. In this paper some basic terms of reference are given in order to help the understanding of this new approach. One definition of ecosystem health is given, possible causes of degradation are indicated and links with human health are addressed. The ecosystem approach to human health stresses the importance of cultural and social values in shaping the concept of health, both at human and at ecosystem level. Two case-studies showing man-ecosystem interactions are described: mining activities, that provide a suitable field of application of the ecosystem approach, and the case of malaria and DDT, that shows the risks of certain policies neglecting basic human expectations such as health. As a conclusion, some suggestions for possible research activities are given and a few recommendations for sound public health policies are indicated.

  1. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem

    PubMed Central

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A.; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems. PMID:26421612

  2. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem.

    PubMed

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.

  3. Unravelling the carbon and sulphur metabolism in coastal soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial communities.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-01-01

    Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool.

  4. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem.

    PubMed

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems. PMID:26421612

  5. Engaging Ecosystems

    ERIC Educational Resources Information Center

    Duncan, Susan; Papers, Jerry; Franzen, Woody; Otto, Pat

    2006-01-01

    Vertical connections, constructed using inquiry, give students the skills to reach new heights in both their academic and local communities. In this article, the authors present inquiry projects, developed by middle level teachers, to ensure that students use higher-level thinking skills to improve the community. Each project is connected to the…

  6. Breakthrough of 1,3-dichloropropene and chloropicrin from 600 mg XAD-4 air sampling tubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately measuring air concentrations of agricultural fumigants is important for the regulation of air quality. Understanding the conditions under which sorbent tubes can effectively retain such fumigants during sampling is critical in mitigating chemical breakthrough from the tubes and facilitati...

  7. Geoelectrical measurement and modeling of biogeochemical breakthrough behavior during microbial activity

    USGS Publications Warehouse

    Slater, L.D.; Day-Lewis, F. D.; Ntarlagiannis, D.; O'Brien, M.; Yee, N.

    2009-01-01

    We recorded bulk electrical conductivity (??b) along a soil column during microbially-mediated selenite oxyanion reduction. Effluent fluid electrical conductivity and early time ??b were modeled according to classic advectivedispersive transport of the nutrient medium. However, ??b along the column exhibited strongly bimodal breakthrough which cannot be explained by changes in the electrical conductivity of the pore fluid. We model the anomalous breakthrough by adding a conduction path in parallel with the fluid phase, with a time dependence described by a microbial population-dynamics model. We incorporate a delay time to show that breakthrough curves along the column satisfy the same growth model parameters and offer a possible explanation based on biomass-limited growth that is delayed with distance from influent of the nutrient medium. Although the mechanism causing conductivity enhancement in the presence of biomass is uncertain, our results strongly , suggest that biogeochemical breakthrough curves have been captured in geoelectrical datasets. Copyright 2009 by the American Geophysical Union.

  8. The spatial and temporal shifts of biofuel production in the ecosystem-level carbon and water dynamics in the central plains of US

    NASA Astrophysics Data System (ADS)

    Lin, P.; Brunsell, N. A.

    2011-12-01

    The grasslands of the central plains US are the leading producer of wheat, sorghum and a significant amount of corn and soybean. By linking the food production and energy cycles, increasing demand for ethanol, biodiesel, and food, not only regional ecosystems are altered by the influences of Land-Use Land-Cover (LULC), but it is also a challenge for us to gain more knowledge about the carbon balance on fuel and food. In order to ascertain the impacts of changing LULC on carbon and water dynamics, more specifically, to examine the impacts of altering current land cover to increase biofuel production in this region, we used Normalized Difference Vegetation Index (NDVI) data and precipitation record for the period from 1982 to 2003 to show the temporal dynamics associated with different landcover types as a function of location along the mean precipitation gradient; and then employed Biome-BGC model to estimate key carbon fluxes and storage pools associated with each of the different landcover classes, as well as the fluxes resulting from landcover changes. Results show an increasing trend of NDVI is from the west to the east, which agreed with the spatial distribution of precipitation, however due to some of LULC types are grown by irrigation, precipitation is not the main effect for vegetation development in west portion. However, overall within the study area, indicated by the temporal distributed plots of wavelet analysis for NDVI and precipitation, vegetation dynamics is obviously affected by long-term regional climatic factors, i.e. precipitation, not by short-term or individual local factors instead. On the other hand, by inputting actual land cover and interpolated meteorological data, as well as important ecosystem variables that govern carbon dynamics, we can better define the impacts of biofuel productions; moreover, this ecosystem carbon cycling simulation by Bio-BGC model illustrates that the extent of those landcover responses depend not only on the rate

  9. Impact of elevated levels of CO2 on animal mediated ecosystem function: the modification of sediment nutrient fluxes by burrowing urchins.

    PubMed

    Widdicombe, S; Beesley, A; Berge, J A; Dashfield, S L; McNeill, C L; Needham, H R; Øxnevad, S

    2013-08-30

    A mesocosm experiment was conducted to quantify the relationships between the presence and body size of two burrowing heart urchins (Brissopsis lyrifera and Echinocardium cordatum) and rates of sediment nutrient flux. Furthermore, the impact of seawater acidification on these relationships was determined during this 40-day exposure experiment. Using carbon dioxide (CO2) gas, seawater was acidified to pHNBS 7.6, 7.2 or 6.8. Control treatments were maintained in natural seawater (pH≈8.0). Under normocapnic conditions, burrowing urchins were seen to reduce the sediment uptake of nitrite or nitrate whilst enhancing the release of silicate and phosphate. In acidified (hypercapnic) treatments, the biological control of biogeochemical cycles by urchins was significantly affected, probably through the combined impacts of high CO2 on nitrifying bacteria, benthic algae and urchin behaviour. This study highlights the importance of considering biological interactions when predicting the consequences of seawater acidification on ecosystem function. PMID:23218873

  10. Ecosystem health assessment in the pearl river estuary of China by considering ecosystem coordination.

    PubMed

    Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng

    2013-01-01

    Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3-16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health.

  11. Ecosystem Health Assessment in the Pearl River Estuary of China by Considering Ecosystem Coordination

    PubMed Central

    Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng

    2013-01-01

    Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3–16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health. PMID:23894670

  12. Ecosystem health assessment in the pearl river estuary of China by considering ecosystem coordination.

    PubMed

    Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng

    2013-01-01

    Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3-16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health. PMID:23894670

  13. Breakthroughs in the biogeochemistry of Nordic aquatic systems: Lessons from Water's Journey from Rain to Stream

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin

    2015-04-01

    A sustainable society has been said to require knowledge of the limits placed by nature. Whatever one's views on the know-ability and significance of such limits, science strives to improve our understanding of these limiting factors, of which water is recognized to be one of the most important. Despite the centrality of water, the water cycle is maddeningly difficulty to pin down with the level of detail that is desired for resolving issues about the fate of pollutants, nutrient cycling and the global carbon balance, etc. But there is hope lurking in the Swedish landscape. The simplicity of hydrology in many Fennoscandian till soils, combined with applications of the only true tracers of water (isotopes of the water molecule) that were pioneered by Uppsala University hydrologists -provide a hydrological basis for breakthroughs in the biogeochemistry of critical earth support systems. This talk will explore some recent advances in understanding both pollutants and natural cycles, with linkages back to the concepts presented in the Water's Journey from Rain to Stream by Harald Grip and Allan Rodhe. The examples will include the mercury, acidity, and biogenic carbon of relevance to the "aquatic conduit" in the global carbon cycle. The talk will finish with thoughts about where to go next with the power that a well-characterized hydrology can provide.

  14. Opportunities for Breakthroughs in Large-Scale Computational Simulation and Design

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Alter, Stephen J.; Atkins, Harold L.; Bey, Kim S.; Bibb, Karen L.; Biedron, Robert T.; Carpenter, Mark H.; Cheatwood, F. McNeil; Drummond, Philip J.; Gnoffo, Peter A.

    2002-01-01

    Opportunities for breakthroughs in the large-scale computational simulation and design of aerospace vehicles are presented. Computational fluid dynamics tools to be used within multidisciplinary analysis and design methods are emphasized. The opportunities stem from speedups and robustness improvements in the underlying unit operations associated with simulation (geometry modeling, grid generation, physical modeling, analysis, etc.). Further, an improved programming environment can synergistically integrate these unit operations to leverage the gains. The speedups result from reducing the problem setup time through geometry modeling and grid generation operations, and reducing the solution time through the operation counts associated with solving the discretized equations to a sufficient accuracy. The opportunities are addressed only at a general level here, but an extensive list of references containing further details is included. The opportunities discussed are being addressed through the Fast Adaptive Aerospace Tools (FAAST) element of the Advanced Systems Concept to Test (ASCoT) and the third Generation Reusable Launch Vehicles (RLV) projects at NASA Langley Research Center. The overall goal is to enable greater inroads into the design process with large-scale simulations.

  15. Impact of Sea Level Rise on Mangrove Ecosystem and its Dependent Fishing Communities in the Coastal Regions of Cauvery Delta: A Message for Policy Planners to Frame Suitable Antcipatory Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Amsad Ibrahim Khan, S. K.; Ramachandran, A.; Kandasamy, P.; Selvam, V.; Shanmugam, P.

    2014-12-01

    Coastal adaptation to sea-level rise (SLR) in the deltaic region is a multidimensional and complex process requiring informed decisions based on predicted impact and vulnerability assessment of SLR. Elevation plays a key role in determining the impact and vulnerability of coastal land areas to inundation from SLR. Highly accurate mapping of the elevation of the landscape is essential to identify low-lying coastal deltaic regions with valuable ecosystem like mangroves and its dependent human communities that are potentially at risk of inundation. It is difficult for policy planners and decision makers to identify suitable adaptation strategies without having information on the predicted impact and degree of vulnerability of coastal systems to SLR. Importantly, modeling and mapping will provide valuable input to climate change adaptation planning (NOAA 2010). Unfortunately, the comprehensive range of information that is typically required is seldom available and rarely in the possession of decision makers responsible for management of the deltaic and coastal zone (O'Regan, 1996). The present study seeks to provide insights on predicted impact of climate change induced SLR on mangrove ecosystem and its dependent human communities of Pichavaram mangroves, located at the Vellar-Coleroon estuarine region on the banks of Cauvery delta, Tamil Nadu, India. Based on real-time on-ground elevation measurement by DGPS (Differential Global Positioning System) survey and by using GIS portals, the study has identified about 597 ha of mangroves (one third of total mangrove regions) and about 9 fishing hamlets with 12,000 and more of human population that directly depends on this mangrove ecosystem for their livelihood are under threat of inundation to the predicted impact of 0.5m SLR. The present study is intended to showcase a method by providing reliable scientific information on predicted impact of SLR on mangroves and its dependent human communities to policy planner for

  16. Solute transport in solution conduits exhibiting multi-peaked breakthrough curves

    NASA Astrophysics Data System (ADS)

    Field, Malcolm S.; Leij, Feike J.

    2012-05-01

    SummarySolute transport in karst aquifers is primarily constrained to solution conduits where transport is rapid, turbulent, and relatively unrestrictive. Breakthrough curves generated from tracer tests are typically positively-skewed and may exhibit multiple peaks. In order to understand the circumstances under which multi-peaked positively skewed breakthrough curves occur, physical experiments utilizing single- and multiple-flow channels were conducted. Experiments also included waterfalls, short-term solute detention in pools, and flow obstructions. Results demonstrated that breakthrough curve skewness nearly always occurs to some degree but is magnified as immobile-flow regions are encountered. Multi-peaked breakthrough curves occurred when flow in the main channel became partially occluded from blockage in the main channel that forced divergence of solute into auxiliary channels and when waterfalls and detention in pools occurred. Currently, multi-peaked breakthrough curves are fitted by a multi-dispersion model in which a series of curves generated by the advection-dispersion equation are fitted to each measured peak by superimposing the measured breakthrough curve to obtain a combined model fit with a consequent set of estimated velocities and dispersions. In this paper, a dual-advection dispersion equation with first-order mass transfer between conduits was derived. The dual-advection dispersion equation was then applied to the multi-peaked breakthrough curves obtained from the physical experiments in order to obtain some insight into the operative solute-transport processes through the acquisition of a consequent set of velocities, dispersions, and related parameters. Successful application of the dual-advection, dispersion equation to a tracer test that exhibited dual peaks for a karst aquifer known to consist of two connected but mostly separate conduits confirmed the appropriateness of using a multi-dispersion type model when conditions warrant.

  17. Cytochrome P450, acetylcholinesterase and gonadal histology for evaluating contaminant exposure levels in fishes from a highly eutrophic brackish ecosystem: the Orbetello Lagoon, Italy.

    PubMed

    Corsi, I; Mariottini, M; Sensini, C; Lancini, L; Focardi, S

    2003-02-01

    Biochemical markers and ovarian histology were investigated in prespawning females of grass goby (Zosterisessor ophiocephalus) and grey mullet (Mugil cephalus) collected, respectively, in late spring and summer 2000 in four sites of a highly eutrophic brackish ecosystem of central Italy, the Orbetello Lagoon. Exposure to chlorinated and aromatic hydrocarbons was evaluated in fish livers by the somatic liver index (SLI) and by measuring 7-ethoxyresorufin-O-deethylase (EROD) and benzo(a)pyrene monooxygenase (BaPMO) activities. Acetylcholinesterase (AChE) activity was measured in brain and gills to evaluate exposure to organophosphates (OPs) and carbamates (CBs). The gonad somatic index (GSI) was used to confirm ovarian maturation and ovarian histology was investigated as a potential biomarker for environmental effects. Samples from the Western Basin, near a sewage treatment plant (STP) off the town of Orbetello, showed higher SLI values and higher EROD and BaPMO activities than those collected from the Ansedonia Canal (AC) in the Eastern Basin (p<0.05) and respect to those from reference sites: the Albegna River (AR) Delta for grass goby and the Nassa Canal (NC), connected with the sea, for grey mullet both located in the Western Basin as well. Low brain AChE activity was observed in both species from the reference sites (AR and NC) in association with the presence of anomalies in developing oocytes: unexpectedly small in grass goby and irregular disintegrated cytoplasm in grey mullet. The results indicate that the Western Basin is more polluted than the Eastern Basin particularly in the Orbetello where the sewage treatment plant may be a source of aromatic and chlorinated compounds while the Albegna River and the Nassa Canal may be sources of OPs and CBs. PMID:12586116

  18. Neighbourhood-scale urban forest ecosystem classification.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Duinker, Peter N; Nowak, David J; Robinson, Pamela J

    2015-11-01

    Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape ecosystem conditions into logical and relatively homogeneous management units, making the potential for ecosystem-based decision support available to urban planners. The purpose of this study is to develop and propose a framework for urban forest ecosystem classification (UFEC). The multifactor framework integrates 12 ecosystem components that characterize the biophysical landscape, built environment, and human population. This framework is then applied at the neighbourhood scale in Toronto, Canada, using hierarchical cluster analysis. The analysis used 27 spatially-explicit variables to quantify the ecosystem components in Toronto. Twelve ecosystem classes were identified in this UFEC application. Across the ecosystem classes, tree canopy cover was positively related to economic wealth, especially income. However, education levels and homeownership were occasionally inconsistent with the expected positive relationship with canopy cover. Open green space and stocking had variable relationships with economic wealth and were more closely related to population density, building intensity, and land use. The UFEC can provide ecosystem-based information for greening initiatives, tree planting, and the maintenance of the existing canopy. Moreover, its use has the potential to inform the prioritization of limited municipal resources according to ecological conditions and to concerns of social equity in the access to nature and distribution of ecosystem service supply.

  19. [Comprehensive assessment of urban ecosystem health].

    PubMed

    Sang, Yanhong; Chen, Xingeng; Wu, Renhai; Peng, Xiaochun

    2006-07-01

    Ecosystem health is one of the research hotspots in ecology. This paper discussed the concept of urban ecosystem health, and from the viewpoint of complex ecosystem, presented a new method and a calculation model for the comprehensive assessment of urban ecosystem health to overcome the current researches shortcomings. The application of the method and model in Foshan City of Guangdong Province showed that the assessment results could reflect not only the overall health status of the city, but also the relative health level of the city's sub-systems.

  20. ECOSYSTEM GROWTH AND DEVELOPMENT

    EPA Science Inventory

    Thermodynamically, ecosystem growth and development is the process by which energy throughflow and stored biomass increase. Several proposed hypotheses describe the natural tendencies that occur as an ecosystem matures, and here, we consider five: minimum entropy production, maxi...

  1. N2 and CO2 capillary breakthrough experiments on Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.

    2013-04-01

    The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged

  2. From GRID to gridlock: the relationship between scientific biomedical breakthroughs and HIV/AIDS policy in the US Congress

    PubMed Central

    Platt, Matthew B; Platt, Manu O

    2013-01-01

    Introduction From the travel ban on people living with HIV (PLHIV) to resistance to needle exchange programmes, there are many examples where policy responses to HIV/AIDS in the United States seem divorced from behavioural, public health and sociological evidence. At its root, however, the unknowns about HIV/AIDS lie at biomedical science, and scientific researchers have made tremendous progress over the past 30 years of the epidemic by using antiretroviral therapy to increase the life expectancy of PLHIV almost to the same level as non-infected individuals; but a relationship between biomedical science discoveries and congressional responses to HIV/AIDS has not been studied. Using quantitative approaches, we directly examine the hypothesis that progress in HIV/AIDS biomedical science discoveries would have a correlative relationship with congressional response to HIV/AIDS from 1981 to 2010. Methods This study used original data on every bill introduced, hearing held and law passed by the US Congress relating to HIV/AIDS over 30 years (1981–2010). We combined congressional data with the most cited and impactful biomedical research scientific publications over the same time period as a metric of biomedical science breakthroughs. Correlations between congressional policy and biomedical research were then analyzed at the aggregate and individual levels. Results Biomedical research advancements helped shape both the level and content of bill sponsorship on HIV/AIDS, but they had no effect on other stages of the legislative process. Examination of the content of bills and biomedical research indicated that science helped transform HIV/AIDS bill sponsorship from a niche concern of liberal Democrats to a bipartisan coalition when Republicans became the majority party. The trade-off for that expansion has been an emphasis on the global epidemic to the detriment of domestic policies and programmes. Conclusions Breakthroughs in biomedical science did associate with the

  3. Breakthrough curves for toluene adsorption on different types of activated carbon fibers: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Floyd, Evan L; Lungu, Claudiu T

    2015-05-01

    Activated carbon fibers (ACF) are considered viable alternative adsorbent materials in respirators because of their larger surface area, lighter weight, and fabric form. The purpose of this study was to characterize the breakthrough curves of toluene for different types of commercially available ACFs to understand their potential service lives in respirators. Two forms of ACF, cloth (AC) and felt (AF), with three surface areas each were tested. ACFs were challenged with six toluene concentrations (50-500 p.p.m.) at constant air temperature (23°C), relative humidity (50%), and air flow (16 l min-1) at different bed depths. Breakthrough data were obtained using continuous monitoring by gas chromatography using a gas sampling valve. The ACF specific surface areas were measured by an automatic physisorption analyzer. Results showed unique shapes of breakthrough curves for each ACF form: AC demonstrated a gradual increase in breakthrough concentration, whereas AF showed abrupt increase in concentration from the breakpoint, which was attributed to the difference in fiber density between the forms. AF has steeper breakthrough curves compared with AC with similar specific surface area. AC exhibits higher 10% breakthrough times for a given bed depth due to higher mass per bed depth compared with AF, indicating more adsorption per bed depth with AC. ACF in respirators may be appropriate for use as protection in environments with toluene concentration at the Occupational Safety and Health Administration Permissible Exposure Limit, or during emergency escape for higher toluene concentrations. ACF has shown great potential for application in respiratory protection against toluene and in the development of thinner, lighter, and more efficient respirators. PMID:25528579

  4. Breakthrough curves for toluene adsorption on different types of activated carbon fibers: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Floyd, Evan L; Lungu, Claudiu T

    2015-05-01

    Activated carbon fibers (ACF) are considered viable alternative adsorbent materials in respirators because of their larger surface area, lighter weight, and fabric form. The purpose of this study was to characterize the breakthrough curves of toluene for different types of commercially available ACFs to understand their potential service lives in respirators. Two forms of ACF, cloth (AC) and felt (AF), with three surface areas each were tested. ACFs were challenged with six toluene concentrations (50-500 p.p.m.) at constant air temperature (23°C), relative humidity (50%), and air flow (16 l min-1) at different bed depths. Breakthrough data were obtained using continuous monitoring by gas chromatography using a gas sampling valve. The ACF specific surface areas were measured by an automatic physisorption analyzer. Results showed unique shapes of breakthrough curves for each ACF form: AC demonstrated a gradual increase in breakthrough concentration, whereas AF showed abrupt increase in concentration from the breakpoint, which was attributed to the difference in fiber density between the forms. AF has steeper breakthrough curves compared with AC with similar specific surface area. AC exhibits higher 10% breakthrough times for a given bed depth due to higher mass per bed depth compared with AF, indicating more adsorption per bed depth with AC. ACF in respirators may be appropriate for use as protection in environments with toluene concentration at the Occupational Safety and Health Administration Permissible Exposure Limit, or during emergency escape for higher toluene concentrations. ACF has shown great potential for application in respiratory protection against toluene and in the development of thinner, lighter, and more efficient respirators.

  5. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2003-01-01

    Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.

  6. Competitive Funding, Citation Regimes, and the Diminishment of Breakthrough Research

    ERIC Educational Resources Information Center

    Young, Mitchell

    2015-01-01

    At first glance Sweden looks like a researcher's paradise with high levels of GDP investment in research and high scores on citation indexes, yet recent studies have suggested that Sweden might be losing its edge in groundbreaking research. This paper explores why that is happening by examining researchers' logics of decision-making at a large…

  7. Ecosystem Health: Energy Indicators.

    EPA Science Inventory

    Just as for human beings health is a concept that applies to the condition of the whole organism, the health of an ecosystem refers to the condition of the ecosystem as a whole. For this reason, the study and characterization of ecosystems is fundamental to establishing accurate ...

  8. Estuarine Total Ecosystem Metabolism

    EPA Science Inventory

    Total ecosystem metabolism (TEM), both as discrete measurements and as a theoretical concept, has an important history in ecosystem ecology, particularly in estuaries. Some of the earliest ecological studies were developed to determine how energy flowed through an ecosystem and w...

  9. Terrestrial ecosystems and climatic change

    SciTech Connect

    Emanuel, W.R. ); Schimel, D.S. . Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  10. Coupling gravity, electromagnetism and space-time for space propulsion breakthroughs

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1994-01-01

    spaceflight would be revolutionized if it were possible to propel a spacecraft without rockets using the coupling between gravity, electromagnetism, and space-time (hence called 'space coupling propulsion'). New theories and observations about the properties of space are emerging which offer new approaches to consider this breakthrough possibility. To guide the search, evaluation, and application of these emerging possibilities, a variety of hypothetical space coupling propulsion mechanisms are presented to highlight the issues that would have to be satisfied to enable such breakthroughs. A brief introduction of the emerging opportunities is also presented.

  11. Breakthrough in chloroplast genetic engineering of agronomically important crops

    PubMed Central

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2012-01-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001

  12. How to develop breakthrough physician-to-physician relationships.

    PubMed

    Ramirez, Lito

    2008-01-01

    In today's highly competitive marketplace, specialty practices must strive to distinguish themselves from the competition. One key strategy is to provide exceptional levels of service based on fundamentals already in play among many non-healthcare service providers. The problem is that too many practices are failing to deliver. This article outlines precautionary principles that will enable specialty practices, and even hospitals, to develop stronger, more positive physician relationships that increase loyalty and keep your patient pipeline filled.

  13. Principles of ecosystem sustainability

    SciTech Connect

    Chapin, F.S. III; Torn, M.S.; Tateno, Masaki

    1996-12-01

    Many natural ecosystems are self-sustaining, maintaining an characteristic mosaic of vegetation types of hundreds to thousands of years. In this article we present a new framework for defining the conditions that sustain natural ecosystems and apply these principles to sustainability of managed ecosystems. A sustainable ecosystem is one that, over the normal cycle of disturbance events, maintains its characteristics diversity of major functional groups, productivity, and rates of biogeochemical cycling. These traits are determined by a set of four {open_quotes}interactive controls{close_quotes} (climate, soil resource supply, major functional groups of organisms, and disturbance regime) that both govern and respond to ecosystem processes. Ecosystems cannot be sustained unless the interactive controls oscillate within stable bounds. This occurs when negative feedbacks constrain changes in these controls. For example, negative feedbacks associated with food availability and predation often constrain changes in the population size of a species. Linkages among ecosystems in a landscape can contribute to sustainability by creating or extending the feedback network beyond a single patch. The sustainability of managed systems can be increased by maintaining interactive controls so that they form negative feedbacks within ecosystems and by using laws and regulations to create negative feedbacks between ecosystems and human activities, such as between ocean ecosystems and marine fisheries. Degraded ecosystems can be restored through practices that enhance positive feedbacks to bring the ecosystem to a state where the interactive controls are commensurate with desired ecosystem characteristics. The possible combinations of interactive controls that govern ecosystem traits are limited by the environment, constraining the extent to which ecosystems can be managed sustainably for human purposes. 111 refs., 3 figs., 2 tabs.

  14. Use resources of human exometabolites of different oxidation levels for higher plants cultivation on the soil-like substrate as applied to closed ecosystems

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Ushakova, Sofya; Tirranen, Lyalya; Gribovskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The technology of ‘wet incineration' of human exometabolites and inedible plants biomass by means of H2 O2 in alternating electromagnetic field to increase a closure of mass exchange processes in bioregenerative life support systems (BLSS) was developed at the Institute of Biophysics of the Siberian Branch of Russian Academy of Sciences (Krasnoyarsk, Russia). Human exometabolites mineralized can be used in a nutrient solution for plants cultivation in the BLSS phototrophic link. The objective of the given work appears to be the study of use resources of human exometabolites of different oxidation levels processed by the abovementioned method for higher plants cultivation on the soil-like substrate (SLS). The mineralized human wastes were tested for the purpose of their sterility. Then the effect of human exometabolites of different oxidation levels both on wheat productivity and on the SLS microflora composition was examined. The SLS extract with a definite amount of human mineralized wastes was used as an irrigation solution. The conducted experiments demonstrated that the H2 O2 decreasing to 1 ml on 1 g of feces and to 0.25 ml on 1 ml of urine had not affected the sterility of mineralized human wastes. Wheat cultivation on the SLS with the addition in an irrigation solution of mineralized human wastes in the amount simulating 1/6 of a daily human diet showed the absence of basic dependence of plants productivity on oxidation level of human exometabolites. Yet the analysis of the microflora composition of the irrigation solutions demonstrated its dependence on the oxidation level of the exometabolites introduced. The amount of yeast-like fungi increased in 20 times in the solutions containing less oxidized exometabolites in comparison with the variant in which the human wastes were subjected to a full-scale oxidation. Besides, the solutions with less oxidized exometabolites displayed a bigger content of plant pathogenic bacteria and denitrifies. Consequently the

  15. Fishing for ecosystem services

    USGS Publications Warehouse

    Pope, Kevin L.; Pegg, Mark A.; Cole, Nicholas W.; Siddons, Stephen F.; Fedele, Alexis D.; Harmon, Brian S.; Ruskamp, Ryan L.; Turner, Dylan R.; Uerling, Caleb C.

    2016-01-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships.

  16. Emergent Properties Delineate Marine Ecosystem Perturbation and Recovery.

    PubMed

    Link, Jason S; Pranovi, Fabio; Libralato, Simone; Coll, Marta; Christensen, Villy; Solidoro, Cosimo; Fulton, Elizabeth A

    2015-11-01

    Whether there are common and emergent patterns from marine ecosystems remains an important question because marine ecosystems provide billions of dollars of ecosystem services to the global community, but face many perturbations with significant consequences. Here, we develop cumulative trophic patterns for marine ecosystems, featuring sigmoidal cumulative biomass (cumB)-trophic level (TL) and 'hockey-stick' production (cumP)-cumB curves. The patterns have a trophodynamic theoretical basis and capitalize on emergent, fundamental, and invariant features of marine ecosystems. These patterns have strong global support, being observed in over 120 marine ecosystems. Parameters from these curves elucidate the direction and magnitude of marine ecosystem perturbation or recovery; if biomass and productivity can be monitored effectively over time, such relations may prove to be broadly useful. Curve parameters are proposed as possible ecosystem thresholds, perhaps to better manage the marine ecosystems of the world.

  17. Emergent Properties Delineate Marine Ecosystem Perturbation and Recovery.

    PubMed

    Link, Jason S; Pranovi, Fabio; Libralato, Simone; Coll, Marta; Christensen, Villy; Solidoro, Cosimo; Fulton, Elizabeth A

    2015-11-01

    Whether there are common and emergent patterns from marine ecosystems remains an important question because marine ecosystems provide billions of dollars of ecosystem services to the global community, but face many perturbations with significant consequences. Here, we develop cumulative trophic patterns for marine ecosystems, featuring sigmoidal cumulative biomass (cumB)-trophic level (TL) and 'hockey-stick' production (cumP)-cumB curves. The patterns have a trophodynamic theoretical basis and capitalize on emergent, fundamental, and invariant features of marine ecosystems. These patterns have strong global support, being observed in over 120 marine ecosystems. Parameters from these curves elucidate the direction and magnitude of marine ecosystem perturbation or recovery; if biomass and productivity can be monitored effectively over time, such relations may prove to be broadly useful. Curve parameters are proposed as possible ecosystem thresholds, perhaps to better manage the marine ecosystems of the world. PMID:26456382

  18. Coupling granular activated carbon adsorption with membrane bioreactor treatment for trace organic contaminant removal: breakthrough behaviour of persistent and hydrophilic compounds.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D

    2013-04-15

    This study investigated the removal of trace organic contaminants by a combined membrane bioreactor - granular activated carbon (MBR-GAC) system over a period of 196 days. Of the 22 compounds investigated here, all six hydrophilic compounds with electron-withdrawing functional groups (i.e., metronidazole, carbamazepine, ketoprofen, naproxen, fenoprop and diclofenac) exhibited very low removal efficiency by MBR-only treatment. GAC post-treatment initially complemented MBR treatment very well; however, a compound-specific gradual deterioration of the removal of the above-mentioned problematic compounds was noted. While a 20% breakthrough of all four negatively charged compounds namely ketoprofen, naproxen, fenoprop and diclofenac occurred within 1000-3000 bed volumes (BV), the same level of breakthrough of the two neutral compounds metronidazole and carbamazepine did not occur until 11,000 BV. Single-solute isotherm parameters did not demonstrate any discernible correlation individually with any of the parameters that may govern adsorption onto GAC, such as log D, number of hydrogen-bond donor/acceptor groups, dipole moment or aromaticity ratio of the compounds. The isotherm data, however, could differentiate the breakthrough behaviour between negatively charged and neutral trace organic contaminants.

  19. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities.

    PubMed

    Gómez, B; Palacios, M A; Gómez, M; Sanchez, J L; Morrison, G; Rauch, S; McLeod, C; Ma, R; Caroli, S; Alimonti, A; Petrucci, E; Bocca, B; Schramel, P; Zischka, M; Petterson, C; Wass, U

    2002-11-01

    Traffic is the main source of platinum-group element (PGE) contamination in populated urban areas. There is increasing concern about the hazardous effects of these new pollutants for people and for other living organisms in these areas. Airborne and road dusts, as well as tree bark and grass samples were collected at locations in the European cities of Göteborg (Sweden), Madrid (Spain), Rome (Italy), Munich (Germany), Sheffield and London (UK). Today, in spite of the large number of parameters that can influence the airborne PGE content, the results obtained so far indicate significantly higher PGE levels at traffic sites compared with the rural or non-polluted zones that have been investigated (background levels). The average Pt content in airborne particles found in downtown Madrid, Göteborg and Rome is in the range 7.3-13.1 pg m(-3). The ring roads of these cities have values in the range 4.1-17.7 pg m(-3). In Munich, a lower Pt content was found in airborne particles (4.1 pg m(-3)). The same tendency has been noted for downtown Rh, with contents in the range 2.2-2.8 pg m(-3), and in the range 0.8-3.0 and 0.3 pg m(-3) for motorway margins in Munich. The combined results obtained using a wide-range airborne classifier (WRAC) collector and a PM-10 or virtual impactor show that Pt is associated with particles for a wide range of diameters. The smaller the particle size, the lower the Pt concentration. However, in particles levels for which adverse

  20. Exploitation of puddles for breakthroughs in claustrum research

    PubMed Central

    Johnson, John-Irwin; Fenske, Brian A.; Jaswa, Amar S.; Morris, John A.

    2014-01-01

    Since its first identification as a thin strip of gray matter enclosed between stretches of neighboring fiber bundles, the claustrum has been considered impossible to study by many modern techniques that need a certain roominess of tissue for their application. Known as the front wall, vormauren in German from 1822, and still called avant-mur in French, we here propose a means for breaking into and through this wall, by utilizing the instances where the claustral tissue itself has broken free into more spacious dimensions. This has occurred several times in the evolution of modern mammals, and all that needs be done is to exploit these natural expansions in order to take advantage of a great panoply of technological advances now at our disposal. So here we review the kinds of breakout “puddles” that await productive exploitation, to bring our knowledge of structure and function up to the level enjoyed for other more accessible regions of the brain. PMID:24860441

  1. Combining Scaffolding for Content and Scaffolding for Dialogue to Support Conceptual Breakthroughs in Understanding Probability

    ERIC Educational Resources Information Center

    Kazak, Sibel; Wegerif, Rupert; Fujita, Taro

    2015-01-01

    In this paper, we explore the relationship between scaffolding, dialogue, and conceptual breakthroughs, using data from a design-based research study that focuses on the development of understanding of probability in 10-12 year old students. The aim of the study is to gain insight into how the combination of scaffolding for content using…

  2. QUANTIFYING UNCERTAINTY DUE TO RANDOM ERRORS FOR MOMENT ANALYSES OF BREAKTHROUGH CURVES

    EPA Science Inventory

    The uncertainty in moments calculated from breakthrough curves (BTCs) is investigated as a function of random measurement errors in the data used to define the BTCs. The method presented assumes moments are calculated by numerical integration using the trapezoidal rule, and is t...

  3. Breaking through the Glass Ceiling without Bruising: The Breakthrough Programme for High Ability Girls.

    ERIC Educational Resources Information Center

    Maltby, Florence; Devlin, Maria

    2000-01-01

    This article describes how females are disadvantaged in many professions and suggests school strategies to help females overcome barriers. It describes the Australian Breakthrough Programme that teaches high-ability girls to become aware of what is happening to them and to become more self-confident and strategic in their approach and actions.…

  4. Behavior Breakthroughs[TM]: Future Teachers Reflect on a Focused Game Designed to Teach ABA Techniques

    ERIC Educational Resources Information Center

    Lowdermilk, John; Martinez, Deborah; Pecina, Julie; Beccera, Lisa; Lowdermilk, Carey

    2012-01-01

    This article examines the use of a focused educational game. The game, "Behavior Breakthroughs"[TM], was created to teach people that work with children with autism, appropriate behavior management techniques. A group of undergraduate, teacher education students played the game and provided feedback on their experiences.

  5. Breakthrough Strategies: Classroom-Based Practices to Support New Majority College Students

    ERIC Educational Resources Information Center

    Ross, Kathleen A.

    2016-01-01

    "Breakthrough Strategies" identifies effective strategies that faculty have used to help New Majority students--those from minority, immigrant, or disadvantaged backgrounds--build the necessary skills to succeed in college. As the proportion of New Majority students rises, there is increased attention to helping them gain access to…

  6. Satisfaction with and Perception of Pain Management among Palliative Patients with Breakthrough Pain: A Qualitative Study.

    PubMed

    Pathmawathi, Subramanian; Beng, Tan Seng; Li, Lee Mei; Rosli, Roshaslina; Sharwend, Supermanian; Kavitha, Rasaiah R; Christopher, Boey Chiong Meng

    2015-08-01

    Breakthrough pain is a significant contributor to much suffering by patients. The experience of intense pain may interfere with, and affect, daily life functioning and has major consequences on patients' well-being if it is not well managed. The area of breakthrough pain has not been fully understood. This study thus aimed to explore the experiences of breakthrough pain among palliative patients. A qualitative study based on a series of open-ended interviews among 21 palliative patients suffering from pain at an urban tertiary hospital in Malaysia was conducted. Five themes were generated: (i) pain viewed as an unbearable experience causing misery in the lives of patients, (ii) deterioration of body function and no hope of recovery, (iii) receiving of inadequate pain management for pain, (iv) insensitivity of healthcare providers toward patients' pain experience, and (v) pain coping experiences of patients. The findings revealed that nonpharmacologic approaches such as psychosocial support should be introduced to the patients. Proper guidance and information should be given to healthcare providers to improve the quality of patient care. Healthcare providers should adopt a sensitive approach in caring for patients' needs. The aim is to meet the needs of the patients who want to be pain free or to attain adequate relief of their pain for breakthrough pain. PMID:26256219

  7. The Shanghai Seven after 21 Years: Reflections on the Breakthrough ICAE Meeting in China

    ERIC Educational Resources Information Center

    Boshier, Roger; Huang, Yan

    2005-01-01

    It is now 21 years since the 1984 International Council of Adult Education (ICAE) held their breakthrough conference in Shanghai's famous Jin Jiang hotel. By 2005 Shanghai was no longer a city of grey factories, Communist plotting, and dodgy dealings in international concessions. Shanghai has become the "city of tomorrow". The possibility of…

  8. Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2000-01-01

    Extended tailing of tracer breakthrough is often observed in pulse injection tracer tests conducted in fractured geologic media. This behavior has been attributed to diffusive exchange of tracer between mobile fluids traveling through channels in fractures and relatively stagnant fluid between fluid channels, along fracture walls, or within the bulk matrix. We present a field example where tracer breakthrough tailing apparently results from nondiffusive transport. Tracer tests were conducted in a fractured crystalline rock using both a convergent and weak dipole injection and pumping scheme. Deuterated water, bromide, and pentafluorobenzoic acid were selected as tracers for their wide range in molecular diffusivity. The late time behavior of the normalized breakthrough curves were consistent for all tracers, even when the pumping rate was changed. The lack of separation between tracers of varying diffusivity indicates that strong breakthrough tailing in fractured geologic media may be caused by advective transport processes. This finding has implications for the interpretation of tracer tests designed to measure matrix diffusion in situ and the prediction of contaminant transport in fractured rock.

  9. Promoting Intrapersonal Qualities in Adolescents: Evaluation of Rapport's Teen Leadership Breakthrough Program

    ERIC Educational Resources Information Center

    Hindes, Yvonne L.; Thorne, Keoma J.; Schwean, Vicki L.; McKeough, Anne M.

    2008-01-01

    Given the number of negative influences on youth and the resultant potential for adverse outcomes, it is crucial to support their positive development. Leadership training programs can promote the development of adaptive intrapersonal qualities. The Teen Leadership Breakthrough (TLB) program claims to create sustainable changes in youth using…

  10. Cigarette smoke cadmium breakthrough from traditional filters: implications for exposure.

    PubMed

    Pappas, R Steven; Fresquez, Mark R; Watson, Clifford H

    2015-01-01

    Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found <1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5 to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6 to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers.

  11. Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure

    PubMed Central

    Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.

    2015-01-01

    Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385

  12. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 2. Landscape level restoration decisions

    USGS Publications Warehouse

    Pyke, David A.; Knick, Steven T.; Chambers, Jeanne C.; Pellant, Mike; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-12-07

    Land managers do not have resources to restore all locations because of the extent of the restoration need and because some land uses are not likely to change, therefore, restoration decisions made at the landscape to regional scale may improve the effectiveness of restoration to achieve landscape and local restoration objectives. We present a landscape restoration decision tool intended to assist decision makers in determining landscape objectives, to identify and prioritize landscape areas where sites for priority restoration projects might be located, and to aid in ultimately selecting restoration sites guided by criteria used to define the landscape objectives. The landscape restoration decision tool is structured in five sections that should be addressed sequentially. Each section has a primary question or statement followed by related questions and statements to assist the user in addressing the primary question or statement. This handbook will guide decision makers through the important process steps of identifying appropriate questions, gathering appropriate data, developing landscape objectives, and prioritizing landscape patches where potential sites for restoration projects may be located. Once potential sites are selected, land managers can move to the site-specific decision tool to guide restoration decisions at the site level.

  13. Future directions of ecosystem science

    USGS Publications Warehouse

    Baron, Jill; Galvin, Kathleen A.

    1990-01-01

    Scientific knowledge about ecosystem structure and function has expanded greatly during the past few decades. Terrestrial and aquatic nutrient cycling, ecosystem energetics, population dynamics, belowground processes, and food webs have been studied at the plot, stand, watershed, and landscape levels at many locations around the globe. Ideas about terrestrial-atmospheric interactions and human interference in these processes have changed dramatically. There is new appreciation of the need to incorporate into ecosystem studies the interactions between human populations and the ecosystem, not only because humans affect ecosystem processes, but because these systems support human populations (Glantz 1988, Holden 1988, Parry et al. 1988, WCED 1987). Recent advances in ecosystem science are due, in part, to technological improvements in computing power, new laboratory and field physical and chemical analytical techniques, and satellite imagery for remote sensing of Earth's structure and dynamics. Modeling and geographic information systems have provided the capability for integrating multiple data sets with process simulations to generate hypotheses about regional ecosystem function. Concurrent with these scientific developments has been a growing concern about the links between the health of the environment and world-wide industrial, land, and resource-management practices. Environmental damage at the local level was widely recognized in the 1960s, prompting the environmental movement of that decade. Regional environmental problems with multiple effects and politically difficult solutions have been perceived more recently; the issue of acidic deposition provides an example of such a second-generation concern (Clark and Holling 1985). Today there is a growing awareness of global-scale environmental degradation brought about by the combined actions of all peoples on Earth (Clark 1989, Woodmansee et al. 1988). The three levels of environmental concern--local, regional

  14. Choreographing Partnerships within an Organizational Structure of Accountability: Maryland State Department of Education's Shift from Compliance Monitor to Breakthrough Partner

    ERIC Educational Resources Information Center

    Strickling, Laura Rutter; Doneker, Karen Lee

    2014-01-01

    Drawing upon data from twenty-five interviews, this paper examines how the Maryland State Department of Education's Cross-functional Team navigates its changing role from compliance monitor to breakthrough partner in terms of discourse, time, and flexibility, as it carries out the work of the Breakthrough Center. It also examines how the role of…

  15. Valuation of rangeland ecosystem services

    USGS Publications Warehouse

    Gascoigne, W.R.

    2011-01-01

    into analyzing the costs and benefits associated with policies being proposed, or possibly already implemented. For example, with monetized values acting as a common metric, one could compare the 'benefits' of converting a rangeland ecosystem for commercial development (perhaps estimated at the market value of the developed land) with the foregone ecosystem service values (in addition to any land income lost) resulting from that land conversion. Similarly, ecosystem service values can be used to determine the level of return on an investment. rhis is a primary objective for private land conservation organizations who typically have very limited resources. Ecosystem service valuation can also have a role in damage assessments from incidents that require compensation such as oil spills. Additionally, valuation can be very informative when investigating regulatory programs that trade ecological assets such as wetland mitigation programs. Typically these programs are based simply on an 'acre for acre' criterion, and do not take into consideration varying welfare values associated with that ecosystem. Lastly, and most fundamental, ecosystem service valuation serves as a recognition tool for people of all backgrounds. Identifying and valuing ecosystem goods and services on rangelands brings to light the value these natural assets have to human welfare that often remain hidden do to their public and non-market attributes. This type of recognition is vital to the preservation of rangeland ecosystems in the future and the many ecological benefits they provide.

  16. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  17. HBV vaccine efficacy and detection and genotyping of vaccineé asymptomatic breakthrough HBV infection in Egypt

    PubMed Central

    Abushady, Eman AE; Gameel, Magda MA; Klena, John D; Ahmed, Salwa F; Abdel-Wahab, Kouka SE; Fahmy, Sanya M

    2011-01-01

    AIM: To evaluate the impact of mass vaccination against the hepatitis B virus (HBV) in Egypt, and to search for vaccinee asymptomatic breakthrough HBV infection and its genotype. METHODS: Seven hundred serum samples from vaccinated children and adults (aged 2-47 years) were used for quantitative and qualitative detection of HBsAb by ELISA. Three hundred and sixty serum samples representing undetectable or low or high HBsAb were screened for markers of active HBV infection (HBsAg, HBcAb (IgG) and HBeAb by ELISA, plus HBsAg by AxSYM) and HBV-DNA genotyping by nested multiplex PCR and by DNA sequencing. RESULTS: It was found that 65% of children aged 2-4 years, and 20.5% aged 4-13 years, as well as 45% adults were good responders to HBV vaccination mounting protective level HBsAb. Poor responders were 28%, 59.5% and 34%, and non-responders were 7%, 20% and 21% respectively, in the three studied groups. Markers of asymptomatic HBV infections were HBsAg detected by ELISA in 2.5% vs 11.39% by AxSYM. Other markers were HBcAb (IgG) in 1.38%, HBeAb in 0.83%, and HBV-DNA in 7.8%. All had HBV genotype E infection. CONCLUSION: It is concluded that HBV vaccine is efficient in controlling HBV infection among children and adults. The vaccine breakthrough infection was by HBV genotype E. A booster dose of vaccine is recommended, probably four years after initial vaccination. PMID:21860674

  18. Food-web constraints on biodiversity–ecosystem functioning relationships

    PubMed Central

    Thébault, Elisa; Loreau, Michel

    2003-01-01

    The consequences of biodiversity loss for ecosystem functioning and ecosystem services have aroused considerable interest during the past decade. Recent work has focused mainly on the impact of species diversity within single trophic levels, both experimentally and theoretically. Experiments have usually showed increased plant biomass and productivity with increasing plant diversity. Changes in biodiversity, however, may affect ecosystem processes through trophic interactions among species as well. An important current challenge is to understand how these trophic interactions affect the relationship between biodiversity and ecosystem functioning. Here we present a mechanistic model of an ecosystem with multiple trophic levels in which plants compete for a limiting soil nutrient. In contrast to previous studies that focused on single trophic levels, we show that plant biomass does not always increase with plant diversity and that changes in biodiversity can lead to complex if predictable changes in ecosystem processes. Our analysis demonstrates that food-web structure can profoundly influence ecosystem properties. PMID:14638942

  19. Managed island ecosystems

    USGS Publications Warehouse

    McEachern, Kathryn; Atwater, Tanya; Collins, Paul W.; Faulkner, Kate R.; Richards, Daniel V.

    2016-01-01

    This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

  20. Effects of ozone on ecosystems -- ecosystem indicators of concern

    SciTech Connect

    Innes, J.L.

    1998-12-31

    Ozone has been recognized as an important cause of damage to crops since the 1950s. Damage to trees was first identified in the 1960s and is now known to be widespread in both North America and Europe. Most impact studies have emphasized the importance of determining growth losses attributable to ozone and as a result have concentrated on species of commercial importance. This is illustrated by the critical loads approach to ozone risk assessment in Europe, which is currently based on the AOT40 -- 10 ppmh threshold. At higher levels, it has been argued that a 10% growth reduction occurs in European beech (Fagus sylvatica). Such an approach suffers from a number of serious limitations, not least the widespread impacts on ecosystems that may occur at lower ozone exposures and the very poor quantitative basis for setting this threshold. In Europe, there has been increasing emphasis on the conservation and management of species without any direct economic importance. This has arisen from a growing environmental awareness of the general public. The trend has been accelerated by the perceived environmental benefits of the large amounts of land that has been taken out of agricultural production (as a result of the ``set-aside`` policy of the European Union) and the public concern about the ecological and environmental impacts of industrial forestry. In agricultural landscapes, hedgerow species and weed species are being looked at as important parts of the agricultural ecosystem. In particular, weed species are an important part of the food chain for the wildlife present in such ecosystems. In forests, much greater emphasis is being given to the authenticity of the forest ecosystems. Particular emphasis is being given to ecosystem management techniques such as continuous cover forestry and the furthering of natural regeneration.

  1. Breakthrough Ideas.

    ERIC Educational Resources Information Center

    American School & University, 1996

    1996-01-01

    Describes innovative strategies that schools and universities are using to save money and reshape operations. Focuses on ideas in energy efficiency and facilities improvement, direct purchasing, energy management, retrofitting buildings, ceiling insulation upgrades, automation systems, electric demand programs, facilities programs, warranty…

  2. Where Will Ecosystems Go?

    SciTech Connect

    Janetos, Anthony C.

    2008-09-29

    Climate-induced changes in ecosystems have been both modeled and documented extensively over the past 15-20 years. Those changes occur in the context of many other stresses and interacting factors, but it is clear that many, if not most, ecosystems are sensitive to changing climate.

  3. The Library as Ecosystem

    ERIC Educational Resources Information Center

    Walter, Scott

    2008-01-01

    Ecology is the study of interactions between organisms and their environment, and the academic library could be considered to be an ecosystem, i.e., a "biological organization" in which multiple species must interact, both with one another and with their environment. The metaphor of the library as ecosystem is flexible enough to be applied not…

  4. Ecosystems, Teacher's Guide.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Science Curriculum Improvement Study.

    The Science Curriculum Improvement Study has developed this teacher's guide to "Ecosystems," the sixth part of a six unit life science curriculum sequence. The six basic units, emphasizing organism-environment interactions, are organisms, life cycles, populations, environments, communities, and ecosystems. They make use of scientific and…

  5. Arrival times and temporal moments of breakthrough curves for an imperfectly stratified aquifer

    USGS Publications Warehouse

    Naff, R.L.

    1992-01-01

    A solution in Laplace transform space is obtained for transport of resident concentration in an imperfectly but yet highly stratified porous medium. From this transform-space solution either temporal moments can be derived by taking derivatives with respect to the Laplace parameter, or the transform-space solution can be inverted numerically to obtain breakthrough curves for the mean concentration. When compared to an equivalent solution with a Fickian dispersive flux, these temporal moments indicate the extent to which transport in heterogeneous porous media deviates from classifical Fickian behaviour. The numerical inversion of the Laplace transform solution gives partial breakthrough curves for the mean concentration which have the appearance of conflicting with the derived moment information. A hypothesis is put forth which resolves this apparent conflict; this hypothesis is verified by adding a component of local dispersion to the governing transport equation. -from Author

  6. Particle behavior in deep-bed filtration: Part 1 -- Ripening and breakthrough

    SciTech Connect

    Moran, D.C. ); Moran, M.C. ); Cushing, R.S.; Lawler, D.F. . Dept. of Civil Engineering)

    1993-12-01

    Laboratory-scale filtration experiments were conducted using sedimentation basin effluent from a local lime-softening water treatment plant. Metals and synthetic organic chemicals are often adsorbed to particle surfaces. An electronic particle counter was used to observe changes in the particle size distribution of the filtrate as a function of filter depth and time under a variety of filter operating conditions. The experiments were conducted for an extended period (up to 48 h) to observe the effects of both ripening and breakthrough over the duration of a typical water treatment plant filter cycle. The results indicate that ripening and breakthrough are not distinct stages but occur simultaneously for different-size particles. The effects of media size and filtration velocity were investigated, and simple normalizations were developed.

  7. Heat Sweep Analysis of Thermal Breakthrough at Los Humeros and La Primavera Fields, Mexico

    SciTech Connect

    Kruger, P.; Lam, S.; Molinar, R.; Aragon, A.

    1987-01-20

    Early evaluation of the potential for geothermal breakthrough of reinjected fluids in newly developed geothermal fields can be obtained with the SGP one-dimensional heat sweep model. The model was used to estimate fluid cooldown from wells selected for the first wellhead generating units to be installed at the Los Humeros and La Primavera geothermal fields in Mexico, based on staff-compiled geometric and geologic data, thermal properties of the reservoir rock, and expected production conditions. Geometric considerations were evaluated with respect to known and postulated fault zones and return flow angle of the reinjected fluid. The results show the range of parameter values that affect the rate of thermal breakthrough to an abandonment temperature of 170 ºC corresponding to the minimum inlet pressure to the CFE 5-MW wellhead generator units. 9 figs., 4 tabs., 11 refs.

  8. In Internet-Based Visualization System Study about Breakthrough Applet Security Restrictions

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Huang, Yan

    In the process of realization Internet-based visualization system of the protein molecules, system needs to allow users to use the system to observe the molecular structure of the local computer, that is, customers can generate the three-dimensional graphics from PDB file on the client computer. This requires Applet access to local file, related to the Applet security restrictions question. In this paper include two realization methods: 1.Use such as signature tools, key management tools and Policy Editor tools provided by the JDK to digital signature and authentication for Java Applet, breakthrough certain security restrictions in the browser. 2. Through the use of Servlet agent implement indirect access data methods, breakthrough the traditional Java Virtual Machine sandbox model restriction of Applet ability. The two ways can break through the Applet's security restrictions, but each has its own strengths.

  9. Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves.

    PubMed

    Ramirez C, Margarita; Pereira da Silva, Mônica; Ferreira L, Selma G; Vasco E, Oscar

    2007-07-19

    Trivalent and hexavalent chromium continuous biosorption was studied using residual brewer Saccharomyces cerevisiae immobilized in volcanic rock. The columns used in the process had a diameter of 4.5 cm and a length of 140 cm, working at an inlet flow rate of 15 mL/min. Breakthrough curves were used to study the yeast biosorption behavior in the process. The saturation time (ts) was 21 and 45 h for Cr(III) and Cr(VI), respectively, and a breakthrough time (tb) of 4 h for Cr(III) and 5 h for Cr(VI). The uptake capacity of the biosorbent for Cr(III) and Cr(VI) were 48 and 60 mg/g, respectively. Two non-diffusional mathematical models with parameters t0 and sigma were used to adjust the experimental data obtained. Microsoft Excel tools were used for the mathematical solution of the two parameters used.

  10. Ecosystems of national parks.

    PubMed

    Houston, D B

    1971-05-14

    The preservation and maintenance of natural park ecosystems, with modern man's being restricted to generally nonconsumptive uses of the park, represents one end of a spectrum of land use that extends through exploitation of natural ecosystems to the development of simplified agricultural ecosystems. Criteria for management of a park ecosystem must, of necessity, differ from criteria for other uses of land, since park management involves preventing or compensating for the influence of man. The objectives for natural areas appear to be ecologically feasible if it is recognized that these areas have a finite capacity for absorbing man's consumptive and disruptive influences. The interpretation of ecosystems to park visitors provides an opportunity to contribute to an environmental ethic that extends beyond the park environment.

  11. NREL Produces Ethylene via Photosynthesis; Breakthrough Offers Cleaner Alternative for Transportation Fuels (Fact Sheet)

    SciTech Connect

    Not Available

    2013-08-01

    NREL scientists have demonstrated a way to produce ethylene through photosynthesis, a breakthrough that could lead to more environmentally friendly ways to produce a variety of materials, chemicals, and transportation fuels. The scientists introduced a gene into a cyanobacterium and demonstrated that the organism remains stable through at least four generations, producing ethylene gas that can be easily captured. In the laboratory, the organism, Synechocystis sp. PCC 6803, produced 720 milligrams of ethylene per liter each day.

  12. A method for detecting breakthrough of organic solvent vapors in a charcoal tube using semiconductor gas sensors

    SciTech Connect

    Hori, Hajime; Noritake, Yuji; Murobushi, Hisako; Higashi, Toshiaki; Tanaka, Isamu

    1999-08-01

    This study developed a method for detecting organic vapors that break through charcoal tubes, using semiconductor gas sensors as a breakthrough detector of vapors. A glass column equipped with two sensors was inserted in Teflon tubing, and air containing organic vapor was introduced at a constant flow rate. After the output signal of the sensors became stable, a charcoal tube was inserted into the tubing at the upstream of the sensors. The resistance of the sensors was collected temporally in an integrated circuit (IC) card. The vapor concentration of the air near the sensors was measured with a gas chromatograph (GC) equipped with a flame ionization detector (FID) at intervals of 5 minutes to obtain the breakthrough curve. When the relative humidity was zero, the output signals of the sensors began to change before the breakthrough point (1% breakthrough time). This tendency was almost the same for methyl acetate, ethyl acetate, isopropyl alcohol (IPA), toluene, and chloroform. For dichloromethane and 1,1,1-trichloroethane, the time when the sensor output signals began to rise was almost the same as the breakthrough point. When the relative humidity was 80 percent, the sensors could also detect many vapors before the breakthrough point, but they could not perceive dichloromethane and chloroform vapors. A personal sampling system with a breakthrough detector was developed and its availability is discussed.

  13. Neighbourhood-scale urban forest ecosystem classification.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Duinker, Peter N; Nowak, David J; Robinson, Pamela J

    2015-11-01

    Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape ecosystem conditions into logical and relatively homogeneous management units, making the potential for ecosystem-based decision support available to urban planners. The purpose of this study is to develop and propose a framework for urban forest ecosystem classification (UFEC). The multifactor framework integrates 12 ecosystem components that characterize the biophysical landscape, built environment, and human population. This framework is then applied at the neighbourhood scale in Toronto, Canada, using hierarchical cluster analysis. The analysis used 27 spatially-explicit variables to quantify the ecosystem components in Toronto. Twelve ecosystem classes were identified in this UFEC application. Across the ecosystem classes, tree canopy cover was positively related to economic wealth, especially income. However, education levels and homeownership were occasionally inconsistent with the expected positive relationship with canopy cover. Open green space and stocking had variable relationships with economic wealth and were more closely related to population density, building intensity, and land use. The UFEC can provide ecosystem-based information for greening initiatives, tree planting, and the maintenance of the existing canopy. Moreover, its use has the potential to inform the prioritization of limited municipal resources according to ecological conditions and to concerns of social equity in the access to nature and distribution of ecosystem service supply. PMID:26311086

  14. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: a monitoring and treatment challenge.

    PubMed

    Zamyadi, Arash; MacLeod, Sherri L; Fan, Yan; McQuaid, Natasha; Dorner, Sarah; Sauvé, Sébastien; Prévost, Michèle

    2012-04-01

    The detection of cyanobacteria and their associated toxins has intensified in recent years in both drinking water sources and the raw water of drinking water treatment plants (DWTPs). The objectives of this study were to: 1) estimate the breakthrough and accumulation of toxic cyanobacteria in water, scums and sludge inside a DWTP, and 2) to determine whether chlorination can be an efficient barrier to the prevention of cyanotoxin breakthrough in drinking water. In a full scale DWTP, the fate of cyanobacteria and their associated toxins was studied after the addition of coagulant and powdered activated carbon, post clarification, within the clarifier sludge bed, after filtration and final chlorination. Elevated cyanobacterial cell numbers (4.7 × 10(6)cells/mL) and total microcystins concentrations (up to 10 mg/L) accumulated in the clarifiers of the treatment plant. Breakthrough of cells and toxins in filtered water was observed. Also, a total microcystins concentration of 2.47 μg/L was measured in chlorinated drinking water. Cyanobacterial cells and toxins from environmental bloom samples were more resistant to chlorination than results obtained using laboratory cultured cells and dissolved standard toxins.

  15. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: a monitoring and treatment challenge.

    PubMed

    Zamyadi, Arash; MacLeod, Sherri L; Fan, Yan; McQuaid, Natasha; Dorner, Sarah; Sauvé, Sébastien; Prévost, Michèle

    2012-04-01

    The detection of cyanobacteria and their associated toxins has intensified in recent years in both drinking water sources and the raw water of drinking water treatment plants (DWTPs). The objectives of this study were to: 1) estimate the breakthrough and accumulation of toxic cyanobacteria in water, scums and sludge inside a DWTP, and 2) to determine whether chlorination can be an efficient barrier to the prevention of cyanotoxin breakthrough in drinking water. In a full scale DWTP, the fate of cyanobacteria and their associated toxins was studied after the addition of coagulant and powdered activated carbon, post clarification, within the clarifier sludge bed, after filtration and final chlorination. Elevated cyanobacterial cell numbers (4.7 × 10(6)cells/mL) and total microcystins concentrations (up to 10 mg/L) accumulated in the clarifiers of the treatment plant. Breakthrough of cells and toxins in filtered water was observed. Also, a total microcystins concentration of 2.47 μg/L was measured in chlorinated drinking water. Cyanobacterial cells and toxins from environmental bloom samples were more resistant to chlorination than results obtained using laboratory cultured cells and dissolved standard toxins. PMID:22137293

  16. Recent and Upcoming Approaches in the Management of Cancer Breakthrough Pain.

    PubMed

    Noble-Gresty, Jo

    2010-10-01

    The pharmacokinetics of the traditional oral opioids do not match the time course of breakthrough cancer pain, a common and distinct component of cancer pain which has a negative impact on quality of life for the patient.Fentanyl and alfentanil are potent, lipophilic, fast acting opioids with short durations of action and consequently more appropriate for the treatment of breakthrough cancer pain. These agents are ideal for oral transmucosal or nasal transmucosal administration.There are now four licensed preparations of fentanyl in the UK for the treatment of cancer breakthrough pain; lozenge, buccal tablet, sublingual tablet and nasal spray. They are not interchangeable and all require titration using the lowest dose.Alfentanil is available as a buccal or nasal spray. It is an unlicensed product and is available as a special order from Torbay Pharmacy Manufacturing Unit.There is a paucity of comparator studies for these new modes of administration.Further innovative delivery systems of fentanyl are on the horizon. PMID:26526136

  17. Going Beyond the Millennium Ecosystem Assessment: An Index System of Human Dependence on Ecosystem Services

    PubMed Central

    Yang, Wu; Dietz, Thomas; Liu, Wei; Luo, Junyan; Liu, Jianguo

    2013-01-01

    The Millennium Ecosystem Assessment (MA) estimated that two thirds of ecosystem services on the earth have degraded or are in decline due to the unprecedented scale of human activities during recent decades. These changes will have tremendous consequences for human well-being, and offer both risks and opportunities for a wide range of stakeholders. Yet these risks and opportunities have not been well managed due in part to the lack of quantitative understanding of human dependence on ecosystem services. Here, we propose an index of dependence on ecosystem services (IDES) system to quantify human dependence on ecosystem services. We demonstrate the construction of the IDES system using household survey data. We show that the overall index and sub-indices can reflect the general pattern of households' dependences on ecosystem services, and their variations across time, space, and different forms of capital (i.e., natural, human, financial, manufactured, and social capitals). We support the proposition that the poor are more dependent on ecosystem services and further generalize this proposition by arguing that those disadvantaged groups who possess low levels of any form of capital except for natural capital are more dependent on ecosystem services than those with greater control of capital. The higher value of the overall IDES or sub-index represents the higher dependence on the corresponding ecosystem services, and thus the higher vulnerability to the degradation or decline of corresponding ecosystem services. The IDES system improves our understanding of human dependence on ecosystem services. It also provides insights into strategies for alleviating poverty, for targeting priority groups of conservation programs, and for managing risks and opportunities due to changes of ecosystem services at multiple scales. PMID:23717634

  18. From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Villa, Ferdinando; Batker, David; Harrison-Cox, Jennifer; Voigt, Brian; Johnson, Gary W.

    2014-01-01

    Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems’ capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic

  19. SEVEN PILLARS OF ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    Ecosystem management is widely proposed in the popular and professional literature as the modern and preferred way of managing natural resources and ecosystems. Advocates glowingly describe ecosystem management as an approach that will protect the environment, maintain healthy ec...

  20. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    PubMed

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. PMID:26747638

  1. Newer generation fentanyl transmucosal products for breakthrough pain in opioid-tolerant cancer patients.

    PubMed

    Elsner, Frank; Zeppetella, Giovambattista; Porta-Sales, Josep; Tagarro, Ignacio

    2011-01-01

    Oral normal-release morphine has long been considered the gold-standard treatment for cancer breakthrough pain. However, its relatively long time to analgesic onset, delay in maximal analgesic effect and prolonged duration of action make it unsuitable for the management of breakthrough pain episodes. These limitations led to the development of an oral transmucosal formulation of the fast-acting opioid fentanyl (oral transmucosal fentanyl citrate [OTFC] lozenge on a plastic handle; Actiq®), which has been shown to produce more rapid and effective pain relief than oral morphine. However, the formulation itself has some limitations. Consequently, investigators have continued to develop other, newer generation, transmucosal formulations of fentanyl to further improve the management of breakthrough pain. Recently, five such compounds (Effentora®/Fentora®, Abstral®, Instanyl®, Breakyl®/OnsolisTM and PecFent®) have been concurrently approved in Europe and/or the US, and have documented efficacy in quickly relieving breakthrough pain episodes. All of the available pivotal efficacy trials of these agents are randomized, double-blind comparisons with placebo. There are no head-to-head trials comparing any of the newer transmucosal formulations with each other. Only one non-pivotal study of intranasal fentanyl spray used a transmucosal preparation as an active comparator. However, that comparator was OTFC, not one of the newer transmucosal products. Close examination of the existing trials assessing these newer transmucosal preparations reveals significant variation in many study parameters, such as patient selection criteria, severity of breakthrough pain episodes, proportions of patients with a neuropathic pain component, titration protocols, choice of the primary endpoints, protocols for repeat dosing and rescue medication, the separation of treated episodes and the extent of the placebo response, all of which may have affected efficacy results. It is therefore

  2. Changes in the flux of carbon between plants and soil microorganisms at elevated CO{sub 2}: Physiological processes with ecosystem-level implications. Progress report, [August 15, 1994--August 14, 1995

    SciTech Connect

    Zak, D.R.; Pregitzer, K.S.

    1995-05-15

    This report presents the details of a research program that investigated the impacts of elevated carbon dioxide on terrestrial ecosystems. This report focused on the effects of plant carbon allocation, microbial activity, soil changes, and nitrogen dynamics.

  3. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  4. Understanding ecosystem robustness.

    PubMed

    Wilmers, Christopher C

    2007-10-01

    Understanding the properties of ecosystems that make them either vulnerable or resistant to species extinctions is vital in the context of rapidly increasing habitat modification and climatic warming. New research by Sinha et al. incorporating 'small-world' topologies and population dynamics into ecosystem network models provides new explanations for species link distributions, extinction events and the maintenance of biodiversity. Their work reveals that previously unconnected ecosystems that come into contact with each other by anthropogenic or natural means are vulnerable to large losses in species.

  5. Spatial interactions among ecosystem services in an urbanizing agricultural watershed

    PubMed Central

    Qiu, Jiangxiao; Turner, Monica G.

    2013-01-01

    Understanding spatial distributions, synergies, and tradeoffs of multiple ecosystem services (benefits people derive from ecosystems) remains challenging. We analyzed the supply of 10 ecosystem services for 2006 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) Where are areas of high and low supply of individual ecosystem services, and are these areas spatially concordant across services? (ii) Where on the landscape are the strongest tradeoffs and synergies among ecosystem services located? (iii) For ecosystem service pairs that experience tradeoffs, what distinguishes locations that are “win–win” exceptions from other locations? Spatial patterns of high supply for multiple ecosystem services often were not coincident; locations where six or more services were produced at high levels (upper 20th percentile) occupied only 3.3% of the landscape. Most relationships among ecosystem services were synergies, but tradeoffs occurred between crop production and water quality. Ecosystem services related to water quality and quantity separated into three different groups, indicating that management to sustain freshwater services along with other ecosystem services will not be simple. Despite overall tradeoffs between crop production and water quality, some locations were positive for both, suggesting that tradeoffs are not inevitable everywhere and might be ameliorated in some locations. Overall, we found that different areas of the landscape supplied different suites of ecosystem services, and their lack of spatial concordance suggests the importance of managing over large areas to sustain multiple ecosystem services. PMID:23818612

  6. Ecosystem restoration: Chapter 4

    USGS Publications Warehouse

    Cullinane Thomas, Catherine M.; Skrabis, K. E.; Gascoigne, William

    2012-01-01

    The Department of the Interior extensively supports―through its mission, policy, programs, and funding― the study, planning, implementation, and monitoring of ecosystem restoration. This commitment is reflected in the Department's FY2011-2016 Strategic Plan.

  7. Ecosystems in the Laboratory

    ERIC Educational Resources Information Center

    Madders, M.

    1975-01-01

    Describes the materials and laboratory techniques for the study of food chains and food webs, pyramids of numbers and biomass, energy pyramids, and oxygen gradients. Presents a procedure for investigating the effects of various pollutants on an entire ecosystem. (GS)

  8. Lakes Ecosystem Services Online

    EPA Science Inventory

    Northeastern lakes provide valuable ecosystem services that benefit residents and visitors and are increasingly important for provisioning of recreational opportunities and amenities. Concurrently, however, population growth threatens lakes by, for instance, increasing nutrient ...

  9. Fort Collins Science Center Ecosystem Dynamics Branch

    USGS Publications Warehouse

    Wilson, Jim; Melcher, C.; Bowen, Z.

    2009-01-01

    Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.

  10. Spatially cascading effect of perturbations in experimental meta-ecosystems.

    PubMed

    Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian

    2016-09-14

    Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. PMID:27629038

  11. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee D.

    2015-01-01

    Characterization of preferential flow and transport is still a major challenge but may be improved employing noninvasive, tomographic methods. In this study, 3-D time lapse electrical resistivity tomography (ERT) was employed during infiltration on an undisturbed, unsaturated soil core in a laboratory lysimeter. A tracer breakthrough was conducted during transient conditions by applying a series of short-term infiltrations, simulating natural precipitation events. The electrical response was quantitatively validated using data from a multicompartment suction sampler. Water content probes were also installed for ground-truthing of ERT responses. Water content variations associated with an infiltration front dominated the electrical response observed during individual short-term infiltration events, permitting analysis of water content dynamics from ERT data. We found that, instead of the application of an uncertain petrophysical function, shape measures of the electrical conductivity response might be used for constraining hydrological models. Considering tracer breakthroughs, the ERT observed voxel responses from time lapse tomograms at constant water contents in between infiltration events were used to quantitatively characterize the breakthrough curve. Shape parameters of the breakthrough derived from ERT, such as average velocity, were highly correlated with the shape parameters derived from local tracer breakthrough curves observed in the compartments of the suction plate. The study demonstrates that ERT can provide reliable quantitative information on both, tracer breakthroughs and water content variations under the challenging conditions of variable background electrical conductivity of the pore solution and non steady-state infiltration.

  12. Development of a new respirator for organic vapors with a breakthrough detector using a semiconductor gas sensor.

    PubMed

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2003-02-01

    A method for determining breakthrough of organic vapors in a respirator cartridge was developed. A thick film semiconductor gas sensor was used as a breakthrough detector. Air containing organic vapor was introduced into the cartridge, and an output signal from the sensor inserted in the downstream flow of the cartridge was recorded on an IC card. Simultaneously, the breakthrough curve was obtained by measuring the vapor concentration at downstream from the respirator cartridge with a gas chromatograph (GC) equipped with a flame ionization detector. When the breakthrough was almost completed, the data recorded in the card were transferred to a personal computer and the change in the output signal from the sensor was compared with the breakthrough curve obtained by the GC. Twelve organic solvents including aromatic hydrocarbons, chlorinated hydrocarbons, acetates, alcohols, ketones, and aliphatic hydrocarbons were tested under low (20%-25%) and high (70%-80%) relative humidity ranges. The sensitivity of the sensor for chlorinated hydrocarbons such as 1,1,1-trichloroethane was relatively low, especially when the relative humidity was high, but the rise time of the sensor output signal was almost the same as or earlier than the breakthrough time by the GC. Based on the experimental results, a new respirator for organic vapors that can detect the end of service life was developed.

  13. Evaluation of adsorbents for volatile methyl siloxanes sampling based on the determination of their breakthrough volume.

    PubMed

    Lamaa, L; Ferronato, C; Fine, L; Jaber, F; Chovelon, J M

    2013-10-15

    Volatile methyl siloxanes (VMS) have been detected in many different atmospheres such as biogas, sewage sludge, landfill gas, gasoline and ambient air. In these different atmospheres, their presence can involve several contamination problems and negative effects in industrial processes, their identification and quantification become a real challenge. Up to now there is no standardized procedure for VMS quantification, the sampling step remaining the major obstacle. Sampling gas through sorbent tube followed by analysis on TD-GC-MS is one of the reliable possibilities. It gathers sampling and preconcentration in one step and allows discrimination between all VMS, despite the difficulty to choose the appropriate adsorbent in order to avoid loss of analytes during sampling. In this context, this work deals with the comparison of different types of adsorbents based on the determination of the VMS breakthrough volume (BV). Although Tenax TA is the most widely used adsorbent, experiments show low BV values for the lightest VMS. At 25°C, the BV of TMS and L2 are, respectively, 0.2 and 0.44 L g(-1) which can contribute to an underestimation in concentration during their quantification. Carbosieve SIII usually used for C2-C5, did not adsorb light VMS as it was expected, and breakthrough volume obtained for VMS are more than ten times less than the values obtained for Tenax. On other hand, Chromosorb 106 and Carboxen 1000 in association with Carbotrap C and Carbotrap proved to be appropriated for VMS sampling, due to the high breakthrough volumes obtained for the lightest compounds comparing to the other adsorbents. The BVs of TMS for Carboxen 1000 and Chromosorb 106 are 1.2 × 10(4) and 39 L g(-1), respectively, and 49 × 10(4) and 1142 L g(-1) for L2, respectively.

  14. The myth of the medical breakthrough: smallpox, vaccination, and Jenner reconsidered.

    PubMed

    Gross, C P; Sepkowitz, K A

    1998-01-01

    A discussion of the particulars leading to the eradication of smallpox is pertinent to both investigators and the public as the clamor for more "breakthroughs" intensifies. The rational allocation of biomedical research funds is increasingly threatened by disease-advocacy groups and congressional earmarking. An overly simplistic view of how advances truly occur promises only to stunt the growth of researchers and research areas not capable of immediate great breakthroughs. The authors review the contributions of Jenner and his countless predecessors to give a more accurate account of how "overnight medical breakthroughs" truly occur-through years of work conducted by many people, often across several continents. In the public eye, few achievements are regarded with such excitement and awe as the medical breakthrough. Developments such as the discovery of penicillin and the eradication of polio and smallpox have each become a great story built around a singular hero. Edward Jenner, for example, is credited with discovering a means of safely conferring immunity to smallpox. The success of vaccination and subsequent eradication of this disease elevated Jenner to a status in medical history that is rivaled by few. However, the story of the eradication of smallpox does not start or end with the work of Jenner. Men such as Benjamin Jesty and Reverend Cotton Mather as well as unnamed physicians from tenth century China to eighteenth century Turkey also made critical contributions to the crowning achievement. Inoculation to prevent smallpox was commonplace in Europe for generations prior to Jenner's work. Jenner himself was inoculated as a child. In fact, vaccination with cowpox matter was documented in England over 20 years prior to Jenner's work. The authors' review of primary and secondary sources indicates that although Jenner's contribution was significant, it was only one of many. It is extremely rare that a single individual or experiment generates a quantum leap in

  15. Morrison Receives NIH Award for Major Ras/Raf Breakthroughs | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Deborah Morrison, Ph.D., laboratory chief, Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), received an NIH Director’s Award in June “for major breakthroughs in elucidating the mechanisms of Ras/Raf signaling that will be critical for diagnosis and treatment of disease,” according to the NIH Director’s Awards Ceremony brochure. She was nominated by Ira Daar, Ph.D., senior investigator, Developmental Signal Transduction Section, Laboratory of Cell and Developmental Signaling, CCR.

  16. FOREWORD: Focus on nanobiomaterials and technologies for breakthrough in future medicine Focus on nanobiomaterials and technologies for breakthrough in future medicine

    NASA Astrophysics Data System (ADS)

    Miyahara, Yuji; Kobayashi, Hisatoshi; Chen, Guoping; Kikuchi, Masanori

    2010-02-01

    In biomedical fields, various materials are used for different purposes such as therapy, diagnostics and drugs. Some of them come into direct contact with blood and tissues in the human body, while many others are used in advanced medical equipment. Without these materials, current advances in medicine would never be achieved. Even in the 21st century, we still face the challenge of incurable or intractable diseases such as cancer, as well as the emergence of new infectious diseases. Global action is necessary to deal with these issues. Recent developments in nanoscience and nanotechnology have provided new strategies for material design that are based on the structural control of atoms and molecules. These strategies have revolutionized the field of advanced functional materials. Their combination with the enormous amount of knowledge in molecular and cellular biology accumulated over the last few decades has lead to the conception of new medical technologies. These technologies are represented in cell therapy, drug targeting and regenerative medicine, and are being widely and intensively investigated for realization at an industrial scale. In order to find solutions to remaining issues in life science, it is necessary to accelerate the fusion between nano- and biotechnologies and to promote research and development in these interdisciplinary fields. In this context, National Institute for Materials Science (NIMS)—one of the leading research institutes in the field of materials science—held a series of symposia in the week of 21-24 July 2009, 'NIMS Week 2009' and 'Nanobio-materials and technologies: breakthrough for future medicine', that aimed to present advances in medical fields from the perspective of materials science and technologies. During NIMS Week, various activities were carried out, including perspective reviews and invited lectures by international leading researchers in the 'nanobio' field, in addition to four organized sessions and related

  17. Rapid breakthrough of pesticides via biopres into tile drains and shallow groundwater: a combined experimental and model study

    NASA Astrophysics Data System (ADS)

    Klaus, J.; Zehe, E.; Palm, J.; Schroeder, B.

    2009-04-01

    Preferential flow in macropores is a key process which strongly affects infiltration and may cause rapid transport of pesticides into depths of 80 to 150 cm. At these depths they experience a much slower degradation, may leach into shallow groundwater or enter a tile-drain and are transported in surface water bodies. Therefore, preferential transport is an environ¬mental problem because the topsoil is bypassed, which has been originally thought to act as a filter to protect the subsoil and shallow groundwater. To get a better insight in the process of pesticide transport in agricultural soils an irrigation experiment was performed on a 400 m² field site. The experimental plot is located in the Weiherbach valley, south-west Germany, which basic geology consists of Loess and Keuper layers, the soil at the test site is a gleyic Colluvisol. The distance of the irrigation site to the Weiherbach brook is aprox. 12 m, the field is drained with a tile-drain in about 1.2 m depth and the shows runoff over the entire year. Three hours before the irrigation started the farmer applied a pesticide solution consisting of Isoproturon and Flufenacet according to conventional agricultural practice. The irrigation took place in three time blocks (80 min, 60 min, 80 min) and had a total irrigation rate of 33.6 mm measured with ten precipitation samplers. During the first block a tracer solution of 1600 g Bromide and 2000 g Brilliant Blue was irrigated on the test site. The drainage outlet was instrumented with a pressure probe to measure the water level. About 50 water samples were taken on the day of the experiment from the drainage outlet by hand, and in an eight hour interval for six days with an automatic sample procedure. Discharge at the drainage outlet showed two peaks in response irrigation. The breakthrough of the tracer into the brook is much faster then the reaction of the discharge on the precipitation impulse. To gain insight in the vertical transport behaviour three

  18. Climate change, biotic interactions and ecosystem services.

    PubMed

    Montoya, José M; Raffaelli, Dave

    2010-07-12

    Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change.

  19. Linking plant and ecosystem functional biogeography

    PubMed Central

    Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D.; Kattge, Jens; Baldocchi, Dennis D.

    2014-01-01

    Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere–atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches. PMID:25225392

  20. Exploring the resilience of industrial ecosystems.

    PubMed

    Zhu, Junming; Ruth, Matthias

    2013-06-15

    Industrial ecosystems improve eco-efficiency at the system level through optimizing material and energy flows, which however raises a concern for system resilience because efficiency, as traditionally conceived, not necessarily promotes resilience. By drawing on the concept of resilience in ecological systems and in supply chains, resilience in industrial ecosystems is specified on the basis of a system's ability to maintain eco-efficient material and energy flows under disruptions. Using a network model that captures supply, asset, and organizational dependencies and propagation of disruptions among firms, the resilience, and particularly resistance as an important dimension of resilience, of two real industrial ecosystems and generalized specifications are examined. The results show that an industrial ecosystem is less resistant and less resilient with high inter-firm dependency, preferentially organized physical exchanges, and under disruptions targeted at highly connected firms. An industrial ecosystem with more firms and exchanges is less resistant, but has more eco-efficient flows and potentials, and therefore is less likely to lose its function of eco-efficiency. Taking these determinants for resilience into consideration improves the adaptability of an industrial ecosystem, which helps increase its resilience.

  1. Breakthrough curves of oil adsorption on novel amorphous carbon thin film.

    PubMed

    El-Sayed, M; Ramzi, M; Hosny, R; Fathy, M; Abdel Moghny, Th

    2016-01-01

    A novel amorphous carbon thin film (ACTF) was prepared by hydrolyzing wood sawdust and delignificating the residue to obtain cellulose mass that was subjected to react with cobalt silicate nanoparticle as a catalyst under the influence of sudden concentrated sulfuric acid addition at 23 °C. The novel ACTF was obtained in the form of thin films like graphene sheets having winding surface. The prepared ACTF was characterized by Fourier-transform infrared spectrometer, transmission electron microscope (TEM), and Brunauer-Emmett-Teller (BET). The adsorption capacity of ACTF to remove oil from synthetic produced water was evaluated using the incorporation of Thomas and Yoon-Nelson models. The performance study is described through the breakthrough curves concept under relevant operating conditions such as column bed heights (3.8, 5 and 11 mm) and flow rate (0.5, 1 and 1.5 mL.min(-1)). It was found that the oil uptake mechanism is favoring higher bed height. Also, the highest bed capacity of 700 mg oil/g ACTF was achieved at 5 mm bed height, and 0.5 mL.min(-1) flow rate. The results of breakthrough curve for oil adsorption was best described using the Yoon-Nelson model. Finally, the results illustrate that ACTF could be utilized effectively for oil removal from synthetic produced water in a fixed-bed column system. PMID:27191556

  2. Application of in vivo measurements for the management of cyanobacteria breakthrough into drinking water treatment plants.

    PubMed

    Zamyadi, Arash; Dorner, Sarah; Ndong, Mouhamed; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle

    2014-02-01

    The increasing presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs) has been reported worldwide. The objectives of this study are to validate the application of in vivo probes for the detection and management of cyanobacteria breakthrough inside DWTPs, and to verify the possibility of treatment adjustment based on intensive real-time monitoring. In vivo phycocyanin YSI probes were used to monitor the fate of cyanobacteria in raw water, clarified water, filtered water, and chlorinated water in a full scale DWTP. Simultaneous samples were also taken for microscopic enumeration. The in vivo probe was successfully used to detect the incoming densities of high cyanobacterial cell number into the clarification process and their breakthrough into the filtered water. In vivo probes were used to trace the increase in floating cells over the clarifier, a robust sign of malfunction of the coagulation-sedimentation process. Pre-emptive treatment adjustments, based on in vivo probe monitoring, resulted in successful removal of cyanobacterial cells. The field results on validation of the probes with cyanobacterial bloom samples showed that the probe responses are highly linear and can be used to trigger alerts to take action.

  3. Carbamazepine breakthrough as indicator for specific vulnerability of karst springs: application on the Jeita spring, Lebanon

    NASA Astrophysics Data System (ADS)

    Doummar, J.; Geyer, T.; Noedler, K.; Sauter, M.

    2014-12-01

    The pharmaceutical drug carbamazepine is considered an effective wastewater marker. The varying concentration of this drug was analyzed in a mature karst spring following a precipitation event. The results show that carbamazepine is an indicator of wastewater entering the system through a fast flow pathway, leading to an increase of the drug concentrations in spring water shortly after a strong rainfall event. The analysis of the breakthrough curve of carbamazepine along with the electrical conductivity signal and major ions chemograph allowed the development of a conceptual model for precipitation event-based flow and transport in the investigated karst system. Furthermore the amount of newly recharged water and the mass of carbamazepine reaching the aquifer system during the event could be estimated using a simple mixing approach. The distance between the karst spring and the potential carbamazepine source was estimated by the combination of results from artificial tracer tests and the carbamazepine breakthrough curve. The assessment of spring responses to precipitation event using persistent drugs like carbamazepine helps assess the effect of waste water contamination at a spring and gives therefore insights to the specific vulnerability of a karst spring.

  4. Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column.

    PubMed

    Mthombeni, Nomcebo H; Mpenyana-Monyatsi, Lizzy; Onyango, Maurice S; Momba, Maggie N B

    2012-05-30

    This study demonstrates the use of silver nanoparticles coated resin beads in deactivating microbes in drinking water in a column filtration system. The coated resin beads are characterized using X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) to confirm the functional groups, morphology and the presence of silver nanoparticles on the surface of the resin. The performance of the coated resin is evaluated as a function of bed mass, initial bacterial concentration and flow rate using Escherichia coli as model microbial contaminant in water. The survival curves of E. coli are expressed as breakthrough curves (BTCs), which are modeled using sigmoidal regression equations to obtain relevant rate parameters. The number of bed volumes processed at breakthrough point and capacity of the bed are used as performance indicators. Results show that performance increases with a decrease in initial bacterial concentration, an increase in flow rate and an increase in bed mass.

  5. Sea Ice Ecosystems

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  6. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  7. Catastrophic shifts in ecosystems

    NASA Astrophysics Data System (ADS)

    Scheffer, Marten; Carpenter, Steve; Foley, Jonathan A.; Folke, Carl; Walker, Brian

    2001-10-01

    All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse events can trigger such shifts, recent studies show that a loss of resilience usually paves the way for a switch to an alternative state. This suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.

  8. Antarctic terrestrial ecosystems

    SciTech Connect

    Walton, D.W.H.

    1987-01-01

    The Maritime and Continental Antarctic terrestrial ecosystems are considered in the context of environmental impacts - habitat destruction, alien introductions, and pollution. Four types of pollution are considered: nutrients, radionuclides, inert materials, and noxious chemicals. Their ability to recover from perturbation is discussed in the light of present scientific knowledge, and the methods used to control impacts are reviewed. It is concluded that techniques of waste disposal are still inadequate, adequate training in environmental and conservation principles for Antarctic personnel in many countries is lacking, and scientific investigations may be a much more serious threat than tourism to the integrity of these ecosystems. Some priorities crucial to future management are suggested.

  9. Mercury contamination of aquatic ecosystems

    USGS Publications Warehouse

    Krabbenhoft, David P.; Rickert, David A.

    1995-01-01

    Mercury has been well known as an environmental pollutant for several decades. As early as the 1950's it was established that emissions of mercury to the environment could have serious effects on human health. These early studies demonstrated that fish and other wildlife from various ecosystems commonly attain mercury levels of toxicological concern when directly affected by mercury-containing emissions from human-related activities. Human health concerns arise when fish and wildlife from these ecosystems are consumed by humans. During the past decade, a new trend has emerged with regard to mercury pollution. Investigations initiated in the late 1980's in the northern-tier states of the U.S., Canada, and Nordic countries found that fish, mainly from nutrient-poor lakes and often in very remote areas, commonly have high levels of mercury. More recent fish sampling surveys in other regions of the U.S. have shown widespread mercury contamination in streams, wet-lands, reservoirs, and lakes. To date, 33 states have issued fish consumption advisories because of mercury contamination. These continental to global scale occurrences of mercury contamination cannot be linked to individual emissions of mercury, but instead are due to widespread air pollution. When scientists measure mercury levels in air and surface water, however, the observed levels are extraordinarily low. In fact, scientists have to take extreme precautions to avoid direct contact with water samples or sample containers, to avert sample contamination (Fig 3). Herein lies an apparent discrepancy: Why do fish from some remote areas have elevated mercury concentrations, when contamination levels in the environment are so low?

  10. Adaptive governance, ecosystem management, and natural capital

    PubMed Central

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-01-01

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social–ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives. PMID:26082542

  11. Adaptive governance, ecosystem management, and natural capital.

    PubMed

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-06-16

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social-ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives. PMID:26082542

  12. Adaptive governance, ecosystem management, and natural capital.

    PubMed

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-06-16

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social-ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives.

  13. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, Doug.; Fraser, Roydon F.

    2013-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner- Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his coworkers have documented ecosystem energy budgets, including tropical forests, midlatitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  14. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, Doug; Fraser, Roydon F.

    2013-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner-Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his coworkers have documented ecosystem energy budgets, including tropical forests, midlatitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  15. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    NASA Astrophysics Data System (ADS)

    Luvall, J. C.; Rickman, D.; Fraser, R.

    2013-12-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its exergy content) and can be measured by the effective surface temperature of the ecosystem on a landscape scale. Ecosystems are viewed as open thermodynamic systems with a large gradient impressed on them by the exergy flux from the sun. Ecosystems, according to the restated second law, develop in ways that systematically increases their ability to degrade the incoming solar exergy, hence negating it's ability to set up even larger gradients. Thus it should be expected that more mature ecosystems degrade the exergy they capture more completely than a less developed ecosystem. The degree to which incoming solar exergy is degraded is a function of the surface temperature of the ecosystem. If a group of ecosystems receives the same amount of incoming radiation, we would expect that the most mature ecosystem would reradiate its energy at the lowest quality level and thus would have the lowest surface temperature (coldest black body temperature). Initial development work was done using NASA's airborne Thermal Infrared Multispectral Scanner (TIMS) followed by the use of a multispectral visible and thermal scanner- Airborne Thermal and Land Applications Sensor (ATLAS). Luvall and his co-workers have documented ecosystem energy budgets, including tropical forests, mid-latitude varied ecosystems, and semiarid ecosystems. These data show that under similar environmental conditions (air temperature, relative humidity, winds, and solar

  16. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.

  17. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  18. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  19. TERRESTRIAL ECOSYSTEM SIMULATOR

    EPA Science Inventory

    The Terrestrial Habitats Project at the Western Ecology Division (Corvallis, OR) is developing tools and databases to meet the needs of Program Office clients for assessing risks to wildlife and terrestrial ecosystems. Because habitat is a dynamic condition in real-world environm...

  20. Partitioning ecosystems for sustainability.

    PubMed

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.

  1. Partitioning ecosystems for sustainability.

    PubMed

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems. PMID:27209800

  2. Shelf-sea ecosystems

    SciTech Connect

    Walsh, J J

    1980-01-01

    An analysis of the food chain dynamics of the Oregon, Alaskan, and New York shelves is made with respect to differences in physical forcing of these ecosystems. The world's shelves are 10% of the area of the ocean, yield 99% of the world's fish catch, and may be a major sink in the global CO/sub 2/ budget.

  3. [Urban ecosystem services: A review].

    PubMed

    Mao, Qi-zheng; Huang, Gan-lin; Wu, Jian-guo

    2015-04-01

    Maintaining and improving ecosystem services in urban areas and human well-being are essential for sustainable development and therefore constitute an important topic in urban ecology. Here we reviewed studies on ecosystem services in urban areas. Based on the concept and classification of urban ecosystem services, we summarized characteristics of urban ecosystem services, including the human domination, high demand of ecosystem services in urban areas, spatial heterogeneity and temporal dynamics of ecosystem services supply and demand in urban areas, multi-services of urban green infrastructures, the socio-economic dimension of ecosystem services supply and ecosystem disservices in urban areas. Among different urban ecosystem services, the regulating service and cultural service are particularly indispensable to benefit human health. We pointed out that tradeoffs among different types of ecosystem services mostly occur between supportive service and cultural service, as well as regulating service and cultural service. In particular, we emphasized the relationship between landscape design (i.e. green infrastructure) and ecosystem services supply. Finally, we discussed current gaps to link urban ecosystem services studies to landscape design and management and pointed out several directions for future research in urban ecosystem services.

  4. Vulnerability and resilience of European ecosystems towards extreme climatic events: The ecosystem perspective

    NASA Astrophysics Data System (ADS)

    Thonicke, Kirsten; Rolinski, Susanne; Walz, Ariane; von Bloh, Werner; van Oijen, Marcel; Davin, Edouard; Vieli, Barla; Kato, Tomomichi; Beer, Christian

    2014-05-01

    Extremes of meteorological events may but do not have to cause damages in ecosystems. Climate change is expected to have a strong impact on the resilience and stability of ecosystems worldwide. So far, the impacts of trends and extremes of physical drivers on ecosystems have generally been studied regardless of the extremeness of the ecosystem response. We base our analysis on a Probabilistic Risk Assessment concept of Van Oijen et al. (2013) quantifying the vulnerability of vegetation dynamics in relation to the extremeness of meteorological drivers such as temperature, precipitation or drought indices. Here, the definition of extreme, hazardous weather conditions is based on the ecosystem response. Instead of searching for extreme meteorological events, we define extreme ecosystem responses in terms of threshold levels of carbon uptake, and search for the meteorological conditions which are responsible. Having defined hazardous events in this way, we quantify the vulnerability or resilience of ecosystems to such hazards. We apply this approach on results of different vegetation models (such as LPJmL, Orchidee, JSBACH or CLM4) and the forest model BASFOR using climatic input for Europe from the WATCH-ERAI-REMO climate dataset with the SRES A1B emission scenario. Our results show that under current climatic conditions, the southern part of Europe already suffers severe heat and drought stress which is reflected in our approach by vulnerability values being high for precipitation, relatively high for the SPEI index, moderately high for temperature and quite high for the consecutive dry days. Thus, hazard occurrence is frequent enough to determine ecosystem vulnerability but this depends on the definition of the threshold of hazardous ecosystem responses. Vulnerability values in the Mediterranean increase towards the end of the 21st century for all models indicating that a tipping point towards drought damages has been reached for the chosen climate scenario.

  5. Hydroxyurea and didanosine long-term treatment prevents HIV breakthrough and normalizes immune parameters.

    PubMed

    Lori, F; Rosenberg, E; Lieberman, J; Foli, A; Maserati, R; Seminari, E; Alberici, F; Walker, B; Lisziewicz, J

    1999-10-10

    Hydroxyurea and didanosine treatment suppressed HIV replication for more than 2 years, in the absence of viral breakthrough, in chronically infected patients. The profile of viral load reduction was unusual for a two-drug combination, since a continuous gradual decrease in viremia persisted despite residual viral replication. The increase in CD4+ T cell counts was not robust. However, unlike those of patients treated by other therapies, CD4+ T lymphocytes were functionally competent against HIV, mediating a vigorous HIV-specific helper T cell response in half of these patients. In addition, the percentages of naive CD4+ and CD8+ T lymphocytes were not different from those in uninfected individuals. These results demonstrate that prolonged antiretroviral therapy with a simple, well-tolerated combination of two affordable drugs can lead to sustained control of HIV, normalization of immune parameters, and specific anti-HIV immune response.

  6. Solar Spicules: Prospects for Breakthroughs in Understanding with Solar-B

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.

    2004-01-01

    Spicules densely populate the lower solar atmosphere; any image or movie of the chromosphere shows a plethora of them or their "cousins," such as mottles or fibrils. Yet despite several decades of effort we still do not know the mechanism that generates them, or how important their contribution is to the material and energy balance of the overall solar atmosphere. Solar-B will provide exciting new chromospheric observations at high time- and spatial-resolution, along with associated quality magnetic field data, that promise to open doors to revolutionary breakthroughs in spicule research. In this presentation we will review the current observational and theoretical status of spicule studies, and discuss prospects for advances in spicule understanding during the Solar-B era.

  7. Scientific breakthroughs necessary for the commercial success of renewable energy (Invited)

    NASA Astrophysics Data System (ADS)

    Sharp, J.

    2010-12-01

    In recent years the wind energy industry has grown at an unprecedented rate, and in certain regions has attained significant penetration into the power infrastructure. This growth has been both a result of, and a precursor to, significant advances in the science and business of wind energy. But as a result of this growth and increasing penetration, further advances and breakthroughs will become increasingly important. These advances will be required in a number of different aspects of wind energy, including: resource assessment, operations and performance analysis, forecasting, and the impacts of increased wind energy development. Resource assessment has benefited from the development of tools specifically designed for this purpose. Despite this, the atmosphere is often portrayed in an extremely simplified manner by these tools. New methodologies should rely upon more sophisticated application of the physics of fluid flows. There will need to be an increasing reliance and acceptance of improved measurement techniques (remote sensing, volume rather than point measurements, etc), and more sophisticated and higher-resolution numerical methods for micrositing. The goals of resource assessment will have to include a better understanding of the variability and forecastability of potential sites. Operational and performance analysis are vital to quantifying how well all aspects of the business are being carried out. Operational wind farms generate large amounts of meteorological and mechanical data. Data mining and detailed analysis of this data has proven to be invaluable to shed light upon poorly understood aspects of the science and industry. Future analysis will need to be even more rigorous and creative. Worthy topics of study include the impact of turbine wakes upon downstream turbine performance, how to utilize operational data to improve resource assessment and forecasting, and what the impacts of large-scale wind energy development might be. Forecasting is an

  8. Breakthroughs in US dermal fillers for facial soft-tissue augmentation.

    PubMed

    Goldberg, David J

    2009-12-01

    Over the last 20 years, developments in injectable dermal fillers have led to a revolution in facial soft-tissue augmentation. The demand for dermal fillers for facial soft-tissue augmentation procedures has increased due in part to the less invasive nature of these products compared with surgical procedures. Available options in the United States have expanded from autologous tissues and animal-derived collagens to bacterially fermented biopolymers and synthetic implants. Beyond their physical composition, currently available products are further differentiated by their recommended depth of injection, suitability for different facial areas, and duration of aesthetic improvement. While older dermal fillers rely on the integrity of the injected material to achieve their clinical effects, some newer products are postulated to act by stimulating the patient's own biological and cellular processes. This article examines breakthroughs in facial soft-tissue augmentation that have expanded the palette of options available to physicians.

  9. Supply chain optimization: a practitioner's perspective on the next logistics breakthrough.

    PubMed

    Schlegel, G L

    2000-08-01

    The objective of this paper is to profile a practitioner's perspective on supply chain optimization and highlight the critical elements of this potential new logistics breakthrough idea. The introduction will briefly describe the existing distribution network, and business environment. This will include operational statistics, manufacturing software, and hardware configurations. The first segment will cover the critical success factors or foundations elements that are prerequisites for success. The second segment will give you a glimpse of a "working game plan" for successful migration to supply chain optimization. The final segment will briefly profile "bottom-line" benefits to be derived from the use of supply chain optimization as a strategy, tactical tool, and competitive advantage. PMID:11183380

  10. Breakthrough in cardiac arrest: reports from the 4th Paris International Conference.

    PubMed

    Kudenchuk, Peter J; Sandroni, Claudio; Drinhaus, Hendrik R; Böttiger, Bernd W; Cariou, Alain; Sunde, Kjetil; Dworschak, Martin; Taccone, Fabio Silvio; Deye, Nicolas; Friberg, Hans; Laureys, Steven; Ledoux, Didier; Oddo, Mauro; Legriel, Stéphane; Hantson, Philippe; Diehl, Jean-Luc; Laterre, Pierre-Francois

    2015-12-01

    Jean-Luc Diehl The French Intensive Care Society organized on 5th and 6th June 2014 its 4th "Paris International Conference in Intensive Care", whose principle is to bring together the best international experts on a hot topic in critical care medicine. The 2014 theme was "Breakthrough in cardiac arrest", with many high-quality updates on epidemiology, public health data, pre-hospital and in-ICU cares. The present review includes short summaries of the major presentations, classified into six main chapters: Epidemiology of CA Pre-hospital management Post-resuscitation management: targeted temperature management Post-resuscitation management: optimizing organ perfusion and metabolic parameters Neurological assessment of brain damages Public healthcare. PMID:26380990

  11. Breakthrough in Xenon Capture and Purification Using Adsorbent-Supported Silver Nanoparticles.

    PubMed

    Deliere, Ludovic; Coasne, Benoit; Topin, Sylvain; Gréau, Claire; Moulin, Christophe; Farrusseng, David

    2016-07-01

    Rare gas capture and purification is a major challenge for energy, environment, and health applications. Of utmost importance for the nuclear industry, novel separation processes for Xe are urgently needed for spent nuclear fuel reprocessing and nuclear activity monitoring. The recovered, non-radioactive Xe is also of high economic value for lighting, surgical anesthetic, etc. Here, using adsorption and breakthrough experiments and statistical mechanics molecular simulation, we show the outstanding performance of zeolite-supported silver nanoparticles to capture/separate Xe at low concentrations (0.087-100 ppm). We also establish the efficiency of temperature swing adsorption based on such adsorbents for Xe separation from Kr/Xe mixtures and air streams corresponding to off-gases generated by nuclear reprocessing. This study paves the way for the development of novel, cost-efficient technologies relying on the large selectivity/capacity of adsorbent-supported silver nanoparticles which surpass all materials ever tested. PMID:27249317

  12. Breakthroughs in Cell Therapy for Heart Disease: Focus on Cardiosphere-Derived Cells

    PubMed Central

    Marbán, Eduardo

    2014-01-01

    The clinical reality of cell therapy for heart disease dates back to the 1990s, when autologous skeletal myoblasts were first transplanted into failing hearts during open-chest surgery. Since then, the focus has shifted to bone marrow-derived cells and, more recently, cells extracted from the heart itself. While progress has been nonlinear and often disheartening, the field has nevertheless made remarkable progress. Six major breakthroughs are notable: 1) The establishment of safety with intracoronary delivery; 2) The demonstration that therapeutic regeneration is possible; 3) The rise of allogeneic cell therapy; 4) The impact of increasing mechanistic insights; 5) Glimmers of clinical efficacy; and 6) The progression to phase 2&3 studies. Here I review these landmark developments individually in some detail. Collectively, I conclude that the field has reached a new phase of maturity where the prospect of clinical impact is increasingly imminent. PMID:24943699

  13. Breakthrough: X-ray Laser Captures Atoms and Molecules in Action

    ScienceCinema

    Bergmann, Uwe

    2016-07-12

    The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser. Just two years after turning on in 2009, breakthrough science is emerging from the LCLS at a rapid pace. A recent experiment used the X-rays to create and probe a 2-million-degree piece of matter in a controlled way for the first time-a significant leap toward understanding the extreme conditions found in the hearts of stars and giant planets, and a finding which could further guide research into nuclear fusion, the mechanism that powers the sun. Upcoming experiments will investigate the fundamental, atomic-scale processes behind such phenomena as superconductivity and magnetism, as well as peering into the molecular workings of photosynthesis in plants.

  14. Ecosystem Restoration Research at GWERD

    EPA Science Inventory

    Ground Water and Ecosystems Restoration Division, Ada, OK Mission: Conduct research and technical assistance to provide the scientific basis to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted b...

  15. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates.

    PubMed

    Anumol, Tarun; Sgroi, Massimiliano; Park, Minkyu; Roccaro, Paolo; Snyder, Shane A

    2015-06-01

    This study investigated the applicability of bulk organic parameters like dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), and total fluorescence (TF) to act as surrogates in predicting trace organic compound (TOrC) removal by granular activated carbon in water reuse applications. Using rapid small-scale column testing, empirical linear correlations for thirteen TOrCs were determined with DOC, UV254, and TF in four wastewater effluents. Linear correlations (R(2) > 0.7) were obtained for eight TOrCs in each water quality in the UV254 model, while ten TOrCs had R(2) > 0.7 in the TF model. Conversely, DOC was shown to be a poor surrogate for TOrC breakthrough prediction. When the data from all four water qualities was combined, good linear correlations were still obtained with TF having higher R(2) than UV254 especially for TOrCs with log Dow>1. Excellent linear relationship (R(2) > 0.9) between log Dow and the removal of TOrC at 0% surrogate removal (y-intercept) were obtained for the five neutral TOrCs tested in this study. Positively charged TOrCs had enhanced removals due to electrostatic interactions with negatively charged GAC that caused them to deviate from removals that would be expected with their log Dow. Application of the empirical linear correlation models to full-scale samples provided good results for six of seven TOrCs (except meprobamate) tested when comparing predicted TOrC removal by UV254 and TF with actual removals for GAC in all the five samples tested. Surrogate predictions using UV254 and TF provide valuable tools for rapid or on-line monitoring of GAC performance and can result in cost savings by extended GAC run times as compared to using DOC breakthrough to trigger regeneration or replacement.

  16. Investigating Ecosystems in a Biobottle

    ERIC Educational Resources Information Center

    Breene, Arnica; Gilewski, Donna

    2008-01-01

    Biobottles are miniature ecosystems made from 2-liter plastic soda bottles. They allow students to explore how organisms in an ecosystem are connected to each other, examine how biotic and abiotic factors influence plant and animal growth and development, and discover how important biodiversity is to an ecosystem. This activity was inspired by an…

  17. Ecosystems in the Learning Environment

    ERIC Educational Resources Information Center

    Louviere, Gregory

    2011-01-01

    Habitats, ecology and evolution are a few of the many metaphors commonly associated with the domain of biological ecosystems. Surprisingly, these and other similar biological metaphors are proving to be equally associated with a phenomenon known as digital ecosystems. Digital ecosystems make a direct connection between biological properties and…

  18. Biogeochemical processes underpin ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  19. Marine ecosystem responses to Cenozoic global change.

    PubMed

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-01

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.

  20. Ecosystem trends in the Colorado Rockies

    USGS Publications Warehouse

    Stohlgren, T. J.; Baron, J. S.; Kittel, T. G. F.; Binkley, D.

    1995-01-01

    Biological conservation is increasingly moving toward an ecosystem and landscape approach, recognizing the prohibitive cost and difficulty of a species-by-species approach (LaRoe 1993). Also, statewide (e.g., Gap Analysis Program) and national surveys (e.g., Environmental Monitoring and Assessment Program or EMAP) are conducted at a scale and level of resolution that do not meet the needs of most small land-management units that require detailed information at the ecosystem and landscape scale (Stohlgren 1994). The Colorado Rockies are an ideal outdoor laboratory for ecosystem science and management. The escalating environmental threats described in this article compelled us to design a landscape-scale assessment of the status and trends of biotic resources.

  1. Invasive aquarium fish transform ecosystem nutrient dynamics.

    PubMed

    Capps, Krista A; Flecker, Alexander S

    2013-10-22

    Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems.

  2. Invasive aquarium fish transform ecosystem nutrient dynamics

    PubMed Central

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642

  3. Continental Margins: Linking Ecosystems

    NASA Astrophysics Data System (ADS)

    Kelly-Gerreyn, Boris; Rabalais, Nancy; Middelburg, Jack; Roy, Sylvie; Liu, Kon-Kee; Thomas, Helmuth; Zhang, Jing

    2008-02-01

    Impacts of Global, Local and Human Forcings on Biogeochemical Cycles and Ecosystems, IMBER/LOICZ Continental Margins Open Science Conference; Shanghai, China, 17-21 September 2007; More than 100 scientists from 25 countries came together to address global, regional, local, and human pressures interactively affecting continental margin biogeochemical cycles, marine food webs, and society. Continental margins cover only 12% of the global ocean area yet account for more than 30% of global oceanic primary production. In addition, continental margins are the most intensely used regions of the world's ocean for natural commodities, including productive fisheries and mineral and petroleum resources. The land adjacent to continental margins hosts about 50% of the world's population, which will bear many direct impacts of global change on coastal margins. Understanding both natural and human-influenced alterations of biogeochemical cycles and ecosystems on continental margins and the processes (including feedbacks) that threaten sustainability of these systems is therefore of global interest.

  4. Louisiana coastal ecosystem

    USGS Publications Warehouse

    ,

    2000-01-01

    Louisiana's coast and its degradation and restoration are major environmental issues being studied at the National Wetlands Research Center. Coastal ecosystems are vulnerable because of the tremendous amount of human activity that takes place along the coast. Information on ecological processes is essential to guide the development along the coast as well as to protect and restore wildlife habitat.Louisiana has about 40% of coastal wetlands in the lower 48 states; they support fish, waterfowl, and fur-bearing animals as well as unique cultures like that of the Acadians. The fish and wildlife resources of Louisiana's coast produce over $1 billion each year in revenues.But Louisiana has the highest coastal loss rate because of natural and human causes. Over the past three decades, Louisiana has lost as much as 35-40 mi2 (90-104 km2) of coastal wetlands a year.The National Wetlands Research Center is qualified to assess and monitor this ecosystem because of its proximity to the study area, a staff chosen for their expertise in the system, and a number of established partnerships with others who study the areas. The Center is often the lead group in partnerships with universities, other federal agencies, and private entities who study this ecosystem.Most of the Center's research and technology development performed for coastal wetlands are done at the Lafayette headquarters; some work is performed at the National Wetlands Research Center's project office in Baton Rouge, LA.

  5. Sagebrush Ecosystems Under Fire

    SciTech Connect

    Downs, Janelle L.

    2014-12-30

    Since settlement of the western United States began, sagebrush (Artemisia L. spp.) ecosystems have decreased both in quantity and quality. Originally encompassing up to 150 million acres in the West, the “interminable fields” of sage described by early explorers (Fremont 1845) have been degraded and often eliminated by conversion to agriculture, urbanization, livestock grazing, invasion by alien plants, and alteration of wildfire cycles (Hann et al. 1997; West 1999). More than half of the original sagebrush steppe ecosystems in Washington have been converted to agriculture and many of the remaining stands of sagebrush are degraded by invasion of exotic annuals such as cheatgrass (Bromus tectorum L.). Today, sagebrush ecosystems are considered to be one of the most imperiled in the United States (Noss, LeRoe and Scott 1995), and more than 350 sagebrush-associated plants and animals have been identified as species of conservation concern (Suring et al. 2005; Wisdom et al. 2005). The increasing frequency of wildfire in sagebrush-dominated landscapes is one of the greatest threats to these habitats and also presents one of the most difficult to control.

  6. Global change impacts on mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  7. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  8. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events. PMID:26466564

  9. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    PubMed

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering.

  10. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    PubMed

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering. PMID:25731586

  11. [Research advances in ecosystem flux].

    PubMed

    Zhang, Xudong; Peng, Zhenhua; Qi, Lianghua; Zhou, Jinxing

    2005-10-01

    To develop the long-term localized observation and investigation on ecosystem flux is of great importance. On the basis of generalizing the concepts and connotations of ecosystem flux, this paper introduced the construction and development histories of Global Flux Networks, Regional Flux Networks (Ameri-Flux, Euro-Flux and Asia-Flux) and China-Flux, as well as the main methodologies, including micrometeorological methods (such as eddy correlation method, mass balance method, energy balance method and air dynamic method)and chamber methods (static and dynamic chamber methods), and their basic operation principles. The research achievements, approaches and advances of CO2, N2O, CH4, and heat fluxes in forest ecosystem, farmland ecosystem, grassland ecosystem and water ecosystem were also summarized. In accordance with the realities and necessities of ecosystem flux research in China, some suggestions and prospects were put forward.

  12. Integrating water and carbon fluxes at the ecosystem scale across African ecosystems

    NASA Astrophysics Data System (ADS)

    Merbold, Lutz; Brümmer, Christian; Archibald, Sally; Ardö, Jonas; Arneth, Almut; Brüggemann, Nicolas; de Grandcourt, Agnes; Kergoat, Laurent; Moffat, Antje M.; Mougin, Eric; Nouvellon, Yann; Saint-Andre, Laurent; Saunders, Matthew; Scholes, Robert J.; Veenendaal, Elmar; Kutsch, Werner L.

    2013-04-01

    In this study we report on water and carbon dioxide fluxes, measured using the eddy covariance (EC) technology, from different ecosystems in Sub-Saharan Africa. These sites differed in ecosystem type (C3 plant dominated woodlands to C4 plant dominated grass savannas) and covered the very dry regions of the Sahel (250 mm rainfall, Sudan), the tropical areas in Central Africa (1650 mm in Uganda) further south to the subtropical areas in Botswana, Zambia and South Africa (400-900 mm in precipitation). The link between water and carbon dioxide fluxes were evaluated for time periods (see also the corresponding abstract by Bruemmer et al.) without water limitation during the peak growing season. Our results show that plant stomata control ecosystem scale water and carbon dioxide fluxes and mediate between plant growth and plant survival. On continental scale, this switch between maximizing carbon uptake and minimizing water losses, from here on called the "Carbon-Water-Tipping Point" was positively correlated to the mean annual growing season temperature at each site. Even though similar responses of plants were shown at the individual leaf-level scale this has to our knowledge not yet been shown at the ecosystem scale further suggesting a long-term adaptation of the complete ecosystems to certain climatic regions. It remains unclear how this adaption will influence the ecosystem response to ongoing climate change and according temperature increases and changes in precipitation.

  13. Emodiversity and the emotional ecosystem.

    PubMed

    Quoidbach, Jordi; Gruber, June; Mikolajczak, Moïra; Kogan, Alexsandr; Kotsou, Ilios; Norton, Michael I

    2014-12-01

    [Correction Notice: An Erratum for this article was reported in Vol 143(6) of Journal of Experimental Psychology: General (see record 2014-49316-001). There is a color coding error in Figure 2. The correct color coding is explained in the erratum.] Bridging psychological research exploring emotional complexity and research in the natural sciences on the measurement of biodiversity, we introduce--and demonstrate the benefits of--emodiversity: the variety and relative abundance of the emotions that humans experience. Two cross-sectional studies across more than 37,000 respondents demonstrate that emodiversity is an independent predictor of mental and physical health--such as decreased depression and doctor's visits--over and above mean levels of positive and negative emotion. These results remained robust after controlling for gender, age, and the 5 main dimensions of personality. Emodiversity is a practically important and previously unidentified metric for assessing the health of the human emotional ecosystem. PMID:25285428

  14. Obscuring ecosystem function with application of the ecosystem services concept.

    PubMed

    Peterson, Markus J; Hall, Damon M; Feldpausch-Parker, Andrea M; Peterson, Tarla Rai

    2010-02-01

    Conservationists commonly have framed ecological concerns in economic terms to garner political support for conservation and to increase public interest in preserving global biodiversity. Beginning in the early 1980s, conservation biologists adapted neoliberal economics to reframe ecosystem functions and related biodiversity as ecosystem services to humanity. Despite the economic success of programs such as the Catskill/Delaware watershed management plan in the United States and the creation of global carbon exchanges, today's marketplace often fails to adequately protect biodiversity. We used a Marxist critique to explain one reason for this failure and to suggest a possible, if partial, response. Reframing ecosystem functions as economic services does not address the political problem of commodification. Just as it obscures the labor of human workers, commodification obscures the importance of the biota (ecosystem workers) and related abiotic factors that contribute to ecosystem functions. This erasure of work done by ecosystems impedes public understanding of biodiversity. Odum and Odum's radical suggestion to use the language of ecosystems (i.e., emergy or energy memory) to describe economies, rather than using the language of economics (i.e., services) to describe ecosystems, reverses this erasure of the ecosystem worker. Considering the current dominance of economic forces, however, implementing such solutions would require social changes similar in magnitude to those that occurred during the 1960s. Niklas Luhmann argues that such substantive, yet rapid, social change requires synergy among multiple societal function systems (i.e., economy, education, law, politics, religion, science), rather than reliance on a single social sphere, such as the economy. Explicitly presenting ecosystem services as discreet and incomplete aspects of ecosystem functions not only allows potential economic and environmental benefits associated with ecosystem services, but also

  15. Geopolitics of Quantum Buddhism: Our Pre-Hydrocarbon Tao Future (No Breakthrough at the Rio+20 Summit)

    ERIC Educational Resources Information Center

    Bajrektarevic, Anis

    2013-01-01

    From Rio to Rio with Kyoto, Copenhagen and Durban in between, the conclusion remains the same: we fundamentally disagree on realities of this planet and the ways we can address them. A decisive breakthrough would necessitate both wider contexts and a larger participatory base so as to identify problems, formulate policies, and broaden and…

  16. Emerging Strategies for Reducing Racial Disproportionality and Disparate Outcomes in Child Welfare: The Results of a National Breakthrough Series Collaborative

    ERIC Educational Resources Information Center

    Miller, Oronde A.; Ward, Kristin J.

    2008-01-01

    Racial disproportionality in child welfare has been discussed as a seemingly intractable challenge with complex contributing factors. Some argue that these dynamics are far too difficult to be significantly impacted by public child welfare systems alone. The Breakthrough Series Collaborative (BSC) methodology, incorporating an analysis of…

  17. Language Deficit in English and Lack of Creative Education as Impediments to Nigeria's Breakthrough into the Knowledge Era

    ERIC Educational Resources Information Center

    Mowarin, Macaulay; Tonukari, Emmanuel Ufuoma

    2010-01-01

    This essay discusses the linguistic and cultural factors that have acted as impediments to Nigeria's breakthrough into the knowledge era. It identifies language deficit in English by most Nigerians, under-developed state of most Nigerian languages, absence of creative education and the presence of certain cultural taboos which stifles the…

  18. Failure of a Single Varicella Vaccination to Protect Children With Cancer From Life-Threatening Breakthrough Varicella

    PubMed Central

    Kelley, James; Tristram, Debra; Yamada, Masaki

    2015-01-01

    We report 2 children with life-threatening breakthrough varicella. Both had received 1 varicella vaccination before onset of cancer. Despite treatment with intravenous acyclovir, 1 child died of disseminated varicella. Because similar fatal cases have been reported, high-risk immunocompromised children with 1 varicella vaccination may warrant the same varicella prophylaxis as immunocompromised children who have never been vaccinated. PMID:25955833

  19. Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management

    NASA Astrophysics Data System (ADS)

    Müller, Felix; Burkhard, Benjamin; Kroll, Franziska

    In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the "adaptive cycle". Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.

  20. Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management

    NASA Astrophysics Data System (ADS)

    Müller, Felix; Burkhard, Benjamin; Kroll, Franziska

    In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the “adaptive cycle”. Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.

  1. [Management of large marine ecosystem based on ecosystem approach].

    PubMed

    Chu, Jian-song

    2011-09-01

    Large marine ecosystem (LME) is a large area of ocean characterized by distinct oceanology and ecology. Its natural characteristics require management based on ecosystem approach. A series of international treaties and regulations definitely or indirectly support that it should adopt ecosystem approach to manage LME to achieve the sustainable utilization of marine resources. In practices, some countries such as Canada, Australia, and U.S.A. have adopted ecosystem-based approach to manage their oceans, and some international organizations such as global environment fund committee have carried out a number of LME programs based on ecosystem approach. Aiming at the sustainable development of their fisheries, the regional organizations such as Caribbean Community have established regional fisheries mechanism. However, the adoption of ecosystem approach to manage LME is not only a scientific and legal issue, but also a political matter largely depending on the political will and the mutual cooperation degree of related countries.

  2. Columbia River Estuary Ecosystem Classification — Concept and application

    USGS Publications Warehouse

    Simenstad, Charles A.; Burke, Jennifer L.; O'Connor, Jim E.; Cannon, Charles; Heatwole, Danelle W.; Ramirez, Mary F.; Waite, Ian R.; Counihan, Timothy D.; Jones, Krista L.

    2011-01-01

    This document describes the concept, organization, and application of a hierarchical ecosystem classification that integrates saline and tidal freshwater reaches of estuaries in order to characterize the ecosystems of large flood plain rivers that are strongly influenced by riverine and estuarine hydrology. We illustrate the classification by applying it to the Columbia River estuary (Oregon-Washington, USA), a system that extends about 233 river kilometers (rkm) inland from the Pacific Ocean. More than three-quarters of this length is tidal freshwater. The Columbia River Estuary Ecosystem Classification ("Classification") is based on six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. We define and map Levels 1-3 for the entire Columbia River estuary with existing geospatial datasets, and provide examples of Levels 4-6 for one hydrogeomorphic reach. In particular, three levels of the Classification capture the scales and categories of ecosystem structure and processes that are most tractable to estuarine research, monitoring, and management. These three levels are the (1) eight hydrogeomorphic reaches that embody the formative geologic and tectonic processes that created the existing estuarine landscape and encompass the influence of the resulting physiography on interactions between fluvial and tidal hydrology and geomorphology across 230 kilometers (km) of estuary, (2) more than 15 ecosystem complexes composed of broad landforms created predominantly by geologic processes during the Holocene, and (3) more than 25 geomorphic catenae embedded within ecosystem complexes that represent distinct geomorphic landforms, structures, ecosystems, and habitats, and components of the estuarine landscape most likely to change over short time periods.

  3. Monitoring and modeling human interactions with ecosystems

    NASA Astrophysics Data System (ADS)

    Milesi, Cristina

    With rapidly increasing consumption rates and global population, there is a growing interest in understanding how to balance human activities with the other components of the Earth system. Humans alter ecosystem functioning with land cover changes, greenhouse gas emissions and overexploitation of natural resources. On the other side, climate and its inherent interannual variability drive global Net Primary Productivity (NPP), the base of energy for all trophic levels, shaping humans' distribution on the land surface and their sensitivity to natural and accelerated patterns of variation in ecosystem processes. In this thesis, I analyzed anthropogenic influences on ecosystems and ecosystems impacts on humans through a multi-scale approach. Anthropogenic influences were analyzed with a special focus on urban ecosystems, the living environment of nearly half of the global population and almost 90% of the population in the industrialized countries. A poorly quantified aspect of urban ecosystems is the biogeochemistry of urban vegetation, intensively managed through fertilization and irrigation. In chapter 1, adapting the ecosystem model Biome-BGC, I simulated the growth of turf grasses across the United States, and estimated their potential impact on the continental water and carbon budget. Using a remote sensing-based approach, I also developed a methodology to estimate the impact of land cover changes due to urbanization on the regional photosynthetic capacity (chapter 2), finding that low-density urbanization can retain high levels of net primary productivity, although at the expense of inefficient sprawl. One of the feedbacks of urbanization is the urban heat island effect, which I analyzed in conjunction with a remote sensing based estimate of fractional impervious surface area, showing how this is related to increases in land surface temperatures, independently from geographic location and population density (chapter 3). Finally, in chapter 4, I described the

  4. Linking biodiversity to ecosystem function: Implications for conservation ecology

    USGS Publications Warehouse

    Schwartz, M.W.; Brigham, C.A.; Hoeksema, J.D.; Lyons, K.G.; Mills, M.H.; van Mantgem, P.

    2000-01-01

    We evaluate the empirical and theoretical support for the hypothesis that a large proportion of native species richness is required to maximize ecosystem stability and sustain function. This assessment is important for conservation strategies because sustenance of ecosystem functions has been used as an argument for the conservation of species. If ecosystem functions are sustained at relatively low species richness, then arguing for the conservation of ecosystem function, no matter how important in its own right, does not strongly argue for the conservation of species. Additionally, for this to be a strong conservation argument the link between species diversity and ecosystem functions of value to the human community must be clear. We review the empirical literature to quantify the support for two hypotheses: (1) species richness is positively correlated with ecosystem function, and (2) ecosystem functions do not saturate at low species richness relative to the observed or experimental diversity. Few empirical studies demonstrate improved function at high levels of species richness. Second, we analyze recent theoretical models in order to estimate the level of species richness required to maintain ecosystem function. Again we find that, within a single trophic level, most mathematical models predict saturation of ecosystem function at a low proportion of local species richness. We also analyze a theoretical model linking species number to ecosystem stability. This model predicts that species richness beyond the first few species does not typically increase ecosystem stability. One reason that high species richness may not contribute significantly to function or stability is that most communities are characterized by strong dominance such that a few species provide the vast majority of the community biomass. Rapid turnover of species may rescue the concept that diversity leads to maximum function and stability. The role of turnover in ecosystem function and

  5. Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5.

    PubMed

    Sabouni, Rana; Kazemian, Hossein; Rohani, Sohrab

    2013-08-20

    It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and different methods have been reported for CO2 capturing including adsorption onto zeolites and porous membranes, as well as absorption in amine solutions. All such methods require high energy input and high cost. A new class of porous materials called Metal Organic Frameworks (MOFs) exhibited excellent performance in extracting carbon dioxide from a gas mixture. In this study, the breakthrough curves for the adsorption of carbon dioxide on CPM-5 (crystalline porous materials) were obtained experimentally and theoretically using a laboratory-scale fixed-bed column at different experimental conditions such as feed flow rate, adsorption temperature, and feed concentration. It was found that the CPM-5 has a dynamic CO2 adsorption capacity of 11.9 wt % (2.7 mmol/g) (corresponding to 8 mL/min, 298 K, and 25% v/v CO2). The tested CPM-5 showed an outstanding adsorption equilibrium capacity (e.g., 2.3 mmol/g (10.2 wt %) at 298 K) compared to other adsorbents, which can be considered as an attractive adsorbent for separation of CO2 from flue gas.

  6. EGOLOGY: psychological spatial breakthrough for social redirection--multidisciplinary spatial focus for individuals/humankind

    NASA Astrophysics Data System (ADS)

    Thompson, Robert A.

    1991-08-01

    Every age is marked by its physical tools. But today''s Space Age is unique because it is the spatial vantage itself which becomes a tool. It is a mental breakthrough, permitting us to contrast our outward-looking dreams with an inward-focused reality that can psychologically redirect the future for humankind. As the spatial perspective moves our eye from the surface of the earth to a remote point above its surface, our earth-based myopia disappears. We see all former parameters simultaneously, far out as well as close up. Physical differences are minimized, only natural demarcations remain, while similarities and interconnections abound. With the evolution of the Space Age this new awareness stimulated first the ecological movement, raising public consciousness about the physical environment, and then socially about human rights worldwide. From this intellectual quantum jump we realized that planetary interconnections permeated earth''s biosphere and on into the physical-chemical core. Like the ecological shell that identified ecology as the dynamic balance of all organisms interacting with their thermodynamic energy environment, a new outer shell, an egological one, or egoshell, is now needed to deal with multidisciplinary informational dynamics socially (acquisition for educational dissemination and perceptual workplace use). Individuals within their total spatial environment--the conceptual energy/human resource balance identified as EGOLOGY--would then be able to network society, inspiring mental fitness for an individual enlightenment to occur.

  7. Engineering excellence in breakthrough biomedical technologies: bioengineering at the University of California, Riverside.

    PubMed

    Schultz, Jane S; Rodgers, V G J

    2012-07-01

    The Department of Bioengineering at the University of California, Riverside (UCR), was established in 2006 and is the youngest department in the Bourns College of Engineering. It is an interdisciplinary research engine that builds strength from highly recognized experts in biochemistry, biophysics, biology, and engineering, focusing on common critical themes. The range of faculty research interests is notable for its diversity, from the basic cell biology through cell function to the physiology of the whole organism, each directed at breakthroughs in biomedical devices for measurement and therapy. The department forges future leaders in bioengineering, mirroring the field in being energetic, interdisciplinary, and fast moving at the frontiers of biomedical discoveries. Our educational programs combine a solid foundation in bio logical sciences and engineering, diverse communication skills, and training in the most advanced quantitative bioengineering research. Bioengineering at UCR also includes the Bioengineering Interdepartmental Graduate (BIG) program. With its slogan Start-Grow-Be-BIG, it is already recognized for its many accomplishments, including being third in the nation in 2011 for bioengineering students receiving National Science Foundation graduate research fellowships as well as being one of the most ethnically inclusive programs in the nation.

  8. Tracking tracer breakthrough in the hyporheic zone using time‐lapse DC resistivity, Crabby Creek, Pennsylvania

    USGS Publications Warehouse

    Nyquist, Jonathan E.; Toran, Laura; Fang, Allison C.; Ryan, Robert J.; Rosenberry, Donald O.

    2010-01-01

    Characterization of the hyporheic zone is of critical importance for understanding stream ecology, contaminant transport, and groundwater‐surface water interaction. A salt water tracer test was used to probe the hyporheic zone of a recently re‐engineered portion of Crabby Creek, a stream located near Philadelphia, PA. The tracer solution was tracked through a 13.5 meter segment of the stream using both a network of 25 wells sampled every 5–15 minutes and time‐lapse electrical resistivity tomographs collected every 11 minutes for six hours, with additional tomographs collected every 100 minutes for an additional 16 hours. The comparison of tracer monitoring methods is of keen interest because tracer tests are one of the few techniques available for characterizing this dynamic zone, and logistically it is far easier to collect resistivity tomographs than to install and monitor a dense network of wells. Our results show that resistivity monitoring captured the essential shape of the breakthrough curve and may indicate portions of the stream where the tracer lingered in the hyporheic zone. Time‐lapse resistivity measurements, however, represent time averages over the period required to collect a tomographic data set, and spatial averages over a volume larger than captured by a well sample. Smoothing by the resistivity data inversion algorithm further blurs the resulting tomograph; consequently resistivity monitoring underestimates the degree of fine‐scale heterogeneity in the hyporheic zone.

  9. An automatic locally-adaptive method to estimate heavily-tailed breakthrough curves from particle distributions

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Fernàndez-Garcia, Daniel

    2013-09-01

    Particle tracking methods to simulate solute transport deal with the issue of having to reconstruct smooth concentrations from a limited number of particles. This is an error-prone process that typically leads to large fluctuations in the determined late-time behavior of breakthrough curves (BTCs). Kernel density estimators (KDE) can be used to automatically reconstruct smooth BTCs from a small number of particles. The kernel approach incorporates the uncertainty associated with subsampling a large population by equipping each particle with a probability density function. Two broad classes of KDE methods can be distinguished depending on the parametrization of this function: global and adaptive methods. This paper shows that each method is likely to estimate a specific portion of the BTCs. Although global methods offer a valid approach to estimate early-time behavior and peak of BTCs, they exhibit important fluctuations at the tails where fewer particles exist. In contrast, locally adaptive methods improve tail estimation while oversmoothing both early-time and peak concentrations. Therefore a new method is proposed combining the strength of both KDE approaches. The proposed approach is universal and only needs one parameter (α) which slightly depends on the shape of the BTCs. Results show that, for the tested cases, heavily-tailed BTCs are properly reconstructed with α ≈ 0.5 .

  10. Assessment of transient storage exchange and advection-dispersion mechanisms from concentration signatures along breakthrough curves

    NASA Astrophysics Data System (ADS)

    Zaramella, M.; Marion, A.; Lewandowski, J.; Nützmann, G.

    2016-07-01

    Solute transport in rivers is controlled by surface flow hydrodynamics and by transient storage in dead zones, pockets of vegetation and hyporheic sediments where mass exchange and retention are governed by complex mechanisms. The physics of these processes are generally investigated by optimization of transient storage models (TSMs) to experimental data often yielding inconsistent and equifinal parameter sets. Uncertainty on parameters estimation is found to depend not only on the rates of exchange between the stream and storage zones, the stream-water velocity and the stream reach length according to the experimental Damkohler number (DaI), but also on the relative significance between transient storage and longitudinal dispersion on breakthrough curves (BTCs). An optimization strategy was developed and applied to an experimental dataset obtained from tracer tests in a small lowland river, analyzing BTCs generated through tracer injections under different conditions. The method supplies a tool to estimate model parameters from observed data through the analysis of the relative parameter significance. To analyze model performance a double compartment TSM was optimized by a regular fit procedure based on simple root mean square error minimization and by a fit based on a relative significance analysis of mechanism signatures. As a result consistent longitudinal dispersion and transient storage parameters were obtained when the signature targeted optimization was used.

  11. Fentanyl sublingual: in breakthrough pain in opioid-tolerant adults with cancer.

    PubMed

    Chwieduk, Claudine M; McKeage, Kate

    2010-12-01

    Fentanyl is a potent opioid with a short duration of action. Fentanyl sublingual has been formulated as a rapidly disintegrating tablet that is quickly absorbed, producing a fast onset of analgesia. In two randomized, double-blind clinical trials, fentanyl sublingual as single fixed or titrated doses reduced pain intensity during breakthrough pain episodes to a significantly greater extent than placebo in opioid-tolerant cancer patients. In a fixed-dose phase II trial and a titrated-dose phase III trial, fentanyl sublingual (as a single 400 μg dose and as titrated doses) reduced mean pain intensity difference (PID) to a significantly greater extent than placebo over the entire treatment period (up to 60 minutes), reaching statistical significance 15 minutes post-dose. In the titrated-dose study, the mean sum of PID (area under the PID vs time curve) at 30 minutes post-dose was significantly greater with fentanyl sublingual than placebo, with significant improvements in PID seen at 10 minutes maintained at 60 minutes post-dose. In the phase III study, patients receiving fentanyl sublingual were more satisfied with their treatment than patients receiving placebo (measured using the Patient Global Evaluation of Medication score), and almost half of all fentanyl sublingual recipients were satisfied or very satisfied with their treatment. Fentanyl sublingual was generally well tolerated in the two trials and most adverse events were mild to moderate in intensity.

  12. Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline.

    PubMed

    Delage, Elise; Zurzolo, Chiara

    2013-01-01

    It has been known for more than a century that most of the plant cells are connected to their neighbors through membranous pores perforating the cell wall, namely plasmodesmata (PDs). The recent discovery of tunneling nanotubes (TNTs), thin membrane bridges established between distant mammalian cells, suggests that intercellular communication mediated through cytoplasmic continuity could be a conserved feature of eukaryotic organisms. Although TNTs differ from PDs in their formation and architecture, both are characterized by a continuity of the plasma membrane between two cells, delimiting a nanotubular channel supported by actin-based cytoskeleton. Due to this unusual membrane organization, lipids are likely to play critical roles in the formation and stability of intercellular conduits like TNTs and PDs, but also in regulating the transfer through these structures. While it is crucial for a better understanding of those fascinating communication highways, the study of TNT lipid composition and dynamics turned out to be extremely challenging. The present review aims to give an overview of the recent findings in this context. We will also discuss some of the promising imaging approaches, which might be the key for future breakthroughs in the field and could also benefit the research on PDs.

  13. First flowering hybrid between autotrophic and mycoheterotrophic plant species: breakthrough in molecular biology of mycoheterotrophy.

    PubMed

    Ogura-Tsujita, Yuki; Miyoshi, Kazumitsu; Tsutsumi, Chie; Yukawa, Tomohisa

    2014-03-01

    Among land plants, which generally exhibit autotrophy through photosynthesis, about 880 species are mycoheterotrophs, dependent on mycorrhizal fungi for their carbon supply. Shifts in nutritional mode from autotrophy to mycoheterotrophy are usually accompanied by evolution of various combinations of characters related to structure and physiology, e.g., loss of foliage leaves and roots, reduction in seed size, degradation of plastid genome, and changes in mycorrhizal association and pollination strategy. However, the patterns and processes involved in such alterations are generally unknown. Hybrids between autotrophic and mycoheterotrophic plants may provide a breakthrough in molecular studies on the evolution of mycoheterotrophy. We have produced the first hybrid between autotrophic and mycoheterotrophic plant species using the orchid group Cymbidium. The autotrophic Cymbidium ensifolium subsp. haematodes and mycoheterotrophic C. macrorhizon were artificially pollinated, and aseptic germination of the hybrid seeds obtained was promoted by sonication. In vitro flowering was observed five years after seed sowing. Development of foliage leaves, an important character for photosynthesis, segregated in the first generation; that is, some individuals only developed scale leaves on the rhizome and flowering stems. However, all of the flowering plants formed roots, which is identical to the maternal parent.

  14. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol

    PubMed Central

    2014-01-01

    Background Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR). The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. Methods All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. Results The protocol was applied to a total of 252 examinations (153 patients, ages 15–87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Conclusion Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma. PMID:25287952

  15. Advanced Technology and Breakthrough Physics for 2025 and 2050 Military Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David; Czysz, Paul

    2006-01-01

    We are investigating the development of military aerospace planes that would embody advanced technology and break-through physics to revolutionize the capability of the US Air Force to respond in a timely manner to hostile threats facing the United States and its Allies. One plane concept embodied science and technology advances deemed developable by 2025. These advances included: MHD airbreathing propulsion, aneutronic fusion propulsion and light weight and high-strength airframe and propulsion materials-to accomplish Air Force aerospace missions from the ground up to geostationary orbit. The other plane embodied the further advancements in science and technology that were deemed possible by 2050. These advancements included: augmentation of MHD and fusion power with power from the zero-point energies of the quantum vacuum, and augmentation of vehicle jet propulsion with field propulsion to increase vehicle delta V by a factor of more than 2, thereby extending Air Force protective operations beyond earth orbit-into cislunar space. This paper has been approved for public release by the USAF.

  16. A Korean Nationwide Survey for Breakthrough Cancer Pain in an Inpatient Setting

    PubMed Central

    Baek, Sun Kyung; Kim, Do Yeun; Kang, Seok Yun; Sym, Sun Jin; Kim, Young Sung; Lee, June Young

    2016-01-01

    Purpose We evaluated the prevalence and characteristics of breakthrough cancer pain (BTcP) in Korean patients admitted with cancer pain. Materials and Methods In-hospital patients with cancer pain completed a questionnaire concerning severity of background cancer pain (BCP), prevalence and treatment for BTcP, sleep disorders, and satisfaction with cancer pain treatment. Medical records showing medications for BCP and BTcP were also evaluated. Results Total 609 patients with controlled BCP enrolled. Mean age of the patients was 59.5 years old, and 59% were male. Of all patients, 177 (29%) complained of BTcP. No clinical characteristic predicted BTcP. Of the 177 patients with BTcP, 56% did not receive treatment for BTcP. Patients with BTcP showed significant association with a sleep disorder and dissatisfaction with pain control, compared to those without BTcP (p < 0.0001 and p=0.0498, respectively). Oxycodone-immediate release was the most commonly used short-acting analgesic, followed by intravenous morphine. Conclusion The prevalence of BTcP was 29% in patients admitted with controlled BCP. Although the patients had well-controlled BCP, BTcP showed association with a lower quality of life in patients with cancer. More medical attention is needed for detection and management of BTcP. PMID:26511815

  17. Mifepristone for the prevention of breakthrough bleeding in new starters of depo-medroxyprogesterone acetate.

    PubMed

    Jain, John K; Nicosia, Antonia F; Nucatola, Deborah L; Lu, Jing J; Kuo, John; Felix, Juan C

    2003-11-01

    Depo-medroxyprogesterone acetate (DMPA) is an effective injectable contraceptive with worldwide availability. However, it is associated with a high incidence of breakthrough bleeding (BTB) during the first 6 months of use which often leads to discontinuation. Mifepristone is a progesterone receptor antagonist that has been demonstrated to decrease BTB caused by the levonorgestrel subdermal implant (Norplant). The purpose of this study was to determine if mifepristone would decrease BTB in new starters of DMPA. Twenty regularly cycling women who were new starters of DMPA were randomized to receive 50 mg of mifepristone or placebo every 2 weeks for 24 weeks. Percent days of BTB and number of cycles with bleeding intervals > or =8 and > or =14 days were evaluated using daily bleeding diaries. Ovulation was determined by measuring thrice-weekly urinary metabolites of estrogen and progesterone. Endometrial concentrations of ER and PR were determined by immunohistochemistry. Mifepristone significantly decreased the percent days of BTB and the number of cycles with prolonged bleeding intervals when compared to placebo. No subject ovulated in either group. ER immunostaining increased and PR immunostaining decreased after mifepristone treatment. In conclusion, a 50 mg dose of mifepristone taken every 2 weeks decreases the incidence of BTB in new starters of DMPA. This effect may be due to modulation of endometrial estrogen and progesterone receptors.

  18. Breakthrough pain in patients with controlled or uncontrolled pain: An observational study

    PubMed Central

    Gatti, Antonio; Gentili, Marta; Baciarello, Marco; Lazzari, Marzia; Marzi, Rossella; Palombo, Elisa; Sabato, Alessandro F; Fanelli, Guido

    2014-01-01

    BACKGROUND: Breakthrough pain (BTP) is traditionally defined as a pain exacerbation in patients with chronic controlled pain. However, this definition has recently been challenged. OBJECTIVES: To evaluate the prevalence of unsatisfactory control in patients with chronic cancer pain, and investigate the frequency and intensity of BTP episodes. METHODS: A total of 665 patients with chronic cancer pain attending 21 pain therapy units in Italy were evaluated for baseline pain intensity and number of BTP episodes over a 30-day period. All patients started, continued or modified treatment for BTP at enrollment, according to medical judgment. RESULTS: The number of BTP events was higher in patients with uncontrolled baseline pain, although the intensity and duration of episodes were similar. In patients with uncontrolled baseline pain, the number of events decreased with time and reached values comparable with those reported in patients with controlled pain. Both the intensity of the pain and the duration of the BTP events exhibited similar values in the two groups at all time points, following increased monitoring and the prescription of analgesic medication. CONCLUSION: Patients with uncontrolled baseline pain experienced BTP flares with higher frequency, but similar intensity and duration with respect to patients with controlled pain at baseline. Notably, a close follow-up and adequate management of the BTP episodes led to an improvement of BTP in the observed patients. PMID:24945289

  19. Landscape modeling for Everglades ecosystem restoration

    USGS Publications Warehouse

    DeAngelis, D.L.; Gross, L.J.; Huston, M.A.; Wolff, W.F.; Fleming, D.M.; Comiskey, E.J.; Sylvester, S.M.

    1998-01-01

    A major environmental restoration effort is under way that will affect the Everglades and its neighboring ecosystems in southern Florida. Ecosystem and population-level modeling is being used to help in the planning and evaluation of this restoration. The specific objective of one of these modeling approaches, the Across Trophic Level System Simulation (ATLSS), is to predict the responses of a suite of higher trophic level species to several proposed alterations in Everglades hydrology. These include several species of wading birds, the snail kite, Cape Sable seaside sparrow, Florida panther, white-tailed deer, American alligator, and American crocodile. ATLSS is an ecosystem landscape-modeling approach and uses Geographic Information System (GIS) vegetation data and existing hydrology models for South Florida to provide the basic landscape for these species. A method of pseudotopography provides estimates of water depths through time at 28 ?? 28-m resolution across the landscape of southern Florida. Hydrologic model output drives models of habitat and prey availability for the higher trophic level species. Spatially explicit, individual-based computer models simulate these species. ATLSS simulations can compare the landscape dynamic spatial pattern of the species resulting from different proposed water management strategies. Here we compare the predicted effects of one possible change in water management in South Florida with the base case of no change. Preliminary model results predict substantial differences between these alternatives in some biotic spatial patterns. ?? 1998 Springer-Verlag.

  20. Locally rare species influence grassland ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-05-19

    Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. PMID:27114572

  1. Locally rare species influence grassland ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-05-19

    Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.

  2. Ecosystem Performance Anomalies in the Bonanza Creek Area, Alaska

    NASA Astrophysics Data System (ADS)

    Bliss, N. B.; Wylie, B. K.; Ji, L.; Zhang, L.

    2007-12-01

    Central Alaska is ecologically sensitive and experiencing stress in response to marked regional warming. We need a better ability to monitor ecosystem processes that are responding to climate change, fire, and insect damage, and to predict responses to future climate and environmental conditions. We have developed a method for analyzing ecosystem performance that illustrates the status and trends of ecosystem changes and that separates the influences of climate and local site conditions from the influences of disturbances and land management practices. The poster shows results of the method via a time series graph of ecosystem performance anomalies for each remotely sensed pixel of a boreal forest area that includes the Bonanza Creek Long Term Ecological Research (LTER) site near Fairbanks, Alaska. Measures of "ecosystem performance" are based on a seasonally integrated normalized difference vegetation index using composited data acquired by NOAA's Advanced Very High Resolution Radiometer (AVHRR). We define an "expected ecosystem performance" to represent the greenness response of vegetation that is expected in a particular year given the climate of that year, and we distinguish "performance anomalies" as cases where the ecosystem response is significantly different than the expected ecosystem performance. This poster illustrates Ecosystem Performance Anomaly Trends (EPAT). The magnitude of the ecosystem performance anomaly is separated into three categories: 1) performing better than expected, 2) performing within the expected range, or 3) performing more poorly than expected. A pixel is classed as anomalously overperforming (or underperforming) if it is above (or below) the 90-percent significance line in 6 of the 8 years modeled. Within each category, we also show if the trend is 1) decreasing, 2) nearly level, or 3) increasing. Combining these dimensions gives nine categories for the map. Recent fires are clearly detected by the method, but other areas of

  3. Ecosystem services and livelihoods in deltaic environments

    NASA Astrophysics Data System (ADS)

    Nicholls, R. J.; Rahman, M. M.; Salehin, M.; Hutton, C.

    2015-12-01

    While overall, deltas account for only 1% of global land area, they are home to more than a half billion people or ca. 7% of the world's population. In many deltas, livelihoods and food security are strongly dependent on ecosystem services, which in turn are affected by various environmental change factors, including climate variability and change, modifications to upstream river, sediment and nutrient fluxes, evolving nearshore ecosystems, and delta-level change factors such as subsidence, changing land use and management interventions such as polders. Key limits include scarcity of fresh water, saline water intrusion and the impacts of extreme events (e.g. river floods, cyclones and storm surges), which constrain land use choices and livelihood opportunities for the deltaic populations. The ESPA Deltas project takes a systemic perspective of the interaction between the coupled bio-physical environment and the livelihoods of rural delta residents. The methods emphasise poverty reduction and use coastal Bangladesh as an example. This includes a set of consistent biophysical analyses of the delta and the upstream catchments and the downstream Bay of Bengal, as well as governance and policy analysis and socio-demographic analysis, including an innovative household survey on ecosystem utilization. These results are encapsulated in an integrated model that analyses ecosystem services and livelihood implications. This integrated approach is designed to support delta-level policy formulation. It allows the exploration of contrasting development trajectories, including issues such as robustness of different governance options on ecosystem services and livelihoods. The method is strongly participatory including an ongoing series of stakeholder workshops addressing issue identification, scenario development and consideration of policy responses. The methods presented are generic and transferable to other deltas. The paper will consider the overall ESPA Deltas project and

  4. Assessing risks to ecosystem quality

    SciTech Connect

    Barnthouse, L.W.

    1995-12-31

    Ecosystems are not organisms. Because ecosystems do not reproduce, grow old or sick, and die, the term ecosystem health is somewhat misleading and perhaps should not be used. A more useful concept is ``ecosystem quality,`` which denotes a set of desirable ecosystem characteristics defined in terms of species composition, productivity, size/condition of specific populations, or other measurable properties. The desired quality of an ecosystem may be pristine, as in a nature preserve, or highly altered by man, as in a managed forest or navigational waterway. ``Sustainable development`` implies that human activities that influence ecosystem quality should be managed so that high-quality ecosystems are maintained for future generations. In sustainability-based environmental management, the focus is on maintaining or improving ecosystem quality, not on restricting discharges or requiring particular waste treatment technologies. This approach requires management of chemical impacts to be integrated with management of other sources of stress such as erosion, eutrophication, and direct human exploitation. Environmental scientists must (1) work with decision makers and the public to define ecosystem quality goals, (2) develop corresponding measures of ecosystem quality, (3) diagnose causes for departures from desired states, and (4) recommend appropriate restoration actions, if necessary. Environmental toxicology and chemical risk assessment are necessary for implementing the above framework, but they are clearly not sufficient. This paper reviews the state-of-the science relevant to sustaining the quality of aquatic ecosystems. Using the specific example of a reservoir in eastern Tennessee, the paper attempts to define roles for ecotoxicology and risk assessment in each step of the management process.

  5. Environmental contamination in Antarctic ecosystems.

    PubMed

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  6. Environmental contamination in Antarctic ecosystems.

    PubMed

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  7. Nutrient recycling affects autotroph and ecosystem stoichiometry.

    PubMed

    Ballantyne, Ford; Menge, Duncan N L; Ostling, Annette; Hosseini, Parviez

    2008-04-01

    Stoichiometric nutrient ratios are the consequence of myriad interacting processes, both biotic and abiotic. Theoretical explanations for autotroph stoichiometry have focused on species' nutrient requirements but have not addressed the role of nutrient availability in determining autotroph stoichiometry. Remineralization of organic N and P supplies a significant fraction of inorganic N and P to autotrophs, making nutrient recycling a potentially important process influencing autotroph stoichiometry. To quantitatively investigate the relationship between available N and P, autotroph N:P, and nutrient recycling, we analyze a stoichiometrically explicit model of autotroph growth, incorporating Michaelis-Menten-Monod nutrient uptake kinetics, Droop growth, and Liebig's law of the minimum. If autotroph growth is limited by a single nutrient, increased recycling of the limiting nutrient pushes autotrophs toward colimitation and alters both autotroph and environmental stoichiometry. We derive a steady state relationship between input stoichiometry, autotroph N:P, and the stoichiometry of organic losses that allows us to estimate the relative recycling of N to P within an ecosystem. We then estimate relative N and P recycling for a marine, an aquatic, and two terrestrial ecosystems. Preferential P recycling, in conjunction with greater relative P retention at the organismal and ecosystem levels, presents a strong case for the importance of P to biomass production across ecosystems.

  8. Climate Change Impacts on Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Doney, Scott C.; Ruckelshaus, Mary; Emmett Duffy, J.; Barry, James P.; Chan, Francis; English, Chad A.; Galindo, Heather M.; Grebmeier, Jacqueline M.; Hollowed, Anne B.; Knowlton, Nancy; Polovina, Jeffrey; Rabalais, Nancy N.; Sydeman, William J.; Talley, Lynne D.

    2012-01-01

    In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

  9. [Assessment of ecosystem and its services conservation: indicators and methods].

    PubMed

    Lü, Yi-He; Zhang, Li-Wei; Wang, Jiang-Lei

    2013-05-01

    To conserve ecosystem and its services is a frontier and hot topic in the researches of conservation ecology. This paper reviewed the newest concepts and methods in the assessment of ecosystem and its services conservation, with the focus on the indicators and criteria for assessing the conservation status and the endangerment level of ecosystem as well as the main methods of ecosystem services assessment and conservation (including benefit transfer, systematic modeling, and quantitative indicator-based estimation). With the consideration of the research progress and the demands of ecological conservation in China, some issues to be urgently solved were put forward: 1) formulating the indicators, criteria, and methods suitable for the assessment of ecosystem conservation in China, 2) developing the methodologies for the quantitative assessment of ecosystem services, 3) determining the demands and optimal spatial arrangement of ecosystem and its services conservation in China, and 4) establishing the policies and incentive mechanisms for ecosystem and its services conservation. The resolution of these issues would supply important guarantee to the development of ecological civilization in China.

  10. [Assessment of ecosystem and its services conservation: indicators and methods].

    PubMed

    Lü, Yi-He; Zhang, Li-Wei; Wang, Jiang-Lei

    2013-05-01

    To conserve ecosystem and its services is a frontier and hot topic in the researches of conservation ecology. This paper reviewed the newest concepts and methods in the assessment of ecosystem and its services conservation, with the focus on the indicators and criteria for assessing the conservation status and the endangerment level of ecosystem as well as the main methods of ecosystem services assessment and conservation (including benefit transfer, systematic modeling, and quantitative indicator-based estimation). With the consideration of the research progress and the demands of ecological conservation in China, some issues to be urgently solved were put forward: 1) formulating the indicators, criteria, and methods suitable for the assessment of ecosystem conservation in China, 2) developing the methodologies for the quantitative assessment of ecosystem services, 3) determining the demands and optimal spatial arrangement of ecosystem and its services conservation in China, and 4) establishing the policies and incentive mechanisms for ecosystem and its services conservation. The resolution of these issues would supply important guarantee to the development of ecological civilization in China. PMID:24015539

  11. POLLUTION AND ECOSYSTEM HEALTH - ASSESSING ECOLOGICAL CONDITION OF COASTAL ECOSYSTEMS

    EPA Science Inventory

    Summers, Kevin. 2004. Pollution and Ecosystem Health - Assessing Ecological Condition of Coastal Ecosystems. Presented at the White Water to Blue Water (WW2BW) Miami Conference, 21-26 March 2004, Miami, FL. 1 p. (ERL,GB R973).

    Throughout the coastal regions and Large Mari...

  12. Monitoring Earth's Ecosystems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Partnered with Goddard Space Flight Center, Sensit Technologies Inc. developed a third-generation Portable Apparatus for Rapid Acquisitions of Bidirectional Observations of Land and Atmosphere, or PARABOLA III for short. Now commercially available, PARABOLA III is designed to measure the reflected signature of a variety of Earth surface types, from rangeland vegetation to ice and snow. It can rapidly acquire data for almost the complete sky and ground-looking hemispheres, with no missing data and sufficient dynamic range to measure direct solar radiance. The instrument was actively used in the Boreal Ecosystem- Atmosphere Study which provided useful information in designing a Multi-angle Imaging SpectroRadiometer, a small satellite being built by the Jet Propulsion Laboratory that will measure sunlight reflected by the Earth into space.

  13. Glyphosate in northern ecosystems.

    PubMed

    Helander, Marjo; Saloniemi, Irma; Saikkonen, Kari

    2012-10-01

    Glyphosate is the main nonselective, systemic herbicide used against a wide range of weeds. Its worldwide use has expanded because of extensive use of certain agricultural practices such as no-till cropping, and widespread application of glyphosate-resistant genetically modified crops. Glyphosate has a reputation of being nontoxic to animals and rapidly inactivated in soils. However, recent evidence has cast doubts on its safety. Glyphosate may be retained and transported in soils, and there may be cascading effects on nontarget organisms. These processes may be especially detrimental in northern ecosystems because they are characterized by long biologically inactive winters and short growing seasons. In this opinion article, we discuss the potential ecological, environmental and agricultural risks of intensive glyphosate use in boreal regions.

  14. Glacier Ecosystems of Himalaya

    NASA Astrophysics Data System (ADS)

    Kohshima, S.; Yoshimura, Y.; Takeuchi, N.; Segawa, T.; Uetake, J.

    2012-12-01

    Biological activity on glaciers has been believed to be extremely limited. However, we found various biotic communities specialized to the glacier environment in various part of the world, such as Himalaya, Patagonia and Alaska. Some of these glacier hosted biotic communities including various cold-tolerant insects, annelids and copepods that were living in the glacier by feeding on algae and bacteria growing in the snow and ice. Thus, the glaciers are simple and relatively closed ecosystems sustained by the primary production in the snow and ice. In this presentation, we will briefly introduce glacier ecosystems in Himalaya; ecology and behavior of glacier animals, altitudinal zonation of snow algal communities, and the structure of their habitats in the glacier. Since the microorganisms growing on the glacier surface are stored in the glacial strata every year, ice-core samples contain many layers with these microorganisms. We showed that the snow algae in the ice-core are useful for ice core dating and could be new environmental signals for the studies on past environment using ice cores. These microorganisms in the ice core will be important especially in the studies of ice core from the glaciers of warmer regions, in which chemical and isotopic contents are often heavily disturbed by melt water percolation. Blooms of algae and bacteria on the glacier can reduce the surface albedo and significantly affect the glacier melting. For example, the surface albedo of some Himalayan glaciers was significantly reduced by a large amount of dark-colored biogenic material (cryoconite) derived from snow algae and bacteria. It increased the melting rates of the surfaces by as much as three-fold. Thus, it was suggested that the microbial activity on the glacier could affect the mass balance and fluctuation of the glaciers.

  15. A practical guide to the application of the IUCN Red List of Ecosystems criteria.

    PubMed

    Rodríguez, Jon Paul; Keith, David A; Rodríguez-Clark, Kathryn M; Murray, Nicholas J; Nicholson, Emily; Regan, Tracey J; Miller, Rebecca M; Barrow, Edmund G; Bland, Lucie M; Boe, Kaia; Brooks, Thomas M; Oliveira-Miranda, María A; Spalding, Mark; Wit, Piet

    2015-02-19

    The newly developed IUCN Red List of Ecosystems is part of a growing toolbox for assessing risks to biodiversity, which addresses ecosystems and their functioning. The Red List of Ecosystems standard allows systematic assessment of all freshwater, marine, terrestrial and subterranean ecosystem types in terms of their global risk of collapse. In addition, the Red List of Ecosystems categories and criteria provide a technical base for assessments of ecosystem status at the regional, national, or subnational level. While the Red List of Ecosystems criteria were designed to be widely applicable by scientists and practitioners, guidelines are needed to ensure they are implemented in a standardized manner to reduce epistemic uncertainties and allow robust comparisons among ecosystems and over time. We review the intended application of the Red List of Ecosystems assessment process, summarize 'best-practice' methods for ecosystem assessments and outline approaches to ensure operational rigour of assessments. The Red List of Ecosystems will inform priority setting for ecosystem types worldwide, and strengthen capacity to report on progress towards the Aichi Targets of the Convention on Biological Diversity. When integrated with other IUCN knowledge products, such as the World Database of Protected Areas/Protected Planet, Key Biodiversity Areas and the IUCN Red List of Threatened Species, the Red List of Ecosystems will contribute to providing the most complete global measure of the status of biodiversity yet achieved.

  16. A practical guide to the application of the IUCN Red List of Ecosystems criteria.

    PubMed

    Rodríguez, Jon Paul; Keith, David A; Rodríguez-Clark, Kathryn M; Murray, Nicholas J; Nicholson, Emily; Regan, Tracey J; Miller, Rebecca M; Barrow, Edmund G; Bland, Lucie M; Boe, Kaia; Brooks, Thomas M; Oliveira-Miranda, María A; Spalding, Mark; Wit, Piet

    2015-02-19

    The newly developed IUCN Red List of Ecosystems is part of a growing toolbox for assessing risks to biodiversity, which addresses ecosystems and their functioning. The Red List of Ecosystems standard allows systematic assessment of all freshwater, marine, terrestrial and subterranean ecosystem types in terms of their global risk of collapse. In addition, the Red List of Ecosystems categories and criteria provide a technical base for assessments of ecosystem status at the regional, national, or subnational level. While the Red List of Ecosystems criteria were designed to be widely applicable by scientists and practitioners, guidelines are needed to ensure they are implemented in a standardized manner to reduce epistemic uncertainties and allow robust comparisons among ecosystems and over time. We review the intended application of the Red List of Ecosystems assessment process, summarize 'best-practice' methods for ecosystem assessments and outline approaches to ensure operational rigour of assessments. The Red List of Ecosystems will inform priority setting for ecosystem types worldwide, and strengthen capacity to report on progress towards the Aichi Targets of the Convention on Biological Diversity. When integrated with other IUCN knowledge products, such as the World Database of Protected Areas/Protected Planet, Key Biodiversity Areas and the IUCN Red List of Threatened Species, the Red List of Ecosystems will contribute to providing the most complete global measure of the status of biodiversity yet achieved. PMID:25561664

  17. A practical guide to the application of the IUCN Red List of Ecosystems criteria

    PubMed Central

    Rodríguez, Jon Paul; Keith, David A.; Rodríguez-Clark, Kathryn M.; Murray, Nicholas J.; Nicholson, Emily; Regan, Tracey J.; Miller, Rebecca M.; Barrow, Edmund G.; Bland, Lucie M.; Boe, Kaia; Brooks, Thomas M.; Oliveira-Miranda, María A.; Spalding, Mark; Wit, Piet

    2015-01-01

    The newly developed IUCN Red List of Ecosystems is part of a growing toolbox for assessing risks to biodiversity, which addresses ecosystems and their functioning. The Red List of Ecosystems standard allows systematic assessment of all freshwater, marine, terrestrial and subterranean ecosystem types in terms of their global risk of collapse. In addition, the Red List of Ecosystems categories and criteria provide a technical base for assessments of ecosystem status at the regional, national, or subnational level. While the Red List of Ecosystems criteria were designed to be widely applicable by scientists and practitioners, guidelines are needed to ensure they are implemented in a standardized manner to reduce epistemic uncertainties and allow robust comparisons among ecosystems and over time. We review the intended application of the Red List of Ecosystems assessment process, summarize ‘best-practice’ methods for ecosystem assessments and outline approaches to ensure operational rigour of assessments. The Red List of Ecosystems will inform priority setting for ecosystem types worldwide, and strengthen capacity to report on progress towards the Aichi Targets of the Convention on Biological Diversity. When integrated with other IUCN knowledge products, such as the World Database of Protected Areas/Protected Planet, Key Biodiversity Areas and the IUCN Red List of Threatened Species, the Red List of Ecosystems will contribute to providing the most complete global measure of the status of biodiversity yet achieved. PMID:25561664

  18. Quality Improvement in Acute Ischemic Stroke Care in Taiwan: The Breakthrough Collaborative in Stroke

    PubMed Central

    Chern, Chang-Ming; Lee, Tsong-Hai; Tang, Sung-Chun; Tsai, Li-Kai; Liao, Hsun-Hsiang; Chang, Hang; LaBresh, Kenneth A.; Lin, Hung-Jung; Chiou, Hung-Yi; Chiu, Hou-Chang; Lien, Li-Ming

    2016-01-01

    In the management of acute ischemic stroke, guideline adherence is often suboptimal, particularly for intravenous thrombolysis or anticoagulation for atrial fibrillation. We sought to improve stroke care quality via a collaborative model, the Breakthrough Series (BTS)-Stroke activity, in a nationwide, multi-center activity in Taiwan. A BTS Collaborative, a short-term learning system for a large number of multidisciplinary teams from hospitals, was applied to enhance acute ischemic stroke care quality. Twenty-four hospitals participated in and submitted data for this stroke quality improvement campaign in 2010–2011. Totally, 14 stroke quality measures, adopted from the Get With The Guideline (GWTG)-Stroke program, were used to evaluate the performance and outcome of the ischemic stroke patients. Data for a one-year period from 24 hospitals with 13,181 acute ischemic stroke patients were analyzed. In 14 hospitals, most stroke quality measures improved significantly during the BTS-activity compared with a pre-BTS-Stroke activity period (2006–08). The rate of intravenous thrombolysis increased from 1.2% to 4.6%, door-to-needle time ≤60 minutes improved from 7.1% to 50.8%, symptomatic hemorrhage after intravenous thrombolysis decreased from 11.0% to 5.6%, and anticoagulation therapy for atrial fibrillation increased from 32.1% to 64.1%. The yearly composite measures of five stroke quality measures revealed significant improvements from 2006 to 2011 (75% to 86.3%, p<0.001). The quarterly composite measures also improved significantly during the BTS-Stroke activity. In conclusion, a BTS collaborative model is associated with improved guideline adherence for patients with acute ischemic stroke. GWTG-Stroke recommendations can be successfully applied in countries besides the United States. PMID:27487190

  19. Quality Improvement in Acute Ischemic Stroke Care in Taiwan: The Breakthrough Collaborative in Stroke.

    PubMed

    Hsieh, Fang-I; Jeng, Jiann-Shing; Chern, Chang-Ming; Lee, Tsong-Hai; Tang, Sung-Chun; Tsai, Li-Kai; Liao, Hsun-Hsiang; Chang, Hang; LaBresh, Kenneth A; Lin, Hung-Jung; Chiou, Hung-Yi; Chiu, Hou-Chang; Lien, Li-Ming

    2016-01-01

    In the management of acute ischemic stroke, guideline adherence is often suboptimal, particularly for intravenous thrombolysis or anticoagulation for atrial fibrillation. We sought to improve stroke care quality via a collaborative model, the Breakthrough Series (BTS)-Stroke activity, in a nationwide, multi-center activity in Taiwan. A BTS Collaborative, a short-term learning system for a large number of multidisciplinary teams from hospitals, was applied to enhance acute ischemic stroke care quality. Twenty-four hospitals participated in and submitted data for this stroke quality improvement campaign in 2010-2011. Totally, 14 stroke quality measures, adopted from the Get With The Guideline (GWTG)-Stroke program, were used to evaluate the performance and outcome of the ischemic stroke patients. Data for a one-year period from 24 hospitals with 13,181 acute ischemic stroke patients were analyzed. In 14 hospitals, most stroke quality measures improved significantly during the BTS-activity compared with a pre-BTS-Stroke activity period (2006-08). The rate of intravenous thrombolysis increased from 1.2% to 4.6%, door-to-needle time ≤60 minutes improved from 7.1% to 50.8%, symptomatic hemorrhage after intravenous thrombolysis decreased from 11.0% to 5.6%, and anticoagulation therapy for atrial fibrillation increased from 32.1% to 64.1%. The yearly composite measures of five stroke quality measures revealed significant improvements from 2006 to 2011 (75% to 86.3%, p<0.001). The quarterly composite measures also improved significantly during the BTS-Stroke activity. In conclusion, a BTS collaborative model is associated with improved guideline adherence for patients with acute ischemic stroke. GWTG-Stroke recommendations can be successfully applied in countries besides the United States. PMID:27487190

  20. Tracer breakthrough curves in a complex lysimeter system: evidence of non-stationary transport

    NASA Astrophysics Data System (ADS)

    Queloz, P.; Bertuzzo, E.; Botter, G.; Rao, P.; Rinaldo, A.

    2013-12-01

    We report on the outcomes of a lysimeter experiment aimed at the measurement of travel time distributions of water and certain nonreactive solutes under non-stationary conditions to examine the kinematics of age mixing. In order to simulate the release of a compound in a receiving water body, it is common in hydrology to attribute a travel time probability distribution to each particle, which reflects the response of a catchment unit to a solute input. Hence, the concentration measured at a control section becomes the convolution between the travel time distribution and the concentration of the inputs throughout the past. This study aims at experimentally demonstrating that the tracer travel time probability distribution is, in fact, strongly dependent on the antecedent conditions at the time of tracer injection and the subsequent states experienced in the system. It is therefore a function of numerous transient processes such as hydrologic filtering in soils, climatic forcing or evapotranspiration patterns. A 2-meter deep weighing lysimeter was equipped with a discharge measurement system coupled with a sample collector, an array of water content sensors and an array of porous cups for soil water sampling at three different depths. Controlled random rainfall following a Poisson process was generated, and evapotranspiration losses from two willow trees planted in the lysimeter created an important soil-water storage deficit. Five species of fluorobenzoic acids were used as tracers, and sequentially injected through rainfall at different times. The measurement system installed allowed a precise and accurate monitoring of every input and output flux and water storage, which is crucial to determine the conditions influencing the travel time distribution and to calculate the mass loads and recovery rates. Breakthrough curves for multiple tracers measured at several depths within the lysimeter and at the lysimeter outlet provide support for non-stationary tracer travel

  1. A review of rapid-onset opioids for breakthrough pain in patients with cancer.

    PubMed

    Simon, Steven M; Schwartzberg, Lee S

    2014-01-01

    Pain management in patients with cancer remains suboptimal. Breakthrough pain (BTP) is characterized by abrupt onset of severe pain in a background of otherwise stable managed pain and presents a substantial burden to patients, as it disrupts activities and quality of life. Rapid-onset opioids (ROOs), with an appropriate onset and duration of effect, provide new options for effective and well-tolerated management of BTP. All currently available ROOs are various formulations of transmucosal immediate-release fentanyl (TIRF) and, although they were originally developed and approved for use in children before painful procedures, are only approved for use in opioid-tolerant adult patients with cancer and BTP. The formulation options include oral lozenge, buccal tablet, buccal film, sublingual tablet, nasal spray, and a sublingual spray; each has practical considerations that vary with the product and route of administration. All have the common advantage of rapid entry into the systemic circulation via transmucosal absorption, avoiding hepatic and intestinal first-pass metabolism and allowing a rapid onset of action that rivals intravenous injections. Rapid onset and short duration of action allow good patient control of analgesia. The pharmacokinetic and analgesic properties of ROOs may allow reduction of the total opioid burden and associated adverse effects, while still providing effective pain relief. The shared TIRF risk evaluation and mitigation strategy program implemented in March 2012 has simplified enrollment and administration of these products to help mitigate the risks of abuse and misuse and to help ensure safe use in patients with cancer suffering from BTP.

  2. Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture

    SciTech Connect

    Maginn, Edward

    2012-09-30

    This is the final report for DE-FC26-07NT43091 Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture. A detailed summary is provided of the ionic liquid (IL) discovery process, synthesis and testing results, process / systems modeling, lab-scale operational testing, corrosion testing and commercialization possibilities. The work resulted in the discovery of a new class of ionic liquids (ILs) that efficiently react with CO{sub 2} in a 1:1 stoichiometry with no water present and no increase in viscosity. The enthalpy of reaction was tuned to optimize process economics. The IL was found to have excellent corrosion behavior with and without CO{sub 2} present. In lab-scale tests, the IL was able to effectively remove CO{sub 2} from a simulated flue gas stream, although mass transfer was slower than with aqueous monoethanolamine (MEA) due to higher viscosities. The non-volatile nature of the solvent and its high thermal stability, however, make it an intriguing option. An independent systems analysis indicates that the economics of using the best IL discovered to date (NDIL0157), are at least comparable to and potentially slightly better than - the Fluor Econamine FG PlusTM process (DOE Case 12). Further work should be directed at improving mass transfer / lowering viscosity and developing commercial synthesis routes to make these ILs at scale in an inexpensive manner. Demonstration of the process at larger scales is also warranted, as is the exploration of other process configurations that leverage the anhydrous nature of the solvent and its extremely low volatility.

  3. Breakthrough candidaemia in the era of broad-spectrum antifungal therapies.

    PubMed

    Cuervo, G; Garcia-Vidal, C; Nucci, M; Puchades, F; Fernández-Ruiz, M; Obed, M; Manzur, A; Gudiol, C; Pemán, J; Aguado, J M; Ayats, J; Carratalà, J

    2016-02-01

    We aimed to assess the characteristics, treatment, risk factors and outcome of patients with breakthrough candidaemia (BrC) in the era of broad-spectrum antifungal therapies. We carried out a multicentre study of hospitalized adults with candidaemia at six hospitals in three countries. BrC episodes were compared with the remaining episodes (non-BrC). Of 409 episodes of candidaemia, 37 (9%) were BrC. Among them, antifungal treatment was administered as prophylaxis in 26 severely immunosuppressed patients (70%) and as a fever-driven approach in 11 (30%). Candida albicans was significantly less common in patients with BrC (24% versus 46%, p 0.010) whereas Candida krusei was more frequent (16% versus 2.4%, p < 0.001). BrC was associated with infections caused by fluconazole non-susceptible isolates (50% versus 18%, p < 0.001). Candida albicans BrC was associated with previous fluconazole treatment whereas Candida parapsilosis candidaemia was mostly catheter-related and/or associated with previous echinocandin therapy. The empirical antifungal therapy was more often appropriate in the non-BrC group (57% versus 74%, p 0.055). No significant differences were found in outcomes (early and overall mortality: 11% versus 13% p 0.802 and 40% versus 40% p 0.954, respectively). Fluconazole non-susceptibility was independently associated with the risk of BrC (adjusted OR 5.57; 95% CI 1.45-21.37). In conclusion, BrC accounted for 9% of the episodes in our multicentre cohort. The Candida spp. isolated were different depending on the previous antifungal therapy: previous azole treatment was associated with fluconazole non-susceptible strains and previous echinocandin treatment was associated with BrC caused by C. parapsilosis. These results should be taken into account to improve the empirical treatment of BrC.

  4. Watch out for the blue circle: a breakthrough in family planning promotional strategy.

    PubMed

    Sumarsono

    1989-07-01

    Realizing the potential of commercial marketing in changing the attitude and behavior of the target audience in the early years of the 4th 5-year development plan, the National Family Planning Program tried to develop new ventures in communicating the concept of the small family norm to the people. The condom was chosen as the 1st product to be sold through the social marketing project because male awareness about family planning was still low. Based on audience research, the pricing, packaging, and branding of the product was developed. The most accepted brand name was Dua Lima because it has a neutral meaning, is easily remembered, and can be described in sign language. The last reason is very important because most consumers have difficulty communicating about condoms in the sales outlet. Social marketing has proved effective because of strong public relations activities and the involvement of formal and informal leaders. This experiment has convinced family planning management that social marketing is workable for promoting the small family norm. In 1987, under the new program of self-sufficiency in family planning, the private sector is invited to participate by providing family planning services for target audiences, using the principles of self-sufficiency and self-support. There are 2 principal activities; 1) the IEC campaign, and 2) product (contraceptive) selling. IEC activities include a media campaign public relations work. Product selling is done through commercial channels such as pharmaceutical firms, drug stores, private doctors, and midwives. It was decided that the campaign would be aided by a name and logo. The blue circle was chosen because it is unique, communicative, and simple. The social marketing of contraceptives in Indonesia can be considered a breakthrough in communication strategy for a national development program.

  5. Watch out for the blue circle: a breakthrough in family planning promotional strategy.

    PubMed

    Sumarsono

    1989-07-01

    Realizing the potential of commercial marketing in changing the attitude and behavior of the target audience in the early years of the 4th 5-year development plan, the National Family Planning Program tried to develop new ventures in communicating the concept of the small family norm to the people. The condom was chosen as the 1st product to be sold through the social marketing project because male awareness about family planning was still low. Based on audience research, the pricing, packaging, and branding of the product was developed. The most accepted brand name was Dua Lima because it has a neutral meaning, is easily remembered, and can be described in sign language. The last reason is very important because most consumers have difficulty communicating about condoms in the sales outlet. Social marketing has proved effective because of strong public relations activities and the involvement of formal and informal leaders. This experiment has convinced family planning management that social marketing is workable for promoting the small family norm. In 1987, under the new program of self-sufficiency in family planning, the private sector is invited to participate by providing family planning services for target audiences, using the principles of self-sufficiency and self-support. There are 2 principal activities; 1) the IEC campaign, and 2) product (contraceptive) selling. IEC activities include a media campaign public relations work. Product selling is done through commercial channels such as pharmaceutical firms, drug stores, private doctors, and midwives. It was decided that the campaign would be aided by a name and logo. The blue circle was chosen because it is unique, communicative, and simple. The social marketing of contraceptives in Indonesia can be considered a breakthrough in communication strategy for a national development program. PMID:12282138

  6. A review of rapid-onset opioids for breakthrough pain in patients with cancer.

    PubMed

    Simon, Steven M; Schwartzberg, Lee S

    2014-01-01

    Pain management in patients with cancer remains suboptimal. Breakthrough pain (BTP) is characterized by abrupt onset of severe pain in a background of otherwise stable managed pain and presents a substantial burden to patients, as it disrupts activities and quality of life. Rapid-onset opioids (ROOs), with an appropriate onset and duration of effect, provide new options for effective and well-tolerated management of BTP. All currently available ROOs are various formulations of transmucosal immediate-release fentanyl (TIRF) and, although they were originally developed and approved for use in children before painful procedures, are only approved for use in opioid-tolerant adult patients with cancer and BTP. The formulation options include oral lozenge, buccal tablet, buccal film, sublingual tablet, nasal spray, and a sublingual spray; each has practical considerations that vary with the product and route of administration. All have the common advantage of rapid entry into the systemic circulation via transmucosal absorption, avoiding hepatic and intestinal first-pass metabolism and allowing a rapid onset of action that rivals intravenous injections. Rapid onset and short duration of action allow good patient control of analgesia. The pharmacokinetic and analgesic properties of ROOs may allow reduction of the total opioid burden and associated adverse effects, while still providing effective pain relief. The shared TIRF risk evaluation and mitigation strategy program implemented in March 2012 has simplified enrollment and administration of these products to help mitigate the risks of abuse and misuse and to help ensure safe use in patients with cancer suffering from BTP. PMID:24944071

  7. The effect of vapor polarity and boiling point on breakthrough for binary mixtures on respirator carbon.

    PubMed

    Robbins, C A; Breysse, P N

    1996-08-01

    This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p < or = 0.001) when compared according to probe boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.

  8. Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites.

    PubMed

    Liu, Z Q; Liu, G; Qu, R T; Zhang, Z F; Wu, S J; Zhang, T

    2014-01-01

    As two important mechanical properties, strength and ductility generally tend to be muturally exclusive in conventional engineering materials. The breakthrough of such a trade-off has been potentiated by the recently developed CuZr-based bulk metallic glass (BMG) composites ductilized by a shape memory CuZr(B2) phase. Here the microstructural dependences of tensile properties for the CuZr-based BMG composites were elucidated qualitatively and modeled quantitatively, and the underlying mechanisms were unraveled. Through the microstructural percolation induced by matching the length scales of particle size and interparticle spacing, a notable breakthrough was achieved in the composites that the general conflicts between strength and ductility can be defeated. This study is expected to greatly aid in the microstructural design and tailoring for improved properties of BMG composites. It also has implications for the development of strong and ductile materials in the future.

  9. Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites

    PubMed Central

    Liu, Z. Q.; Liu, G.; Qu, R. T.; Zhang, Z. F.; Wu, S. J.; Zhang, T.

    2014-01-01

    As two important mechanical properties, strength and ductility generally tend to be muturally exclusive in conventional engineering materials. The breakthrough of such a trade-off has been potentiated by the recently developed CuZr-based bulk metallic glass (BMG) composites ductilized by a shape memory CuZr(B2) phase. Here the microstructural dependences of tensile properties for the CuZr-based BMG composites were elucidated qualitatively and modeled quantitatively, and the underlying mechanisms were unraveled. Through the microstructural percolation induced by matching the length scales of particle size and interparticle spacing, a notable breakthrough was achieved in the composites that the general conflicts between strength and ductility can be defeated. This study is expected to greatly aid in the microstructural design and tailoring for improved properties of BMG composites. It also has implications for the development of strong and ductile materials in the future. PMID:24566737

  10. The imprint of plants on ecosystem functioning: A data-driven approach

    NASA Astrophysics Data System (ADS)

    Musavi, Talie; Mahecha, Miguel D.; Migliavacca, Mirco; Reichstein, Markus; van de Weg, Martine Janet; van Bodegom, Peter M.; Bahn, Michael; Wirth, Christian; Reich, Peter B.; Schrodt, Franziska; Kattge, Jens

    2015-12-01

    Terrestrial ecosystems strongly determine the exchange of carbon, water and energy between the biosphere and atmosphere. These exchanges are influenced by environmental conditions (e.g., local meteorology, soils), but generally mediated by organisms. Often, mathematical descriptions of these processes are implemented in terrestrial biosphere models. Model implementations of this kind should be evaluated by empirical analyses of relationships between observed patterns of ecosystem functioning, vegetation structure, plant traits, and environmental conditions. However, the question of how to describe the imprint of plants on ecosystem functioning based on observations has not yet been systematically investigated. One approach might be to identify and quantify functional attributes or responsiveness of ecosystems (often very short-term in nature) that contribute to the long-term (i.e., annual but also seasonal or daily) metrics commonly in use. Here we define these patterns as "ecosystem functional properties", or EFPs. Such as the ecosystem capacity of carbon assimilation or the maximum light use efficiency of an ecosystem. While EFPs should be directly derivable from flux measurements at the ecosystem level, we posit that these inherently include the influence of specific plant traits and their local heterogeneity. We present different options of upscaling in situ measured plant traits to the ecosystem level (ecosystem vegetation properties - EVPs) and provide examples of empirical analyses on plants' imprint on ecosystem functioning by combining in situ measured plant traits and ecosystem flux measurements. Finally, we discuss how recent advances in remote sensing contribute to this framework.

  11. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    NASA Astrophysics Data System (ADS)

    Band, Larry

    2010-05-01

    Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a

  12. Teaching about Ecosystems. ERIC Digest.

    ERIC Educational Resources Information Center

    Haury, David L.

    Ecosystems are available to educators as interactive units and as such the National Science Education Standards (NSES) and the Excellence in Environmental Education: Guidelines for Learning (EEE) put considerable emphasis on ecosystems. This ERIC Digest describes the NSES and EEE guidelines for grades 5-8 and 9-12 to provide a basic ecosystem…

  13. Experimental Ecosystems Sealed in Glass

    NASA Technical Reports Server (NTRS)

    Hanson, J. A.

    1985-01-01

    Report describes investigation of dynamics of microbial ecosystems sealed in 1-liter flasks and exposed to Sunlight or artifical light for extended periods. Many organisms survived more than 15 years. Such systems have primary productivity and quantum efficiencies comparable to estimates for Earth's ecosystems.

  14. National Atlas of Ecosystem Services

    EPA Science Inventory

    The nation’s ecosystems provide a vast array of services to humans from clean and abundant water to recreational opportunities. The benefits of nature or “ecosystem services” are often taken for granted and not considered in environmental decision-making. In some cases, decis...

  15. Fludarabine add-on therapy in interferon-beta-treated patients with multiple sclerosis experiencing breakthrough disease

    PubMed Central

    Greenberg, Steven J.; Zivadinov, Robert; Lee-Kwen, Peterkin; Sharma, Jitendra; Planter, Margaret; Umhauer, Margaret; Glenister, Norman; Bakshi, Rohit

    2016-01-01

    Background: Patients with relapsing–remitting multiple sclerosis (RRMS) may experience breakthrough disease despite effective interferon beta (IFNβ) therapy. Fludarabine (FLU) is a chemotherapeutic agent used in lymphoproliferative disorders that may be synergistic when combined with immunomodulatory therapy to control active multiple sclerosis (MS). Objective: The objective of this study was to explore the safety and tolerability of FLU versus monthly methylprednisolone (MP) in IFNβ-treated RRMS patients with breakthrough disease. Clinical and MRI effects of IFNβ-1a plus FLU were evaluated. Methods: Eighteen patients with breakthrough disease [⩾2 relapses over the prior year and ⩾1.0-point increase in Expanded Disability Status Scale (EDSS) score sustained for ⩾3 months] after >1 year of IFNβ therapy were enrolled in this prospective, open-label, randomized, proof-of-concept, pilot study. Patients received intravenous (IV) MP 1 g daily for 3 days and then were randomized to receive 3 monthly IV infusions of FLU 25 mg/m2 daily for 5 consecutive days (n = 10) or MP 1 g (n = 8). All patients maintained their intramuscular IFNβ-1a treatment throughout the study. Analyses explored safety signals and directional trends; this preliminary study was not powered to detect clinically meaningful differences. Results: Both combination treatments were safe and well tolerated, with all adverse events mild. Patients treated with IFNβ-1a plus FLU had similar relapse rates, EDSS scores, and MS Functional Composite scores, but significantly less acute corticosteroid use for on-study relapses and better responses on some MRI outcomes, versus patients treated with IFNβ-1a plus MP. Conclusions: Further study of FLU for breakthrough disease in patients with RRMS is warranted. PMID:27006698

  16. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability.

    PubMed

    Yu, Qiang; Chen, Quansheng; Elser, James J; He, Nianpeng; Wu, Honghui; Zhang, Guangming; Wu, Jianguo; Bai, Yongfei; Han, Xingguo

    2010-11-01

    Ecosystem structure, functioning and stability have been a focus of ecological and environmental sciences during the past two decades. The mechanisms underlying their relationship, however, are not well understood. Based on comprehensive studies in Inner Mongolia grassland, here we show that species-level stoichiometric homoeostasis was consistently positively correlated with dominance and stability on both 2-year and 27-year temporal scales and across a 1200-km spatial transect. At the community level, stoichiometric homoeostasis was also positively correlated with ecosystem function and stability in most cases. Thus, homoeostatic species tend to have high and stable biomass; and ecosystems dominated by more homoeostatic species have higher productivity and greater stability. By modulating organism responses to key environmental drivers, stoichiometric homoeostasis appears to be a major mechanism responsible for the structure, functioning and stability of grassland ecosystems.

  17. Pore-lining composition and capillary breakthrough pressure of mudstone caprocks : sealing efficiency at geologic CO2 storage sites.

    SciTech Connect

    Heath, Jason E.; Nemer, Martin B.; McPherson, Brian J. O. L.; Dewers, Thomas A.; Kotula, Paul Gabriel

    2010-12-01

    Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < {approx}800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock - thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy's National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work.

  18. Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling.

    PubMed

    Ghasemi, Morteza; Keshtkar, Ali Reza; Dabbagh, Reza; Jaber Safdari, S

    2011-05-15

    Uranium(VI) biosorption from aqueous solutions containing 60 mg l(-1) metal concentration by Ca-pretreated Cystoseira indica alga was studied in a packed bed column with 1.5 cm internal diameter. The effect of bed height and flow rate on biosorption process was investigated and the experimental breakthrough curves were obtained. Results showed that by increasing the bed height, the breakthrough and exhaustion times increased and the slope of breakthrough curves decreased. Also, it was observed that the controlled-rate step shifted from external to internal mass transfer limitations, as the flow rate increased. The maximum uptake capacity, 318.15 mg g(-1), and total metal removal, 59.32%, were obtained at flow rate of 2.3 ml min(-1) and bed height of 6 cm. The column was regenerated using 0.1M HCl solution and sorption-desorption studies were carried out for three cycles. The obtained results confirmed that reusability of this biosorbent is possible. The results obtained agreed well with the bed depth service time model. In addition, for estimations of the parameters necessary for the design of a large-scale packed bed column, the experimental data were also fitted to the Thomas, Yan and Belter models and were found to agree with the experimental data fairly well.

  19. Pore-lining composition and capillary breakthrough pressure of mudstone caprocks : sealing efficiency of geologic CO2 storage sites.

    SciTech Connect

    Petrusak, Robin; Heath, Jason E.; McPherson, Brian J. O. L.; Dewers, Thomas A.; Kotula, Paul Gabriel

    2010-08-01

    Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < {approx}800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock - thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability.

  20. Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling.

    PubMed

    Ghasemi, Morteza; Keshtkar, Ali Reza; Dabbagh, Reza; Jaber Safdari, S

    2011-05-15

    Uranium(VI) biosorption from aqueous solutions containing 60 mg l(-1) metal concentration by Ca-pretreated Cystoseira indica alga was studied in a packed bed column with 1.5 cm internal diameter. The effect of bed height and flow rate on biosorption process was investigated and the experimental breakthrough curves were obtained. Results showed that by increasing the bed height, the breakthrough and exhaustion times increased and the slope of breakthrough curves decreased. Also, it was observed that the controlled-rate step shifted from external to internal mass transfer limitations, as the flow rate increased. The maximum uptake capacity, 318.15 mg g(-1), and total metal removal, 59.32%, were obtained at flow rate of 2.3 ml min(-1) and bed height of 6 cm. The column was regenerated using 0.1M HCl solution and sorption-desorption studies were carried out for three cycles. The obtained results confirmed that reusability of this biosorbent is possible. The results obtained agreed well with the bed depth service time model. In addition, for estimations of the parameters necessary for the design of a large-scale packed bed column, the experimental data were also fitted to the Thomas, Yan and Belter models and were found to agree with the experimental data fairly well. PMID:21376462

  1. Improving the accuracy of risk prediction from particle-based breakthrough curves reconstructed with kernel density estimators

    NASA Astrophysics Data System (ADS)

    Siirila-Woodburn, Erica R.; Fernández-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-06-01

    While particle tracking techniques are often used in risk frameworks, the number of particles needed to properly derive risk metrics such as average concentration for a given exposure duration is often unknown. If too few particles are used, error may propagate into the risk estimate. In this work, we provide a less error-prone methodology for the direct reconstruction of exposure duration averaged concentration versus time breakthrough curves from particle arrival times at a compliance surface. The approach is based on obtaining a suboptimal kernel density estimator that is applied to the sampled particle arrival times. The corresponding estimates of risk metrics obtained with this method largely outperform those by means of traditional methods (reconstruction of the breakthrough curve followed by the integration of concentration in time over the exposure duration). This is particularly true when the number of particles used in the numerical simulation is small (<105), and for small exposure times. Percent error in the peak of averaged breakthrough curves is approximately zero for all scenarios and all methods tested when the number of particles is ≥105. Our results illustrate that obtaining a representative average exposure concentration is reliant on the information contained in each individual tracked particle, more so when the number of particles is small. They further illustrate the usefulness of defining problem-specific kernel density estimators to properly reconstruct the observables of interest in a particle tracking framework without relying on the use of an extremely large number of particles.

  2. Scientific foundations for an IUCN Red List of ecosystems.

    PubMed

    Keith, David A; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G; Benson, John S; Bishop, Melanie J; Bonifacio, Ronald; Brooks, Thomas M; Burgman, Mark A; Comer, Patrick; Comín, Francisco A; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G; Holdaway, Robert J; Jennings, Michael; Kingsford, Richard T; Lester, Rebecca E; Mac Nally, Ralph; McCarthy, Michael A; Moat, Justin; Oliveira-Miranda, María A; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J; Riecken, Uwe; Spalding, Mark D; Zambrano-Martínez, Sergio

    2013-01-01

    An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of

  3. Major ecosystems in China: dynamics and challenges for sustainable management.

    PubMed

    Lü, Yihe; Fu, Bojie; Wei, Wei; Yu, Xiubo; Sun, Ranhao

    2011-07-01

    Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China's ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded.

  4. Scientific Foundations for an IUCN Red List of Ecosystems

    PubMed Central

    Keith, David A.; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M.; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G.; Benson, John S.; Bishop, Melanie J.; Bonifacio, Ronald; Brooks, Thomas M.; Burgman, Mark A.; Comer, Patrick; Comín, Francisco A.; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G.; Holdaway, Robert J.; Jennings, Michael; Kingsford, Richard T.; Lester, Rebecca E.; Nally, Ralph Mac; McCarthy, Michael A.; Moat, Justin; Oliveira-Miranda, María A.; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J.; Riecken, Uwe; Spalding, Mark D.; Zambrano-Martínez, Sergio

    2013-01-01

    An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of

  5. Scientific foundations for an IUCN Red List of ecosystems.

    PubMed

    Keith, David A; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G; Benson, John S; Bishop, Melanie J; Bonifacio, Ronald; Brooks, Thomas M; Burgman, Mark A; Comer, Patrick; Comín, Francisco A; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G; Holdaway, Robert J; Jennings, Michael; Kingsford, Richard T; Lester, Rebecca E; Mac Nally, Ralph; McCarthy, Michael A; Moat, Justin; Oliveira-Miranda, María A; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J; Riecken, Uwe; Spalding, Mark D; Zambrano-Martínez, Sergio

    2013-01-01

    An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of

  6. Major ecosystems in China: dynamics and challenges for sustainable management.

    PubMed

    Lü, Yihe; Fu, Bojie; Wei, Wei; Yu, Xiubo; Sun, Ranhao

    2011-07-01

    Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China's ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded. PMID:21553106

  7. Linking ecosystem characteristics to final ecosystem services for public policy

    PubMed Central

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. PMID:25394857

  8. Linking ecosystem characteristics to final ecosystem services for public policy.

    PubMed

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers.

  9. Long term flux ecosystem exchange over a Mediterranean shrubland ecosystem

    NASA Astrophysics Data System (ADS)

    Spano, D.; Sirca, C.; Marras, S.; Carta, M.; Zara, P.; Arca, A.; Duce, P.

    2011-12-01

    Only a few long-term studies on inter-annual variability in energy and mass exchanges of Mediterranean shrubland ecosystems have been recently published. Since maquis ecosystems experience a wide variation in inter-annual rainfall and temperature, inter-annual differences in CO2 fluxes are expected. Mediterranean-type ecosystems normally show two main peaks of growth (in spring and fall) and experience sometimes pronounced summer drought periods. Consequently, Mediterranean-type ecosystem behavior is even more complex and responds more dramatically to perturbations in water conditions. In this paper, six years of energy and mass fluxes measured using eddy covariance (EC) technique over a secondary succession shrubland ecosystem (maquis) located in Sardinia, Italy are reported. The main objectives are to understand dynamics of ecosystem carbon cycling and to identify the driving factors affecting ecosystem exchanges. Eddy flux and meteorological data are presented along with soil respiration information. Footprint analysis, friction velocity method, and other turbulent parameters were calculated to verify the accuracy of the eddy covariance CO2 measurements. The energy partitioning exhibited clear seasonal patterns with increasing Bowen ratio values during the drought season. Peak CO2 uptake occurred during spring and autumn showing an evident decrease in summer. The estimate of NEE showed differences among years depending on drought and temperature conditions. The surface conductance was clearly depressed during long-term drought period. In general, NEE was relatively low compared to other forest ecosystems. A good relationship was found between GPP and LE. Our data show that the inter-annual differences in NEE of the maquis ecosystem depend mainly on seasonal climate rather than on mean annual air temperature or precipitation. In addition, extreme weather events can also contribute to NEE inter-annual variability.

  10. Scaling and predicting solute transport processes in riverine ecosystems

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinzon, R.; Haggerty, R.; Camacho Botero, L. A.

    2012-12-01

    In the last three decades, research on solute transport and nutrient processing has revealed complex interactions between landscapes and stream ecosystems, and numerous attempts to scale and predict these processes have been primarily limited by the difficulty of measuring and extrapolating hydrodynamic and geomorphic characteristics. We hypothesize that there should be predictable patterns in the way that streams interact with their landscapes, because those interactions are in the form of energy, mass and momentum, which are conservative and interrelated properties. Therefore, despite local hydrogeomorphic characteristics define the actual extent of solute transport processes in a given riverine ecosystem, the physical imprints marked-up in breakthrough curves (BTCs) should have scaling properties. To evaluate our hypothesis we created an extensive database that includes 133 BTCs from conservative tracer experiments conducted under different hydrologic conditions (1 lt/s to 1197 m3/s), different experimental conditions (10s of meters to 10s of kilometers), different geographic positions (South and North America, Europe, Australia, Antarctica), and different types of lotic environments, i.e., urban manmade channels, forested headwater streams, desert-like streams, hyporheic wells, and major rivers. We investigated the existence of patterns in conservative solute transport using a model-independent approach, i.e., temporal moments of the histories of tracer experiments. Our results show that the normalized first absolute moment is correlated with the second and third moments with R2>0.99 for all riverine ecosystems. Most importantly, the first central temporal moment of the distributions (mean travel time) is correlated with the second (variance) with an R2>0.93, and the correlation between the second central moment and the third central moment (skewness) takes the form of the coefficient of skewness (CSK) with an R2>0.98, defining a statistically averaged CSK= 1

  11. Establishing IUCN Red List criteria for threatened ecosystems.

    PubMed

    Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M; Baillie, Jonathan E M; Ash, Neville; Benson, John; Boucher, Timothy; Brown, Claire; Burgess, Neil D; Collen, Ben; Jennings, Michael; Keith, David A; Nicholson, Emily; Revenga, Carmen; Reyers, Belinda; Rouget, Mathieu; Smith, Tammy; Spalding, Mark; Taber, Andrew; Walpole, Matt; Zager, Irene; Zamin, Tara

    2011-02-01

    The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012.

  12. Maximum entropy models of ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Bertram, Jason

    2014-12-01

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes' broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.

  13. Maximum entropy models of ecosystem functioning

    SciTech Connect

    Bertram, Jason

    2014-12-05

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.

  14. Terrestrial Ecosystem Responses to Global Change: A Research Strategy

    SciTech Connect

    Ecosystems Working Group,

    1998-09-23

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere. Models and experiments are equally important for developing process-level understanding into a predictive capability. To support both the development and testing of mechanistic ecosystem models, a two-tiered design of ecosystem experiments should be used. This design should include both (1) large-scale manipulative experiments for comprehensive testing of integrated ecosystem models and (2) multifactor, multilevel experiments for parameterization of process models across the critical range of interacting environmental factors (CO{sub 2}, temperature, water

  15. Ecosystem adaptation to scarce nutrient resources: Do forest ecosystems shift from acquisition to recycling of phosphorus?

    NASA Astrophysics Data System (ADS)

    Lang, F.; Kaupenjohann, M.

    2011-12-01

    Friederike Lang(1, Nicole Wellbrock(2, Martin Kaupenjohann(1 (1) Department of Soil Science, TU Berlin, 10587 Berlin, Germany; (2) vTI Eberswalde Agricultural food production is essential to our existence, yet we are using up the Earths stocks of phosphorus (P) for the fertilizer production (Cordell, 2009). Forest ecosystems that developed on marginal soil have developed highly efficient strategies for the uptake, usage and recycling of P, which might inspire solutions for the problem of P scarcity in agriculture. However, these efficient forest strategies are hardly investigated yet. Current literature concepts on the adaptation to low soil-P supply are mainly refined to individual organisms (e.g. the concept of uptake efficiency, Sattelmacher et al., 1994, and utilisation efficiency of plants, Compton and Cole, 1998). At the ecosystem level, however, low mineral-P supply requires an evolution of the system towards closed biogeochemical cycling (the concept of cycling efficiency). At the ecosystem level nutrient efficiency becomes rather a matter of transfer and distribution of resources among species, generations and soil components than of the capability of single organisms to acquire P sources. We plead for introducing the term ecosystem nutrition to cover this topic. Our general hypothesis is that P depletion of soils drives the development of forest ecosystems from geochemical P acquiring systems (mobilisation of P from the mineral phase) to biogeochemical P recycling systems (recycling of P from soil organic matter). We conclude that fundamental knowledge in the area of ecosystem nutrition is essential for forestry to mitigate the consequences of increasing N deposition, climate change and intensification of forest usage, which most likely interfere with essential nutrition strategies of forest ecosystems. Transfer of the knowledge on nutrition strategies and resource management of near-natural ecosystems to/in agricultural systems may finally contribute to

  16. Toward Understanding, Managing, and Protecting Microbial Ecosystems

    PubMed Central

    Bodelier, Paul L. E.

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797

  17. Modeling hurricane effects on mangrove ecosystems

    USGS Publications Warehouse

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  18. Quality Measures for Digital Business Ecosystems Formation

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad; Hussain, Farookh Khadeer; Chang, Elizabeth

    To execute a complex business task, business entities may need to collaborate with each other as individually they may not have the capability or willingness to perform the task on its own. Such collaboration can be seen implemented in digital business ecosystems in the form of simple coalitions using multi-agent systems or by employing Electronic Institutions. A major challenge is choosing optimal partners who will deliver the agreed commitments, and act in the coalition’s interest. Business entities are scaled according to their quality level. Determining the quality of previously unknown business entities and predicting the quality of such an entity in a dynamic environment are crucial issues in Business Ecosystems. A comprehensive quality management system grounded in the concepts of Trust and Reputation can help address these issues.

  19. Mercury in the ecosystem

    SciTech Connect

    Mitra, S.

    1986-01-01

    This treatise on the environmental dispersion of mercury emphasizes the importance of ''mercury-consciousness'' in the present-day world, where rapidly expanding metallurgical, chemical, and other industrial developments are causing widespread contamination of the atmosphere, soil, and water by this metal and its toxic organic derivatives. Concepts concerning the mechanism of mercury dispersion and methyl-mercury formation in the physico-biological ecosystem are discussed in detail and a substantial body of data on the degree and nature of the mercury contamination of various plants, fish, and land animals by industrial and urban effluents is presented. Various analytical methods for the estimation of mercury in inorganic and organic samples are presented. These serve as a ready guide to the selection of the correct method for analyzing environmental samples. This book is reference work in mercury-related studies. It is written to influence industrial policies of governments in their formulation of control measures to avoid the recurrence of human tragedies such as the well-known Minamata case in Japan, and the lesser known cases in Iraq, Pakistan, and Guatamala.

  20. Alternative states of a semiarid grassland ecosystem: implications for ecosystem services

    USGS Publications Warehouse

    Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.

    2011-01-01

    Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.

  1. New Technologies and Strategies to Exploit Near Earth Asteroids for Breakthrough Space Development

    NASA Astrophysics Data System (ADS)

    Rather, John; Powell, James; Maise, George

    2010-01-01

    The past two decades have brought a profound expansion of knowledge of near earth objects (NEO). If creatively exploited, NEOs can significantly increase human safety while reducing costs of exploration and development of the moon, Mars and the solar system. Synergistically, the ability to defend the Earth from devastating impacts will become very effective. A spherical volume having a radius equivalent to the moon's orbit, 400,000 km, is visited every day by approximately ten NEOs having diameters of ~10 meters, while ~30 meter diameter encounters occur about once per month. Because these objects are usually very faint and only within detectable range for a few days, they require specialized equipment to discover them with high probability of detection and to enable accurate determination of orbital parameters. Survey systems are now being implemented that are cataloging many thousands of objects larger than 30 meters, but numerous advantages will result from extending the complete NEO census down to 10 meter diameters. The typical compositions of such NEOs will range from ~80% that are low density dust & rock ``rubble piles'' to perhaps 2% containing heavy metals-properties well known from meteorite samples. It is quite possible that there will also be some fragments of short period comets that are rich in water ice and other volatile components. In this paper we will propose a set of new technologies and strategies for exploiting NEO resources that can yield important space development breakthroughs at much lower costs than existing concepts. Solar powered ``Tugboats'' deployed at the space station can rendezvous with carefully selected NEOs and steer them into captured orbits in the lunar L4 & L5 regions. Robotic equipment will then modify them for a plethora of benefits. Notably, the problem of radiation shielding against the Van Allen belts, solar flares and cosmic rays will be solved. Free transportation from low earth orbit to the moon and beyond will be

  2. Efficacy, safety, and tolerability of fentanyl pectin nasal spray in patients with breakthrough cancer pain

    PubMed Central

    Ueberall, Michael A; Lorenzl, Stefan; Lux, Eberhard A; Voltz, Raymond; Perelman, Michael

    2016-01-01

    Objective Assessment of analgesic effectiveness, safety, and tolerability of fentanyl pectin nasal spray (FPNS) in the treatment of breakthrough cancer pain (BTcP) in routine clinical practice. Methods A prospective, open-label, noninterventional study (4-week observation period, 3 month follow-up) of opioid-tolerant adults with BTcP in 41 pain and palliative care centers in Germany. Standardized BTcP questionnaires and patient diaries were used. Evaluation was made of patient-reported outcomes with respect to “time to first effect”, “time to maximum effect”, BTcP relief, as well as changes in BTcP-related impairment of daily life activities, quality-of-life restrictions, and health care resource utilization. Results A total of 235 patients were recruited of whom 220 completed all questionnaires and reported on 1,569 BTcP episodes. Patients reported a significant reduction of maximum BTcP intensity (11-stage numerical rating scale [0= no pain, 10= worst pain conceivable]) with FPNS (mean ± standard deviation = 2.8±2.3) compared with either that reported at baseline (8.5±1.5), experienced immediately before FPNS application (7.4±1.7), or that achieved with previous BTcP medication (6.0±2.0; P<0.001 for each comparison). In 12.3% of BTcP episodes, onset of pain relief occurred ≤2 minutes and in 48.4% ≤5 minutes; maximum effects were reported within 10 minutes for 37.9% and within 15 minutes for 79.4%. By the end of the study, there had been significant improvements versus baseline in BTcP-related daily life activities (28.3±16.9 vs 53.1±11.9), physical (35.9±8.4 vs 26.8±6.5), and mental quality of life (38.7±8.5 vs 29.9±7.9) (P<0.001 for each comparison vs baseline); in addition, health care resource utilization requirements directly related to BTcP were reduced by 67.5%. FPNS was well tolerated; seven patients (3.2%) experienced eight treatment-emergent adverse events of which none was serious. There were no indicators of misuse or abuse

  3. Ecosystem services provided by bats.

    PubMed

    Kunz, Thomas H; Braun de Torrez, Elizabeth; Bauer, Dana; Lobova, Tatyana; Fleming, Theodore H

    2011-03-01

    Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. Unfortunately, few studies estimating the economic value of ecosystem services provided by bats have been conducted to date; however, we outline a framework that could be used in future studies to more fully address this question. Consumptive goods provided by bats, such as food and guano, are often exchanged in markets where the market price indicates an economic value. Nonmarket valuation methods can be used to estimate the economic value of nonconsumptive services, including inputs to agricultural production and recreational activities. Information on the ecological and economic value of ecosystem services provided by bats can be used to inform decisions regarding where and when to protect or restore bat populations and associated habitats, as well as to improve public perception of bats.

  4. Deciphering arboviral emergence within insular ecosystems.

    PubMed

    Tortosa, Pablo; Pascalis, Hervé; Guernier, Vanina; Cardinale, Eric; Le Corre, Matthieu; Goodman, Steven M; Dellagi, Koussay

    2012-08-01

    The spatial dynamics of zoonotic arthropod-borne viruses is a fashionable though challenging topic. Inter-human local transmission of a given arbovirus during an outbreak and its spread over large distances are considered as key parameters of emergence. Here, we suggest that insular ecosystems provide ideal natural "laboratory" conditions to uncouple local transmission from long distance spread, and differentiate these two processes. Due to geographic isolation, often-limited land surface area and relatively homogenous ecosystems, oceanic islands display low species richness and often-high levels of endemism. These aspects provide the means for comprehensive entomological surveys and investigations of original host/pathogen interactions. In addition, islands are interconnected through discrete anthropogenic and non-anthropogenic exchanges: whilst islands maintain a substantial level of human and domestic animal exchange with other neighbouring or distant territories, they also comprise dispersal and migratory pathways of volant organisms (insects, birds and bats). Hence, both anthropogenic and non-anthropogenic exchanges in island systems are easier to identify and investigate than in continuous, continental systems. Finally, island ecosystems tend to be notably simpler, more prone to invasive taxa and, therefore, easier to document the colonization or displacement of vector species. These different aspects are presented and overlaid upon the spread of arboviruses within two distinct insular systems: islands of Polynesia and the south-western Indian Ocean. The former have been repeatedly affected by Dengue fever epidemics, while the latter recently suffered four successive epidemics, probably of east African origin, three of which involved the emerging viruses Chikungunya, Rift Valley and Dengue fever. Here, we review some new insights into arboviral spread and evolution associated with investigations that followed these epidemics, as well as several aspects that

  5. Integrating Human and Ecosystem Health Through Ecosystem Services Frameworks.

    PubMed

    Ford, Adriana E S; Graham, Hilary; White, Piran C L

    2015-12-01

    The pace and scale of environmental change is undermining the conditions for human health. Yet the environment and human health remain poorly integrated within research, policy and practice. The ecosystem services (ES) approach provides a way of promoting integration via the frameworks used to represent relationships between environment and society in simple visual forms. To assess this potential, we undertook a scoping review of ES frameworks and assessed how each represented seven key dimensions, including ecosystem and human health. Of the 84 ES frameworks identified, the majority did not include human health (62%) or include feedback mechanisms between ecosystems and human health (75%). While ecosystem drivers of human health are included in some ES frameworks, more comprehensive frameworks are required to drive forward research and policy on environmental change and human health.

  6. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem.

    PubMed

    Thomson, Jordan A; Burkholder, Derek A; Heithaus, Michael R; Fourqurean, James W; Fraser, Matthew W; Statton, John; Kendrick, Gary A

    2015-04-01

    Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat-forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia--a relatively pristine subtropical embayment whose dominant, canopy-forming seagrass, Amphibolis antarctica, is a temperate species growing near its low-latitude range limit--as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal-borne video footage taken from the perspective of resident, seagrass-associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long-term, community-level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal-borne video and data-logging systems, can make an important contribution to this framework. PMID:25145694

  7. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem.

    PubMed

    Thomson, Jordan A; Burkholder, Derek A; Heithaus, Michael R; Fourqurean, James W; Fraser, Matthew W; Statton, John; Kendrick, Gary A

    2015-04-01

    Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat-forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia--a relatively pristine subtropical embayment whose dominant, canopy-forming seagrass, Amphibolis antarctica, is a temperate species growing near its low-latitude range limit--as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal-borne video footage taken from the perspective of resident, seagrass-associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long-term, community-level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal-borne video and data-logging systems, can make an important contribution to this framework.

  8. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Wofsy, S. C.; Munger, J. W.; Hollinger, D. Y.; Moorcroft, P. R.

    2009-03-01

    Insights into how terrestrial ecosystems affect the Earth's response to changes in climate and rising atmospheric CO2 levels rely heavily on the predictions of terrestrial biosphere models (TBMs). These models contain detailed mechanistic representations of biological processes affecting terrestrial ecosystems; however, their ability to simultaneously predict field-based measurements of terrestrial vegetation dynamics and carbon fluxes has remained largely untested. In this study, we address this issue by developing a constrained implementation of a new structured TBM, the Ecosystem Demography model version 2 (ED2), which explicitly tracks the dynamics of fine-scale ecosystem structure and function. Carbon and water flux measurements from an eddy-flux tower are used in conjunction with forest inventory measurements of tree growth and mortality at Harvard Forest (42.5°N, 72.1°W) to estimate a number of important but weakly constrained model parameters. Evaluation against a decade of tower flux and forest dynamics measurements shows that the constrained ED2 model yields greatly improved predictions of annual net ecosystem productivity, carbon partitioning, and growth and mortality dynamics of both hardwood and conifer trees. The generality of the model formulation is then evaluated by comparing the model's predictions against measurements from two other eddy-flux towers and forest inventories of the northeastern United States and Quebec. Despite the markedly different composition throughout this region, the optimized model realistically predicts observed patterns of carbon fluxes and tree growth. These results demonstrate how TBMs parameterized with field-based measurements can provide quantitative insight into the underlying biological processes governing ecosystem composition, structure, and function at larger scales.

  9. The robustness of ecosystems to the species loss of community

    PubMed Central

    Cai, Qing; Liu, Jiming

    2016-01-01

    To study the robustness of ecosystems is crucial to promote the sustainable development of human society. This paper aims to analyze the robustness of ecosystems from an interesting viewpoint of the species loss of community. Unlike the existing definitions, we first introduce the notion of a community as a population of species belonging to the same trophic level. We then put forward a novel multiobjective optimization model which can be utilized to discover community structures from arbitrary unipartite networks. Because an ecosystem is commonly represented as a multipartite network, we further introduce a mechanism of competition among species whereby a multipartite network is transformed into a unipartite signed network without loss of species interaction information. Finally, we examine three strategies to test the robustness of an ecosystem. Our experiments indicate that ecosystems are robust to random species loss of community but fragile to target ones. We also investigate the relationships between the robustness of an ecosystem and that of its community composed network both to species loss. Our experiments indicate that the robustness analysis of a large-scale ecosystem to species loss may be akin to that of its community composed network which is usually small in size. PMID:27786285

  10. Quantifying patterns of change in marine ecosystem response to multiple pressures.

    PubMed

    Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S

    2015-01-01

    The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response

  11. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment.

    PubMed

    Carpenter, Stephen R; Mooney, Harold A; Agard, John; Capistrano, Doris; Defries, Ruth S; Díaz, Sandra; Dietz, Thomas; Duraiappah, Anantha K; Oteng-Yeboah, Alfred; Pereira, Henrique Miguel; Perrings, Charles; Reid, Walter V; Sarukhan, José; Scholes, Robert J; Whyte, Anne

    2009-02-01

    The Millennium Ecosystem Assessment (MA) introduced a new framework for analyzing social-ecological systems that has had wide influence in the policy and scientific communities. Studies after the MA are taking up new challenges in the basic science needed to assess, project, and manage flows of ecosystem services and effects on human well-being. Yet, our ability to draw general conclusions remains limited by focus on discipline-bound sectors of the full social-ecological system. At the same time, some polices and practices intended to improve ecosystem services and human well-being are based on untested assumptions and sparse information. The people who are affected and those who provide resources are increasingly asking for evidence that interventions improve ecosystem services and human well-being. New research is needed that considers the full ensemble of processes and feedbacks, for a range of biophysical and social systems, to better understand and manage the dynamics of the relationship between humans and the ecosystems on which they rely. Such research will expand the capacity to address fundamental questions about complex social-ecological systems while evaluating assumptions of policies and practices intended to advance human well-being through improved ecosystem services. PMID:19179280

  12. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment

    PubMed Central

    Carpenter, Stephen R.; Mooney, Harold A.; Agard, John; Capistrano, Doris; DeFries, Ruth S.; Díaz, Sandra; Dietz, Thomas; Duraiappah, Anantha K.; Oteng-Yeboah, Alfred; Pereira, Henrique Miguel; Perrings, Charles; Reid, Walter V.; Sarukhan, José; Scholes, Robert J.; Whyte, Anne

    2009-01-01

    The Millennium Ecosystem Assessment (MA) introduced a new framework for analyzing social–ecological systems that has had wide influence in the policy and scientific communities. Studies after the MA are taking up new challenges in the basic science needed to assess, project, and manage flows of ecosystem services and effects on human well-being. Yet, our ability to draw general conclusions remains limited by focus on discipline-bound sectors of the full social–ecological system. At the same time, some polices and practices intended to improve ecosystem services and human well-being are based on untested assumptions and sparse information. The people who are affected and those who provide resources are increasingly asking for evidence that interventions improve ecosystem services and human well-being. New research is needed that considers the full ensemble of processes and feedbacks, for a range of biophysical and social systems, to better understand and manage the dynamics of the relationship between humans and the ecosystems on which they rely. Such research will expand the capacity to address fundamental questions about complex social–ecological systems while evaluating assumptions of policies and practices intended to advance human well-being through improved ecosystem services. PMID:19179280

  13. Relationship between the early boceprevir-S isomer plasma concentrations and the onset of breakthrough during HCV genotype 1 triple therapy.

    PubMed

    Boglione, L; De Nicolò, A; Cardellino, C S; Ruggiero, T; Ghisetti, V; Cariti, G; Di Perri, G; D'Avolio, A

    2015-02-01

    In a prospective cohort of 18 patients treated with boceprevir, we examined the role of boceprevir plasma concentration at the onset of breakthrough during the treatment. Nine patients experienced breakthrough during therapy. The resistance patterns were as follows: S122S/R, I132V, T54A/I132V, V156S/I170A, V36M/T54S/R155K, V36M/R155K and T54/R155K. Boceprevir-S isomer (SCH 534128) median concentration in patients with breakthrough was 48.3 ng/mL (interquartile range 43-58 ng/mL); in others, it was significantly (p 0.019) higher: 151 ng/mL. Low boceprevir plasma concentration can lead to virologic resistance; therapeutic drug monitoring should be used to prevent the onset of viral breakthrough during triple-regimen therapy with boceprevir. PMID:25658567

  14. Oral transmucosal fentanyl citrate for the treatment of breakthrough pain in cancer patients: an overview of its pharmacological and clinical characteristics.

    PubMed

    Mystakidou, Kyriaki; Katsouda, Emmanuela; Parpa, Efi; Tsiatas, Marinos L; Vlahos, Lambros

    2005-01-01

    Breakthrough pain is a transitory flare of pain occurring in most cancer patients against a background of otherwise controlled persistent pain. Treatment of breakthrough pain is a challenging phenomenon. Oral transmucosal fentanyl citrate (OTFC; brand name Actiq, Chephalon Inc., West Chester, PA), a new opioid formulation with a unique delivery system, reflects the characteristics of breakthrough pain (rapid onset of action and short duration), making it an effective treatment for cancer patients who already receive opioids and experience flares of pain. This review article aims to present the role of oral transmucosal fentanyl citrate in the management of breakthrough pain in cancer patients. In particular, it is going to discuss the synthesis, clinical pharmacology, pharmacokinetic and pharmacodynamic properties, toxicity, and clinical efficacy of this novel agent.

  15. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doer