Constance I. Millar
1996-01-01
To assess the various ways organizations and people come together to manage Sierran ecosystems, SNEP conducted four case studies to examine the efficacy of different institutional arrangements:The Mammoth-June case study examines how a single national forest is attempting to implement the new Forest Service policy for ecosystem analysis...
Urban forest ecosystem services: A case study in Corvallis,Oregon
Background/Questions/Methods One EPA research focus is quantifying ecosystem services, benefits that ecosystems provide to humans, in order to promote informed natural resource management decisions and to assess the effectiveness of existing environmental policies. A case study...
Estimating the economic impacts of ecosystem restoration—Methods and case studies
Cullinane Thomas, Catherine; Huber, Christopher; Skrabis, Kristin; Sidon, Joshua
2016-04-05
This analysis estimates the economic impacts of a wide variety of ecosystem restoration projects associated with U.S. Department of the Interior (DOI) lands and programs. Specifically, the report provides estimated economic impacts for 21 DOI restoration projects associated with Natural Resource Damage Assessment and Restoration cases and Bureau of Land Management lands. The study indicates that ecosystem restoration projects provide meaningful economic contributions to local economies and to broader regional and national economies, and, based on the case studies, we estimate that between 13 and 32 job-years4 and between $2.2 and $3.4 million in total economic output5 are contributed to the U.S. economy for every $1 million invested in ecosystem restoration. These results highlight the magnitude and variability in the economic impacts associated with ecosystem restoration projects and demonstrate how investments in ecosystem restoration support jobs and livelihoods, small businesses, and rural economies. In addition to providing improved information on the economic impacts of restoration, the case studies included with this report highlight DOI restoration efforts and tell personalized stories about each project and the communities that are positively affected by restoration activities. Individual case studies are provided in appendix 1 of this report and are available from an online database at https://www.fort.usgs.gov/economic-impacts-restoration.
HUMAN-ECOSYSTEM INTERACTIONS: THE CASE OF MERCURY
Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...
Human - Ecosystem Interactions: The Case of Mercury
Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...
Emergy-based urban ecosystem health assessment: A case study of Baotou, China
NASA Astrophysics Data System (ADS)
Liu, G. Y.; Yang, Z. F.; Chen, B.; Zhang, Y.; Zhang, L. X.; Zhao, Y. W.; Jiang, M. M.
2009-03-01
Ecosystem health has been a hot topic of ecosystem management research for years. Considering the urban area as a complex ecosystem consisted of natural, societal and economic entities, urban ecosystem health assessment is necessary to be conducted for the scientific management and proper ecological restoration. Combining with the ecosystem service function of the urban ecosystem, theoretical framework and methodology of the urban ecosystem health assessment based on emergy are proposed and the temporal variation of the health level of the city are also outlined in this paper. Following the principle of ecosystem health assessment, four major factors, including vigor (V), organizational structure (O), resilience (R) and function maintenance (F), are integrated to construct a novel emergy-based urban ecosystem health index (EUEHI). Based on the EUEHI and comparing with those of five other typical Chinese cities, the case study of Baotou city shows that its urban ecosystem health level is steadily arising despite the year 2001 as a turning point. Due to the emphasis on the resource structure adjustment and utilization efficiency, Baotou has obtained a better organizational structure and service function for the total urban ecosystem.
Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.
Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James
2017-07-19
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
Ecosystem Services Insights into Water Resources Management in China: A Case of Xi'an City.
Liu, Jingya; Li, Jing; Gao, Ziyi; Yang, Min; Qin, Keyu; Yang, Xiaonan
2016-11-24
Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi'an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index's weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem's service capability is closely related to water resources, providing a method for managing water resources. Using Xi'an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers.
Managing for resilience: an information theory-based ...
Ecosystems are complex and multivariate; hence, methods to assess the dynamics of ecosystems should have the capacity to evaluate multiple indicators simultaneously. Most research on identifying leading indicators of regime shifts has focused on univariate methods and simple models which have limited utility when evaluating real ecosystems, particularly because drivers are often unknown. We discuss some common univariate and multivariate approaches for detecting critical transitions in ecosystems and demonstrate their capabilities via case studies. Synthesis and applications. We illustrate the utility of an information theory-based index for assessing ecosystem dynamics. Trends in this index also provide a sentinel of both abrupt and gradual transitions in ecosystems. In response to the need to identify leading indicators of regime shifts in ecosystems, our research compares traditional indicators and Fisher information, an information theory based method, by examining four case study systems. Results demonstrate the utility of methods and offers great promise for quantifying and managing for resilience.
Biodiversity and ecosystem stability across scales in metacommunities
Wang, Shaopeng; Loreau, Michel
2016-01-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilizing effects for regional ecosystems, through local and spatial insurance effects, respectively. We further show that at the regional scale, the stabilizing effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenization) and biodiversity loss on ecosystem sustainability at large scales. PMID:26918536
An Ecosystem Approach to Invasive Species Management: An Aquatic Ecosystem Case Study
ERIC Educational Resources Information Center
Villamagna, A. M.; Karpanty, S. M.
2009-01-01
College students in natural resources continue to encounter instructor-centered teaching, despite strong evidence that suggests active-learning experiences benefit students more than passive learning activities. Case studies provide an active-learning alternative to lectures by teaching students new content and challenging them to engage in…
ERIC Educational Resources Information Center
Brookfield, Harold
1982-01-01
Distinctions between natural ecosystems and human ecosystems are misleading. Natural and social sciences can be integrated through the concept of a "human-use ecosystem," in which social scientists analyze the community, household, and individual, and natural scientists analyze the land. Includes a case study of St. Kitts. (KC)
Valuing ecosystem services of an impacted waterway in the Southwestern US
While many studies of ecosystem services focus on unaltered areas such as wilderness, management insight is also needed for those more impacted. This case study values ecosystem services of the Santa Cruz River, an effluent-dominated waterway in southern Arizona. Wastewater treat...
Local disease–ecosystem–livelihood dynamics: reflections from comparative case studies in Africa
Bett, Bernard; Said, M.; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M.; Grant, Donald S.; Koninga, James
2017-01-01
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human–ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples’ interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform ‘One Health’ approaches towards managing ecosystems in ways that reduce disease risks and burdens. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584171
Ecological Production Functions Linking Multiple Stressors to Ecosystem Services – A Case Study
The ecosystem services concept is being used to frame environmental protection goals that guide management of the risks of chemicals. Ecosystem services link changes in ecological systems to the benefits received by people. The use of ecosystem services in risk assessments and th...
Biodiversity and ecosystem stability across scales in metacommunities.
Wang, Shaopeng; Loreau, Michel
2016-05-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales. © 2016 John Wiley & Sons Ltd/CNRS.
Noise-induced effects in population dynamics
NASA Astrophysics Data System (ADS)
Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando
2002-03-01
We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.
Determining the Ecosystem Services Important for Urban Landscapes
Urban ecosystems present special considerations and challenges in researching and evaluating ecosystem functions and services. A case study of nitrate retention and loss in forested, urban wetlands illustrates these challenges. Water table dynamics, in situ nitrogen cy...
Environmental Impacts of the Use of Ecosystem Services: Case Study of Birdwatching
NASA Astrophysics Data System (ADS)
Kronenberg, Jakub
2014-09-01
The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the `ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.
The Mammoth-June Ecosystem Management Project, Inyo National Forest
Connie Millar
1996-01-01
The Sierra Nevada Ecosystem Project (SNEP) case-study assessmentof the Mammoth-June Ecosystem Management Project(MJEMP) was undertaken to review and analyze the efficacy of alocal landscape analysis in achieving ecosystem-management objectivesin the Sierra Nevada. Of primary interest to SNEP was applicationof the new U.S. Forest Service (USFS) regional process...
Evaluating the effects of ecosystem management: a case study in a Missouri Ozark forest
Wendy K. Gram; Victoria L. Sork; Robert J. Marquis; Rochelle B. Renken; Richard L. Clawson; et. al.
2002-01-01
Many federal and state management agencies have shifted from commodity-based management systems to multiple resource-based management systems that emphasize sustainable ecosystem management. Long-term sustainability of ecosystem functions and processes is at the core of ecosystem management, but a blueprint for assessing sustainability under different management...
Using unassisted ecosystem development to restore marginal land case study of post mining areas
NASA Astrophysics Data System (ADS)
Frouz, Jan
2017-04-01
When we evaluate efficiency of individual restoration measures we typically compare individual restoration treatments or compare them with initial state or similar ecosystem in surrounding landscape. We argue that sensible way to show added value of restoration measure is to compare them with unassisted ecosystem development. Case study of ecosystem development in Sokolov post mining district (Czech Republic) show that spontaneous succession of ecosystem can be, in many parameters, comparable with various reclamation approaches. In suitable substrates the succession is driven mainly by site topography. In sites which were leveled grassy vegetation develops. In sites where original wave like topography was preserved the ecosystem develops towards forest. In forest sites the development on most of the investigated ecosystem parameters (cower, biomass soil developments, water holding capacity, carbon storage) in succession sites is little bit slower compare to reclaimed plantation during first 15-20 years. However in older sites differences disappear and succession sites show similarity with restored sites. Despite similarity in these ecosystem functions possibilities of spontaneous sites for commercial use has to be explored.
Burrowing shrimps are regarded as ecosystem engineering species in many coastal ecosystems worldwide, including numerous estuaries of the west coast of North America (Baja California to British Columbia). In estuaries of the U.S. Pacific Northwest, two species of large burrowing...
Determining the Ecosystem Services Important for Urban Landscapes-Slides
This presentation consists of introductory slides on ecosystem services in urban landscapes and then a discussion of two case studies concerning the provision of water quality in urban landscapes. The introductory slides will explore the range of ecosystem services provided by u...
Yang, Haile; Chen, Jiakuan
2018-01-01
The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems.
Chen, Jiakuan
2018-01-01
The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems. PMID:29415066
Deacon, Samantha; Norman, Steve; Nicolette, Joseph; Reub, Gregory; Greene, Gretchen; Osborn, Rachel; Andrews, Paul
2015-02-01
The European regulatory system for the approval of pesticides includes a thorough evaluation of risks to the environment and is designed to be protective of ecosystems. However, a decision to ban an agrochemical could also potentially have a negative impact on the value of ecosystem services, if resulting changes in crop management are damaging to ecosystems or result in negative socio-economic impacts. To support regulatory decision-making, consideration of ecosystem services to identify best environmental management options could be a way forward. There is generally a growing trend for the consideration of ecosystem services in decision making. Ecosystems provide the conditions for growing food, regulate water and provide wildlife habitats; these, amongst others, are known as ecosystem services. The objectives of this case study were to bring a holistic approach to decision making by valuing the environmental, social and economic benefits derived from the use of chlorpyrifos in Valencian citrus production. Spanish growers harvest between 5 and 6 milliont of citrus annually, worth an estimated €5 to 7 billion in food markets throughout Europe. The approach highlighted the potential for unintended negative consequences of regulatory decisions if the full context is not considered. In this study, rather than a regulatory restriction, the best option was the continued use of chlorpyrifos together with vegetated conservation patches as refuges for non-target insects. The conservation patches offset potential insecticidal impacts to insects whilst maintaining citrus production, farm income and the amenity value of the citrus landscape of Valencia. This was an initial proof-of-concept study and illustrates the importance of a wider perspective; other cases may have different outcomes depending on policies, the pesticide, crop scenarios, farm economics and the region. Copyright © 2014 Elsevier B.V. All rights reserved.
Book Review: Large-Scale Ecosystem Restoration: Five Case Studies from the United States
Broad-scale ecosystem restoration efforts involve a very complex set of ecological and societal components, and the success of any ecosystem restoration project rests on an integrated approach to implementation. Editors Mary Doyle and Cynthia Drew have successfully synthesized ma...
NASA Astrophysics Data System (ADS)
Hack, J.
2010-08-01
The importance of intact ecosystems for human-wellbeing as well as the dependence on functions and services they provide is undoubted. But still neither the costs of ecosystem degradation nor the benefits from ecosystem functions and services appear on socio-economic balance sheets when development takes place. Consequently overuse of natural resources is socio-economically promoted by conventional resource management policies and external effects (externalities), equally positives and negatives, remain unregarded. In this context the potential of payments for hydrological ecosystem services as a political instrument to foster sustainable natural resource use, and rural development shall be investigated. This paper introduces the principle concept of such payments, presents a case study from Nicaragua and highlights preliminary effects of the application of this instrument on natural resource use and development.
Adapting California’s ecosystems to a changing climate
Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart
2017-01-01
Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.
Burrowing shrimps are regarded as ecosystem engineering species in many coastal ecosystems worldwide, including numerous estuaries of the west coast of North America (Baja California to British Columbia). In estuaries of the U.S. Pacific Northwest, two species of large burrowing...
Ecosystem Services Insights into Water Resources Management in China: A Case of Xi’an City
Liu, Jingya; Li, Jing; Gao, Ziyi; Yang, Min; Qin, Keyu; Yang, Xiaonan
2016-01-01
Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi’an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index’s weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem’s service capability is closely related to water resources, providing a method for managing water resources. Using Xi’an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers. PMID:27886137
NASA Astrophysics Data System (ADS)
Halbe, Johannes; Knüppe, Kathrin; Knieper, Christian; Pahl-Wostl, Claudia
2018-04-01
The utilization of ecosystem services in flood management is challenged by the complexity of human-nature interactions and practical implementation barriers towards more ecosystem-based solutions, such as riverine urban areas or technical infrastructure. This paper analyses how flood management has dealt with trade-offs between ecosystem services and practical constrains towards more ecosystem-based solutions. To this end, we study the evolution of flood management in four case studies in the Dutch and German Rhine, the Hungarian Tisza, and the Chinese Yangtze basins during the last decades, focusing on the development and implementation of institutions and their link to ecosystem services. The complexity of human-nature interactions is addressed by exploring the impacts on ecosystem services through the lens of three management paradigms: (1) the control paradigm, (2) the ecosystem-based paradigm, and (3) the stakeholder involvement paradigm. Case study data from expert interviews and a literature search were structured using a database approach prior to qualitative interpretation. Results show the growing importance of the ecosystem-based and stakeholder involvement paradigms which has led to the consideration of a range of regulating and cultural ecosystem services that had previously been neglected. We detected a trend in flood management practice towards the combination of the different paradigms under the umbrella of integrated flood management, which aims at finding the most suitable solution depending on the respective regional conditions.
Wang, Shujun; Liu, Jian; Wang, Renqing; Ni, Zirong; Xu, Shipeng; Sun, Yueyao
2012-05-01
Ecosystems and their components provide a lot of benefits for the welfare of human beings. Coupled with increasing socioeconomic development, most of the rapidly developing and transitional countries and regions have been experiencing dramatic land use changes. This has resulted in a large amount of forestland, grassland, and wetland being occupied as residential and industrial land or reclaimed for arable land, which in turn results in a sharp deterioration of ecosystem services around the world. Shandong Province, an economically powerful province of China, was chosen as a case study in order to capture the impact of socioeconomic development on ecosystem services. By way of the study, land uses and their changes were categorized between 1980 and 2006, and the ecosystem services capital and changes of 111 counties of Shandong Province in different phases were evaluated, as well as the total ecosystem services capital, followed by the zoning of ecosystem services function region of Shandong Province. We found that the counties in mountainous areas and wetlands, where generally the prefectural-level cities are located with a rapid socioeconomic development, experienced a successive deterioration of ecosystem services especially during the 2000s. Finally, three conservation strategies for managing and improving ecosystem services were proposed and discussed with the aim of achieving coordinate and sustainable development of the socioeconomy, environment, and ecosystems not only in Shandong Province but also in other provinces of China, as well as in other developing and transitional countries and regions.
Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation
Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E.
2000-01-01
Many methods and criteria are available to assess aquatic ecosystems, and this review focuses on a set that demonstrates advancements from community analyses to methods spanning large spatial and temporal scales. Basic methods have been extended by incorporating taxa sensitivity to different forms of stress, adding measures linked to system function, synthesizing multiple faunal groups, integrating biological and physical attributes, spanning large spatial scales, and enabling simulations through time. These tools can be customized to meet the needs of a particular assessment and ecosystem. Two case studies are presented to show how new methods were applied at the ecosystem scale for achieving practical management goals. One case used an assessment of biotic structure to demonstrate how enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem. In the second case, multitaxonomic integrity indicators were successful in distinguishing lake ecosystems that were disturbed, healthy, and in the process of restoration. Most methods strive to address the concept of biological integrity and assessment effectiveness often can be impeded by the lack of more specific ecosystem management objectives. Scientific and policy explorations are needed to define new ways for designating a healthy system so as to allow specification of precise quality criteria that will promote further development of ecosystem analysis tools.
The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework
Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.
2013-01-01
There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers. PMID:23951002
The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.
Kelble, Christopher R; Loomis, Dave K; Lovelace, Susan; Nuttle, William K; Ortner, Peter B; Fletcher, Pamela; Cook, Geoffrey S; Lorenz, Jerry J; Boyer, Joseph N
2013-01-01
There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.
N-dimensional hypervolumes to study stability of complex ecosystems
Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara
2016-01-01
Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. PMID:27282314
Volume II: Ecosystem management: principles and applications.
M.E. Jensen; P.S. Bourgeron
1994-01-01
This document provides land managers with practical suggestions for implementing ecosystem management. It contains 28 papers organized into five sections: historical perspectives, ecological principles, sampling design, case studies, and implementation strategies.
Erlandson, Jon M; Rick, Torben C
2010-01-01
Interdisciplinary study of coastal archaeological sites provides a wealth of information on the ecology and evolution of ancient marine animal populations, the structure of past marine ecosystems, and the history of human impacts on coastal fisheries. In this paper, we review recent methodological developments in the archaeology and historical ecology of coastal regions around the world. Using two case studies, we examine (a) a deep history of anthropogenic effects on the marine ecosystems of California's Channel Islands through the past 12,000 years and (b) geographic variation in the effects of human fishing on Pacific Island peoples who spread through Oceania during the late Holocene. These case studies--the first focused on hunter-gatherers, the second on maritime horticulturalists-provide evidence for shifting baselines and timelines, documenting a much deeper anthropogenic influence on many coastal ecosystems and fisheries than considered by most ecologists, conservation biologists, and fisheries managers.
Zagonari, Fabio
2016-04-01
In this paper, I propose a general, consistent, and operational approach that accounts for ecosystem services in a decision-making context: I link ecosystem services to sustainable development criteria; adopt multi-criteria analysis to measure ecosystem services, with weights provided by stakeholders used to account for equity issues; apply both temporal and spatial discount rates; and adopt a technique to order performance of the possible solutions based on their similarity to an ideal solution (TOPSIS) to account for uncertainty about the parameters and functions. Applying this approach in a case study of an offshore research platform in Italy (CNR Acqua Alta) revealed that decisions depend non-linearly on the degree of loss aversion, to a smaller extent on a global focus (as opposed to a local focus), and to the smallest extent on social concerns (as opposed to economic or environmental concerns). Application of the general model to the case study leads to the conclusion that the ecosystem services framework is likely to be less useful in supporting decisions than in identifying the crucial features on which decisions depend, unless experts from different disciplines are involved, stakeholders are represented, and experts and stakeholders achieve mutual understanding. Copyright © 2016 Elsevier B.V. All rights reserved.
Drawing a link between habitat change and production and delivery of ecosystem services is a priority in coastal estuarine ecosystems. This link is needed to fully understand how human communities can influence ecosystem sustainability. Mechanistic modeling tools are highly fun...
One recent research focus of EPA is quantifying a range of ecosystem services, the benefits that ecosystems provide to humans, in order to promote informed natural resource management decisions and to assess the effectiveness of existing environmental policies. A case study is u...
Knowledge Management in Preserving Ecosystems: The Case of Seoul
ERIC Educational Resources Information Center
Lee, Jeongseok
2009-01-01
This study explores the utility of employing knowledge management as a framework for understanding how public managers perform ecosystem management. It applies the grounded theory method to build a model. The model is generated by applying the concept of knowledge process to an investigation of how the urban ecosystem is publicly managed by civil…
One recent research focus of EPA is quantifying a range of ecosystem services, the benefits that ecosystems provide to humans, in order to promote informed natural resource management decisions and to assess the effectiveness of existing environmental policies. A case study is u...
Impacts of biogas projects on agro-ecosystem in rural areas — A case study of Gongcheng
NASA Astrophysics Data System (ADS)
Yang, Jin; Chen, Weichao; Chen, Bin
2011-09-01
The rapid growth of agro-ecosystem has been the focus of "New Rural Construction" in China due to intensive energy consumption and environmental pollution in rural areas. As a kind of renewable energy, biogas is helpful for new energy development and plays an important role in the sustainable development of agro-ecosystem in China. To evaluate the effects of biogas on agro-ecosystem from a systematic angle, we discussed the status quo of household biogas and identified its main factors that may have impacts on agro-ecosystem. An indicator framework covering environmental, social and economic aspects was established to quantify the impacts exerted by biogas project on agro-ecosystem. A case study of Gongcheng was then conducted to evaluate the combined impact of biogas project using the proposed indicator framework. Results showed that there was a notable positive effect brought by the application of biogas, and the integrated benefit has been significantly improved by 60.36%, implying that biogas as a substitute energy source can promote the sustainable level of rural areas.
Christopher W. Woodall; Grant M. Domke
2012-01-01
Forest ecosystems have the ability to reduce the effects of climate change through the sequestration of carbon (C) (Pan et al. 2011) as well as contribute to net emissions through disturbance events such as wildfires and widespread tree mortality (Kurz et al. 2008). A conceptual framework for assessing climate-change risks to forest ecosystem C stocks facilitates...
NASA Astrophysics Data System (ADS)
García-Santos, Glenda; Madruga de Brito, Mariana; Höllermann, Britta; Taft, Linda; Almoradie, Adrian; Evers, Mariele
2018-06-01
Understanding the interactions between water resources and its social dimensions is crucial for an effective and sustainable water management. The identification of sensitive control variables and feedback loops of a specific human-hydro-scape can enhance the knowledge about the potential factors and/or agents leading to the current water resources and ecosystems situation, which in turn supports the decision-making process of desirable futures. Our study presents the utility of a system dynamics modeling approach for water management and decision-making for the case of a forest ecosystem under risk of wildfires. We use the pluralistic water research concept to explore different scenarios and simulate the emergent behaviour of water interception and net precipitation after a wildfire in a forest ecosystem. Through a case study, we illustrate the applicability of this new methodology.
Beaumont, N J; Austen, M C; Atkins, J P; Burdon, D; Degraer, S; Dentinho, T P; Derous, S; Holm, P; Horton, T; van Ierland, E; Marboe, A H; Starkey, D J; Townsend, M; Zarzycki, T
2007-03-01
This paper identifies and defines ecosystem goods and services provided by marine biodiversity. Case studies have been used to provide an insight into the practical issues associated with the assessment of marine ecosystem goods and services at specific locations. The aim of this research was to validate the definitions of goods and services, and to identify knowledge gaps and likely difficulties of quantifying the goods and services. A validated theoretical framework for the assessment of goods and services is detailed, and examples of the goods and services at a variety of case study areas are documented. These results will enable future assessments of marine ecosystem goods and services. It is concluded that the utilisation of this goods and services approach has the capacity to play a fundamental role in the Ecosystem Approach, by enabling the pressures and demands of society, the economy and the environment to be integrated into environmental management.
Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems
Gsell, Alena Sonia; Scharfenberger, Ulrike; Ozkundakci, Deniz; Walters, Annika W.; Hansson, Lars-Anders; Janssen, Annette B. G.; Noges, Peeter; Reid, Philip; Schindler, Daniel; van Donk, Ellen; Dakos, Vasilis; Adrian, Rita
2016-01-01
Ecosystems can show sudden and persistent changes in state despite only incremental changes in drivers. Such critical transitions are difficult to predict, because the state of the system often shows little change before the transition. Early-warning indicators (EWIs) are hypothesized to signal the loss of system resilience and have been shown to precede critical transitions in theoretical models, paleo-climate time series, and in laboratory as well as whole lake experiments. The generalizability of EWIs for detecting critical transitions in empirical time series of natural aquatic ecosystems remains largely untested, however. Here we assessed four commonly used EWIs on long-term datasets of five freshwater ecosystems that have experienced sudden, persistent transitions and for which the relevant ecological mechanisms and drivers are well understood. These case studies were categorized by three mechanisms that can generate critical transitions between alternative states: competition, trophic cascade, and intraguild predation. Although EWIs could be detected in most of the case studies, agreement among the four indicators was low. In some cases, EWIs were detected considerably ahead of the transition. Nonetheless, our results show that at present, EWIs do not provide reliable and consistent signals of impending critical transitions despite using some of the best routinely monitored freshwater ecosystems. Our analysis strongly suggests that a priori knowledge of the underlying mechanisms driving ecosystem transitions is necessary to identify relevant state variables for successfully monitoring EWIs.
Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems.
Gsell, Alena Sonia; Scharfenberger, Ulrike; Özkundakci, Deniz; Walters, Annika; Hansson, Lars-Anders; Janssen, Annette B G; Nõges, Peeter; Reid, Philip C; Schindler, Daniel E; Van Donk, Ellen; Dakos, Vasilis; Adrian, Rita
2016-12-13
Ecosystems can show sudden and persistent changes in state despite only incremental changes in drivers. Such critical transitions are difficult to predict, because the state of the system often shows little change before the transition. Early-warning indicators (EWIs) are hypothesized to signal the loss of system resilience and have been shown to precede critical transitions in theoretical models, paleo-climate time series, and in laboratory as well as whole lake experiments. The generalizability of EWIs for detecting critical transitions in empirical time series of natural aquatic ecosystems remains largely untested, however. Here we assessed four commonly used EWIs on long-term datasets of five freshwater ecosystems that have experienced sudden, persistent transitions and for which the relevant ecological mechanisms and drivers are well understood. These case studies were categorized by three mechanisms that can generate critical transitions between alternative states: competition, trophic cascade, and intraguild predation. Although EWIs could be detected in most of the case studies, agreement among the four indicators was low. In some cases, EWIs were detected considerably ahead of the transition. Nonetheless, our results show that at present, EWIs do not provide reliable and consistent signals of impending critical transitions despite using some of the best routinely monitored freshwater ecosystems. Our analysis strongly suggests that a priori knowledge of the underlying mechanisms driving ecosystem transitions is necessary to identify relevant state variables for successfully monitoring EWIs.
Biological indices of soil quality: an ecosystem case study of their use
Jennifer D. Knoepp; David C. Coleman; D.A. Crossley; James S. Clark
2000-01-01
Soil quality indices can help ensure that site productivity and soil function are maintained. Biological indices yield evidence of how a soil functions and interacts with the plants, animals, and climate that comprise an ecosystem. Soil scientists can identify and quantify both chemical and biological soil-quality indicators for ecosystems with a single main function,...
Spatial complementarity of forests and farms: accounting for ecosystem services
Subhrendu K. Pattanayak; David T. Butry
2006-01-01
Our article considers the economic contributions of forest ecosystem services, using a case study from Flores, Indonesia, in which forest protection in upstream watersheds stabilize soil and hydrological flows in downstream farms. We focus on the demand for a weak complement to the ecosystem services--farm labor-- and account for spatial dependence due to economic...
Zhang, K; Li, Y P; Huang, G H; You, L; Jin, S W
2015-11-15
In this study, a superiority-inferiority two-stage stochastic programming (STSP) method is developed for planning regional ecosystem sustainable development. STSP can tackle uncertainties expressed as fuzzy sets and probability distributions; it can be used to analyze various policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. STSP is applied to a real case of planning regional ecosystem sustainable development in the City of Dongying, where ecosystem services valuation approaches are incorporated within the optimization process. Regional ecosystem can provide direct and indirect services and intangible benefits to local economy. Land trading mechanism is introduced for planning the regional ecosystem's sustainable development, where wetlands are buyers who would protect regional ecosystem components and self-organization and maintain its integrity. Results of regional ecosystem activities, land use patterns, and land trading schemes have been obtained. Results reveal that, although large-scale reclamation projects can bring benefits to the local economy development, they can also bring with negative effects to the coastal ecosystem; among all industry activities oil field is the major contributor with a large number of pollutant discharges into local ecosystem. Results also show that uncertainty has an important role in successfully launching such a land trading program and trading scheme can provide more effective manner to sustain the regional ecosystem. The findings can help decision makers to realize the sustainable development of ecological resources in the process of rapid industrialization, as well as the integration of economic and ecological benefits. Copyright © 2015 Elsevier B.V. All rights reserved.
N-dimensional hypervolumes to study stability of complex ecosystems.
Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara
2016-07-01
Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. © 2016 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Erlandson, Jon M.; Rick, Torben C.
2010-01-01
Interdisciplinary study of coastal archaeological sites provides a wealth of information on the ecology and evolution of ancient marine animal populations, the structure of past marine ecosystems, and the history of human impacts on coastal fisheries. In this paper, we review recent methodological developments in the archaeology and historical ecology of coastal regions around the world. Using two case studies, we examine (a) a deep history of anthropogenic effects on the marine ecosystems of California's Channel Islands through the past 12,000 years and (b) geographic variation in the effects of human fishing on Pacific Island peoples who spread through Oceania during the late Holocene. These case studies—the first focused on hunter-gatherers, the second on maritime horticulturalists—provide evidence for shifting baselines and timelines, documenting a much deeper anthropogenic influence on many coastal ecosystems and fisheries than considered by most ecologists, conservation biologists, and fisheries managers.
Coastal Zone Ecosystem Services: from science to values and decision making; a case study.
Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W
2014-09-15
This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Violle, Cyrille; Choler, Philippe; Borgy, Benjamin; Garnier, Eric; Amiaud, Bernard; Debarros, Guilhem; Diquelou, Sylvain; Gachet, Sophie; Jolivet, Claudy; Kattge, Jens; Lavorel, Sandra; Lemauviel-Lavenant, Servane; Loranger, Jessy; Mikolajczak, Alexis; Munoz, François; Olivier, Jean; Viovy, Nicolas
2015-11-15
The effect of biodiversity on ecosystem functioning has been widely acknowledged, and the importance of the functional roles of species, as well as their diversity, in the control of ecosystem processes has been emphasised recently. However, bridging biodiversity and ecosystem science to address issues at a biogeographic scale is still in its infancy. Bridging this gap is the primary goal of the emerging field of functional biogeography. While the rise of Big Data has catalysed functional biogeography studies in recent years, comprehensive evidence remains scarce. Here, we present the rationale and the first results of a country-wide initiative focused on the C3 permanent grasslands. We aimed to collate, integrate and process large databases of vegetation relevés, plant traits and environmental layers to provide a country-wide assessment of ecosystem properties and services which can be used to improve regional models of climate and land use changes. We outline the theoretical background, data availability, and ecoinformatics challenges associated with the approach and its feasibility. We provide a case study of upscaling of leaf dry matter content averaged at ecosystem level and country-wide predictions of forage digestibility. Our framework sets milestones for further hypothesis testing in functional biogeography and earth system modelling. Copyright © 2015 Elsevier B.V. All rights reserved.
Heather A. Sander; Robert G. Haight
2012-01-01
A need exists to increase both knowledge and recognition of the values associated with ecosystem services and amenities. This article explores the use of hedonic pricing as a tool for eliciting these values. We take a case study approach, valuing several services provided by ecosystems, namely aesthetic quality (views), access to outdoor recreation, and the benefits...
Zhenmin Zheng; Bojie Fu; Haitang Hu; Ge Sun
2014-01-01
Ecosystem services are increasingly recognized as the foundations of a well-functioning society. Large-scale ecological restoration projects have been implemented around China with the goal of restoring and sustaining ecosystem services, especially in vulnerable semi-arid regions where soil and water resources are most stressed due to historic human activities. The...
EPA’s Office of Research and Development’s Sustainable and Healthy Communities Research Program is developing tools and approaches to incorporate ecosystem goods and services concepts into community-level decision-making. The San Juan Community Study is one of a serie...
Case studies in key selected coral reefs and watersheds will be completed to provide scientific data, concepts and models that describe the responses of the functioning of these ecosystems to global change stressors. The studies will focus on relating global changes to local and...
Davies, Thomas W; Jenkins, Stuart R; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J; Hiddink, Jan G
2011-01-01
Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1:1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent "worst case scenarios" because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a "best case scenario" that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future.
Davies, Thomas W.; Jenkins, Stuart R.; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J.; Hiddink, Jan G.
2011-01-01
Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1∶1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent “worst case scenarios” because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a “best case scenario” that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future. PMID:22163297
Treating powerless minorities through an ecosystem approach.
Chung, W S; Pardeck, J T
1997-01-01
An ecological approach to social work practice for a minority based on an ecosystem-oriented assessment-intervention model is presented. Strengths and limitations of the ecological perspective for practice are emphasized (in the context of power dynamics). A case study is presented.
Biocultural Ecology: Exploring the Social Construction of the Southern Appalachain Ecosystem
David P. Robertson; R. Bruce Hull
2003-01-01
The idea of a Southern Appalachian Ecosystem is now so much a part of our everyday language that many of the people who talk, write, and make decisions about thc place are unaware of the long and complicated history behind the idea. One primary purpose of this case study was to demonstrate how the Southern Appalachian Ecosystem has been socially constructed and reified...
Jason B. Dunham; Susan B. Adams; Robert E. Schroeter; Douglas C. Novinger
2002-01-01
Experience from case studies of biological invasions in aquatic ecosystems has motivated a set of proposed empirical ârulesâ for understanding patterns of invasion and impacts on native species. Further evidence is needed to better understand these patterns, and perhaps contribute to a useful predictive theory of invasions. We reviewed the case of brook trout (
Integrated Approaches to Estuarine Use and Protection: Tampa Bay Ecosystem Services Case Study.
The Tampa Bay region faces projected stress from climate change, contaminants, nutrients, and of human development on a natural ecosystem that is valued (economically, aesthetically and culturally) in its present state. With fast-paced population increases, conversion and develop...
Considering Environment, Economy, And Society In Land-Use: A Case Study - Stella, Missouri
Human life is conditional upon intact ecosystems that provide goods and services required to sustain human life. Because development will incrementally and cumulative consume the biophysical environment, the conditions of intact ecosystems must be the basis for how the environme...
Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands
Turnbull, L.; Wilcox, B.P.; Belnap, J.; Ravi, S.; D'Odorico, P.; Childers, D.; Gwenzi, W.; Okin, G.; Wainwright, J.; Caylor, K.K.; Sankey, T.
2012-01-01
Ecohydrological feedbacks are likely to be critical for understanding the mechanisms by which changes in exogenous forces result in ecosystem state change. We propose that in drylands, the dynamics of ecosystem state change are determined by changes in the type (stabilizing vs amplifying) and strength of ecohydrological feedbacks following a change in exogenous forces. Using a selection of five case studies from drylands, we explore the characteristics of ecohydrological feedbacks and resulting dynamics of ecosystem state change. We surmise that stabilizing feedbacks are critical for the provision of plant-essential resources in drylands. Exogenous forces that break these stabilizing feedbacks can alter the state of the system, although such changes are potentially reversible if strong amplifying ecohydrological feedbacks do not develop. The case studies indicate that if amplifying ecohydrological feedbacks do develop, they are typically associated with abiotic processes such as runoff, erosion (by wind and water), and fire. These amplifying ecohydrological feedbacks progressively modify the system in ways that are long-lasting and possibly irreversible on human timescales.
Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model
Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.
2013-01-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. PMID:22749872
Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.
Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H
2012-11-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. Copyright © 2012 Elsevier Inc. All rights reserved.
Historical wildfire impacts on ponderosa pine tree overstories: An Arizona case study
Peter F. Ffolliott; Cody L. Stropki; Daniel G. Neary
2008-01-01
The Rodeo-Chediski Wildfire--the largest in Arizona's history--damaged or destroyed ecosystem resources and disrupted ecosystem functioning in a largely mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of this wildfire on tree overstories were studied for 5 years (2002 to 2007) on two watersheds...
ERIC Educational Resources Information Center
Lewis, Donna S.
2010-01-01
The purpose of this study was to describe a collaborative partnership model known as the Global Educational Ecosystem, which involves three K-12 schools in Northern California, community organizations (representing science, technology, health, and arts), and Xilinx, Inc. from the perspectives of the leaders of the involved partner organizations in…
Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.
Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen
2016-02-15
The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout. Copyright © 2015 Elsevier Ltd. All rights reserved.
Havens, K E; Hauxwell, J; Tyler, A C; Thomas, S; McGlathery, K J; Cebrian, J; Valiela, I; Steinman, A D; Hwang, S J
2001-01-01
The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in marine and freshwater systems. In this paper we examine four case studies and test whether these models generally apply. We also identify other complex interactions among the autotrophs that may influence ecosystem response to cultural eutrophication. The marine case studies focus on macroalgae and its interactions with sediments and vascular plants. The freshwater case studies focus on interactions between phytoplankton, epiphyton, and benthic microalgae. In Waquoit Bay, MA (estuary), controlled experiments documented that blooms of macroalgae were responsible for the loss of eelgrass beds at nutrient-enriched locations. Macroalgae covered eelgrass and reduced irradiance to the extent that the plants could not maintain net growth. In Hog Island Bay, VA (estuary), a dense lawn of macroalgae covered the bottom sediments. There was reduced sediment-water nitrogen exchange when the algae were actively growing and high nitrogen release during algal senescence. In Lakes Brobo (West Africa) and Okeechobee (FL), there were dramatic seasonal changes in the biomass and phosphorus content of planktonic versus attached algae, and these changes were coupled with changes in water level and abiotic turbidity. Deeper water and/or greater turbidity favored dominance by phytoplankton. In Lake Brobo there also was evidence that phytoplankton growth was stimulated following a die-off of vascular plants. The case studies from Waquoit Bay and Lake Okeechobee support conceptual models of succession from vascular plants to benthic algae to phytoplankton along gradients of increasing nutrients and decreasing under-water irradiance. The case studies from Hog Island Bay and Lake Brobo illustrate additional effects (modified sediment-water nutrient fluxes, allelopathy or nutrient release during plant senescence) that could play a role in ecosystem response to nutrient stress.
Benefits of investing in ecosystem restoration.
DE Groot, Rudolf S; Blignaut, James; VAN DER Ploeg, Sander; Aronson, James; Elmqvist, Thomas; Farley, Joshua
2013-12-01
Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies) of ecosystem restoration projects that had sufficient reliable data in 9 different biomes ranging from coral reefs to tropical forests. Costs included capital investment and maintenance of the restoration project, and benefits were based on the monetary value of the total bundle of ecosystem services provided by the restored ecosystem. Assuming restoration is always imperfect and benefits attain only 75% of the maximum value of the reference systems over 20 years, we calculated the net present value at the social discount rates of 2% and 8%. We also conducted 2 threshold cum sensitivity analyses. Benefit-cost ratios ranged from about 0.05:1 (coral reefs and coastal systems, worst-case scenario) to as much as 35:1 (grasslands, best-case scenario). Our results provide only partial estimates of benefits at one point in time and reflect the lower limit of the welfare benefits of ecosystem restoration because both scarcity of and demand for ecosystem services is increasing and new benefits of natural ecosystems and biological diversity are being discovered. Nonetheless, when accounting for even the incomplete range of known benefits through the use of static estimates that fail to capture rising values, the majority of the restoration projects we analyzed provided net benefits and should be considered not only as profitable but also as high-yielding investments. Beneficios de Invertir en la Restauración de Ecosistemas. © 2013 Society for Conservation Biology.
Defining Ecosystem Assets for Natural Capital Accounting.
Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter
2016-01-01
In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems' capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks.
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.
2010-12-01
Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.
Bagstad, Kenneth J.; Semmens, Darius J.; Winthrop, Robert
2013-01-01
Although the number of ecosystem service modeling tools has grown in recent years, quantitative comparative studies of these tools have been lacking. In this study, we applied two leading open-source, spatially explicit ecosystem services modeling tools – Artificial Intelligence for Ecosystem Services (ARIES) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) – to the San Pedro River watershed in southeast Arizona, USA, and northern Sonora, Mexico. We modeled locally important services that both modeling systems could address – carbon, water, and scenic viewsheds. We then applied managerially relevant scenarios for urban growth and mesquite management to quantify ecosystem service changes. InVEST and ARIES use different modeling approaches and ecosystem services metrics; for carbon, metrics were more similar and results were more easily comparable than for viewsheds or water. However, findings demonstrate similar gains and losses of ecosystem services and conclusions when comparing effects across our scenarios. Results were more closely aligned for landscape-scale urban-growth scenarios and more divergent for a site-scale mesquite-management scenario. Follow-up studies, including testing in different geographic contexts, can improve our understanding of the strengths and weaknesses of these and other ecosystem services modeling tools as they move closer to readiness for supporting day-to-day resource management.
Great Lakes rivermouths: a primer for managers
Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul
2013-01-01
Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described by the Millennium Ecosystem Assessment (Table1). Collectively, this primer synthesizes existing information in a new way that aims to support management of rivermouths as distinct and important ecosystems. The development and management decisions made around rivermouths today will shape the future of these ecosystems, and the human communities within them, well into the future. 1 The information presented in this paper was derived from discussions and draft documents of the Great Lakes Rivermouth Collaboratory. The Great Lakes Rivermouth Collaboratory was established by the U.S. Geological Survey's Great Lakes Science Center (USGS-GLSC) in collaboration with the Great Lakes Commission to engage the Great Lakes scientific community in sharing and documenting knowledge about freshwater rivermouth ecosystems. For more information, see http://www.glc.org/habitat/Rivermouth-Collaboratory.html.
Maltby, Lorraine; Jackson, Mathew; Whale, Graham; Brown, A Ross; Hamer, Mick; Solga, Andreas; Kabouw, Patrick; Woods, Richard; Marshall, Stuart
2017-02-15
Clearly defined protection goals specifying what to protect, where and when, are required for designing scientifically sound risk assessments and effective risk management of chemicals. Environmental protection goals specified in EU legislation are defined in general terms, resulting in uncertainty in how to achieve them. In 2010, the European Food Safety Authority (EFSA) published a framework to identify more specific protection goals based on ecosystem services potentially affected by plant protection products. But how applicable is this framework to chemicals with different emission scenarios and receptor ecosystems? Four case studies used to address this question were: (i) oil refinery waste water exposure in estuarine environments; (ii) oil dispersant exposure in aquatic environments; (iii) down the drain chemicals exposure in a wide range of ecosystems (terrestrial and aquatic); (iv) persistent organic pollutant exposure in remote (pristine) Arctic environments. A four-step process was followed to identify ecosystems and services potentially impacted by chemical emissions and to define specific protection goals. Case studies demonstrated that, in principle, the ecosystem services concept and the EFSA framework can be applied to derive specific protection goals for a broad range of chemical exposure scenarios. By identifying key habitats and ecosystem services of concern, the approach offers the potential for greater spatial and temporal resolution, together with increased environmental relevance, in chemical risk assessments. With modifications including improved clarity on terminology/definitions and further development/refinement of the key concepts, we believe the principles of the EFSA framework could provide a methodical approach to the identification and prioritization of ecosystems, ecosystem services and the service providing units that are most at risk from chemical exposure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Defining Ecosystem Assets for Natural Capital Accounting
Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter
2016-01-01
In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems’ capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks. PMID:27828969
Defining ecosystem assets for natural capital accounting
Hein, Lars; Bagstad, Kenneth J.; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter
2016-01-01
In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems’ capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks.
Analytical methods for Multi-Criteria Decision Analysis (MCDA) support the non-monetary valuation of ecosystem services for environmental decision making. Many published case studies transform ecosystem service outcomes into a common metric and aggregate the outcomes to set land ...
BASE (Basin-Scale Assessments for Sustainable Ecosystems) is a research program developed by the Ecosystems Research Division of the National Exposure Research Laboratory to explore and formulate approaches for assessing the sustainability of ecological resources within watershed...
Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...
Impacts of exotic forest pathogens on Mediterranean ecosystems: Four case studies
Matteo Garbelotto; Marco Pautasso
2011-01-01
Mediterranean ecosystems are hotspots of biodiversity. Because of a coincidence of high species richness and human presence, Mediterranean biodiversity is particularly threatened by processes such as habitat degradation, fragmentation and loss, pollution, climate change and introduction of invasive species. Invasive tree pathogens are among the problematic exotic...
Cai, Wenbo; Gibbs, David; Zhang, Lang; Ferrier, Graham; Cai, Yongli
2017-04-15
Rapid urbanization has altered many ecosystems, causing a decline in many ecosystem services, generating serious ecological crisis. To cope with these challenges, we presented a comprehensive framework comprising five core steps for identifying and managing hotspots of critical ecosystem services in a rapid urbanizing region. This framework was applied in the case study of the Yangtze River Delta (YRD) Region. The study showed that there was large spatial heterogeneity in the hotspots of ecosystem services in the region, hotspots of supporting services and regulating services aggregately distributing in the southwest mountainous areas while hotspots of provisioning services mainly in the northeast plain, and hotspots of cultural services widespread in the waterbodies and southwest mountainous areas. The regionalization of the critical ecosystem services was made through the hotspot analysis. This study provided valuable information for environmental planning and management in a rapid urbanizing region and helped improve China's ecological redlines policy at regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Bo; Han, Zeng-Lin; Tong, Lian-Jun
2009-05-01
By the methods of in situ investigation and regional ecological planning, the present ecological environment, ecosystem vulnerability, and ecological environment sensitivity in "Ji Triangle" Region were analyzed, and the ecological network of the study area was constructed. According to the ecological resources abundance degree, ecological recovery, farmland windbreak system, environmental carrying capacity, forestry foundation, and ecosystem integrity, the study area was classified into three regional ecological function ecosystems, i. e., east low hill ecosystem, middle plain ecosystem, and west plain wetland ecosystem. On the basis of marking regional ecological nodes, the regional ecological corridor (Haerbin-Dalian regional axis, Changchun-Jilin, Changchun-Songyuan, Jilin-Songyuan, Jilin-Siping, and Songyuan-Siping transportation corridor) and regional ecological network (one ring, three links, and three belts) were constructed. Taking the requests of regional ecological security into consideration, the ecological environment security system of "Ji Triangle" Region, including regional ecological conservation district, regional ecological restored district, and regional ecological management district, was built.
Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo
2013-01-01
Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.
Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management
NASA Astrophysics Data System (ADS)
Müller, Felix; Burkhard, Benjamin; Kroll, Franziska
In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the "adaptive cycle". Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.
NASA Astrophysics Data System (ADS)
Hirata, R.; Ito, A.; Saigusa, N.
2013-12-01
Carbon balance in a forest ecosystem can be quite variable if the forest ecosystem structure and function change abruptly as a result of disturbance and subsequent recovery processes. A map of forest age is useful for upscaling carbon balance from the site level to a regional scale because it provides information about when disturbance occurred and how it spread over a wide area. In this study, we used maps of forest age to help evaluate spatial and temporal variations in the carbon balance of forest ecosystems with a process-based ecosystem model. Forests less than 60 years old account for more than 70% of Japanese forests because forest stands have been quickly replaced after disturbance caused by thinning, harvesting, plantations, fires, typhoons, and insect damage. However, few studies have attempted to quantify how much disturbance affects the spatial and temporal variations of carbon balance. In this study, we focused on how disturbance and subsequent re-growth affected the spatial and temporal variations of the carbon balance of forests. We adapted the Vegetation Integrative SImulator for Trace Gases (VISIT) model in order to simulate carbon balance on Hokkaido, which is the northernmost island of Japan. The model was validated with tower flux data obtained from forests with ages between 0 and 43 years. Simulations of the carbon balance were conducted for the period 1948-2010 after a 1000-year spin-up at a spatial resolution of 1 km × 1 km. We investigated two case studies of simulated carbon balance: one that took into account the spatial distribution of forest ages derived from forest inventory data, and another that ignored the impact of disturbance (i.e., no disturbance and a homogeneous distribution of ages). We first focused on the difference from 2000-2010 in the spatial distribution of net ecosystem production (NEP) between the disturbance and non-disturbance cases. In the non-disturbance case, the temporal and spatial changes in NEP were gradual and ranged from 0 to 1 t C ha-1 y-1, depending on meteorological conditions such as temperature or solar radiation. In the disturbance case, however, large NEP changes ranging from 3 to 5 t C ha-1 y-1 were distributed in patches like hotspots, because the forests in those spots ranged in age from 20 to 100 years and were younger than the forests in the non-disturbance case. In the 1970s, wood harvesting and tree planting were conducted intensively on Hokkaido. In the disturbance case during this period, there were many hotspots where NEP was negative. We next focused on the difference between the disturbance and non-disturbance cases of temporal variations of spatially averaged NEP on Hokkaido. Until 1970, the difference between the two cases of average NEP was less than 0.01 t C ha-1 y-1. After 1970, the difference became large and reached about 0.5 t C ha-1 y-1, the implication being that the regional NEP in the disturbance case increased to as much as 2-5 times the regional NEP of the non-disturbance case. Our results show the importance of considering forest age when simulating the carbon balance of forests. Carbon balance maps that take forest age into account are useful for carbon management and prediction of ecosystem feedbacks on climate change.
Uncovering ecosystem service bundles through social preferences.
Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos
2012-01-01
Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.
Assessing and managing freshwater ecosystems vulnerable to global change
Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.
2014-01-01
Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.
Demková, Lenka; Árvay, Július; Bobuľská, Lenka; Tomáš, Ján; Stanovič, Radovan; Lošák, Tomáš; Harangozo, Luboš; Vollmannová, Alena; Bystrická, Judita; Musilová, Janette; Jobbágy, Ján
2017-04-16
Heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in soils and plants of four different ecosystems (forest, grassland, agro and urban ecosystem) at different distances from the source of the pollution were analyzed in order to assess and compare soil contamination in the various ecosystems and determine the potential accumulation of plants depending on the place they inhabit. Correlation relationships among heavy metals in soils differ depending on the ecosystem, and between soil and plant, the heavy metals showed significant correlation for Cu, Mn, Ni, Pb and Zn. Contamination factor (C f ), degree of contamination (C d ) and pollution load index (PLI) were used in order to determine the level of environmental contamination of the study area. All studied ecosystems were rated as moderately contaminated (except agroecosystem, which was found as low contamination ecosystem) according to C d and extremely polluted according to PLI. The highest pollution in both cases was found in urban ecosystem, and Cd, Cu and Fe were determined as the biggest pollutants.
NASA Astrophysics Data System (ADS)
Hurford, Anthony; Harou, Julien
2014-05-01
Water related eco-system services are important to the livelihoods of the poorest sectors of society in developing countries. Degradation or loss of these services can increase the vulnerability of people decreasing their capacity to support themselves. New approaches to help guide water resources management decisions are needed which account for the non-market value of ecosystem goods and services. In case studies from Brazil and Kenya we demonstrate the capability of many objective Pareto-optimal trade-off analysis to help decision makers balance economic and non-market benefits from the management of existing multi-reservoir systems. A multi-criteria search algorithm is coupled to a water resources management simulator of each basin to generate a set of Pareto-approximate trade-offs representing the best case management decisions. In both cases, volume dependent reservoir release rules are the management decisions being optimised. In the Kenyan case we further assess the impacts of proposed irrigation investments, and how the possibility of new investments impacts the system's trade-offs. During the multi-criteria search (optimisation), performance of different sets of management decisions (policies) is assessed against case-specific objective functions representing provision of water supply and irrigation, hydropower generation and maintenance of ecosystem services. Results are visualised as trade-off surfaces to help decision makers understand the impacts of different policies on a broad range of stakeholders and to assist in decision-making. These case studies show how the approach can reveal unexpected opportunities for win-win solutions, and quantify the trade-offs between investing to increase agricultural revenue and negative impacts on protected ecosystems which support rural livelihoods.
Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications
Burkett, Virginia R.; Wilcox, Douglas A.; Stottlemyer, Robert; Barrow, Wylie; Fagre, Dan; Baron, Jill S.; Price, Jeff; Nielsen, Jennifer L.; Allen, Craig D.; Peterson, David L.; Ruggerone, Greg; Doyle, Thomas
2005-01-01
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.
Li, Jing Xin; Yang, Li; Yang, Lei; Zhang, Chao; Huo, Zhao Min; Chen, Min Hao; Luan, Xiao Feng
2018-03-01
Quantitative evaluation of ecosystem service is a primary premise for rational resources exploitation and sustainable development. Examining ecosystem services flow provides a scientific method to quantity ecosystem services. We built an assessment indicator system based on land cover/land use under the framework of four types of ecosystem services. The types of ecosystem services flow were reclassified. Using entropy theory, disorder degree and developing trend of indicators and urban ecosystem were quantitatively assessed. Beijing was chosen as the study area, and twenty-four indicators were selected for evaluation. The results showed that the entropy value of Beijing urban ecosystem during 2004 to 2015 was 0.794 and the entropy flow was -0.024, suggesting a large disordered degree and near verge of non-health. The system got maximum values for three times, while the mean annual variation of the system entropy value increased gradually in three periods, indicating that human activities had negative effects on urban ecosystem. Entropy flow reached minimum value in 2007, implying the environmental quality was the best in 2007. The determination coefficient for the fitting function of total permanent population in Beijing and urban ecosystem entropy flow was 0.921, indicating that urban ecosystem health was highly correlated with total permanent population.
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Bremigan, Mary T.; Wagner, Tyler; Stow, Craig A.
2010-01-01
Governmental entities are responsible for managing and conserving large numbers of lake, river, and wetland ecosystems that can be addressed only rarely on a case-by-case basis. We present a system for predictive classification modeling, grounded in the theoretical foundation of landscape limnology, that creates a tractable number of ecosystem classes to which management actions may be tailored. We demonstrate our system by applying two types of predictive classification modeling approaches to develop nutrient criteria for eutrophication management in 1998 north temperate lakes. Our predictive classification system promotes the effective management of multiple ecosystems across broad geographic scales by explicitly connecting management and conservation goals to the classification modeling approach, considering multiple spatial scales as drivers of ecosystem dynamics, and acknowledging the hierarchical structure of freshwater ecosystems. Such a system is critical for adaptive management of complex mosaics of freshwater ecosystems and for balancing competing needs for ecosystem services in a changing world.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Z. M.; Papuga, S. A.
2012-12-01
Water limited ecosystems in arid and semiarid regions are characterized by sparse vegetation and a relatively large fraction of bare soil. Importantly, the land surface in these dryland regions is highly sensitive to pulses of moisture that affect the vegetation canopy in density and color, as well as the soil color. Changes in surface conditions due to these pulses have been shown to affect the surface energy fluxes and atmospheric processes in these regions. For instance, previous studies have shown that shallow soil moisture ( < 20 cm below the surface) significantly changes surface albedo (a= SWup/ SWin). Recent studies have highlighted the importance of deep soil moisture ( > 20 cm below the surface) for vegetation dynamics in these regions. We hypothesize that deep soil moisture will change vegetation canopy density and color enough that changes in albedo will be observable at the surface, therefore linking deep soil moisture and albedo. We adopt a conceptual framework to address this hypothesis, where at any point in time the soil profile falls into one of four cases: (1) dry shallow soil and dry deep soil; (2) wet shallow soil and dry deep soil; (3) wet shallow soil and wet deep soil; and (4) dry shallow soil and wet deep soil. At a creosotebush dominated ecosystem of the Santa Rita Experimental Range, southern Arizona during summers of 2011 and 2012, we took albedo measurements during these cases at multiple bare and vegetated patches within the footprint of an eddy covariance tower. We found that when the soil is completely dry (Case 1) albedo is highest in both bare and vegetated patches. Likewise, when the soil is wet in both the shallow and deep regions (Case 3), albedo is lowest in both bare and vegetated patches. Interestingly, we also found that albedo is significantly lower for vegetated patches when the deep soil is wet and shallow soil is dry (Case 4). These results imply that deep soil moisture can be important in altering ecosystem level albedo. We note that ecosystems with higher percent vegetative cover are likely to be more sensitive to deep soil moisture driven changes in albedo. To quantify the influence of percent cover on ecosystem albedo, we populate a 100 x 100 cell grid randomly with bare and vegetated cells. For each case, we assign an albedo value to each cell based on probability distribution functions (PDFs) of soil moisture and albedo created from our field campaign data. Using this technique we can identify for each soil moisture case at which point the percent vegetative cover will significantly influence ecosystem albedo. Quantitative analyses of these ecosystem interactions help identify the unique role of deep soil moisture in land surface - atmosphere interactions.
A survey of innovative contracting for quality jobs and ecosystem management.
Cassandra Moseley
2002-01-01
This survey identifies and defines innovative contracting mechanisms developed in the Forest Service Pacific Northwest Region and northern California. A survey of nine case studies reveals that several new mechanisms have facilitated ecosystem management, quality jobs, and administrative efficiencies, but at times innovation was hampered by Forest Service institutional...
Invasion of exotic earthworms into ecosystems inhabited by native earthworms
P.F. Hendrix; G.H. Baker; M.A. Jr. Callaham; G.A. Damoff; C. Fragoso; G. Gonzalez; S.W. James; S.L. Lachnicht; T. Winsome; X. Zou
2006-01-01
The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in...
Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications.
Virginia R. Burkett; Douglas A. Wilcox; Robert Stottlemeyer; Wylie Barrow; Dan Fagre; Jill Baron; Jeff Price; Jennifer L. Nielsen; Craig D. Allen; David L. Peterson; Greg Ruggerone; Thomas Doyle
2005-01-01
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that...
Brian R. Sturtevant; Brian R. Miranda; Jian Yang; Hong S. He; Eric J. Gustafson; Robert M. Scheller
2009-01-01
Public forests are surrounded by land over which agency managers have no control, and whose owners expect the public forest to be a "good neighbor." Fire risk abatement on multi-owner landscapes containing flammable but fire-dependent ecosystems epitomizes the complexities of managing public lands. We report a case study that applies a landscape disturbance...
Stanley T. Asah; Dale J. Blahna; Clare M. Ryan
2012-01-01
The ecosystem services (ES) approach entails integrating people into public forest management and managing to meet their needs and wants. Managers must find ways to understand what these needs are and how they are met. In this study, we used small group discussions, in a case study of the Deschutes National Forest, to involve community members and forest staff in...
Using multiple lines of evidence to assess the risk of ecosystem collapse
Regan, Tracey J.; Dinh, Minh Ngoc; Ferrari, Renata; Keith, David A.; Lester, Rebecca; Mouillot, David; Murray, Nicholas J.; Nguyen, Hoang Anh; Nicholson, Emily
2017-01-01
Effective ecosystem risk assessment relies on a conceptual understanding of ecosystem dynamics and the synthesis of multiple lines of evidence. Risk assessment protocols and ecosystem models integrate limited observational data with threat scenarios, making them valuable tools for monitoring ecosystem status and diagnosing key mechanisms of decline to be addressed by management. We applied the IUCN Red List of Ecosystems criteria to quantify the risk of collapse of the Meso-American Reef, a unique ecosystem containing the second longest barrier reef in the world. We collated a wide array of empirical data (field and remotely sensed), and used a stochastic ecosystem model to backcast past ecosystem dynamics, as well as forecast future ecosystem dynamics under 11 scenarios of threat. The ecosystem is at high risk from mass bleaching in the coming decades, with compounding effects of ocean acidification, hurricanes, pollution and fishing. The overall status of the ecosystem is Critically Endangered (plausibly Vulnerable to Critically Endangered), with notable differences among Red List criteria and data types in detecting the most severe symptoms of risk. Our case study provides a template for assessing risks to coral reefs and for further application of ecosystem models in risk assessment. PMID:28931744
Using multiple lines of evidence to assess the risk of ecosystem collapse.
Bland, Lucie M; Regan, Tracey J; Dinh, Minh Ngoc; Ferrari, Renata; Keith, David A; Lester, Rebecca; Mouillot, David; Murray, Nicholas J; Nguyen, Hoang Anh; Nicholson, Emily
2017-09-27
Effective ecosystem risk assessment relies on a conceptual understanding of ecosystem dynamics and the synthesis of multiple lines of evidence. Risk assessment protocols and ecosystem models integrate limited observational data with threat scenarios, making them valuable tools for monitoring ecosystem status and diagnosing key mechanisms of decline to be addressed by management. We applied the IUCN Red List of Ecosystems criteria to quantify the risk of collapse of the Meso-American Reef, a unique ecosystem containing the second longest barrier reef in the world. We collated a wide array of empirical data (field and remotely sensed), and used a stochastic ecosystem model to backcast past ecosystem dynamics, as well as forecast future ecosystem dynamics under 11 scenarios of threat. The ecosystem is at high risk from mass bleaching in the coming decades, with compounding effects of ocean acidification, hurricanes, pollution and fishing. The overall status of the ecosystem is Critically Endangered (plausibly Vulnerable to Critically Endangered), with notable differences among Red List criteria and data types in detecting the most severe symptoms of risk. Our case study provides a template for assessing risks to coral reefs and for further application of ecosystem models in risk assessment. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Lopes, Rita; Videira, Nuno
2015-12-01
A participatory system dynamics modelling approach is advanced to support conceptualization of feedback processes underlying ecosystem services and to foster a shared understanding of leverage intervention points. The process includes systems mapping workshop and follow-up tasks aiming at the collaborative construction of causal loop diagrams. A case study developed in a natural area in Portugal illustrates how a stakeholder group was actively engaged in the development of a conceptual model depicting policies for sustaining the climate regulation ecosystem service.
Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva
2016-11-01
Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adem Esmail, Blal, E-mail: blal.ademesmail@unitn.it; Geneletti, Davide
Watershed investments, whose main aim is to secure water for cities, represent a promising opportunity for large-scale sustainability transitions in the near future. If properly designed, they promote activities in the watershed that enhance ecosystem services while protecting nature and biodiversity, as well as achieving other societal goals. In this paper, we build on the concepts of ecosystem services and boundary work, to develop and test an operative approach for designing and assessing the impact of watershed investments. The approach is structured to facilitate negotiations among stakeholders. Its strategic component includes setting the agenda; defining investment scenarios; and assessing themore » performance of watershed investments as well as planning for a follow-up. Its technical component concerns data processing; tailoring spatially explicit ecosystem service models; hence their application to design a set of “investment portfolios”, generate future land use scenarios, and model impacts on selected ecosystem services. A case study illustrates how the technical component can be developed in a data scarce context in sub-Saharan Africa in a way that is functional to support the steps of the strategic component. The case study addresses soil erosion and water scarcity-related challenges affecting Asmara, a medium-sized city in Eritrea, and considers urban water security and rural poverty alleviation as two illustrative objectives, within a ten-year planning horizon. The case study results consist in spatially explicit data (investment portfolio, land use scenario, impact on ecosystem services), which were aggregated to quantitatively assess the performance of different watershed investments scenarios, in terms of changes in soil erosion control. By addressing stakeholders' concerns of credibility, saliency, and legitimacy, the approach is expected to facilitate negotiation of objectives, definition of scenarios, and assessment of alternative watershed investments, ultimately, to contribute to implementing an adaptive watershed management.« less
Valuing trade-offs of river ecosystem services in large hydropower development in Tibet, China
NASA Astrophysics Data System (ADS)
Yu, B.; Xu, L.
2015-12-01
Hydropower development can be considered as a kind of trade-offs of ecosystem services generated by human activity for their economic and energy demand, because it can increase some river ecosystem services but decrease others. In this context, an ecosystem service trade-off framework in hydropower development was proposed in this paper. It aims to identify the ecological cost of river ecosystem and serve for the ecological compensation during hydropower development, for the hydropower services cannot completely replace the regulating services of river ecosystem. The valuing trade-offs framework was integrated by the influenced ecosystem services identification and ecosystem services valuation, through ecological monitoring and ecological economic methods, respectively. With a case study of Pondo hydropower project in Tibet, China, the valuing trade-offs of river ecosystem services in large hydropower development was illustrated. The typical ecological factors including water, sediment and soil were analyzed in this study to identify the altered river ecosystem services by Pondo hydropower project. Through the field monitoring and valuation, the results showed that the Lhasa River ecosystem services value could be changed annually by Pondo hydropower project with the increment of 5.7E+8CNY, and decrement of 5.1E+7CNY. The ecological compensation for river ecosystem should be focus on water and soil conservation, reservoir dredging and tributaries habitat protection.
Uncovering Ecosystem Service Bundles through Social Preferences
Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A.; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos
2012-01-01
Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem’s capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem’s capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs. PMID:22720006
Ecosystem accounts define explicit and spatial trade-offs for managing natural resources.
Keith, Heather; Vardon, Michael; Stein, John A; Stein, Janet L; Lindenmayer, David
2017-11-01
Decisions about natural resource management are frequently complex and vexed, often leading to public policy compromises. Discord between environmental and economic metrics creates problems in assessing trade-offs between different current or potential resource uses. Ecosystem accounts, which quantify ecosystems and their benefits for human well-being consistent with national economic accounts, provide exciting opportunities to contribute significantly to the policy process. We advanced the application of ecosystem accounts in a regional case study by explicitly and spatially linking impacts of human and natural activities on ecosystem assets and services to their associated industries. This demonstrated contributions of ecosystems beyond the traditional national accounts. Our results revealed that native forests would provide greater benefits from their ecosystem services of carbon sequestration, water yield, habitat provisioning and recreational amenity if harvesting for timber production ceased, thus allowing forests to continue growing to older ages.
Lopes, Rita; Videira, Nuno
2016-08-01
This paper presents an innovative approach for conducting collaborative scoping processes aiming to elicit multiple values of ecosystem services. The proposed methodology rests on three steps combining different participatory tools that promote a comprehensive examination of the perceptions hold by relevant stakeholder groups. The first step consists of an institutional and stakeholder analysis developed in the study area. The second includes a participatory workshop, where a sequence of scoping exercises is conducted with the active collaboration of the invited stakeholders. The final step aims to validate scoping results and develop dependency networks between organizations and the identified ecosystem services. The approach was tested in the Arrábida Natural Park, a marine and coastal protected area in Portugal. Invited participants were able to identify an extensive list of ecosystem services in the natural area, establish linkages between those services and human wellbeing, identify drivers of change and perform a preliminary screening of the associated ecological, social, and economic values. The case study evaluation provided positive feedback on the usefulness of the approach, which advances the existing set of methods for participatory identification of ecosystem services and sets the scene for involvement of stakeholder groups in assessment and management processes.
NASA Astrophysics Data System (ADS)
Lopes, Rita; Videira, Nuno
2016-08-01
This paper presents an innovative approach for conducting collaborative scoping processes aiming to elicit multiple values of ecosystem services. The proposed methodology rests on three steps combining different participatory tools that promote a comprehensive examination of the perceptions hold by relevant stakeholder groups. The first step consists of an institutional and stakeholder analysis developed in the study area. The second includes a participatory workshop, where a sequence of scoping exercises is conducted with the active collaboration of the invited stakeholders. The final step aims to validate scoping results and develop dependency networks between organizations and the identified ecosystem services. The approach was tested in the Arrábida Natural Park, a marine and coastal protected area in Portugal. Invited participants were able to identify an extensive list of ecosystem services in the natural area, establish linkages between those services and human wellbeing, identify drivers of change and perform a preliminary screening of the associated ecological, social, and economic values. The case study evaluation provided positive feedback on the usefulness of the approach, which advances the existing set of methods for participatory identification of ecosystem services and sets the scene for involvement of stakeholder groups in assessment and management processes.
Estimating the value of non-use benefits from small changes in the provision of ecosystem services.
Dutton, Adam; Edwards-Jones, Gareth; Macdonald, David W
2010-12-01
The unit of trade in ecosystem services is usually the use of a proportion of the parcels of land associated with a given service. Valuing small changes in the provision of an ecosystem service presents obstacles, particularly when the service provides non-use benefits, as is the case with conservation of most plants and animals. Quantifying non-use values requires stated-preference valuations. Stated-preference valuations can provide estimates of the public's willingness to pay for a broad conservation goal. Nevertheless, stated-preference valuations can be expensive and do not produce consistent measures for varying levels of provision of a service. Additionally, the unit of trade, land use, is not always linearly related to the level of ecosystem services the land might provide. To overcome these obstacles, we developed a method to estimate the value of a marginal change in the provision of a non-use ecosystem service--in this case conservation of plants or animals associated with a given land-cover type. Our method serves as a tool for calculating transferable valuations of small changes in the provision of ecosystem services relative to the existing provision. Valuation is achieved through stated-preference investigations, calculation of a unit value for a parcel of land, and the weighting of this parcel by its ability to provide the desired ecosystem service and its effect on the ability of the surrounding land parcels to provide the desired service. We used the water vole (Arvicola terrestris) as a case study to illustrate the method. The average present value of a meter of water vole habitat was estimated at UK £ 12, but the marginal value of a meter (based on our methods) could range between £ 0 and £ 40 or more. © 2010 Society for Conservation Biology.
Identification and ranking of environmental threats with ecosystem vulnerability distributions.
Zijp, Michiel C; Huijbregts, Mark A J; Schipper, Aafke M; Mulder, Christian; Posthuma, Leo
2017-08-24
Responses of ecosystems to human-induced stress vary in space and time, because both stressors and ecosystem vulnerabilities vary in space and time. Presently, ecosystem impact assessments mainly take into account variation in stressors, without considering variation in ecosystem vulnerability. We developed a method to address ecosystem vulnerability variation by quantifying ecosystem vulnerability distributions (EVDs) based on monitoring data of local species compositions and environmental conditions. The method incorporates spatial variation of both abiotic and biotic variables to quantify variation in responses among species and ecosystems. We show that EVDs can be derived based on a selection of locations, existing monitoring data and a selected impact boundary, and can be used in stressor identification and ranking for a region. A case study on Ohio's freshwater ecosystems, with freshwater fish as target species group, showed that physical habitat impairment and nutrient loads ranked highest as current stressors, with species losses higher than 5% for at least 6% of the locations. EVDs complement existing approaches of stressor assessment and management, which typically account only for variability in stressors, by accounting for variation in the vulnerability of the responding ecosystems.
NASA Astrophysics Data System (ADS)
Troost, Karin
2010-10-01
Since the 1960's, the Pacific oyster Crassostrea gigas has been introduced for mariculture at several locations within NW Europe. The oyster established itself everywhere and expanded rapidly throughout the receiving ecosystems, forming extensive and dense reef structures. It became clear that the Pacific oyster induced major changes in NW European estuaries. This paper reviews the causes of the Pacific oyster's remarkably successful establishment and spread in The Netherlands and neighbouring countries, and includes a comprehensive review of consequences for the receiving communities. Ecosystem engineering by C. gigas and a relative lack of natural enemies in receiving ecosystems are identified as the most important characteristics facilitating the invader's successful establishment and expansion. The Pacific oyster's large filtration capacity and eco-engineering characteristics induced many changes in receiving ecosystems. Different estuaries are affected differently; in the Dutch Oosterschelde estuary expanding stocks saturate the carrying capacity whereas in the Wadden Sea no such problems exist. In general, the Pacific oyster seems to fit well within continental NW European estuarine ecosystems and there is no evidence that the invader outcompetes native bivalves. C. gigas induces changes in plankton composition, habitat heterogeneity and biodiversity, carrying capacity, food webs and parasite life cycles. The case of the Pacific oyster in NW European estuaries is only one example in an increasing series of biological invasions mediated by human activities. This case-study will contribute to further elucidating general mechanisms in marine invasions; invasions that sometimes appear a threat, but can also contribute to ecological complexity.
Xu, Wei
2014-01-01
This paper first discusses the major inefficiencies faced in current human factors and ergonomics (HFE) approaches: (1) delivering an optimal end-to-end user experience (UX) to users of a solution across its solution lifecycle stages; (2) strategically influencing the product business and technology capability roadmaps from a UX perspective and (3) proactively identifying new market opportunities and influencing the platform architecture capabilities on which the UX of end products relies. In response to these challenges, three case studies are presented to demonstrate how enhanced ergonomics design approaches have effectively addressed the challenges faced in current HFE approaches. Then, the enhanced ergonomics design approaches are conceptualised by a user-experience ecosystem (UXE) framework, from a UX ecosystem perspective. Finally, evidence supporting the UXE, the advantage and the formalised process for executing UXE and methodological considerations are discussed. Practitioner Summary: This paper presents enhanced ergonomics approaches to product design via three case studies to effectively address current HFE challenges by leveraging a systematic end-to-end UX approach, UX roadmaps and emerging UX associated with prioritised user needs and usages. Thus, HFE professionals can be more strategic, creative and influential.
Herrmann, R.
1997-01-01
Integrated watershed ecosystem studies in National Parks or equivalent reserves suggest that effects of external processes on 'protected' resources are subtle, chronic, and long-term. Ten years of data from National Park watersheds suggests that temperature and precipitation changes are linked to nitrogen levels in lakes and streams. We envision measurable biotic effects in these remote watersheds, if expected climate trends continue. The condition of natural resources within areas set aside for preservation are difficult to ascertain, but gaining this knowledge is the key to understanding ecosystem change and of processes operating among biotic and abiotic ecosystem components. There is increasing evidence that understanding the magnitude of variation within and between such processes can provide an early indication of environmental change and trends attributable to human-induced stress. The following four papers are case studies of how this concept has been implemented. These long-term studies have expanded our knowledge of ecosystem response to natural and human-induced stress. The existence of these sites with a commitment to gathering 'long-term' ecosystem-level data permits research activities aimed at testing more important hypotheses on ecosystem processes and structure.
Caputo, Jesse; Beier, Colin D; Groffman, Peter M; Burns, Douglas A.; Beall, Frederick D; Hazlett, Paul W.; Yorks, Thad E
2016-01-01
Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.
A framework for the social valuation of ecosystem services.
Felipe-Lucia, María R; Comín, Francisco A; Escalera-Reyes, Javier
2015-05-01
Methods to assess ecosystem services using ecological or economic approaches are considerably better defined than methods for the social approach. To identify why the social approach remains unclear, we reviewed current trends in the literature. We found two main reasons: (i) the cultural ecosystem services are usually used to represent the whole social approach, and (ii) the economic valuation based on social preferences is typically included in the social approach. Next, we proposed a framework for the social valuation of ecosystem services that provides alternatives to economics methods, enables comparison across studies, and supports decision-making in land planning and management. The framework includes the agreements emerged from the review, such as considering spatial-temporal flows, including stakeholders from all social ranges, and using two complementary methods to value ecosystem services. Finally, we provided practical recommendations learned from the application of the proposed framework in a case study.
Biodiversity effects on ecosystem functioning change along environmental stress gradients.
Steudel, Bastian; Hector, Andy; Friedl, Thomas; Löfke, Christian; Lorenz, Maike; Wesche, Moritz; Kessler, Michael; Gessner, Mark
2012-12-01
Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity-ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems. © 2012 Blackwell Publishing Ltd/CNRS.
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtr...
Stream amphibians as metrics of ecosystem stress: a case study from California’s redwoods revisited
Hartwell H. Welsh Jr.; Adam K. Cummings; Garth R. Hodgson
2017-01-01
Highway construction of the Redwood National Park bypass resulted in a storm-driven accidental infusion of exposed sediments into pristine streams in Prairie Creek Redwoods State Park, California in October 1989. We evaluated impacts of this ecosystem stress on three amphibians, larval tailed frogs (Ascaphus truei), coastal giant salamanders (
A. Bytnerowicz; R.F. Johnson; L. Zhang; G.D. Jenerette; M.E. Fenn; S.L. Schilling; I. Gonzalez-Fernandez
2015-01-01
The empirical inferential method (EIM) allows for spatially and temporally-dense estimates of atmospheric nitrogen (N) deposition to Mediterranean ecosystems. This method, set within a GIS platform, is based on ambient concentrations of NH3, NO, NO2 and HNO3; surface conductance of NH4...
ERIC Educational Resources Information Center
Mueller, Michael P.; Bentley, Michael L.
2009-01-01
Curriculum reform in environmental and science education now taking place in Ghana focuses on the community and ecosystems as the context of education. In Ghana, students conduct science investigations that include games, word searches, crossword puzzles, case studies, role play, debates, projects, and ecological profiles. This curriculum reflects…
Liam Heneghan; Alissa Salmore
2014-01-01
The recovery of ecosystems after disturbance remains a productive theme for ecological research. Numerous studies have focused either on the reestablishment of biological communities or on the recovery of ecosystem processes after perturbations. In the case of decomposer organisms an the processes of organic matter decay and the mineralization of nutrients, the...
USDA-ARS?s Scientific Manuscript database
Forest ecosystems in the southern United States are dramatically altered by three major 26 disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest m...
ERIC Educational Resources Information Center
Cline, Shannon; Cronin-Jones, Linda; Johnson, Courtney; Hakverdi, Meral; Penwell, Rebecca
Schoolyard ecosystem programs, such as mini-farms, gardens, or nature trails on school grounds, are usually designed to promote greater insight and understanding of ecological relationships and develop an appreciation of an individual's responsibility for environmental quality. This paper focuses on evaluation practices of schoolyard habitat…
Schäfer, Ralf B
2012-01-15
This Special Issue focuses on the questions if and how biodiversity, ecosystem functions and resulting services could be incorporated into the Ecological Risk Assessment (ERA). Therefore, three articles provide a framework for the integration of ecosystem services into ERA of soils, sediments and pesticides. Further articles demonstrate ways how stakeholders can be integrated into an ecosystem service-based ERA for soils and describe how the current monitoring could be adapted to new assessment endpoints that are directly linked to ecosystem services. Case studies show that the current ERA may not be protective for biodiversity, ecosystem functions and resulting services and that both pesticides and salinity currently adversely affect ecosystem functions in the field. Moreover, ecological models can be used for prediction of new protection goals and could finally support their implementation into the ERA. Overall, the Special Issue stresses the urgent need to enhance current procedures of ERA if biodiversity, ecosystem functions and resulting services are to be protected. Copyright © 2011 Elsevier B.V. All rights reserved.
Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management
NASA Astrophysics Data System (ADS)
Müller, Felix; Burkhard, Benjamin; Kroll, Franziska
In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the “adaptive cycle”. Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.
[Application of ecosystem service value in land use change research: Bottlenecks and prospects].
Zhang, Zhou; Wu, Ci-Fang; Tan, Rong
2013-02-01
In recent years, the application of ecosystem service value in land use change research is a hot topic in many famous international journals. However, policy makers are seldom taking into account the achievements of the related studies in practice. This paper summarized the three main bottlenecks in applying ecosystem service value in land management practices, i. e., the difficulty in measuring the service values, the complexity of driving factors, and the bias of evaluation criteria. Some solutions on the bottlenecks were provided, and the future research directions in China were prospected. It was suggested that in the studies of land use change based on ecosystem service value, it would be more appropriate to adopt comparative analysis method in small scale case studies, especially focusing on the natural ecological resources and the excessive loss of their values.
The Potential Role of Tree Diversity in Reducing Shallow Landslide Risk.
Kobayashi, Yuta; Mori, Akira S
2017-05-01
Recently, interest in utilizing ecosystems for disaster risk reduction has increased, even though there remains considerable uncertainty regarding the role of ecosystems in buffering against natural hazards. This ecosystem role can be considered an ecosystem service. Although a strong body of evidence shows that biodiversity enhances ecosystem services, there are only a few studies of the relationship between biodiversity and the role of the ecosystem in reducing the risk of natural disasters. To explore the desired state of an ecosystem for disaster risk reduction we applied the finding that biodiversity enhances ecosystem services to evaluate the role of woody vegetation in reducing the frequency and severity of shallow landslides. Using information related to shallow landslides and woody vegetation in Japan as a case study, we compared the severity of shallow landslides (i.e., landslide volume) with tree species richness. Although we provide no direct evidence that tree species richness reduces shallow landslide volume, we found that the predictability of the model, which evaluated relationships between landslide volume and environmental variables in watersheds throughout the Japanese Archipelago, increased with tree species richness. This finding suggests that biodiversity is likely associated with shallow landslide risk reduction, emphasizing a possible reduction of spatial and temporal uncertainty in the roles of woody vegetation. Our study identifies a need for socioecological systems to build new approaches found on the functionality of such ecosystems.
An ecosystem services framework to support both practical conservation and economic development.
Tallis, Heather; Kareiva, Peter; Marvier, Michelle; Chang, Amy
2008-07-15
The core idea of the Millennium Ecosystem Assessment is that the human condition is tightly linked to environmental condition. This assertion suggests that conservation and development projects should be able to achieve both ecological and social progress without detracting from their primary objectives. Whereas "win-win" projects that achieve both conservation and economic gains are a commendable goal, they are not easy to attain. An analysis of World Bank projects with objectives of alleviating poverty and protecting biodiversity revealed that only 16% made major progress on both objectives. Here, we provide a framework for anticipating win-win, lose-lose, and win-lose outcomes as a result of how people manage their ecosystem services. This framework emerges from detailed explorations of several case studies in which biodiversity conservation and economic development coincide and cases in which there is joint failure. We emphasize that scientific advances around ecosystem service production functions, tradeoffs among multiple ecosystem services, and the design of appropriate monitoring programs are necessary for the implementation of conservation and development projects that will successfully advance both environmental and social goals. The potentially bright future of jointly advancing ecosystem services, conservation, and human well-being will be jeopardized unless a global monitoring effort is launched that uses the many ongoing projects as a grand experiment.
An ecosystem services framework to support both practical conservation and economic development
Tallis, Heather; Kareiva, Peter; Marvier, Michelle; Chang, Amy
2008-01-01
The core idea of the Millennium Ecosystem Assessment is that the human condition is tightly linked to environmental condition. This assertion suggests that conservation and development projects should be able to achieve both ecological and social progress without detracting from their primary objectives. Whereas “win–win” projects that achieve both conservation and economic gains are a commendable goal, they are not easy to attain. An analysis of World Bank projects with objectives of alleviating poverty and protecting biodiversity revealed that only 16% made major progress on both objectives. Here, we provide a framework for anticipating win–win, lose–lose, and win–lose outcomes as a result of how people manage their ecosystem services. This framework emerges from detailed explorations of several case studies in which biodiversity conservation and economic development coincide and cases in which there is joint failure. We emphasize that scientific advances around ecosystem service production functions, tradeoffs among multiple ecosystem services, and the design of appropriate monitoring programs are necessary for the implementation of conservation and development projects that will successfully advance both environmental and social goals. The potentially bright future of jointly advancing ecosystem services, conservation, and human well-being will be jeopardized unless a global monitoring effort is launched that uses the many ongoing projects as a grand experiment. PMID:18621702
Ecosystem services as a common language for coastal ecosystem-based management.
Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric
2010-02-01
Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.
Estimating ecosystem carbon stocks at Redwood National and State Parks
van Mantgem, Phillip J.; Madej, Mary Ann; Seney, Joseph; Deshais, Janelle
2013-01-01
Accounting for ecosystem carbon is increasingly important for park managers. In this case study we present our efforts to estimate carbon stocks and the effects of management on carbon stocks for Redwood National and State Parks in northern California. Using currently available information, we estimate that on average these parks’ soils contain approximately 89 tons of carbon per acre (200 Mg C per ha), while vegetation contains about 130 tons C per acre (300 Mg C per ha). estoration activities at the parks (logging-road removal, second-growth forest management) were shown to initially reduce ecosystem carbon, but may provide for enhanced ecosystem carbon storage over the long term. We highlight currently available tools that could be used to estimate ecosystem carbon at other units of the National Park System.
Jessica E. Halofsky; David L. Peterson; Kerry L. Metlen; Gwyneth M. Myer; Alaric V. Sample
2016-01-01
Climate change will likely have significant effects on forest ecosystems worldwide. In Mediterranean regions, such as that in southwestern Oregon, USA, changes will likely be driven mainly by wildfire and drought. To minimize the negative effects of climate change, resource managers require tools and information to assess climate change vulnerabilities and to develop...
Yihe Lu; Bojie Fu; Xiaoming Feng; Yuan Zeng; Yu Liu; Ruiying Chang; Ge Sun; Bingfang Wu
2012-01-01
As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of...
Bjorn Okland; Robert A. Haack; Gunnar. Wilhelmsen
2012-01-01
Increasing inter-continental trade of wood chips for biofuel represents a significant risk of introducing invasive pest species that can cause biome-scale impacts on forest ecosystems. Some potentially invasive species have the capacity to cause high tree mortality on the Eurasian continent and could cause significant impacts on biodiversity and ecosystem functions....
Modeling forest ecosystem changes resulting from surface coal mining in West Virginia
John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella
2012-01-01
The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...
Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study
Penman, Donald E.; Rae, James W. B.
2016-01-01
Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO2 concentrations (pCO2). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric pCO2. To this end, events in the geological past can provide informative case studies in the response of ecosystem function to environmental and ecological changes. Around the Cretaceous–Palaeogene (K–Pg) boundary, two such events occurred: Deccan large igneous province (LIP) eruptions and massive bolide impact at the Yucatan Peninsula. Both perturbed the environment, but only the impact coincided with marine mass extinction. As such, we use these events to directly contrast the response of marine biogeochemical cycling to environmental perturbation with and without changes in global species richness. We measure this biogeochemical response using records of deep-sea carbonate preservation. We find that Late Cretaceous Deccan volcanism prompted transient deep-sea carbonate dissolution of a larger magnitude and timescale than predicted by geochemical models. Even so, the effect of volcanism on carbonate preservation was slight compared with bolide impact. Empirical records and geochemical models support a pronounced increase in carbonate saturation state for more than 500 000 years following the mass extinction of pelagic carbonate producers at the K–Pg boundary. These examples highlight the importance of pelagic ecosystems in moderating climate and ocean chemistry. PMID:27114586
Non-traditional isotopes in analytical ecogeochemistry assessed by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Prohaska, Thomas; Irrgeher, Johanna; Horsky, Monika; Hanousek, Ondřej; Zitek, Andreas
2014-05-01
Analytical ecogeochemistry deals with the development and application of tools of analytical chemistry to study dynamic biological and ecological processes within ecosystems and across ecosystem boundaries in time. It can be best described as a linkage between modern analytical chemistry and a holistic understanding of ecosystems ('The total human ecosystem') within the frame of transdisciplinary research. One focus of analytical ecogeochemistry is the advanced analysis of elements and isotopes in abiotic and biotic matrices and the application of the results to basic questions in different research fields like ecology, environmental science, climatology, anthropology, forensics, archaeometry and provenancing. With continuous instrumental developments, new isotopic systems have been recognized for their potential to study natural processes and well established systems could be analyzed with improved techniques, especially using multi collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For example, in case of S, isotope ratio measurements at high mass resolution could be achieved at much lower S concentrations with ICP-MS as compared to IRMS, still keeping suitable uncertainty. Almost 50 different isotope systems have been investigated by ICP-MS, so far, with - besides Sr, Pb and U - Ca, Mg, Cd, Li, Hg, Si, Ge and B being the most prominent and considerably pushing the limits of plasma based mass spectrometry also by applying high mass resolution. The use of laser ablation in combination with MC-ICP-MS offers the possibility to achieve isotopic information on high spatial (µm-range) and temporal scale (in case of incrementally growing structures). The information gained with these analytical techniques can be linked between different hierarchical scales in ecosystems, offering means to better understand ecosystem processes. The presentation will highlight the use of different isotopic systems in ecosystem studies accomplished by ICP-MS. Selected examples on combining isotopic systems for the study of ecosystem processes on different spatial scales will underpin the great opportunities substantiated by the field of analytical ecogeochemistry. Moreover, recent developments in plasma mass spectrometry and the application of new isotopic systems require sound metrological approaches in order to prevent scientific conclusions drawn from analytical artifacts.
NASA Astrophysics Data System (ADS)
Li, D.; Li, S.
2016-12-01
Freshwater service, as the most important support ecosystem service, is essential to human survival and development. Many studies have evidenced the spatial differences in the supply and demand of ecosystem services and raised the concept of ecosystem service flow. However, rather few studies quantitatively characterize the freshwater service flow. This paper aims to quantify the effect of freshwater ecosystem service flow on downstream areas in Beijing-Tianjin-Hebei (BTH) region, China over 2000, 2005 and 2010. We computed the freshwater ecosystem service provision with InVEST model. We calculated freshwater ecosystem service consumption with water quota method. We simulated the freshwater ecosystem service flow using our simplified flow model and assessed the regional water security with the improved freshwater security index. The freshwater provision service mainly depends on climatic factors that cannot be influenced by management, while the freshwater consumption service is constrained by human activities. Furthermore, the decrease of water quota for agricultural, domestic and industrial water counteracts the impact of increasing freshwater demand. The analysis of freshwater ecosystem service flow reveals that the majority area of the BTH (69.2%) is affected by upstream freshwater. If freshwater ecosystem service flow is considered, the water safety areas of the whole BTH account for 66.9%, 66.1%, 71.3%, which increase 6.4%, 6.8% and 5.7% in 2000, 2005 and 2010, respectively. These results highlight the need to understand the teleconnections between distant freshwater ecosystem service provision and local freshwater ecosystem service use. This approach therefore helps managers choose specific management and investment strategies for critical upstream freshwater provisions across different regions.
Changing ecosystem service values following technological change.
Honey-Rosés, Jordi; Schneider, Daniel W; Brozović, Nicholas
2014-06-01
Research on ecosystem services has focused mostly on natural areas or remote places, with less attention given to urban ecosystem services and their relationship with technological change. However, recent work by urban ecologists and urban designers has more closely examined and appreciated the opportunities associated with integrating natural and built infrastructures. Nevertheless, a perception remains in the literature on ecosystem services that technology may easily and irreversibly substitute for services previously obtained from ecosystems, especially when the superiority of the engineered system motivated replacement in the first place. We emphasize that the expected tradeoff between natural and manufactured capital is false. Rather, as argued in other contexts, the adoption of new technologies is complementary to ecosystem management. The complementarity of ecosystem services and technology is illustrated with a case study in Barcelona, Spain where the installation of sophisticated water treatment technology increased the value of the ecosystem services found there. Interestingly, the complementarity between natural and built infrastructures may remain even for the very ecosystems that are affected by the technological change. This finding suggests that we can expect the value of ecosystem services to co-evolve with new technologies. Technological innovation can generate new opportunities to harness value from ecosystems, and the engineered structures found in cities may generate more reliance on ecosystem processes, not less.
NASA Astrophysics Data System (ADS)
O'Higgins, T. G.; Gilbert, A. J.
2014-03-01
The introduction of the Marine Strategy Framework Directive (MSFD) with its focus on an Ecosystem Approach places an emphasis on the human dimensions of environmental problems. Human activities may be the source of marine degradation, but may also be adversely affected should degradation compromise the provision of ecosystem services. The MSFD marks a shift away from management aiming to restore past, undegraded states toward management for Good Environmental Status (GEnS) based on delivery of marine goods and services. An example relating ecosystem services to criteria for Good Environmental Status is presented for eutrophication, a long recognised problem in many parts of Europe's seas and specifically targeted by descriptors for GEnS. Taking the North Sea as a case study the relationships between the eutrophication criteria of the MSFD and final and intermediate marine ecosystem services are examined. Ecosystem services are valued, where possible in monetary terms, in order to illustrate how eutrophication affects human welfare (economic externalities) through its multiple effects on ecosystem services.
Investigating Approaches to Achieve Modularity Benefits in the Acquisition Ecosystem
2017-06-09
actions and that of others, and how the assessments are affected by their actions. • Case study approach based on best practices, tacit knowledge... case study -derived exemplars, and items requiring further research on identifying additional enablers and useful knowledge constructs. All of these... case studies that document the effective use of modularity in system design for some or all of innovation, competition, cost, technology and
How stakeholders frame dam removal: The role of current and anticipated future ecosystem service use
NASA Astrophysics Data System (ADS)
Reilly, Kate; Adamowski, Jan
2016-04-01
Many river restoration projects, including dam removal, are controversial and can trigger conflicts between stakeholders who are for and against the proposed project. The study of environmental conflicts suggests that differences in how stakeholders 'frame', or make sense of a situation based on their prior knowledge and experiences, can perpetuate conflicts. Understanding different stakeholders' frames, particularly how they converge, can form the basis of successful conflict resolution. In the case of dam removals, it is often assumed that emphasising increased provision of ecosystem services can be a point of convergence between those advocating for ecological restoration and those opposed to removal because of negative human impacts. However, how exactly stakeholders frame a contentious proposed dam removal and how those frames relate to ecosystem services has been little studied. Here we used the case of a potential dam removal in New Brunswick to investigate how people frame the issue and how that relates to their current and anticipated future use of ecosystem services. Based on in-depth interviews with 30 stakeholders in the area, including both people for and against dam removal, we found that both groups currently used ecosystem services and were in favour of ecosystem protection. However, they differed in how they framed the issue of the potential dam removal. The group against dam removal framed the issue as one of loss and risk - they thought that any potential benefits to the ecosystem would be outweighed by the high risk of negative social impacts caused by a loss of access to ecosystem services, such as recreation and aesthetic enjoyment. By contrast, the group in favour of the dam framed the issue as one of opportunity and justice. They thought that following a short transition period, all stakeholders would benefit from the restored river, particularly from a restored salmon fishery, improved aesthetic appeal and the long-term sustainability of an undammed river. Ultimately, we argue that increased provision of ecosystem services does not always represent a point of convergence between stakeholder groups, because both groups support ecosystem protection but differ in how they expect the benefits they derive from ecosystem services to change. Conflict resolution strategies may be better addressed by measures to mitigate the perceived loss of ecosystem services in the group against dam removal.
Ecosystem services provided by a complex coastal region: challenges of classification and mapping.
Sousa, Lisa P; Sousa, Ana I; Alves, Fátima L; Lillebø, Ana I
2016-03-11
A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.
Ecosystem services provided by a complex coastal region: challenges of classification and mapping
Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.
2016-01-01
A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping. PMID:26964892
Lombardo, Andrea; Franco, Antonio; Pivato, Alberto; Barausse, Alberto
2015-03-01
Conventional approaches to estimating protective ecotoxicological thresholds of chemicals, i.e. predicted no-effect concentrations (PNEC), for an entire ecosystem are based on the use of assessment factors to extrapolate from single-species toxicity data derived in the laboratory to community-level effects on ecosystems. Aquatic food web models may be a useful tool to improve the ecological realism of chemical risk assessment because they enable a more insightful evaluation of the fate and effects of chemicals in dynamic trophic networks. A case study was developed in AQUATOX to simulate the effects of the anionic surfactant linear alkylbenzene sulfonate and the antimicrobial triclosan on a lowland riverine ecosystem. The model was built for a section of the River Thames (UK), for which detailed ecological surveys were available, allowing for a quantification of energy flows through the whole ecosystem. A control scenario was successfully calibrated for a simulation period of one year, and tested for stability over six years. Then, the model ecosystem was perturbed with varying inputs of the two chemicals. Simulations showed that both chemicals rapidly approach steady-state, with internal concentrations in line with the input bioconcentration factors throughout the year. At realistic environmental concentrations, both chemicals have insignificant effects on biomass trends. At hypothetical higher concentrations, direct and indirect effects of chemicals on the ecosystem dynamics emerged from the simulations. Indirect effects due to competition for food sources and predation can lead to responses in biomass density of the same magnitude as those caused by direct toxicity. Indirect effects can both exacerbate or compensate for direct toxicity. Uncertainties in key model assumptions are high as the validation of perturbed simulations remains extremely challenging. Nevertheless, the study is a step towards the development of realistic ecological scenarios and their potential use in prospective risk assessment of down-the-drain chemicals. Copyright © 2014 Elsevier B.V. All rights reserved.
Monitoring programs for riverine and wetland ecosystems often do not begin until some substantial shift in ecosystem structure or loss of ecosystem service has taken place. Sometimes a lack of resources or interest may impede monitoring efforts. In the case of the large brackis...
Biofuels on the landscape: Is "land sharing" preferable to "land sparing"?
NASA Astrophysics Data System (ADS)
DeLucia, E. H.; Anderson-Teixeira, K. J.; Duval, B. D.; Long, S. P.
2012-12-01
Widespread land use changes—and ensuing effects on biodiversity and ecosystem services—are expected as a result of expanding bioenergy production. Although almost all US production of ethanol today is from corn, it is envisaged that future ethanol production will also draw from cellulosic sources such as perennial grasses. In selecting optimal bioenergy crops, there is debate as to whether it is preferable from an environmental standpoint to cultivate bioenergy crops with high ecosystem services (a "land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand (a "land sparing" strategy). Here, we develop a simple model to address this question. Assuming that bioenergy crops are competing with uncultivated land, our model calculates land requirements to meet a given bioenergy demand intensity based upon the yields of bioenergy crops and combines fractional land cover of each ecosystem type with its associated ecosystem services to determine whether land sharing or land sparing strategies maximize ecosystem services at the landscape level. We apply this model to a case in which climate protection through GHG regulation—an ecosystem's greenhouse gas value (GHGV)—is the ecosystem service of interest. We consider five bioenergy crops competing for land area with five unfarmed ecosystem types in the central and eastern US. Our results show that the relative advantages of land sparing and land sharing depend upon the type of ecosystem with which the bioenergy crop is competing for land; as the GHGV value of the unfarmed land increases, the preferable strategy shifts from land sharing to land sparing. This implies that, while it may be preferable to replace ecologically degraded land with high-GHGV, lower yielding bioenergy crops, average landscape GHGV will most often be maximized through high yielding bioenergy crops that leave more land for uncultivated, high-GHGV ecosystems. While our case study focuses on GHGV, the same principles will be generally applicable to any ecosystem service whose value does not depend upon the spatial configuration of the landscape. Whenever bioenergy crops have substantially lower ecosystem services than the ecosystems with which they are competing for land, the most effective strategy for meeting bioenergy demand while maximizing ecosystem services on a landscape level is one of land sparing—that is, focusing simultaneously on maximizing the yield of bioenergy crops while preserving or restoring natural ecosystems.
Chen, Wendy Y; Aertsens, Joris; Liekens, Inge; Broekx, Steven; De Nocker, Leo
2014-08-01
The strategic importance of ecosystem service valuation as an operational basis for policy decisions on natural restoration has been increasingly recognized in order to align the provision of ecosystem services with the expectation of human society. The contingent valuation method (CVM) is widely used to quantify various ecosystem services. However, two areas of concern arise: (1) whether people value specific functional ecosystem services and overlook some intrinsic aspects of natural restoration, and (2) whether people understand the temporal dimension of ecosystem services and payment schedules given in the contingent scenarios. Using a peri-urban riparian meadow restoration project in Flanders, Belgium as a case, we explored the impacts of residents' perceived importance of various ecosystem services and stated financial constraints on their willingness-to-pay for the proposed restoration project employing the CVM. The results indicated that people tended to value all the benefits of riparian ecosystem restoration concurrently, although they accorded different importances to each individual category of ecosystem services. A longer payment scheme can help the respondents to think more about the flow of ecosystem services into future generations. A weak temporal embedding effect can be detected, which might be attributed to respondents' concern about current financial constraints, rather than financial bindings associated with their income and perceived future financial constraints. This demonstrates the multidimensionality of respondents' financial concerns in CV. This study sheds light on refining future CV studies, especially with regard to public expectation of ecosystem services and the temporal dimension of ecosystem services and payment schedules.
NASA Astrophysics Data System (ADS)
Chen, Wendy Y.; Aertsens, Joris; Liekens, Inge; Broekx, Steven; De Nocker, Leo
2014-08-01
The strategic importance of ecosystem service valuation as an operational basis for policy decisions on natural restoration has been increasingly recognized in order to align the provision of ecosystem services with the expectation of human society. The contingent valuation method (CVM) is widely used to quantify various ecosystem services. However, two areas of concern arise: (1) whether people value specific functional ecosystem services and overlook some intrinsic aspects of natural restoration, and (2) whether people understand the temporal dimension of ecosystem services and payment schedules given in the contingent scenarios. Using a peri-urban riparian meadow restoration project in Flanders, Belgium as a case, we explored the impacts of residents' perceived importance of various ecosystem services and stated financial constraints on their willingness-to-pay for the proposed restoration project employing the CVM. The results indicated that people tended to value all the benefits of riparian ecosystem restoration concurrently, although they accorded different importances to each individual category of ecosystem services. A longer payment scheme can help the respondents to think more about the flow of ecosystem services into future generations. A weak temporal embedding effect can be detected, which might be attributed to respondents' concern about current financial constraints, rather than financial bindings associated with their income and perceived future financial constraints. This demonstrates the multidimensionality of respondents' financial concerns in CV. This study sheds light on refining future CV studies, especially with regard to public expectation of ecosystem services and the temporal dimension of ecosystem services and payment schedules.
Hu, Z Q; Zhou, W; Yue, X A; Mu, L Y; Jiang, Y M
2015-03-30
We reported a rare case of recurrent vulvovaginal candidiasis (RVVC) in this study. Through dynamic evaluation of the vaginal micro-ecosystem, we found that only depuratory degree, spores, blastospores, and hyphae were specific indicators and the "barometer" of RVVC development. Therefore, an understanding of vaginal micro-ecological changes can help clinicians to improve the treatment of patients with RVVC.
Sparkle L. Malone; Cynthia Keough; Christina L. Staudhammer; Michael G. Ryan; William J. Parton; Paulo Olivas; Steven F. Oberbauer; Jessica Schedlbauer; Gregory Starr
2015-01-01
Shaped by the hydrology of the Kissimmee-Okeechobee-Everglades watershed, the Florida Everglades is composed of a conglomerate of wetland ecosystems that have varying capacities to sequester and store carbon. Hydrology, which is a product of the regionâs precipitation and temperature patterns combined with water management policy, drives community composition...
Higher Education Provision Using Systems Thinking Approach--Case Studies
ERIC Educational Resources Information Center
Dhukaram, Anandhi Vivekanandan; Sgouropoulou, Cleo; Feldman, Gerald; Amini, Ardavan
2018-01-01
The purpose of this paper is to highlight the complexities involved in higher education provision and how systems thinking and socio-technical systems (STS) thinking approach can be used to understand the education ecosystem. Systems thinking perspective is provided using two case studies: the development of European Learner Mobility (EuroLM)…
Reyers, Belinda; Nel, Jeanne L; O'Farrell, Patrick J; Sitas, Nadia; Nel, Deon C
2015-06-16
Achieving the policy and practice shifts needed to secure ecosystem services is hampered by the inherent complexities of ecosystem services and their management. Methods for the participatory production and exchange of knowledge offer an avenue to navigate this complexity together with the beneficiaries and managers of ecosystem services. We develop and apply a knowledge coproduction approach based on social-ecological systems research and assess its utility in generating shared knowledge and action for ecosystem services. The approach was piloted in South Africa across four case studies aimed at reducing the risk of disasters associated with floods, wildfires, storm waves, and droughts. Different configurations of stakeholders (knowledge brokers, assessment teams, implementers, and bridging agents) were involved in collaboratively designing each study, generating and exchanging knowledge, and planning for implementation. The approach proved useful in the development of shared knowledge on the sizable contribution of ecosystem services to disaster risk reduction. This knowledge was used by stakeholders to design and implement several actions to enhance ecosystem services, including new investments in ecosystem restoration, institutional changes in the private and public sector, and innovative partnerships of science, practice, and policy. By bringing together multiple disciplines, sectors, and stakeholders to jointly produce the knowledge needed to understand and manage a complex system, knowledge coproduction approaches offer an effective avenue for the improved integration of ecosystem services into decision making.
Rog, Stefanie M; Cook, Carly N
2017-07-15
The protection of intertidal ecosystems is complex because they straddle both marine and terrestrial realms. This leads to inconsistent characterisation as marine and/or terrestrial systems, or neither. Vegetated intertidal ecosystems are especially complex to classify because they can have an unclear border with terrestrial vegetation, causing confusion around taxonomy (e.g., mangrove-like plants). This confusion and inconsistency in classification can impact these systems through poor governance and incomplete protection. Using Australian mangrove ecosystems as a case study, we explore the complexity of how land and sea boundaries are defined among jurisdictions and different types of legislation, and how these correspond to ecosystem boundaries. We demonstrate that capturing vegetated intertidal ecosystems under native vegetation laws and prioritizing the mitigation of threats with a terrestrial origin offers the greatest protection to these systems. We also show the impact of inconsistent boundaries on the inclusion of intertidal ecosystems within protected areas. The evidence presented here highlights problems within the Australian context, but most of these issues are also challenges for the management of intertidal ecosystems around the world. Our study demonstrates the urgent need for a global review of legislation governing the boundaries of land and sea to determine whether the suggestions we offer may provide global solutions to ensuring these critical systems do not fall through the cracks in ecosystem protection and management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reyers, Belinda; Nel, Jeanne L.; O’Farrell, Patrick J.; Sitas, Nadia; Nel, Deon C.
2015-01-01
Achieving the policy and practice shifts needed to secure ecosystem services is hampered by the inherent complexities of ecosystem services and their management. Methods for the participatory production and exchange of knowledge offer an avenue to navigate this complexity together with the beneficiaries and managers of ecosystem services. We develop and apply a knowledge coproduction approach based on social–ecological systems research and assess its utility in generating shared knowledge and action for ecosystem services. The approach was piloted in South Africa across four case studies aimed at reducing the risk of disasters associated with floods, wildfires, storm waves, and droughts. Different configurations of stakeholders (knowledge brokers, assessment teams, implementers, and bridging agents) were involved in collaboratively designing each study, generating and exchanging knowledge, and planning for implementation. The approach proved useful in the development of shared knowledge on the sizable contribution of ecosystem services to disaster risk reduction. This knowledge was used by stakeholders to design and implement several actions to enhance ecosystem services, including new investments in ecosystem restoration, institutional changes in the private and public sector, and innovative partnerships of science, practice, and policy. By bringing together multiple disciplines, sectors, and stakeholders to jointly produce the knowledge needed to understand and manage a complex system, knowledge coproduction approaches offer an effective avenue for the improved integration of ecosystem services into decision making. PMID:26082541
Bagstad, Kenneth J.; Villa, Ferdinando; Batker, David; Harrison-Cox, Jennifer; Voigt, Brian; Johnson, Gary W.
2014-01-01
Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems’ capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic valuation and policy applications than studies that consider only theoretical service provision and/or use.
Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...
2013-07-01
Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less
Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping
2016-11-01
Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of human-dominated watersheds.
Hammer, Monica; Balfors, Berit; Mörtberg, Ulla; Petersson, Mona; Quin, Andrew
2011-03-01
In this article, focusing on the ongoing implementation of the EU Water Framework Directive, we analyze some of the opportunities and challenges for a sustainable governance of water resources from an ecosystem management perspective. In the face of uncertainty and change, the ecosystem approach as a holistic and integrated management framework is increasingly recognized. The ongoing implementation of the Water Framework Directive (WFD) could be viewed as a reorganization phase in the process of change in institutional arrangements and ecosystems. In this case study from the Northern Baltic Sea River Basin District, Sweden, we focus in particular on data and information management from a multi-level governance perspective from the local stakeholder to the River Basin level. We apply a document analysis, hydrological mapping, and GIS models to analyze some of the institutional framework created for the implementation of the WFD. The study underlines the importance of institutional arrangements that can handle variability of local situations and trade-offs between solutions and priorities on different hierarchical levels.
Wang, Ziyan; Qiu, Quanyi; Wu, Tong; Shao, Guofan
2018-01-01
Intensifying urbanization and rapid population growth in Fujian Province, China, has caused pollution of air and water resources; this has adversely impacted ecosystems and human health. China has recently begun pursuing a massive infrastructure and economic development strategy called the Belt and Road Initiative, which could potentially cause further environmental damage. Evaluations of ecosystem health are therefore a first step towards identifying the potential impacts from the development and planning sustainable development strategies in the Golden Triangle of Southern Fujian. To this end, our study analyzed landscape patterns and evaluated ecosystem health in this region. We used an index system method to develop a pressure–state–response (PSR) model for assessing the region’s ecosystem health. We found that: (1) the landscape type with the greatest area in the study region is cultivated land and there were no areas that were undisturbed by human activity; (2) the overall ecological health of the region is good, but there is distinct variation across the region. This study incorporates the landscape pattern into an evaluation of ecosystem health. Using counties as evaluation units, we provide a general evaluation index for this scale. The methods reported here can be used in complex ecological environments to inform sustainable management decisions. PMID:29671817
Who Benefits from Ecosystem Services? A Case Study for Central Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Suwarno, Aritta; Hein, Lars; Sumarga, Elham
2016-02-01
There is increasing experience with the valuation of ecosystem services. However, to date, less attention has been devoted to who is actually benefiting from ecosystem services. This nevertheless is a key issue, in particular, if ecosystem services analysis and valuation is used to support environmental management. This study assesses and analyzes how the monetary benefits of seven ecosystem services are generated in Central Kalimantan Province, Indonesia, are distributed to different types of beneficiaries. We analyze the following ecosystem services: (1) timber production; (2) rattan collection; (3) jelutong resin collection; (4) rubber production (based on permanent agroforestry systems); (5) oil palm production on three management scales (company, plasma farmer, and independent smallholder); (6) paddy production; and (7) carbon sequestration. Our study shows that the benefits generated from these services differ markedly between the stakeholders, which we grouped into private, public, and household entities. The distribution of these benefits is strongly influenced by government policies and in particular benefit sharing mechanisms. Hence, land-use change and policies influencing land-use change can be expected to have different impacts on different stakeholders. Our study also shows that the benefits generated by oil palm conversion, a main driver for land-use change in the province, are almost exclusively accrued by companies and at this point in time are shared unequally with local stakeholders.
Who Benefits from Ecosystem Services? A Case Study for Central Kalimantan, Indonesia.
Suwarno, Aritta; Hein, Lars; Sumarga, Elham
2016-02-01
There is increasing experience with the valuation of ecosystem services. However, to date, less attention has been devoted to who is actually benefiting from ecosystem services. This nevertheless is a key issue, in particular, if ecosystem services analysis and valuation is used to support environmental management. This study assesses and analyzes how the monetary benefits of seven ecosystem services are generated in Central Kalimantan Province, Indonesia, are distributed to different types of beneficiaries. We analyze the following ecosystem services: (1) timber production; (2) rattan collection; (3) jelutong resin collection; (4) rubber production (based on permanent agroforestry systems); (5) oil palm production on three management scales (company, plasma farmer, and independent smallholder); (6) paddy production; and (7) carbon sequestration. Our study shows that the benefits generated from these services differ markedly between the stakeholders, which we grouped into private, public, and household entities. The distribution of these benefits is strongly influenced by government policies and in particular benefit sharing mechanisms. Hence, land-use change and policies influencing land-use change can be expected to have different impacts on different stakeholders. Our study also shows that the benefits generated by oil palm conversion, a main driver for land-use change in the province, are almost exclusively accrued by companies and at this point in time are shared unequally with local stakeholders.
Xiong, Lihu; Zhu, Wenjia
2017-01-01
Coastal wetlands offer many important ecosystem services both in natural and in social systems. How to simultaneously decrease the destructive effects flowing from human activities and maintaining the sustainability of regional wetland ecosystems are an important issue for coastal wetlands zones. We use carbon credits as the basis for regional sustainable developing policy-making. With the case of Gouqi Island, a typical coastal wetlands zone that locates in the East China Sea, a carbon cycle model was developed to illustrate the complex social-ecological processes. Carbon-related processes in natural ecosystem, primary industry, secondary industry, tertiary industry, and residents on the island were identified in the model. The model showed that 36780 tons of carbon is released to atmosphere with the form of CO2, and 51240 tons of carbon is captured by the ecosystem in 2014 and the three major resources of carbon emission are transportation and tourism development and seawater desalination. Based on the carbon-related processes and carbon balance, we proposed suggestions on the sustainable development strategy of Gouqi Island as coastal wetlands zone. PMID:28286690
The spatial dynamics of ecosystem engineers.
Franco, Caroline; Fontanari, José F
2017-10-01
The changes on abiotic features of ecosystems have rarely been taken into account by population dynamics models, which typically focus on trophic and competitive interactions between species. However, understanding the population dynamics of organisms that must modify their habitats in order to survive, the so-called ecosystem engineers, requires the explicit incorporation of abiotic interactions in the models. Here we study a model of ecosystem engineers that is discrete both in space and time, and where the engineers and their habitats are arranged in patches fixed to the sites of regular lattices. The growth of the engineer population is modeled by Ricker equation with a density-dependent carrying capacity that is given by the number of modified habitats. A diffusive dispersal stage ensures that a fraction of the engineers move from their birth patches to neighboring patches. We find that dispersal influences the metapopulation dynamics only in the case that the local or single-patch dynamics exhibit chaotic behavior. In that case, it can suppress the chaotic behavior and avoid extinctions in the regime of large intrinsic growth rate of the population. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Yanxia; Xiong, Lihu; Zhu, Wenjia
2017-01-01
Coastal wetlands offer many important ecosystem services both in natural and in social systems. How to simultaneously decrease the destructive effects flowing from human activities and maintaining the sustainability of regional wetland ecosystems are an important issue for coastal wetlands zones. We use carbon credits as the basis for regional sustainable developing policy-making. With the case of Gouqi Island, a typical coastal wetlands zone that locates in the East China Sea, a carbon cycle model was developed to illustrate the complex social-ecological processes. Carbon-related processes in natural ecosystem, primary industry, secondary industry, tertiary industry, and residents on the island were identified in the model. The model showed that 36780 tons of carbon is released to atmosphere with the form of CO 2 , and 51240 tons of carbon is captured by the ecosystem in 2014 and the three major resources of carbon emission are transportation and tourism development and seawater desalination. Based on the carbon-related processes and carbon balance, we proposed suggestions on the sustainable development strategy of Gouqi Island as coastal wetlands zone.
Introduced and invasive species in novel rangeland ecosystems: friends or foes?
Belnap, Jayne; Ludwig, John A.; Wilcox, Bradford P.; Betancourt, Julio L.; Dean, W. Richard J.; Hoffmann, Benjamin D.; Milton, Sue J.
2012-01-01
Globally, new combinations of introduced and native plant and animal species have changed rangelands into novel ecosystems. Whereas many rangeland stakeholders (people who use or have an interest in rangelands) view intentional species introductions to improve forage and control erosion as beneficial, others focus on unintended costs, such as increased fire risk, loss of rangeland biodiversity, and threats to conservation efforts, specifically in nature reserves and parks. These conflicting views challenge all rangeland stakeholders, especially those making decisions on how best to manage novel ecosystems. To formulate a conceptual framework for decision making, we examined a wide range of novel ecosystems, created by intentional and unintentional introductions of nonnative species and land-use–facilitated spread of native ones. This framework simply divides decision making into two types: 1) straightforward–certain, and 2) complex–uncertain. We argue that management decisions to retain novel ecosystems are certain when goods and services provided by the system far outweigh the costs of restoration, for example in the case of intensively managed Cenchrus pastures. Decisions to return novel ecosystems to natural systems are also certain when the value of the system is low and restoration is easy and inexpensive as in the case of biocontrol of Opuntia infestations. In contrast, decisions whether to retain or restore novel ecosystems become complex and uncertain in cases where benefits are low and costs of control are high as, for example, in the case of stopping the expansion of Prosopis and Juniperus into semiarid rangelands. Decisions to retain or restore novel ecosystems are also complex and uncertain when, for example, nonnative Eucalyptus trees expand along natural streams, negatively affecting biodiversity, but also providing timber and honey. When decision making is complex and uncertain, we suggest that rangeland managers utilize cost–benefit analyses and hold stakeholder workshops to resolve conflicts.
Bridgework ahead! Innovation ecosystems vis-à-vis responsible innovation
NASA Astrophysics Data System (ADS)
Foley, Rider; Wiek, Arnim
2017-02-01
Public funding agencies largely support academic research as an effort to stimulate future product commercialization and foster broader societal benefits. Yet, translating research nurtured in academic settings into such outcomes is complex and demands functional interactions between government, academic, and industry, i.e., "triple helix," organizations within an innovation ecosystem. This article argues that in the spirit of responsible innovation, research funding should build bridges that extend beyond the triple helix stakeholders to connect to peripheral organizations. To support that argument, evidence from agent network analysis gathered from two case studies reveals strong and weak connections, as well as gaps within innovation ecosystems in Switzerland and metropolitan Phoenix, USA. This article offers insights on how innovation ecosystems are aligned or misaligned with responsible innovation.
In praise of mechanistically-rich models
DeAngelis, Donald L.; Mooij, Wolf M.; Canham, Charles D.; Cole, Jonathan J.; Lauenroth, William K.
2003-01-01
The book opens with an overview of the status and role of modeling in ecosystem science, including perspectives on the long-running debate over the appropriate level of complexity in models. This is followed by eight chapters that address the critical issue of evaluating ecosystem models, including methods of addressing uncertainty. Next come several case studies of the role of models in environmental policy and management. A section on the future of modeling in ecosystem science focuses on increasing the use of modeling in undergraduate education and the modeling skills of professionals within the field. The benefits and limitations of predictive (versus observational) models are also considered in detail. Written by stellar contributors, this book grants access to the state of the art and science of ecosystem modeling.
The dilemma of controlling cultural eutrophication of lakes
Schindler, David W.
2012-01-01
The management of eutrophication has been impeded by reliance on short-term experimental additions of nutrients to bottles and mesocosms. These measures of proximate nutrient limitation fail to account for the gradual changes in biogeochemical nutrient cycles and nutrient fluxes from sediments, and succession of communities that are important components of whole-ecosystem responses. Erroneous assumptions about ecosystem processes and lack of accounting for hysteresis during lake recovery have further confused management of eutrophication. I conclude that long-term, whole-ecosystem experiments and case histories of lake recovery provide the only reliable evidence for policies to reduce eutrophication. The only method that has had proven success in reducing the eutrophication of lakes is reducing input of phosphorus. There are no case histories or long-term ecosystem-scale experiments to support recent claims that to reduce eutrophication of lakes, nitrogen must be controlled instead of or in addition to phosphorus. Before expensive policies to reduce nitrogen input are implemented, they require ecosystem-scale verification. The recent claim that the ‘phosphorus paradigm’ for recovering lakes from eutrophication has been ‘eroded’ has no basis. Instead, the case for phosphorus control has been strengthened by numerous case histories and large-scale experiments spanning several decades. PMID:22915669
Interregional flows of ecosystem services: Concepts, typology and four cases
Schröter, Matthias; Koellner, Thomas; Alkemade, Rob; Arnhold, Sebastian; Bagstad, Kenneth J.; Frank, Karin; Erb, Karl-Heinz; Kastner, Thomas; Kissinger, Meidad; Liu, Jianguo; López-Hoffman, Laura; Maes, Joachim; Marques, Alexandra; Martín-López, Berta; Meyer, Carsten; Schulp, Catharina J. E.; Thober, Jule; Wolff, Sarah; Bonn, Aletta
2018-01-01
Conserving and managing global natural capital requires an understanding of the complexity of flows of ecosystem services across geographic boundaries. Failing to understand and to incorporate these flows into national and international ecosystem assessments leads to incomplete and potentially skewed conclusions, impairing society’s ability to identify sustainable management and policy choices. In this paper, we synthesise existing knowledge and develop a conceptual framework for analysing interregional ecosystem service flows. We synthesise the types of such flows, the characteristics of sending and receiving socio-ecological systems, and the impacts of ecosystem service flows on interregional sustainability. Using four cases (trade of certified coffee, migration of northern pintails, flood protection in the Danube watershed, and information on giant pandas), we test the conceptual framework and show how an enhanced understanding of interregional telecouplings in socio-ecological systems can inform ecosystem service-based decision making and governance with respect to sustainability goals.
Metals in mangrove ecosystems and associated biota: A global perspective.
Kulkarni, Rasika; Deobagkar, Deepti; Zinjarde, Smita
2018-05-30
Mangrove forests prevalent along the intertidal regions of tropical and sub-tropical coastlines are inimitable and dynamic ecosystems. They protect and stabilize coastal areas from deleterious consequences of natural disasters such as hurricanes and tsunamis. Although there are reviews on ecological aspects, industrial uses of mangrove-associated microorganisms and occurrence of pollutants in a region-specific manner, there is no exclusive review detailing the incidence of metals in mangrove sediments and associated biota in these ecosystems on a global level. In this review, mangrove forests have been classified in a continent-wise manner. Most of the investigations detail the distribution of metals such as zinc, chromium, arsenic, copper, cobalt, manganese, nickel, lead and mercury although in some cases levels of vanadium, strontium, zirconium and uranium have also been studied. Seasonal, tidal, marine, riverine, and terrestrial components are seen to influence occurrence, speciation, bioavailability and fate of metals in these ecosystems. In most of the cases, associated plants and animals also accumulate metals to different extents and are of ecotoxicological relevance. Levels of metals vary in a region specific manner and there is disparity in the pollution status of different mangrove areas. Protecting these vulnerable ecosystems from metal pollutants is important from environmental safety point of view. Copyright © 2018 Elsevier Inc. All rights reserved.
Facing uncertainty in ecosystem services-based resource management.
Grêt-Regamey, Adrienne; Brunner, Sibyl H; Altwegg, Jürg; Bebi, Peter
2013-09-01
The concept of ecosystem services is increasingly used as a support for natural resource management decisions. While the science for assessing ecosystem services is improving, appropriate methods to address uncertainties in a quantitative manner are missing. Ignoring parameter uncertainties, modeling uncertainties and uncertainties related to human-environment interactions can modify decisions and lead to overlooking important management possibilities. In this contribution, we present a new approach for mapping the uncertainties in the assessment of multiple ecosystem services. The spatially explicit risk approach links Bayesian networks to a Geographic Information System for forecasting the value of a bundle of ecosystem services and quantifies the uncertainties related to the outcomes in a spatially explicit manner. We demonstrate that mapping uncertainties in ecosystem services assessments provides key information for decision-makers seeking critical areas in the delivery of ecosystem services in a case study in the Swiss Alps. The results suggest that not only the total value of the bundle of ecosystem services is highly dependent on uncertainties, but the spatial pattern of the ecosystem services values changes substantially when considering uncertainties. This is particularly important for the long-term management of mountain forest ecosystems, which have long rotation stands and are highly sensitive to pressing climate and socio-economic changes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Erica A. H. Smithwick; Anthony L. Westerling; Monica G. Turner; William H. Romme; Michael G. Ryan
2011-01-01
More frequent fires under climate warming are likely to alter terrestrial carbon (C) stocks by reducing the amount of C stored in biomass and soil. However, the thresholds of fire frequency that could shift landscapes from C sinks to C sources under future climates are not known. We used the Greater Yellowstone Ecosystem (GYE) as a case study to explore the conditions...
Amanda E. Rosenberger; Jason B. Dunham; Helen Neville
2012-01-01
In this short piece we address the question of how aquatic ecosystems and species can change in response to disturbances, such as those related to the influence of wildfire on stream ecosystems. Our focal species is rainbow trout (Oncorhynchus mykiss) in the Boise River, Idaho. Rainbow trout in this system have persisted in the face of widespread and often severe...
Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R
2016-09-01
Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.
Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis
2013-01-01
Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies.
Measuring and modelling ecosystem productivity: a PhenoCam-based approach.
NASA Astrophysics Data System (ADS)
Hufkens, K.; Keenan, T. F.; Flanagan, L. B.; Richardson, A. D.
2015-12-01
Phenology controls feedbacks to the climate system through abiotic and biotic forces such as albedo or fluxes of water, energy and CO2. Understanding and modelling these vegetation-climate feedbacks is key to accurately predicting a future climate. For the past 6 years the PhenoCam network, a network of near-surface remote sensing cameras, has consistently monitored vegetation phenology in a wide range of ecoregions, climate zones, and plant functional types. Here we explore the tight coupling between canopy greenness and rates of photosynthesis using two studies. A first study highlights how PhenoCam data can be used to quantify the effect of a late spring frost event on ecosystem productivity, introducing a 7-14% loss in annual gross productivity across 8753 km2 in the northeastern United States. This case study emphasizes the use of the PhenoCam data in estimating productivity loss / the opportunity cost of ecosystem disturbance in areas not covered by ecosystem flux measurement equipment. In a more recent, second, study we developed a PhenoCam data-informed pulse-response model of grassland growth to explore potential responses of grasslands to future climate change across North America. Our findings projected widespread and consistent increase in grassland productivity (for the current range of grassland ecosystems of North American) over the coming century, despite a general increase in aridity projected across most of our study area. Once more PhenoCam data allowed us to inform our modelling efforts with data of a high temporal and spatial resolution. In conclusion, both studies illustrate direct applications of the ever growing PhenoCam network (http://phenocam.sr.unh.edu/webcam/) in scaling the effects of ecosystem disturbances, predicting future ecosystem productivity and underscore the complementary nature of PhenoCam data with ecosystem exchange measurements.
EMTERNALITIES - THE CASE OF AGRO-ECOSYSTEMS
This paper deals with the role of ecosystem services prior to crop production and uses this example to introduce emternalites in agro-ecosystems. Emternalities are best viewed as the quasi counterpart of established economic externalities, except that they designate unassessed i...
Fieldwork, Co-Teaching and Co-Generative Dialogue in Lower Secondary School Environmental Science
ERIC Educational Resources Information Center
Rahmawati, Yuli; Koul, Rekha
2016-01-01
This article reports one of the case studies in a 3-year longitudinal study in environmental science education. This case explores the process of teaching about ecosystems through co-teaching and co-generative dialogue in a Year-9 science classroom in Western Australia. Combining with co-teaching and co-generative dialogue aimed at transforming…
Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin
2016-01-01
Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.
Middle Rio Grande Basin Research Report 2008
Deborah M. Finch; Catherine Dold
2008-01-01
An ecosystem is rarely static. A natural system composed of plants, animals, and microorganisms interacting with an area's physical factors, an ecosystem is always fluctuating and evolving. But sometimes, often at the hands of humans, ecosystems change too much. Such is the case with many of the ecosystems of the Middle Rio Grande Basin of New Mexico.
Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.
2012-01-01
Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The second cross-cutting topic is the rapidly advancing field of climate adaptation, where there has been significant progress in developing the conceptual framework, planning approaches, and strategies for safeguarding biodiversity and other ecological resources. At the same time, ecosystem-based adaptation is becoming more prominent as a way to utilize ecosystem services to help human systems adapt to climate change. In this summary, we present key findings of the technical input, focusing on themes that can be found throughout the report. Thus, this summary takes a more integrated look at the question of how climate change is affecting our ecological resources, the implications for humans, and possible response strategies. This integrated approach better reflects the impacts of climate in the real world, where changes in ecosystem structure or function will alter the viability of different species and the efficacy of ecosystem services. Likewise, adaptation to climate change will simultaneously address a range of conservation goals. Case studies are used to illustrate this complete picture throughout the report; a snapshot of one case study, 2011 Las Conchas, New Mexico Fire, is included in this summary.
National Atlas of Ecosystem Services
The nation’s ecosystems provide a vast array of services to humans from clean and abundant water to recreational opportunities. The benefits of nature or “ecosystem services” are often taken for granted and not considered in environmental decision-making. In some cases, decis...
Pitcher, Tony J.
2005-01-01
‘Back-to-the-future’ (BTF) is an integrative approach to a restoration ecology of the oceans that attempts to solve the fisheries crisis. To this end, it harnesses the latest understanding of ecosystem processes, developments in whole ecosystem simulation modelling, and insight into the human dimension of fisheries management. BTF includes new methods for describing past ecosystems, designing fisheries that meet criteria for sustainability and responsibility, and evaluating the costs and benefits of fisheries in restored ecosystems. Evaluation of alternative policy choices, involving trade-offs between conservation and economic values, employs a range of economic, social and ecological measures. Automated searches maximize values of objective functions, and the methodology includes analyses of model parameter uncertainty. Participatory workshops attempt to maximize compliance by fostering a sense of ownership among all stakeholders. Some challenges that have still to be met include improving methods for quantitatively describing the past, reducing uncertainty in ecosystem simulation techniques and in making policy choices robust against climate change. Critical issues include whether past ecosystems make viable policy goals, and whether desirable goals may be reached from today’s ecosystem. Examples from case studies in British Columbia, Newfoundland and elsewhere are presented. PMID:15713591
The ecological risks of genetically engineered organisms
NASA Astrophysics Data System (ADS)
Wolfenbarger, Lareesa
2001-03-01
Highly publicized studies have suggested environmental risks of releasing genetically engineered organisms (GEOs) and have renewed concerns over the evaluation and regulation of these products in domestic and international arenas. I present an overview of the risks of GEOs and the available evidence addressing these and discuss the challenges for risk assessment. Main categories of risk include non-target effects from GEOs, emergence of new viral diseases, and the spread of invasive (weedy) characteristics. Studies have detected non-target effects in some cases but not all; however, much less information exists on other risks, in part due to a lack of conceptual knowledge. For example, general models for predicting invasiveness are not well developed for any introduced organism. The risks of GEOs appear comparable to those for any introduced species or organism, but the magnitude of the risk or the pathway of exposure to the risk can differ among introduced organisms. Therefore, assessing the risks requires a case-by-case analysis so that any differences can be identified. Challenges to assessing risks to valued ecosystems include variability in effects and ecosystem complexity. Ecosystems are a dynamic and complex network of biological and physical interactions. Introducing a new biological entity, such as a GEO, may potentially alter any of these interactions, but evaluating all of these is unrealistic. Effects on a valued ecosystem could vary greatly depending on the geographical location of the experimental site, the GEO used, the plot size of the experiment (scaling effects), and the biological and physical parameters used in the experiment. Experiments that address these sources of variability will provide the most useful information for risk assessments.
Syberg, Kristian; Backhaus, Thomas; Banta, Gary; Bruce, Peter; Gustavsson, Mikael; Munns, Wayne R; Rämö, Robert; Selck, Henriette; Gunnarsson, Jonas S
2017-03-01
Growth of human populations and increased human activity, particularly in coastal areas, increase pressure on coastal ecosystems and the ecosystem services (ES) they provide. As a means toward being able to assess the impact of multiple stressors on ES, in the present study we propose an 8-step conceptual approach for assessing effects of chemical mixtures and other stressors on ES in coastal areas: step A, identify the relevant problems and policy aims; step B, identify temporal and spatial boundaries; step C, identify relevant ES; step D, identify relevant stressors (e.g., chemicals); step E, translate impacts into ES units; step F, assess cumulative risk in ES units; step G, rank stressors based on their contribution to adverse effects on ES; and step H, implement regulation and management as appropriate and necessary. Two illustrative case studies (Swedish coastal waters and a coastal lagoon in Costa Rica) are provided; one focuses on chemicals that affect human food supply and the other addresses pesticide runoff and trade-offs among ES. The 2 cases are used to highlight challenges of such risk assessments, including use of standardized versus ES-relevant test species, data completeness, and trade-offs among ES. Lessons learned from the 2 case studies are discussed in relation to environmental risk assessment and management of chemical mixtures. Integr Environ Assess Manag 2017;13:376-386. © 2016 SETAC. © 2016 SETAC.
Effect of land use on greenhouse gas emission in tropical ecosystems
NASA Astrophysics Data System (ADS)
Six, Johan
2017-04-01
Tropical ecosystems play an important role for the regional and global climate system through the exchange of greenhouse gases and provide important ecosystems services such as carbon sequestration, produce, and biodiversity. Human activities have, however, resulted in intensive transformation of tropical ecosystems impacting the cycling of nutrients, water and carbon underlying the greenhouse gas emissions. At the same time, best-bet agricultural practices can reduce greenhouse gas emission, those directly emitted from the agricultural fields, but also indirectly through less demand on new land and hence forest conservation. Here, I will provide some insights into the main factors affecting the exchange of greenhouse gases from the plot to continental scale through some specific case studies. Experimental data, stable isotopes and modeling results will be presented.
NASA Astrophysics Data System (ADS)
Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Fujikura, Katsunori
2017-04-01
On March 11, 2011, huge earthquake and tsunamis took place coastal regions of Northeast Japan. Coastal infrastructure collapsed due to high waves of tsunamis. Marine ecosystems were also strongly disturbed by the earthquakes and tsunamis. TEAMS (Tohoku Ecosystem-Associated Marine Sciences) has started for monitoring recovering process of marine ecosystems. The project continues ten years. First five years are mainly monitored recovery process, then we should transfer our knowledge to fishermen and citizens for restoration of fishery and social systems. But, how can we actually transfer our knowledge from science to citizens? This is new experience for us. Socio-technology constructs a "high quality risk communication" model how scientific knowledge or technologies from scientific communities to citizens. They are progressing as follows, "observation, measurements and data", → "modeling and synthesis" → "information process" → "delivery to society" → " take action in society". These steps show detailed transition from inter-disciplinarity to trans-disciplinarity in science and technology. In our presentation, we plan to show a couple of case studies that are going forward from science to society.
Leptospirosis in Rio Grande do Sul, Brazil: An Ecosystem Approach in the Animal-Human Interface
Schneider, Maria Cristina; Najera, Patricia; Pereira, Martha M.; Machado, Gustavo; dos Anjos, Celso B.; Rodrigues, Rogério O.; Cavagni, Gabriela M.; Muñoz-Zanzi, Claudia; Corbellini, Luis G.; Leone, Mariana; Buss, Daniel F.; Aldighieri, Sylvain; Espinal, Marcos A.
2015-01-01
Background Leptospirosis is an epidemic-prone neglected disease that affects humans and animals, mostly in vulnerable populations. The One Health approach is a recommended strategy to identify drivers of the disease and plan for its prevention and control. In that context, the aim of this study was to analyze the distribution of human cases of leptospirosis in the State of Rio Grande do Sul, Brazil, and to explore possible drivers. Additionally, it sought to provide further evidence to support interventions and to identify hypotheses for new research at the human-animal-ecosystem interface. Methodology and findings The risk for human infection was described in relation to environmental, socioeconomic, and livestock variables. This ecological study used aggregated data by municipality (all 496). Data were extracted from secondary, publicly available sources. Thematic maps were constructed and univariate analysis performed for all variables. Negative binomial regression was used for multivariable statistical analysis of leptospirosis cases. An annual average of 428 human cases of leptospirosis was reported in the state from 2008 to 2012. The cumulative incidence in rural populations was eight times higher than in urban populations. Variables significantly associated with leptospirosis cases in the final model were: Parana/Paraiba ecoregion (RR: 2.25; CI95%: 2.03–2.49); Neossolo Litolítico soil (RR: 1.93; CI95%: 1.26–2.96); and, to a lesser extent, the production of tobacco (RR: 1.10; CI95%: 1.09–1.11) and rice (RR: 1.003; CI95%: 1.002–1.04). Conclusion Urban cases were concentrated in the capital and rural cases in a specific ecoregion. The major drivers identified in this study were related to environmental and production processes that are permanent features of the state. This study contributes to the basic knowledge on leptospirosis distribution and drivers in the state and encourages a comprehensive approach to address the disease in the animal-human-ecosystem interface. PMID:26562157
Leptospirosis in Rio Grande do Sul, Brazil: An Ecosystem Approach in the Animal-Human Interface.
Schneider, Maria Cristina; Najera, Patricia; Pereira, Martha M; Machado, Gustavo; dos Anjos, Celso B; Rodrigues, Rogério O; Cavagni, Gabriela M; Muñoz-Zanzi, Claudia; Corbellini, Luis G; Leone, Mariana; Buss, Daniel F; Aldighieri, Sylvain; Espinal, Marcos A
2015-11-01
Leptospirosis is an epidemic-prone neglected disease that affects humans and animals, mostly in vulnerable populations. The One Health approach is a recommended strategy to identify drivers of the disease and plan for its prevention and control. In that context, the aim of this study was to analyze the distribution of human cases of leptospirosis in the State of Rio Grande do Sul, Brazil, and to explore possible drivers. Additionally, it sought to provide further evidence to support interventions and to identify hypotheses for new research at the human-animal-ecosystem interface. The risk for human infection was described in relation to environmental, socioeconomic, and livestock variables. This ecological study used aggregated data by municipality (all 496). Data were extracted from secondary, publicly available sources. Thematic maps were constructed and univariate analysis performed for all variables. Negative binomial regression was used for multivariable statistical analysis of leptospirosis cases. An annual average of 428 human cases of leptospirosis was reported in the state from 2008 to 2012. The cumulative incidence in rural populations was eight times higher than in urban populations. Variables significantly associated with leptospirosis cases in the final model were: Parana/Paraiba ecoregion (RR: 2.25; CI95%: 2.03-2.49); Neossolo Litolítico soil (RR: 1.93; CI95%: 1.26-2.96); and, to a lesser extent, the production of tobacco (RR: 1.10; CI95%: 1.09-1.11) and rice (RR: 1.003; CI95%: 1.002-1.04). Urban cases were concentrated in the capital and rural cases in a specific ecoregion. The major drivers identified in this study were related to environmental and production processes that are permanent features of the state. This study contributes to the basic knowledge on leptospirosis distribution and drivers in the state and encourages a comprehensive approach to address the disease in the animal-human-ecosystem interface.
Patrick T. Hurley; Marla R. Emery
2017-01-01
Scholarship on the ecosystem services provided by urban forests has focused on regulating and supporting services, with a growing body of research examining provisioning and cultural ecosystem services from farms and gardens in metropolitan areas. Using the case of New York, New York, USA, we propose a method to assess the supply of potential provisioning ecosystem...
Ecosystem Services Flows: Why Stakeholders' Power Relationships Matter.
Felipe-Lucia, María R; Martín-López, Berta; Lavorel, Sandra; Berraquero-Díaz, Luis; Escalera-Reyes, Javier; Comín, Francisco A
2015-01-01
The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the "cascade" framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders' interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders' ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services.
Ecosystem Services Flows: Why Stakeholders’ Power Relationships Matter
Felipe-Lucia, María R.; Martín-López, Berta; Lavorel, Sandra; Berraquero-Díaz, Luis; Escalera-Reyes, Javier; Comín, Francisco A.
2015-01-01
The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the “cascade” framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders’ interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders’ ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services. PMID:26201000
NASA Astrophysics Data System (ADS)
Thorsson, Johann; Petursdottir, Thorunn
2015-04-01
Soils are one of the main fundamental bodies of terrestrial ecosystems. Soil functions contribute substantially to the ecosystem services humans and all other living beings depend on. Current soil threats are in most cases related to anthropogenic impacts and derived environmental pressures. For instance, overexploitation has in many cases damaged ecosystem resilience, affected current equilibrium and caused severe soil degradation. The resulting dysfunctional ecosystems are incapable of providing necessary ecosystem services. In such cases ecosystem restoration is necessary to restore ecosystem functions and ecological succession. The Mt. Hekla area in Iceland is an example of land suffering from accelerated erosion amplified by anthropogenic impacts. The area is 900 km2 located in South Iceland in the vicinity of the volcano Mt. Hekla. Today over 40% of the area is classified as eroded but historical documents indicate that vast part of the area were fertile and vegetated at the time of settlement, 1100 years ago; hence was able to withstand the geological disturbances occurring prior to the arrival of man as is obvious from the pristine woody patches still remaining. Severe soil degradation followed the large-scale deforestation and overgrazing that took place within the area. The initial land degradation event is considered to have occurred in the 11th century, but has been ongoing since then in several episodes. The Þjórsá glacial river flows through the area and carries enormous amounts of sediments every year. After the deforestation, the ecosystem resilience was damaged and the land left exposed to the elements. Eventually large scale wind erosion started, followed with water erosion and increased impact of freeze-thaw processes. The Soil Conservation Service of Iceland started working in the area in the early 20th century and land reclamation operations have been ongoing until this day. Considerable successes have been made as is manifested in the fact that sandstorms, once frequent, do not occur any more in the area. A governmental project (the "Mt. Hekla Forest") has been ongoing since 2007 focusing explicitly on this area. The project's main aim is to restore ecosystem services and increase the system resilience towards volcanic eruptions and other potential natural hazards. In this presentation we will discuss the causes for the ecosystem collapse in the Hekla area in further details and the social-ecological context of the restoration activities implemented.
Illustrating the Interaction of Nature and People in Ecosystem Services: The Case of Terroir in Wine
NASA Astrophysics Data System (ADS)
Nicholas, K. A.
2014-12-01
The ecosystem services (ES) approach is increasingly used in research and policy, with the Common International Framework on Ecosystem Services (CICES) "cascade" gaining traction as a framework for conceptualizing the production of ecosystem services by the natural environment, and then people consuming these services and obtaining benefits depending on their values. However, uptake of the ES concept on the ground by ecosystem managers, and understanding by everyday citizens, is still limited. One barrier is the challenge of providing tangible, examples of everyday benefits and values that people can readily connect with the biophysical structures and functions that underlie their provision. Winegrowing offers one promising case to illustrate the linkages all along the chain of production and consumption of ecosystem services. The sensitive winegrape has long been known for its properties of terroir, where the taste of wine reflects the environmental conditions of the place where it is grown, a feature valued by consumers. Here the CICES framework is illustrated with the case of winegrowing, demonstrating that the current linear model of natural production and human consumption of ES needs to be modified for this case because people influence each of the five stages by shaping and responding to their environment, producing a two-way interaction between people and the environment throughout. For example, while natural drivers such as climate and soils are key to the provision of the service of winegrape yields, landowners modify the biophysical environment through site selection and growers modify plant ecophysiological function through farming practices such as pruning and irrigation in order to influence the final service. Similarly, winemakers' expertise is needed to transform the service of winegrape yields into the product of wine that can be enjoyed and valued by consumers, whose preferences shape wine styles as well. This case illustrates how incorporating both natural and human factors all along the chain of production and consumption of ecosystem services can better represent the potential services provided, and highlights the need to identify relevant decisionmakers at each stage to better understand and manage ecosystem services under environmental change.
Western Mountain Initiative - Background
, and degraded water quality in mountain lakes and streams. In each case, ecosystem thresholds were dynamics; and the consequences of an altered water cycle for terrestrial and aquatic ecosystems and . Third, Western mountain ecosystems are important to society, providing water, wood products, carbon
Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis
2013-01-01
Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080
Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.
Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang
2013-10-01
In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p<0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle-downstream area of Yangtze River Base.
Coral–algal phase shifts alter fish communities and reduce fisheries production
Ainsworth, Cameron H; Mumby, Peter J
2015-01-01
Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835
NASA Astrophysics Data System (ADS)
Metzger, M.; Brown, C.; Pérez-Soba, M.; Rounsevell, M.; Verweij, P.; Delbaere, B.; Cojocaru, G.; Saarikoski, H.; Harrison, P.; Zellmer, K.
2014-12-01
The ecosystem services concept is seen by many as a useful paradigm to support decision-making at the complex interface between science, policy and practice. However, to be successful, it requires a strong willingness for collaboration and joint understanding. In support of this aspiration, OPPLA is being developed as a web portal to enable European communities to better manage ecosystems for human well-being and livelihoods. OPPLA will provide access to a variety of online resources such as tools, case studies, lessons learned, videos, manuals and training and educational materials. It will also provide expert forums and spaces for discussions between researchers, practitioners and decision makers. Hence a critical aspect of the success of OPPLA is the co-evolution of communities of practice. An example of a community of practice is the recently launched Ecosystem Services Community - Scotland (ESCom-Scotland; escomscotland.wordpress.com). ESCom-Scotland aims to support better management of Scotland's natural resources by helping to establish a community of practice between individuals and groups involved in the science, policy and practice behind sustainable ecosystem management. It aspires to encourage the sharing of ideas, increase collaboration and to initiate a support network for those engaging with the ecosystem services concept and it will use the OPPLA resources to support these activities. OPPLA is currently at the developmental stage and was instigated by two large European Commission funded research projects: OPERAs (www.operas-project.eu) and OpenNESS (www.openness-project.eu), with a combined budget of ca. €24m. These projects aim to improve understanding of how ecosystem services contribute to human well-being in different social-ecological systems. Research will establish whether, how and under what conditions the ecosystem services concept can move beyond the academic domain towards practical implementation in support of sustainable ecosystem management. New insights, and improved or novel tools and instruments, will be tested in practice in case studies that cover a range of socio-ecological systems across locales, sectors, scales and time. This presentation will discuss the development of OPPLA and the communities of practice that are emerging around it.
The Lagrangian Ensemble metamodel for simulating plankton ecosystems
NASA Astrophysics Data System (ADS)
Woods, J. D.
2005-10-01
This paper presents a detailed account of the Lagrangian Ensemble (LE) metamodel for simulating plankton ecosystems. It uses agent-based modelling to describe the life histories of many thousands of individual plankters. The demography of each plankton population is computed from those life histories. So too is bio-optical and biochemical feedback to the environment. The resulting “virtual ecosystem” is a comprehensive simulation of the plankton ecosystem. It is based on phenotypic equations for individual micro-organisms. LE modelling differs significantly from population-based modelling. The latter uses prognostic equations to compute demography and biofeedback directly. LE modelling diagnoses them from the properties of individual micro-organisms, whose behaviour is computed from prognostic equations. That indirect approach permits the ecosystem to adjust gracefully to changes in exogenous forcing. The paper starts with theory: it defines the Lagrangian Ensemble metamodel and explains how LE code performs a number of computations “behind the curtain”. They include budgeting chemicals, and deriving biofeedback and demography from individuals. The next section describes the practice of LE modelling. It starts with designing a model that complies with the LE metamodel. Then it describes the scenario for exogenous properties that provide the computation with initial and boundary conditions. These procedures differ significantly from those used in population-based modelling. The next section shows how LE modelling is used in research, teaching and planning. The practice depends largely on hindcasting to overcome the limits to predictability of weather forecasting. The scientific method explains observable ecosystem phenomena in terms of finer-grained processes that cannot be observed, but which are controlled by the basic laws of physics, chemistry and biology. What-If? Prediction ( WIP), used for planning, extends hindcasting by adding events that describe natural or man-made hazards and remedial actions. Verification is based on the Ecological Turing Test, which takes account of uncertainties in the observed and simulated versions of a target ecological phenomenon. The rest of the paper is devoted to a case study designed to show what LE modelling offers the biological oceanographer. The case study is presented in two parts. The first documents the WB model (Woods & Barkmann, 1994) and scenario used to simulate the ecosystem in a mesocosm moored in deep water off the Azores. The second part illustrates the emergent properties of that virtual ecosystem. The behaviour and development of an individual plankton lineage are revealed by an audit trail of the agent used in the computation. The fields of environmental properties reveal the impact of biofeedback. The fields of demographic properties show how changes in individuals cumulatively affect the birth and death rates of their population. This case study documents the virtual ecosystem used by Woods, Perilli and Barkmann (2005; hereafter WPB); to investigate the stability of simulations created by the Lagrangian Ensemble metamodel. The Azores virtual ecosystem was created and analysed on the Virtual Ecology Workbench (VEW) which is described briefly in the Appendix.
NASA Astrophysics Data System (ADS)
Spence, P. L.; Jordan, S. J.
2011-12-01
Increased reactive nitrogen (Nr) inputs to freshwater wetlands resulting from infrastructure development due to population growth along with intensive agricultural practices associated with food production can threaten regulating (i.e. climate change, water purification, and waste treatment) and supporting (i.e. nutrient cycling) ecosystem services. Wetlands generally respond both by sequestering Nr (i.e. soil accumulation and biomass assimilation) and converting Nr into inert gaseous forms via biogeochemical processes. It is important for wetlands to be efficient in removing excessive Nr inputs from polluted waters to reduce eutrophication in downstream receiving water bodies while producing negligible amounts of nitrous oxide (N2O), a potent greenhouse gas, which results from incomplete denitrification. Wetlands receiving excessive Nr lose their ability to provide a constant balance between regulating water quality and mitigating climate change. The purpose of this study is to explore the effects of Nr inputs on ecosystem services provided by wetlands using a Bayesian Belief Network (BBN). The network was developed from established relationships between a variety of wetland function indicators and biogeochemical process associated with Nr removal. Empirical data for 34 freshwater wetlands were gathered from a comprehensive review of published peer-reviewed and gray literature. The BBN was trained using 30 wetlands (88% of the freshwater wetland case file) and tested using 4 wetlands (12% of the freshwater wetland case file). Sensitivity analysis suggested that Nr removal, water quality, soil Nr accumulation and N2O emissions had the greatest influence on ecosystem service tradeoffs. The magnitude of Nr inputs did not affect ecosystem services. The network implies that Nr removal efficiency has a greater influence on final ecosystem services associated with water quality impairment and atmospheric pollution. A very low error rate, which was based on 4 wetland cases, indicated that a larger dataset is required to provide robust predictions. These findings are considered preliminary and could change as the model is updated.
Simplifying Operational Design
2012-05-01
centuries of historical case studies, tracing the 9 evolution and development of what was then in 1997 operational theory. Naveh called his...major cases against operational design is the IDF’s application of SOD in 2006 against Hezbollah in Lebanon. While many blamed Israel’s lack of success...networked centricity.68 This is not the case . War, like ecosystems and economies, is a complex adaptive system. The interactive complexity that comprises
Landuyt, Dries; Lemmens, Pieter; D'hondt, Rob; Broekx, Steven; Liekens, Inge; De Bie, Tom; Declerck, Steven A J; De Meester, Luc; Goethals, Peter L M
2014-12-01
Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ai, Junyong; Sun, Xiang; Feng, Lan; Li, Yangfan; Zhu, Xiaodong
2015-09-01
Quantifying and mapping the distribution patterns of ecosystem services can help to ascertain which services should be protected and where investments should be directed to improve synergies and reduce tradeoffs. Moreover, the indicators of urbanization that affect the provision of ecosystem services must be identified to determine which approach to adopt in formulating policies related to these services. This paper presents a case study that maps the distribution of multiple ecosystem services and analyzes the ways in which they interact. The relationship between the supply of ecosystem services and the socio-economic development in the Taihu Lake Basin of eastern China is also revealed. Results show a significant negative relationship between crop production and tourism income ( p<0.005) and a positive relationship between crop production, nutrient retention, and carbon sequestration ( p<0.005). The negative effects of the urbanization process on providing and regulating services are also identified through a comparison of the ecosystem services in large and small cities. Regression analysis was used to compare and elucidate the relative significance of the selected urbanization factors to ecosystem services. The results indicate that urbanization level is the most substantial factor inversely correlated with crop production ( R 2 = 0.414) and nutrient retention services ( R 2 = 0.572). Population density is the most important factor that negatively affects carbon sequestration ( R 2 = 0.447). The findings of this study suggest the potential relevance of ecosystem service dynamics to urbanization management and decision making.
Martin, David M; Mazzotta, Marisa; Bousquin, Justin
2018-04-10
Accounting for ecosystem services in environmental decision making is an emerging research topic. Modern frameworks for ecosystem services assessment emphasize evaluating the social benefits of ecosystems, in terms of who benefits and by how much, to aid in comparing multiple courses of action. Structured methods that use decision analytic-approaches are emerging for the practice of ecological restoration. In this article, we combine ecosystem services assessment with structured decision making to estimate and evaluate measures of the potential benefits of ecological restoration with a case study in the Woonasquatucket River watershed, Rhode Island, USA. We partnered with a local watershed management organization to analyze dozens of candidate wetland restoration sites for their abilities to supply five ecosystem services-flood water retention, scenic landscapes, learning opportunities, recreational opportunities, and birds. We developed 22 benefit indicators related to the ecosystem services as well as indicators for social equity and reliability that benefits will sustain in the future. We applied conceptual modeling and spatial analysis to estimate indicator values for each candidate restoration site. Lastly, we developed a decision support tool to score and aggregate the values for the organization to screen the restoration sites. Results show that restoration sites in urban areas can provide greater social benefits than sites in less urban areas. Our research approach is general and can be used to investigate other restoration planning studies that perform ecosystem services assessment and fit into a decision-making process.
Quinn, Courtney E; Quinn, John E; Halfacre, Angela C
2015-10-01
The interest in improved environmental sustainability of agriculture via biodiversity provides an opportunity for placed-based research on the conceptualization and articulation of ecosystem services. Yet, few studies have explored how farmers conceptualize the relationship between their farm and nature and by extension ecosystem services. Examining how farmers in the Southern Piedmont of South Carolina discuss and explain the role of nature on their farm, we create a detail-rich picture of how they perceive ecosystem services and their contributions to the agroeconomy. Using 34 semi-structured interviews, we developed a detail-rich qualitative portrait of these farmers' conceptualizations of ecosystem services. Farmers' conceptualization of four ecosystem services: provisioning, supporting, regulating, and cultural are discussed, as well as articulation of disservices. Results of interviews show that most interviewees expressed a basic understanding of the relationship between nature and agriculture and many articulated benefits provided by nature to their farm. Farmers referred indirectly to most services, though they did not attribute services to biodiversity or ecological function. While farmers have a general understanding and appreciation of nature, they lack knowledge on specific ways biodiversity benefits their farm. This lack of knowledge may ultimately limit farmer decision-making and land management to utilize ecosystem services for environmental and economic benefits. These results suggest that additional communication with farmers about ecosystem services is needed as our understanding of these benefits increases. This change may require collaboration between conservation biology professionals and extension and agriculture professionals to extended successful biomass provisioning services to other ecosystem services.
Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis.
Keller, Arturo A; Fournier, Eric; Fox, Jessica
2015-06-01
Development of natural landscapes to support human activities impacts the capacity of the landscape to provide ecosystem services. Typically, several ecosystem services are impacted at a single development site and various footprint scenarios are possible, thus a multi-criteria analysis is needed. Restoration potential should also be considered for the area surrounding the permanent impact site. The primary objective of this research was to develop a heuristic approach to analyze multiple criteria (e.g. impacts to various ecosystem services) in a spatial configuration with many potential development sites. The approach was to: (1) quantify the magnitude of terrestrial ecosystem service (biodiversity, carbon sequestration, nutrient and sediment retention, and pollination) impacts associated with a suite of land use change scenarios using the InVEST model; (2) normalize results across categories of ecosystem services to allow cross-service comparison; (3) apply the multi-criteria heuristic algorithm to select sites with the least impact to ecosystem services, including a spatial criterion (separation between sites). As a case study, the multi-criteria impact minimization algorithm was applied to InVEST output to select 25 potential development sites out of 204 possible locations (selected by other criteria) within a 24,000 ha property. This study advanced a generally applicable spatial multi-criteria approach for 1) considering many land use footprint scenarios, 2) balancing impact decisions across a suite of ecosystem services, and 3) determining the restoration potential of ecosystem services after impacts. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effects of selenium supplementation in cattle on aquatic ecosystems in northern California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, B.; Nader, G.; Oliver, M.
1992-09-15
The potential impact on aquatic ecosystems of supplementing the diets of beef cattle with selenium (Se) was studied on 4 northern California ranches. All study sites included an area of concentrated use by cattle that had diets supplemented with Se. In each case, a stream flowed through the site and provided a control sampling area upstream and a treated sampling area downstream. Specimens of water, sediment, algae, aquatic plants, aquatic invertebrates, and fish were analyzed fluorometrically for total Se content. Significant differences in Se concentration were not found between specimens from upstream control areas and those from downstream areas subjectedmore » to use by Se-treated cattle. Evidence was not found that Se supplementation in cattle at maximal permitted concentrations caused Se accumulation in associated aquatic ecosystems.« less
Status assessment of New Zealand's naturally uncommon ecosystems.
Holdaway, Robert J; Wiser, Susan K; Williams, Peter A
2012-08-01
Globally, ecosystems are under increasing anthropogenic pressure; thus, many are at risk of elimination. This situation has led the International Union for Conservation of Nature (IUCN) to propose a quantitative approach to ecosystem-risk assessment. However, there is a need for their proposed criteria to be evaluated through practical examples spanning a diverse range of ecosystems and scales. We applied the IUCN's ecosystem red-list criteria, which are based on changes in extent of ecosystems and reductions in ecosystem processes, to New Zealand's 72 naturally uncommon ecosystems. We aimed to test the applicability of the proposed criteria to ecosystems that are naturally uncommon (i.e., those that would naturally occur over a small area in the absence of human activity) and to provide information on the probability of ecosystem elimination so that conservation priorities might be set. We also tested the hypothesis that naturally uncommon ecosystems classified as threatened on the basis of IUCN Red List criteria contain more threatened plant species than those classified as nonthreatened. We identified 18 critically endangered, 17 endangered, and 10 vulnerable ecosystems. We estimated that naturally uncommon ecosystems contained 145 (85%) of mainland New Zealand's taxonomically distinct nationally critical, nationally endangered, and nationally vulnerable plant species, 66 (46%) of which were endemic to naturally uncommon ecosystems. We estimated there was a greater number of threatened plant species (per unit area) in critically endangered ecosystems than in ecosystems classified as nonthreatened. With their high levels of endemism and rapid and relatively well-documented history of anthropogenic change, New Zealand's naturally uncommon ecosystems provide an excellent case-study for the ongoing development of international criteria for threatened ecosystems. We suggest that interactions and synergies among decline in area, decline in function, and the scale of application of the criteria be used to improve the IUCN criteria for threatened ecosystems. ©2012 Society for Conservation Biology.
A comparative assessment of tools for ecosystem services quantification and valuation
Bagstad, Kenneth J.; Semmens, Darius; Waage, Sissel; Winthrop, Robert
2013-01-01
To enter widespread use, ecosystem service assessments need to be quantifiable, replicable, credible, flexible, and affordable. With recent growth in the field of ecosystem services, a variety of decision-support tools has emerged to support more systematic ecosystem services assessment. Despite the growing complexity of the tool landscape, thorough reviews of tools for identifying, assessing, modeling and in some cases monetarily valuing ecosystem services have generally been lacking. In this study, we describe 17 ecosystem services tools and rate their performance against eight evaluative criteria that gauge their readiness for widespread application in public- and private-sector decision making. We describe each of the tools′ intended uses, services modeled, analytical approaches, data requirements, and outputs, as well time requirements to run seven tools in a first comparative concurrent application of multiple tools to a common location – the San Pedro River watershed in southeast Arizona, USA, and northern Sonora, Mexico. Based on this work, we offer conclusions about these tools′ current ‘readiness’ for widespread application within both public- and private-sector decision making processes. Finally, we describe potential pathways forward to reduce the resource requirements for running ecosystem services models, which are essential to facilitate their more widespread use in environmental decision making.
NASA Astrophysics Data System (ADS)
Trabucchi, Mattia; O'Farrell, Patrick J.; Notivol, Eduardo; Comín, Francisco A.
2014-06-01
Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.
Trabucchi, Mattia; O'Farrell, Patrick J; Notivol, Eduardo; Comín, Francisco A
2014-06-01
Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.
Spatial transferring of ecosystem services and property rights allocation of ecological compensation
NASA Astrophysics Data System (ADS)
Wen, Wujun; Xu, Geng; Wang, Xingjie
2011-09-01
Ecological compensation is an important means to maintain the sustainability and stability of ecosystem services. The property rights analysis of ecosystem services is indispensable when we implement ecological compensation. In this paper, ecosystem services are evaluated via spatial transferring and property rights analysis. Take the Millennium Ecosystem Assessment (MA) as an example, we attempt to classify the spatial structure of 31 categories of ecosystem services into four dimensions, i.e., local, regional, national and global ones, and divide the property rights structure into three types, i.e., private property rights, common property rights and state-owned property rights. Through the case study of forestry, farming industry, drainage area, development of mineral resources, nature reserves, functional areas, agricultural land expropriation, and international cooperation on ecological compensation, the feasible ecological compensation mechanism is illustrated under the spatial structure and property rights structure of the concerned ecosystem services. For private property rights, the ecological compensation mode mainly depends on the market mechanism. If the initial common property rights are "hidden," the implementation of ecological compensation mainly relies on the quota market transactions and the state investment under the state-owned property rights, and the fairness of property rights is thereby guaranteed through central administration.
NASA Astrophysics Data System (ADS)
O’Connell, Christine S.; Carlson, Kimberly M.; Cuadra, Santiago; Feeley, Kenneth J.; Gerber, James; West, Paul C.; Polasky, Stephen
2018-06-01
As the planet’s dominant land use, agriculture often competes with the preservation of natural systems that provide globally and regionally important ecosystem services. How agriculture impacts ecosystem service delivery varies regionally, among services being considered, and across spatial scales. Here, we assess the tradeoffs between four ecosystem services—agricultural production, carbon storage, biophysical climate regulation, and biodiversity—using as a case study the Amazon, an active frontier of agricultural expansion. We find that the highest values for each of the ecosystem services are concentrated in different regions. Agricultural production potential and carbon storage are highest in the north and west, biodiversity greatest in the west, and climate regulation services most vulnerable to disruption in the south and east. Using a simple optimization model, we find that under scenarios of agricultural expansion that optimize total production across ecosystem services, small increases in priority for one ecosystem service can lead to reductions in other services by as much as 140%. Our results highlight the difficulty of managing landscapes for multiple environmental goals; the approach presented here can be adapted to guide value-laden conservation decisions and identify potential solutions that balance priorities.
Society and Ecosystem Carbon Budget through Life Cycle Assessment: Results from Asian Drylands
NASA Astrophysics Data System (ADS)
Chen, J.
2017-12-01
Land use, land cover changes, and ecosystem-specific management practices are recognized for their roles in mediating the climatic effects on ecosystem structure and function. A major challenge is that our understanding and forecasting of ecosystem functions, such as C fluxes, cannot rely solely on conventional biophysical regulations from the local ecosystem to the global scale. A second challenge lies in quantifying the magnitude of the C fluxes from managed ecosystems and landscapes over the lifetime of the C cycle, and to deduct the various energy inputs during management. Our specific challenge here is to quantify the landscape-scale C footprint of both managed agricultural-forest landscapes and people - the societal input and engagement in ecosystem studies. Using the East Asia Drylands (Chen et al., 2013) and an agricultural watershed in southwestern Michigan as a test bed, the mechanisms (carbon as an example) from both human activities and biophysical changes on ecosystem C dynamics at different temporal and spatial scales are proposed to be explored by modeling total net ecosystem C production (physical and social C fluxes), performing a spatially-explicit life cycle assessment (LCA) on the total C production. Remote sensing technology, available geospatial data, records of management practices, surveys of historical practices, a land surface model, and in situ measurements of C fluxes are all needed to achieve our objectives. Our case study calls for direct involvement of society as both the driver and beneficiary of ecosystem dynamics. Reference Chen, J., Wan, S., Henebry, G., Qi, J., Gutman, G., Sun, G., and Kappas, M. (Eds.) 2013. Dryland East Asia (DEA): Land Dynamics Amid Social And Climate Change. HEP and De Gruyter, 470 pp.
Valuing ecological systems and services
Kubiszewski, Ida; Ervin, David; Bluffstone, Randy; Boyd, James; Brown, Darrell; Chang, Heejun; Dujon, Veronica; Granek, Elise; Polasky, Stephen; Shandas, Vivek; Yeakley, Alan
2011-01-01
Making trade-offs between ecological services and other contributors to human well-being is a difficult but critical process that requires valuation. This allows both better recognition of the ecological, social, and economic trade-offs and also allows us to bill those who use up or destroy ecological services and reward those that produce or enhance them. It also aids improved ecosystems policy. In this paper we clarify some of the controversies in defining the contributions to human well-being from functioning ecosystems, many of which people are not even aware of. We go on to describe the applicability of the various valuation methods that can be used in estimating the benefits of ecosystem services. Finally, we describe some recent case studies and lay out the research agenda for ecosystem services analysis, modeling, and valuation going forward. PMID:21876725
Alison C. Dibble; Catherine A. Rees
2005-01-01
In forest experiments the problem of inadequate controls often arises. True controls might not be required in case studies, comparisons along an environmental gradient, or comparisons of multiple treated and untreated areas. In a recent characterization of fuels in invaded and uninvaded forest conditions for four forest types at 12 locations in Maine, Maryland,...
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Feng, Xiaoming; Wang, Xiaofeng; Fu, Bojie
2018-03-01
The frequency and intensity of drought are increasing dramatically with global warming. However, few studies have characterized drought in terms of its impacts on ecosystem services, the mechanisms through which ecosystems support life. As a result, little is known about the implications of increased drought for resource management. This case study characterizes drought by linking climate anomalies with changes in the precipitation-runoff relationship (PRR) on the Loess Plateau of China, a water-limited region where ongoing revegetation makes drought a major concern. We analyzed drought events with drought durations ≥ 5 years and mean annual precipitation anomaly (PA) values ≤ -5 % during drought periods. The results show that continuous precipitation shifts are able to change the water balance of watersheds in water-limited areas, and multi-year drought events cause the PRR to change with a significantly decreasing trend (p < 0.05) compared to other historical records. For the Loess Plateau as a whole, the average runoff ratio decreased from 10 to 6.8 % during 1991-1999. The joint probability and return period gradually increase with increasing of drought duration and severity. The ecosystem service of water yield is easily affected by drought events with durations equal to or greater than 6 years and drought severity values equal to or greater than 0.55 (precipitation ≤ 212 mm). At the same time, multi-year drought events also lead to significant changes in the leaf area index (LAI). Such studies are essential for ecosystem management in water-limited areas.
Assessment of ecosystem productivity damage due to land use.
Kaenchan, Piyanon; Guinée, Jeroen; Gheewala, Shabbir H
2018-04-15
Land use can affect ecosystems on land and their services. Because land use has mainly local effects, damage to ecosystem productivity due to land use should be modelled spatially dependent. Unfortunately, even though land use of impacts are particular importance for countries whose economies are highly agriculture-based, ecosystem productivity damage due to land use has not yet been assessed in Thailand so far. This study presents the method for assessing the damage to ecosystem productivity due to land use (land occupation and land transformation) in Thailand. Ecosystem productivity damage is expressed through net primary production (NPP). To convert the damage into monetary units, this study performs an economic valuation of NPP using the production function approach. The results show that the value of marginal product of NPP is around 10-15 Thai baht (THB) (1 USD≈36 THB), per tonne dry weight biomass. The results are applied to the case of biodiesel production. The method presented in this paper could be a guideline for future land use impact assessment research. In addition, converting the NPP damage results into monetary units facilitates integration of impact assessment and economic analysis results for supporting decision support tools such as cost benefit analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Belem, Mahamadou; Saqalli, Mehdi
2017-11-01
This paper presents an integrated model assessing the impacts of climate change, agro-ecosystem and demographic transition patterns on major ecosystem services in West-Africa along a partial overview of economic aspects (poverty reduction, food self-sufficiency and income generation). The model is based on an agent-based model associated with a soil model and multi-scale spatial model. The resulting Model for West-Africa Agro-Ecosystem Integrated Assessment (MOWASIA) is ecologically generic, meaning it is designed for all sudano-sahelian environments but may then be used as an experimentation facility for testing different scenarios combining ecological and socioeconomic dimensions. A case study in Burkina Faso is examined to assess the environmental and economic performances of semi-continuous and continuous farming systems. Results show that the semi-continuous system using organic fertilizer and fallowing practices contribute better to environment preservation and food security than the more economically performant continuous system. In addition, this study showed that farmers heterogeneity could play an important role in agricultural policies planning and assessment. In addition, the results showed that MOWASIA is an effective tool for designing, analysing the impacts of agro-ecosystems. Copyright © 2017. Published by Elsevier Ltd.
A new framework to evaluate ecosystem health: a case study in the Wei River basin, China.
Wu, Wei; Xu, Zongxue; Zhan, Chesheng; Yin, Xuwang; Yu, Songyan
2015-07-01
Due to the rapid growth of the population and the development of economies in the Guanzhong district, central China, the river ecosystem is gradually deteriorating, which makes it important to assess the aquatic ecosystem health and take measures to restore the damaged ecosystem. An index of catchment ecosystem health has been developed to assist large-scale management of watersheds by providing an integrated measure of ecosystem health, including aquatic and terrestrial ecosystem. Most researches focus on aquatic ecosystem or terrestrial ecosystem, but little research integrates both of them to assess the catchment ecosystem health. In this paper, we combine these two aspects into catchment ecosystem health. Ecosystem indicators derived from field samples and modeling are identified to integrate into ecosystem health. These included indicators of ecological landscape pattern (based on normalized difference vegetation index (NDVI), vegetation cover, dominance index, Shannon's diversity index, Shannon's evenness index, and fragmentation index), hydrology regime (based on 33 hydrological parameters), physical form condition (based on substrate, habitat complexity, velocity/depth regimes, bank stability, channel alteration), water quality (based on electrical conductivity (Cond), dissolved oxygen (DO), NH3_N, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand-permanganate (CODMn)), and biological quality (based on fish abundance). The index of ecosystem health is applied in the Guanzhong district, and the ecosystem health was fair. The ecosystem health in the upstream to Linjiacun (U-L) and Linjiacun to Weijiabao (L-W) reaches was in good situation, while that in Weijiabao to Xianyang (W-X), Xianyang-Weijiabao (X-W), and Weijiabao to Tongguan (W-T) reaches was in fair situation. There is a trend that the ecosystem health in the upstream was better than that in the downstream. The ecosystem health assessment is expected to play a key role in future water and watershed management of the Wei River basin, or even the Yellow River basin.
Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand
NASA Astrophysics Data System (ADS)
Kaiser, G.; Burkhard, B.; Römer, H.; Sangkaew, S.; Graterol, R.; Haitook, T.; Sterr, H.; Sakuna-Schwartz, D.
2013-12-01
The 2004 Indian Ocean tsunami caused damages to coastal ecosystems and thus affected the livelihoods of the coastal communities who depend on services provided by these ecosystems. The paper presents a case study on evaluating and mapping the spatial and temporal impacts of the tsunami on land use and land cover (LULC) and related ecosystem service supply in the Phang Nga province, Thailand. The method includes local stakeholder interviews, field investigations, remote-sensing techniques, and GIS. Results provide an ecosystem services matrix with capacity scores for 18 LULC classes and 17 ecosystem functions and services as well as pre-/post-tsunami and recovery maps indicating changes in the ecosystem service supply capacities in the study area. Local stakeholder interviews revealed that mangroves, casuarina forest, mixed beach forest, coral reefs, tidal inlets, as well as wetlands (peat swamp forest) have the highest capacity to supply ecosystem services, while e.g. plantations have a lower capacity. The remote-sensing based damage and recovery analysis showed a loss of the ecosystem service supply capacities in almost all LULC classes for most of the services due to the tsunami. A fast recovery of LULC and related ecosystem service supply capacities within one year could be observed for e.g. beaches, while mangroves or casuarina forest needed several years to recover. Applying multi-temporal mapping the spatial variations of recovery could be visualised. While some patches of coastal forest were fully recovered after 3 yr, other patches were still affected and thus had a reduced capacity to supply ecosystem services. The ecosystem services maps can be used to quantify ecological values and their spatial distribution in the framework of a tsunami risk assessment. Beyond that they are considered to be a useful tool for spatial analysis in coastal risk management in Phang Nga.
Correa, Sandra Bibiana; Arujo, Joisiane K; Penha, Jerry; Nunes da Cunha, Catia; Bobier, Karen E; Anderson, Jill T
2016-08-31
When species within guilds perform similar ecological roles, functional redundancy can buffer ecosystems against species loss. Using data on the frequency of interactions between fish and fruit, we assessed whether co-occurring frugivores provide redundant seed dispersal services in three species-rich Neotropical wetlands. Our study revealed that frugivorous fishes have generalized diets; however, large-bodied fishes had greater seed dispersal breadth than small species, in some cases, providing seed dispersal services not achieved by smaller fish species. As overfishing disproportionately affects big fishes, the extirpation of these species could cause larger secondary extinctions of plant species than the loss of small specialist frugivores. To evaluate the consequences of frugivore specialization for network stability, we extracted data from 39 published seed dispersal networks of frugivorous birds, mammals and fish (our networks) across ecosystems. Our analysis of interaction frequencies revealed low frugivore specialization and lower nestedness than analyses based on binary data (presence-absence of interactions). In that case, ecosystems may be resilient to loss of any given frugivore. However, robustness to frugivore extinction declines with specialization, such that networks composed primarily of specialist frugivores are highly susceptible to the loss of generalists. In contrast with analyses of binary data, recently developed algorithms capable of modelling interaction strengths provide opportunities to enhance our understanding of complex ecological networks by accounting for heterogeneity of frugivore-fruit interactions. © 2016 The Author(s).
Latin American protected areas: Protected from chemical pollution?
Rodríguez-Jorquera, Ignacio A; Siroski, Pablo; Espejo, Winfred; Nimptsch, Jorge; Choueri, Paloma Gusso; Choueri, Rodrigo Brasil; Moraga, Claudio A; Mora, Miguel; Toor, Gurpal S
2017-03-01
Protected areas (PAs) are critically important means to preserve species and maintain natural ecosystems. However, the potential impacts of chemical pollution on PAs are seldom mentioned in the scientific literature. Research on the extent of the occurrence of chemical pollution inside PAs and in-depth assessments of how chemical contaminants may adversely affect the maintenance of species abundance, species survival, and ecosystem functions are scarce to nonexistent. We investigated 1) the occurrence of chemical contaminants inside 119 PAs in Latin America from publically available databases, and 2) reviewed case studies of chemical contaminants and pollution in 4 Latin American PAs. Cases of chemical pollution and contamination inside Latin American PAs mostly originated from sources such as mining, oil, and gas extraction. To date, the focus of the research on chemical pollution research inside Latin American PAs has been primarily on the detection of contamination, typically limited to trace metals. Where management actions have occurred, they have been reactive rather than proactive. Protected areas established in wetlands are the most affected by chemical pollution. Based on the information from the pollution and/or contamination occurrence and the case studies analyzed, Latin American PAs are not well safeguarded from chemical pollution, resulting in both challenges and opportunities to conserve biodiversity and ecosystems. Integr Environ Assess Manag 2017;13:360-370. © 2016 SETAC. © 2016 SETAC.
Arujo, Joisiane K.; Penha, Jerry; Nunes da Cunha, Catia
2016-01-01
When species within guilds perform similar ecological roles, functional redundancy can buffer ecosystems against species loss. Using data on the frequency of interactions between fish and fruit, we assessed whether co-occurring frugivores provide redundant seed dispersal services in three species-rich Neotropical wetlands. Our study revealed that frugivorous fishes have generalized diets; however, large-bodied fishes had greater seed dispersal breadth than small species, in some cases, providing seed dispersal services not achieved by smaller fish species. As overfishing disproportionately affects big fishes, the extirpation of these species could cause larger secondary extinctions of plant species than the loss of small specialist frugivores. To evaluate the consequences of frugivore specialization for network stability, we extracted data from 39 published seed dispersal networks of frugivorous birds, mammals and fish (our networks) across ecosystems. Our analysis of interaction frequencies revealed low frugivore specialization and lower nestedness than analyses based on binary data (presence–absence of interactions). In that case, ecosystems may be resilient to loss of any given frugivore. However, robustness to frugivore extinction declines with specialization, such that networks composed primarily of specialist frugivores are highly susceptible to the loss of generalists. In contrast with analyses of binary data, recently developed algorithms capable of modelling interaction strengths provide opportunities to enhance our understanding of complex ecological networks by accounting for heterogeneity of frugivore–fruit interactions. PMID:27581879
Implications of climate and land use change: Chapter 4
Hall, Jefferson S.; Murgueitio, Enrique; Calle, Zoraida; Raudsepp-Hearne, Ciara; Stallard, Robert F.; Balvanera, Patricia; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella
2015-01-01
This chapter relates ecosystem services to climate change and land use. The bulk of the chapter focuses on ecosystem services and steepland land use in the humid Neotropics – what is lost with land-cover changed, and what is gained with various types of restoration that are sustainable given private ownership. Many case studies are presented later in the white paper. The USGS contribution relates to climate change and the role of extreme weather events in land-use planning.
NASA Astrophysics Data System (ADS)
Forman Asgharzadeh, Deonna; Oveis Torabi, Seyed; Safaai, Sadaf
2017-04-01
The application of DPSIR in Restoring Urban Rivers (Case Study: Darakeh and Farahzad River Restoration, Tehran-Iran) Seyed Oveis Torabi ، Deonna Forman Asgharzadeh , Sadaf Safaai3 Urban river ecosystems, depending on their form, may serve the sprightliness of a city as a beating heart, breathing lungs or main vessels. In other words, sustaining the ecosystem of an urban river and its riparian land can lead to enhancing life quality indices in a city. The Concept of river ecosystem restoration, born out of sustainable development, underpins restoring the health of an urban environment that circles around its river ecosystem. Darakeh and Farahzad are two connecting rivers that originate from the steep, large valleys of Alborz Mountains and flow a total 60km route through the densely populated city of Tehran. Their original basin was 220 km2; however, it has been tremendously altered during the past 50 years. Alongside with urban development and landuse changes, a large flood deviation canal has detached the northern and southern parts of the basin. In addition, river valleys have suffered from land degradation, occurring at the same time severe damages to the river and its riparian ecosystem. In this study, a novel application of DPSIR framework in urban river restoration is introduced. For restoring an ecosystem in a sustainable manner, it is necessary to identify and analyze the social and economic drivers (D) that provide the root cause of ecosystem damages; their consequent pressures directly harming the river and land (P); the degraded state of land and river ecosystem (S) and its impacts on the environment (I). Such approach will enable a precise selection of interrelated technical, economic, social and environmental actions. Thorough multidisciplinary study of Tehran's recent 400 years history revealed that three factors of "safety against flood", "urbanization" and "land commodity" were the main drivers triggering unsustainable development of Tehran, leading to numerous damages of Darakeh and Farahzad Rivers. Accordingly, pressures (P), degraded state (S) and its impacts (I) were determined. Eventually, restoration actions were extracted as appropriate responses (R) to drivers, pressures, state and impacts. Regarding the planning timeline, short-term actions correspond to impacts, mid-term actions address the pressure and state factors and finally, long-term actions comply with the drivers. The application of DPSIR proved as a successful approach to holistic, comprehensive and systematic interpretation of the complicated issues for restoration of Darakeh and Farahzad rivers.
Projecting supply and demand of hydrologic ecosystem services under future climate conditions
NASA Astrophysics Data System (ADS)
Chiang, Li-Chi; Huang, Tao; Lee, Tsung-Yu
2014-05-01
Ecosystems provide essential goods and services, such as food, clean water, water purification, soil conservation and cultural services for human being. In a watershed, these water-related ecosystem goods and services can directly or indirectly benefit both local people and downstream beneficiaries through a reservoir. Water quality and quantity in a reservoir are of importance for agricultural, industrial and domestic uses. Under the impacts of climate and land use changes, both ecosystem service supply and demand will be affected by changes in precipitation patterns, temperature, urbanization and agricultural activities. However, the linkage between ecosystem service provisioning (ESP) and ecosystem service beneficiary (ESB), and scales of supply and demand of ecosystem services are not clear yet. Therefore, to investigate water-related ecosystem service supply under climate and land use change, we took the Xindian river watershed (303 km2) as a case study, where the Feitsui Reservoir provides hydro-power and daily domestic water use of 3,450,000 m3 for 3.46 million people in Taipei, Taiwan. We integrated a hydrological model (Soil and Water Assessment Tool, SWAT) and a land use change model (Conversion of Land Use and its Effects, CLUE-s) with future climate change scenarios derived from General Circulation Models (GCMs), to assess the changes in ecosystem service supply and demand at different hydrologic scales. The results will provide useful information for decision-making on future land use management and climate change adaptation strategies in the watersheds. Keywords: climate change, land use change, ecosystem service, watershed, scale
Role of the noise on the transient dynamics of an ecosystem of interacting species
NASA Astrophysics Data System (ADS)
Spagnolo, B.; La Barbera, A.
2002-11-01
We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.
Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin
2012-01-01
Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410
Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin
2012-08-01
Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.
Linking GIS-based models to value ecosystem services in an Alpine region.
Grêt-Regamey, Adrienne; Bebi, Peter; Bishop, Ian D; Schmid, Willy A
2008-11-01
Planning frequently fails to include the valuation of public goods and services. This can have long-term negative economic consequences for a region. This is especially the case in mountainous regions such as the Alps, which depend on tourism and where land-use changes can negatively impact key ecosystem services and hence the economy. In this study, we develop a semi-automatic procedure to value ecosystem goods and services. Several existing process-based models linked to economic valuation methods are integrated into a geographic information system (GIS) platform. The model requires the input of a digital elevation model, a land-cover map, and a spatially explicit temperature dataset. These datasets are available for most regions in Europe. We illustrate the approach by valuing four ecosystem services: avalanche protection, timber production, scenic beauty, and habitat, which are supplied by the "Landschaft Davos", an administrative district in the Swiss Alps. We compare the impacts of a human development scenario and a climate scenario on the value of these ecosystem services. Urban expansion and tourist infrastructure developments have a negative impact on scenic beauty and habitats. These impacts outweigh the benefits of the developments in the long-term. Forest expansion, predictable under a climate change scenario, favours natural avalanche protection and habitats. In general, such non-marketed benefits provided by the case-study region more than compensate for the costs of forest maintenance. Finally, we discuss the advantages and disadvantages of the approach. Despite its limitations, we show how this approach could well help decision-makers balance the impacts of different planning options on the economic accounting of a region, and guide them in selecting sustainable and economically feasible development strategies.
Evaluating robustness in rank-based risk assessments of freshwater ecosystems
Mattson, K.M.; Angermeier, Paul
2007-01-01
Conservation planning aims to protect biodiversity by sustainng the natural physical, chemical, and biological processes within representative ecosystems. Often data to measure these components are inadequate or unavailable. The impact of human activities on ecosystem processes complicates integrity assessments and might alter ecosystem organization at multiple spatial scales. Freshwater conservation targets, such as populations and communities, are influenced by both intrinsic aquatic properties and the surrounding landscape, and locally collected data might not accurately reflect potential impacts. We suggest that changes in five major biotic drivers—energy sources, physical habitat, flow regime, water quality, and biotic interactions—might be used as surrogates to inform conservation planners of the ecological integrity of freshwater ecosystems. Threats to freshwater systems might be evaluated based on their impact to these drivers to provide an overview of potential risk to conservation targets. We developed a risk-based protocol, the Ecological Risk Index (ERI), to identify watersheds with least/most risk to conservation targets. Our protocol combines risk-based components, specifically the frequency and severity of human-induced stressors, with biotic drivers and mappable land- and water-use data to provide a summary of relative risk to watersheds. We illustrate application of our protocol with a case study of the upper Tennessee River basin, USA. Differences in risk patterns among the major drainages in the basin reflect dominant land uses, such as mining and agriculture. A principal components analysis showed that localized, moderately severe threats accounted for most of the threat composition differences among our watersheds. We also found that the relative importance of threats is sensitive to the spatial grain of the analysis. Our case study demonstrates that the ERI is useful for evaluating the frequency and severity of ecosystemwide risk, which can inform local and regional conservation planning.
Jakobsen, Christine Haugaard; McLaughlin, William J
2004-05-01
Effective communication is essential to the success of collaborative ecosystem management projects. In this paper, we investigated the dynamics of the Interior Columbia Basin Ecosystem Management Project's (ICBEMP) cross-disciplinary integration process in the assessment phase. Using a case study research design, we captured the rich trail of experience through conducting in-depth interviews and collecting information from internal and public documents, videos, and meetings related to the ICBEMP. Coding and analysis was facilitated by a qualitative analysis software, NVivo. Results include the range of internal perspectives on barriers and facilitators of cross-disciplinary integration in the Science Integration Team (SIT). These are arrayed in terms of discipline-based differences, organizational structures and activities, individual traits of scientists, and previous working relationships. The ICBEMP organization included a team of communication staffs (CT), and the data described the CT as a mixed group in terms of qualifications and educational backgrounds that played a major role in communication with actors external to the ICBEMP organization but a minor one in terms of internal communication. The data indicated that the CT-SIT communication was influenced by characteristics of actors and structures related to organizations and their cultures. We conclude that the ICBEMP members may not have had a sufficient level of shared understanding of central domains, such as the task at hand and ways and timing of information sharing. The paper concludes by suggesting that future ecosystem management assessment teams use qualified communications specialists to design and monitor the development of shared cognition among organization members in order to improve the effectiveness of communication and cross-disciplinary integration.
Environmental Sustainability, Ecosystem Services, and Human Well-being
This article examines environmental sustainability from several perspectives. First we offer definitions and some historical background. Then through case studies of marine fisheries, agricultural systems, and urban environments, we illustrate contrasts between unsustainable and ...
Is long-term ecological functioning stable: The case of the marine benthos?
NASA Astrophysics Data System (ADS)
Frid, C. L. J.; Caswell, B. A.
2015-04-01
It is widely acknowledged that human activities are contributing to substantial biodiversity loss and that this threatens ecological processes underpinning human exploitation of 'ecosystem services' (defined by the Millennium Ecosystem Assessment as 'the benefits people obtain from ecosystems'). In the present study we consider three 'intermediate ecosystem services' in both contemporary and ancient marine systems and although 'ecosystem services' per se did not exist in the Jurassic our study seeks to consider the future provision of these services and so the term is retained. We consider the temporal patterns in benthic marine ecosystems: (1) spanning four decades at two offshore stations in the North Sea, UK and (2) over millennial scales in Late Jurassic UK palaeocommunities. Biological traits analysis is used to link changes in taxonomic composition to variations in ecological functioning and the potential supply of three 'intermediate' ecosystem services: the ability to provide food to fish and other predators, benthic nutrient regeneration and carbon cycling. We examine whether changes in taxonomic composition drive temporal variation in functioning, whether this variation increases over time and the extent to which species turnover is comparable in contemporary and ancient systems. Taxonomic variability was of a similar magnitude in all three systems and there was evidence for changes in functioning linked to changes in several (key or rivet) taxa. During other periods resilience maintained functioning in the face of taxonomic change. These results suggest that in these benthic systems the Biodiversity-Ecosystem Functioning relationship is idiosyncratic, but a degree of temporal stability in functioning is maintained such that the ecosystem services they underpin would also be stable during decadal and longer-term changes.
Hou, Ying; Zhou, Shudong; Burkhard, Benjamin; Müller, Felix
2014-08-15
One focus of ecosystem service research is the connection between biodiversity, ecosystem services and human well-being as well as the socioeconomic influences on them. Despite existing investigations, exact impacts from the human system on the dynamics of biodiversity, ecosystem services and human well-being are still uncertain because of the insufficiency of the respective quantitative analyses. Our research aims are discerning the socioeconomic influences on biodiversity, ecosystem services and human well-being and demonstrating mutual impacts between these items. We propose a DPSIR framework coupling ecological integrity, ecosystem services as well as human well-being and suggest DPSIR indicators for the case study area Jiangsu, China. Based on available statistical and surveying data, we revealed the factors significantly impacting biodiversity, ecosystem services and human well-being in the research area through factor analysis and correlation analysis, using the 13 prefecture-level cities of Jiangsu as samples. The results show that urbanization and industrialization in the urban areas have predominant positive influences on regional biodiversity, agricultural productivity and tourism services as well as rural residents' living standards. Additionally, the knowledge, technology and finance inputs for agriculture also have generally positive impacts on these system components. Concerning regional carbon storage, non-cropland vegetation cover obviously plays a significant positive role. Contrarily, the expansion of farming land and the increase of total food production are two important negative influential factors of biodiversity, ecosystem's food provisioning service capacity, regional tourism income and the well-being of the rural population. Our study provides a promising approach based on the DPSIR model to quantitatively capture the socioeconomic influential factors of biodiversity, ecosystem services and human well-being for human-environmental systems at regional scales. Copyright © 2014 Elsevier B.V. All rights reserved.
Hay, Mark E.
2012-01-01
Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035
Bagstad, Kenneth J.; Semmens, Darius; Winthrop, Rob; Jaworksi, Delilah; Larson, Joel
2012-01-01
This report details the findings of the Bureau of Land Management–U.S. Geological Survey Ecosystem Services Valuation Pilot Study. This project evaluated alternative methods and tools that quantify and value ecosystem services, and it assessed the tools’ readiness for use in the Bureau of Land Management decisionmaking process. We tested these tools on the San Pedro River watershed in northern Sonora, Mexico, and southeast Arizona. The study area includes the San Pedro Riparian National Conservation Area (managed by the Bureau of Land Management), which has been a focal point for conservation activities and scientific research in recent decades. We applied past site-specific primary valuation studies, value transfer, the Wildlife Habitat Benefits Estimation Toolkit, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) and Artificial Intelligence for Ecosystem Services (ARIES) models to value locally important ecosystem services for the San Pedro River watershed—water, carbon, biodiversity, and cultural values. We tested these approaches on a series of scenarios to evaluate ecosystem service changes and the ability of the tools to accommodate scenarios. A suite of additional tools were either at too early a stage of development to run, were proprietary, or were place-specific tools inappropriate for application to the San Pedro River watershed. We described the strengths and weaknesses of these additional ecosystem service tools against a series of evaluative criteria related to their usefulness for Bureau of Land Management decisionmaking. Using these tools, we quantified gains or losses of ecosystem services under three categories of scenarios: urban growth, mesquite management, and water augmentation. These results quantify tradeoffs and could be useful for decisionmaking within Bureau of Land Management district or field offices. Results are accompanied by a relatively high level of uncertainty associated with model outputs, valuation methods, and discount rates applied. Further guidance on representing uncertainty and applying uncertain results in decisionmaking would benefit both tool developers and those offices in using ecosystem services to compare management tradeoffs. Decisionmakers and Bureau of Land Management managers at the State-, district-, and field-office level would also benefit from continuing model improvements, training, and guidance on tool use that can be provided by the U.S. Geological Survey, the Bureau of Land Management, and the Department of the Interior. Tradeoffs were identified in the level of effort needed to parameterize and run tools and the amount and quality of information they provide to the decision process. We found the Wildlife Habitat Benefits Estimation Toolkit, Ecosystem Services Review, and United Nations Environment Programme–World Conservation Monitoring Centre Ecosystem Services Toolkit to be immediately feasible for application by the Bureau of Land Management, given proper guidance on their use. It is also feasible for the Bureau of Land Management to use the InVEST model, but in early 2012 the process of parameterizing the model required resources and expertise that are unlikely to be available in most Bureau of Land Management district or field offices. Application of past primary valuation is feasible, but developing new primary-valuation studies is too time consuming for regular application. Value transfer approaches (aside from the Wildlife Habitat Benefits Estimation Toolkit) are best applied carefully on the basis of guidelines described in this report, to reduce transfer error. The ARIES model can provide useful information in regions modeled in the past (Arizona, California, Colorado, and Washington), but it lacks some features that will improve its usability, such as a generalized model that could be applied anywhere in the United States. Eleven other tools described in this report could become useful as the tools more fully develop, in high-profile cases for which additional resources are available for tool application or in case-study regions where place-specific models have already been developed. To improve the value of these tools in decisionmaking, we suggest scientific needs that agencies such as U.S. Geological Survey can help meet—for instance, development and support of data archives. Such archives could greatly reduce resource needs and improve the reliability and consistency of results. Given the rapid state of evolution in the field, periodic follow-up studies on ecosystem services tools would help to ensure that the Bureau of Land Management and other public land management agencies are kept up to date on new tools and features that bring ecosystem services closer to readiness for use in regular decisionmaking.
Portman, Michelle E.; Shabtay-Yanai, Ateret; Zanzuri, Asaf
2016-01-01
Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA) has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical) attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity. PMID:27183224
Portman, Michelle E; Shabtay-Yanai, Ateret; Zanzuri, Asaf
2016-01-01
Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA) has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical) attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity.
Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel
2012-08-01
Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.
NASA Astrophysics Data System (ADS)
Winter, Silvia; Zaller, Johann G.; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Paredes, Daniel; Gómez, José A.; Guzmán, Gema; Landa, Blanca; Nicolai, Annegret; Burel, Francoise; Cluzeau, Daniel; Popescu, Daniela; Bunea, Claudiu-Ioan; Potthoff, Martin; Guernion, Muriel; Batáry, Péter
2016-04-01
Viticultural agro-ecosystems provide a range of different ecosystem services which are affected by management decisions of winegrowers. At the global scale, vineyards are often high intensity agricultural systems with bare soil or inter-row vegetation consisting of only a few plant species. These systems primarily aim at optimizing wine production by reducing competition for water and nutrients between grapevines and weeds and by preventing the outbreak of pests and diseases. At the same time, this kind of management is often associated with ecosystem disservices such as high rates of soil erosion, degradation of soil structure and fertility, contamination of groundwater and decline of biodiversity. Recently, several initiatives across the world tried to overcome detrimental effects of that management style by creating biodiversity friendly vineyards. The consequences of establishing divers cover crop mixes or tolerating spontaneous vegetation in vineyards for ecosystem services (including yield) overstretching local case studies has not been investigated yet. This meta-analysis will provide an overview of all published studies comparing the effects of different vineyard management practices on a range of different ecosystem services like biodiversity, pest control, pollination, soil conservation and carbon sequestration. The aggregated effect size will point out which management measures can provide the best overall net sum of ecosystem services. This meta-analysis is part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management and policy recommendations for various stakeholder groups engaged in viticulture.
Estimating the Cumulative Ecological Effect of Local Scale Landscape Changes in South Florida
Hogan, Dianna M.; Labiosa, William; Pearlstine, Leonard; Hallac, David; Strong, David; Hearn, Paul; Bernknopf, Richard
2012-01-01
Ecosystem restoration in south Florida is a state and national priority centered on the Everglades wetlands. However, urban development pressures affect the restoration potential and remaining habitat functions of the natural undeveloped areas. Land use (LU) planning often focuses at the local level, but a better understanding of the cumulative effects of small projects at the landscape level is needed to support ecosystem restoration and preservation. The South Florida Ecosystem Portfolio Model (SFL EPM) is a regional LU planning tool developed to help stakeholders visualize LU scenario evaluation and improve communication about regional effects of LU decisions. One component of the SFL EPM is ecological value (EV), which is evaluated through modeled ecological criteria related to ecosystem services using metrics for (1) biodiversity potential, (2) threatened and endangered species, (3) rare and unique habitats, (4) landscape pattern and fragmentation, (5) water quality buffer potential, and (6) ecological restoration potential. In this article, we demonstrate the calculation of EV using two case studies: (1) assessing altered EV in the Biscayne Gateway area by comparing 2004 LU to potential LU in 2025 and 2050, and (2) the cumulative impact of adding limestone mines south of Miami. Our analyses spatially convey changing regional EV resulting from conversion of local natural and agricultural areas to urban, industrial, or extractive use. Different simulated local LU scenarios may result in different alterations in calculated regional EV. These case studies demonstrate methods that may facilitate evaluation of potential future LU patterns and incorporate EV into decision making.
Tillamook Estuary Case Study: Local Drivers Influencing Coastal Acidification
US EPA initiated a study in the Tillamook estuary and watershed focused on the impact of changes in watershed land use, ocean conditions, and weather on estuarine water quality and ecosystem goods and services production within the estuary. This project is a collaboration betwee...
ERIC Educational Resources Information Center
Helms, Samuel Arthur
2010-01-01
This single subject case study followed a high school student and his use of a simulation of marine ecosystems. The study examined his metaworld, motivation, and learning before, during and after using the simulation. A briefing was conceptualized based on the literature on pre-instructional activities, advance organizers, and performance…
Oikonomou, Vera; Dimitrakopoulos, Panayiotis G; Troumbis, Andreas Y
2011-01-01
Nature provides life-support services which do not merely constitute the basis for ecosystem integrity but also benefit human societies. The importance of such multiple outputs is often ignored or underestimated in environmental planning and decision making. The economic valuation of ecosystem functions or services has been widely used to make these benefits economically visible and thus address this deficiency. Alternatively, the relative importance of the components of ecosystem value can be identified and compared by means of multi-criteria evaluation. Hereupon, this article proposes a conceptual framework that couples ecosystem function analysis, multi criteria evaluation and social research methodologies for introducing an ecosystem function-based planning and management approach. The framework consists of five steps providing the structure of a participative decision making process which is then tested and ratified, by applying the discrete multi-criteria method NAIADE, in the Kalloni Natura 2000 site, on Lesbos, Greece. Three scenarios were developed and evaluated with regard to their impacts on the different types of ecosystem functions and the social actors' value judgements. A conflict analysis permitted the better elaboration of the different views, outlining the coalitions formed in the local community and shaping the way towards reaching a consensus.
Placing biodiversity in ecosystem models without getting lost in translation
NASA Astrophysics Data System (ADS)
Queirós, Ana M.; Bruggeman, Jorn; Stephens, Nicholas; Artioli, Yuri; Butenschön, Momme; Blackford, Jeremy C.; Widdicombe, Stephen; Allen, J. Icarus; Somerfield, Paul J.
2015-04-01
A key challenge to progressing our understanding of biodiversity's role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.
NASA Astrophysics Data System (ADS)
Oikonomou, Vera; Dimitrakopoulos, Panayiotis G.; Troumbis, Andreas Y.
2011-01-01
Nature provides life-support services which do not merely constitute the basis for ecosystem integrity but also benefit human societies. The importance of such multiple outputs is often ignored or underestimated in environmental planning and decision making. The economic valuation of ecosystem functions or services has been widely used to make these benefits economically visible and thus address this deficiency. Alternatively, the relative importance of the components of ecosystem value can be identified and compared by means of multi-criteria evaluation. Hereupon, this article proposes a conceptual framework that couples ecosystem function analysis, multi criteria evaluation and social research methodologies for introducing an ecosystem function-based planning and management approach. The framework consists of five steps providing the structure of a participative decision making process which is then tested and ratified, by applying the discrete multi-criteria method NAIADE, in the Kalloni Natura 2000 site, on Lesbos, Greece. Three scenarios were developed and evaluated with regard to their impacts on the different types of ecosystem functions and the social actors' value judgements. A conflict analysis permitted the better elaboration of the different views, outlining the coalitions formed in the local community and shaping the way towards reaching a consensus.
Dynamics of ecosystem services provided by subtropical ...
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtropical forest and a 23-year history of growth on 3 subtropical forest plantations in Southeastern China. The ‘People's Republic of China Forestry Standard: Forest Ecosystem Service Valuation Norms’ was revised and applied to quantify the receiver values of ecosystem services, which were then compared with the emergy-based, donor values of the services. The results revealed that the efficiencies of subtropical forests and plantations in providing ecosystem services were 2 orders of magnitude higher than similar services provided by the current China economic system, and these efficiencieskept increasing over the course of succession. As a result, we conclude that afforestation is an efficient way to accelerate both the ability and efficiency of subtropical forests to provide ecosystem services. This paper is significant because it examines the dynamics of the provision of ecosystem services by forests over a succession series that spans 400 years. The paper also examines the rate of increase of services during forest restoration over a period of 23 years. The emergy used in ecosystem services provision is compared to the provision of similar services by economic means in the Chinese e
NASA Astrophysics Data System (ADS)
Sánchez, Antonio; Malak, Dania Abdul; Schröder, Christoph; Martinez-Murillo, Juan F.
2016-04-01
Remote sensing techniques (SRS) are valid tools for wetland monitoring that could support wetland managers in assessing the spatial and temporal changes in wetland ecosystems as well as in understanding their condition and the ecosystem services they provide. This study focuses on the one hand, on drawing hydro-ecological guidelines for the delimitation of wetland ecosystems; and on the other hand, to assess the reliability of widely available satellite images (Landsat) in estimating the land use/ land cover types covering wetlands. This research develops comprehensive guidelines to determine the boundaries of the Fuente de Piedra wetland ecosystem located in Andalusia, Spain and defines the main land use/ land cover classes covering this ecosystem using Landsat 8 images. An accuracy of the SRS results delivered is tested using the regional inventory of land use produced by the regional government of Andalusia in 2011. By using the ecological and hydrological settings of the area, the boundaries of the Fuente de Piedra wetland ecosystem are determined as an alternative to improve the current delimitations methodology (the Ramsar and Natura 2000 delineations), used by the local authorities so far and based mainly on administrative reasoning. In terms of the land use land cover definition in the area, Fuente de Piedra wetland ecosystem shows to cover a total area of 195 km2 composed mainly by agricultural areas (81.46%): olive groves, non-irrigated arable land and pastures, being 54.82%, 25.71% and 0.93% of the surface respectively. Wetland related land covers (water surface, wetland vegetation) represent 6.85% while natural vegetation is distributed in forest, 1.67%, and shrub areas, 4.14%, being 5.81% in total. 4.58% of the area corresponds to urban and other artificial surfaces. The rest, 1.30%, is composed of different areas without vegetation (sands, bare rock, dumps, etc.). The classification of the Landsat images made with the newly developed SWOS toolbox (under the Horizon 2020 SWOS project) provides reliable results (r2= 0.98). The image segmentation corresponds very closely with the plots of land observed in the satellite image, and the allocation of land use coverages corresponds in 82% of the segments. Forest and olive groves are the best identified coverages with an accuracy of 93% in both cases. Wetlands are correctly classified by 87%, where linear features (narrow streams, etc.) are not detected by the methodology used due to the limitations of Landsat resolution. Arable lands are classified with an accuracy of 85.5%; where the methodology seems to confuse this land use with sparse olive grove. In the case of shrubs, accuracy round the 72%, with confusions with this land use are related with arable land, sparse forests in wetland areas. In the case of urban areas, only 60.5% of the segments are correctly classified as the distinction between urban fabric and industrial areas does not seem to be possible and linear features are not detected (highways, secondary roads,…).
Floodplain Backwater Restoration: A Case Study
USDA-ARS?s Scientific Manuscript database
Current thinking in stream ecology emphasizes the importance of floodplain backwaters within lowland riverine ecosystems. However, these types of habitat are becoming increasingly rare as development is transforming floodplain landscapes in fundamental ways. Two floodplain backwaters (severed mean...
From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study
NASA Astrophysics Data System (ADS)
Meron, Ehud
2018-03-01
Spatial patterns are ubiquitous in animate matter. Besides their intricate structure and beauty they generally play functional roles. The capacity of living systems to remain functional in changing environments is a question of utmost importance, but its intimate relationship to pattern formation is largely unexplored. Here, we address this relationship using dryland vegetation as a case study. Following a brief introduction to pattern-formation theory, we describe a mathematical model that captures several mechanisms of vegetation pattern formation and discuss ecological contexts that showcase different mechanisms. Using this model, we unravel the different vegetation patterns that keep dryland ecosystems viable along the rainfall gradient, identify multistability ranges where fronts separating domains of alternative stable states exist, and highlight the roles of front dynamics in mitigating or reversing desertification. The utility of satellite images in testing model predictions is discussed. An outlook on outstanding open problems concludes this paper.
Liang, Jie; Zhong, Minzhou; Zeng, Guangming; Chen, Gaojie; Hua, Shanshan; Li, Xiaodong; Yuan, Yujie; Wu, Haipeng; Gao, Xiang
2017-02-01
Land-use change has direct impact on ecosystem services and alters ecosystem services values (ESVs). Ecosystem services analysis is beneficial for land management and decisions. However, the application of ESVs for decision-making in land use decisions is scarce. In this paper, a method, integrating ESVs to balance future ecosystem-service benefit and risk, is developed to optimize investment in land for ecological conservation in land use planning. Using ecological conservation in land use planning in Changsha as an example, ESVs is regarded as the expected ecosystem-service benefit. And uncertainty of land use change is regarded as risk. This method can optimize allocation of investment in land to improve ecological benefit. The result shows that investment should be partial to Liuyang City to get higher benefit. The investment should also be shifted from Liuyang City to other regions to reduce risk. In practice, lower limit and upper limit for weight distribution, which affects optimal outcome and selection of investment allocation, should be set in investment. This method can reveal the optimal spatial allocation of investment to maximize the expected ecosystem-service benefit at a given level of risk or minimize risk at a given level of expected ecosystem-service benefit. Our results of optimal analyses highlight tradeoffs between future ecosystem-service benefit and uncertainty of land use change in land use decisions. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Bremond, Ariane; Engle, Nathan L.
2014-01-30
Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in themore » realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.« less
Park, Soojin; Park, Sungyong; Park, Young B
2018-02-12
With the emergence of various forms of smart devices and new paradigms such as the Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding explosively compared to the provision of services by single systems. A new system operation concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT ecosystem can be considered a special type of system of systems in which multiple systems with various degrees of autonomy achieve common goals while adapting to the given environment. The single systems that participate in the IT ecosystem adapt autonomously to the current situation based on collected data from sensors. Furthermore, to maintain the services supported by the whole IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also changes appropriately in accordance with the changed situation. In order to support the IT ecosystem, this paper proposes an architecture framework that supports dynamic configuration changes to achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through the collection of data from sensors so as to recognize the situational context of individual participating systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT ecosystem for unmanned forest management was constructed, and the quantitative evaluation results are discussed in terms of the extent to which the proposed architecture framework can continuously provide sustainable services in response to diverse environmental context changes.
Park, Young B.
2018-01-01
With the emergence of various forms of smart devices and new paradigms such as the Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding explosively compared to the provision of services by single systems. A new system operation concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT ecosystem can be considered a special type of system of systems in which multiple systems with various degrees of autonomy achieve common goals while adapting to the given environment. The single systems that participate in the IT ecosystem adapt autonomously to the current situation based on collected data from sensors. Furthermore, to maintain the services supported by the whole IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also changes appropriately in accordance with the changed situation. In order to support the IT ecosystem, this paper proposes an architecture framework that supports dynamic configuration changes to achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through the collection of data from sensors so as to recognize the situational context of individual participating systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT ecosystem for unmanned forest management was constructed, and the quantitative evaluation results are discussed in terms of the extent to which the proposed architecture framework can continuously provide sustainable services in response to diverse environmental context changes. PMID:29439540
Forbes, Valery E; Salice, Chris J; Birnir, Bjorn; Bruins, Randy J F; Calow, Peter; Ducrot, Virginie; Galic, Nika; Garber, Kristina; Harvey, Bret C; Jager, Henriette; Kanarek, Andrew; Pastorok, Robert; Railsback, Steve F; Rebarber, Richard; Thorbek, Pernille
2017-04-01
Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. Environ Toxicol Chem 2017;36:845-859. © 2017 SETAC. © 2017 SETAC.
Climate and fishing steer ecosystem regeneration to uncertain economic futures
Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian; Voss, Rudi; Quaas, Martin F.; Casini, Michele; Lindegren, Martin; Folke, Carl; Chr. Stenseth, Nils
2015-01-01
Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million € per year, which equals half of today's maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change. PMID:25694626
Getting the message across: using ecological integrity to communicate with resource managers
Mitchell, Brian R.; Tierney, Geraldine L.; Schweiger, E. William; Miller, Kathryn M.; Faber-Langendoen, Don; Grace, James B.
2014-01-01
This chapter describes and illustrates how concepts of ecological integrity, thresholds, and reference conditions can be integrated into a research and monitoring framework for natural resource management. Ecological integrity has been defined as a measure of the composition, structure, and function of an ecosystem in relation to the system’s natural or historical range of variation, as well as perturbations caused by natural or anthropogenic agents of change. Using ecological integrity to communicate with managers requires five steps, often implemented iteratively: (1) document the scale of the project and the current conceptual understanding and reference conditions of the ecosystem, (2) select appropriate metrics representing integrity, (3) define externally verified assessment points (metric values that signify an ecological change or need for management action) for the metrics, (4) collect data and calculate metric scores, and (5) summarize the status of the ecosystem using a variety of reporting methods. While we present the steps linearly for conceptual clarity, actual implementation of this approach may require addressing the steps in a different order or revisiting steps (such as metric selection) multiple times as data are collected. Knowledge of relevant ecological thresholds is important when metrics are selected, because thresholds identify where small changes in an environmental driver produce large responses in the ecosystem. Metrics with thresholds at or just beyond the limits of a system’s range of natural variability can be excellent, since moving beyond the normal range produces a marked change in their values. Alternatively, metrics with thresholds within but near the edge of the range of natural variability can serve as harbingers of potential change. Identifying thresholds also contributes to decisions about selection of assessment points. In particular, if there is a significant resistance to perturbation in an ecosystem, with threshold behavior not occurring until well beyond the historical range of variation, this may provide a scientific basis for shifting an ecological assessment point beyond the historical range. We present two case studies using ongoing monitoring by the US National Park Service Vital Signs program that illustrate the use of an ecological integrity approach to communicate ecosystem status to resource managers. The Wetland Ecological Integrity in Rocky Mountain National Park case study uses an analytical approach that specifically incorporates threshold detection into the process of establishing assessment points. The Forest Ecological Integrity of Northeastern National Parks case study describes a method for reporting ecological integrity to resource managers and other decision makers. We believe our approach has the potential for wide applicability for natural resource management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micheletti, Tatiane, E-mail: micheletti@forst.tu-dresden.de; Jost, François; Berger, Uta
Although the importance of ecosystem services provided by natural forests, especially mangroves, is well known, the destruction of these environments is still ubiquitous and therefore protection measures are urgently needed. The present study compares the current approach of economic valuation of ecosystem services to a proposed one, using a study case of a mangrove system as an example. We suggest that a cost-benefit analysis for economically valuing environmental services should be performed with three additional modifications consisting of (i) a categorization of local stakeholders as demanders of particular ecosystem services, (ii) acknowledgement of the government as one of these demandermore » groups, and (iii) the inclusion of opportunity costs in the valuation. The application of this approach to the mangrove area in the east portion of Great Abaco Island, the Bahamas, reveals that not only the ecosystem services received differ between demander groups, but the monetary benefits and costs are also specific to each of these groups. We show that the economic valuation of the ecosystem should be differentiated for each category, instead of being calculated as a net ‘societal value’ as it is currently. Applying this categorization of demanders enables a better understanding of the cost and benefit structure of the protection of a natural area. The present paper aims to facilitate discussions regarding benefit and cost sharing related to the protection of natural areas.« less
2016-01-01
Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216507
Mistry, Jayalaxshmi; Bilbao, Bibiana A; Berardi, Andrea
2016-06-05
Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Timothy Callahan; Devendra Amatya; Peter Stone
2017-01-01
Forests are receiving more attention for the ecosystem goods and services they provide and the potential change agents that may affect forest health and productivity. Highlighting case examples from coastal forests in South Carolina, USA, we describe groundwater processes with respect to stressors and potential responses of a wetland-rich forested landscape,...
Department of Defense Ecosystem Management Policy Evaluation
2002-08-01
HQ Naval Facilities Engineering Command, DC • Tom Hillard, Fort Stewart, GA • Manual Joia , MCLB Barstow, CA • John Krupovage, Tinker AFB, OK...studies can follow single or multiple-case designs . Multiple cases strengthen the results and increase confidence in those results (Tellis 1997...groups having responsibility for maintaining their designated data layers (range, fish and wildlife, threatened and endangered species, forestry
ERIC Educational Resources Information Center
Anu, Liljeström; Jorma, Enkenberg; Sinikka, Pöllänen
2014-01-01
This paper presents a case study in which multi-age students (aged 6-12, N?=?32) in small groups made autonomous inquiries about the phenomenon of winter fishing within the framework of design-oriented pedagogy. The research analyzed storytelling videos that the students produced as learning objects. These videos revealed a picture of the…
Bowker, Matthew A.; Miller, Mark E.; Garman, Steven L.; Belote, Travis; Guntenspergen, Glenn R.
2014-01-01
Ecosystems may occupy functionally distinct alternative states, some of which are more or less desirable from a management standpoint. Transitions from state to state are usually associated with a particular trigger or sequence of triggers, such as the addition or subtraction of a disturbance. Transitions are often not linear, rather it is common to see an abrupt transition come about even though the trigger increases only incrementally; these are examples of threshold behaviors. An ideal monitoring program, such as the National Park Service’s Inventory and Monitoring Program, would quantify triggers, and be able to inform managers when measurements of a trigger are approaching a threshold so that management action can avoid an unwanted state transition. Unfortunately, both triggers and the threshold points at which state transitions occur are generally only partially known. Using case studies, we advance a general procedure to help identify triggers and estimate where threshold dynamics may occur. Our procedure is as follows: (1) Operationally define the ecosystem type being considered; we suggest that the ecological site concept of the Natural Resource Conservation Service is a useful system, (2) Using all available a priori knowledge to develop a state-and-transition model (STM), which defines possible ecosystem states, plausible transitions among them and likely triggers, (3) Validate the STM by verifying the existence of its states to the greatest degree possible, (4) Use the STM model to identify transitions and triggers likely to be detectable by a monitoring program, and estimate to the greatest degree possible the value of a measurable indicator of a trigger at the point that a state transition is imminent (tipping point), and values that may indicate when management intervention should be considered (assessment points). We illustrate two different methods for attaining these goals using a data-rich case study in Canyonlands National Park, and a data-poor case study in Wupatki National Monument. In the data-rich case, STMs are validated and revised, and tipping and assessment points are estimated using statistical analysis of data. In the data-poor case, we develop an iterative expert opinion survey approach to validate the degree of confidence in an STM, revise the model, identify lack of confidence in specific model components, and create reasonable first approximations of tipping and assessment points, which can later be refined when more data are available. Our goal should be to develop the best set of models possible given the level of information available to support decisions, which is often not much. The approach presented here offers a flexible means of achieving this goal, and determining specific research areas in need of study.
Moiseenko, T I; Voinov, A A; Megorsky, V V; Gashkina, N A; Kudriavtseva, L P; Vandish, O I; Sharov, A N; Sharova, Yu; Koroleva, I N
2006-10-01
There are rich deposits of mineral and fossil natural resources in the Arctic, which make this region very attractive for extracting industries. Their operations have immediate and vast consequences for ecological systems, which are particularly vulnerable in this region. We are developing a management strategy for Arctic watersheds impacted by industrial production. The case study is Lake Imandra watershed (Murmansk oblast, Russia) that has exceptionally high levels of economic development and large numbers of people living there. We track the impacts of toxic pollution on ecosystem health and then--human health. Three periods are identified: (a) natural, pre-industrial state; (b) disturbed, under rapid economic development; and (c) partial recovery, during recent economic meltdown. The ecosystem is shown to transform into a qualitatively new state, which is still different from the original natural state, even after toxic loadings have substantially decreased. Fish disease where analyzed to produce and integral evaluation of ecosystem health. Accumulation of heavy metals in fish is correlated with etiology of many diseases. Dose-effect relationships are between integral water quality indices and ecosystem health indicators clearly demonstrates that existing water quality standards adopted in Russia are inadequate for Arctic regions. Health was also poor for people drinking water from the Lake. Transport of heavy metals from drinking water, into human organs, and their effect on liver and kidney diseases shows the close connection between ecosystem and human health. A management system is outlined that is based on feedback from indices of ecosystem and human health and control over economic production and/or the amount of toxic loading produced. We argue that prospects for implementation of such a system are quite bleak at this time, and that more likely we will see a continued depopulation of these Northern regions.
NASA Astrophysics Data System (ADS)
Smith, S. L.; Chen, B.; Vallina, S. M.
2017-12-01
Biodiversity-Ecosystem Function (BEF) relationships, which are most commonly quantified in terms of productivity or total biomass yield, are known to depend on the timescale of the experiment or field study, both for terrestrial plants and phytoplankton, which have each been widely studied as model ecosystems. Although many BEF relationships are positive (i.e., increasing biodiversity enhances function), in some cases there is an optimal intermediate diversity level (i.e., a uni-modal relationship), and in other cases productivity decreases with certain measures of biodiversity. These differences in BEF relationships cannot be reconciled merely by differences in the timescale of experiments. We will present results from simulation experiments applying recently developed trait-based models of phytoplankton communities and ecosystems, using the `adaptive dynamics' framework to represent continuous distributions of size and other key functional traits. Controlled simulation experiments were conducted with different levels of phytoplankton size-diversity, which through trait-size correlations implicitly represents functional-diversity. One recent study applied a theoretical box model for idealized simulations at different frequencies of disturbance. This revealed how the shapes of BEF relationships depend systematically on the frequency of disturbance and associated nutrient supply. We will also present more recent results obtained using a trait-based plankton ecosystem model embedded in a three-dimensional ocean model applied to the North Pacific. This reveals essentially the same pattern in a spatially explicit model with more realistic environmental forcing. In the relatively more variable subarctic, productivity tends to increase with the size (and hence functional) diversity of phytoplankton, whereas productivity tends to decrease slightly with increasing size-diversity in the relatively calm subtropics. Continuous trait-based models can capture essential features of BEF relationships, while requiring far fewer calculations compared to typical plankton diversity models that explicitly simulate a great many idealized species.
Parental "Intrapreneurship" in Action: Theoretical Elaboration through the Israeli Case Study
ERIC Educational Resources Information Center
Yemini, Miri; Ramot, Rony; Sagie, Netta
2016-01-01
Parents are widely acknowledged as prominent actors in schools' success; consequently, school-parent interactions are heavily investigated from sociological, psychological, political, and cultural perspectives. By applying the "open system" perspective to schools as an eco-system, this study addresses parents as integrative stakeholders…
Lillebø, Ana I; Somma, Francesca; Norén, Katja; Gonçalves, Jorge; Alves, M Fátima; Ballarini, Elisabetta; Bentes, Luis; Bielecka, Malgorzata; Chubarenko, Boris V; Heise, Susanne; Khokhlov, Valeriy; Klaoudatos, Dimitris; Lloret, Javier; Margonski, Piotr; Marín, Atucha; Matczak, Magdalena; Oen, Amy Mp; Palmieri, Maria G; Przedrzymirska, Joanna; Różyński, Grzegorz; Sousa, Ana I; Sousa, Lisa P; Tuchkovenko, Yurii; Zaucha, Jacek
2016-10-01
This article shares the experiences, observations, and discussions that occurred during the completing of an ecosystem services (ES) indicator framework to be used at European Union (EU) and Member States' level. The experience base was drawn from 3 European research projects and 14 associated case study sites that include 13 transitional-water bodies (specifically 8 coastal lagoons, 4 riverine estuaries, and 1 fjord) and 1 coastal-water ecosystem. The ES pertinent to each case study site were identified along with indicators of these ES and data sources that could be used for mapping. During the process, several questions and uncertainties arose, followed by discussion, leading to these main lessons learned: 1) ES identification: Some ES that do not seem important at the European scale emerge as relevant at regional or local scales; 2) ES indicators: When direct indicators are not available, proxies for indicators (indirect indicators) might be used, including combined data on monitoring requirements imposed by EU legislation and international agreements; 3) ES mapping: Boundaries and appropriate data spatial resolution must be established because ES can be mapped at different temporal and spatial scales. We also acknowledge that mapping and assessment of ES supports the dialogue between human well-being and ecological status. From an evidence-based marine planning-process point of view, mapping and assessment of marine ES are of paramount importance to sustainable use of marine natural capital and to halt the loss of marine biodiversity. Integr Environ Assess Manag 2016;12:726-734. © 2016 SETAC. © 2016 SETAC.
Measuring resilience of coupled human-water systems using ecosystem services compatible indicators
NASA Astrophysics Data System (ADS)
Hannah, D. M.; Mao, F.; Karpouzoglou, T.; Clark, J.; Buytaert, W.
2017-12-01
To explore the dynamics of socio-hydrological systems under change, the concepts of resilience and ecosystem services serve as useful tools. In this context, resilience refers to the capacity of a socio-hydrological system to retain its structural and functional state despite perturbations, while ecosystem services offer a good proxy of the state that reflects human-water intersections. Efforts are needed to maintain and improve socio-hydrological resilience for future contingencies to secure hydrological ecosystem services supply. This requires holistic indicators of resilience for coupled human-water systems that are essential for quantitative assessment, change tracking, inter-case comparison, as well as resilience management. However, such indicators are still lacking. Our research aims to propose widely applicable resilience indicators that are suitable for the coupled human-water context, and compatible with ecosystem services. The existing resilience indicators for both eco-hydrological and socio-economic sectors are scrutinised, screened and analysed to build these new indicators. Using the proposed indicators, we compare the resilience and its temporal change among a set of example regions, and discusses the linkages between socio-hydrological resilience and hydrological ecosystem services with empirical cases.
Monitoring the Productivity of Coastal Systems Using PH ...
The impact of nutrient inputs to the eutrophication of coastal ecosystems has been one of the great themes of coastal ecology. There have been countless studies devoted to quantifying how human sources of nutrients, in particular nitrogen (N), effect coastal water bodies. These studies, which often measure in situ concentrations of nutrients, chlorophyll, and dissolved oxygen, are often spatially and/or temporally intensive and expensive. We provide evidence from experimental mesocosms, coupled with data from the water column of a well-mixed estuary, that pH can be a quick, inexpensive, and integrative measure of net ecosystem metabolism. In some cases, this approach is a more sensitive tracer of production than direct measurements of chlorophyll and carbon-14. Taken together, our data suggest that pH is a sensitive, but often overlooked, tool for monitoring estuarine production. This presentation will explore the potential utility of pH as an indicator of ecosystem productivity. Our data suggest that pH is a sensitive and potentially integrator of net ecosystem production. It should not be overlooked, that measuring pH is quick, easy, and inexpensive, further increasing its value as an analytical tool.
Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes
Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy
2015-01-01
Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335
Liang, Bian Bian; Shi, Pei Ji; Wang, Wei; Tang, Xiao; Zhou, Wen Xia; Jing, Ye
2017-01-01
The Shiyang River Basin is an important ecological area of the Eastern Hexi Corridor, and is one of the most prominent areas of water conflict and ecological environment problems. An assessment of ecosystem quality in the Shiyang River Basin can provide a reference for ecological protection in arid inland basin. Based on the concept of ecosystem quality and the statistical yearbook, remotely sensed and land cover data, an evaluation index was established with consideration of three aspects of ecosystem (i.e., productivity, stability and bearing capacity). Kruskal-Wallis (Φ 2 ) test and entropy method were applied to determine the weights of evaluation index. With the assistance of RS, GIS and SPSS software, a comprehensive evaluation and change analysis of ecosystem quality and corresponding index were conducted for various ecosystem types in the Shiyang River Basin in 2000, 2005, 2010 and 2015. Results showed that the average ecosystem quality of the Shiyang River Basin was 57.76, and presented an obvious decrease with a magnitude of 0.72 per year du-ring 2000-2015. The spatial pattern of ecosystem quality was that the upstream was better than the midstream, and the midstream was superior to the downstream. The mean values of production capacity, stability and carrying capacity of ecosystem were 67.52, 45.37, and 58.53, respectively. Production capacity and stability had increased slightly, while carrying capacity gradually decreased. Considering various ecosystem types, the highest quality was detected for forest ecosystem with average annual value of 78.12, and this ecosystem presented the lowest decreasing magnitude of 0.28 per year; for grassland, farmland and urban ecosystems, the average annual value was 62.45, 58.76 and 50.29, respectively; the quality of wetland ecosystem was the lowest, and suffered the largest decline with an average rate of 0.98 per year.
Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen
2015-12-01
Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems. © 2015 John Wiley & Sons Ltd.
Vlachopoulou, M; Coughlin, D; Forrow, D; Kirk, S; Logan, P; Voulvoulis, N
2014-02-01
The Ecosystem Approach provides a framework for looking at whole ecosystems in decision making to ensure that society can maintain a healthy and resilient natural environment now and for future generations. Although not explicitly mentioned in the Water Framework Directive, the Ecosystem Approach appears to be a promising concept to help its implementation, on the basis that there is a connection between the aims and objectives of the Directive (including good ecological status) and the provision of ecosystem services. In this paper, methodological linkages between the Ecosystem Approach and the Water Framework Directive have been reviewed and a framework is proposed that links its implementation to the Ecosystem Approach taking into consideration all ecosystem services and water management objectives. Individual River Basin Management Plan objectives are qualitatively assessed as to how strong their link is with individual ecosystem services. The benefits of using this approach to provide a preliminary assessment of how it could support future implementation of the Directive have been identified and discussed. Findings also demonstrate its potential to encourage more systematic and systemic thinking as it can provide a consistent framework for identifying shared aims and evaluating alternative water management scenarios and options in decision making. Allowing for a broad consideration of the benefits, costs and tradeoffs that occur in each case, this approach can further improve the economic case for certain measures, and can also help restore the shift in focus from strict legislative compliance towards a more holistic implementation that can deliver the wider aims and intentions of the Directive. © 2013.
NASA Astrophysics Data System (ADS)
Falinski, K. A.; Oleson, K.; Htun, H.; Kappel, C.; Lecky, J.; Rowe, C.; Selkoe, K.; White, C.
2016-12-01
Faced with anthropogenic stressors and declining coral reef states, managers concerned with restoration and resilience of coral reefs are increasingly recognizing the need to take a ridge-to-reef, ecosystem-based approach. An ecosystem services framing can help managers move towards these goals, helping to illustrate trade-offs and opportunities of management actions in terms of their impacts on society. We describe a research program building a spatial ecosystem services-based decision-support tool, and being applied to guide ridge-to-reef management in a NOAA priority site in West Maui. We use multiple modeling methods to link biophysical processes to ecosystem services and their spatial flows and social values in an integrating platform. Modeled services include water availability, sediment retention, nutrient retention and carbon sequestration on land. A coral reef ecosystem service model is under development to capture the linkages between terrestrial and coastal ecosystem services. Valuation studies are underway to quantify the implications for human well-being. The tool integrates techniques from decision science to facilitate decision making. We use the sediment retention model to illustrate the types of analyses the tool can support. The case study explores the tradeoffs between road rehabilitation costs and sediment export avoided. We couple the sediment and cost models with trade-off analysis to identify optimal distributed solutions that are most cost-effective in reducing erosion, and then use those models to estimate sediment exposure to coral reefs. We find that cooperation between land owners reveals opportunities for maximizing the benefits of fixing roads and minimizes costs. This research forms the building blocks of an ecosystem service decision support tool that we intend to continue to test and apply in other Pacific Island settings.
NASA Astrophysics Data System (ADS)
Hina, A.
2016-12-01
The Research takes into account Block II Mining and Power Plant Project of Thar Coal field in Pakistan by carrying out ecosystem service assessment of the region to identify the impact on important ecosystem service losses and the contribution of mining companies to mitigate the socio-economic problems as a part of their Corporate Social Responsibility (CSR). The study area includes 7 rural settlements, around 921 households and 7000 individuals, dependent on agriculture and livestock for their livelihoods. Currently, the project has adopted the methods of strip mining (also called open-cut mining, open-cast mining, and stripping), undergoing removing the overburden in strips to enable excavation of the coal seams. Since the consequences of mine development can easily spill across community and ecological boundaries, the rising scarcity of some ecosystem services makes the case to examine both project impact and dependence on ecosystem services. A preliminary Ecosystem Service review of Thar Coal Field identifies key ecosystems services owing to both high significance of project impact and high project dependence are highlighted as: the hydrogeological study results indicate the presence of at least three aquifer zones: one above the coal zone (the top aquifer), one within the coal and the third below the coal zone. Hence, Water is identified as a key ecosystem service to be addressed and valued due to its high dependency in the area for livestock, human wellbeing, agriculture and other purposes. Crop production related to agricultural services, in association with supply services such as soil quality, fertility, and nutrient recycling and water retention need to be valued. Cultural services affected in terms of land use change and resettlement and rehabilitation factors are recommended to be addressed.
NASA Astrophysics Data System (ADS)
Li, Y.; Guan, K.; Gentine, P.; Konings, A. G.; Bhattacharya, A.; Meinzer, F. C.; Kimball, J. S.; Xu, X.; Anderegg, W.; McDowell, N. G.; Martínez-Vilalta, J.; Long, D. G.; Good, S. P.
2017-12-01
The concept of iso/anisohydry describes the degree to which plants regulate their water status, operating from isohydric with strict stomatal closure to anisohydric with greater stomatal conductance under drying conditions. Though some species-level measures of iso/anisohydry exist at limited locations, ecosystem scale information is still largely unavailable. In this study, we use diurnal observations from active (Ku-Band backscatter from QuikSCAT) and passive (X-band Vegetation Optical Depth [VOD] from AMSR-E) microwave satellite data to estimate global ecosystem iso/anisohydry. The two independent estimates from radar backscatter and VOD show good agreement at low and mid-latitudes but diverge at high latitudes. Grasslands, croplands, wetlands, and open shrublands are more anisohydric, whereas evergreen broadleaf and deciduous broadleaf forests are more isohydric. The direct validation with upscaled in-situ species iso/anisohydry estimates indicates that the VOD estimates have much better agreement than the backscatter in terms of their iso/anisohydry metrics. The indirect validation suggests that both estimates are consistent with prior knowledge that vegetation water status of anisohydric ecosystems more closely tracks environmental fluctuations of water availability and demand than their isohydric counterparts. The ecosystem level iso/anisohydry can be applied to reveal new insights into spatio-temporal ecosystem response to droughts. We conducted a case study to demonstrate the potential application of iso/anisohydry. We find that during the 2011 drought in US, over the drought affected region in the southern US, isohydric ecosystems experienced larger decline in productivity (NDVI and GPP) than anisohydric ones. However, during the 2012 drought in central US, both isohydric and anisohydric ecosystems exhibited similar decline in productivity.
Rarity in mass extinctions and the future of ecosystems
NASA Astrophysics Data System (ADS)
Hull, Pincelli M.; Darroch, Simon A. F.; Erwin, Douglas H.
2015-12-01
The fossil record provides striking case studies of biodiversity loss and global ecosystem upheaval. Because of this, many studies have sought to assess the magnitude of the current biodiversity crisis relative to past crises—a task greatly complicated by the need to extrapolate extinction rates. Here we challenge this approach by showing that the rarity of previously abundant taxa may be more important than extinction in the cascade of events leading to global changes in the biosphere. Mass rarity may provide the most robust measure of our current biodiversity crisis relative to those past, and new insights into the dynamics of mass extinction.
The impact of systematic landscape conservation planning on ecosystem: Chen Youlan river watershed
NASA Astrophysics Data System (ADS)
Chen, Chi-ju
2017-04-01
Heraclitus said that "no man ever steps in the same river twice." Everything continues to change. Land use change will keep redefine itself and subject the Earth and humankind to collateral changes. Humankind benefits from ecosystem in many ways. The ecosystem provides people with nutrients, enriches soil with sediment, and sustains all living organisms with water; these benefits are known as ecosystem services. In Taiwan, land use change has impacted ecosystem and biodiversity on various levels. Thus, we took six land use scenarios from 1999 to 2005 in Chen Youlan river watershed as our case study, intending to observe the course of ecosystem and biodiversity changes and the cause of it. Systematic Landscape conservation planning (SLCP) framework can be adopted when designing land use policy to safeguard human interests and ecosystem. This study use SLCP to develop ecosystem services and biodiversity protection strategies. Several strategies were designed by using 1999 to 2005 data as provision to protect the intactness of future ecosystem services and biodiversity. This research explores the potential and possible impacts of different land use protection strategies in the future. It is possible to identify the conservation priority of a certain region by using the Zonation meta-algorithm. This study selects the zonation critical protection area (Joint set of Yushan National Park) as strategy A, B and C. Strategy D takes Yushan National Park as a protected area; unstable hot spots in 1999/03 (Joint set of Yushan National Park) are selected as strategy E. Next, we used Kappa statistical method to find the minimal ecosystem services change and biodiversity hotspots change of the five aforementioned strategies and compared with those from 1999/03. By the Kappa statistical method, we further prioritized the important conservation areas by strategy A, B, C, E in the future. The results can not only serve as management reference for government agencies, but also develop an ideal trajectory of policy making as well as human-nature dynamics, leading to a sustainable future. We do not have to be subject to changes passively, instead, we can evolve ourselves and actively initiate the evolutionary path towards sustainable coexistence with nature. Keywords: InVEST , CLUE-s , biodiversity , ecosystem services, ecosystem services hotspots, land use change, SLCP, Systematic Landscape conservation planning, Chen Youlan river
The Impacts of Climate-Induced Drought on Biogeochemical Cycles
NASA Astrophysics Data System (ADS)
Peng, C.
2014-12-01
Terrestrial ecosystems and, in particular, forests exert strong controls on the global biogeochemical cycles and influence regional hydrology and climatology directly through water and surface energy budgets. Recent studies indicated that forest mortality caused by rising temperature and drought from around the world have unexpectedly increased in the past decade and they collectively illustrate the vulnerability of many forested ecosystems to rapid increases in tree mortality due to warmer temperatures and more severe drought. Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services (such as albedo and carbon sequestration). Quantifying potential impacts of tree mortality on ecosystem processes requires research into mortality effects on carbon, energy, and water budgets at both site and regional levels. Despite recent progress, the uncertainty around mortality responses still limits our ability to predict the likelihood and anticipate the impacts of tree die-off. Studies are needed that explore tree death physiology for a wide variety of functional types, connect patterns of mortality with climate events, and quantify the impacts on carbon, energy, and water flux. In this presentation, I will highlight recent research progress, and identify key research needs and future challenges to predict the consequence and impacts of drought-induced large-scale forest mortality on biogeochemical cycles. I will focus on three main forest ecosystems (tropic rainforest in Amazon, temperate forest in Western USA, and boreal forest in Canada) as detailed case studies.
Challenges to the Doctoral Journey: A Case of Female Doctoral Students from Ethiopia
ERIC Educational Resources Information Center
Bireda, Asamenew Demessie
2015-01-01
This study aimed to investigate some challenges female doctoral students experience in their doctoral journey. The study used a qualitative design and structured interviews. The theoretical framework that guided the study was that of Urie Bronfenbrenner's ecosystemic theory. A purposely selected sample of five female doctoral students from the…
NASA Astrophysics Data System (ADS)
Loisel, J.; Harden, J. W.; Hugelius, G.
2017-12-01
What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis; they also support much biodiversity, including iconic species such as the orangutan in Indonesia and the guanaco in Chile. While these ecosystem services have been recognized in many sectors and a voluntary standard for a peatland carbon market is emerging, peatland services have not been systematically quantified, or accounted for, at the global level.
Conservation planning for biodiversity and wilderness: a real-world example.
Ceauşu, Silvia; Gomes, Inês; Pereira, Henrique Miguel
2015-05-01
Several of the most important conservation prioritization approaches select markedly different areas at global and regional scales. They are designed to maximize a certain biodiversity dimension such as coverage of species in the case of hotspots and complementarity, or composite properties of ecosystems in the case of wilderness. Most comparisons between approaches have ignored the multidimensionality of biodiversity. We analyze here the results of two species-based methodologies-hotspots and complementarity-and an ecosystem-based methodology-wilderness-at local scale. As zoning of protected areas can increase the effectiveness of conservation, we use the data employed for the management plan of the Peneda-Gerês National Park in Portugal. We compare the approaches against four criteria: species representativeness, wilderness coverage, coverage of important areas for megafauna, and for regulating ecosystem services. Our results suggest that species- and ecosystem-based approaches select significantly different areas at local scale. Our results also show that no approach covers well all biodiversity dimensions. Species-based approaches cover species distribution better, while the ecosystem-based approach favors wilderness, areas important for megafauna, and for ecosystem services. Management actions addressing different dimensions of biodiversity have a potential for contradictory effects, social conflict, and ecosystem services trade-offs, especially in the context of current European biodiversity policies. However, biodiversity is multidimensional, and management and zoning at local level should reflect this aspect. The consideration of both species- and ecosystem-based approaches at local scale is necessary to achieve a wider range of conservation goals.
Conservation Planning for Biodiversity and Wilderness: A Real-World Example
NASA Astrophysics Data System (ADS)
Ceauşu, Silvia; Gomes, Inês; Pereira, Henrique Miguel
2015-05-01
Several of the most important conservation prioritization approaches select markedly different areas at global and regional scales. They are designed to maximize a certain biodiversity dimension such as coverage of species in the case of hotspots and complementarity, or composite properties of ecosystems in the case of wilderness. Most comparisons between approaches have ignored the multidimensionality of biodiversity. We analyze here the results of two species-based methodologies—hotspots and complementarity—and an ecosystem-based methodology—wilderness—at local scale. As zoning of protected areas can increase the effectiveness of conservation, we use the data employed for the management plan of the Peneda-Gerês National Park in Portugal. We compare the approaches against four criteria: species representativeness, wilderness coverage, coverage of important areas for megafauna, and for regulating ecosystem services. Our results suggest that species- and ecosystem-based approaches select significantly different areas at local scale. Our results also show that no approach covers well all biodiversity dimensions. Species-based approaches cover species distribution better, while the ecosystem-based approach favors wilderness, areas important for megafauna, and for ecosystem services. Management actions addressing different dimensions of biodiversity have a potential for contradictory effects, social conflict, and ecosystem services trade-offs, especially in the context of current European biodiversity policies. However, biodiversity is multidimensional, and management and zoning at local level should reflect this aspect. The consideration of both species- and ecosystem-based approaches at local scale is necessary to achieve a wider range of conservation goals.
Human Freshwater Demand for Economic Activity and Ecosystems in Taiwan
NASA Astrophysics Data System (ADS)
Ferng, Jiun-Jiun
2007-12-01
Freshwater is necessary to economic activity, and humans depend on goods and services generated by water-dependent ecosystems. However, national freshwater management usually focuses on direct use of domestic freshwater. With an increasing scarcity of freshwater, attention has turned to two indirect uses of freshwater by humans. The first indirect use is freshwater used by foreign countries when producing products for export. The second use is freshwater required by local ecosystems: human survival and development depend on goods and services generated in these ecosystems. This work adopted Taiwan as a case study. In addition to two widely recognized ecosystem freshwater demands, evapotranspiration and reversed river flow, this study suggests that freshwater is a constituent of some abiotic components, such as groundwater in aquifers, because excessive withdrawal has already caused significant land subsidence in Taiwan. Moreover, the estimated results show that Taiwan’s net imports of freshwater through trade amounts to approximately 25% of its total freshwater use for economic production. Integrating industrial policy, trade policy, and national freshwater management is a useful approach for developing strategies to limit the growing use of freshwater in Taiwan. Policy implications are then developed by further analyzing withdrawal sources of freshwater (domestic and foreign) for supporting economic production in Taiwan and identifying the factors (domestic final demand and export) driving freshwater-intensive products.
Distribution of bark beetle attacks after whitebark pine restoration treatments: A case study
Kristen M. Waring; Diana L. Six
2005-01-01
Whitebark pine (Pinus albicaulis Engelm.), an important component of high elevation ecosystems in the western United States and Canada, is declining due to fire exclusion, white pine blister rust (Cronartium ribicola J.C. Fisch.), and mountain pine beetle (Dendroctonus ponderosae Hopkins). This study was...
Hydraulic fracturing (HF) is used to develop unconventional gas reserves, but the technology requires large volumes of water, placing demands on local water resources and potentially creating conflict with other users and ecosystems. This study examines the balance between water ...
Implementing the optimal provision of ecosystem services
Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Nelson, Erik
2014-01-01
Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners’ costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information. PMID:24722635
Implementing the optimal provision of ecosystem services.
Polasky, Stephen; Lewis, David J; Plantinga, Andrew J; Nelson, Erik
2014-04-29
Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners' costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information.
Conversion of native terrestrial ecosystems in Hawai‘i to novel grazing systems: a review
Leopold, Christina R.; Hess, Steven C.
2017-01-01
The remote oceanic islands of Hawai‘i exemplify the transformative effects that non-native herbivorous mammals can bring to isolated terrestrial ecosystems. We reviewed published literature containing systematically collected, analyzed, and peer-reviewed original data specifically addressing direct effects of non-native hoofed mammals (ungulates) on terrestrial ecosystems, and indirect effects and interactions on ecosystem processes in Hawai‘i. The effects of ungulates on native vegetation and ecosystems were addressed in 58 original studies and mostly showed strong short-term regeneration of dominant native trees and understory ferns after ungulate removal, but unassisted recovery was dependent on the extent of previous degradation. Ungulates were associated with herbivory, bark-stripping, disturbance by hoof action, soil erosion, enhanced nutrient cycling from the interaction of herbivory and grasses, and increased pyrogenicity and competition between native plants and pasture grasses. No studies demonstrated that ungulates benefitted native ecosystems except in short-term fire-risk reduction. However, non-native plants became problematic and continued to proliferate after release from herbivory, including at least 11 species of non-native pasture grasses that had become established prior to ungulate removal. Competition from non-native grasses inhibited native species regeneration where degradation was extensive. These processes have created novel grazing systems which, in some cases, have irreversibly altered Hawaii’s terrestrial ecology. Non-native plant control and outplanting of rarer native species will be necessary for recovery where degradation has been extensive. Lack of unassisted recovery in some locations should not be construed as a reason to not attempt restoration of other ecosystems.
NASA Astrophysics Data System (ADS)
MA, S.; Huang, Y.; Stacy, M.; Jiang, J.; Sundi, N.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.; Saruta, V.
2017-12-01
Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our study presents a smart system - Ecological Platform for Assimilation of Data (EcoPAD) - which streamlines web request-response, data management, model execution, result storage and visualization. EcoPAD allows users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, (v) conduct ecological forecasting, and (vi) detect ecosystem acclimation to climate change. One of the key innovations of the web-based EcoPAD is the automated near- or real-time forecasting of ecosystem dynamics with uncertainty fully quantified. The user friendly webpage enables non-modelers to explore their data for simulation and data assimilation. As a case study, we applied EcoPAD to the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment project in the northern peatland, assimilated multiple data streams into a process based ecosystem model, enhanced timely feedback between modelers and experimenters, ultimately improved ecosystem forecasting and made better use of current knowledge. Built in a framework with flexible API, EcoPAD is easily portable and will benefit scientific communities, policy makers as well as the general public.
Viniece Jennings; Lincoln Larson; Jessica Yun
2016-01-01
Urban green spaces provide an array of benefits, or ecosystem services, that support our physical, psychological, and social health. In many cases, however, these benefits are not equitably distributed across diverse urban populations. In this paper, we explore relationships between cultural ecosystem services provided by urban green space and the social determinants...
Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure
2001-09-30
mutualism utilized modified Lotka - Volterra (L-V) competition equations in which the sign of the interspecific interaction term was changed from...within complex communities and ecosystems. Prior to the current award, the PIs formulated and tested general dynamic energy budget models...Nisbet, 1998; chapter 7) make a convincing case that ecosystems do truly have dynamics that can be described by relatively simple, general , models
Introduction to special section on Annual Cycles on the Arctic Ocean Shelf
NASA Astrophysics Data System (ADS)
Fortier, Louis; Cochran, J. Kirk
2008-03-01
The perennial sea-ice cover of the Arctic Ocean is shrinking rapidly in response to the anthropogenic warming of Earth's lower atmosphere. From September 2002 to September 2004 the Canadian Arctic Shelf Exchange Study (CASES) logged over 14,500 scientist-days at sea to document the potential impacts of a shift in sea-ice regime on the ecosystem of the Mackenzie Shelf in the southeastern Beaufort Sea. In particular, teams from Canada, Denmark, Japan, Norway, Spain, the United Kingdom, and the United States totaling over 200 scientists took rotations on the CCS Amundsen to study all aspects of the ecosystem during a 385-day over-wintering expedition in the region from September 2003 to September 2004. The resulting wealth of information has revealed an unexpectedly active food web under the winter sea ice of the coastal Beaufort Sea. From the thermodynamics of snow to the reconstruction of local paleo-climate, this special section focuses on how sea-ice cover dynamics dictate biological processes and biogeochemical fluxes on and at the margin of the shallow Arctic continental shelf. The highly successful CASES program has initiated ongoing time series of key measurements of the response of the marine ecosystem to change that have been expanded to other Arctic regions through the ArcticNet project and the International Polar Year.
NASA Astrophysics Data System (ADS)
Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.
2015-05-01
The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.
Regime shifts and panarchies in regional scale social ...
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thom, Ronald M.; Diefenderfer, Heida L.; Vavrinec, John
2012-01-01
The purpose of many ecological restoration projects is to establish an ecosystem with fully developed structure and function that exhibits resistance to and resilience from disturbances. Coastal restoration projects in the Pacific Northwest provide opportunities to understand what is required to restore the resilience of eelgrass (Zostera marina L.) populations. Factors influencing resilience observed in three case studies of eelgrass restoration include minimum viable population, adaptations of transplant populations, and natural and anthropogenic disturbances at restoration sites. The evaluation of resiliency depends on selecting appropriate monitoring metrics and the frequency and duration of monitoring. Eelgrass area, cover and shoot densitymore » provide useful and reliable metrics for quantifying resilience of restored meadows. Further, five years of monitoring of these metrics provides data that can reasonably predict the long-term viability of a planted plot. Eelgrass appears to be a resilient ecosystem in general, though one that data suggest may exhibit tipping points brought about by compounded environmental conditions outside of its tolerance ranges. Explicit inclusion of resilience in the planning and practice of habitat restoration may reduce uncertainties and improve the performance of restored systems by increasing buffering capacity, nurturing sources of renewal (e.g., seeds and rhizomes), and managing for habitat forming and maintaining processes (e.g., sediment dynamics) at multiple scales.« less
Overlaps among phenological phases in flood plain forest ecosystem
NASA Astrophysics Data System (ADS)
Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk
2015-04-01
There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, C.R.
1995-09-01
The US Department of Energy (DOE) is proposing to develop a geologic repository for disposing of high-level nuclear waste at Yucca Mountain, Nevada. In this commentary, the ecology program for the DOE`s Yucca Mountain Project is discussed from the perspective of state-of-the-art ecosystem analysis, environmental ethics, and standards of professional practice. Specifically at issue is the need by the Yucca Mountain ecology program to adopt an ecosystem approach that encompasses the current strategy based on population biology and community ecology alone. The premise here is that an ecosystem approach is essential for assessing the long-term potential environmental impacts at Yuccamore » Mountain in light of the thermal effects expected to be associated with heat from radioactive decay.« less
Population Abundance and Ecosystem Service Provision: The Case of Birds
Gaston, Kevin J; Cox, Daniel T C; Canavelli, Sonia B; García, Daniel; Hughes, Baz; Maas, Bea; Martínez, Daniel; Ogada, Darcy; Inger, Richard
2018-01-01
Abstract Although there is a diversity of concerns about recent persistent declines in the abundances of many species, the implications for the associated delivery of ecosystem services to people are surprisingly poorly understood. In principle, there are a broad range of potential functional relationships between the abundance of a species or group of species and the magnitude of ecosystem-service provision. Here, we identify the forms these relationships are most likely to take. Focusing on the case of birds, we review the empirical evidence for these functional relationships, with examples of supporting, regulating, and cultural services. Positive relationships between abundance and ecosystem-service provision are the norm (although seldom linear), we found no evidence for hump-shaped relationships, and negative ones were limited to cultural services that value rarity. Given the magnitude of abundance declines among many previously common species, it is likely that there have been substantial losses of ecosystem services, providing important implications for the identification of potential tipping points in relation to defaunation resilience, biodiversity conservation, and human well-being. PMID:29686433
da Costa, Andréa Pereira; Costa, Francisco Borges; Soares, Herbert Sousa; Ramirez, Diego Garcia; de Carvalho Araújo, Andreina; da Silva Ferreira, Juliana Isabel Giuli; Tonhosolo, Renata; Dias, Ricardo Augusto; Gennari, Solange Maria; Marcili, Arlei
2015-12-01
Environment influences the composition, distribution, and behavior of the vectors and mammalian hosts involved in the transmission of visceral leishmaniasis (VL), affecting the epidemiology of the disease. In Brazil, the urbanization process and canine cases of VL are indicators for local health authorities. This study aimed to investigate the occurrence of the canine visceral leishmaniasis (CVL) in Maranhão State, Brazil. Blood samples collected from 960 dogs from six municipalities and six different ecosystems (Baixada Maranhense, Mangue, Mata dos Cocais, Amazônia, Cerrado, and Restinga) to serological tests (enzyme-linked immunosorbent assay [ELISA], indirect fluorescence antibody test [IFAT], and chromatographic immunoassay methods [Dual Path Platform technology, DPP(®)]) and parasitological diagnosis. From serological tests, 11.14% (107) of the dogs were positive for CVL, with 59.16% (568), 14.5% (148), and 131% (126) positives to ELISA, DPP, and IFAT tests, respectively. Only seven animals (0.73%) were positive in a parasitological test. We also performed parasite isolation and phylogenetic characterization. All isolates of dogs obtained from Maranhão were grouped in a single branch with Leishmania infantum chagasi from Brazil. The ecosystem Amazonia presented the highest positivity rates to CVL in serological and parasitological tests. Brazilian biomes/ecosystems suffer large degradation and may favor, depending on climatic conditions, the installation of new diseases. In the case of VL, dogs are reservoirs of parasites and sentinels for human infection.
Identifying Thresholds for Ecosystem-Based Management
Samhouri, Jameal F.; Levin, Phillip S.; Ainsworth, Cameron H.
2010-01-01
Background One of the greatest obstacles to moving ecosystem-based management (EBM) from concept to practice is the lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management action. Methodology/Principal Findings To assist resource managers and policymakers in developing EBM decision criteria, we introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-induced pressure (e.g., pollution) at which small changes produce substantial improvements toward the EBM goal of protecting an ecosystem's structural (e.g., diversity) and functional (e.g., resilience) attributes. The analytical approach is based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the method with a hypothetical case study of (1) fishing and (2) nearshore habitat pressure using an empirically-validated marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs. Conclusions/Significance For any policy scenario, an understanding of utility thresholds provides insight into the amount and type of management intervention required to make significant progress toward improved ecosystem structure and function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures, to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management. PMID:20126647
A. E. Castellanos; H. Celaya; C. Hinojo; A. Ibarra; J. R. Romo
2013-01-01
Buffel savannas have been an important landscape on cattle grazing ranches in Sonora over the past 50 years or more. Changes in land use result in biodiversity changes that may produce ecosystem functional changes; however, these are less well documented. Although fire driven processes have been proposed for Buffel savannas, this is not generally the case, and other...
Ojaveer, Henn; Eero, Margit
2011-04-29
Assessments of the environmental status of marine ecosystems are increasingly needed to inform management decisions and regulate human pressures to meet the objectives of environmental policies. This paper addresses some generic methodological challenges and related uncertainties involved in marine ecosystem assessment, using the central Baltic Sea as a case study. The objectives of good environmental status of the Baltic Sea are largely focusing on biodiversity, eutrophication and hazardous substances. In this paper, we conduct comparative evaluations of the status of these three segments, by applying different methodological approaches. Our analyses indicate that the assessment results are sensitive to a selection of indicators for ecological quality objectives that are affected by a broad spectrum of human activities and natural processes (biodiversity), less so for objectives that are influenced by a relatively narrow array of drivers (eutrophications, hazardous substances). The choice of indicator aggregation rule appeared to be of essential importance for assessment results for all three segments, whereas the hierarchical structure of indicators had only a minor influence. Trend-based assessment was shown to be a useful supplement to reference-based evaluation, being independent of the problems related to defining reference values and indicator aggregation methodologies. Results of this study will help in setting priorities for future efforts to improve environmental assessments in the Baltic Sea and elsewhere, and to ensure the transparency of the assessment procedure.
NASA Astrophysics Data System (ADS)
Roberts, Lisa Elisabeth N.
Current policy and research have led the field of science education towards a model of "science as practice." In the past decade, several research programs on model-based reasoning practices in education have articulated key dimensions of practice, including constructing and defending models, comparing models to empirical data, using representations to identify patterns in data and use those as inscriptions to buttress arguments. This study presents a detailed case of how the use of a physical microcosm and children's self-directed representations of an ecosystem constrained and afforded student sense-making in an urban elementary classroom. The case analyzed the experiences of a 10-year old fifth grade student, Jorge, and the variation in his expressed understanding of ecosystems as he interacted with academic tasks, along with models and representations, to design, observe and explain an ecological microcosm. The study used a conceptual framework that brings together theories of situated cognition and Doyle's work on academic task to explain how and why Jorge's perception and communication of dimensions of ecosystem structure, function, and behavior appear to "come in and out of focus," influenced by the affordances of the tools and resources available, the academic task as given by the teacher, and Jorge's own experiences and knowledge of phenomena related to ecosystems. Findings from this study suggest that elementary students' ability or inability to address particular ecological concepts in a given task relate less to gaps in their understanding and more to the structure of academic tasks and learning contexts. The process of a student interacting with curriculum follows a dynamic trajectory and leads to emergent outcomes. As a result of the complex interactions of task, tools, and his own interests and agency, Jorge's attunement to the role of water in ecosystems comes in and out of focus throughout the unit. The instructional constraint of needing to integrate the FOSS Water Cycle curriculum into the Bottle Biology Project became an affordance for Jorge to ask questions, observe, and theorize about the role of water and the water cycle in an ecosystem. The practice of modeling a closed ecosystem made salient to Jorge the boundaries of a system and the conservation of water within that system. The closed ecosystem model also presented constraints to students' sense making about the role of interactions when students lack domain knowledge in ecology. Relying on students' own talk, photographs and representations as explanations of phenomena in the Bio Bottle, without establishing norms of representational conventions and communication, resulted in missed opportunities for Jorge to reinforce his sense making during the activity and to develop conventions of scientific representation. Findings from this study can be used to inform the design and implementation of learning environments and curricular activities for elementary and middle school students that address all three dimensions of the Next Generation Science Standards: a) developing conceptual understanding of key concepts in the domain of ecology, b) the cross-cutting concept of systems, and c) multiple practices that ecologists use in developing and evaluating models that explain ecosystem structures, functions, and change over time.
Rogora, M; Frate, L; Carranza, M L; Freppaz, M; Stanisci, A; Bertani, I; Bottarin, R; Brambilla, A; Canullo, R; Carbognani, M; Cerrato, C; Chelli, S; Cremonese, E; Cutini, M; Di Musciano, M; Erschbamer, B; Godone, D; Iocchi, M; Isabellon, M; Magnani, A; Mazzola, L; Morra di Cella, U; Pauli, H; Petey, M; Petriccione, B; Porro, F; Psenner, R; Rossetti, G; Scotti, A; Sommaruga, R; Tappeiner, U; Theurillat, J-P; Tomaselli, M; Viglietti, D; Viterbi, R; Vittoz, P; Winkler, M; Matteucci, G
2018-05-15
Mountain ecosystems are sensitive and reliable indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers from a broad ecological perspective. Mountain research sites within the LTER (Long-Term Ecological Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria covering in most cases more than two decades of observations. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular plant species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change, with site-specific characteristics and rates. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were also observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for (i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, (ii) carrying out further studies, in particular short-term analyses with fine spatial and temporal resolutions to improve our understanding of responses to extreme events, and (iii) increasing comparability and standardizing protocols across networks to distinguish local patterns from global patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
Food security in a perfect storm: using the ecosystem services framework to increase understanding
Poppy, G. M.; Chiotha, S.; Eigenbrod, F.; Harvey, C. A.; Honzák, M.; Hudson, M. D.; Jarvis, A.; Madise, N. J.; Schreckenberg, K.; Shackleton, C. M.; Villa, F.; Dawson, T. P.
2014-01-01
Achieving food security in a ‘perfect storm’ scenario is a grand challenge for society. Climate change and an expanding global population act in concert to make global food security even more complex and demanding. As achieving food security and the millennium development goal (MDG) to eradicate hunger influences the attainment of other MDGs, it is imperative that we offer solutions which are complementary and do not oppose one another. Sustainable intensification of agriculture has been proposed as a way to address hunger while also minimizing further environmental impact. However, the desire to raise productivity and yields has historically led to a degraded environment, reduced biodiversity and a reduction in ecosystem services (ES), with the greatest impacts affecting the poor. This paper proposes that the ES framework coupled with a policy response framework, for example Driver-Pressure-State-Impact-Response (DPSIR), can allow food security to be delivered alongside healthy ecosystems, which provide many other valuable services to humankind. Too often, agro-ecosystems have been considered as separate from other natural ecosystems and insufficient attention has been paid to the way in which services can flow to and from the agro-ecosystem to surrounding ecosystems. Highlighting recent research in a large multi-disciplinary project (ASSETS), we illustrate the ES approach to food security using a case study from the Zomba district of Malawi. PMID:24535394
Towards a framework for assessment and management of cumulative human impacts on marine food webs.
Giakoumi, Sylvaine; Halpern, Benjamin S; Michel, Loïc N; Gobert, Sylvie; Sini, Maria; Boudouresque, Charles-François; Gambi, Maria-Cristina; Katsanevakis, Stelios; Lejeune, Pierre; Montefalcone, Monica; Pergent, Gerard; Pergent-Martini, Christine; Sanchez-Jerez, Pablo; Velimirov, Branko; Vizzini, Salvatrice; Abadie, Arnaud; Coll, Marta; Guidetti, Paolo; Micheli, Fiorenza; Possingham, Hugh P
2015-08-01
Effective ecosystem-based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components' vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions. © 2015 Society for Conservation Biology.
Food security in a perfect storm: using the ecosystem services framework to increase understanding.
Poppy, G M; Chiotha, S; Eigenbrod, F; Harvey, C A; Honzák, M; Hudson, M D; Jarvis, A; Madise, N J; Schreckenberg, K; Shackleton, C M; Villa, F; Dawson, T P
2014-04-05
Achieving food security in a 'perfect storm' scenario is a grand challenge for society. Climate change and an expanding global population act in concert to make global food security even more complex and demanding. As achieving food security and the millennium development goal (MDG) to eradicate hunger influences the attainment of other MDGs, it is imperative that we offer solutions which are complementary and do not oppose one another. Sustainable intensification of agriculture has been proposed as a way to address hunger while also minimizing further environmental impact. However, the desire to raise productivity and yields has historically led to a degraded environment, reduced biodiversity and a reduction in ecosystem services (ES), with the greatest impacts affecting the poor. This paper proposes that the ES framework coupled with a policy response framework, for example Driver-Pressure-State-Impact-Response (DPSIR), can allow food security to be delivered alongside healthy ecosystems, which provide many other valuable services to humankind. Too often, agro-ecosystems have been considered as separate from other natural ecosystems and insufficient attention has been paid to the way in which services can flow to and from the agro-ecosystem to surrounding ecosystems. Highlighting recent research in a large multi-disciplinary project (ASSETS), we illustrate the ES approach to food security using a case study from the Zomba district of Malawi.
NASA Astrophysics Data System (ADS)
Bradley, J. A.; Anesio, A. M.; Singarayer, J. S.; Heath, M. R.; Arndt, S.
2015-10-01
SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework designed to simulate microbial dynamics and biogeochemical cycling during initial ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The rationale for model development arises from decades of empirical observations in glacier forefields, and enables a quantitative and process focussed approach. Here, we provide a detailed description of SHIMMER, test its performance in two case study forefields: the Damma Glacier (Switzerland) and the Athabasca Glacier (Canada) and analyse sensitivity to identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Primary production is responsible for the initial build-up of labile substrate that subsequently supports heterotrophic growth. However, allochthonous contributions of organic matter, and nitrogen fixation, are important in sustaining this productivity. The development and application of SHIMMER also highlights aspects of these systems that require further empirical research: quantifying nutrient budgets and biogeochemical rates, exploring seasonality and microbial growth and cell death. This will lead to increased understanding of how glacier forefields contribute to global biogeochemical cycling and climate under future ice retreat.
NASA Astrophysics Data System (ADS)
Scemama, Pierre; Levrel, Harold
2016-01-01
At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.
Scemama, Pierre; Levrel, Harold
2016-01-01
At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.
Armas, Cecilia María; Santana, Bayanor; Mora, Juan Luis; Notario, Jesús Santiago; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio
2007-05-25
The aim of this work is to identify indicators of biological activity in soils from the Canary Islands, by studying the variation of selected biological parameters related to the processes of deforestation and accelerated soil degradation affecting the Canarian natural ecosystems. Ten plots with different degrees of maturity/degradation have been selected in three typical habitats in the Canary Islands: laurel forest, pine forest and xerophytic scrub with Andisols and Aridisols as the most common soils. The studied characteristics in each case include total organic carbon, field soil respiration, mineralized carbon after laboratory incubation, microbial biomass carbon, hot water-extractable carbon and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities. A Biological Quality Index (BQI) has been designed on the basis of a regression model using these variables, assuming that the total soil organic carbon content is quite stable in nearly mature ecosystems. Total carbon in mature ecosystems has been related to significant biological variables (hot water-extractable carbon, soil respiration and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities), accounting for nearly 100% of the total variance by a multiple regression analysis. The index has been calculated as the ratio of the value calculated from the regression model and the actual measured value. The obtained results show that soils in nearly mature ecosystems have BQI values close to unit, whereas those in degraded ecosystems range between 0.24 and 0.97, depending on the degradation degree.
Complex terrain influences ecosystem carbon responses to temperature and precipitation
NASA Astrophysics Data System (ADS)
Reyes, W. M.; Epstein, H. E.; Li, X.; McGlynn, B. L.; Riveros-Iregui, D. A.; Emanuel, R. E.
2017-08-01
Terrestrial ecosystem responses to temperature and precipitation have major implications for the global carbon cycle. Case studies demonstrate that complex terrain, which accounts for more than 50% of Earth's land surface, can affect ecological processes associated with land-atmosphere carbon fluxes. However, no studies have addressed the role of complex terrain in mediating ecophysiological responses of land-atmosphere carbon fluxes to climate variables. We synthesized data from AmeriFlux towers and found that for sites in complex terrain, responses of ecosystem CO2 fluxes to temperature and precipitation are organized according to terrain slope and drainage area, variables associated with water and energy availability. Specifically, we found that for tower sites in complex terrain, mean topographic slope and drainage area surrounding the tower explained between 51% and 78% of site-to-site variation in the response of CO2 fluxes to temperature and precipitation depending on the time scale. We found no such organization among sites in flat terrain, even though their flux responses exhibited similar ranges. These results challenge prevailing conceptual framework in terrestrial ecosystem modeling that assumes that CO2 fluxes derive from vertical soil-plant-climate interactions. We conclude that the terrain in which ecosystems are situated can also have important influences on CO2 responses to temperature and precipitation. This work has implications for about 14% of the total land area of the conterminous U.S. This area is considered topographically complex and contributes to approximately 15% of gross ecosystem carbon production in the conterminous U.S.
Assessment of rural ecosystem health and type classification in Jiangsu province, China.
Meng, Lingran; Huang, Jiu; Dong, Jihong
2018-02-15
Quantitative analysis of rural ecosystem health (REH) is required to comprehend the spatial differentiation of rural landscape and promote rural sustainable development under the pressure of urbanization and industrialization, especially those with dramatic changes in rural ecology of China and other developing countries. In this study, taking Jiangsu province as the case study, appropriate indicators were selected in the perspective of compound ecosystem and the rural ecosystem health index (REHI) was developed including four rural ecological subsystems of resource, environmental, social and economic. The comprehensive indicator assessment models and geographic information system (GIS) spatial methods were used to analyze the REH status and spatial differentiation of 57 counties in Jiangsu province. The REH scores of 57 rural counties were in a higher range of 0.686-0.882 and fluctuating increased from north to south, indicating that the rural ecosystem in Jiangsu province was at a relatively healthy level and counties in southern Jiangsu were healthier than those in central and northern regions. The spatial concentration of REH in Jiangsu was poor and the spatial distribution of four subsystems health levels were significantly different by spatial Gini coefficient analysis. The REH of 57 counties in Jiangsu province were classified into 13 types according to the identification of the health levels and quantity of four subsystems. Moreover, we analyzed the influencing factors of each type and proposed paths to promote the development and management of rural ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sukojo, B. M.; Hidayat, H.; Ratnasari, D.
2017-12-01
Indonesia is a vast maritime country; many mangrove conservations is found around coastal areas of Indonesia. Mangroves support the life of a large number of animal species by providing breeding, spawning and feeding. Mangrove forests as one of the unique ecosystems are potential natural resources, supporting the diversity of flora and fauna of terrestrial aquatic communities that directly or indirectly play an important role for human life in economic, social and environmental terms. East Coast Surabaya is an area with the most extensive and diverse mangrove ecosystems along the coast of Surabaya. Currently Pamurbaya used as a recreational object or nature tourism called eco tours. Utilization of mangrove ecosystem as a place of this eco tour bring positive impact on economic potency around pamurbaya area. So, to know the value of the economic potential of mangrove ecosystems for support of nature tourism Pamurbaya region needs to study mapping mangrove ecosystem conditions in the East Coast area of Surabaya. Mapping of mangrove conditions can use remote sensing technology by utilizing satellite image data with high resolution. Data used for mapping mangrove ecosystem conditions on the east coast of Surabaya are high resolution satellite image data of Pleiades 1A and field observation data such as Ground Control Point, soil spectral parameters and water quality. From satellite image data will be classification of mangrove vegetation canopy classification using NDVI vegetation index method using algorithm formula which then will be tested correlation with field observation data on reflectant value of field and water quality parameter. The purpose of this research is to know the condition of mangrove ecosystem to know the economic potential of mangrove ecosystem in supporting Pamurbaya nature tourism. The expected result of this research is the existence of basic geospatial information in the form of mangrove ecosystem condition map. So that can be used as decision makers to find out how big economic potential of mangrove ecosystem in supporting nature tourism Pamurbaya beside that can be used as reference research related mapping, conservation and development of mangrove ecosystem.
Supporting Risk Assessment: Accounting for Indirect Risk to Ecosystem Components
Mach, Megan E.; Martone, Rebecca G.; Singh, Gerald G.; O, Miriam; Chan, Kai M. A.
2016-01-01
The multi-scalar complexity of social-ecological systems makes it challenging to quantify impacts from human activities on ecosystems, inspiring risk-based approaches to assessments of potential effects of human activities on valued ecosystem components. Risk assessments do not commonly include the risk from indirect effects as mediated via habitat and prey. In this case study from British Columbia, Canada, we illustrate how such “indirect risks” can be incorporated into risk assessments for seventeen ecosystem components. We ask whether (i) the addition of indirect risk changes the at-risk ranking of the seventeen ecosystem components and if (ii) risk scores correlate with trophic prey and habitat linkages in the food web. Even with conservative assumptions about the transfer of impacts or risks from prey species and habitats, the addition of indirect risks in the cumulative risk score changes the ranking of priorities for management. In particular, resident orca, Steller sea lion, and Pacific herring all increase in relative risk, more closely aligning these species with their “at-risk status” designations. Risk assessments are not a replacement for impact assessments, but—by considering the potential for indirect risks as we demonstrate here—they offer a crucial complementary perspective for the management of ecosystems and the organisms within. PMID:27632287
Adaptive governance, ecosystem management, and natural capital.
Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per
2015-06-16
To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social-ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives.
A framework for predicting impacts on ecosystem services ...
Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxicological endpoints to chemical impacts on populations and communities and the ecosystem services that they provide. This framework builds on considerable advances in mechanistic effects models designed to span multiple levels of biological organization and account for various types of biological interactions and feedbacks. For illustration, the authors introduce 2 case studies that employ well-developed and validated mechanistic effects models: the inSTREAM individual-based model for fish populations and the AQUATOX ecosystem model. They also show how dynamic energy budget theory can provide a common currency for interpreting organism-level toxicity. They suggest that a framework based on mechanistic models that predict impacts on ecosystem services resulting from chemical exposure, combined with economic valuation, can provide a useful approach for informing environmental management. The authors highlight the potential benefits of using this framework as well as the challenges that will need to be addressed in future work. The framework introduced here represents an ongoing initiative supported by the National Institute of Mathematical and Biological Synthesis (NIMBioS; http://www.nimbi
Adaptive governance, ecosystem management, and natural capital
Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per
2015-01-01
To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social–ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives. PMID:26082542
NASA Astrophysics Data System (ADS)
Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng
2010-02-01
Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a basis for further design of environmental instrument such as payment for watershed ecosystem services.
NASA Astrophysics Data System (ADS)
Poser, Kathrin; Peters, Steef; Hommersom, Annelies; Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Heege, Thomas; Philipson, Petra; Ruescas, Ana; Bottcher, Martin; Stelzer, Kerstin
2015-12-01
The GLaSS project develops a prototype infrastructure to ingest and process large amounts of Sentinel-2 and Sentinel-3 data for lakes and reservoirs. To demonstrate the value of satellite observations for the management of aquatic ecosystems, global case studies are performed addressing different types of lakes with their respective problems and management questions. One of these case studies is concentrating on deep clear lakes worldwide. The aim of this case study is to evaluate trends of chlorophyll-a concentrations (Chl-a) as a proxy of the trophic status based on the MERIS full resolution data archive. Some preliminary results of this case study are presented here.
NORMATIVE SCIENCE: A CORRUPTING INFLUENCE IN ECOLOGICAL POLICY?
Is normative science corrupting the proper use of science in evaluating ecological policy options? Science is "normative" when it contains tacit policy values and thus, by extension, supports particular policy preferences. He will use the case study of "ecosystem health" as an ...
Soil ecosystem functioning under climate change: plant species and community effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Cregger, Melissa; Campany, Courtney E
2010-01-01
Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less
Are Seagrass effective Sentinels of Ecosystem Health in Port Phillip Bay, Australia?
NASA Astrophysics Data System (ADS)
Lee, R. S.; Cook, P. L. M.; Jenkins, G.; Nayar, S.; Hirst, A.; Keough, M. J.; Smith, T.; Ferguson, A.; Gay, J.; Longmore, A. R.; Macreadie, P.; Sherman, C.; Ross, J.; York, P.
2016-02-01
Seagrasses are an important part of many coastal systems, but are also under threat in many areas, as a result of a wide range of human activities, including habitat loss and changes to water quality. Due to these sensitivities seagrass are often selected as sentinels of change for coastal marine ecosystems, but could these sensitivities be too complex and varied to provide a clear or reliable measure of change? A recent three year study focused on the resilience of Zostera seagrasses in Port Phillip Bay, Southern Australia, where these ecosystem "engineers", have a dramatic influence on biodiversity and ecosystem function. This large temperate embayment experiences extreme climatic variability, significant loading from urbanized catchments and inflows from the largest sewage treatment facility in Australia, making it a challenging case study for assessing seagrass as a suitable ecosystem metric. Studies on the influence of nutrients, light and sediments using modelling, chemical analyses and field experiments assessed characteristics of Zostera habitat within the bay. Nutrients could be obtained directly in dissolved form from the water column, or sediment, or as atmospheric nitrogen fixed by bacteria associated with the root/rhizome system. Isotopic nutrients were traced to a variety of sources including river inflows, sewage discharges, groundwater, the open ocean, the atmosphere and indirectly via phytoplankton and detritus. Broad-scale seagrass coverage is often depth limited by light, however for regions of significant wave exposure deeper beds existed adjacent to less favorable shallows. Ephemeral beds in more exposed regions showed the greatest potential for responding to change. For these beds, resilience was dependent on bed architecture, connectivity to indirect nutrient sources, and genetic interactions with seagrass communities around the bay. While observed changes in seagrass cover may be a symptomatic trigger of ecosystem health, much as high blood pressure is to the human body, this study has shown that an understanding of the relative threats, system connectivity and co-dependencies of the more vulnerable communities can provide the most accurate account of ecosystem health.
Invasive species: Ocean ecosystem case studies for earth systems and environmental sciences
Schofield, Pam; Brown, Mary E.
2016-01-01
Marine species are increasingly transferred from areas where they are native to areas where they are not. Some nonnative species become invasive, causing undesirable impacts to environment, economy and/or human health. Nonnative marine species can be introduced through a variety of vectors, including shipping, trade, inland corridors (such as canals), and others. Effects of invasive marine species can be dramatic and irreversible. Case studies of four nonnative marine species are given (green crab, comb jelly, lionfish and Caulerpa algae).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, C.
1995-12-01
Objective resolution of environmental issues involves questions of facts and values, and, for environmental issues to be resolved ethically, a proper synthesis of environmental facts with questions of ethics must occur. In this case study, the proposal by the U.S. Department of Energy (DOE) to use the Yucca Mountain site in southwest Nevada as a deep geologic repository for the permanent disposal of the nation`s high-level nuclear waste is examined in part in the context of the {open_quotes}Code of Ethics and Standards of Practice for Environmental Professionals{close_quotes} adopted by the National Association of Environmental Professionals (NAEP). Current plans are thatmore » a repository at the Yucca Mountain site would begin functioning in 2010 and would be sealed after about 150 years. The requirement that a geologic repository must isolate nuclear waste from the environment for at least 10,000 years poses unique challenges to environmental professionals. This case study also analyzes the challenges in terms of the implications of a new federal Executive Order on Ecosystem Management and corresponding internal orders within all federal agencies to conform to the Executive Order. The imposition of the principles and practices of ecosystem-based resource management on federal agencies provides an opportunity to also address, in the context of the DOE Yucca Mountain Project, (1) the ecosystem approach to environmental management, (2) concepts of holistic resource management planning, and (3) the concepts of sustainability and biodiversity. Within this framework there are important implications for environmental ethics and professional practice that must remain at the forefront of concerns of the NAEP over the next two decades.« less
ERIC Educational Resources Information Center
Dove, Jane
2012-01-01
Tropical rainforests are biologically rich ecosystems, which are threatened by a variety of different human activities. This study focuses on students' knowledge and understanding of rainforest locations, their reasons for protecting these environments and their familiarity with selected concepts about rainforest vegetation and soil. These…
NASA Astrophysics Data System (ADS)
Colléter, Mathieu; Gascuel, Didier; Albouy, Camille; Francour, Patrice; Tito de Morais, Luis; Valls, Audrey; Le Loc'h, François
2014-11-01
Marine protected areas (MPAs) are implemented worldwide as an efficient tool to preserve biodiversity and protect ecosystems. We used food web models (Ecopath and EcoTroph) to assess the ability of MPAs to reduce fishing impacts on targeted resources and to provide biomass exports for adjacent fisheries. Three coastal MPAs: Bonifacio and Port-Cros (Mediterranean Sea), and Bamboung (Senegalese coast), were used as case studies. Pre-existing related Ecopath models were homogenized and ecosystem characteristics were compared based on network indices and trophic spectra analyses. Using the EcoTroph model, we simulated different fishing mortality scenarios and assessed fishing impacts on the three ecosystems. Lastly, the potential biomass that could be exported from each MPA was estimated. Despite structural and functional trophic differences, the three MPAs showed similar patterns of resistance to simulated fishing mortalities, with the Bonifacio case study exhibiting the highest potential catches and a slightly inferior resistance to fishing. We also show that the potential exports from our small size MPAs are limited and thus may only benefit local fishing activities. Based on simulations, their potential exports were estimated to be at the same order of magnitude as the amount of catch that could have been obtained inside the reserve. In Port Cros, the ban of fishing inside MPA could actually allow for improved catch yields outside the MPA due to biomass exports. This was not the case for the Bonifacio site, as its potential exports were too low to offset catch losses. This insight suggests the need for MPA networks and/or sufficiently large MPAs to effectively protect juveniles and adults and provide important exports. Finally, we discuss the effects of MPAs on fisheries that were not considered in food web models, and conclude by suggesting possible improvements in the analysis of MPA efficiency.
Global Analysis, Interpretation, and Modelling: First Science Conference
NASA Technical Reports Server (NTRS)
Sahagian, Dork
1995-01-01
Topics considered include: Biomass of termites and their emissions of methane and carbon dioxide - A global database; Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems; Estimation of methane emission from rice paddies in mainland China; Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling; Potential role of vegetation feedback in the climate sensitivity of high-latitude regions - A case study at 6000 years B.P.; Interannual variation of carbon exchange fluxes in terrestrial ecosystems; and Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions.
A case study on effects of oil spills and tar-ball pollution on beaches of Goa (India).
Rekadwad, Bhagwan N; Khobragade, Chandrahasya N
2015-11-15
This paper reports the impact of oil spills and tar-ball pollution on the coastal ecosystem of Goa. The factors responsible for degrading the marine ecosystem of the Goan coastline are analyzed. Uncontrolled activities were found to degrade the marine and coastal biodiversity, in turn polluting all beaches. This had a direct impact on the Goan economy through a decline in tourism. The government must adopt the necessary control measures to restore Goan beaches and the surrounding coastal areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tidal extension and sea-level rise: recommendations for a research agenda
Ensign, Scott H.; Noe, Gregory
2018-01-01
Sea-level rise is pushing freshwater tides upstream into formerly non-tidal rivers. This tidal extension may increase the area of tidal freshwater ecosystems and offset loss of ecosystem functions due to salinization downstream. Without considering how gains in ecosystem functions could offset losses, landscape-scale assessments of ecosystem functions may be biased toward worst-case scenarios of loss. To stimulate research on this concept, we address three fundamental questions about tidal extension: Where will tidal extension be most evident, and can we measure it? What ecosystem functions are influenced by tidal extension, and how can we measure them? How do watershed processes, climate change, and tidal extension interact to affect ecosystem functions? Our preliminary answers lead to recommendations that will advance tidal extension research, enable better predictions of the impacts of sea-level rise, and help balance the landscape-scale benefits of ecosystem function with costs of response.
Upgrading Marine Ecosystem Restoration Using Ecological-Social Concepts.
Abelson, Avigdor; Halpern, Benjamin S; Reed, Daniel C; Orth, Robert J; Kendrick, Gary A; Beck, Michael W; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A
2016-02-01
Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology , the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social-ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success.
Upgrading Marine Ecosystem Restoration Using Ecological‐Social Concepts
Abelson, Avigdor; Halpern, Benjamin S.; Reed, Daniel C.; Orth, Robert J.; Kendrick, Gary A.; Beck, Michael W.; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J.; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A.
2015-01-01
Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social–ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success. PMID:26977115
Trees as methane sources: A case study of West Siberian South taiga
NASA Astrophysics Data System (ADS)
Churkina, A. I.; Mochenov, S. Yu; Sabrekov, S. F.; Glagolev, M. V.; Il’yasov, D. V.; Terentieva, I. E.; Maksyutov, S. S.
2018-03-01
Within this study, we were measuring methane emission from the tree trunks, leaves and branches in the seasonally flooded forest and in the forested bogs (pine-shrub-sphagnum ecosystems or “ryams”) in south taiga zone of Western Siberia. Our results suggest that the tree trunks may act as a methane conductor from the soil to the atmosphere bypassing the methanotrophically active zones of soil. The tree methane flux depends on a trunk diameter and an ecosystem type. The average methane emission from tree trunks was 0.0061±0.0003 mg CH4·m-2·h-1 per unit of ground area. The methane emission from branches and leaves was zero.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coty, J; Stevenson, M; Vogt, K A
The Detention Pond is a constructed and lined storm water treatment basin at Lawrence Livermore National Laboratory that serves multiple stakeholder objectives and programmatic goals. This paper examines the process and outcome involved in the development of a new management plan for the Detention Pond. The plan was created using a new ecosystem management tool, the Legacy Framework. This stakeholder-driven conceptual framework provides an interdisciplinary methodology for determining ecosystem health, appropriate management strategies, and sensitive indicators. The conceptual framework, the Detention Ponds project, and the use of the framework in the context of the project, are described and evaluated, andmore » evaluative criteria for this and other ecosystem management frameworks are offered. The project benefited in several ways from use of the Legacy Framework, although refinements to the framework are suggested. The stakeholder process created a context and environment in which team members became receptive to using an ecosystem management approach to evaluate and support management alternatives previously not considered. This allowed for the unanimous agreement to pursue support from upper management and organizational funding to implement a progressive management strategy. The greatly improved stakeholder relations resulted in upper management support for the project.« less
Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N
2015-03-15
This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Regime shifts and panarchies in regional scale social-ecological water systems
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive gove...
Hyporheic flow patterns in relation to large river floodplain attributes
Field-calibrated models of hyporheic flow have emphasized low-order headwater systems. In many cases, however, hyporheic flow in large lowland river floodplains may be an important contributor to ecosystem services such as maintenance of water quality and habitat. In this study, ...
Early Detection Monitoring for Vulnerable Great Lakes Coastal Ecosystems
Great Lakes harbors/embayments are vulnerable to introduction of aquatic invasive species. Monitoring is needed to inform on new introductions, as well as to track success of prevention programs intended to limit spread. We have completed a pilot field case study in the Duluth-...
Hyporheic flow patterns in relation to large river floodplain attributes Journal
Field-calibrated models of hyporheic flow have emphasized low-order headwater systems. In many cases, however, hyporheic flow in large lowland river floodplains may be an important contributor to ecosystem services such as maintenance of water quality and habitat. In this study, ...
Recovery time and state change of terrestrial carbon cycle after disturbance
NASA Astrophysics Data System (ADS)
Fu, Zheng; Li, Dejun; Hararuk, Oleksandra; Schwalm, Christopher; Luo, Yiqi; Yan, Liming; Niu, Shuli
2017-10-01
Ecosystems usually recover from disturbance until a stable state, during which carbon (C) is accumulated to compensate for the C loss associated with disturbance events. However, it is not well understood how likely it is for an ecosystem to recover to an alternative state and how long it takes to recover toward a stable state. Here, we synthesized the results from 77 peer-reviewed case studies that examined ecosystem recovery following disturbances to quantify state change (relative changes between pre-disturbance and fully recovered states) and recovery times for various C cycle variables and disturbance types. We found that most ecosystem C pools and fluxes fully recovered to a stable state that was not significantly different from the pre-disturbance state, except for leaf area index and net primary productivity, which were 10% and 35% higher than the pre-disturbance value, respectively, in forest ecosystem. Recovery times varied largely among variables and disturbance types in the forest, with the longest recovery time required for total biomass (104 ± 33 years) and the shortest time required for C fluxes (23 ± 5 years). The longest and shortest recovery times for different disturbance types are deforestation (101 ± 28 years) and drought (10 ± 1 years), respectively. The recovery time was related to disturbance severity with severer disturbances requiring longer recovery times. However, in the long term, recovery had a strong tendency to drive ecosystem C accumulation towards an equilibrium state. Although we assumed disturbances are static, the recovery-related estimates and relationships revealed in this study are crucial for improving the estimates of disturbance impacts and long-term C balance in terrestrial ecosystems within a disturbance-recovery cycle.
Trophic amplification of climate warming
Kirby, Richard R.; Beaugrand, Gregory
2009-01-01
Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882
Caveats to quantifying ecosystem services: fruit abortion blurs benefits from crop pollination.
Bos, Merijn M; Veddeler, Dorthe; Bogdanski, Anne K; Klein, Alexandra-Maria; Tscharntke, Teja; Steffan-Dewenter, Ingolf; Tylianakis, Jason M
2007-09-01
The recent trend to place monetary values on ecosystem services has led to studies on the economic importance of pollinators for agricultural crops. Several recent studies indicate regional, long-term pollinator declines, and economic consequences have been derived from declining pollination efficiencies. However, use of pollinator services as economic incentives for conservation must consider environmental factors such as drought, pests, and diseases, which can also limit yields. Moreover, "flower excess" is a well-known reproductive strategy of plants as insurance against unpredictable, external factors that limit reproduction. With three case studies on the importance of pollination levels for amounts of harvested fruits of three tropical crops (passion fruit in Brazil, coffee in Ecuador, and cacao in Indonesia) we illustrate how reproductive strategies and environmental stress can obscure initial benefits from improved pollination. By interpreting these results with findings from evolutionary sciences, agronomy, and studies on wild-plant populations, we argue that studies on economic benefits from pollinators should include the total of ecosystem processes that (1) lead to successful pollination and (2) mobilize nutrients and improve plant quality to the extent that crop yields indeed benefit from enhanced pollinator services. Conservation incentives that use quantifications of nature's services to human welfare will benefit from approaches at the ecosystem level that take into account the broad spectrum of biological processes that limit or deliver the service.
Trade-offs across space, time, and ecosystem services
Rodriguez, J.P.; Beard, T.D.; Bennett, E.M.; Cumming, Graeme S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D.
2006-01-01
Ecosystem service (ES) trade-offs arise from management choices made by humans, which can change the type, magnitude, and relative mix of services provided by ecosystems. Trade-offs occur when the provision of one ES is reduced as a consequence of increased use of another ES. In some cases, a trade-off may be an explicit choice; but in others, trade-offs arise without premeditation or even awareness that they are taking place. Trade-offs in ES can be classified along three axes: spatial scale, temporal scale, and reversibility. Spatial scale refers to whether the effects of the trade-off are felt locally or at a distant location. Temporal scale refers to whether the effects take place relatively rapidly or slowly. Reversibility expresses the likelihood that the perturbed ES may return to its original state if the perturbation ceases. Across all four Millennium Ecosystem Assessment scenarios and selected case study examples, trade-off decisions show a preference for provisioning, regulating, or cultural services (in that order). Supporting services are more likely to be "taken for granted." Cultural ES are almost entirely unquantified in scenario modeling; therefore, the calculated model results do not fully capture losses of these services that occur in the scenarios. The quantitative scenario models primarily capture the services that are perceived by society as more important - provisioning and regulating ecosystem services - and thus do not fully capture trade-offs of cultural and supporting services. Successful management policies will be those that incorporate lessons learned from prior decisions into future management actions. Managers should complement their actions with monitoring programs that, in addition to monitoring the short-term provisions of services, also monitor the long-term evolution of slowly changing variables. Policies can then be developed to take into account ES trade-offs at multiple spatial and temporal scales. Successful strategies will recognize the inherent complexities of ecosystem management and will work to develop policies that minimize the effects of ES trade-offs. Copyright ?? 2006 by the author(s).
Reality check of socio-hydrological interactions in water quality and ecosystem management
NASA Astrophysics Data System (ADS)
Destouni, Georgia; Fischer, Ida; Prieto, Carmen
2017-04-01
Socio-hydrological interactions in water management for improving water quality and ecosystem status include as key components both (i) the societal measures taken for mitigation and control, and (ii) the societal characterization and monitoring efforts made for choosing management targets and checking the effects of measures taken to reach the targets. This study investigates such monitoring, characterization and management efforts and effects over the first six-year management cycle of the EU Water Framework Directive (WFD). The investigation uses Sweden and the WFD-regulated management of its stream and lake waters as a concrete quantification example, with focus on the nutrient and eutrophication conditions that determine the most prominent water quality and ecosystem problems in need of mitigation in the Swedish waters. The case results show a relatively small available monitoring base for determination of these nutrient and eutrophication conditions, even though they constitute key parts in the overall WFD-based approach to classification and management of ecosystem status. Specifically, actual nutrient monitoring exists in only around 1% (down to 0.2% for nutrient loads) of the Swedish stream and lake water bodies; modeling is used to fill the gaps for the remaining unmonitored fraction of classified and managed waters. The available data show that the hydro-climatically driven stream water discharge is a primary explanatory variable for the resulting societal classification of ecosystem status in Swedish waters; this may be due to the discharge magnitude being dominant in determining nutrient loading to these waters. At any rate, with such a hydro-climatically related, rather than human-pressure related, determinant of the societal ecosystem-status classification, the main human-driven causes and effects of eutrophication may not be appropriately identified, and the measures taken for mitigating these may not be well chosen. The available monitoring data from Swedish waters support this hypothesis, by showing that the first WFD management cycle 2009-2015 has led to only slight changes in measured nutrient concentrations, with moderate-to-bad status waters mostly undergoing concentration increases. These management results are in direct contrast to the WFD management goals that ecosystem status in all member-state waters must be improved to at least good level, and in any case not be allowed to further deteriorate. In general, the present results show that societal approaches to ecosystem status classification, monitoring and improvement may need a focus shift for improved identification and quantification of the human-driven components of nutrient inputs, concentrations and loads in water environments. Dominant hydro-climatic change drivers and effects must of course also be understood and accounted for. However, adaptation to hydro-climatic changes should be additional to and aligned with, rather than instead of, necessary mitigation of human-driven eutrophication. The present case results call for further science-based testing and evidence of societal water quality and ecosystem management actually targeting and following up the potential achievement of such mitigation.
Kang, Haijun; Seely, Brad; Wang, Guangyu; Innes, John; Zheng, Dexiang; Chen, Pingliu; Wang, Tongli; Li, Qinglin
2016-07-01
Chinese fir (Cunninghamia lanceolata) is not only a valuable timber species, but also plays an important role in the provision of ecosystem services. Forest management decisions to increase the production of fiber for economic gain may have negative impacts on the long-term flow of ecosystem services from forest resources. Such tradeoffs should be taken into account to fulfill the requirements of sustainable forest management. Here we employed an established, ecosystem-based, stand-level model (FORECAST) in combination with a simplified harvest-scheduling model to evaluate the potential tradeoffs among indicators of provisional, regulating and supporting ecosystem services in a Chinese-fir-dominated landscape located in Fujian Province as a case study. Indicators included: merchantable volume harvested, biomass harvested, ecosystem carbon storage, CO2 fixation, O2 released, biomass nitrogen content, pollutant absorption, and soil fertility. A series of alternative management scenarios, representing different combinations of rotation length and harvest intensity, were simulated to facilitate the analysis. Results from the analysis were summarized in the form of a decision matrix designed to provide a method for forest managers to evaluate management alternatives and tradeoffs in the context of key indicators of ecosystem services. The scenario analysis suggests that there are considerable tradeoffs in terms of ecosystem services associated with stand and landscape-level management decisions. Longer rotations and increased retention tended to favor regulating and supporting services while the opposite was true for provisional services. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.
Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo
2012-01-01
Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.
Xue, Xian; Peng, Fei; You, Quangang; Xu, Manhou; Dong, Siyang
2015-09-01
Recent studies found that the largest uncertainties in the response of the terrestrial carbon cycle to climate change might come from changes in soil moisture under the elevation of temperature. Warming-induced change in soil moisture and its level of influence on terrestrial ecosystems are mostly determined by climate, soil, and vegetation type and their sensitivity to temperature and moisture. Here, we present the results from a warming experiment of an alpine ecosystem conducted in the permafrost region of the Qinghai-Tibet Plateau using infrared heaters. Our results show that 3 years of warming treatments significantly elevated soil temperature at 0-100 cm depth, decreased soil moisture at 10 cm depth, and increased soil moisture at 40-100 cm depth. In contrast to the findings of previous research, experimental warming did not significantly affect NH 4 (+)-N, NO 3 (-)-N, and heterotrophic respiration, but stimulated the growth of plants and significantly increased root biomass at 30-50 cm depth. This led to increased soil organic carbon, total nitrogen, and liable carbon at 30-50 cm depth, and increased autotrophic respiration of plants. Analysis shows that experimental warming influenced deeper root production via redistributed soil moisture, which favors the accumulation of belowground carbon, but did not significantly affected the decomposition of soil organic carbon. Our findings suggest that future climate change studies need to take greater consideration of changes in the hydrological cycle and the local ecosystem characteristics. The results of our study will aid in understanding the response of terrestrial ecosystems to climate change and provide the regional case for global ecosystem models.
Vogelmann, James E.; Xian, George; Homer, Collin G.; Tolk, Brian
2012-01-01
The focus of the study was to assess gradual changes occurring throughout a range of natural ecosystems using decadal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM +) time series data. Time series data stacks were generated for four study areas: (1) a four scene area dominated by forest and rangeland ecosystems in the southwestern United States, (2) a sagebrush-dominated rangeland in Wyoming, (3) woodland adjacent to prairie in northwestern Nebraska, and (4) a forested area in the White Mountains of New Hampshire. Through analyses of time series data, we found evidence of gradual systematic change in many of the natural vegetation communities in all four areas. Many of the conifer forests in the southwestern US are showing declines related to insects and drought, but very few are showing evidence of improving conditions or increased greenness. Sagebrush communities are showing decreases in greenness related to fire, mining, and probably drought, but very few of these communities are showing evidence of increased greenness or improving conditions. In Nebraska, forest communities are showing local expansion and increased canopy densification in the prairie–woodland interface, and in the White Mountains high elevation understory conifers are showing range increases towards lower elevations. The trends detected are not obvious through casual inspection of the Landsat images. Analyses of time series data using many scenes and covering multiple years are required in order to develop better impressions and representations of the changing ecosystem patterns and trends that are occurring. The approach described in this paper demonstrates that Landsat time series data can be used operationally for assessing gradual ecosystem change across large areas. Local knowledge and available ancillary data are required in order to fully understand the nature of these trends.
Romeis, Jörg; Meissle, Michael; Alvarez-Alfageme, Fernando; Bigler, Franz; Bohan, David A; Devos, Yann; Malone, Louise A; Pons, Xavier; Rauschen, Stefan
2014-12-01
Worldwide, plants obtained through genetic modification are subject to a risk analysis and regulatory approval before they can enter the market. An area of concern addressed in environmental risk assessments is the potential of genetically modified (GM) plants to adversely affect non-target arthropods and the valued ecosystem services they provide. Environmental risk assessments are conducted case-by-case for each GM plant taking into account the plant species, its trait(s), the receiving environments into which the GM plant is to be released and its intended uses, and the combination of these characteristics. To facilitate the non-target risk assessment of GM plants, information on arthropods found in relevant agro-ecosystems in Europe has been compiled in a publicly available database of bio-ecological information during a project commissioned by the European Food Safety Authority (EFSA). Using different hypothetical GM maize case studies, we demonstrate how the information contained in the database can assist in identifying valued species that may be at risk and in selecting suitable species for laboratory testing, higher-tier studies, as well as post-market environmental monitoring.
NASA Astrophysics Data System (ADS)
Wawo, Mintje
2017-10-01
The concept of the Social-Ecological System (SES) of the coastal region, can be found in the seagrass ecosystem in the Kotania Bay Waters. Seagrass ecosystem as one of the productive ecosystem is part of an ecological system that can influence and influenced social system, in this case by people living around the seagrass ecosystem. This aim to estimating the socio-ecological vulnerability system of the seagrass ecosystem in the Kotania Bay Waters, the Linkage Matrix is used (de Chazal et al., 2008). This linkage matrix was created to determine the perception and understanding of the community on the ecosystem services provided by the seagrass ecosystem through the appraisal of various stakeholders. The results show that social values are rooted in the public perception of ecosystem goods and services, which are rarely considered. The ecological and economic value of natural resources is increasingly being used to determine the priority areas in the planning and management of coastal areas. The social value that exists in natural resources is highly recognized in conservation.
NASA Astrophysics Data System (ADS)
Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.
2017-12-01
Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and measurable objectives that can help avoid undesirable results to GDEs.
Colored-noise-induced discontinuous transitions in symbiotic ecosystems
NASA Astrophysics Data System (ADS)
Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina
2004-06-01
A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [
A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil).
Brito, Elcia M S; Duran, Robert; Guyoneaud, Rémy; Goñi-Urriza, Marisol; García de Oteyza, T; Crapez, Miriam A C; Aleluia, Irene; Wasserman, Julio C A
2009-08-01
Mangroves are sensitive ecosystems of prominent ecological value that lamentably have lost much of their areas across the world. The vulnerability of mangroves grown in proximity to cities requires the development of new technologies for the remediation of acute oil spills and chronic contaminations. Studies on oil remediation are usually performed with in vitro microcosms whereas in situ experiments are rare. The aim of this work was to evaluate oil degradation on mangrove ecosystems using in situ microcosms seeded with an indigenous hydrocarbonoclastic bacterial consortium (HBC). Although the potential degradation of oil through HBC has been reported, their seeding directly on the sediment did not stimulate oil degradation during the experimental period. This is probably due to the availability of carbon sources that are easier to degrade than petroleum hydrocarbons. Our results emphasize the fragility of mangrove ecosystems during accidental oil spills and also the need for more efficient technologies for their remediation.
NASA Astrophysics Data System (ADS)
Buzin, Igor; Makarov, Mikhail; Maslov, Mikhail; Tiunov, Alexei
2017-04-01
We studied nitrogen concentration and nitrogen isotope composition in plants from four mountain tundra ecosystems in the Khibiny Mountains. The ecosystems consisted of a toposequence beginning with the shrub-lichen heath (SLH) on the ridge and upper slope, followed by the Betula nana dominated shrub heath (SH) on the middle slope, the cereal meadow (CM) on the lower slope and the sedge meadow (SM) at the bottom of the slope. The inorganic nitrogen concentration of the soils from the studied ecosystems were significantly different; the SLH soil was found to contain the minimum concentration of N-NH4+ and N-NO3- , while in the soils of the meadow ecosystems these concentrations were much higher. The concentration of nitrogen in leaves of the dominant plant species in all of the ecosystems is directly connected with the concentration of inorganic nitrogen in the soils, regardless of the plant's mycorrhizal symbiosis type. However, such a correlation is not apparent in the case of plant roots, especially for plant roots with ectomycorrhiza and ericoid mycorrhiza. The majority of plant species with these types of mycorrhiza in the SH and particularly in the CM were enriched in 15N in comparison with the SLH (such plants were not found within the SM). This could be due to several reasons: 1) the decreasing role of mycorrhiza in nitrogen consumption and therefore in the fractionation of isotopes in the relatively-N-enriched ecosystems; 2) the use of relatively-15N-enriched forms of nitrogen for plant nutrition in meadow ecosystems. This heavier nitrogen isotope composition in plant roots with ectomycorrhiza and ericoid mycorrhiza in ecosystems with available nitrogen enriched soils doesn't correspond to the classical idea of mycorrhiza decreasing participation in nitrogen plant nutrition. The analysis of the isotope composition of separate labile forms of nitrogen makes it possible to explain the phenomenon. Not all arbuscular mycorrhizal species within the sedge meadow were 15N-enriched in comparison with other ecosystems. This could either be explained by the different role of mycorrhiza in nitrogen plant nutrition of different arbuscular mycorrhizal plant species or by the primary usage of various nitrogen compounds with different levels of 15N concentration in individual plant species. Acknowledgement: This study was supported by the Russian Foundation for Basic Research (16-04-00544).
Integrated ocean management as a strategy to meet rapid climate change: the Norwegian case.
Hoel, Alf Håkon; Olsen, Erik
2012-02-01
The prospects of rapid climate change and the potential existence of tipping points in marine ecosystems where nonlinear change may result from them being overstepped, raises the question of strategies for coping with ecosystem change. There is broad agreement that the combined forces of climate change, pollution and increasing economic activities necessitates more comprehensive approaches to oceans management, centering on the concept of ecosystem-based oceans management. This article addresses the Norwegian experience in introducing integrated, ecosystem-based oceans management, emphasizing how climate change, seen as a major long-term driver of change in ecosystems, is addressed in management plans. Understanding the direct effects of climate variability and change on ecosystems and indirect effects on human activities is essential for adaptive planning to be useful in the long-term management of the marine environment.
Devendra Amatya; Timothy Callahan; William Hansen; Carl Trettin; Artur Radecki-Pawlik; Patrick Meire
2015-01-01
Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was...
Using Omics to Study Microbial Water Quality
Water is one of the most important resources of all natural ecosystems. Not only is water important to life, but it is also a habitat for a large diversity of microbial forms, in many cases carrying critical geochemical functions. In other instances, water is implicated in outbre...
Networks Analysis of a Regional Ecosystem of Afterschool Programs
ERIC Educational Resources Information Center
Russell, Martha G.; Smith, Marc A.
2011-01-01
Case studies have documented the impact of family-school-community collaboration in afterschool programs on increasing awareness about the problems of at-risk youth, initiating dialogue among leaders and community representatives, developing rich school-based information systems, and demonstrating how to build strong relationships between public…
Assessing Multi-scale Reptile and Amphibian Biodiversity: Mojave Ecoregion Case Study
The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions to maintain the sustainable nature of our environment now and into the future. Because of the variability among living orga...
Using Omics to Study Microbial Water Quality - abstract
Water is one of the most important resources of all natural ecosystems. Not only is water important to life, but it is also a habitat for a large diversity of microbial forms, in many cases carrying critical geochemical functions. In other instances, water is implicated in outbre...
Assessing Social – Ecological Trade-Offs to Advance Ecosystem-Based Fisheries Management
Voss, Rudi; Quaas, Martin F.; Schmidt, Jörn O.; Tahvonen, Olli; Lindegren, Martin; Möllmann, Christian
2014-01-01
Modern resource management faces trade-offs in the provision of various ecosystem goods and services to humanity. For fisheries management to develop into an ecosystem-based approach, the goal is not only to maximize economic profits, but to consider equally important conservation and social equity goals. We introduce such a triple-bottom line approach to the management of multi-species fisheries using the Baltic Sea as a case study. We apply a coupled ecological-economic optimization model to address the actual fisheries management challenge of trading-off the recovery of collapsed cod stocks versus the health of ecologically important forage fish populations. Management strategies based on profit maximization would rebuild the cod stock to high levels but may cause the risk of stock collapse for forage species with low market value, such as Baltic sprat (Fig. 1A). Economically efficient conservation efforts to protect sprat would be borne almost exclusively by the forage fishery as sprat fishing effort and profits would strongly be reduced. Unless compensation is paid, this would challenge equity between fishing sectors (Fig. 1B). Optimizing equity while respecting sprat biomass precautionary levels would reduce potential profits of the overall Baltic fishery, but may offer an acceptable balance between overall profits, species conservation and social equity (Fig. 1C). Our case study shows a practical example of how an ecosystem-based fisheries management will be able to offer society options to solve common conflicts between different resource uses. Adding equity considerations to the traditional trade-off between economy and ecology will greatly enhance credibility and hence compliance to management decisions, a further footstep towards healthy fish stocks and sustainable fisheries in the world ocean. PMID:25268117
Walker-Springett, Kate; Jefferson, Rebecca; Böck, Kerstin; Breckwoldt, Annette; Comby, Emeline; Cottet, Marylise; Hübner, Gundula; Le Lay, Yves-François; Shaw, Sylvie; Wyles, Kayleigh
2016-01-15
The success or failure of environmental management goals can be partially attributed to the support for such goals from the public. Despite this, environmental management is still dominated by a natural science approach with little input from disciplines that are concerned with the relationship between humans and the natural environment such as environmental psychology. Within the marine and freshwater environments, this is particularly concerning given the cultural and aesthetic significance of these environments to the public, coupled with the services delivered by freshwater and marine ecosystems, and the vulnerability of aquatic ecosystems to human-driven environmental perturbations. This paper documents nine case studies which use environmental psychology methods to support a range of aquatic management goals. Examples include understanding the drivers of public attitudes towards ecologically important but uncharismatic river species, impacts of marine litter on human well-being, efficacy of small-scale governance of tropical marine fisheries and the role of media in shaping attitudes towards. These case studies illustrate how environmental psychology and natural sciences can be used together to apply an interdisciplinary approach to the management of aquatic environments. Such an approach that actively takes into account the range of issues surrounding aquatic environment management is more likely to result in successful outcomes, from both human and environmental perspectives. Furthermore, the results illustrate that better understanding the societal importance of aquatic ecosystems can reduce conflict between social needs and ecological objectives, and help improve the governance of aquatic ecosystems. Thus, this paper concludes that an effective relationship between academics and practitioners requires fully utilising the skills, knowledge and experience from both sectors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rideout, Douglas B; Ziesler, Pamela S; Kernohan, Nicole J
2014-08-01
Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Resuscitation of the rare biosphere contributes to pulses of ecosystem activity
Aanderud, Zachary T.; Jones, Stuart E.; Fierer, Noah; Lennon, Jay T.
2015-01-01
Dormancy is a life history trait that may have important implications for linking microbial communities to the functioning of natural and managed ecosystems. Rapid changes in environmental cues may resuscitate dormant bacteria and create pulses of ecosystem activity. In this study, we used heavy-water (H182O) stable isotope probing (SIP) to identify fast-growing bacteria that were associated with pulses of trace gasses (CO2, CH4, and N2O) from different ecosystems [agricultural site, grassland, deciduous forest, and coniferous forest (CF)] following a soil-rewetting event. Irrespective of ecosystem type, a large fraction (69–74%) of the bacteria that responded to rewetting were below detection limits in the dry soils. Based on the recovery of sequences, in just a few days, hundreds of rare taxa increased in abundance and in some cases became dominant members of the rewetted communities, especially bacteria belonging to the Sphingomonadaceae, Comamonadaceae, and Oxalobacteraceae. Resuscitation led to dynamic shifts in the rank abundance of taxa that caused previously rare bacteria to comprise nearly 60% of the sequences that were recovered in rewetted communities. This rapid turnover of the bacterial community corresponded with a 5–20-fold increase in the net production of CO2 and up to a 150% reduction in the net production of CH4 from rewetted soils. Results from our study demonstrate that the rare biosphere may account for a large and dynamic fraction of a community that is important for the maintenance of bacterial biodiversity. Moreover, our findings suggest that the resuscitation of rare taxa from seed banks contribute to ecosystem functioning. PMID:25688238
Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier
2017-04-01
Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.
Jennings, Viniece; Larson, Lincoln; Yun, Jessica
2016-01-01
Urban green spaces provide an array of benefits, or ecosystem services, that support our physical, psychological, and social health. In many cases, however, these benefits are not equitably distributed across diverse urban populations. In this paper, we explore relationships between cultural ecosystem services provided by urban green space and the social determinants of health outlined in the United States Healthy People 2020 initiative. Specifically, we: (1) explore connections between cultural ecosystem services and social determinants of health; (2) examine cultural ecosystem services as nature-based health amenities to promote social equity; and (3) recommend areas for future research examining links between urban green space and public health within the context of environmental justice. PMID:26861365
Jennings, Viniece; Larson, Lincoln; Yun, Jessica
2016-02-05
Urban green spaces provide an array of benefits, or ecosystem services, that support our physical, psychological, and social health. In many cases, however, these benefits are not equitably distributed across diverse urban populations. In this paper, we explore relationships between cultural ecosystem services provided by urban green space and the social determinants of health outlined in the United States Healthy People 2020 initiative. Specifically, we: (1) explore connections between cultural ecosystem services and social determinants of health; (2) examine cultural ecosystem services as nature-based health amenities to promote social equity; and (3) recommend areas for future research examining links between urban green space and public health within the context of environmental justice.
AN OVERVIEW OF COASTAL ENVIRONMENTAL HEALTH INDICATORS
Discussions of the coastal environment and its health can be improved by more precise use of terms and clarification of the relationship, if any, between the health of ecosystems and the risks to human health. Ecosystem health is seldom defined and, in any case, has to be regarde...
Sandra Rideout; Brian P. Oswald; Michael H. Legg
2003-01-01
The effectiveness of prescribed fire restoration of forested sites in three state parks in east Texas, USA was studied. Two sites consisted of mixed shortleaf (Pinus echinata Mill.) or loblolly pine (Pinus taeda L.) and broadleaf overstoreys. The third site was a longleaf pine (Pinus palustris Mill.)/little...
Science and society: the role of long-term studies in environmental stewardship
Charles T. Driscoll; Kathleen F. Lambert; F. Stuart Chapin; David J. Nowak; Thomas A. Spies; Frederick J. Swanson; David B. Kittredge; Clarisse M. Hart
2012-01-01
Long-term research should play a crucial role in addressing grand challenges in environmental stewardship. We examine the efforts of five Long Term Ecological Research Network sites to enhance policy, management, and conservation decisions for forest ecosystems. In these case studies, we explore the approaches used to inform policy on atmospheric deposition, public...
Serologic Surveillance of Anthrax in the Serengeti Ecosystem, Tanzania, 1996–2009
Lembo, Tiziana; Auty, Harriet; Beesley, Cari A.; Bessell, Paul; Packer, Craig; Halliday, Jo; Fyumagwa, Robert; Hoare, Richard; Ernest, Eblate; Mentzel, Christine; Mlengeya, Titus; Stamey, Karen; Wilkins, Patricia P.; Cleaveland, Sarah
2011-01-01
Bacillus anthracis, the bacterium that causes anthrax, is responsible for varying death rates among animal species. Difficulties in case detection, hazardous or inaccessible carcasses, and misdiagnosis hinder surveillance. Using case reports and a new serologic assay that enables multispecies comparisons, we examined exposure to and illness caused by B. anthracis in different species in the Serengeti ecosystem in Tanzania during 1996–2009 and the utility of serosurveillance. High seroprevalence among carnivores suggested regular nonfatal exposure. Seropositive wildebeest and buffalo showed that infection was not invariably fatal among herbivores, whereas absence of seropositivity in zebras and frequent detection of fatal cases indicated high susceptibility. Exposure patterns in dogs reflected known patterns of endemicity and provided new information about anthrax in the ecosystem, which indicated the potential of dogs as indicator species. Serosurveillance is a valuable tool for monitoring and detecting anthrax and may shed light on mechanisms responsible for species-specific variability in exposure, susceptibility, and mortality rates. PMID:21392428
NASA Astrophysics Data System (ADS)
Rehman Siddiqui, Azizur
2017-04-01
Indian Arid Ecosystem is characterised by scare as well as seasonal precipitation that have led to long term stress in a fragile ecosystem. In addition to this, over the years, Indian desert has experienced varying magnitude of drought, which have considerably influenced food and fodder production and led to the depletion of surface and ground water table. All these factors mean that the production potential of land is hardly sufficient to feed human as well as livestock population of the desert and this has led to extensive rural to urban migration in Indian Desert. In the present study, satellite data from Landsat TM, AWiFS, NOAA AVHRR have been used to detect the intensity and severity of drought condition, and data collected through primary survey has been used to measure the impact of water scarcity on food insecurity and drought induced migration. Rainfall trend analysis of the study area has been done with the help of Man Kendall Method to assess the meteorological vulnerability. In addition to these, NDVI, VCI, TCI, and VHI have also been used to find out the long term vegetation health in the study area. With the help of these scientific techniques, the paper focuses on the moisture deficiency during growing period and its effect on human population and livestock population. Keywords: Arid Ecosystem, Indian Desert, Drought, Migration
Khan, Shujaul Mulk; Page, Sue E; Ahmad, Habib; Harper, David M
2013-08-01
Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data. Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities' utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis. Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities.
Khan, Shujaul Mulk; Page, Sue E.; Ahmad, Habib; Harper, David M.
2013-01-01
Background Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data. Scope Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities’ utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis. Conclusions Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities. PMID:23825353
[Evaluation of ecosystem resilience in the regions across Qinghai-Tibet railway based on GIS].
Gao, Jiang-bo; Zhao, Zhi-qiang; Li, Shuang-cheng
2008-11-01
Based on GIS technique and the methods of mean-squared deviation weight decision and catastrophe progression, a more clear definition and associated evaluation for ecosystem resilience were given, with a case study in the regions across Qinghai-Tibet railway by using the indices of plant community coverage, species diversity, and biomass. It was shown that the areas with high ecosystem resilience were mainly located in the Qilian Mountain meadow grassland, Huangshui Valley needle-leaved and deciduous broad-leaved forest, and south Tanggula Mountain kobresia swamp meadow, while those with the lowest resilience were in the central part of Qaidam Basin, and the Kunlun Mountains. Most areas in the regions had higher or medium ecosystem resilience, with a trend of that in the south of Kunlun Mountains, the resilience in the north of the railway was lower, while in the east of Qaidam Basin (especially in the Qinghai Lake area), the resilience was lower in the south than in the north of the railway. Through the evaluation of ecosystem resilience, the key issues in the process of ecological resilience could be found, and corresponding effective measures would be pointed out to manage alpine ecosystems. Moreover, combining with the evaluation of vulnerability, scientific basis for regional development could be provided to avoid or mitigate the negative effects of human activities on eco-environment.
A methodology for quantifying and mapping ecosystem services provided by watersheds
Villamagna, Amy M.; Angermeier, Paul L.
2015-01-01
Watershed processes – physical, chemical, and biological – are the foundation for many benefits that ecosystems provide for human societies. A crucial step toward accurately representing those benefits, so they can ultimately inform decisions about land and water management, is the development of a coherent methodology that can translate available data into the ecosystem services (ES) produced by watersheds. Ecosystem services (ES) provide an instinctive way to understand the tradeoffs associated with natural resource management. We provide a synthesis of common terminology and explain a rationale and framework for distinguishing among the components of ecosystem service delivery, including: an ecosystem’s capacity to produce a service; societal demand for the service; ecological pressures on this service; and flow of the service to people. We discuss how interpretation and measurement of these components can differ among provisioning, regulating, and cultural services and describe selected methods for quantifying ES components as well as constraints on data availability. We also present several case studies to illustrate our methods, including mapping capacity of several water purification services and demand for two forms of wildlife-based recreation, and discuss future directions for ecosystem service assessments. Our flexible framework treats service capacity, demand, ecological pressure, and flow as separate but interactive entities to better evaluate the sustainability of service provision across space and time and to help guide management decisions.
de Mutsert, Kim; Cowan, James H; Essington, Timothy E; Hilborn, Ray
2008-02-19
We used two high profile articles as cases to demonstrate that use of fishery landings data can lead to faulty interpretations about the condition of fishery ecosystems. One case uses the mean trophic level index and its changes, and the other uses estimates of fishery collapses. In earlier analyses by other authors, marine ecosystems in the Gulf of Mexico (GOM) and U.S. Atlantic Ocean south of Chesapeake Bay were deemed to be severely overfished and the food webs badly deteriorated using these criteria. In our reanalyses, the low mean trophic level index for the GOM actually resulted from large catches of two groups of low trophic level species, menhaden and shrimp, and the mean trophic level was slowly increasing rather than decreasing. Commercial targeting and high landings of shrimps and menhaden, especially in the GOM, drove the index as previously calculated. Reanalyses of fishery collapses incorporating criteria that included targeting, variability in fishing effort, and market forces discovered many false cases of collapse based simply upon a decline of catches to 10% of previous maximum levels. Consequently, we suggest that the low mean trophic level index calculated in the earlier article for the GOM did not reflect the overall condition of the fishery ecosystem, and that the 10% rule for collapse should not be interpreted out of context in the GOM or elsewhere. In both cases, problems lay in the assumption that commercial landings data alone adequately reflect the fish populations and communities.
The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in m...
The provisioning of aquatic ecosystem goods and services (EGS) is a key concept in USEPA Office of Research and Development research programs. This is a national issue, yet many decisions affecting EGS sustainability are made at the local level where decisions can have substanti...
Stewardship matters: Case studies in establishment success of urban trees
Lara A. Roman; Lindsey A. Walker; Catherine M. Martineau; David J. Muffly; Susan A. MacQueen; Winnie Harris
2015-01-01
Urban tree planting initiatives aim to provide ecosystem services that materialize decades after planting, therefore understanding tree survival and growth is essential to evaluating planting program performance. Tree mortality is relatively high during the establishment phase, the first few years after planting. Qualitative assessments of programs with particularly...
Brown shrimp are commercially important shellfish that support one of the largest fisheries in the southeastern United States, contributing to a shrimp harvest revenue that can exceed $100 million per year. Therefore, understanding how climate-driven changes in habitat availabil...
The goals of this case study were to estimate the European green crab’s current and historical impacts on ecosystem services on the East Coast of the United States and to estimate the European green crab’s current and potential future impacts from invasion
In coastal communities, stresses derived from landuse changes, climate change, and serial over-exploitation can have major effects on coral reefs, which support multibillion dollar fishing and tourism industries vital to regional economies. A key challenge in evaluating coastal a...
Ecological risk assessments typically are organized using the processes of planning (a discussion among managers, stakeholders, and analysts to clarify ecosystem management goals and assessment scope) and problem formulation (evaluation of existing information to generate hypothe...
COMPARING THE UTILITY OF MULTIMEDIA MODELS FOR HUMAN AND ECOLOGICAL EXPOSURE ANALYSIS: TWO CASES
A number of models are available for exposure assessment; however, few are used as tools for both human and ecosystem risks. This discussion will consider two modeling frameworks that have recently been used to support human and ecological decision making. The study will compare ...
Habitat-based frameworks have been proposed for developing Ecological Production Functions (EPFs) to describe the spatial distribution of ecosystem services. As proof of concept, we generated EPFs that compared bird use patterns among intertidal benthic habitats for Yaquina estu...
Ecological risk assessments typically are organized using the processes of planning (a discussion among managers, stakeholders and analysis to clarify ecosystem management goals and assessment scope) and problem formulation (evaluation of existing information to generate hypothes...
Scenarios and decisionmaking for complex environmental systems
Stephen R. Carpenter; Adena R. Rissman
2012-01-01
Scenarios are used for expanding the scope of imaginable outcomes considered by assessments, planning exercises, or research projects on social-ecological systems. We discuss a global case study, the Millennium Ecosystem Assessment, and a regional project for an urbanizing agricultural watershed. Qualitative and quantitative aspects of scenarios are complementary....
Case Study: Southwest Coastal Louisiana Conceptual Ecosystem Model Development
2014-08-01
constraint on growth of oligohaline marsh macrophytes. I. Species variation in stress tolerance: American Journal of Botany , 86(6): 85–794. Howes, N.C...and I. A. Mendelssohn. 1989 Response of a freshwater marsh plant community to increased salinity and increased water level. Aquatic Botany 34: 301
NASA Astrophysics Data System (ADS)
Liu, Yaqun; Song, Wei; Mu, Fengyun
2017-12-01
The cropland ecosystem provides essential direct and indirect products and services to mankind such as food, fiber, biodiversity and soil conservation. A change of crop planting structure can change the ecosystem services of cropland by affecting land use type. In recent years, under the influence of regional comparative advantage and consumer demand changes, the crop planting structure in China has changed rapidly. However, there is still a lack of deep understanding on the effect of such a change in planting structure on the ecosystem services of cropland. Therefore, this research selected Minle County in the Heihe River Basin, which has small scattered croplands and a complex planting structure, as a study area. Based on the key time phase and optimal threshold of the normalized difference vegetation index (NDVI) data of the Thematic Mapper and Enhanced Thematic Mapper Plus (TM/ETM+) images, this study used the decision tree algorithm to classify and extract the crop planting structure in Minle County in 2007 and 2012 and to analyze the changes in its temporal and spatial patterns. Then, the market value method was adopted to estimate the effect of the change in crop planting structure on the ecosystem services of the cropland. From 2007 to 2012, the planting area of corn and rapeseed in Minle County increased by 5.86 × 103 ha and 5.10 × 103 ha, respectively. Conversely, the planting area of wheat and barley was reduced by 3.26 × 103 ha and 6.34 × 103 ha, respectively. These changes directly caused the increase of the ecosystem services value of corn and rapeseed by 1062.82 × 104 USD and 842.54 × 104 USD, respectively. The resulting reduction in the ecosystem services value of wheat and barley was 488.24 × 104 USD and 828.29 × 104 USD, respectively. Besides, the total ecosystem services value of cropland increased by 1564.98 × 104 USD. Further analysis found that the change in the crop planting structure caused an increase in the ecosystem services value of cropland of 359.44 × 104 USD, with a contribution rate of 22.97% to the total increase. The expansion of corn caused the increase of the ecosystem services value of cropland by 151.65 × 104 USD, with a contribution rate of 9.69% to the total increase. The change in crop planting structure in Minle County increased not only the economic benefits of crop planting, but also the ecosystem services of cropland.
Bowker, Matthew A.; Miller, Mark E.; Belote, R. Travis; Garman, Steven L.
2013-01-01
Threshold concepts are used in research and management of ecological systems to describe and interpret abrupt and persistent reorganization of ecosystem properties (Walker and Meyers, 2004; Groffman and others, 2006). Abrupt change, referred to as a threshold crossing, and the progression of reorganization can be triggered by one or more interactive disturbances such as land-use activities and climatic events (Paine and others, 1998). Threshold crossings occur when feedback mechanisms that typically absorb forces of change are replaced with those that promote development of alternative equilibria or states (Suding and others, 2004; Walker and Meyers, 2004; Briske and others, 2008). The alternative states that emerge from a threshold crossing vary and often exhibit reduced ecological integrity and value in terms of management goals relative to the original or reference system. Alternative stable states with some limited residual properties of the original system may develop along the progression after a crossing; an eventual outcome may be the complete loss of pre-threshold properties of the original ecosystem. Reverting to the more desirable reference state through ecological restoration becomes increasingly difficult and expensive along the progression gradient and may eventually become impossible. Ecological threshold concepts have been applied as a heuristic framework and to aid in the management of rangelands (Bestelmeyer, 2006; Briske and others, 2006, 2008), aquatic (Scheffer and others, 1993; Rapport and Whitford 1999), riparian (Stringham and others, 2001; Scott and others, 2005), and forested ecosystems (Allen and others, 2002; Digiovinazzo and others, 2010). These concepts are also topical in ecological restoration (Hobbs and Norton 1996; Whisenant 1999; Suding and others, 2004; King and Hobbs, 2006) and ecosystem sustainability (Herrick, 2000; Chapin and others, 1996; Davenport and others, 1998). Achieving conservation management goals requires the protection of resources within the range of desired conditions (Cook and others, 2010). The goal of conservation management for natural resources in the U.S. National Park System is to maintain native species and habitat unimpaired for the enjoyment of future generations. Achieving this goal requires, in part, early detection of system change and timely implementation of remediation. The recent National Park Service Inventory and Monitoring program (NPS I&M) was established to provide early warning of declining ecosystem conditions relative to a desired native or reference system (Fancy and others, 2009). To be an effective tool for resource protection, monitoring must be designed to alert managers of impending thresholds so that preventive actions can be taken. This requires an understanding of the ecosystem attributes and processes associated with threshold-type behavior; how these attributes and processes become degraded; and how risks of degradation vary among ecosystems and in relation to environmental factors such as soil properties, climatic conditions, and exposure to stressors. In general, the utility of the threshold concept for long-term monitoring depends on the ability of scientists and managers to detect, predict, and prevent the occurrence of threshold crossings associated with persistent, undesirable shifts among ecosystem states (Briske and others, 2006). Because of the scientific challenges associated with understanding these factors, the application of threshold concepts to monitoring designs has been very limited to date (Groffman and others, 2006). As a case in point, the monitoring efforts across the 32 NPS I&M networks were largely designed with the knowledge that they would not be used to their full potential until the development of a systematic method for understanding threshold dynamics and methods for estimating key attributes of threshold crossings. This report describes and demonstrates a generalized approach that we implemented to formalize understanding and estimating of threshold dynamics for terrestrial dryland ecosystems in national parks of the Colorado Plateau. We provide a structured approach to identify and describe degradation processes associated with threshold behavior and to estimate indicator levels that characterize the point at which a threshold crossing has occurred or is imminent (tipping points) or points where investigative or preventive management action should be triggered (assessment points). We illustrate this method for several case studies in national parks included in the Northern and Southern Colorado Plateau NPS I&M networks, where historical livestock grazing, climatic change, and invasive species are key agents of change. The approaches developed in these case studies are intended to enhance the design, effectiveness, and management-relevance of monitoring efforts in support of conservation management in dryland systems. They specifically enhance National Park Service (NPS) capacity for protecting park resources on the Colorado Plateau but have applicability to monitoring and conservation management of dryland ecosystems worldwide.
Chen, Bin; He, Guoxuan; Yang, Jin; Zhang, Jieru; Su, Meirong; Qi, Jing
2012-01-01
The Millennium Ecosystem Assessment (MA) framework was modified with a special focus on ecosystem service values. A case study of a typical low-carbon industrial park in Beijing was conducted to assess the ecological and economic benefits. The total economic value of this industrial park per year is estimated to be 1.37 × 10(8) RMB yuan, where the accommodating and social cultural services are the largest two contributors. Due to the construction of small grasslands or green roofs, considerable environmental regulation services are also provided by the park. However, compared with an ecoindustrial park, carbon mitigation is the most prominent service for the low-carbon industrial park. It can be concluded that low-carbon industrial park construction is an efficacious way to achieve coordinated development of society, economy, and environment, and a promising approach to achieving energy saving and carbon reduction.
Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.
Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J
2016-01-01
An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized framework for describing moisture recycling as an ecosystem service. We conclude that future work ought to disentangle whether and how this vegetation-regulated moisture recycling interacts with other ecosystem services, so that trade-offs can be assessed in a comprehensive and sustainable manner.
Marquès, Montse; Bangash, Rubab Fatima; Kumar, Vikas; Sharp, Richard; Schuhmacher, Marta
2013-12-15
Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and with high probability to face acute water scarcity problem in the coming years. Francolí River basin (NE Spain), located in this vulnerable region is selected as a case study to evaluate the impact of climate change on the delivery of water considering the IPCC scenarios A2 and B1 for the time spans 2011-2040, 2041-2070 and 2071-2100. InVEST model is applied in a low flow river as a new case study, which reported successful results after its model validation. The studied hydrological ecosystem services will be highly impacted by climate change at Francolí River basin. Water yield is expected to be reduced between 11.5 and 44% while total drinking water provisioning will decrease between 13 and 50% having adverse consequences on the water quality of the river. Focusing at regional scale, Prades Mountains and Brugent Tributary provide most of the provision of water and also considered highly vulnerable areas to climate change. However, the most vulnerable part is the northern area which has the lowest provision of water. Francolí River basin is likely to experience desertification at this area drying Anguera and Vallverd tributaries. Copyright © 2013 Elsevier B.V. All rights reserved.
Ciguatera fish poisoning in la Habana, Cuba: a study of local social-ecological resilience.
Morrison, Karen; Aguiar Prieto, Pablo; Castro Domínguez, Arnaldo; Waltner-Toews, David; Fitzgibbon, John
2008-09-01
Following the collapse of the Cuban economy in the early 1990s, epidemiologists in the Cuban Ministry of Health noticed dramatic increases in reported outbreaks of ciguatera fish poisoning (CFP) in some coastal communities. This article summarizes the results of a comparative case study which applied an ecosystem approach to human health to investigate this issue. Situated learning and complexity theories were used to interpret the results of the investigation. CFP outbreaks are influenced by a complex set of interactions between ecological and socioeconomic processes. This study found that the level of organization of the local sports fishing community and the degree of degradation of the local nearshore marine ecosystem appear to be key factors influencing the diverging levels of CFP outbreaks recorded in the 1990s in the communities studied.
Advances in animal ecology from 3D ecosystem mapping with LiDAR
NASA Astrophysics Data System (ADS)
Davies, A.; Asner, G. P.
2015-12-01
The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (< 14 years) been applied to animal ecology. Despite such recent application, LiDAR has enabled new insights in the field and revealed the fundamental importance of 3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.
Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A.; Lohrer, Andrew M.; Wethey, David S.; Hewitt, Judi E.; Thrush, Simon F.
2016-01-01
Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes. PMID:27230562
Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F
2016-05-27
Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.
NASA Astrophysics Data System (ADS)
Chen, Liding; Yang, Lei; Wei, Wei; Wang, Ziting; Mo, Baoru; Cai, Guojun
2013-01-01
The Chinese government initiated a massive conservation program called "Grain-for-Green" in 1999 to reduce soil erosion and improve ecosystem function. Implementing practical sustainable development in the loess plateau still remains problematic, particularly in its eco-fragile areas. Here we discussed an approach for sustainable development at the watershed scale by integrating land use suitability, ecosystem services and public participation in the loess hilly area. We linked land use scenario analysis and economic modeling to compare the outcomes of three scenarios, CLU (Current Land Use), GOLU (Grain-production Oriented Land Use) and PSLU (Potential Sustainable Land Use). The results indicated that compared to PSLU, GOLU may provide a higher economic productivity in the short-term, but not in the long-term. CLU ranked lowest in terms of economic benefits and did not meet the daily needs of the local farmers. To reconcile the land use adjustments with farmers' basic needs, a labor-saving land use strategy is necessary. Since the PSLU scenario assumes that slope cropland should be converted to pastures or orchards, more time may be available for off-farm work and for more public participation in integrated ecosystem management. Financial support to the local farmers for environmental conservation should be modulated in function of their positive contribution to ecosystem management.
NASA Astrophysics Data System (ADS)
Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li
2016-05-01
As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.
Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs
Kittinger, John N.; Pandolfi, John M.; Blodgett, Jonathan H.; Hunt, Terry L.; Jiang, Hong; Maly, Kepā; McClenachan, Loren E.; Schultz, Jennifer K.; Wilcox, Bruce A.
2011-01-01
Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts. PMID:21991311
Perni, Ángel; Martínez-Paz, José Miguel
2017-12-01
Economic valuation of ecosystem services provides valuable information for the management of anthropized environments, where individual preferences can be heterogeneous and even opposed. Here, we discuss how these ecosystem services were approached in the literature and we address the main issues in relation to their economic valuation. We consider that avoiding misspecifications in economic valuation surveys requires considering the linkages between anthropized ecosystems and human intervention. To illustrate, we analyse the case study of a human-created Mediterranean wetland (El Hondo, SE Spain) using a Choice Experiment. Our findings suggest that management strategies in El Hondo should be oriented to improve the water ecological status, to enhance biodiversity and to develop ecotourism, whereas hunting should be strictly limited and controlled. Our measures of conflict (trade-off between ecosystem services and willingness to pay values) can help to find the optimal allocation of public and private goods and services and for the implementation of compensation schemes in the area. According to public preferences, a conservationist management strategy would generate 331,100 €/year in terms of environmental benefits, whereas a tourism-based management strategy would benefit society with 805,200 €/year. Copyright © 2017 Elsevier Ltd. All rights reserved.
Achieving Sustainability Goals for Urban Coasts in the US Northeast: Research Needs and Challenges
NASA Technical Reports Server (NTRS)
Close, Sarah L.; Montalto, Franco; Orton, Philip; Antoine, Adrienne; Peters, Danielle; Jones, Hunter; Parris, Adam; Blumberg, Alan
2016-01-01
In the wake of Hurricane Sandy and other recent extreme events, urban coastal communities in the northeast region of the United States are beginning or stepping up efforts to integrate climate adaptation and resilience into long-term coastal planning. Natural and nature-based shoreline strategies have emerged as essential components of coastal resilience and are frequently cited by practitioners, scientists, and the public for the wide range of ecosystem services they can provide. However, there is limited quantitative information associating particular urban shoreline design strategies with specific levels of ecosystem service provision, and research on this issue is not always aligned with decision context and decision-maker needs. Engagement between the research community, local government officials and sustainability practitioners, and the non-profit and private sectors can help bridge these gaps. A workshop to bring together these groups discussed research gaps and challenges in integrating ecosystem services into urban sustainability planning in the urban northeast corridor. Many themes surfaced repeatedly throughout workshop deliberations, including the challenges associated with ecosystem service valuation, the transferability of research and case studies within and outside the region, and the opportunity for urban coastal areas to be a focal point for education and outreach efforts related to ecosystem services.
NASA Astrophysics Data System (ADS)
Badola, Ruchi; Barthwal, Shivani; Hussain, Syed Ainul
2012-01-01
The ecological and economic importance of mangrove ecosystems is well established and highlighted by studies establishing a correlation between the protective function of mangroves and the loss of lives and property caused by coastal hazards. Nevertheless, degradation of this ecosystem remains a matter of concern, emphasizing the fact that effective conservation of natural resources is possible only with an understanding of the attitudes and perceptions of local communities. In the present study, we examined the attitudes and perceptions of local communities towards mangrove forests through questionnaire surveys in 36 villages in the Bhitarkanika Conservation Area, India. The sample villages were selected from 336 villages using hierarchical cluster analysis. The study revealed that local communities in the area had positive attitudes towards conservation and that their demographic and socio-economic conditions influenced people's attitudes. Local communities valued those functions of mangrove forests that were directly linked to their wellbeing. Despite human-wildlife conflict, the attitudes of the local communities were not altogether negative, and they were willing to participate in mangrove restoration. People agreed to adopt alternative resources if access to forest resources were curtailed. Respondents living near the forests, who could not afford alternatives, admitted that they would resort to pilfering. Hence, increasing their livelihood options may reduce the pressure on mangrove forests. In contrast with other ecosystems, the linkages of mangrove ecosystem services with local livelihoods and security are direct and tangible. It is therefore possible to develop strong local support for sustainable management of mangrove forests in areas where a positive attitude towards mangrove conservation prevails. The current debates on Reducing Emissions from Deforestation and Forest Degradation (REDD) and payment for ecosystem services provide ample scope for development of sustainable livelihood options for local communities from the conservation of critical ecosystems such as mangroves.
Ying Ouyang; Jia-En Zhang; Yide Li; Prem Parajuli; Gary Feng
2015-01-01
Rainfall and air temperature variations resulting from climate change are important driving forces to change hydrologic processes in watershed ecosystems. This study investigated the impacts of past and future rainfall and air temperature variations upon water discharge, water outflow (from the watershed outlet), and evaporative loss in the Lower Yazoo River Watershed...
Jianwei Zhang; Martin W. Ritchie
2008-01-01
The ecological research project of interior ponderosa pine forests at the Blacks Mountain Experimental Forest in northeastern California was initiated by an interdisciplinary team of scientists in the early 1990s. The objectives of this study were to determine the effect of stand structure, and prescribed fire on vegetation growth, resilience, and sustainability of...
Fitting rainfall interception models to forest ecosystems of Mexico
NASA Astrophysics Data System (ADS)
Návar, José
2017-05-01
Models that accurately predict forest interception are essential both for water balance studies and for assessing watershed responses to changes in land use and the long-term climate variability. This paper compares the performance of four rainfall interception models-the sparse Gash (1995), Rutter et al. (1975), Liu (1997) and two new models (NvMxa and NvMxb)-using data from four spatially extensive, structurally diverse forest ecosystems in Mexico. Ninety-eight case studies measuring interception in tropical dry (25), arid/semi-arid (29), temperate (26), and tropical montane cloud forests (18) were compiled and analyzed. Coefficients derived from raw data or published statistical relationships were used as model input to evaluate multi-storm forest interception at the case study scale. On average empirical data showed that, tropical montane cloud, temperate, arid/semi-arid and tropical dry forests intercepted 14%, 18%, 22% and 26% of total precipitation, respectively. The models performed well in predicting interception, with mean deviations between measured and modeled interception as a function of total precipitation (ME) generally <5.8% and Nash-Sutcliffe efficiency E estimators >0.66. Model fitting precision was dependent on the forest ecosystem. Arid/semi-arid forests exhibited the smallest, while tropical montane cloud forest displayed the largest ME deviations. Improved agreement between measured and modeled data requires modification of in-storm evaporation rate in the Liu; the canopy storage in the sparse Gash model; and the throughfall coefficient in the Rutter and the NvMx models. This research concludes on recommending the wide application of rainfall interception models with some caution as they provide mixed results. The extensive forest interception data source, the fitting and testing of four models, the introduction of a new model, and the availability of coefficient values for all four forest ecosystems are an important source of information and a benchmark for future investigations in this area of hydrology.
Wood, James L. N.; Leach, Melissa; Waldman, Linda; MacGregor, Hayley; Fooks, Anthony R.; Jones, Kate E.; Restif, Olivier; Dechmann, Dina; Hayman, David T. S.; Baker, Kate S.; Peel, Alison J.; Kamins, Alexandra O.; Fahr, Jakob; Ntiamoa-Baidu, Yaa; Suu-Ire, Richard; Breiman, Robert F.; Epstein, Jonathan H.; Field, Hume E.; Cunningham, Andrew A.
2012-01-01
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation. PMID:22966143
Contrasting fire responses to climate and management: insights from two Australian ecosystems.
King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B
2013-04-01
This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.
Ingram, Verina; van den Berg, Jolanda; van Oorschot, Mark; Arets, Eric; Judge, Lucas
2018-02-06
Dutch policies have advocated sustainable commodity value chains, which have implications for the landscapes from which these commodities originate. This study examines governance and policy options for sustainability in terms of how ecosystem services are addressed in cocoa, soy, tropical timber and palm oil value chains with Dutch links. A range of policies addressing ecosystem services were identified, from market governance (certification, payments for ecosystem services) to multi-actor platforms (roundtables) and public governance (policies and regulations). An analysis of policy narratives and interviews identified if and how ecosystem services are addressed within value chains and policies; how the concept has been incorporated into value chain governance; and which governance options are available. The Dutch government was found to take a steering but indirect role in all the cases, primarily through supporting, financing, facilitating and partnering policies. Interventions mainly from end-of-chain stakeholders located in processing and consumption countries resulted in new market governance, notably voluntary sustainability standards. These have been successful in creating awareness of some ecosystem services and bringing stakeholders together. However, they have not fully addressed all ecosystem services or stakeholders, thus failing to increase the sustainability of value chains or of the landscapes of origin. We argue that chains sourced in tropical landscapes may be governed more effectively for sustainability if voluntary, market policy tools and governance arrangements have more integrated goals that take account of sourcing landscapes and impacts along the entire value chain. Given the international nature of these commodities. These findings have significance for debates on public-private approaches to value chain and landscape governance.
NASA Astrophysics Data System (ADS)
Abdelrahman Aly, Anwar; Mosa Al-Omran, Abdulrasoul; Shahwan Sallam, Abdulazeam; Al-Wabel, Mohammad Ibrahim; Shayaa Al-Shayaa, Mohammad
2016-04-01
Vegetation cover (VC) change detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the center of Saudi Arabia. Characteristics and dynamics of total VC changes during a period of 26 years (1987-2013) were investigated. A multi-temporal set of images was processed using Landsat images from Landsat4 TM 1987, Landsat7 ETM+2000, and Landsat8 to investigate the drivers responsible for the total VC pattern and changes, which are linked to both natural and social processes. The analyses of the three satellite images concluded that the surface area of the total VC increased by 107.4 % between 1987 and 2000 and decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data, and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment, while the southwestern part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m-1. The ecosystem management approach applied in this study can be used to alike AE worldwide.
Ecological role of the giant root-rat (Tachyoryctes macrocephalus) in the Afroalpine ecosystem.
Šklíba, Jan; Vlasatá, Tereza; Lövy, Matěj; Hrouzková, Ema; Meheretu, Yonas; Sillero-Zubiri, Claudio; Šumbera, Radim
2017-07-01
Rodents with prevailing subterranean activity usually play an important role in the ecosystems of which they are a part due to the combined effect of herbivory and soil perturbation. This is the case for the giant root-rat Tachyoryctes macrocephalus endemic to the Afroalpine ecosystem of the Bale Mountains, Ethiopia. We studied the impact of root-rats on various ecosystem features within a 3.5-ha study locality dominated by Alchemilla pasture, which represents an optimal habitat for this species, in 2 periods of a year. The root-rats altered plant species composition, reducing the dominant forb, Alchemilla abyssinica, while enhancing Salvia merjame and a few other species, and reduced vegetation cover, but not the fresh plant biomass. Where burrows were abandoned by root-rats, other rodents took them over and A. abyssinica increased again. Root-rat burrowing created small-scale heterogeneity in soil compactness due to the backfilling of some unused burrow segments. Less compacted soil tended to be rich in nutrients, including carbon, nitrogen and phosphorus, which likely affected the plant growth on sites where the vegetation has been reduced as a result of root-rat foraging and burrowing. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Linking Local Scale Ecosystem Science to Regional Scale Management
NASA Astrophysics Data System (ADS)
Shope, C. L.; Tenhunen, J.; Peiffer, S.
2012-04-01
Ecosystem management with respect to sufficient water yield, a quality water supply, habitat and biodiversity conservation, and climate change effects requires substantial observational data at a range of scales. Complex interactions of local physical processes oftentimes vary over space and time, particularly in locations with extreme meteorological conditions. Modifications to local conditions (ie: agricultural land use changes, nutrient additions, landscape management, water usage) can further affect regional ecosystem services. The international, inter-disciplinary TERRECO research group is intensively investigating a variety of local processes, parameters, and conditions to link complex physical, economic, and social interactions at the regional scale. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. The data are used to parameterize suite of models describing local to landscape level water, sediment, nutrient, and monetary relationships. We focus on using the agricultural and hydrological SWAT model to synthesize the experimental field data and local-scale models throughout the catchment. The approach of our study was to describe local scientific processes, link potential interrelationships between different processes, and predict environmentally efficient management efforts. The Haean catchment case study shows how research can be structured to provide cross-disciplinary scientific linkages describing complex ecosystems and landscapes that can be used for regional management evaluations and predictions.
Ecosystem services in urban water investment.
Kandulu, John M; Connor, Jeffery D; MacDonald, Darla Hatton
2014-12-01
Increasingly, water agencies and utilities have an obligation to consider the broad environmental impacts associated with investments. To aid in understanding water cycle interdependencies when making urban water supply investment decisions, an ecosystem services typology was augmented with the concept of integrated water resources management. This framework is applied to stormwater harvesting in a case study catchment in Adelaide, South Australia. Results show that this methodological framework can effectively facilitate systematic consideration and quantitative assessment of broad environmental impacts of water supply investments. Five ecosystem service impacts were quantified including provision of 1) urban recreational amenity, 2) regulation of coastal water quality, 3) salinity, 4) greenhouse gas emissions, and 5) support of estuarine habitats. This study shows that ignoring broad environmental impacts can underestimate ecosystem service benefits of water supply investments by a value of up to A$1.36/kL, or three times the cost of operating and maintenance of stormwater harvesting. Rigorous assessment of the public welfare impacts of water infrastructure investments is required to guide long-term optimal water supply investment decisions. Numerous challenges remain in the quantification of broad environmental impacts of a water supply investment including a lack of peer-reviewed studies of environmental impacts, aggregation of incommensurable impacts, potential for double-counting errors, uncertainties in available impact estimates, and how to determine the most suitable quantification technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioindication in Urban Soils in Switzerland
NASA Astrophysics Data System (ADS)
Amossé, J.; Le Bayon, C.; Mitchell, E. A. D.; Gobat, J. M.
2012-04-01
Urban development leads to profound changes in ecosystem structure (e.g. biodiversity) and functioning (e.g. ecosystem services). While above-ground diversity is reasonably well studied much less is known about soil diversity, soil processes and more generally soil health in urban settings. Soil invertebrates are key actors of soil processes at different spatial and temporal scales and provide essential ecosystem services. These functions may be even more vital in stressed environments such as urban ecosystems. Despite the general recognition of the importance of soil organisms in ecosystems, soil trophic food webs are still poorly known and this is especially the case in urban settings. As urban soils are characterised by high fragmentation and stress (e.g. drought, pollution) the structure and functioning of soil communities is likely to be markedly different from that of natural soils. It is for example unclear if earthworms, whose roles in organic matter transformation and soil structuration is well documented in natural and semi-natural soils, are also widespread and active in urban soils. Bioindication is a powerful tool to assess the quality of the environment. It is complementary to classical physicochemical soil analysis or can be used as sole diagnostic tool in cases where these analyses cannot be performed. However little is known about the potential use of bioindicators in urban settings and especially it is unclear if methods developped in agriculture can be applied to urban soils. The development of reliable methods for assessing the quality of urban soils has been identified as a priority for policy making and urban management in Switzerland, a high-urbanized country. We therefore initiated a research project (Bioindication in Urban Soil - BUS). The project is organised around four parts: (i) typology of urban soils in a study Region (Neuchâtel), (ii) sampling of soil fauna and analysis of soil physicochemical properties, (iii) comparison of the functionality of urban soils and alluvial soils, used as a natural reference because of their regular physical perturbation by flooding and associated erosion/sedimentation, (iv) evaluation of soil bioindicators (e.g. earthworm, enchytraeid and testate amoebae) for urban soils. The application objective of my research is to introduce bioindicators and their limit values for the future revision of the legal Ordonnance on soils (OSol), and to develop guidelines to improve or to build urban soils with the aim of reaching a sustainable urban ecosystem development.
The fish-based food web: when predator and prey connect.
Sally Duncan
1999-01-01
This issue of "Science Findings" focuses on ecologist Mary Willson's research in Alaska that has revealed anadromous fish to be "cornerstone species." A cornerstone species provides a resource base to support much of an ecosystem. Anadromous fish, in this case, have been found support much of the Pacific coastal ecosystem. Key findings of...
Strengthening the case for saproxylic arthropod conservation: a call for ecosystem services research
Michael Ulyshen
2013-01-01
While research on the ecosystem services provided by biodiversity is becoming widely embraced as an important tool in conservation, the services provided by saproxylic arthropods - an especially diverse and threatened assemblage dependent on dead or dying wood - remain unmeasured. A conceptual model depicting the reciprocal relationships between dead wood and...
Chapter 1: Fire and nonnative invasive plants-introduction
Jane Kapler Smith; Kristin Zouhar; Steve Sutherland; Matthew L. Brooks
2008-01-01
Fire is a process integral to the functioning of most temperate wildland ecosystems. Lightning-caused and anthropogenic fires have influenced the vegetation of North America profoundly for millennia (Brown and Smith 2000; Pyne 1982b). In some cases, fire has been used to manipulate the species composition and structure of ecosystems to meet management objectives,...
Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change
NASA Astrophysics Data System (ADS)
Kikuchi, R. K.; Elliff, C. I.
2014-12-01
Coral reefs provide many ecosystem services of which coastal populations are especially dependent upon, both in cases of extreme events and in daily life. However, adaptation to climate change is still relatively unknown territory regarding the ecosystem services provided by coastal environments, such as coral reefs. Management strategies usually consider climate change as a distant issue and rarely include ecosystem services in decision-making. Coral reefs are among the most vulnerable environments to climate change, considering the impact that increased ocean temperature and acidity have on the organisms that compose this ecosystem. If no actions are taken, the most likely scenario to occur will be of extreme decline in the ecosystem services provided by coral reefs. Loss of biodiversity due to the pressures of ocean warming and acidification will lead to increased price of seafood products, negative impact on food security, and ecological imbalances. Also, sea-level rise and fragile structures due to carbonate dissolution will increase vulnerability to storms, which can lead to shoreline erosion and ultimately threaten coastal communities. Both these conditions will undoubtedly affect recreation and tourism, which are often the most important use values in the case of coral reef systems. Adaptation strategies to climate change must take on an ecosystem-based approach with continuous monitoring programs, so that multiple ecosystem services are considered and not only retrospective trends are analyzed. Brazilian coral reefs have been monitored on a regular basis since 2000 and, considering that these marginal coral reefs of the eastern Atlantic are naturally under stressful conditions (e.g. high sedimentation rates), inshore reefs of Brazil, such as those in Tinharé-Boipeba, have shown lower vitality rates due to greater impacts from the proximity to the coastal area (e.g. pollution, overfishing, sediment run-off). This chronic negative impact must be addressed to increase resilience and guarantee the adaptation of this ecosystem to climate change. Thus, considering that the majority of the marine ecosystem services we benefit from are provided from coastal habitats, of which coral reefs play an important role, the challenge at hand is in fact the interaction between local factors and climate change
Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?
Chan, Kai M. A.; Hoshizaki, Lara; Klinkenberg, Brian
2011-01-01
There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost and with greater co-benefits. PMID:21915318
Lucas, Lisa V.; Thompson, Janet K.
2012-01-01
Non-native species are a prevalent ecosystem stressor that can interact with other stressors to confound resource management and restoration. We examine how interactions between physical habitat attributes and a particular category of non-native species (invasive bivalves) influence primary production in aquatic ecosystems. Using mathematical models, we show how intuitive relationships between phytoplankton productivity and controllable physical factors (water depth, hydraulic transport time) that hold in the absence of bivalves can be complicated—and even reversed—by rapid bivalve grazing. In light-limited environments without bivalves, shallow, hydrodynamically “slow” habitats should generally have greater phytoplankton biomass and productivity than deeper, “faster” habitats. But shallower, slower environments can be less productive than deeper, faster ones if benthic grazing is strong. Moreover, shallower and slower waters exhibit a particularly broad range of possible productivity outcomes that can depend on whether bivalves are present. Since it is difficult to predict the response of non-native bivalves to habitat restoration, outcomes for new shallow, slow environments can be highly uncertain. Habitat depth and transport time should therefore not be used as indicators of phytoplankton biomass and production where bivalve colonization is possible. This study provides for ecosystem management a particular example of a broad lesson: abiotic ecosystem stressors should be managed with explicit consideration of interactions with other major (including biotic) stressors. We discuss the applicability and management implications of our models and results for a range of aquatic system types, with a case study focused on the Sacramento-San Joaquin Delta (California, USA). Simple mathematical models like those used here can illuminate interactions between ecosystem stressors and provide process-based guidance for resource managers as they develop strategies to augment valued populations, restore habitats, and manipulate ecosystem functions.
Fanaian, Safa; Graas, Susan; Jiang, Yong; van der Zaag, Pieter
2015-02-01
The flow regime of rivers, being an integral part of aquatic ecosystems, provides many important services benefiting humans in catchments. Past water resource developments characterized by river embankments and dams, however, were often dominated by one (or few) economic use(s) of water. This results in a dramatically changed flow regime negatively affecting the provision of other ecosystem services sustained by the river flow. This study is intended to demonstrate the value of alternative flow regimes in a river that is highly modified by the presence of large hydropower dams and reservoirs, explicitly accounting for a broad range of flow-dependent ecosystem services. In this study, we propose a holistic approach for conducting an ecological economic assessment of a river's flow regime. This integrates recent advances in the conceptualization and classification of ecosystem services (UK NEA, 2011) with the flow regime evaluation technique developed by Korsgaard (2006). This integrated approach allows for a systematic comparison of the economic values of alternative flow regimes, including those that are considered beneficial for aquatic ecosystems. As an illustration, we applied this combined approach to the Lower Zambezi Basin, Mozambique. Empirical analysis shows that even though re-operating dams to create environmentally friendly flow regimes reduces hydropower benefits, the gains to goods derived from the aquatic ecosystem may offset the forgone hydropower benefits, thereby increasing the total economic value of river flow to society. The proposed integrated flow assessment approach can be a useful tool for welfare-improving decision-making in managing river basins. Copyright © 2014 Elsevier B.V. All rights reserved.
Schaubroeck, Thomas; Deckmyn, Gaby; Giot, Olivier; Campioli, Matteo; Vanpoucke, Charlotte; Verheyen, Kris; Rugani, Benedetto; Achten, Wouter; Verbeeck, Hans; Dewulf, Jo; Muys, Bart
2016-05-15
For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'. To resolve these matters, this study quantifies the environmental impact (on human health, natural systems and natural resources) in physical units and uses an ecosystem service valuation based on monetary values (including ecosystem disservices with associated negative monetary values). More specifically, the paper also focuses on the assessment of ecosystem services related to pollutant removal/generation flows, accounting for the inflow of eutrophying nitrogen (N) when assessing the effect of N leached to groundwater. Regarding water use/provisioning, evapotranspiration is alternatively considered a disservice because it implies a loss of (potential) groundwater. These approaches and improvements, relevant to all ecosystems, are demonstrated using a Scots pine stand from 2010 to 2089 for a combination of three environmental change and three management scenarios. The environmental change scenarios considered interannual climate variability trends and included alterations in temperature, precipitation, nitrogen deposition, wind speed, Particulate matter (PM) concentration and CO2 concentration. The addressed flows/ecosystem services, including disservices, are as follows: particulate matter removal, freshwater loss, CO2 sequestration, wood production, NOx emissions, NH3 uptake and nitrogen pollution/removal. The monetary ecosystem service valuation yields a total average estimate of 361-1242 euro ha(-1) yr(-1). PM2.5 (<2.5 μm) removal is the key service, with a projected value of 622-1172 euro ha(-1) yr(-1). Concerning environmental impact assessment, with net CO2 uptake being the most relevant contributing flow, a loss prevention of 0.014-0.029 healthy life years ha(-1) yr(-1) is calculated for the respective flows. Both assessment methods favor the use of the least intensive management scenario due to its resulting higher CO2 sequestration and PM removal, which are the most important services of the considered ones. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia M.
Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.
Current uses of ground penetrating radar in groundwater-dependent ecosystems research.
Paz, Catarina; Alcalá, Francisco J; Carvalho, Jorge M; Ribeiro, Luís
2017-10-01
Ground penetrating radar (GPR) is a high-resolution technique widely used in shallow groundwater prospecting. This makes GPR ideal to characterize the hydrogeological functioning of groundwater-dependent ecosystems (GDE). This paper reviews current uses of GPR in GDE research through the construction of a database comprising 91 worldwide GPR case studies selected from the literature and classified according to (1) geological environments favouring GDE; (2) hydrogeological research interests; and (3) field technical and (4) hydrogeological conditions of the survey. The database analysis showed that inland alluvial, colluvial, and glacial formations were the most widely covered geological environments. Water-table depth was the most repeated research interest. By contrast, weathered-marl and crystalline-rock environments as well as the delineation of salinity interfaces in coastal and inland areas were less studied. Despite that shallow groundwater propitiated GDE in almost all the GPR case studies compiled, only one case expressly addressed GDE research. Common ranges of prospecting depth, water-table depth, and volumetric water content deduced by GPR and other techniques were identified. Antenna frequency of 100MHz and the common offset acquisition technique predominated in the database. Most of GPR case studies were in 30-50° N temperate latitudes, mainly in Europe and North America. Eight original radargrams were selected from several GPR profiles performed in 2014 and 2015 to document database classes and identified gaps, as well as to define experimental ranges of operability in GDE environments. The results contribute to the design of proper GPR surveys in GDE research. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten
2015-04-01
The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation information in case of RGB dataset was helpful to distinguish between low and high vegetation types. The successful use of a fixed-wing UAS proved to be a reliable and flexible technique to acquire ecologically sensitive data over wide areas and by extended UAS flight missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, E.G.
Throughout the Mesozoic, shallow-water carbonate ramps and platforms of the circumequatorial Tethyan Ocean were characterized by extensive development of reef ecosystems, especially during times of eustatic highstand, expansion of the Tropics, and warm equable global climates. The greatest reef development was north of the paleoequator in the Caribbean and Indo-Mediterranean provinces. These reefs and associated debris facies comprise major petroleum reservoirs, in some cases with remarkable porosity and permeability normally attributed to a combination of sedimentologic, tectonic, and diagenetic factors. The biological evolution of Mesozoic reefs also has had an important, and in some cases dominant, role in determining reservoirmore » quality. Three major biological factors are critical to mesozoic reef-associated reservoir development: (1) the replacement/competitive displacement of coral-algal dominated, highly integrated reef ecosystems by loosely packed rudistid bivalve-dominated reef ecosystems in the Barremian-Albian; (2) the evolution of dominantly aragonitic, highly porous shells among framework-building rudistids in the middle and Late Cretaceous; and (3) competitive strategies among rudistids that effectively prevented widespread biological binding of Cretaceous reefs, leading to the production of large marginal fans that comprise major carbonate reservoirs. Detailed studies of these evolutionary trends in reef/framework development and of the distribution of different groups of bioconstructors on reefs lead to predictive modeling for primary and secondary porosity development in mesozoic carbonate reservoirs. The competitive displacement of coral-algal communities by rudistids on Cretaceous reefs was so effective that, even after Maastrichtian mass extinction of rudistids and other important groups comprising Mesozoic reef/carbonate platform ecosystems, coral-algal reef-building communities did not evolve again until the late Eocene.« less
ERIC Educational Resources Information Center
Nixon, Rachel A.
1997-01-01
Presents six case studies of EARTHWATCH expeditions which provide teachers with opportunities to work with scientists, participate in scientific discovery, and employ new technology. Educators join EARTHWATCH teams to explore tropical and dry forests, monitor ecosystems and species, unearth remains, and consequently develop innovative classroom…
Stream water responses to timber harvest: Riparian buffer width effectiveness
Barton D. Clinton
2011-01-01
Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...
Understanding the effects of environmental management strategies on society and the environment is critical for evaluating their effectiveness but is often impeded by limited data availability. In this article, we present a method that can help scientists to support environmental...
Assessment of habitat threats to shrublands in the Great Basin: a case study
Mary M. Rowland; Lowell H. Suring; Michael J. Wisdom
2010-01-01
The sagebrush (Artemisia spp.) ecosystem is one of the most imperiled in the United States. In the Great Basin ecoregion and elsewhere, catastrophic wildland fires are often followed by the invasion of cheatgrass (Bromus tectorum L.), eliminating or altering millions of hectares of sagebrush and other shrublands. Sagebrush in...
Effects of Nitrogen Enrichment, Wildfire, and Harvesting on Forest-Soil Carbon and Nitrogen
Jennifer L. Parker; Ivan J. Fernandez; Lindsey E. Rustad; Stephen A. Norton
2001-01-01
Northern forest soils represent large reservoirs of C and N that may be altered by ecosystem perturbations. Soils at three paired watershed in Maine were investigated as case studies of experimentally elevated N deposition, wildfire, and whole-tree harvesting. Eight years of experimental (NH4)2SO4...
This report documents research undertaken to determine if the theoretical promise of genetic diversity as an ecological indicator is realized in real-world applications. Results of two case studies confirm that genetic diversity is a useful indicator of environmental condition. ...
Urbanization exacerbates flooding by increasing surface runoff and decreasing surface roughness. Restoring wetlands can enhance flood protection while providing a suite of co-benefits such as temperature regulation and access to open space. Spatial modeling of the delivery of flo...
Price, A R G; Jaoui, K; Pearson, M P; Jeudy de Grissac, A
2014-03-15
Rapid environmental assessment (REA) involves scoring abundances of ecosystems/species groups and magnitude of pressures, concurrently, using the same logarithmic (0-6) assessment scale. We demonstrate the utility of REA data for an alert system identifying different levels of coastal management concern. Thresholds set for abundances/magnitudes, when crossed, trigger proposed responses. Kerkennah, Tunisia, our case study, has significant natural assets (e.g. exceptional seagrass and invertebrate abundances), subjected to varying levels of disturbance and management concern. Using REA thresholds set, fishing, green algae/eutrophication and oil occurred at 'low' levels (scores 0-1): management not (currently) necessary. Construction and wood litter prevailed at 'moderate' levels (scores 2-4): management alerted for (further) monitoring. Solid waste densities were 'high' (scores 5-6): management alerted for action; quantities of rubbish were substantial (20-200 items m⁻¹ beach) but not unprecedented. REA is considered a robust methodology and complementary to other rapid assessment techniques, environmental frameworks and indicators of ecosystem condition. Copyright © 2014 Elsevier Ltd. All rights reserved.
Are good intentions putting the vaccination ecosystem at risk?
Watson, Michael; Faron de Goër, Eliot
2016-01-01
ABSTRACT Vaccination is made possible by an interconnected and interdependent ecosystem of vaccine producers, vaccination policy makers and implementers, and vaccine procurers and funders. The future of vaccination depends on the continued health of this ecosystem and its ability to produce, purchase, deliver, and innovate. However, the number of vaccine producers that also do significant research and development has decreased over the last several years. Many of these R&D-based producers have been forced to cease production of critical vaccines, despite global shortages, so that in several cases only one or two producers remain. We discuss the reasons for these changes and what might be done to maintain a healthy vaccination ecosystem. PMID:27269046
Climate Regulation Services of Natural and Managed Ecosystems of the Americas
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.; Costa, M. H.; Cuadra, S.; DeLucia, E. H.
2011-12-01
Terrestrial ecosystems regulate climate through both biogeochemical mechanisms (greenhouse gas regulation) and biophysical mechanisms (regulation of water and energy). Land management therefore provides some of the most effective strategies for climate change mitigation. However, most policies aimed at climate protection through land management, including UNFCCC mechanisms and bioenergy sustainability standards, account only for biogeochemical climate services. By ignoring biophysical climate regulation services that in some cases offset the biogeochemical regulation services, these policies run the risk of failing to advance the best climate solutions. Quantifying the combined value of biogeochemical and biophysical climate regulation services remains an important challenge. Here, we use a combination of data synthesis and modeling to quantify how biogeochemical and biophysical effects combine to shape the climate regulation value (CRV) of 18 natural and managed ecosystem types across the Western Hemisphere. Natural ecosystems generally had higher CRVs than agroecosystems, largely driven by differences in biogeochemical services. Biophysical contributions ranged from minimal to dominant. They were highly variable in space and across ecosystem types, and their relative importance varied strongly with the spatio-temporal scale of analysis. Our findings pertain to current efforts to protect climate through land management. Specifically, they reinforce the importance of protecting tropical forests and recent findings that the climatic effects of bioenergy production may be somewhat more positive than previously estimated. Given that biophysical effects in some cases dominate, ensuring effective climate protection through land management requires consideration of combined biogeochemical and biophysical climate regulation services. While quantification of ecosystem climate services is necessarily complex, our CRV index serves as one potential approach to measure the full climate services of terrestrial ecosystems.
Dry, drier, driest: An Australian story of extreme years and potential ecosystem collapse
NASA Astrophysics Data System (ADS)
Wardle, G. M.; Dickman, C. R.; Greenville, A. C.
2016-12-01
Ecosystems are expected to undergo large changes due to an increase in the frequency and intensity of extreme events. We can expect droughts to be longer, flooding to be more intense, and heatwaves and fires to increase. Importantly, at the regional scale these projections which are based on global climate models come with additional uncertainties that challenge how we can plan and evaluate options for adaptation. For many ecosystems, the understanding of the interdependencies and function is still limited, and particularly so for areas such as inland Australia that already exhibit unpredictable rainfall and lack strong seasonality. These drylands are water-limited and operate differently in dry, or wet years, when episodic pulses of resources drive increases in productivity. Increased extremes have the potential to disrupt the function of these highly dynamic and complex systems through feedbacks, synergies and through memory or delayed responses to change. Using our long-term work in the Simpson Desert as a case study, we explore the trends in productivity, the responses of flora and fauna to these opportunities and the spatial connectedness and heterogeneities that support the persistence of the ecosystem through dry times. Theory tells us that ecosystems may shift states abruptly when they cross critical thresholds. For example, arid grasslands may no longer have the capacity to return to a productive state following good rains. This happens under desertification, where plant cover and growth is limited — with flow on consequences for the entire ecosystem. Forecasting such changes is crucial but the fundamental knowledge relies on information that spans both long time scales and large spatial scales. We examine the knowledge gaps in quantifying ecosystem collapse using our IUCN ecosystem risk assessment of the Georgina gidgee woodlands. We conclude by arguing that without long-term data on trends and integration across the biophysical and and biological components at large spatial scales we cannot hope to anticipate ecosystem collapse and take appropriate action. The Terrestrial Ecosystem Research Network is leading the way for Australia to contribute to this important global ecosystem capability.
NASA Astrophysics Data System (ADS)
Crosthwaite Eyre, Charles
2010-12-01
Payments for Ecosystem Services (PES) is an exciting and expanding opportunity for sustainably managed forests. PES are derived from a range of ecosystem benefits from forests including climate change mitigation through afforestation and avoided deforestation, green power generation, wetland and watershed rehabilitation, water quality improvement, marine flood defence and the reduction in desertification and soil erosion. Forests are also the ancestral home to many vulnerable communities which need protection. Sustainable forest management plays a key role in many of these services which generates a potentially critical source of finance. However, for forests to realise revenues from these PES, they must meet demanding standards of project validation and service verification. They also need geospatial data to manage and monitor operational risk. In many cases the data is difficult to collect on the ground - in some cases impossible. This will create a new demand for data that must be impartial, timely, area wide, accurate and cost effective. This presentation will highlight the unique capacity of EO to provide these geospatial inputs required in the generation of PES from forestry and demonstrate products with practical examples.
Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments.
Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner
2017-01-01
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15 N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15 N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15 N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15 N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15 N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15 N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems.
Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments
Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner
2017-01-01
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems. PMID:29375589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr -1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Nevertheless, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
Identifying habitats at risk: simple models can reveal complex ecosystem dynamics.
Maxwell, Paul S; Pitt, Kylie A; Olds, Andrew D; Rissik, David; Connolly, Rod M
2015-03-01
The relationship between ecological impact and ecosystem structure is often strongly nonlinear, so that small increases in impact levels can cause a disproportionately large response in ecosystem structure. Nonlinear ecosystem responses can be difficult to predict because locally relevant data sets can be difficult or impossible to obtain. Bayesian networks (BN) are an emerging tool that can help managers to define ecosystem relationships using a range of data types from comprehensive quantitative data sets to expert opinion. We show how a simple BN can reveal nonlinear dynamics in seagrass ecosystems using ecological relationships sourced from the literature. We first developed a conceptual diagram by cataloguing the ecological responses of seagrasses to a range of drivers and impacts. We used the conceptual diagram to develop a BN populated with values sourced from published studies. We then applied the BN to show that the amount of initial seagrass biomass has a mitigating effect on the level of impact a meadow can withstand without loss, and that meadow recovery can often require disproportionately large improvements in impact levels. This mitigating effect resulted in the middle ranges of impact levels having a wide likelihood of seagrass presence, a situation known as bistability. Finally, we applied the model in a case study to identify the risk of loss and the likelihood of recovery for the conservation and management of seagrass meadows in Moreton Bay, Queensland, Australia. We used the model to predict the likelihood of bistability in 23 locations in the Bay. The model predicted bistability in seven locations, most of which have experienced seagrass loss at some stage in the past 25 years providing essential information for potential future restoration efforts. Our results demonstrate the capacity of simple, flexible modeling tools to facilitate collation and synthesis of disparate information. This approach can be adopted in the initial stages of conservation programs as a low-cost and relatively straightforward way to provide preliminary assessments of.nonlinear dynamics in ecosystems.
Hill, Timothy; Chocholek, Melanie; Clement, Robert
2017-06-01
Eddy covariance (EC) continues to provide invaluable insights into the dynamics of Earth's surface processes. However, despite its many strengths, spatial replication of EC at the ecosystem scale is rare. High equipment costs are likely to be partially responsible. This contributes to the low sampling, and even lower replication, of ecoregions in Africa, Oceania (excluding Australia) and South America. The level of replication matters as it directly affects statistical power. While the ergodicity of turbulence and temporal replication allow an EC tower to provide statistically robust flux estimates for its footprint, these principles do not extend to larger ecosystem scales. Despite the challenge of spatially replicating EC, it is clearly of interest to be able to use EC to provide statistically robust flux estimates for larger areas. We ask: How much spatial replication of EC is required for statistical confidence in our flux estimates of an ecosystem? We provide the reader with tools to estimate the number of EC towers needed to achieve a given statistical power. We show that for a typical ecosystem, around four EC towers are needed to have 95% statistical confidence that the annual flux of an ecosystem is nonzero. Furthermore, if the true flux is small relative to instrument noise and spatial variability, the number of towers needed can rise dramatically. We discuss approaches for improving statistical power and describe one solution: an inexpensive EC system that could help by making spatial replication more affordable. However, we note that diverting limited resources from other key measurements in order to allow spatial replication may not be optimal, and a balance needs to be struck. While individual EC towers are well suited to providing fluxes from the flux footprint, we emphasize that spatial replication is essential for statistically robust fluxes if a wider ecosystem is being studied. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Vina, A.; Tuanmu, M.; Yang, W.; Liu, J.
2012-12-01
Human activities continue to induce the degradation of natural ecosystems, thus threatening not only the long-term survival of many wildlife species around the world, but also the resilience of natural ecosystems to global environmental changes. In response, many conservation efforts are emerging as adaptive strategies for coping with the degradation of natural ecosystems. Among them, the establishment of nature reserves is considered to be the most effective. However the effectiveness of nature reserves depends on the type and intensity of human activities occurring within their boundaries. But many of these activities constitute important livelihood systems for local human populations. Therefore, to enhance the effectiveness of conservation actions without significantly affecting local livelihood systems, it is essential to understand the complexity of human-nature interactions and their effects on the spatio-temporal dynamics of natural ecosystems. In this study, we evaluated the relation between giant panda habitat dynamics, conservation efforts and human activities in Wolong Nature Reserve for Giant Pandas, Sichuan Province, China. This reserve supports ca. 10% of the entire wild giant panda population but is also home to ca. 4,900 local residents. The spatio-temporal dynamics of giant panda habitat over the last four decades were analyzed using a time series of remotely sensed imagery acquired by different satellite sensor systems, including the Landsat Multi-Spectral Scanner, the Landsat Thematic Mapper and the Moderate Resolution Imaging Spectroradiometer (MODIS). Our assessment suggests that when local residents were actively involved in conservation efforts (through a payment for ecosystem services scheme established since around 2000) panda habitat started to recover, thus enhancing the resilience capacity of natural ecosystems in the Reserve. This reversed a long-term (> 30 years) trend of panda habitat degradation. The study not only has direct implications for wildlife habitat conservation but also increases our understanding of the complexity of human-nature interactions and their effects on the resilience of natural ecosystems.
A spatial framework for representing nearshore ecosystems
NASA Astrophysics Data System (ADS)
Gregr, Edward J.; Lessard, Joanne; Harper, John
2013-08-01
The shallow, coastal regions of the world's oceans are highly productive ecosystems providing important habitat for commercial, forage, endangered, and iconic species. Given the diversity of ecosystem services produced or supported by this ecosystem, a better understanding of its structure and function is central to developing an ecosystem-based approach to management. However this region - termed the ‘white strip' by marine geologists because of the general lack of high-resolution bathymetric data - is dynamic, highly variable, and difficult to access making data collection challenging and expensive. Since substrate is a key indicator of habitat in this important ecosystem, our objective was to create a continuous substrate map from the best available bottom type data. Such data are critical to assessments of species distributions and anthropogenic risk. Using the Strait of Georgia in coastal British Columbia, Canada, as a case study, we demonstrate how such a map can be created from a diversity of sources. Our approach is simple, quantitative, and transparent making it amenable to iterative improvement as data quality and availability improve. We evaluated the ecological performance of our bottom patches using observed shellfish distributions. We found that observations of geoduck clam, an infaunal species, and red urchins, a species preferentially associated with hard bottom, were strongly and significantly associated with our soft and hard patches respectively. Our description of bottom patches also corresponded well with a more traditional, morphological classification of a portion of the study area. To provide subsequent analyses (such as habitat models) with some confidence in the defined bottom type values, we developed a corresponding confidence surface based on the agreement of, and distance between observations. Our continuous map of nearshore bottom patches thus provides a spatial framework to which other types of data, both abiotic (e.g., energy) and biotic, can be attached. As more data are associated with the bottom patches, we anticipate they will become increasingly useful for representing and developing species-habitat relationships, ultimately leading to a comprehensive representation of the nearshore ecosystem.
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.; ...
2016-05-12
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
NASA Astrophysics Data System (ADS)
Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel
2014-05-01
The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current state and some intervention scenarios.
An integrated ecosystem approach for sustainable prevention and control of dengue in Central Havana.
Bonet, Mariano; Spiegel, Jerry M; Ibarra, Ana Maria; Kouri, Gustavo; Pintre, Alfredo; Yassi, Annalee
2007-01-01
The authors developed and evaluated a comprehensive participatory ecosystem health approach for preventing the transmission of dengue, the most prevalent vector-borne disease in Cuba and the Latin America-Caribbean region. The integrated surveillance system central to this initiative encompassed three main subsystems (environmental; entomological; clinical-epidemiologic), relying on extensive community involvement. The study was conducted in Central Havana, Cuba. Indicators from each subsystem were selected and mapped using a GIS procedure providing instant visualization by city block in the municipality. To elucidate the factors affecting control and prevention efforts, perceived needs and risks, as well as knowledge, attitudes, and behaviors related to dengue, were assessed. Specific factors associated with the presence of mosquito breeding sites and risks of dengue were examined in a case-control study.
Jenkins, Jill A.
2011-01-01
Investigations into cellular and molecular characteristics of male gametes obtained from fish in natural ecosystems require careful sample handling and shipping in order to minimize artifacts. Maintaining sample integrity engenders confident assessments of ecosystem health, whereby animal condition is often reflected by gamete biomarkers - indicators that respond in measurable ways to changes. A number of our investigations have addressed the hypothesis that biomarkers from fish along a pollution gradient are reflective of site location. Species biology and the selected biological endpoints direct choice of parameters such as: temperature, buffer osmolality, time in transit, fixation, cryoprotectants, protease inhibition, and antibiotic inclusion in extender. This paper will highlight case studies, and outline parameters and thoughts on approaches for use by field and laboratory researchers.
Straile, Dietmar; Adrian, Rita; Schindler, Daniel E.
2012-01-01
Spring phenologies are advancing in many ecosystems associated with climate warming causing unpredictable changes in ecosystem functioning. Here we establish a phenological model for Daphnia, an aquatic keystone herbivore based on decadal data on water temperatures and the timing of Daphnia population maxima from Lake Constance, a large European lake. We tested this model with long-term time-series data from two lakes (Müggelsee, Germany; Lake Washington, USA), and with observations from a diverse set of 49 lakes/sites distributed widely across the Northern Hemisphere (NH). The model successfully captured the observed temporal variation of Daphnia phenology in the two case study sites (r2 = 0.25 and 0.39 for Müggelsee and Lake Washington, respectively) and large-scale spatial variation in the NH (R2 = 0.57). These results suggest that Daphnia phenology follows a uniform temperature dependency in NH lakes. Our approach – based on temperature phenologies – has large potential to study and predict phenologies of animal and plant populations across large latitudinal gradients in other ecosystems. PMID:23071520
The Story of Mangrove Depletion: Using Socioscientific Cases to Promote Ocean Literacy
ERIC Educational Resources Information Center
Luther, Rachel A.; Tippins, Deborah J.; Bilbao, Purita P.; Tan, Andrew; Gelvezon, Ruth L.
2013-01-01
The value of mangroves and mangrove ecosystems has not always been recognized. In fact, mangroves were historically regarded largely as wastelands with little or no value. Over time, humans began to recognize the multiple ways in which they could be used, particularly through development, making the mangrove ecosystem vulnerable to destruction and…
ECO-Report - The case for research: How it makes a difference to managers
Janie Canton-Thompson; Marcia Patton-Mallory; Sue Heald; Sharon Ritter; Robert D. Pfister; Dean E. Pearson; Yvette K. Ortega; Alan Watson; Elaine Kennedy Sutherland; Greg Jones
2003-01-01
ECO-Report is an annual Rocky Mountain Research Station (RMRS) publication which contains a set of articles showcasing the Bitterroot Ecosystem Management Research Project (BEMRP) research projects and activities. The articles are concise, user-friendly, and designed to inform a broad range of audiences interested in ecosystem management. Articles featured in...
Randall S. Rosenberger; Eric M. White; Jeffrey D. Kline; Claire Cvitanovich
2017-01-01
Natural resource professionals are often tasked with weighing the benefits and costs of changes in ecosystem services associated with land management alternatives and decisions. In many cases, federal regulations even require land managers and planners to account for these values explicitly. Outdoor recreation is a key ecosystem service provided by national forests and...
2014-06-13
corruption and cheating. This also makes it extremely difficult to determine the actual impact on the resource and the entire ecosystem . “Overfishing...limits, established under international agreements. By adversely impacting fisheries, marine ecosystems , food security and coastal communities around...
Proposed BMPs for Invasive Plant Mitigation during Timber Harvesting Operations
Chris B. LeDoux; Danielle K. Martin
2013-01-01
The invasion and spread of invasive plants is a major problem in forested ecosystems. Invasive plants can displace existing vegetation and in some cases take over the site. With the displacement of native vegetation come major ecosystem changes that may jeopardize ecological processes and functions as well as habitat for wildlife. The disturbance caused during timber...
Tribal experiences and lessons learned in riparian ecosystem restoration
Ronald K. Miller; James E. Enote; Cameron L. Martinez
1996-01-01
Riparian ecosystems have been part of the culture of land use of native peoples in the Southwest United States for thousands of years. The experiences of tribal riparian initiatives to incorporate modern elements of environment and development with cultural needs are relatively few. This paper describes tribal case examples and approaches in riparian management which...
Stephen S. Sackett; Sally M. Haase
1998-01-01
Historic observations and research indicate that the ponderosa pine (Pinus ponderosa) ecosystem in the southwestern U.S. is now very different compared to pre-European settlement. Timber harvest, livestock grazing, and fire suppression have transformed an open ponderosa pine-bunch grass community into a dense forest overloaded with flammable...
Allowing variance may enlarge the safe operating space for exploited ecosystems.
Carpenter, Stephen R; Brock, William A; Folke, Carl; van Nes, Egbert H; Scheffer, Marten
2015-11-17
Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2-4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them.
Allowing variance may enlarge the safe operating space for exploited ecosystems
Carpenter, Stephen R.; Brock, William A.; Folke, Carl; van Nes, Egbert H.; Scheffer, Marten
2015-01-01
Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2–4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them. PMID:26438857
George T. Cvetkovich; Patricia L. Winter
2008-01-01
This report presents results from a study of San Bernardino National Forest community residentsâ experiences with and perceptions of fire, fire management, and the Forest Service. Using self-administered surveys and focus group discussions, we found that participants had personal experiences with fire, were concerned about fire, and felt knowledgeable about effective...
Group points to underlying causes of ecosystem, blodiversity loss
NASA Astrophysics Data System (ADS)
Showstack, Randy
Freshwater diversion, urban water pollution,and overfishing are leading to the decline of some of Pakistan's coastal mangrove ecosystems. In Mexico's Calakmul Biosphere Reserve, near the border of Guatemala, population growth and poverty are pushing forest clearing. Meanwhile, in Chilika Lake in southeast India, changes in economic policies and global markets have led to changes in commercial aquaculture that is partly responsible for the decline of local fisheries and the bird population.These are the conclusions of some of the 10 case studies contained in a World Wildlife Fund (WWF) report, issued on July 6, that examines forests, wetlands, steppes, mangroves, and other habitats to determine the underlying causes for biodiversity loss.
East, Marion L; Wibbelt, Gudrun; Lieckfeldt, Dietmar; Ludwig, Arne; Goller, Katja; Wilhelm, Kerstin; Schares, Gereon; Thierer, Dagmar; Hofer, Heribert
2008-01-01
Health monitoring of spotted hyenas (Crocuta crocuta) in the Serengeti ecosystem, Tanzania, revealed Hepatozoon infection in all of 11 immature individuals examined following death from natural causes. Hepatozoon infection was probably an important factor contributing to mortality in two cases that exhibited clinical signs of ataxia, lethargy, ocular discharge, retching, and labored breathing before death. Whether Hepatozoon infection contributed to six deaths from fire, probable lion predation and unknown causes could not be determined. Four deaths from infanticide and starvation were unlikely to be associated with Hepatozoon infection. Histologic examination revealed lung tissue infected with cyst-like structures containing protozoan stages in all eight cases examined and interstitial pneumonia in most cases. Systemic spread of infection to several organs was found in three cases. Alignment of a 426 bp sequence from the parasite's 18s rRNA gene revealed a Hepatozoon species identical to that recently described from two domestic cats in Spain and only 7 bp substitutions when a 853 bp sequence was aligned to this cat Hepatozoon species. Previous reports of infection of wild carnivores in eastern and southern Africa with an unspecified Hepatozoon species similar in appearance to H. canis may have involved the species described in this study.
Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed.
Sánchez-Canales, María; López Benito, Alfredo; Passuello, Ana; Terrado, Marta; Ziv, Guy; Acuña, Vicenç; Schuhmacher, Marta; Elorza, F Javier
2012-12-01
The services of natural ecosystems are clearly very important to our societies. In the last years, efforts to conserve and value ecosystem services have been fomented. By way of illustration, the Natural Capital Project integrates ecosystem services into everyday decision making around the world. This project has developed InVEST (a system for Integrated Valuation of Ecosystem Services and Tradeoffs). The InVEST model is a spatially integrated modelling tool that allows us to predict changes in ecosystem services, biodiversity conservation and commodity production levels. Here, InVEST model is applied to a stakeholder-defined scenario of land-use/land-cover change in a Mediterranean region basin (the Llobregat basin, Catalonia, Spain). Of all InVEST modules and sub-modules, only the behaviour of the water provisioning one is investigated in this article. The main novel aspect of this work is the sensitivity analysis (SA) carried out to the InVEST model in order to determine the variability of the model response when the values of three of its main coefficients: Z (seasonal precipitation distribution), prec (annual precipitation) and eto (annual evapotranspiration), change. The SA technique used here is a One-At-a-Time (OAT) screening method known as Morris method, applied over each one of the one hundred and fifty four sub-watersheds in which the Llobregat River basin is divided. As a result, this method provides three sensitivity indices for each one of the sub-watersheds under consideration, which are mapped to study how they are spatially distributed. From their analysis, the study shows that, in the case under consideration and between the limits considered for each factor, the effect of the Z coefficient on the model response is negligible, while the other two need to be accurately determined in order to obtain precise output variables. The results of this study will be applicable to the others watersheds assessed in the Consolider Scarce Project. Copyright © 2012 Elsevier B.V. All rights reserved.
Local Knowledge and Conservation of Seagrasses in the Tamil Nadu State of India
2011-01-01
Local knowledge systems are not considered in the conservation of fragile seagrass marine ecosystems. In fact, little is known about the utility of seagrasses in local coastal communities. This is intriguing given that some local communities rely on seagrasses to sustain their livelihoods and have relocated their villages to areas with a rich diversity and abundance of seagrasses. The purpose of this study is to assist in conservation efforts regarding seagrasses through identifying Traditional Ecological Knowledge (TEK) from local knowledge systems of seagrasses from 40 coastal communities along the eastern coast of India. We explore the assemblage of scientific and local traditional knowledge concerning the 1. classification of seagrasses (comparing scientific and traditional classification systems), 2. utility of seagrasses, 3. Traditional Ecological Knowledge (TEK) of seagrasses, and 4. current conservation efforts for seagrass ecosystems. Our results indicate that local knowledge systems consist of a complex classification of seagrass diversity that considers the role of seagrasses in the marine ecosystem. This fine-scaled ethno-classification gives rise to five times the number of taxa (10 species = 50 local ethnotaxa), each with a unique role in the ecosystem and utility within coastal communities, including the use of seagrasses for medicine (e.g., treatment of heart conditions, seasickness, etc.), food (nutritious seeds), fertilizer (nutrient rich biomass) and livestock feed (goats and sheep). Local communities are concerned about the loss of seagrass diversity and have considerable local knowledge that is valuable for conservation and restoration plans. This study serves as a case study example of the depth and breadth of local knowledge systems for a particular ecosystem that is in peril. Key words: local health and nutrition, traditional ecological knowledge (TEK), conservation and natural resources management, consensus, ethnomedicine, ethnotaxa, cultural heritage PMID:22112297
NASA Astrophysics Data System (ADS)
Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.
2017-08-01
The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.
Carbon sequestration through urban ecosystem services: A case study from Finland.
Kuittinen, Matti; Moinel, Caroline; Adalgeirsdottir, Kristjana
2016-09-01
Plants and soil are natural regulators of atmospheric CO2. Whereas plants sequester atmospheric carbon, soils deposit it for decades. As cities become increasingly more densely built, the available land area for such ecosystem services may decrease. We studied seven different housing areas in the Finnish city of Espoo to ascertain the extent to which site efficiency affects to the ecosystem services if the full life-cycle GHG emissions of these areas are taken into account. The results show that the impact of CO2 uptake through carbon sinks in growing plants and the uptake of soil organic carbon vary greatly. Its share of all emissions varied from a marginal value of 1.2% to a more considerable value of 11.9%. The highest potential was calculated for a detached house located on a large site, while the weakest was calculated for compact apartment blocks. The study revealed that in order to quantify this potential more accurately, several knowledge gaps must first be addressed. These include impartial growth algorithms for Nordic wood species, missing accumulation factors for soil organic carbon in cold climates and statistical maintenance scenarios for gardens. Copyright © 2016 Elsevier B.V. All rights reserved.
Villamagna, Amy M.; Mogollón, Beatriz; Angermeier, Paul
2014-01-01
Despite recent interest, ecosystem services are not yet fully incorporated into private and public decisions about natural resource management. Cultural ecosystem services (CES) are among the most challenging of services to include because they comprise complex ecological and social properties and processes that make them difficult to measure, map or monetize. Like others, CES are vulnerable to landscape changes and unsustainable use. To date, the sustainability of services has not been adequately addressed and few studies have considered measures of service capacity and demand simultaneously. To facilitate sustainability assessments and management of CES, our study objectives were to (1) develop a spatially explicit framework for mapping the capacity of ecosystems to provide freshwater recreational fishing, an important cultural service, (2) map societal demand for freshwater recreational fishing based on license data and identify areas of potential overuse, and (3) demonstrate how maps of relative capacity and relative demand could be interfaced to estimate sustainability of a CES. We mapped freshwater recreational fishing capacity at the 12-digit hydrologic unit-scale in North Carolina and Virginia using a multi-indicator service framework incorporating biophysical and social landscape metrics and mapped demand based on fishing license data. Mapping of capacity revealed a gradual decrease in capacity eastward from the mountains to the coastal plain and that fishing demand was greatest in urban areas. When comparing standardized relative measures of capacity and demand for freshwater recreational fishing, we found that ranks of capacity exceeded ranks of demand in most hydrologic units, except in 17% of North Carolina and 5% of Virginia. Our GIS-based approach to view freshwater recreational fishing through an ecosystem service lens will enable scientists and managers to examine (1) biophysical and social factors that foster or diminish cultural ecosystem services delivery, (2) demand for cultural ecosystem services relative to their capacity, and (3) ecological pressures like potential overuse that affect service sustainability. Ultimately, we expect such analyses to inform decision-making for freshwater recreational fisheries and other cultural ecosystem services.
Jacquet, Stéphan; Domaizon, Isabelle; Anneville, Orlane
2014-06-01
Lakes Annecy, Bourget, and Geneva are large, deep carbonated peri-alpine lakes in eastern France. They are located in the same ecoregion but have been subject to differing degrees of anthropogenic pressure over the past decades. A comparative analysis of these ecosystems can therefore provide valuable information on how the lakes have responded to changes in phosphorus runoff, fish management practices, and global warming. Each of these lakes has undergone a restoration process, and changes in water quality and trophic state, as measured using parameters like transparency, chlorophyll a, nutrient concentrations, and phytoplankton biomass and structure, can be used to evaluate efforts made to preserve these ecosystems. Our results reveal that (1) peri-alpine lakes are exemplary cases of restoration in the world where freshwater eutrophication is on the increase, and (2) efforts must be maintained because of the new context of climate change, the effects of which on the quality and the ecological functioning of lakes are still poorly understood.
The impact of genetically modified crops on soil microbial communities.
Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra
2005-01-01
Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.
Systemic solutions for multi-benefit water and environmental management.
Everard, Mark; McInnes, Robert
2013-09-01
The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and researchers working on ways to quantify and optimise delivery of ecosystem services. Copyright © 2013 Elsevier B.V. All rights reserved.
Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity
Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn
2014-01-01
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951
Schröter, Matthias; Rusch, Graciela M; Barton, David N; Blumentrath, Stefan; Nordén, Björn
2014-01-01
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.
Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J
2014-01-01
Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.
Casalegno, Stefano; Bennie, Jonathan J.; Inger, Richard; Gaston, Kevin J.
2014-01-01
Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services. PMID:25250775
Determinants of community structure of zooplankton in heavily polluted river ecosystems
NASA Astrophysics Data System (ADS)
Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin
2016-02-01
River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level.
Masumoto, Shota; Uchida, Masaki; Tojo, Motoaki; Herrero, Maria Luz; Mori, Akira S; Imura, Satoshi
2018-03-01
In Arctic tundra, plant pathogens have substantial effects on the growth and survival of hosts, and impacts on the carbon balance at the scale of ecological systems. To understand these effects on carbon dynamics across different scales including plant organ, individual, population and ecosystem, we focused on two primary factors: host productivity reduction and carbon consumption by the pathogen. We measured the effect of the pathogen on photosynthetic and respiratory activity in the host. We also measured respiration and the amount of carbon in the pathogen. We constructed a model based on these two factors, and calculated pathogenic effects on the carbon balance at different organismal and ecological scales. We found that carbon was reduced in infected leaves by 118% compared with healthy leaves; the major factor causing this loss was pathogenic carbon consumption. The carbon balance at the population and ecosystem levels decreased by 35% and 20%, respectively, at an infection rate of 30%. This case study provides the first evidence that a host plant can lose more carbon through pathogenic carbon consumption than through a reduction in productivity. Such a pathogenic effect could greatly change ecosystem carbon cycling without decreasing annual productivity.
Climate change, cranes, and temperate floodplain ecosystems
King, Sammy L.
2010-01-01
Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.
Evolution of local facilitation in arid ecosystems.
Kéfi, Sonia; van Baalen, Minus; Rietkerk, Max; Loreau, Michel
2008-07-01
In harsh environments, sessile organisms can make their habitat more hospitable by buffering environmental stress or increasing resource availability. Although the ecological significance of such local facilitation is widely established, the evolutionary aspects have been seldom investigated. Yet addressing the evolutionary aspects of local facilitation is important because theoretical studies show that systems with such positive interactions can exhibit alternative stable states and that such systems may suddenly become extinct when they evolve (evolutionary suicide). Arid ecosystems currently experience strong changes in climate and human pressures, but little is known about the effects of these changes on the selective pressures exerted on the vegetation. Here, we focus on the evolution of local facilitation in arid ecosystems, using a lattice-structured model explicitly considering local interactions among plants. We found that the evolution of local facilitation depends on the seed dispersal strategy. In systems characterized by short-distance seed dispersal, adaptation to a more stressful environment leads to high local facilitation, allowing the population to escape extinction. In contrast, systems characterized by long-distance seed dispersal become extinct under increased stress even when allowed to adapt. In this case, adaptation in response to climate change and human pressures could give the final push to the desertification of arid ecosystems.
Invasive species triggers a massive loss of ecosystem services through a trophic cascade.
Walsh, Jake R; Carpenter, Stephen R; Vander Zanden, M Jake
2016-04-12
Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430-US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy.
Lü, Yihe; Fu, Bojie; Feng, Xiaoming; Zeng, Yuan; Liu, Yu; Chang, Ruiying; Sun, Ge; Wu, Bingfang
2012-01-01
As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of the Loess Plateau, China, through the use of several methods including the Universal Soil Loss Equation (USLE), hydrological modeling and multivariate analysis. An assessment of the changes over the period of 2000-2008 in four key ecosystem services was undertaken to determine the effects of the Chinese government's ecological rehabilitation initiatives implemented in 1999. These ecosystem services included water regulation, soil conservation, carbon sequestration and grain production. Significant conversions of farmland to woodland and grassland were found to have resulted in enhanced soil conservation and carbon sequestration, but decreased regional water yield under a warming and drying climate trend. The total grain production increased in spite of a significant decline in farmland acreage. These trends have been attributed to the strong socioeconomic incentives embedded in the ecological rehabilitation policy. Although some positive policy results have been achieved over the last decade, large uncertainty remains regarding long-term policy effects on the sustainability of ecological rehabilitation performance and ecosystem service enhancement. To reduce such uncertainty, this study calls for an adaptive management approach to regional ecological rehabilitation policy to be adopted, with a focus on the dynamic interactions between people and their environments in a changing world.
Lü, Yihe; Fu, Bojie; Feng, Xiaoming; Zeng, Yuan; Liu, Yu; Chang, Ruiying; Sun, Ge; Wu, Bingfang
2012-01-01
As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of the Loess Plateau, China, through the use of several methods including the Universal Soil Loss Equation (USLE), hydrological modeling and multivariate analysis. An assessment of the changes over the period of 2000–2008 in four key ecosystem services was undertaken to determine the effects of the Chinese government's ecological rehabilitation initiatives implemented in 1999. These ecosystem services included water regulation, soil conservation, carbon sequestration and grain production. Significant conversions of farmland to woodland and grassland were found to have resulted in enhanced soil conservation and carbon sequestration, but decreased regional water yield under a warming and drying climate trend. The total grain production increased in spite of a significant decline in farmland acreage. These trends have been attributed to the strong socioeconomic incentives embedded in the ecological rehabilitation policy. Although some positive policy results have been achieved over the last decade, large uncertainty remains regarding long-term policy effects on the sustainability of ecological rehabilitation performance and ecosystem service enhancement. To reduce such uncertainty, this study calls for an adaptive management approach to regional ecological rehabilitation policy to be adopted, with a focus on the dynamic interactions between people and their environments in a changing world. PMID:22359628
NASA Astrophysics Data System (ADS)
Lee, B.; Geyer, R.; Seo, B.; Lindner, S.; Walther, G.; Tenhunen, J. D.
2009-12-01
The process-based spatial simulation model PIXGRO was used to estimate gross primary production, ecosystem respiration, net ecosystem CO2 exchange and water use by forest and crop fields of Haean Basin, South Korea at landscape scale. Simulations are run for individual years from early spring to late fall, providing estimates for dry land crops and rice paddies with respect to carbon gain, biomass and leaf area development, allocation of photoproducts to the belowground ecosystem compartment, and harvest yields. In the case of deciduous oak forests, gas exchange is estimated, but spatial simulation of growth over the single annual cycles is not included. Spatial parameterization of the model is derived for forest LAI based on remote sensing, for forest and cropland fluxes via eddy covariance and chamber studies, for soil characteristics by generalization from spatial surveys, for climate drivers by generalizing observations at ca. 20 monitoring stations distributed throughout the basin and along the elevation gradient from 500 to 1000 m, and for incident radiation via modelling of the radiation components in complex terrain. Validation of the model is being carried out at point scale based on comparison of model output at selected locations with observations as well as with known trends in ecosystem response documented in the literature. The resulting modelling tool is useful for estimation of ecosystem services at landscape scale, first expressed as kg ha-1 crop yield, but via future cooperative studies also in terms of monetary gain to individual farms and farming cooperatives applying particular management strategies.
Use of the ecosystem services concept in landscape management in the Netherlands.
van Wensem, Joke
2013-04-01
Increasing reference to the ecosystem services (ES) concept is made in publications on the need to use natural resources sustainably, to protect and enhance biodiversity, and to alleviate poverty in developing countries. To examine the significance of the concept in densely populated industrialized countries, this case study investigates its use in several sustainable landscape management projects in the Netherlands. Guidance by the Economics of Ecosystems and Biodiversity project (TEEB) for local and regional policy and management serves as a reference. The projects studied show that the ES concept is seen as a tool for enhancing biodiversity, creating more sustainable regional development plans, supporting better spatial-planning decisions on soil sealing, and, most importantly, for getting the involvement of much broader stakeholder groups--not just to make better decisions, but also to attract more funding for the plans. Not only does the Netherlands have a high demand for various ecosystem services and a desire for multifunctional land use, it also has a long tradition of consensus-seeking. As a result, "Dutch practice" is complex and involves many different stakeholders. Because of increasing recognition of the role ecosystem services play in enhancing the visibility of natural resources in decision making, the ES concept seems to be gaining a foothold. However, the number of projects is still limited, and neither the use of the methods nor the results are monitored. So far, this has made it impossible to say whether the approach leads to more sustainable decisions-in other words, to the better protection and management of natural resources. Copyright © 2013 SETAC.
Estimation of Spatial Trends in LAI in Heterogeneous Semi-arid Ecosystems using Full Waveform Lidar
NASA Astrophysics Data System (ADS)
Glenn, N. F.; Ilangakoon, N.; Spaete, L.; Dashti, H.
2017-12-01
Leaf area index (LAI) is a key structural trait that is defined by the plant functional type (PFT) and controlled by prevailing climate- and human-driven ecosystem stresses. Estimates of LAI using remote sensing techniques are limited by the uncertainties of vegetation inter and intra-gap fraction estimates; this is especially the case in sparse, low stature vegetated ecosystems. Small footprint full waveform lidar digitizes the total amount of return energy with the direction information as a near continuous waveform at a high vertical resolution (1 ns). Thus waveform lidar provides additional data matrices to capture vegetation gaps as well as PFTs that can be used to constrain the uncertainties of LAI estimates. In this study, we calculated a radiometrically calibrated full waveform parameter called backscatter cross section, along with other data matrices from the waveform to estimate vegetation gaps across plots (10 m x 10 m) in a semi-arid ecosystem in the western US. The LAI was then estimated using empirical relationships with directional gap fraction. Full waveform-derived gap fraction based LAI showed a high correlation with field observed shrub LAI (R2 = 0.66, RMSE = 0.24) compared to discrete return lidar based LAI (R2 = 0.01, RMSE = 0.5). The data matrices derived from full waveform lidar classified a number of deciduous and evergreen tree species, shrub species, and bare ground with an overall accuracy of 89% at 10 m. A similar analysis was performed at 1m with overall accuracy of 80%. The next step is to use these relationships to map the PFTs LAI at 10 m spatial scale across the larger study regions. The results show the exciting potential of full waveform lidar to identify plant functional types and LAI in low-stature vegetation dominated semi-arid ecosystems, an ecosystem in which many other remote sensing techniques fail. These results can be used to assess ecosystem state, habitat suitability as well as to constrain model uncertainties in vegetation dynamic models with a combination of other remote sensing techniques. Multi-spatial resolution (1 m and 10 m) studies provide basic information on the applicability and detection thresholds of future global satellite sensors designed at coarser spatial resolutions (e.g. GEDI, ICESat-2) in semi-arid ecosystems.