Sample records for ecosystems including human

  1. Integrating Human and Ecosystem Health Through Ecosystem Services Frameworks.

    PubMed

    Ford, Adriana E S; Graham, Hilary; White, Piran C L

    2015-12-01

    The pace and scale of environmental change is undermining the conditions for human health. Yet the environment and human health remain poorly integrated within research, policy and practice. The ecosystem services (ES) approach provides a way of promoting integration via the frameworks used to represent relationships between environment and society in simple visual forms. To assess this potential, we undertook a scoping review of ES frameworks and assessed how each represented seven key dimensions, including ecosystem and human health. Of the 84 ES frameworks identified, the majority did not include human health (62%) or include feedback mechanisms between ecosystems and human health (75%). While ecosystem drivers of human health are included in some ES frameworks, more comprehensive frameworks are required to drive forward research and policy on environmental change and human health.

  2. On Man and Ecosystems.

    ERIC Educational Resources Information Center

    Brookfield, Harold

    1982-01-01

    Distinctions between natural ecosystems and human ecosystems are misleading. Natural and social sciences can be integrated through the concept of a "human-use ecosystem," in which social scientists analyze the community, household, and individual, and natural scientists analyze the land. Includes a case study of St. Kitts. (KC)

  3. Preface: Ecosystem services, ecosystem health and human communities

    NASA Astrophysics Data System (ADS)

    Plag, Hans-Peter

    2018-04-01

    This special issue contains a collection of manuscripts that were originally intended to be included in the special issue on "Physics and Economics of Ecosystem Services Flows" (Volume 101, guest editors H. Su, J. Dong and S. Nagarajan) and "Biogeochemical Processes in the Changing Wetland Environment" (Volume 103, guest editors J. Bai, L. Huang and H. Gao). All of them are addressing issues related to ecosystem services in different settings. Ecosystem services are of high value for both the ecosystems and human communities, and understanding the impacts of environmental processes and human activities on ecosystems is of fundamental importance for the preservation of these services.

  4. Nitrogen-induced terrestrial eutrophication: cascading effects and impacts on ecosystem services

    Treesearch

    Christopher M. Clark; Michael D. Bell; James W. Boyd; Jana E. Compton; Eric A. Davidson; Christine Davis; Mark E. Fenn; Linda Geiser; Laurence Jones; Tamara F. Blett

    2017-01-01

    Human activity has significantly increased the deposition of nitrogen (N) on terrestrial ecosystems over pre-industrial levels leading to a multitude of effects including losses of biodiversity, changes in ecosystem functioning, and impacts on human well-being. It is challenging to explicitly link the level of deposition on an ecosystem to the cascade of...

  5. Ecosystem services and agriculture: tradeoffs and synergies

    PubMed Central

    Power, Alison G.

    2010-01-01

    Agricultural ecosystems provide humans with food, forage, bioenergy and pharmaceuticals and are essential to human wellbeing. These systems rely on ecosystem services provided by natural ecosystems, including pollination, biological pest control, maintenance of soil structure and fertility, nutrient cycling and hydrological services. Preliminary assessments indicate that the value of these ecosystem services to agriculture is enormous and often underappreciated. Agroecosystems also produce a variety of ecosystem services, such as regulation of soil and water quality, carbon sequestration, support for biodiversity and cultural services. Depending on management practices, agriculture can also be the source of numerous disservices, including loss of wildlife habitat, nutrient runoff, sedimentation of waterways, greenhouse gas emissions, and pesticide poisoning of humans and non-target species. The tradeoffs that may occur between provisioning services and other ecosystem services and disservices should be evaluated in terms of spatial scale, temporal scale and reversibility. As more effective methods for valuing ecosystem services become available, the potential for ‘win–win’ scenarios increases. Under all scenarios, appropriate agricultural management practices are critical to realizing the benefits of ecosystem services and reducing disservices from agricultural activities. PMID:20713396

  6. Ecosystem services: a new NRS-FIA analytical science initiative

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; James D. Garner

    2015-01-01

    Forest ecosystem services (ES) are linked to sustaining human well-being. Recognizing an inappropriate economic valuation of ecosystem properties and processes, many ecologists, economists, and political scientists have pushed for an increasing awareness and appreciation of ES. Many definitions of ES include both direct and indirect benefits humans derive from...

  7. EnviroAtlas - Bird National Biodiversity Ecosystem Services Metrics by 12-digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This dataset was produced by a joint effort of New Mexico State University (NMSU), the U.S. Environmental Protection Agency (EPA), and the U.S. Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems, have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, or cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 15 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for bird species. Metrics include all bird species richness, lists identif

  8. The Effect on Ecological Systems of Remediation to Protect Human Health

    PubMed Central

    Burger, Joanna

    2007-01-01

    Environmental remediation of contaminated eco-sytems reduces stresses to these ecosystems, including stresses caused by the production, use, and storage of weapons of mass destruction. The effects of these various stressors on humans can be reduced by remediation or by blocking the exposure of humans, but blocking the exposure of resident biota is almost impossible. Remediation may involve trade-offs between reducing a minor risk to public health and increasing risks to workers and ecosystems. Remediation practices such as soil removal disrupt ecosystems, which take decades to recover. Without further human disturbances, and with low levels of exposure to stress-ors, ecosystems can recover from physical disruptions and spills. Remediation to remove negligible risk to humans can destroy delicate ecosystems for very little gain in public health. PMID:17666693

  9. Sustaining healthy freshwater ecosystems

    USGS Publications Warehouse

    Baron, Jill S.; Poff, N.L.

    2004-01-01

    Functionally intact and biologically complex freshwater ecosystems provide many economically valuable commodities and services to society. The services supplied by freshwater ecosystems include flood control, transportation, recreation, purification of human and industrial wastes, habitat for plants and animals, and production of fish and other foods and marketable goods. These human benefits are called ecological services, defined as “the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life” (Daily 1997). Over the long term, healthy freshwater ecosystems are likely to retain the adaptive capacity to sustain production of these ecological services in the face of future environmental disruptions such as climate change.

  10. [Urban ecosystem services: A review].

    PubMed

    Mao, Qi-zheng; Huang, Gan-lin; Wu, Jian-guo

    2015-04-01

    Maintaining and improving ecosystem services in urban areas and human well-being are essential for sustainable development and therefore constitute an important topic in urban ecology. Here we reviewed studies on ecosystem services in urban areas. Based on the concept and classification of urban ecosystem services, we summarized characteristics of urban ecosystem services, including the human domination, high demand of ecosystem services in urban areas, spatial heterogeneity and temporal dynamics of ecosystem services supply and demand in urban areas, multi-services of urban green infrastructures, the socio-economic dimension of ecosystem services supply and ecosystem disservices in urban areas. Among different urban ecosystem services, the regulating service and cultural service are particularly indispensable to benefit human health. We pointed out that tradeoffs among different types of ecosystem services mostly occur between supportive service and cultural service, as well as regulating service and cultural service. In particular, we emphasized the relationship between landscape design (i.e. green infrastructure) and ecosystem services supply. Finally, we discussed current gaps to link urban ecosystem services studies to landscape design and management and pointed out several directions for future research in urban ecosystem services.

  11. EnviroAtlas - Biodiversity Metrics by 12-digit HUC for the Southwestern United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset was produced by a joint effort of New Mexico State University, US EPA, and the US Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems, have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, or cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 15 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for all vertebrate species except fish. Metrics include species richness for all vertebrates, specific taxon gr

  12. EnviroAtlas - Biodiversity Metrics by 12-digit HUC for the Southeastern United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset was produced by a joint effort of New Mexico State University, US EPA, and the US Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems, have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, or cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 14 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for all vertebrate species except fish. Metrics include species richness for all vertebrates, specific taxon gr

  13. EnviroAtlas - Total reptile species by 12-digit HUC for the conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset was produced by a joint effort of New Mexico State University, US Environmental Protection Agency (US EPA,) and the U.S. Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 15 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for all vertebrate species except fish. Metrics include species richness fo

  14. Analysis of Reptile Biodiversity and Ecosystem Services within ...

    EPA Pesticide Factsheets

    A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to

  15. The Economic Value of Coastal Ecosystems in California

    EPA Science Inventory

    The status of marine ecosystems affects the well being of human societies. These ecosystems include but are not limited to estuaries, lagoons, reefs, and systems further offshore such as deep ocean vents. The coastal regions that connect terrestrial and marine ecosystems are of p...

  16. Ecosystem services and economic theory: integration for policy-relevant research.

    PubMed

    Fisher, Brendan; Turner, Kerry; Zylstra, Matthew; Brouwer, Roy; de Groot, Rudolf; Farber, Stephen; Ferraro, Paul; Green, Rhys; Hadley, David; Harlow, Julian; Jefferiss, Paul; Kirkby, Chris; Morling, Paul; Mowatt, Shaun; Naidoo, Robin; Paavola, Jouni; Strassburg, Bernardo; Yu, Doug; Balmford, Andrew

    2008-12-01

    It has become essential in policy and decision-making circles to think about the economic benefits (in addition to moral and scientific motivations) humans derive from well-functioning ecosystems. The concept of ecosystem services has been developed to address this link between ecosystems and human welfare. Since policy decisions are often evaluated through cost-benefit assessments, an economic analysis can help make ecosystem service research operational. In this paper we provide some simple economic analyses to discuss key concepts involved in formalizing ecosystem service research. These include the distinction between services and benefits, understanding the importance of marginal ecosystem changes, formalizing the idea of a safe minimum standard for ecosystem service provision, and discussing how to capture the public benefits of ecosystem services. We discuss how the integration of economic concepts and ecosystem services can provide policy and decision makers with a fuller spectrum of information for making conservation-conversion trade-offs. We include the results from a survey of the literature and a questionnaire of researchers regarding how ecosystem service research can be integrated into the policy process. We feel this discussion of economic concepts will be a practical aid for ecosystem service research to become more immediately policy relevant.

  17. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    PubMed Central

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers. PMID:23951002

  18. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    PubMed

    Kelble, Christopher R; Loomis, Dave K; Lovelace, Susan; Nuttle, William K; Ortner, Peter B; Fletcher, Pamela; Cook, Geoffrey S; Lorenz, Jerry J; Boyer, Joseph N

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.

  19. Meeting ecological and societal needs for freshwater

    USGS Publications Warehouse

    Baron, Jill S.; Poff, N.L.; Angermeier, P.L.; Dahm, Clifford N.; Gleick, P.H.; Hairston, N.G.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A.D.

    2002-01-01

    Human society has used freshwater from rivers, lakes, groundwater, and wetlands for many different urban, agricultural, and industrial activities, but in doing so has overlooked its value in supporting ecosystems. Freshwater is vital to human life and societal well-being, and thus its utilization for consumption, irrigation, and transport has long taken precedence over other commodities and services provided by freshwater ecosystems. However, there is growing recognition that functionally intact and biologically complex aquatic ecosystems provide many economically valuable services and long-term benefits to society. The short-term benefits include ecosystem goods and services, such as food supply, flood control, purification of human and industrial wastes, and habitat for plant and animal life—and these are costly, if not impossible, to replace. Long-term benefits include the sustained provision of those goods and services, as well as the adaptive capacity of aquatic ecosystems to respond to future environmental alterations, such as climate change. Thus, maintenance of the processes and properties that support freshwater ecosystem integrity should be included in debates over sustainable water resource allocation.The purpose of this report is to explain how the integrity of freshwater ecosystems depends upon adequate quantity, quality, timing, and temporal variability of water flow. Defining these requirements in a comprehensive but general manner provides a better foundation for their inclusion in current and future debates about allocation of water resources. In this way the needs of freshwater ecosystems can be legitimately recognized and addressed. We also recommend ways in which freshwater ecosystems can be protected, maintained, and restored.Freshwater ecosystem structure and function are tightly linked to the watershed or catchment of which they are a part. Because riverine networks, lakes, wetlands, and their connecting groundwaters, are literally the “sinks” into which landscapes drain, they are greatly influenced by terrestrial processes, including many human uses or modifications of land and water. Freshwater ecosystems, whether lakes, wetlands, or rivers, have specific requirements in terms of quantity, quality, and seasonality of their water supplies. Sustainability normally requires these systems to fluctuate within a natural range of variation. Flow regime, sediment and organic matter inputs, thermal and light characteristics, chemical and nutrient characteristics, and biotic assemblages are fundamental defining attributes of freshwater ecosystems. These attributes impart relatively unique characteristics of productivity and biodiversity to each ecosystem. The natural range of variation in each of these attributes is critical to maintaining the integrity and dynamic potential of aquatic ecosystems; therefore, management should allow for dynamic change. Piecemeal approaches cannot solve the problems confronting freshwater ecosystems.Scientific definitions of the requirements to protect and maintain aquatic ecosystems are necessary but insufficient for establishing the appropriate distribution between societal and ecosystem water needs. For scientific knowledge to be implemented science must be connected to a political agenda for sustainable development. We offer these recommendations as a beginning to redress how water is viewed and managed in the United States: (1) Frame national and regional water management policies to explicitly incorporate freshwater ecosystem needs, particularly those related to naturally variable flow regimes and to the linking of water quality with water quantity; (2) Define water resources to include watersheds, so that freshwaters are viewed within a landscape, or systems context; (3) Increase communication and education across disciplines, especially among engineers, hydrologists, economists, and ecologists to facilitate an integrated view of freshwater resources; (4) Increase restoration efforts, using well-grounded ecological principles as guidelines; (5) Maintain and protect the remaining freshwater ecosystems that have high integrity; and (6) Recognize the dependence of human society on naturally functioning ecosystems.

  20. Alaska's Copper River: humankind in a changing world.

    Treesearch

    Harriet H. Christensen; J. Louise Mastrantonio; John C. Gordon; Bernard T. Bormann

    2000-01-01

    Opportunities for natural and social science research were assessed in the Copper River ecosystem including long-term, integrated studies of ecosystem structure and function. The ecosystem is one where change, often rapid, cataclysmic change, is the rule rather than the exception. The ecosystem also contains a variety of people pursuing various human purposes. Although...

  1. Placing man in regional landscape classification: Use of Forest Survey data to assess human influences for southern U.S. forest ecosystems

    Treesearch

    Victor A. Rudis; John B. Tansey

    1991-01-01

    Information from plots surveyed by U.S.D.A., Forest Service, Forest Inventory and Analysis (FIA) units provides a basis for classifying human-dominated ecosystems at the regional scale of resolution.Attributes include forest stand measures, evidence of human influence, and other disturbances.Data from recent FIA surveys suggest that human influences are common to...

  2. Neighborhood scale quantification of ecosystem goods and services

    EPA Science Inventory

    Ecosystem goods and services are those ecological structures and functions that humans can directly relate to their state of well-being. Ecosystem goods and services include, but are not limited to, a sufficient fresh water supply, fertile lands to produce agricultural products, ...

  3. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.

    PubMed

    Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James

    2017-07-19

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  4. Rangeland Ecosystem Services: Nature's Supply and Humans' Demand

    USDA-ARS?s Scientific Manuscript database

    Ecosystem services are the benefits that society receives from nature and they include the regulation of climate, the pollination of crops, the provisioning of intellectual inspiration and recreational environment, as well as many essential goods such as food, fiber, and wood. Rangeland ecosystem se...

  5. Connecting Latinos with nature

    Treesearch

    Deborah J. Chavez

    2008-01-01

    Experts around the world have identified ecosystem services that benefit humans. Ecosystem services provided by natural areas include cultural (such as providing outdoor recreation locations) and regulating (such as protecting water quality) services. It is important to understand both public perceptions about the importance of particular ecosystem services and the...

  6. [A review on disturbance ecology of forest].

    PubMed

    Zhu, Jiaojun; Liu, Zugen

    2004-10-01

    More than 80% of terrestrial ecosystems have been influenced by natural disasters, human activities and the combination of both natural and human disturbances. Forest ecosystem, as one of the most important terrestrial ecosystems, has also been disturbed without exception. Under the disturbance from natural disasters and human activities, particularly from the unreasonable activities of human beings, forest decline or forest degradation has become more and more severe. For this reason, sustaining or recovering forest service functions is one of the current purposes for managing forest ecosystems. In recent decades, the studies on disturbed ecosystems have been carried out frequently, especially on their ecological processes and their responses to the disturbances. These studies play a very important role in the projects of natural forest conservation and the construction of ecological environment in China. Based on a wide range of literatures collection on forest disturbance research, this paper discussed the fundamental concepts of disturbance ecology, the relationships between forest management and disturbance, and the study contents of forest disturbance ecology. The major research topics of forest disturbance ecology may include: 1) the basic characteristics of disturbed forests; 2) the processes of natural and human disturbances; 3) the responses of forests ecosystem to the disturbances; 4) the main ecological processes or the consequential results of disturbed forests, including the change of biodiversity, soil nutrient and water cycle, eco-physiology and carbon cycle, regeneration mechanism of disturbed forests and so on; 5) the relationships between disturbances and forest management; and 6) the principles and techniques for the management of disturbed forests. This review may be helpful to the management of disturbed forest ecosystem, and to the projects of natural forest conservation in China.

  7. The Deepwater Horizon Oil Spill Through the Lens of Human Health and the Ecosystem.

    PubMed

    Lichtveld, Maureen; Sherchan, Samendra; Gam, Kaitlyn B; Kwok, Richard K; Mundorf, Christopher; Shankar, Arti; Soares, Lissa

    2016-12-01

    This review examines current research ascertaining the impact of the Deepwater Horizon oil spill on human health and ecosystems. Driven by the need to strategically focus research funding, the authors also assess the implications of those findings and promote a transdisciplinary research agenda addressing critical gaps.Epidemiologic studies conducted in workers and vulnerable communities in the spill's aftermath showed that non-chemical stressors affect resilience. Ecosystem-wise salt marsh species showed variability in structural and functional changes, attributed to species-specific tolerance, oil exposure, and belowground plant organs damage.Lacking baseline exposure assessment data hampers assessing the impact of chemical stressors. Research priorities include leveraging existing women/child dyads and worker cohorts to advance exposure characterization and counter early adverse effects in most vulnerable populations. Key policy gaps include mandated just-in-time emergency resources to ascertain immediate post-event exposures and contemporary legislation addressing human and ecosystem health in an integrated rather than silo fashion.

  8. The Deepwater Horizon Oil Spill Through the Lens of Human Health and the Ecosystem

    PubMed Central

    Lichtveld, Maureen; Sherchan, Samendra; Gam, Kaitlyn B.; Kwok, Richard K.; Mundorf, Christopher; Shankar, Arti; Soares, Lissa

    2016-01-01

    This review examines current research ascertaining the impact of the Deepwater Horizon oil spill on human health and ecosystems. Driven by the need to strategically focus research funding, the authors also assess the implications of those findings, and promote a transdisciplinary research agenda addressing critical gaps. Epidemiologic studies conducted in workers and vulnerable communities in the spill’s aftermath showed that non-chemical stressors affect resilience. Ecosystem-wise salt marsh species showed variability in structural and functional changes, attributed to species-specific tolerance, oil exposure, and belowground plant organs damage. Lacking baseline exposure assessment data hampers assessing the impact of chemical stressors. Research priorities include leveraging existing women/child dyads and worker cohorts to advance exposure characterization and counter early adverse effects in most vulnerable populations. Key policy gaps include mandated just-in-time emergency resources to ascertain immediate post-event exposures, and contemporary legislation addressing human- and ecosystem health in an integrated rather than silo fashion. PMID:27722880

  9. Critical linkages between land-use transition and human health in the Himalayan region.

    PubMed

    Xu, Jianchu; Sharma, Rita; Fang, Jing; Xu, Yufen

    2008-02-01

    This article reviews critical linkages between land-use transition and human health in the Himalayan region by applying ecosystem approaches to human health (or EcoHealth). Land-use transition in the Himalayan and similar regions includes sedentarization, agricultural intensification, habitat modification, migration, change of livelihoods and lifestyles, biodiversity loss, and increasing flash floods. These transitions, which can have impacts on human health, are driven by state policies, a market economy, and climate change. Human health is dependent on access to ecosystem services for food, nutrition, medicine, fiber and shelter, fresh water, and clear air. Ecosystem management has been a key means of controlling disease vectors and creating suitable habitats for human well-being. The paper identifies the web of environmental factors that influence human health. Institutional and policy issues for land-use and health transitions are also discussed.

  10. Landowner behavior can determine the success of conservation strategies for ecosystem migration under sea-level rise.

    PubMed

    Field, Christopher R; Dayer, Ashley A; Elphick, Chris S

    2017-08-22

    The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas.

  11. Landowner behavior can determine the success of conservation strategies for ecosystem migration under sea-level rise

    PubMed Central

    Field, Christopher R.; Dayer, Ashley A.; Elphick, Chris S.

    2017-01-01

    The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas. PMID:28790190

  12. Human activities change marine ecosystems by altering predation risk.

    PubMed

    Madin, Elizabeth M P; Dill, Lawrence M; Ridlon, April D; Heithaus, Michael R; Warner, Robert R

    2016-01-01

    In ocean ecosystems, many of the changes in predation risk - both increases and decreases - are human-induced. These changes are occurring at scales ranging from global to local and across variable temporal scales. Indirect, risk-based effects of human activity are known to be important in structuring some terrestrial ecosystems, but these impacts have largely been neglected in oceans. Here, we synthesize existing literature and data to explore multiple lines of evidence that collectively suggest diverse human activities are changing marine ecosystems, including carbon storage capacity, in myriad ways by altering predation risk. We provide novel, compelling evidence that at least one key human activity, overfishing, can lead to distinct, cascading risk effects in natural ecosystems whose magnitude exceeds that of presumed lethal effects and may account for previously unexplained findings. We further discuss the conservation implications of human-caused indirect risk effects. Finally, we provide a predictive framework for when human alterations of risk in oceans should lead to cascading effects and outline a prospectus for future research. Given the speed and extent with which human activities are altering marine risk landscapes, it is crucial that conservation and management policy considers the indirect effects of these activities in order to increase the likelihood of success and avoid unfortunate surprises. © 2015 John Wiley & Sons Ltd.

  13. Units of nature or processes across scales? The ecosystem concept at age 75.

    PubMed

    Currie, William S

    2011-04-01

    The ecosystem has served as a central organizational concept in ecology for nearly a half century and continues to evolve. As a level in the biotic hierarchy, ecosystems are often viewed as ecological communities integrated with their abiotic environments. This has always been imperfect because of a mismatch of scales between communities and ecosystem processes as they are made operational for field study. Complexity theory has long been forecasted to provide a renewed foundation for ecosystem theory but has been slow to do so. Partly this has arisen from a difficulty in translating theoretical tenets into operational terms for testing in field studies. Ecosystem science has become an important applied science for studying global change and human environmental impacts. Vigorous and important directions in the study of ecosystems today include a growing focus on human-dominated landscapes and development of the concept of ecosystem services for human resource supply and well-being. Today, terrestrial ecosystems are viewed less as well-defined entities or as a level in the biotic hierarchy. Instead, ecosystem processes are being increasingly viewed as the elements in a hierarchy. These occur alongside landscape processes and socioeconomic processes, which combine to form coupled social-ecological systems across a range of scales. © 2011 The Author. New Phytologist © 2011 New Phytologist Trust.

  14. Biological invasions in forest ecosystems

    Treesearch

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  15. Living science: Science as an activity of living beings.

    PubMed

    MacLennan, Bruce J

    2015-12-01

    The philosophy of science should accommodate itself to the facts of human existence, using all aspects of human experience to adapt more effectively, as individuals, species, and global ecosystem. This has several implications: (1) Our nature as sentient beings interacting with other sentient beings requires the use of phenomenological methods to investigate consciousness. (2) Our embodied, situated, purposeful physical interactions with the world are the foundation of scientific understanding. (3) Aristotle's four causes are essential for understanding living systems and, in particular, the final cause aids understanding the role of humankind, and especially science, in the global ecosystem. (4) In order to fulfill this role well, scientists need to employ the full panoply of human faculties. These include the consciousness faculties (thinking, sensation, feeling, intuition), and therefore, as advocated by many famous scientists, we should cultivate our aesthetic sense, emotions, imagination, and intuition. Our unconscious faculties include archetypal structures common to all humans, which can guide scientific discovery. By striving to engage the whole of human nature, science will fulfill better its function for humans and the global ecosystem. Copyright © 2015. Published by Elsevier Ltd.

  16. Giving credit where credit is due: increasing landowner compensation for ecosystem services

    Treesearch

    Gina L. LaRocco; Robert L. Deal

    2011-01-01

    Conservation of biodiversity serves a number of human needs, including maintenance of ecosystem services that are critical to the sustainability of all life. Effective biodiversity conservation will require better landowner incentives for restoration and protection of ecosystems. Many services produced from healthy, functioning landscapes are not well recognized in...

  17. Importance of Past Human and Natural Disturbance in Present-Day Net Ecosystem Productivity

    NASA Astrophysics Data System (ADS)

    Felzer, B. S.; Phelps, P.

    2014-12-01

    Gridded datasets of Net Ecosystem Exchange derived from eddy covariance and remote sensing measurements provide a means of validating Net Ecosystem Productivity (NEP, opposite of NEE) from terrestrial ecosystem models. While most forested regions in the U.S. are observed to be moderate to strong carbon sinks, models not including human or natural disturbances will tend to be more carbon neutral, which is expected of mature ecosystems. We have developed the Terrestrial Ecosystems Model Hydro version (TEM-Hydro) to include both human and natural disturbances to compare against gridded NEP datasets. Human disturbances are based on the Hurtt et al. (2006) land use transition dataset and include transient agricultural (crops and pasture) conversion and abandonment and timber harvest. We include natural disturbances of storms and fires based on stochastic return intervals. Tropical storms and hurricane return intervals are based on Zheng et al. (2009) and occur only along the U.S. Atlantic and Gulf coasts. Fire return intervals are based on LANDFIRE Rapid Assessment Vegetation Models and vegetation types from the Hurtt dataset. We are running three experiments with TEM-Hydro from 1700-2011 for the conterminous U.S.: potential vegetation (POT), human disturbance only (agriculture and timber harvest, LULC), and human plus natural disturbance (agriculture, timber harvest, storms, and fire, DISTURB). The goal is to compare our NEP values to those obtained by FLUXNET-MTE (Jung et al. 2009) from 1982-2008 and ECMOD (Xiao et al., 2008) from 2000-2006 for different plant functional types (PFTs) within the conterminous U.S. Preliminary results show that, for the entire U.S., potential vegetation yields an NEP of 10.8 gCm-2yr-1 vs 128.1 gCm-2yr-1 for LULC and 89.8 gCm-2yr-1 for DISTURB from 1982-2008. The effect of regrowth following agricultural and timber harvest disturbance therefore contributes substantially to the present-day carbon sink, while stochastic storms and fires have a negative effect on NEP. Even though the current NEP reflects the carbon uptake from regrowth, a full carbon accounting would also include the carbon released to the atmosphere during disturbance or carbon lost to decomposition of agricultural or timber products

  18. Trends in ecosystem service research: early steps and current drivers.

    PubMed

    Vihervaara, Petteri; Rönkä, Mia; Walls, Mari

    2010-06-01

    Over the past 50 years, human beings have influenced ecosystems more rapidly than at any similar time in human history, drastically altering ecosystem functioning. Along with ecosystem transformation and degradation, a number of studies have addressed the functioning, assessment and management of ecosystems. The concept of ecosystem services has been developed in the scientific literature since the end of the 1970s. However, ecosystem service research has focused on certain service categories, ecosystem types, and geographical areas, while substantial knowledge gaps remain concerning several aspects. We assess the development and current status of ecosystem service research on the basis of publications collected from the Web of Science. The material consists of (1) articles (n = 353) from all the years included in the Web of Science down to the completion of the Millennium Ecosystem Assessment and (2) more recent articles (n = 687) published between 2006 and 2008. We also assess the importance of international processes, such as the Convention on Biological Diversity, the Kyoto Protocol and the Millennium Ecosystem Assessment, as drivers of ecosystem service research. Finally, we identify future prospects and research needs concerning the assessment and management of ecosystem services.

  19. Anthropogenic and natural disturbances of carbon, nitrogen and water cycles and their global effects

    NASA Astrophysics Data System (ADS)

    Tian, H.; Melillo, J.; Virji, H.; Fu, C.; Dickinson, R.; Running, S.; Liu, J.; Wang, Q.; Reilly, J.

    2006-05-01

    Monsoon Asia includes the Indian sub-continent, Southeast Asia and East Asia. Monsoon Asia is home to more than one-half of the world population, but the total land area in this region is only about 16% of earth's land surface. This region is covered by a range of ecosystems from tropical forests in Southeast Asia to boreal forests in the northern Asia, and from temperate forests in Eastern Asia to deserts in western Asia and tundra in the Himalayan Mountains. These ecosystems account for about one fourth of the potential global terrestrial net primary productivity and for a similar fraction of the carbon stored in land ecosystems. The structure and functioning of these ecosystems are being affected by a complex set of multiple human-induced stresses including air pollution and land transformation. The unprecedented combination of economic and population growth has led to a dramatic land transformation and air pollution across monsoon Asia. The large-scale land transformation and air pollution have important implications for the cycles of carbon, nitrogen and water at regional and global scales. Clearly, monsoon Asia is of critical importance to the understanding of how changing climates and human impacts interact to influence the structure and functioning of ecosystems and the biosphere. In this study, we have reviewed recent advances in the understanding of human-induced changes in biogeochemical and hydrological cycles in Monsoon Asia, including the human-monsoon interactions and the linkage of Asian monsoon to global climate. Finally we have discussed gaps and limitations in existing information that need to be investigated in the future to improve our understanding of human/nature dynamics in monsoon Asia and its linkage to the Earth system.

  20. Tampa's Well-being: A Demonstration of ORD's Human Well-being Index (web content for the Tampa Bay Ecosystem services website)

    EPA Science Inventory

    Ecosystems provide services to humans that support our well-being. Well-being is not only our health but also our quality of life. We rely upon the services provided by nature to help maintain good health and a high quality of life, including clean water, clean air, food and recr...

  1. Incorporating ecosystem services into environmental management of deep-seabed mining

    NASA Astrophysics Data System (ADS)

    Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.

    2017-03-01

    Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services concepts in deep-seabed mining regulation and propose potential tools to fill them.

  2. Ecosystems: Issues and problems. (Latest citations from the ABI/Inform database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning issues and problems relating to ecosystems in different parts of the world. Preservation of resources, environmental protection, industrial impacts on ecosystems, ecological economics, biodiversity of specific ecosystems, and effects of deforestation and erosion are examined. Citations review impacts of human inhabitants, eco-tourism, and alien species on an ecosystem. The relationship to an ecosystem of pests and microbial infections is covered, and long-range planning for ecosystems is cited. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    PubMed

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  4. [Applied ecology: retrospect and prospect].

    PubMed

    He, Xingyuan; Zeng, Dehui

    2004-10-01

    Applied ecology is evolved into a principal part of modern ecology that rapidly develops. The major stimulus for the development of applied ecology roots in seeking the solutions for the problems of human populations, resources and environments. Through four decades, the science of applied ecology has been becoming a huge group of disciplines. The future for the applied ecology should concern more with human-influenced and managed ecosystems, and acknowledge humans as the components of ecosystems. Nowadays and in future, the top-priorities in applied ecology should include following fields: sustainable ecosystems and biosphere, ecosystem services and ecological design, ecological assessment of genetically modified organisms, ecology of biological invasions, epidemical ecology, ecological forecasting, ecological process and its control. The authors believe that the comprehensive and active research hotspots coupled some new traits would occur around these fields in foreseeable future.

  5. Production of EPA and DHA in aquatic ecosystems and their transfer to the land.

    PubMed

    Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N

    2013-12-01

    Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. An operational structured decision making framework for ...

    EPA Pesticide Factsheets

    Pressure to develop an operational framework for decision makers to employ the concepts of ecosystem goods and services for assessing changes to human well-being has been increasing since these concepts gained widespread notoriety after the Millennium Ecosystem Assessment Report. Many conceptual frameworks have been proposed, but most do not propose methodologies and tools to make this approach to decision making implementable. Building on common components of existing conceptual frameworks for ecosystem services and human well-being assessment we apply a structured decision making approach to develop a standardized operational framework and suggest tools and methods for completing each step. The structured decision making approach consists of six steps: 1) Clarify the Decision Context 2) Define Objectives and Evaluation Criteria 3) Develop Alternatives 4) Estimate Consequences 5) Evaluate Trade-Offs and Select and 6) Implement and Monitor. These six steps include the following activities, and suggested tools, when applied to ecosystem goods and services and human well-being conceptual frameworks: 1) Characterization of decision specific human beneficiaries using the Final Ecosystem Goods and Services (FEGS) approach and Classification System (FEGS-CS) 2) Determine beneficiaries’ relative priorities for human well-being domains in the Human Well-Being Index (HWBI) through stakeholder engagement and identify beneficiary-relevant metrics of FEGS using the Nat

  7. Primates in 21st century ecosystems: does primate conservation promote ecosystem conservation?

    PubMed

    Norconk, Marilyn A; Boinski, Sue; Forget, Pierre-Michel

    2011-01-01

    Contributors to this issue of the American Journal of Primatology were among the participants in an invited symposium at the 2008 Association for Tropical Biology and Conservation meeting in Paramaribo, Suriname. They were asked to assess how essential primates are to tropical ecosystems and, given their research interests, discuss how primate research contributes to the broader understanding about how ecosystems function. This introduction to the issue is divided into three parts: a review of the roles that nonhuman primates play in tropical ecosystems; the implementation of large-scale landscape methods used to identify primate densities; and concerns about the increasingly porous boundaries between humans, nonhuman primates, and pathogens. Although 20th century primate research created a rich database on individual species, including both theoretical and descriptive approaches, the dual effects of high human population densities and widespread habitat destruction should warn us that creative, interdisciplinary and human-related research is needed to solve 21st century problems. © 2010 Wiley-Liss, Inc.

  8. Life around the North Water ecosystem: Natural and social drivers of change over a millennium.

    PubMed

    Hastrup, Kirsten; Andersen, Astrid Oberborbeck; Grønnow, Bjarne; Heide-Jørgensen, Mads Peter

    2018-04-01

    The formation of the North Water in Smith Sound about 4500 years ago, as evidenced by the establishment of bird colonies and human presence, also initiated a long-term anthropogenic agent as part of this High Arctic ecosystem. Different epochs have influenced the human occupation in the area: immigration pulses from Canada and Alaska, trade with meteorite iron throughout the Arctic, introduction of new technologies by whalers and explorers, exploitation of resources by foreigners, political sequestration, export of fox and seal skins and later narwhal products, and recently fishing. Physical drivers in terms of weather and climate affecting the northern hemisphere also impact accessibility and productivity of the ecosystem, with cascading effects on social drivers, again acting back on the natural ecologies. Despite its apparent isolation, the ecosystem had and still has wide ranging spatial ramifications that extend beyond the High Arctic, and include human activity. The challenge is to determine what is internal and what is external to an ecosystem.

  9. Local disease–ecosystem–livelihood dynamics: reflections from comparative case studies in Africa

    PubMed Central

    Bett, Bernard; Said, M.; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M.; Grant, Donald S.; Koninga, James

    2017-01-01

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human–ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples’ interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform ‘One Health’ approaches towards managing ecosystems in ways that reduce disease risks and burdens. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584171

  10. EnviroAtlas Connects Urban Ecosystem Services and Human Well-Being

    EPA Science Inventory

    Ecosystem services in urban areas can improve public health and well-being by mitigating natural and anthropogenic pollution, and by promoting healthy lifestyles that include engagement with nature and enhanced opportunities for physical activity and social interaction. EPA&rsqu...

  11. Evaluating the Impact of Modern Copper Mining on Ecosystem Services in Southern Arizona

    NASA Astrophysics Data System (ADS)

    Virgone, K.; Brusseau, M. L.; Ramirez-Andreotta, M.; Coeurdray, M.; Poupeau, F.

    2014-12-01

    Historic mining practices were conducted with little environmental forethought, and hence generated a legacy of environmental and human-health impacts. However, an awareness and understanding of the impacts of mining on ecosystem services has developed over the past few decades. Ecosystem services are defined as benefits that humans obtain from ecosystems, and upon which they are fundamentally dependent for their survival. Ecosystem services are divided into four categories including provisioning services (i.e., food, water, timber, and fiber); regulating services (i.e., climate, floods, disease, wastes, and water quality); supporting services (i.e., soil formation, photosynthesis, and nutrient cycling) and cultural services (i.e., recreational, aesthetic, and spiritual benefits) (Millennium Ecosystem Assessment, 2005). Sustainable mining practices have been and are being developed in an effort to protect and preserve ecosystem services. This and related efforts constitute a new generation of "modern" mines, which are defined as those that are designed and permitted under contemporary environmental legislation. The objective of this study is to develop a framework to monitor and assess the impact of modern mining practices and sustainable mineral development on ecosystem services. Using the sustainability performance indicators from the Global Reporting Initiative (GRI) as a starting point, we develop a framework that is reflective of and adaptive to specific local conditions. Impacts on surface and groundwater water quality and quantity are anticipated to be of most importance to the southern Arizona region, which is struggling to meet urban and environmental water demands due to population growth and climate change. We seek to build a more comprehensive and effective assessment framework by incorporating socio-economic aspects via community engaged research, including economic valuations, community-initiated environmental monitoring, and environmental human-health education programs.

  12. [Ecosystem services supply and consumption and their relationships with human well-being].

    PubMed

    Wang, Da-Shang; Zheng, Hua; Ouyang, Zhi-Yun

    2013-06-01

    Sustainable ecosystem services supply is the basis of regional sustainable development, and human beings can satisfy and improve their well-being through ecosystem services consumption. To understand the relationships between ecosystem services supply and consumption and human well-being is of vital importance for coordinating the relationships between the conservation of ecosystem services and the improvement of human well-being. This paper summarized the diversity, complexity, and regionality of ecosystem services supply, the diversity and indispensability of ecosystem services consumption, and the multi-dimension, regionality, and various evaluation indices of human well-being, analyzed the uncertainty and multi-scale correlations between ecosystem services supply and consumption, and elaborated the feedback and asynchronous relationships between ecosystem services and human well-being. Some further research directions for the relationships between ecosystem services supply and consumption and human well-being were recommended.

  13. Back-to-the-future: a fresh policy initiative for fisheries and a restoration ecology for ocean ecosystems

    PubMed Central

    Pitcher, Tony J.

    2005-01-01

    ‘Back-to-the-future’ (BTF) is an integrative approach to a restoration ecology of the oceans that attempts to solve the fisheries crisis. To this end, it harnesses the latest understanding of ecosystem processes, developments in whole ecosystem simulation modelling, and insight into the human dimension of fisheries management. BTF includes new methods for describing past ecosystems, designing fisheries that meet criteria for sustainability and responsibility, and evaluating the costs and benefits of fisheries in restored ecosystems. Evaluation of alternative policy choices, involving trade-offs between conservation and economic values, employs a range of economic, social and ecological measures. Automated searches maximize values of objective functions, and the methodology includes analyses of model parameter uncertainty. Participatory workshops attempt to maximize compliance by fostering a sense of ownership among all stakeholders. Some challenges that have still to be met include improving methods for quantitatively describing the past, reducing uncertainty in ecosystem simulation techniques and in making policy choices robust against climate change. Critical issues include whether past ecosystems make viable policy goals, and whether desirable goals may be reached from today’s ecosystem. Examples from case studies in British Columbia, Newfoundland and elsewhere are presented. PMID:15713591

  14. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.

    PubMed

    Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  15. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests

    NASA Astrophysics Data System (ADS)

    Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  16. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, J.

    1998-06-01

    'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animalsmore » (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'« less

  17. Cumulative Human Impacts on Mediterranean and Black Sea Marine Ecosystems: Assessing Current Pressures and Opportunities

    PubMed Central

    Micheli, Fiorenza; Halpern, Benjamin S.; Walbridge, Shaun; Ciriaco, Saul; Ferretti, Francesco; Fraschetti, Simonetta; Lewison, Rebecca; Nykjaer, Leo; Rosenberg, Andrew A.

    2013-01-01

    Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60–99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems. PMID:24324585

  18. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    PubMed

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  19. Assessment of goods and valuation of ecosystem services (AGAVES) San Pedro River Basin, United States and Mexico

    USGS Publications Warehouse

    Semmens, Darius; Kepner, William; Goodrich, David

    2010-01-01

    A consortium of federal, academic, and nongovernment organization (NGO) partners have established a collaborative research enterprise in the San Pedro River Basin to develop methods, standards, and tools to assess and value ecosystem goods and services. The central premise of ecosystem services research is that human condition is intrinsically linked to the environment. Human health and well-being (including economic prosperity) depend on important supporting, regulating, provisioning, and cultural services that we derive from our surrounding ecosystems. The AGAVES project is intended as a demonstration study for incorporating ecosystem services information into resource management policy and decisionmaking. Accordingly, a nested, multiscale project design has been adopted to address a range of stakeholder information requirements. This design will further facilitate an evaluation of how well methods developed in this project can be transferred to other areas.

  20. Is restoring an ecosystem good for your health?

    PubMed

    Speldewinde, P C; Slaney, D; Weinstein, P

    2015-01-01

    It is well known that the degradation of ecosystems can have serious impacts on human health. There is currently a knowledge gap on what impact restoring ecosystems has on human health. In restoring ecosystems there is a drive to restore the functionality of ecosystems rather than restoring ecosystems to 'pristine' condition. Even so, the complete restoration of all ecosystem functions is not necessarily possible. Given the uncertain trajectory of the ecosystem during the ecosystem restoration process the impact of the restoration on human health is also uncertain. Even with this uncertainty, the restoration of ecosystems for human health is still a necessity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Recreational Water Contact and Fish Consumption Assessment to Inform Risk Estimates and Evaluate Ecosystem Services

    EPA Science Inventory

    Background: Surface waters provide invaluable ecosystem services, including drinking water, food, waste water disposal, and recreation. The nature and frequency of recreational contact with surface waters is a critical consideration in evaluating benefits to human well-being (e.g...

  2. Ecosystem services as assessment endpoints for ecological risk assessment

    EPA Science Inventory

    Ecosystem services (ES) are defined as the outputs of ecological processes that contribute to human welfare or have the potential to do so in the future, and include the production of food and drinking water, purification of air and water, pollination, and nutrient cycling. The n...

  3. How Human and Natural Disturbance Affects the U.S. Carbon Sink

    NASA Astrophysics Data System (ADS)

    Felzer, B. S.

    2015-12-01

    Gridded datasets of Net Ecosystem Exchange derived from eddy covariance and remote sensing measurements (EC-MOD and FLUXNET-MTE) provide a means of validating Net Ecosystem Productivity (NEP, opposite of NEE) from terrestrial ecosystem models. While most forested regions in the U.S. are observed to be moderate to strong carbon sinks, models not including human or natural disturbances will tend to be more carbon neutral, which is expected of mature ecosystems. I have developed the Terrestrial Ecosystems Model Hydro version (TEM-Hydro) to include both human and natural disturbances to compare against gridded NEP datasets. Human disturbances are based on the Hurtt et al. land use transition dataset and include transient agricultural (crops and pasture) conversion and abandonment and timber harvest. Natural disturbances include tropical storms and hurricane and fires based on stochastic return intervals. Model results indicate that forests are the largest carbon sink, seconded by croplands and pastures, if not accounting for decomposition of agricultural products and animal respiration. Grasslands and shrublands are both small sinks or carbon neutral. The NEP of forests in EC-MOD from 2001-2006 is 240 gCm2yr-1 and for FLUXNET-MTE from 1982-2007 is 375 gCm-2yr-1. With potential vegetation, the respective forest sinks for those two time periods are 54 and 62 gCm-2yr-1, respectively. Including the effects of human disturbance increases the sinks to 154 and 147 gCm-2yr-1. The effect of stochastic fire and storms is to reduce the NEP to 114 and 108 gCm-2yr-1. While the positive carbon sink today is the result of past land use disturbance, net carbon sequestration, including product decomposition, conversion fluxes, and animal respiration, has not yet returned to predisturbance levels as seen in the potential vegetation. Differences in response to disturbance have to do with the type, frequency, and intensity of disturbance. Fire, in particular, is seen to have a net negative effect on carbon storage in forests due to decomposition of coarse woody debris and the fact that some nitrogen is lost during volatilization. Croplands become a carbon source if assuming product decomposition occurs where the crops are grown, and pasturelands become carbon neutral if accounting for animal respiration.

  4. Contribution of Cultural Ecosystem Services to Natural Capital in the coastal area of Civitavecchia (Latium, Italy)

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Madonia, Alice; Tofani, Anna; Molino, Chiara; Manfredi Frattarelli, Francesco

    2017-04-01

    Natural Capital evaluation is emerging as a fundamental tool to support the management of natural resources. Indeed, the achievement of the compatibility among their multiple uses, often in conflict in coastal areas, is a priority to avoid the increasing undesirable effects which threat both ecosystems and human health and well-being. It represents the scientific basis for actions needed to enhance the conservation and sustainable use of those systems and their contribution to human well-being. Furthermore the Millennium Ecosystem Assessment (called by Kofi Annan in 2000), assessed the consequences of ecosystem change for human well-being, and in particular, the analysis method has been centered on the linkages between "ecosystem services" and human well-being. This "Ecosystem Approach" allows to evaluate the consequences of ecosystems changes on human well-being through the assessment of the Ecosystem Services (ES), which are defined as "the benefits that people obtain from ecosystems". These include provisioning services (food, water, timber, etc.), regulating services (climate, floods, disease, etc.); cultural services (recreational, aesthetic and spiritual benefits) and supporting services (soil formation, photosynthesis, nutrient cycling, etc.) Also the reference guidelines for European Environmental Policy (Marine Strategy Framework Directive 2008/56 / EC - MSFD; Maritime Spatial Planning Directive 2014/89 / EC - MSP) are based on the principle of the Ecosystem Approach to define the monitoring criteria of marine and maritime space management ecosystems. The assessment of ES provided by Natural Capital cannot overlook the integration of ecological data with economic and socio-cultural ones, since they are considered as the direct and indirect contributions to human well-being provided by ecosystems. Cultural Ecosystem Services (CES), often omitted in the cost-benefit impact studies, has been receiving increasing interest from the scientific community in order to improve the decision-making process on environmental issues, giving useful information on how environmental changes influence social well-being. This work focused on the valuation of CES in terms of aesthetic value, tourism, cultural heritage, recreational potential and archaeology in the coastal area of Civitavecchia, taking in account also the quantification of the hedonic value provided by marine landscape along the coast. In the study area, a great archaeological heritage (due to the presence of two UNESCO sites and copious smaller sites spread all along the coast) and the presence of priority habitat and species (Posidonia oceanica - Habitats Directive cod. 1120; Reefs - Habitats Directive cod. 1170; Pinna nobilis - Annex IV, Natura 2000; Corallium rubrum - Annex V Habitats Directive) are overlapped with human activities involving an intense use of maritime spaces. The collected data were used to calculate a provision level of CES according to their spatial distribution allowing to detect the ecosystem services hotspots which require targeted management interventions.

  5. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches

    NASA Astrophysics Data System (ADS)

    Liquete, Camino; Piroddi, Chiara; Macías, Diego; Druon, Jean-Noël; Zulian, Grazia

    2016-09-01

    Mediterranean ecosystems support important processes and functions that bring direct benefits to human society. Yet, marine ecosystem services are usually overlooked due to the challenges in identifying and quantifying them. This paper proposes the application of several biophysical and ecosystem modelling approaches to assess spatially and temporally the sustainable use and supply of selected marine ecosystem services. Such services include food provision, water purification, coastal protection, lifecycle maintenance and recreation, focusing on the Mediterranean region. Overall, our study found a higher number of decreasing than increasing trends in the natural capacity of the ecosystems to provide marine and coastal services, while in contrast the opposite was observed to be true for the realised flow of services to humans. Such a study paves the way towards an effective support for Blue Growth and the European maritime policies, although little attention is paid to the quantification of marine ecosystem services in this context. We identify a key challenge of integrating biophysical and socio-economic models as a necessary step to further this research.

  6. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches

    PubMed Central

    Liquete, Camino; Piroddi, Chiara; Macías, Diego; Druon, Jean-Noël; Zulian, Grazia

    2016-01-01

    Mediterranean ecosystems support important processes and functions that bring direct benefits to human society. Yet, marine ecosystem services are usually overlooked due to the challenges in identifying and quantifying them. This paper proposes the application of several biophysical and ecosystem modelling approaches to assess spatially and temporally the sustainable use and supply of selected marine ecosystem services. Such services include food provision, water purification, coastal protection, lifecycle maintenance and recreation, focusing on the Mediterranean region. Overall, our study found a higher number of decreasing than increasing trends in the natural capacity of the ecosystems to provide marine and coastal services, while in contrast the opposite was observed to be true for the realised flow of services to humans. Such a study paves the way towards an effective support for Blue Growth and the European maritime policies, although little attention is paid to the quantification of marine ecosystem services in this context. We identify a key challenge of integrating biophysical and socio-economic models as a necessary step to further this research. PMID:27686533

  7. Effects of Human-Nature Interactions on Wildlife Habitat Dynamics: The Case of Wolong Nature Reserve for Giant Pandas

    NASA Astrophysics Data System (ADS)

    Vina, A.; Tuanmu, M.; Yang, W.; Liu, J.

    2012-12-01

    Human activities continue to induce the degradation of natural ecosystems, thus threatening not only the long-term survival of many wildlife species around the world, but also the resilience of natural ecosystems to global environmental changes. In response, many conservation efforts are emerging as adaptive strategies for coping with the degradation of natural ecosystems. Among them, the establishment of nature reserves is considered to be the most effective. However the effectiveness of nature reserves depends on the type and intensity of human activities occurring within their boundaries. But many of these activities constitute important livelihood systems for local human populations. Therefore, to enhance the effectiveness of conservation actions without significantly affecting local livelihood systems, it is essential to understand the complexity of human-nature interactions and their effects on the spatio-temporal dynamics of natural ecosystems. In this study, we evaluated the relation between giant panda habitat dynamics, conservation efforts and human activities in Wolong Nature Reserve for Giant Pandas, Sichuan Province, China. This reserve supports ca. 10% of the entire wild giant panda population but is also home to ca. 4,900 local residents. The spatio-temporal dynamics of giant panda habitat over the last four decades were analyzed using a time series of remotely sensed imagery acquired by different satellite sensor systems, including the Landsat Multi-Spectral Scanner, the Landsat Thematic Mapper and the Moderate Resolution Imaging Spectroradiometer (MODIS). Our assessment suggests that when local residents were actively involved in conservation efforts (through a payment for ecosystem services scheme established since around 2000) panda habitat started to recover, thus enhancing the resilience capacity of natural ecosystems in the Reserve. This reversed a long-term (> 30 years) trend of panda habitat degradation. The study not only has direct implications for wildlife habitat conservation but also increases our understanding of the complexity of human-nature interactions and their effects on the resilience of natural ecosystems.

  8. Vertebrate records in polar sediments: Biological responses to past climate change and human activities

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Emslie, S. D.; Huang, T.; Blais, J. M.; Xie, Z. Q.; Liu, X. D.; Yin, X. B.; Wang, Y. H.; Huang, W.; Hodgson, D. A.; Smol, J. P.

    2013-11-01

    Biological responses to climate and environmental changes in remote polar regions are of increasing interest in global change research. Terrestrial and marine polar ecosystems have suffered from impacts of both rapid climate change and intense human activities, and large fluctuations in the population sizes of seabirds, seals, and Antarctic krill have been observed in the past decades. To understand the mechanisms driving these regime shifts in polar ecosystems, it is important to first distinguish the influences of natural forcing from anthropogenic activities. Therefore, investigations of past changes of polar ecosystems prior to human contact are relevant for placing recent human-induced changes within a long-term historical context. Here we focus our review on the fossil, sub-fossil, archaeological, and biogeochemical remains of marine vertebrates in polar sediments. These remains include well-preserved tissues such as bones, hairs and feathers, and biogeochemical markers and other proxy indicators, including deposits of guano and excrement, which can accumulate in lake and terrestrial sediments over thousands of years. Analyses of these remains have provided insight into both natural and anthropogenic impacts on marine vertebrates over millennia and have helped identify the causal agents for these impacts. Furthermore, land-based seabirds and marine mammals have been shown to play an important role as bio-vectors in polar environments as they transport significant amounts of nutrients and anthropogenic contaminants between ocean and terrestrial ecosystems.

  9. Acid sulfate soils and human health--a Millennium Ecosystem Assessment.

    PubMed

    Ljung, Karin; Maley, Fiona; Cook, Angus; Weinstein, Philip

    2009-11-01

    Acid sulfate soils have been described as the "nastiest soils on earth" because of their strong acidity, increased mobility of potentially toxic elements and limited bioavailability of nutrients. They only cover a small area of the world's total problem soils, but often have significant adverse effects on agriculture, aquaculture and the environment on a local scale. Their location often coincides with high population density areas along the coasts of many developing countries. As a result, their negative impacts on ecosystems can have serious implications to those least equipped for coping with the low crop yields and reduced water quality that can result from acid sulfate soil disturbance. The Millennium Ecosystem Assessment called on by the United Nations in 2000 emphasised the importance of ecosystems for human health and well-being. These include the service they provide as sources of food and water, through the control of pollution and disease, as well as for the cultural services ecosystems provide. While the problems related to agriculture, aquaculture and the environment have been the focus of many acid sulfate soil management efforts, the connection to human health has largely been ignored. This paper presents the potential health issues of acid sulfate soils, in relation to the ecosystem services identified in the Millennium Ecosystem Assessment. It is recognised that significant implications on food security and livelihood can result, as well as on community cohesiveness and the spread of vector-borne disease. However, the connection between these outcomes and acid sulfate soils is often not obvious and it is therefore argued that the impact of such soils on human well-being needs to be recognised in order to raise awareness among the public and decision makers, to in turn facilitate proper management and avoid potential human ill-health.

  10. Understanding and Managing the Assessment Process

    Treesearch

    Gene Lessard; Scott Archer; John R. Probst; Sandra Clark

    1999-01-01

    Taking an ecological approach to management, or ecosystem management, is a developing approach for managing natural resources within the context of large geogaphic scales and over multiple time frames. Recently, the Council on Environmental Quality (CEQ) (IEMTF 1995) defined an ecosystem as "...an interconnected community of living things, including humans, and...

  11. Predicting effects of climate and land use change on human well-being via changes in ecosystem services

    EPA Science Inventory

    Landuse and climate change have affected biological systems in many parts of the world, and are projected to further adversely affect associated ecosystem goods and services, including provisioning of clean air, clean water, food, and biodiversity. Such adverse effects on ecosyst...

  12. Defining and Characterizing Ecosystem Services for Education: A Delphi Study

    ERIC Educational Resources Information Center

    Ruppert, John; Duncan, Ravit Golan

    2017-01-01

    Recent advancements in science have led to an increasingly sophisticated understanding of the many ways in which humans benefit from environmental systems. These benefits, termed Ecosystem Services, are sparsely characterized in education literature, but were included in the most recent iteration of US national science standards: the Next…

  13. Soil carbon in natural, cultivated, and restored depressional wetlands in the Mid-Atlantic Coastal Plain

    USDA-ARS?s Scientific Manuscript database

    Aerial extent of wetland ecosystems have decreased dramatically since precolonial times due to the conversion of these areas for human use. Wetlands provide various ecosystem services, and conservation efforts are being made to restore wetlands and their functions, including soil carbon storage. Thi...

  14. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    USGS Publications Warehouse

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2014-01-01

    The ocean’s continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services including primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  15. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2015-01-01

    The oceans' continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins, (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services. These include primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  16. Enlisting Ecosystem Benefits: Quantification and Valuation of Ecosystem Services to Inform Installation Management

    DTIC Science & Technology

    2015-05-27

    human development and conservation of terrestrial, freshwater, and marine ecosystems. The InVEST toolset currently includes 17 distinct InVEST... Plateau to the north and the Coastal Plain to the south, which represent distinct features of topography, geology and soils, and vegetation communities...threatened by a complex of tree diseases and pine beetles that cause declines or mortality in loblolly pine, a dominant tree across the base. When loblolly

  17. Ecosystem services as a common language for coastal ecosystem-based management.

    PubMed

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  18. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems.

    PubMed

    Flandroy, Lucette; Poutahidis, Theofilos; Berg, Gabriele; Clarke, Gerard; Dao, Maria-Carlota; Decaestecker, Ellen; Furman, Eeva; Haahtela, Tari; Massart, Sébastien; Plovier, Hubert; Sanz, Yolanda; Rook, Graham

    2018-06-15

    Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions

    PubMed Central

    Barnosky, Anthony D.

    2008-01-01

    Earth's most recent major extinction episode, the Quaternary Megafauna Extinction, claimed two-thirds of mammal genera and one-half of species that weighed >44 kg between ≈50,000 and 3,000 years ago. Estimates of megafauna biomass (including humans as a megafauna species) for before, during, and after the extinction episode suggest that growth of human biomass largely matched the loss of non-human megafauna biomass until ≈12,000 years ago. Then, total megafauna biomass crashed, because many non-human megafauna species suddenly disappeared, whereas human biomass continued to rise. After the crash, the global ecosystem gradually recovered into a new state where megafauna biomass was concentrated around one species, humans, instead of being distributed across many species. Precrash biomass levels were finally reached just before the Industrial Revolution began, then skyrocketed above the precrash baseline as humans augmented the energy available to the global ecosystem by mining fossil fuels. Implications include (i) an increase in human biomass (with attendant hunting and other impacts) intersected with climate change to cause the Quaternary Megafauna Extinction and an ecological threshold event, after which humans became dominant in the global ecosystem; (ii) with continued growth of human biomass and today's unprecedented global warming, only extraordinary and stepped-up conservation efforts will prevent a new round of extinctions in most body-size and taxonomic spectra; and (iii) a near-future biomass crash that will unfavorably impact humans and their domesticates and other species is unavoidable unless alternative energy sources are developed to replace dwindling supplies of fossil fuels. PMID:18695222

  20. Human influences on forest ecosystems: the southern wildland-urban interface assessment

    Treesearch

    Edward A. Macie; L. Annie Hermansen; [Editors

    2002-01-01

    This publication provides a review of critical wildland-urban interface issues, challenges, and needs for the Southern United States. Chapter topics include population and demographic trends; economic and tax issues; land use planning and policy; urban effects on forest ecosystems; challenges for forest resource management and conservation; social consequences of...

  1. Chapter 7: Changing values of riparian ecosystems

    Treesearch

    Malchus B. Baker; Leonard F. DeBano; Peter F. Ffolliott

    1999-01-01

    Riparian ecosystems in the Central Arizona Highlands, and throughout the Southwest in general, provided the necessary water for humans, livestock, and agricultural crops during settlement by Europeans in the late 1800s. Other resources available in these moist environments included wildlife and fish, livestock and wildlife forage, and shade. Trees were often used for...

  2. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia (Invited)

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.

    2013-12-01

    Competition for water between humans and ecosystems is set to become a flash point in coming decades in all parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development of effective mediation strategies. This paper presents a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resource development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health. The model is used to generate insights into the dominant controls of the trajectory of co-evolution of the coupled human-water system, to serve as the theoretical framework for more detailed analysis of the system, and to generate organizing principles that may be transferable to other systems in different climatic and socio-economic settings.

  3. Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    van de Koppel, Johan; van der Heide, Tjisse; Altieri, Andrew H.; Eriksson, Britas Klemens; Bouma, Tjeerd J.; Olff, Han; Silliman, Brian R.

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types—including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests—that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.

  4. Incorporating anthropogenic effects into trophic ecology: predator-prey interactions in a human-dominated landscape.

    PubMed

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G

    2015-09-07

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. © 2015 The Author(s).

  5. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape

    PubMed Central

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.

    2015-01-01

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169

  6. Vaginal ecosystem modeling of growth patterns of anaerobic bacteria in microaerophilic conditions.

    PubMed

    Medina-Colorado, Audrie A; Vincent, Kathleen L; Miller, Aaron L; Maxwell, Carrie A; Dawson, Lauren N; Olive, Trevelyn; Kozlova, Elena V; Baum, Marc M; Pyles, Richard B

    2017-06-01

    The human vagina constitutes a complex ecosystem created through relationships established between host mucosa and bacterial communities. In this ecosystem, classically defined bacterial aerobes and anaerobes thrive as communities in the microaerophilic environment. Levels of CO 2 and O 2 present in the vaginal lumen are impacted by both the ecosystem's physiology and the behavior and health of the human host. Study of such complex relationships requires controlled and reproducible causational approaches that are not possible in the human host that, until recently, was the only place these bacterial communities thrived. To address this need we have utilized our ex vivo human vaginal mucosa culture system to support controlled, reproducible colonization by vaginal bacterial communities (VBC) collected from healthy, asymptomatic donors. Parallel vaginal epithelial cells (VEC)-VBC co-cultures were exposed to two different atmospheric conditions to study the impact of CO 2 concentrations upon the anaerobic bacteria associated with dysbiosis and inflammation. Our data suggest that in the context of transplanted VBC, increased CO 2 favored specific lactobacilli species defined as microaerophiles when grown as monocultures. In preliminary studies, the observed community changes also led to shifts in host VEC phenotypes with significant changes in the host transcriptome, including altered expression of select molecular transporter genes. These findings support the need for additional study of the environmental changes associated with behavior and health upon the symbiotic and adversarial relationships that are formed in microbial communities present in the human vaginal ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ecosystem goods and services at the neighborhood scale

    EPA Science Inventory

    Mapping ecosystem functions and articulating the ecosystem goods and services (EGS) they provide to human beneficiaries are important aspects that: link human actions to human costs and benefits from ecosystem, and ultimately provide this information to the general public, public...

  8. Impacts of conservation and human development policy across stakeholders and scales.

    PubMed

    Li, Cong; Zheng, Hua; Li, Shuzhuo; Chen, Xiaoshu; Li, Jie; Zeng, Weihong; Liang, Yicheng; Polasky, Stephen; Feldman, Marcus W; Ruckelshaus, Mary; Ouyang, Zhiyun; Daily, Gretchen C

    2015-06-16

    Ideally, both ecosystem service and human development policies should improve human well-being through the conservation of ecosystems that provide valuable services. However, program costs and benefits to multiple stakeholders, and how they change through time, are rarely carefully analyzed. We examine one of China's new ecosystem service protection and human development policies: the Relocation and Settlement Program of Southern Shaanxi Province (RSP), which pays households who opt voluntarily to resettle from mountainous areas. The RSP aims to reduce disaster risk, restore important ecosystem services, and improve human well-being. We use household surveys and biophysical data in an integrated economic cost-benefit analysis for multiple stakeholders. We project that the RSP will result in positive net benefits to the municipal government, and to cross-region and global beneficiaries over the long run along with environment improvement, including improved water quality, soil erosion control, and carbon sequestration. However, there are significant short-run relocation costs for local residents so that poor households may have difficulty participating because they lack the resources to pay the initial costs of relocation. Greater subsidies and subsequent supports after relocation are necessary to reduce the payback period of resettled households in the long run. Compensation from downstream beneficiaries for improved water and from carbon trades could be channeled into reducing relocation costs for the poor and sharing the burden of RSP implementation. The effectiveness of the RSP could also be greatly strengthened by early investment in developing human capital and environment-friendly jobs and establishing long-term mechanisms for securing program goals. These challenges and potential solutions pervade ecosystem service efforts globally.

  9. Great Lakes rivermouths: a primer for managers

    USGS Publications Warehouse

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described by the Millennium Ecosystem Assessment (Table1). Collectively, this primer synthesizes existing information in a new way that aims to support management of rivermouths as distinct and important ecosystems. The development and management decisions made around rivermouths today will shape the future of these ecosystems, and the human communities within them, well into the future. 1 The information presented in this paper was derived from discussions and draft documents of the Great Lakes Rivermouth Collaboratory. The Great Lakes Rivermouth Collaboratory was established by the U.S. Geological Survey's Great Lakes Science Center (USGS-GLSC) in collaboration with the Great Lakes Commission to engage the Great Lakes scientific community in sharing and documenting knowledge about freshwater rivermouth ecosystems. For more information, see http://www.glc.org/habitat/Rivermouth-Collaboratory.html.

  10. Adaptive management for ecosystem services.

    PubMed

    Birgé, Hannah E; Allen, Craig R; Garmestani, Ahjond S; Pope, Kevin L

    2016-12-01

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with management designed to meet the demands of a growing human population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services.

    PubMed

    Gianinazzi, Silvio; Gollotte, Armelle; Binet, Marie-Noëlle; van Tuinen, Diederik; Redecker, Dirk; Wipf, Daniel

    2010-11-01

    The beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the 'first green revolution', less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution. These resources and processes, which are called ecosystem services, include products like food and processes like nutrient transfer. Many people have been under the illusion that these ecosystem services are free, invulnerable and infinitely available; taken for granted as public benefits, they lack a formal market and are traditionally absent from society's balance sheet. In 1997, a team of researchers from the USA, Argentina and the Netherlands put an average price tag of US $33 trillion a year on these fundamental ecosystem services. The present review highlights the key role that the AM symbiosis can play as an ecosystem service provider to guarantee plant productivity and quality in emerging systems of sustainable agriculture. The appropriate management of ecosystem services rendered by AM will impact on natural resource conservation and utilisation with an obvious net gain for human society.

  12. U.S. Geological Survey (USGS), Western Region: Coastal ecosystem responses to influences from land and sea, Coastal and Ocean Science

    USGS Publications Warehouse

    Bodkin, James L.

    2010-01-01

    Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.

  13. Measuring and Mapping the Topography of the Florida Everglades for Ecosystem Restoration

    USGS Publications Warehouse

    Desmond, Gregory B.

    2003-01-01

    One of the major issues facing ecosystem restoration and management of the Greater Everglades is the availability and distribution of clean, fresh water. The South Florida ecosystem encompasses an area of approximately 28,000 square kilometers and supports a human population that exceeds 5 million and is continuing to grow. The natural systems of the Kissimmee-Okeechobee-Everglades watershed compete for water resources primarily with the region's human population and urbanization, and with the agricultural and tourism industries. Surface water flow modeling and ecological modeling studies are important means of providing scientific information needed for ecosystem restoration planning and modeling. Hydrologic and ecological models provide much-needed predictive capabilities for evaluating management options for parks, refuges, and land acquisition and for understanding the impacts of land management practices in surrounding areas. These models require various input data, including elevation data that very accurately define the topography of the Florida Everglades.

  14. Ancient DNA and morphometric analysis reveal extinction and replacement of New Zealand's unique black swans.

    PubMed

    Rawlence, Nicolas J; Kardamaki, Afroditi; Easton, Luke J; Tennyson, Alan J D; Scofield, R Paul; Waters, Jonathan M

    2017-07-26

    Prehistoric human impacts on megafaunal populations have dramatically reshaped ecosystems worldwide. However, the effects of human exploitation on smaller species, such as anatids (ducks, geese, and swans) are less clear. In this study we apply ancient DNA and osteological approaches to reassess the history of Australasia's iconic black swans ( Cygnus atratus ) including the palaeo-behaviour of prehistoric populations. Our study shows that at the time of human colonization, New Zealand housed a genetically, morphologically, and potentially ecologically distinct swan lineage ( C. sumnerensis , Poūwa), divergent from modern (Australian) C. atratus Morphological analyses indicate C. sumnerensis exhibited classic signs of the 'island rule' effect, being larger, and likely flight-reduced compared to C. atratus Our research reveals sudden extinction and replacement events within this anatid species complex, coinciding with recent human colonization of New Zealand. This research highlights the role of anthropogenic processes in rapidly reshaping island ecosystems and raises new questions for avian conservation, ecosystem re-wilding, and de-extinction. © 2017 The Author(s).

  15. Diatoms to human uses: linking nitrogen deposition, aquatic eutrophication, and ecosystem services

    DOE PAGES

    Rhodes, Charles; Bingham, Andrew; Heard, Andrea M.; ...

    2017-07-24

    Nitrogen (N) loading to aquatic ecosystems can lead to eutrophication, changing the ecosystem within a waterbody, including primary productivity, water clarity, and food web dynamics. Nutrient loading often first affects the primary productivity of aquatic systems through shifts in phytoplankton communities. However, ecologically important changes in phytoplankton are often not relatable to the general public—whose behavior would need to change to alter patterns of nutrient loading. Therefore, we use the STressor–Ecological Production function–final ecosystem Services Framework to develop 154 chains that link changes in biological indicators of aquatic eutrophication (a shift in phytoplankton community) to final ecosystem services that peoplemore » use or appreciate. We identify 13 ecological production functions (EPF) within three different ecosystems (alpine lakes, lakes, and estuaries) that connect changes in phytoplankton and algae to ecological endpoints that the general public and policy makers can appreciate. Using the Final Ecosystem Goods and Services Classification System, we identify 18 classes of human beneficiaries that potentially will be impacted by a change in one of these endpoints. We further assign strength-of-science scores to each link within the EPFs for the 154 chains according to how well each link is supported by current peer-reviewed literature. By identifying many pathways through which excess N loading in U.S. surface waters can affect ecosystems and ultimately the beneficiaries of ecosystem services, this work intends to draw attention to gaps in empirical ecological literature that constrain understanding of the magnitude of effects that excess N loading can have on human well-being. Here, results highlight the importance of intersections between the natural and social sciences when managers and policy makers evaluate impacts from ecological stressors. A balance between knowledgeable specialists proved key to applying this approach and will continue to remain important.« less

  16. Diatoms to human uses: linking nitrogen deposition, aquatic eutrophication, and ecosystem services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodes, Charles; Bingham, Andrew; Heard, Andrea M.

    Nitrogen (N) loading to aquatic ecosystems can lead to eutrophication, changing the ecosystem within a waterbody, including primary productivity, water clarity, and food web dynamics. Nutrient loading often first affects the primary productivity of aquatic systems through shifts in phytoplankton communities. However, ecologically important changes in phytoplankton are often not relatable to the general public—whose behavior would need to change to alter patterns of nutrient loading. Therefore, we use the STressor–Ecological Production function–final ecosystem Services Framework to develop 154 chains that link changes in biological indicators of aquatic eutrophication (a shift in phytoplankton community) to final ecosystem services that peoplemore » use or appreciate. We identify 13 ecological production functions (EPF) within three different ecosystems (alpine lakes, lakes, and estuaries) that connect changes in phytoplankton and algae to ecological endpoints that the general public and policy makers can appreciate. Using the Final Ecosystem Goods and Services Classification System, we identify 18 classes of human beneficiaries that potentially will be impacted by a change in one of these endpoints. We further assign strength-of-science scores to each link within the EPFs for the 154 chains according to how well each link is supported by current peer-reviewed literature. By identifying many pathways through which excess N loading in U.S. surface waters can affect ecosystems and ultimately the beneficiaries of ecosystem services, this work intends to draw attention to gaps in empirical ecological literature that constrain understanding of the magnitude of effects that excess N loading can have on human well-being. Here, results highlight the importance of intersections between the natural and social sciences when managers and policy makers evaluate impacts from ecological stressors. A balance between knowledgeable specialists proved key to applying this approach and will continue to remain important.« less

  17. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    Treesearch

    Jane M. Wolken; Teresa N. Hollingsworth; T. Scott Rupp; F. Stuart Chapin; Sarah F. Trainor; Tara M. Barrett; Patrick F. Sullivan; A. David McGuire; Eugenie S. Euskirchen; Paul E. Hennon; Erik A. Beever; Jeff S. Conn; Lisa K. Crone; David V. A' More; Nancy Fresco; Thomas A. Hanley; Knut Kielland; James J. Kruse; Trista Patterson; Edward A.G. Schuur; David L. Verbyla; John Yarie

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of...

  18. Natural and human impacts on ecosystem services in Guanzhong - Tianshui economic region of China.

    PubMed

    Li, Jing; Zhou, Z X

    2016-04-01

    Due to the accelerated growth of society, the gaps between the capacity of ecosystems to provide services and human needs are steadily widening. Natural, semi-natural, or managed ecosystems had been able to provide ecosystem services to meet the needs of social development. Four agricultural ecosystem services (net primary production (NPP), carbon sequestration and oxygen production (CSOP), water interception, soil conservation and agriculture production) were quantified in Guanzhong-Tianshui economic region. Estimates of ecosystem services were obtained from the analysis of satellite imagery and the use of well-known models. Based on the ecological services in Guanzhong-Tianshui economic region, this study mainly analysed the driving mechanism of the changes from the two aspects of natural drivers and human drivers. Natural drivers (climate, soil, elevation, land cover) had incentive to the ecological services. Human activity was quantified by an integrated human activity index (HAI) based on population density, farmland ratio, and the influence of road networks and residential areas. We found relationships between ecosystem services, human activities and many natural factors, however these varied according to the service studied. Human activities were mostly negatively related to each ecosystem services, while population and residential land ware positively related to agricultural production. Land use change had made a contribution to ecosystem services. Based on the selected ecosystem services and HAI, we provided sustainable ecosystem management suggestions.

  19. Semantic Support for Complex Ecosystem Research Environments

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; McGuinness, D. L.; Pinheiro, P.; Santos, H. O.; Chastain, K.

    2015-12-01

    As ecosystems come under increasing stresses from diverse sources, there is growing interest in research efforts aimed at monitoring, modeling, and improving understanding of ecosystems and protection options. We aimed to provide a semantic infrastructure capable of representing data initially related to one large aquatic ecosystem research effort - the Jefferson project at Lake George. This effort includes significant historical observational data, extensive sensor-based monitoring data, experimental data, as well as model and simulation data covering topics including lake circulation, watershed runoff, lake biome food webs, etc. The initial measurement representation has been centered on monitoring data and related provenance. We developed a human-aware sensor network ontology (HASNetO) that leverages existing ontologies (PROV-O, OBOE, VSTO*) in support of measurement annotations. We explicitly support the human-aware aspects of human sensor deployment and collection activity to help capture key provenance that often is lacking. Our foundational ontology has since been generalized into a family of ontologies and used to create our human-aware data collection infrastructure that now supports the integration of measurement data along with simulation data. Interestingly, we have also utilized the same infrastructure to work with partners who have some more specific needs for specifying the environmental conditions where measurements occur, for example, knowing that an air temperature is not an external air temperature, but of the air temperature when windows are shut and curtains are open. We have also leveraged the same infrastructure to work with partners more interested in modeling smart cities with data feeds more related to people, mobility, environment, and living. We will introduce our human-aware data collection infrastructure, and demonstrate how it uses HASNetO and its supporting SOLR-based search platform to support data integration and semantic browsing. Further we will present learnings from its use in three relatively diverse large ecosystem research efforts and highlight some benefits and challenges related to our semantically-enhanced foundation.

  20. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  1. [Research progress of ecosystem service flow.

    PubMed

    Liu, Hui Min; Fan, Yu Long; Ding, Sheng Yan

    2016-07-01

    With the development of social economy, human disturbance has resulted in a variety of ecosystem service degradation or disappearance. Ecosystem services flow plays an important role in delivery, transformation and maintenance of ecosystem services, and becomes one of the new research directions. In this paper, based on the classification of ecosystem services flow, we analyzed ecosystem service delivery carrier, and investigated the mechanism of ecosystem service flow, including the information, property, scale features, quantification and cartography. Moreover, a tentative analysis on cost-effective of ecosystem services flow (such as transportation costs, conversion costs, usage costs and cost of relativity) was made to analyze the consumption cost in ecosystem services flow process. It aimed to analyze dissipation cost in ecosystem services flow process. To a certain extent, the study of ecosystem service flow solved the problem of "double counting" in ecosystem services valuation, which could make a contribution for the sake of recognizing hot supply and consumption spots of ecosystem services. In addition, it would be conducive to maximizing the ecosystem service benefits in the transmission process and putting forward scientific and reasonable ecological compensation.

  2. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gilbert, D.; Gooday, A. J.; Levin, L.; Naqvi, S. W. A.; Middelburg, J. J.; Scranton, M.; Ekau, W.; Peña, A.; Dewitte, B.; Oguz, T.; Monteiro, P. M. S.; Urban, E.; Rabalais, N. N.; Ittekkot, V.; Kemp, W. M.; Ulloa, O.; Elmgren, R.; Escobar-Briones, E.; van der Plas, A. K.

    2010-05-01

    Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes a deterioration of the structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, coastal waters, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include freshwater runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses. Their different interactions set up mechanisms that drive the system towards hypoxia. Coastal systems also vary in their relative susceptibility to hypoxia depending on their physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences include compression and loss of habitat, as well as changes in organism life cycles and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in non-linear ways with pronounced feedbacks to other compartments of the Earth System, including those that affect human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behavior that will improve confidence in remediation management strategies for coastal hypoxia.

  3. Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions.

    PubMed

    Mtwana Nordlund, Lina; Koch, Evamaria W; Barbier, Edward B; Creed, Joel C

    2016-01-01

    Threats to and loss of seagrass ecosystems globally, impact not only natural resources but also the lives of people who directly or indirectly depend on these systems. Seagrass ecosystems play a multi-functional role in human well-being, e.g. food through fisheries, control of erosion and protection against floods. Quantifying these services reveals their contributions to human well-being and helps justify seagrass conservation. There has been no comprehensive assessment as to whether seagrass ecosystem services are perceived to vary over the globe or amongst genera. Our study compiles the most complete list of ecosystem services provided by seagrasses so far, including bioregional- and genus-specific information from expert opinion and published studies. Several seagrass ecosystem services vary considerably in their (known) provision across genera and over the globe. Seagrasses genera are clearly not all equal with regard to the ecosystem services they provide. As seagrass genera are not evenly distributed over all bioregions, the presence of an ecosystem service sometimes depends on the genera present. Larger sized seagrass genera (e.g. Posidonia, Enhalus) are perceived to provide more substantial and a wider variety of ecosystem services than smaller species (e.g. Halophila, Lepilaena). Nevertheless, smaller species provide important services. Our findings point out data gaps, provide new insight for more efficient management and recommend caution in economic valuation of seagrass services worldwide.

  4. Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions

    PubMed Central

    Mtwana Nordlund, Lina; Barbier, Edward B.; Creed, Joel C.

    2016-01-01

    Threats to and loss of seagrass ecosystems globally, impact not only natural resources but also the lives of people who directly or indirectly depend on these systems. Seagrass ecosystems play a multi-functional role in human well-being, e.g. food through fisheries, control of erosion and protection against floods. Quantifying these services reveals their contributions to human well-being and helps justify seagrass conservation. There has been no comprehensive assessment as to whether seagrass ecosystem services are perceived to vary over the globe or amongst genera. Our study compiles the most complete list of ecosystem services provided by seagrasses so far, including bioregional- and genus-specific information from expert opinion and published studies. Several seagrass ecosystem services vary considerably in their (known) provision across genera and over the globe. Seagrasses genera are clearly not all equal with regard to the ecosystem services they provide. As seagrass genera are not evenly distributed over all bioregions, the presence of an ecosystem service sometimes depends on the genera present. Larger sized seagrass genera (e.g. Posidonia, Enhalus) are perceived to provide more substantial and a wider variety of ecosystem services than smaller species (e.g. Halophila, Lepilaena). Nevertheless, smaller species provide important services. Our findings point out data gaps, provide new insight for more efficient management and recommend caution in economic valuation of seagrass services worldwide. PMID:27732600

  5. Accounting for ecosystem services in life cycle assessment, Part I: a critical review.

    PubMed

    Zhang, Yi; Singh, Shweta; Bakshi, Bhavik R

    2010-04-01

    If life cycle oriented methods are to encourage sustainable development, they must account for the role of ecosystem goods and services, since these form the basis of planetary activities and human well-being. This article reviews methods that are relevant to accounting for the role of nature and that could be integrated into life cycle oriented approaches. These include methods developed by ecologists for quantifying ecosystem services, by ecological economists for monetary valuation, and life cycle methods such as conventional life cycle assessment, thermodynamic methods for resource accounting such as exergy and emergy analysis, variations of the ecological footprint approach, and human appropriation of net primary productivity. Each approach has its strengths: economic methods are able to quantify the value of cultural services; LCA considers emissions and assesses their impact; emergy accounts for supporting services in terms of cumulative exergy; and ecological footprint is intuitively appealing and considers biocapacity. However, no method is able to consider all the ecosystem services, often due to the desire to aggregate all resources in terms of a single unit. This review shows that comprehensive accounting for ecosystem services in LCA requires greater integration among existing methods, hierarchical schemes for interpreting results via multiple levels of aggregation, and greater understanding of the role of ecosystems in supporting human activities. These present many research opportunities that must be addressed to meet the challenges of sustainability.

  6. Going Beyond the Millennium Ecosystem Assessment: An Index System of Human Dependence on Ecosystem Services

    PubMed Central

    Yang, Wu; Dietz, Thomas; Liu, Wei; Luo, Junyan; Liu, Jianguo

    2013-01-01

    The Millennium Ecosystem Assessment (MA) estimated that two thirds of ecosystem services on the earth have degraded or are in decline due to the unprecedented scale of human activities during recent decades. These changes will have tremendous consequences for human well-being, and offer both risks and opportunities for a wide range of stakeholders. Yet these risks and opportunities have not been well managed due in part to the lack of quantitative understanding of human dependence on ecosystem services. Here, we propose an index of dependence on ecosystem services (IDES) system to quantify human dependence on ecosystem services. We demonstrate the construction of the IDES system using household survey data. We show that the overall index and sub-indices can reflect the general pattern of households' dependences on ecosystem services, and their variations across time, space, and different forms of capital (i.e., natural, human, financial, manufactured, and social capitals). We support the proposition that the poor are more dependent on ecosystem services and further generalize this proposition by arguing that those disadvantaged groups who possess low levels of any form of capital except for natural capital are more dependent on ecosystem services than those with greater control of capital. The higher value of the overall IDES or sub-index represents the higher dependence on the corresponding ecosystem services, and thus the higher vulnerability to the degradation or decline of corresponding ecosystem services. The IDES system improves our understanding of human dependence on ecosystem services. It also provides insights into strategies for alleviating poverty, for targeting priority groups of conservation programs, and for managing risks and opportunities due to changes of ecosystem services at multiple scales. PMID:23717634

  7. Going beyond the Millennium Ecosystem Assessment: an index system of human dependence on ecosystem services.

    PubMed

    Yang, Wu; Dietz, Thomas; Liu, Wei; Luo, Junyan; Liu, Jianguo

    2013-01-01

    The Millennium Ecosystem Assessment (MA) estimated that two thirds of ecosystem services on the earth have degraded or are in decline due to the unprecedented scale of human activities during recent decades. These changes will have tremendous consequences for human well-being, and offer both risks and opportunities for a wide range of stakeholders. Yet these risks and opportunities have not been well managed due in part to the lack of quantitative understanding of human dependence on ecosystem services. Here, we propose an index of dependence on ecosystem services (IDES) system to quantify human dependence on ecosystem services. We demonstrate the construction of the IDES system using household survey data. We show that the overall index and sub-indices can reflect the general pattern of households' dependences on ecosystem services, and their variations across time, space, and different forms of capital (i.e., natural, human, financial, manufactured, and social capitals). We support the proposition that the poor are more dependent on ecosystem services and further generalize this proposition by arguing that those disadvantaged groups who possess low levels of any form of capital except for natural capital are more dependent on ecosystem services than those with greater control of capital. The higher value of the overall IDES or sub-index represents the higher dependence on the corresponding ecosystem services, and thus the higher vulnerability to the degradation or decline of corresponding ecosystem services. The IDES system improves our understanding of human dependence on ecosystem services. It also provides insights into strategies for alleviating poverty, for targeting priority groups of conservation programs, and for managing risks and opportunities due to changes of ecosystem services at multiple scales.

  8. FEGS at the inflection point: How linking Ecosystem Services to Human Benefit improves management of coastal ecosystems.

    EPA Science Inventory

    Final ecosystem goods and services (FEGS) are the connection between the ecosystem resources and human stakeholders that benefit from natural capital. The FEGS concept is an extension of the ecosystem services (ES) concept (e.g., Millennium Ecosystem Assessment) and results from...

  9. Demonstrating an Approach for Including Pesticide Use in Life Cycle Assessment: Estimating Human and Ecosystem Toxicity of Pesticide Use in Midwest Corn Farming

    EPA Science Inventory

    Purpose This study demonstrates an approach to assess human health and ecotoxicity impacts of pesticide use by including multiple environmental pathways and various exposure routes using the case of corn grown for bio-based fuel or chemical production in US Midwestern states.Meth...

  10. Demonstrating an approach for including pesticide use in life-cycle assessment: Estimating human and ecosystem toxicity of pesticide use in Midwest corn farming

    EPA Science Inventory

    PurposeThis study demonstrates an approach to assess human health and ecotoxicity impacts of pesticide use by including multiple environmental pathways and various exposure routes using the case of corn grown for bio-based fuel or chemical production in US Midwestern states.Metho...

  11. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Sivapalan, Murugesu; Li, Zheng; Pande, Saket; Savenije, Hubert

    2014-05-01

    Around the world the demand for water resources is growing in order to satisfy rapidly increasing human populations, leading to competition for water between humans and ecosystems. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development and evaluation of effective mediation strategies. We present a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water resources management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resources development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health, which are all connected by feedback mechanisms. The model is used to generate insights into the dominant controls of the trajectory of co-evolution of the coupled human-water system, to serve as the theoretical framework for more detailed analysis of the system, and to generate organizing principles that may be transferable to other systems in different climatic and socio-economic settings.

  12. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. Copyright © 2015, American Association for the Advancement of Science.

  13. The current biodiversity extinction event: scenarios for mitigation and recovery.

    PubMed

    Novacek, M J; Cleland, E E

    2001-05-08

    The current massive degradation of habitat and extinction of species is taking place on a catastrophically short timescale, and their effects will fundamentally reset the future evolution of the planet's biota. The fossil record suggests that recovery of global ecosystems has required millions or even tens of millions of years. Thus, intervention by humans, the very agents of the current environmental crisis, is required for any possibility of short-term recovery or maintenance of the biota. Many current recovery efforts have deficiencies, including insufficient information on the diversity and distribution of species, ecological processes, and magnitude and interaction of threats to biodiversity (pollution, overharvesting, climate change, disruption of biogeochemical cycles, introduced or invasive species, habitat loss and fragmentation through land use, disruption of community structure in habitats, and others). A much greater and more urgently applied investment to address these deficiencies is obviously warranted. Conservation and restoration in human-dominated ecosystems must strengthen connections between human activities, such as agricultural or harvesting practices, and relevant research generated in the biological, earth, and atmospheric sciences. Certain threats to biodiversity require intensive international cooperation and input from the scientific community to mitigate their harmful effects, including climate change and alteration of global biogeochemical cycles. In a world already transformed by human activity, the connection between humans and the ecosystems they depend on must frame any strategy for the recovery of the biota.

  14. Integrating human health and ecological concerns in risk assessments.

    PubMed

    Cirone, P A; Bruce Duncan, P

    2000-11-03

    The interconnections between ecosystems, human health and welfare have been increasingly recognized by the US government, academia, and the public. This paper continues this theme by addressing the use of risk assessment to integrate people into a single assessment. In a broad overview of the risk assessment process we stress the need to build a conceptual model of the whole system including multiple species (humans and other ecological entities), stressors, and cumulative effects. We also propose converging landscape ecology and evaluation of ecosystem services with risk assessment to address these cumulative responses. We first look at how this integration can occur within the problem formulation step in risk assessment where the system is defined, a conceptual model created, a subset of components and functions selected, and the analytical framework decided in a context that includes the management decisions. A variety of examples of problem formulations (salmon, wild insects, hyporheic ecosystems, ultraviolet (UV) radiation, nitrogen fertilization, toxic chemicals, and oil spills) are presented to illustrate how treating humans as components of the landscape can add value to risk assessments. We conclude that the risk assessment process should help address the urgent needs of society in proportion to importance, to provide a format to communicate knowledge and understanding, and to inform policy and management decisions.

  15. Epidemiology of Brucella infection in the human, livestock and wildlife interface in the Katavi-Rukwa ecosystem, Tanzania.

    PubMed

    Assenga, Justine A; Matemba, Lucas E; Muller, Shabani K; Malakalinga, Joseph J; Kazwala, Rudovick R

    2015-08-08

    Brucellosis is a zoonosis of public health importance worldwide. In Tanzania, the disease is underreported due to insufficient awareness, inadequate diagnostic protocols, including lack of appropriate reagents for diagnosis. Livestock and wildlife are considered potential sources of infection to humans; however, the role played by these carriers in the epidemiology of the disease in the ecosystems in Tanzania is not fully understood. The objective of this study was to establish the prevalence of anti-Brucella antibodies in humans, wildlife and livestock; and molecular prevalence of Brucella spp in cattle and goats in the Katavi- Rukwa ecosystem. Anti-Brucella antibodies were detected in humans at 0.6 % (95 % CI: 0.1, 2.1 %); cattle at 6.8 % (95 % CI: 5.4, 8.5 %), goats at 1.6 % (95 % CI: 0.4, 4.1 %) and buffaloes at 7.9 % (95 % CI: 1.7, 21.4 %). One of the two sampled lions tested positive. Cattle had a significantly higher prevalence of anti-Brucella antibodies as compared to goats (P < 0.05). A significantly higher seroprevalence was found in female than in male cattle and in adult than in young cattle (P < 0.05). There was an agreement of 95 and 89 % in cattle and goats, respectively, for the Rose Bengal plate Test (RBPT) and Competitive Enzyme Linked Immunosorbent Assay (c-ELISA) in detecting Brucella infection. Eight (3.5 %) out of 231 milk samples tested were positive for Brucella spp on Polymerase Chain Reaction (PCR), and Brucella abortus biovar 1 was detected in cattle milk. However, no Brucella spp were detected in goat milk. This study has shown the presence of anti- Brucella antibodies in humans, livestock, and wildlife in the Katavi- Rukwa ecosystem. Transmission of the infection between wildlife, livestock and humans is likely to continue due to increasing human activities in the human wildlife interface. This information is an important contribution to public health policy development in the human wildlife interface of the Katavi- Rukwa ecosystem.

  16. Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs

    PubMed Central

    Kittinger, John N.; Pandolfi, John M.; Blodgett, Jonathan H.; Hunt, Terry L.; Jiang, Hong; Maly, Kepā; McClenachan, Loren E.; Schultz, Jennifer K.; Wilcox, Bruce A.

    2011-01-01

    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts. PMID:21991311

  17. Biodiversity, air quality and human health

    Treesearch

    David J. Nowak; Sarah Jovan; Christina Branquinho; Sofia Augusto; Manuel C. Ribeiro; Conor E. Kretsch

    2015-01-01

    Air pollution is a significant problem in cities across the world. It affects human health and well-being, ecosystem health, crops, climate, visibility and human-made materials. Health effects related to air pollution include its impact on the pulmonary, cardiac, vascular and neurological systems (Section 2). Trees affect air quality through a number of means (Section...

  18. Impacts of conservation and human development policy across stakeholders and scales

    PubMed Central

    Li, Cong; Zheng, Hua; Li, Shuzhuo; Chen, Xiaoshu; Li, Jie; Zeng, Weihong; Liang, Yicheng; Polasky, Stephen; Feldman, Marcus W.; Ruckelshaus, Mary; Ouyang, Zhiyun; Daily, Gretchen C.

    2015-01-01

    Ideally, both ecosystem service and human development policies should improve human well-being through the conservation of ecosystems that provide valuable services. However, program costs and benefits to multiple stakeholders, and how they change through time, are rarely carefully analyzed. We examine one of China’s new ecosystem service protection and human development policies: the Relocation and Settlement Program of Southern Shaanxi Province (RSP), which pays households who opt voluntarily to resettle from mountainous areas. The RSP aims to reduce disaster risk, restore important ecosystem services, and improve human well-being. We use household surveys and biophysical data in an integrated economic cost–benefit analysis for multiple stakeholders. We project that the RSP will result in positive net benefits to the municipal government, and to cross-region and global beneficiaries over the long run along with environment improvement, including improved water quality, soil erosion control, and carbon sequestration. However, there are significant short-run relocation costs for local residents so that poor households may have difficulty participating because they lack the resources to pay the initial costs of relocation. Greater subsidies and subsequent supports after relocation are necessary to reduce the payback period of resettled households in the long run. Compensation from downstream beneficiaries for improved water and from carbon trades could be channeled into reducing relocation costs for the poor and sharing the burden of RSP implementation. The effectiveness of the RSP could also be greatly strengthened by early investment in developing human capital and environment-friendly jobs and establishing long-term mechanisms for securing program goals. These challenges and potential solutions pervade ecosystem service efforts globally. PMID:26082546

  19. Ocean acidification and its potential effects on marine ecosystems.

    PubMed

    Guinotte, John M; Fabry, Victoria J

    2008-01-01

    Ocean acidification is rapidly changing the carbonate system of the world oceans. Past mass extinction events have been linked to ocean acidification, and the current rate of change in seawater chemistry is unprecedented. Evidence suggests that these changes will have significant consequences for marine taxa, particularly those that build skeletons, shells, and tests of biogenic calcium carbonate. Potential changes in species distributions and abundances could propagate through multiple trophic levels of marine food webs, though research into the long-term ecosystem impacts of ocean acidification is in its infancy. This review attempts to provide a general synthesis of known and/or hypothesized biological and ecosystem responses to increasing ocean acidification. Marine taxa covered in this review include tropical reef-building corals, cold-water corals, crustose coralline algae, Halimeda, benthic mollusks, echinoderms, coccolithophores, foraminifera, pteropods, seagrasses, jellyfishes, and fishes. The risk of irreversible ecosystem changes due to ocean acidification should enlighten the ongoing CO(2) emissions debate and make it clear that the human dependence on fossil fuels must end quickly. Political will and significant large-scale investment in clean-energy technologies are essential if we are to avoid the most damaging effects of human-induced climate change, including ocean acidification.

  20. Ecological determinants of health: food and environment on human health.

    PubMed

    Li, Alice M L

    2017-04-01

    Human health and diseases are determined by many complex factors. Health threats from the human-animal-ecosystems interface (HAEI) and zoonotic diseases (zoonoses) impose an increasing risk continuously to public health, from those emerging pathogens transmitted through contact with animals, food, water and contaminated environments. Immense challenges forced on the ecological perspectives on food and the eco-environments, including aquaculture, agriculture and the entire food systems. Impacts of food and eco-environments on human health will be examined amongst the importance of human interventions for intended purposes in lowering the adverse effects on the biodiversity. The complexity of relevant conditions defined as factors contributing to the ecological determinants of health will be illuminated from different perspectives based on concepts, citations, examples and models, in conjunction with harmful consequential effects of human-induced disturbances to our environments and food systems, together with the burdens from ecosystem disruption, environmental hazards and loss of ecosystem functions. The eco-health literacy should be further promoting under the "One Health" vision, with "One World" concept under Ecological Public Health Model for sustaining our environments and the planet earth for all beings, which is coincidentally echoing Confucian's theory for the environmental ethics of ecological harmony.

  1. Ecosystems and Human Health: Meeting Challenges through Integrated Research and Policy

    EPA Science Inventory

    Human activity is transforming the structure and function of Earth’s natural systems including its land cover, rivers, oceans, biogeochemical cycles, and climate system.  As this transformation accelerates, there is growing evidence that changes in the state of natural...

  2. Major ecosystems in China: dynamics and challenges for sustainable management.

    PubMed

    Lü, Yihe; Fu, Bojie; Wei, Wei; Yu, Xiubo; Sun, Ranhao

    2011-07-01

    Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China's ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded.

  3. Desert Scrublands

    USGS Publications Warehouse

    Jones, L.L.C.; Halama, K.J.; Lovich, R.E.

    2016-01-01

    Desert scrublands comprise the lower to mid-elevation portions of four different ecosystems including the Chihuahuan, Great Basin, Mojave and Sonoran Deserts. Together the area inside their outer boundaries includes over 8% of the surface area of the United States. Despite significant differences in the flora and fauna of these bioregions they all share the common trait of being arid shrub-steppe ecosystems, receiving, on average, less than 254 mm of rain per year. The austere nature of these landscapes belies their significant biodiversity, the amazing behavioral and physiological adaptations of the biota, and the fragility of the ecosystems to human disturbances. For example, the Mojave Desert alone has at least 250 species of ephemeral plants, mostly winter annuals, and up to 90% are endemic.

  4. Effects of Plant Traits on Ecosystem and Regional Processes: a Conceptual Framework for Predicting the Consequences of Global Change

    PubMed Central

    CHAPIN, F. STUART

    2003-01-01

    Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725

  5. Economic development and coastal ecosystem change in China.

    PubMed

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-08-08

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  6. Comparative analysis of marine ecosystems: workshop on predator-prey interactions.

    PubMed

    Bailey, Kevin M; Ciannelli, Lorenzo; Hunsicker, Mary; Rindorf, Anna; Neuenfeldt, Stefan; Möllmann, Christian; Guichard, Frederic; Huse, Geir

    2010-10-23

    Climate and human influences on marine ecosystems are largely manifested by changes in predator-prey interactions. It follows that ecosystem-based management of the world's oceans requires a better understanding of food web relationships. An international workshop on predator-prey interactions in marine ecosystems was held at the Oregon State University, Corvallis, OR, USA on 16-18 March 2010. The meeting brought together scientists from diverse fields of expertise including theoretical ecology, animal behaviour, fish and seabird ecology, statistics, fisheries science and ecosystem modelling. The goals of the workshop were to critically examine the methods of scaling-up predator-prey interactions from local observations to systems, the role of shifting ecological processes with scale changes, and the complexity and organizational structure in trophic interactions.

  7. Urban ecological systems: scientific foundations and a decade of progress.

    PubMed

    Pickett, S T A; Cadenasso, M L; Grove, J M; Boone, Christopher G; Groffman, Peter M; Irwin, Elena; Kaushal, Sujay S; Marshall, Victoria; McGrath, Brian P; Nilon, C H; Pouyat, R V; Szlavecz, Katalin; Troy, Austin; Warren, Paige

    2011-03-01

    Urban ecological studies, including focus on cities, suburbs, and exurbs, while having deep roots in the early to mid 20th century, have burgeoned in the last several decades. We use the state factor approach to highlight the role of important aspects of climate, substrate, organisms, relief, and time in differentiating urban from non-urban areas, and for determining heterogeneity within spatially extensive metropolitan areas. In addition to reviewing key findings relevant to each state factor, we note the emergence of tentative "urban syndromes" concerning soils, streams, wildlife and plants, and homogenization of certain ecosystem functions, such as soil organic carbon dynamics. We note the utility of the ecosystem approach, the human ecosystem framework, and watersheds as integrative tools to tie information about multiple state factors together. The organismal component of urban complexes includes the social organization of the human population, and we review key modes by which human populations within urban areas are differentiated, and how such differentiation affects environmentally relevant actions. Emerging syntheses in land change science and ecological urban design are also summarized. The multifaceted frameworks and the growing urban knowledge base do however identify some pressing research needs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Environmental metabolomics with data science for investigating ecosystem homeostasis.

    PubMed

    Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro

    2018-02-01

    A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.

  9. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia.

    PubMed

    McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine

    2010-04-27

    The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them follows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use.

  10. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia

    PubMed Central

    McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine

    2010-01-01

    The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them fallows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use. PMID:20385814

  11. Increased sensitivity to climate change in disturbed ecosystems.

    PubMed

    Kröel-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel; Beier, Claus; De Angelis, Paolo; de Dato, Giovanbattista; Dukes, Jeffrey S; Emmett, Bridget; Estiarte, Marc; Garadnai, János; Kongstad, Jane; Kovács-Láng, Edit; Larsen, Klaus Steenberg; Liberati, Dario; Ogaya, Romà; Riis-Nielsen, Torben; Smith, Andrew R; Sowerby, Alwyn; Tietema, Albert; Penuelas, Josep

    2015-03-24

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.

  12. A conceptual framework for the study of human ecosystems in urban areas

    Treesearch

    Steward T.A. Pickett; William R. Burch; Shawn E. Dalton; Timothy W. Foresman; J. Morgan Grove; Rowan Rowntree

    1997-01-01

    The need for integrated concepts, capable of satisfying natural and social scientists and supporting integrated research, motivates a conceptual framework for understanding the role of humans in ecosystems. The question is how to add humans to the ecological models used to understand urban ecosystems. The ecosystem concept can serve as the basis, but specific social...

  13. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.

    PubMed

    Williams, Clayton J; Frost, Paul C; Morales-Williams, Ana M; Larson, James H; Richardson, William B; Chiandet, Aisha S; Xenopoulos, Marguerite A

    2016-02-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales. © 2015 John Wiley & Sons Ltd.

  14. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    USGS Publications Warehouse

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.

  15. Adaptation policies to increase terrestrial ecosystem resilience. Potential utility of a multicriteria approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Bremond, Ariane; Engle, Nathan L.

    2014-01-30

    Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in themore » realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.« less

  16. Responding to the Consequences of Climate Change

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  17. Impacts of climate change on marine organisms and ecosystems.

    PubMed

    Brierley, Andrew S; Kingsford, Michael J

    2009-07-28

    Human activities are releasing gigatonnes of carbon to the Earth's atmosphere annually. Direct consequences of cumulative post-industrial emissions include increasing global temperature, perturbed regional weather patterns, rising sea levels, acidifying oceans, changed nutrient loads and altered ocean circulation. These and other physical consequences are affecting marine biological processes from genes to ecosystems, over scales from rock pools to ocean basins, impacting ecosystem services and threatening human food security. The rates of physical change are unprecedented in some cases. Biological change is likely to be commensurately quick, although the resistance and resilience of organisms and ecosystems is highly variable. Biological changes founded in physiological response manifest as species range-changes, invasions and extinctions, and ecosystem regime shifts. Given the essential roles that oceans play in planetary function and provision of human sustenance, the grand challenge is to intervene before more tipping points are passed and marine ecosystems follow less-buffered terrestrial systems further down a spiral of decline. Although ocean bioengineering may alleviate change, this is not without risk. The principal brake to climate change remains reduced CO(2) emissions that marine scientists and custodians of the marine environment can lobby for and contribute to. This review describes present-day climate change, setting it in context with historical change, considers consequences of climate change for marine biological processes now and in to the future, and discusses contributions that marine systems could play in mitigating the impacts of global climate change.

  18. Identifying indicators that connect streams to human well being

    EPA Science Inventory

    Background Ecosystems provide services that benefit diverse human users. Identification of the ecosystem features providing these benefits is one of the fundamental prerequisites for wisely monitoring and managing ecosystems and their support for human well being. Because soc...

  19. Effects of fuel reduction on birds in pitch pine–scrub oak barrens of the United States

    Treesearch

    David I. King; Scott Schlossberg; Robert T. Brooks; Michael E. Akresh

    2011-01-01

    Fire-dependent ecosystems include some of the most threatened ecosystems in the world, and where fuels are allowed to accumulate, they can present significant threats to human life and property. Fuel reduction activities can be effective in reducing the risk of wildfire, but these practices need to be evaluated relative to their effect on biodiversity. We surveyed...

  20. Identifying spatial priorities for protecting ecosystem services

    PubMed Central

    Luck, Gary W

    2012-01-01

    Priorities for protecting ecosystem services must be identified to ensure future human well-being. Approaches to broad-scale spatial prioritization of ecosystem services are becoming increasingly popular and are a vital precursor to identifying locations where further detailed analyses of the management of ecosystem services is required (e.g., examining trade-offs among management actions). Prioritization approaches often examine the spatial congruence between priorities for protecting ecosystem services and priorities for protecting biodiversity; therefore, the spatial prioritization method used is crucial because it will influence the alignment of service protection and conservation goals. While spatial prioritization of ecosystem services and prioritization for conservation share similarities, such as the need to document threats and costs, the former differs substantially from the latter owing to the requirement to measure the following components: supply of services; availability of human-derived alternatives to service provision; capacity to meet beneficiary demand; and site dependency in and scale of service delivery. We review studies that identify broad-scale spatial priorities for managing ecosystem services and demonstrate that researchers have used different approaches and included various measures for identifying priorities, and most studies do not consider all of the components listed above. We describe a conceptual framework for integrating each of these components into spatial prioritization of ecosystem services and illustrate our approach using a worked example for water provision. A fuller characterization of the biophysical and social context for ecosystem services that we call for should improve future prioritization and the identification of locations where ecosystem-service management is especially important or cost effective. PMID:24555017

  1. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    PubMed

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a wide array of end-users with the goal of advancing marine ecosystem studies. © 2017 by the Ecological Society of America.

  2. Green Infrastructure, Ecosystem Services, and Human Health.

    PubMed

    Coutts, Christopher; Hahn, Micah

    2015-08-18

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture-in the form of a primer-of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being.

  3. A process-based framework for soil ecosystem services study and management.

    PubMed

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure

    PubMed Central

    Jonasson, Sara; Eriksson, Johan; Berntzon, Lotta; Spáčil, Zdenĕk; Ilag, Leopold L.; Ronnevi, Lars-Olof; Rasmussen, Ulla; Bergman, Birgitta

    2010-01-01

    β-methylamino-L-alanine (BMAA), a neurotoxic nonprotein amino acid produced by most cyanobacteria, has been proposed to be the causative agent of devastating neurodegenerative diseases on the island of Guam in the Pacific Ocean. Because cyanobacteria are widespread globally, we hypothesized that BMAA might occur and bioaccumulate in other ecosystems. Here we demonstrate, based on a recently developed extraction and HPLC-MS/MS method and long-term monitoring of BMAA in cyanobacterial populations of a temperate aquatic ecosystem (Baltic Sea, 2007–2008), that BMAA is biosynthesized by cyanobacterial genera dominating the massive surface blooms of this water body. BMAA also was found at higher concentrations in organisms of higher trophic levels that directly or indirectly feed on cyanobacteria, such as zooplankton and various vertebrates (fish) and invertebrates (mussels, oysters). Pelagic and benthic fish species used for human consumption were included. The highest BMAA levels were detected in the muscle and brain of bottom-dwelling fishes. The discovery of regular biosynthesis of the neurotoxin BMAA in a large temperate aquatic ecosystem combined with its possible transfer and bioaccumulation within major food webs, some ending in human consumption, is alarming and requires attention. PMID:20439734

  5. HUMAN-ECOSYSTEM INTERACTIONS: THE CASE OF MERCURY

    EPA Science Inventory

    Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...

  6. Human - Ecosystem Interactions: The Case of Mercury

    EPA Science Inventory

    Human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in mercu...

  7. Human effects on ecological connectivity in aquatic ecosystems: Integrating scientific approaches to support management and mitigation.

    PubMed

    Crook, David A; Lowe, Winsor H; Allendorf, Frederick W; Erős, Tibor; Finn, Debra S; Gillanders, Bronwyn M; Hadwen, Wade L; Harrod, Chris; Hermoso, Virgilio; Jennings, Simon; Kilada, Raouf W; Nagelkerken, Ivan; Hansen, Michael M; Page, Timothy J; Riginos, Cynthia; Fry, Brian; Hughes, Jane M

    2015-11-15

    Understanding the drivers and implications of anthropogenic disturbance of ecological connectivity is a key concern for the conservation of biodiversity and ecosystem processes. Here, we review human activities that affect the movements and dispersal of aquatic organisms, including damming of rivers, river regulation, habitat loss and alteration, human-assisted dispersal of organisms and climate change. Using a series of case studies, we show that the insight needed to understand the nature and implications of connectivity, and to underpin conservation and management, is best achieved via data synthesis from multiple analytical approaches. We identify four key knowledge requirements for progressing our understanding of the effects of anthropogenic impacts on ecological connectivity: autecology; population structure; movement characteristics; and environmental tolerance/phenotypic plasticity. Structuring empirical research around these four broad data requirements, and using this information to parameterise appropriate models and develop management approaches, will allow for mitigation of the effects of anthropogenic disturbance on ecological connectivity in aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios; a case study of a Scots pine forest.

    PubMed

    Schaubroeck, Thomas; Deckmyn, Gaby; Giot, Olivier; Campioli, Matteo; Vanpoucke, Charlotte; Verheyen, Kris; Rugani, Benedetto; Achten, Wouter; Verbeeck, Hans; Dewulf, Jo; Muys, Bart

    2016-05-15

    For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'. To resolve these matters, this study quantifies the environmental impact (on human health, natural systems and natural resources) in physical units and uses an ecosystem service valuation based on monetary values (including ecosystem disservices with associated negative monetary values). More specifically, the paper also focuses on the assessment of ecosystem services related to pollutant removal/generation flows, accounting for the inflow of eutrophying nitrogen (N) when assessing the effect of N leached to groundwater. Regarding water use/provisioning, evapotranspiration is alternatively considered a disservice because it implies a loss of (potential) groundwater. These approaches and improvements, relevant to all ecosystems, are demonstrated using a Scots pine stand from 2010 to 2089 for a combination of three environmental change and three management scenarios. The environmental change scenarios considered interannual climate variability trends and included alterations in temperature, precipitation, nitrogen deposition, wind speed, Particulate matter (PM) concentration and CO2 concentration. The addressed flows/ecosystem services, including disservices, are as follows: particulate matter removal, freshwater loss, CO2 sequestration, wood production, NOx emissions, NH3 uptake and nitrogen pollution/removal. The monetary ecosystem service valuation yields a total average estimate of 361-1242 euro ha(-1) yr(-1). PM2.5 (<2.5 μm) removal is the key service, with a projected value of 622-1172 euro ha(-1) yr(-1). Concerning environmental impact assessment, with net CO2 uptake being the most relevant contributing flow, a loss prevention of 0.014-0.029 healthy life years ha(-1) yr(-1) is calculated for the respective flows. Both assessment methods favor the use of the least intensive management scenario due to its resulting higher CO2 sequestration and PM removal, which are the most important services of the considered ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Characterization factors for global warming in life cycle assessment based on damages to humans and ecosystems.

    PubMed

    De Schryver, An M; Brakkee, Karin W; Goedkoop, Mark J; Huijbregts, Mark A J

    2009-03-15

    Human and ecosystem health damage due to greenhouse gas (GHG) emissions is generally poorly quantified in the life cycle assessment of products, preventing an integrated comparison of the importance of GHGs with other stressor types, such as ozone depletion and acidifying emissions. In this study, we derived new characterization factors for 63 GHGs that quantify the impact of an emission change on human and ecosystem health damage. For human health damage, the Disability Adjusted Life Years (DALYs) per unit emission related to malaria, diarrhea, malnutrition, drowning, and cardiovascular diseases were quantified. For ecosystem health damage, the Potentially Disappeared Fraction (PDF) over space and time of various species groups, including plants, butterflies, birds, and mammals, per unit emission was calculated. The influence of value choices in the modeling procedure was analyzed by defining three coherent scenarios, based on Cultural theory perspectives. It was found that the characterization factor for human health damage by carbon dioxide (CO2) ranges from 1.1 x 10(-2) to 1.8 x 10(+1) DALY per kton of emission, while the characterization factor for ecosystem damage by CO2 ranges from 5.4 x 10(-2) to 1.2 x 10(+1) disappeared fraction of species over space and time ((km2 x year)/kton), depending on the scenario chosen. The characterization factor of a GHG can change up to 4 orders of magnitude, depending on the scenario. The scenario-specific differences are mainly explained by the choice for a specific time horizon and stresses the importance of dealing with value choices in the life cycle impact assessment of GHG emissions.

  10. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems.

    PubMed

    Haberl, Helmut; Erb, K Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina

    2007-07-31

    Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.

  11. Socioeconomic influences on biodiversity, ecosystem services and human well-being: a quantitative application of the DPSIR model in Jiangsu, China.

    PubMed

    Hou, Ying; Zhou, Shudong; Burkhard, Benjamin; Müller, Felix

    2014-08-15

    One focus of ecosystem service research is the connection between biodiversity, ecosystem services and human well-being as well as the socioeconomic influences on them. Despite existing investigations, exact impacts from the human system on the dynamics of biodiversity, ecosystem services and human well-being are still uncertain because of the insufficiency of the respective quantitative analyses. Our research aims are discerning the socioeconomic influences on biodiversity, ecosystem services and human well-being and demonstrating mutual impacts between these items. We propose a DPSIR framework coupling ecological integrity, ecosystem services as well as human well-being and suggest DPSIR indicators for the case study area Jiangsu, China. Based on available statistical and surveying data, we revealed the factors significantly impacting biodiversity, ecosystem services and human well-being in the research area through factor analysis and correlation analysis, using the 13 prefecture-level cities of Jiangsu as samples. The results show that urbanization and industrialization in the urban areas have predominant positive influences on regional biodiversity, agricultural productivity and tourism services as well as rural residents' living standards. Additionally, the knowledge, technology and finance inputs for agriculture also have generally positive impacts on these system components. Concerning regional carbon storage, non-cropland vegetation cover obviously plays a significant positive role. Contrarily, the expansion of farming land and the increase of total food production are two important negative influential factors of biodiversity, ecosystem's food provisioning service capacity, regional tourism income and the well-being of the rural population. Our study provides a promising approach based on the DPSIR model to quantitatively capture the socioeconomic influential factors of biodiversity, ecosystem services and human well-being for human-environmental systems at regional scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Sustaining the Bering Ecosystem: A Social Science Research Plan

    NASA Astrophysics Data System (ADS)

    Fitzhugh, B.; Huntington, H. P.; Pete, M. C.; Sepez, J. A.

    2007-12-01

    The Bering Sea is changing from an ice-dominated to an increasingly open water system. The over-arching goal of the NSF-supported Bering Ecosystem Study (BEST) is to understand the effects of climate variability and change on the Bering Sea ecosystem. To the people who are simultaneously a part of that ecosystem and rely on its productivity for life and work, climate change and its effects are among the top concerns. Sustaining the Bering Ecosystem articulates a vision and approaches for social science research as a component of the BEST Program (www.arcus.org/bering). This science plan seeks to initiate research to elucidate the dynamic relationship between the Bering Sea ecosystem and the humans who constitute an integral component of that system. To do so, this plan delineates a research program focused on three broad themes: 1. Impacts on humans: how past, current, and possible future changes in the Bering Sea ecosystem affect the health and well-being of people living and depending on this region for subsistence, employment, and cultural survival. 2. Human impacts: how changing human uses of the Bering Sea region affect the natural cycles of this ecosystem by moderating and/or accelerating systemic changes. 3. Dynamics of human and non-human natural systems: how the human-environmental dynamic has changed through time and may change in the future due to internal and external opportunities and pressures. These themes are developed in the context of a community-driven approach based on the concerns, goals, and interests of Bering Sea residents and other stakeholders of the region. This plan has been drafted through the collaboration of Bering Sea residents (primarily Alaska Natives) and non-resident stakeholders, social scientists, and natural scientists to focus efforts around research questions important to stakeholders, which in various ways center on issues of sustainability (of resources, economic opportunities, ways of life, and culture itself). The research envisioned by this plan will provide a foundation for resident communities, regional corporations and tribal councils, industry stakeholders, resource managers and policy makers at various levels to plan for and face the future with less uncertainty. To accomplish this goal, research must be developed with attention to concrete and practical outcomes. In this social science effort, and in the broader Bering Sea Ecosystem Study (BEST) of which it is a part, synergies must be explored that harness the strengths of multiple disciplines toward common purposes. For this reason, the research anticipated in this plan will: - generally involve interdisciplinary teams and projects that include a modeling component; - may focus on more than one of the defined research themes; and - require collaboration and partnership with Native and non-Native residents and stakeholders in the Bering Sea.

  13. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  14. The i5K Initiative: Advancing arthropod genomics for knowledge, human health, agriculture, and the environment

    USDA-ARS?s Scientific Manuscript database

    Insects and their arthropod relatives including mites, spiders, and crustaceans, play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazo...

  15. ESTIMATING SUSTAINABILITY OF A SIMPLE HUMAN SOCIETY AND ITS ASSOCIATED ECOSYSTEM USING RESILIENCE AND FISHER INFORMATION

    EPA Science Inventory

    Sustainability applies to integrated systems comprising humans and the rest of nature. To be considered sustainable, human components (society, economy, law, etc.) that interact with ecosystems cannot decrease the resilience of ecosystem structures and functions (trophic linkage...

  16. Supporting Risk Assessment: Accounting for Indirect Risk to Ecosystem Components

    PubMed Central

    Mach, Megan E.; Martone, Rebecca G.; Singh, Gerald G.; O, Miriam; Chan, Kai M. A.

    2016-01-01

    The multi-scalar complexity of social-ecological systems makes it challenging to quantify impacts from human activities on ecosystems, inspiring risk-based approaches to assessments of potential effects of human activities on valued ecosystem components. Risk assessments do not commonly include the risk from indirect effects as mediated via habitat and prey. In this case study from British Columbia, Canada, we illustrate how such “indirect risks” can be incorporated into risk assessments for seventeen ecosystem components. We ask whether (i) the addition of indirect risk changes the at-risk ranking of the seventeen ecosystem components and if (ii) risk scores correlate with trophic prey and habitat linkages in the food web. Even with conservative assumptions about the transfer of impacts or risks from prey species and habitats, the addition of indirect risks in the cumulative risk score changes the ranking of priorities for management. In particular, resident orca, Steller sea lion, and Pacific herring all increase in relative risk, more closely aligning these species with their “at-risk status” designations. Risk assessments are not a replacement for impact assessments, but—by considering the potential for indirect risks as we demonstrate here—they offer a crucial complementary perspective for the management of ecosystems and the organisms within. PMID:27632287

  17. Model development of a participatory Bayesian network for coupling ecosystem services into integrated water resources management

    NASA Astrophysics Data System (ADS)

    Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Zeng, Fanjiang; Mao, Donglei; Zhang, Zhiwei

    2017-11-01

    There is an increasing consensus on the importance of coupling ecosystem services (ES) into integrated water resource management (IWRM), due to a wide range of benefits to human from the ES. This paper proposes an ES-based IWRM framework within which a participatory Bayesian network (BN) model is developed to assist with the coupling between ES and IWRM. The framework includes three steps: identifying water-related services of ecosystems; analysis of the tradeoff and synergy among users of water; and ES-based IWRM implementation using the participatory BN model. We present the development, evaluation and application of the participatory BN model with the involvement of four participant groups (stakeholders, water manager, water management experts, and research team) in Qira oasis area, Northwest China. As a typical catchment-scale region, the Qira oasis area is facing severe water competition between the demands of human activities and natural ecosystems. Results demonstrate that the BN model developed provides effective integration of ES into a quantitative IWMR framework via public negotiation and feedback. The network results, sensitivity evaluation, and management scenarios are broadly accepted by the participant groups. The intervention scenarios from the model conclude that any water management measure remains unable to sustain the ecosystem health in water-related ES. Greater cooperation among the stakeholders is highly necessary for dealing with such water conflicts. In particular, a proportion of the agricultural water saved through improving water-use efficiency should be transferred to natural ecosystems via water trade. The BN model developed is appropriate for areas throughout the world in which there is intense competition for water between human activities and ecosystems.

  18. Sensitivity of aquatic ecosystems to climatic and anthropogenic changes: The basin and range, American Southwest and Mexico

    USGS Publications Warehouse

    Grimm, N. B.; Chacon, A.; Dahm, Clifford N.; Hostetler, S.W.; Lind, O.T.; Starkweather, P.L.; Wurtsbaugh, W.W.

    1997-01-01

    Variability and unpredictability are characteristics of the aquatic ecosystems, hydrological patterns and climate of the largely dryland region that encompasses the Basin and Range, American Southwest and western Mexico. Neither hydrological nor climatological models for the region are sufficiently developed to describe the magnitude or direction of change in response to increased carbon dioxide; thus, an attempt to predict specific responses of aquatic ecosystems is premature. Instead, we focus on the sensitivity of rivers, streams, springs, wetlands, reservoirs, and lakes of the region to potential changes in climate, especially those inducing a change in hydrological patterns such as amount, timing and predictability of stream flow. The major sensitivities of aquatic ecosystems are their permanence and even existence in the face of potential reduced net basin supply of water, stability of geomorphological structure and riparian ecotones with alterations in disturbance regimes, and water quality changes resulting from a modified water balance. In all of these respects, aquatic ecosystems of the region are also sensitive to the extensive modifications imposed by human use of water resources, which underscores the difficulty of separating this type of anthropogenic change from climate change. We advocate a focus in future research on reconstruction and analysis of past climates and associated ecosystem characteristics, long-term studies to discriminate directional change vs. year to year variability (including evidence of aquatic ecosystem responses or sensitivity to extremes), and studies of ecosystems affected by human activity. ?? 1997 by John Wiley & Sons, Ltd.

  19. What kind of disturbances did March 11, 2011 Tohoku Earthquake and Tsunamis leave continental margin ecosystems? : Lessons from five years monitoring research

    NASA Astrophysics Data System (ADS)

    Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Hara, Motoyuki; Nagata, Toshi; Fujikura, Kasunori; Sonoda, Akira

    2016-04-01

    On March 11, 2011, huge earthquake with M9.0 took place at Japan Trench area off Northeast Japan. Vigorous disturbances of marine environments and ecosystems have taken place at coastal areas where huge tsunamis swept sediments and organisms away from the coastal areas to deeper oceans. Distributional pattern of sediments and organisms in coves and bays have strongly changed after tsunamis. Marine ecosystems at Northeast Japan have totally disturbed and damaged. Scientists from Tohoku University, the University of Tokyo and JAMSTEC have started to monitor how much marine ecosystem disturbed and how it may recover. A research team, named Tohoku Ecosystem-Associated Marine Sciences, continually makes research on marine ecosystems as ten years monitoring project funded by MEXT, Japan since 2011. On 2016, it takes five years from the Earthquake and Tsunami occurred. What happens marine ecosystems at Tohoku area during these years. Water column ecosystems are rather easy to recover from disturbances. Seaweed communities have strongly damaged, but, they gradually recover. Sediment communities have not recovered yet as sediment distribution is different from before earthquake and tsunamis. Most difficulties are scars in human minds. We, scientists, try to share scientific activities and results with local peoples including fishermen and local governments for better understanding of both oceanic conditions and fishery resources. Disaster risk reduction should accelerate with resilience of community structure. But, mental resilience is the most effective way to recover human activities at the damaged areas.

  20. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.

    PubMed

    Pecl, Gretta T; Araújo, Miguel B; Bell, Johann D; Blanchard, Julia; Bonebrake, Timothy C; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Evengård, Birgitta; Falconi, Lorena; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Janion-Scheepers, Charlene; Jarzyna, Marta A; Jennings, Sarah; Lenoir, Jonathan; Linnetved, Hlif I; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; Mitchell, Nicola J; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Popova, Ekaterina; Robinson, Sharon A; Scheffers, Brett R; Shaw, Justine D; Sorte, Cascade J B; Strugnell, Jan M; Sunday, Jennifer M; Tuanmu, Mao-Ning; Vergés, Adriana; Villanueva, Cecilia; Wernberg, Thomas; Wapstra, Erik; Williams, Stephen E

    2017-03-31

    Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals. Copyright © 2017, American Association for the Advancement of Science.

  1. APPROACHES TO ECOSYSTEM AND HUMAN EXPOSURE TO MERCURY FOR SENSITIVE POPULATIONS

    EPA Science Inventory

    Both human and ecosystem exposure studies evaluate exposure of sensitive and vulnerable populations. We will discuss how ecosystem exposure modeling studies completed for input into the US Clean Air Mercury Rule (CAMR) to evaluate the response of aquatic ecosystems to changes in ...

  2. Spatial Assessment of Forest Ecosystem Functions and Services using Human Relating Factors for SDG

    NASA Astrophysics Data System (ADS)

    Song, C.; Lee, W. K.; Jeon, S. W.; Kim, T.; Lim, C. H.

    2015-12-01

    Application of ecosystem service concept in environmental related decision making could be numerical and objective standard for policy maker between preserving and developing perspective of environment. However, pursuing maximum benefit from natural capital through ecosystem services caused failure by losing ecosystem functions through its trade-offs. Therefore, difference between ecosystem functions and services were demonstrated and would apply human relating perspectives. Assessment results of ecosystem functions and services can be divided 3 parts. Tree growth per year set as the ecosystem function factor and indicated through so called pure function map. After that, relating functions can be driven such as water conservation, air pollutant purification, climate change regulation, and timber production. Overall process and amount are numerically quantified. These functional results can be transferred to ecosystem services by multiplying economic unit value, so function reflecting service maps can be generated. On the other hand, above services, to implement more reliable human demand, human reflecting service maps are also be developed. As the validation, quantified ecosystem functions are compared with former results through pixel based analysis. Three maps are compared, and through comparing difference between ecosystem function and services and inversed trends in function based and human based service are analysed. In this study, we could find differences in PF, FRS, and HRS in relation to based ecosystem conditions. This study suggests that the differences in PF, FRS, and HRS should be understood in the decision making process for sustainable management of ecosystem services. Although the analysis is based on in sort existing process separation, it is important to consider the possibility of different usage of ecosystem function assessment results and ecosystem service assessment results in SDG policy making. Furthermore, process based functional approach can suggest environmental information which is reflected the other kinds of perspective.

  3. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems.

    PubMed

    Mostofa, Khan M G; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-11-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Environmental microbiology as a mosaic of explored ecosystems and issues.

    PubMed

    Faure, Denis; Bonin, Patricia; Duran, Robert

    2015-09-01

    Microbes are phylogenetically (Archaea, Bacteria, Eukarya, and viruses) and functionally diverse. They colonize highly varied environments and rapidly respond to and evolve as a response to local and global environmental changes, including those induced by pollutants resulting from human activities. This review exemplifies the Microbial Ecology EC2CO consortium's efforts to explore the biology, ecology, diversity, and roles of microbes in aquatic and continental ecosystems.

  5. Climate change, human communities, and forests in rural, urban, and wildland-urban interface environments

    Treesearch

    David N. Wear; Linda A. Joyce

    2012-01-01

    Human concerns about the effects of climate change on forests are related to the values that forests provide to human populations, that is, to the effects on ecosystem services derived from forests. Service values include the consumption of timber products, the regulation of climate and water quality, and aesthetic and spiritual values. Effects of climate change on...

  6. Precision wildlife medicine: applications of the human-centred precision medicine revolution to species conservation.

    PubMed

    Whilde, Jenny; Martindale, Mark Q; Duffy, David J

    2017-05-01

    The current species extinction crisis is being exacerbated by an increased rate of emergence of epizootic disease. Human-induced factors including habitat degradation, loss of biodiversity and wildlife population reductions resulting in reduced genetic variation are accelerating disease emergence. Novel, efficient and effective approaches are required to combat these epizootic events. Here, we present the case for the application of human precision medicine approaches to wildlife medicine in order to enhance species conservation efforts. We consider how the precision medicine revolution, coupled with the advances made in genomics, may provide a powerful and feasible approach to identifying and treating wildlife diseases in a targeted, effective and streamlined manner. A number of case studies of threatened species are presented which demonstrate the applicability of precision medicine to wildlife conservation, including sea turtles, amphibians and Tasmanian devils. These examples show how species conservation could be improved by using precision medicine techniques to determine novel treatments and management strategies for the specific medical conditions hampering efforts to restore population levels. Additionally, a precision medicine approach to wildlife health has in turn the potential to provide deeper insights into human health and the possibility of stemming and alleviating the impacts of zoonotic diseases. The integration of the currently emerging Precision Medicine Initiative with the concepts of EcoHealth (aiming for sustainable health of people, animals and ecosystems through transdisciplinary action research) and One Health (recognizing the intimate connection of humans, animal and ecosystem health and addressing a wide range of risks at the animal-human-ecosystem interface through a coordinated, collaborative, interdisciplinary approach) has great potential to deliver a deeper and broader interdisciplinary-based understanding of both wildlife and human diseases. © 2016 John Wiley & Sons Ltd.

  7. [Impacts of cross-habitat resource subsidies on ecosystems: A review.

    PubMed

    Zhang, Yi Xin; Xiang, Hong Yong

    2017-02-01

    The flux of matter, energy and nutrients across ecosystems, i.e., resource subsidy, is a fundamental attribute of ecosystems, as well as one of basic research questions in ecology. Common subsidies include leaf litter and terrestrial insects that fall into waters, the adults of aquatic insects, spawning salmon. The allocthonous input of resource subsidy can influence individual organisms, populations, communities, biodiversity and ecosystem functioning, such as enhancing individual growth, increasing species abundance and diversity, affecting community structure, enhancing secondary productivity, influencing food-chain length and food web. Due to increased human impacts on environments, especially at aspects of land use, climate change and invasive species, the influence of anthropogenic disturbance on cross-ecosystem resource subsidies will be intensified at both spacial and temporary scales, so that ecosystems will face severer threats. Accordingly, future ecological researches in this field should emphasize the following aspects: impacts of single and multiple stressors on subsidies and ecosystems, implementation of dynamic resource subsidies on ecosystem restoration and management, the dark sides of subsidy relating with pollutants, and basic ecological research on cross-ecosystem resource subsidy in tropics and sub-tropics, as well in China.

  8. Assessing off-taraget impacts of herbicide drift on plants

    EPA Science Inventory

    Plants and plant communities provide vital economic services including production of food and fiber crops for direct human consumption and ecosystem services including wildlife habitat and cycling of nutrients and energy. These services can be impacted if herbicides drift from t...

  9. Oyster Reef Restoration and Aquaculture Impacts on Denitrification and the Benthic Community

    EPA Science Inventory

    Human impacts have greatly altered coastal ecosystems through a variety of processes including nutrient enrichment and overfishing. The negative consequences of these actions are well known and include increased macroalgae blooms, low oxygen conditions, and losses of biodiversity...

  10. Linking the influence and dependence of people on biodiversity across scales.

    PubMed

    Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M; Wardle, David A; O'Connor, Mary I; Duffy, J Emmett; Turnbull, Lindsay A; Thompson, Patrick L; Larigauderie, Anne

    2017-05-31

    Biodiversity enhances many of nature's benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth's history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation.

  11. Economic development and coastal ecosystem change in China

    PubMed Central

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  12. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment

    PubMed Central

    Carpenter, Stephen R.; Mooney, Harold A.; Agard, John; Capistrano, Doris; DeFries, Ruth S.; Díaz, Sandra; Dietz, Thomas; Duraiappah, Anantha K.; Oteng-Yeboah, Alfred; Pereira, Henrique Miguel; Perrings, Charles; Reid, Walter V.; Sarukhan, José; Scholes, Robert J.; Whyte, Anne

    2009-01-01

    The Millennium Ecosystem Assessment (MA) introduced a new framework for analyzing social–ecological systems that has had wide influence in the policy and scientific communities. Studies after the MA are taking up new challenges in the basic science needed to assess, project, and manage flows of ecosystem services and effects on human well-being. Yet, our ability to draw general conclusions remains limited by focus on discipline-bound sectors of the full social–ecological system. At the same time, some polices and practices intended to improve ecosystem services and human well-being are based on untested assumptions and sparse information. The people who are affected and those who provide resources are increasingly asking for evidence that interventions improve ecosystem services and human well-being. New research is needed that considers the full ensemble of processes and feedbacks, for a range of biophysical and social systems, to better understand and manage the dynamics of the relationship between humans and the ecosystems on which they rely. Such research will expand the capacity to address fundamental questions about complex social–ecological systems while evaluating assumptions of policies and practices intended to advance human well-being through improved ecosystem services. PMID:19179280

  13. Ecology, Ecosystem Management and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Spellerberg, Ian F.; Pritchard, Alan J.

    This six-chapter document (part of a series on biology and human welfare) focuses on ecology, ecosystem management, and biology teaching. Chapter 1 discusses the basic elements of ecology (considering organisms and their environment, populations, and communities and ecosystems). Chapter 2 describes several aspects of human ecology and resources…

  14. Connecting Ecosystem Service Production to Users as a Measure of Realized Benefits in Coastal Communities

    EPA Science Inventory

    Ecosystem goods and services are often produced in locations far away from where humans benefit from them. Human beneficiaries also use specific spatial pathways to access the Final Ecosystem Goods and Services (FEGS), the ecological endpoints directly beneficial to human well-b...

  15. Ecosystem Services Connect Environmental Change to Human Health Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayles, Brett R.; Brauman, Kate A.; Adkins, Joshua N.

    Global environmental change, driven in large part by human activities, profoundly impacts the structure and functioning of Earth’s ecosystems (Millennium Ecosystem Assessment 2005). We are beginning to push beyond planetary boundaries (Steffan et al. 2015), and the consequences for human health remain largely unknown (Myers et al. 2013). Growing evidence suggests that ecological transformations can dramatically affect human health in ways that are both obvious and obscure (Myers and Patz 2009; Myers et al. 2013). The framework of ecosystem services, designed to evaluate the benefits that people derive from ecosystem products and processes, provides a compelling framework for integrating themore » many factors that influence the human health response to global change, as well as for integrating health impacts into broader analyses of the impacts of this change« less

  16. Ecosystem services provided by bats.

    PubMed

    Kunz, Thomas H; Braun de Torrez, Elizabeth; Bauer, Dana; Lobova, Tatyana; Fleming, Theodore H

    2011-03-01

    Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. Unfortunately, few studies estimating the economic value of ecosystem services provided by bats have been conducted to date; however, we outline a framework that could be used in future studies to more fully address this question. Consumptive goods provided by bats, such as food and guano, are often exchanged in markets where the market price indicates an economic value. Nonmarket valuation methods can be used to estimate the economic value of nonconsumptive services, including inputs to agricultural production and recreational activities. Information on the ecological and economic value of ecosystem services provided by bats can be used to inform decisions regarding where and when to protect or restore bat populations and associated habitats, as well as to improve public perception of bats. © 2011 New York Academy of Sciences.

  17. Frontiers in Ecosystem Science: Energizing the Research Agenda

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Groffman, P. M.; VanDolah, E.

    2014-12-01

    Ecosystem science has a long history as a core component of the discipline of Ecology, and although topics of research have fluctuated over the years, it retains a clear identity and continues to be a vital field. As science is becoming more interdisciplinary, particularly the science of global environmental change, ecosystem scientists are addressing new and important questions at the interface of multiple disciplines. Over the last two years, we organized a series of workshops and discussion groups at multiple scientific-society meetings, including AGU to identify frontiers in ecosystem research. The workshops featured short "soapbox" presentations where speakers highlighted key questions in ecosystem science. The presentations were recorded (video and audio) and subjected to qualitative text analysis for identification of frontier themes, attendees completed surveys, and a dozen additional "key informants" were interviewed about their views about frontiers of the discipline. Our effort produced 253 survey participants; the two largest groups of participants were full professors (24%) and graduate students (24%); no other specific group was > 10%. Formal text analysis of the soapbox presentations produced three major themes; "frontiers," "capacity building," and "barriers to implementation" with four or five sub-themes within each major theme. Key "frontiers" included; 1) better understanding of the drivers of ecosystem change, 2) better understanding of ecosystem process and function, 3) human dimensions of ecosystem science, and 4) problem-solving/applied research. Under "capacity building," key topics included: holistic approaches, cross-disciplinary collaboration, public support for research, data, training, and technology investment. Under "barriers" key topics included: limitations in theoretical thinking, insufficient funding/support, fragmentation across discipline, data access and data synthesis. In-depth interviews with 13 experts validated findings from analysis of soapbox presentations and surveys and also resulted in a conceptual model for understanding disciplinary frontiers.

  18. Plant community mediation of ecosystem responses to global change factors

    NASA Astrophysics Data System (ADS)

    Churchill, A. C.

    2017-12-01

    Human alteration of the numerous environmental drivers affecting ecosystem processes is unprecedented in the last century, including changes in climate regimes and rapid increases in the availability of biologically active nitrogen (N). Plant communities may offer stabilizing or amplifying feedbacks mediating potential ecosystem responses to these alterations, and my research seeks to examine the conditions associated with when plant feedbacks are important for ecosystem change. My dissertation research focused on the unintended consequences of N deposition into natural landscapes, including alpine ecosystems which are particularly susceptible to adverse environmental impacts. In particular, I examined alpine plant and soil responses to N deposition 1) across multiple spatial scales throughout the Southern Rocky Mountains, 2) among diverse plant communities associated with unique environmental conditions common in the alpine of this region, and 3) among ecosystem pools of N contributing to stabilization of N inputs within those communities. I found that communities responded to inputs of N differently, often associated with traits of dominant plant species but these responses were intimately linked with the abiotic conditions of each independent community. Even so, statistical models predicting metrics of N processing in the alpine were improved by encompassing both abiotic and biotic components of the main community types.

  19. Ecosystem history of South Florida; Biscayne Bay sediment core descriptions

    USGS Publications Warehouse

    Ishman, S.E.

    1997-01-01

    The 'Ecosystem History of Biscayne Bay and the southeast Coast' project of the U.S. Geological Survey is part of a multi-disciplinary effort that includes Florida Bay and the Everglades to provide paleoecologic reconstructions for the south Florida region. Reconstructions of past salinity, nutrients, substrate, and water quality are needed to determine ecosystem variability due to both natural and human-induced causes. Our understanding of the relations between the south Florida ecosystem and introduced forces will allow managers to make informed decisions regarding the south Florida ecosystem restoration and monitoring. The record of past ecosystem conditions can be found in shallow sediment cores. This U.S. Geological Survey Open-File Report describes six shallow sediment cores collected from Biscayne Bay. The cores described herein are being processed for a variety of analytical procedures, and this provides the descriptive framework for future analyses of the included cores. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  20. Ecosystem services as assessment endpoints for ecological risk assessment.

    PubMed

    Munns, Wayne R; Rea, Anne W; Suter, Glenn W; Martin, Lawrence; Blake-Hedges, Lynne; Crk, Tanja; Davis, Christine; Ferreira, Gina; Jordan, Steve; Mahoney, Michele; Barron, Mace G

    2016-07-01

    Ecosystem services are defined as the outputs of ecological processes that contribute to human welfare or have the potential to do so in the future. Those outputs include food and drinking water, clean air and water, and pollinated crops. The need to protect the services provided by natural systems has been recognized previously, but ecosystem services have not been formally incorporated into ecological risk assessment practice in a general way in the United States. Endpoints used conventionally in ecological risk assessment, derived directly from the state of the ecosystem (e.g., biophysical structure and processes), and endpoints based on ecosystem services serve different purposes. Conventional endpoints are ecologically important and susceptible entities and attributes that are protected under US laws and regulations. Ecosystem service endpoints are a conceptual and analytical step beyond conventional endpoints and are intended to complement conventional endpoints by linking and extending endpoints to goods and services with more obvious benefit to humans. Conventional endpoints can be related to ecosystem services even when the latter are not considered explicitly during problem formulation. To advance the use of ecosystem service endpoints in ecological risk assessment, the US Environmental Protection Agency's Risk Assessment Forum has added generic endpoints based on ecosystem services (ES-GEAE) to the original 2003 set of generic ecological assessment endpoints (GEAEs). Like conventional GEAEs, ES-GEAEs are defined by an entity and an attribute. Also like conventional GEAEs, ES-GEAEs are broadly described and will need to be made specific when applied to individual assessments. Adoption of ecosystem services as a type of assessment endpoint is intended to improve the value of risk assessment to environmental decision making, linking ecological risk to human well-being, and providing an improved means of communicating those risks. Integr Environ Assess Manag 2016;12:522-528. Published 2015 SETAC. This article is a US Government work and, as such, is in the public domain in the USA. Published 2015 SETAC. This article is a US Government work and, as such, is in the public domain in the USA.

  1. What did we learn from PEGASEAS forum "Science and Governance of the Channel Marine Ecosystem"?

    PubMed

    Evariste, Emmanuelle; Claquin, Pascal; Robin, Jean-Paul; Auber, Arnaud; McQuatters-Gollop, Abigail; Fletcher, Stephen; Glegg, Gillian; Dauvin, Jean-Claude

    2015-04-15

    As one of the busiest marine ecosystems in the world, the English Channel is subjected to strong pressures due to the human activities occurring within it. Effective governance is required to improve the combined management of different activities and so secure the benefits provided by the Channel ecosystem. In July 2014, a Cross-Channel Forum, entitled "Science and Governance of the Channel Marine Ecosystem", was held in Caen (France) as part of the INTERREG project "Promoting Effective Governance of the Channel Ecosystem" (PEGASEAS). Here we use outputs from the Forum as a framework for providing Channel-specific advice and recommendations on marine governance themes, including the identification of knowledge gaps, which may form the foundation of future projects for the next INTERREG project call (2015-2020). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Human alterations, dynamic equilibrium, and riparian ecosystem responses along selected rivers in Tuscany, Italy (Invited)

    NASA Astrophysics Data System (ADS)

    Hupp, C. R.; Rinaldi, M.

    2010-12-01

    Many, if not most, streams have been mildly to severely affected by human disturbance, which complicates efforts to understand riparian ecosystems. Mediterranean regions have a long history of human influences including: dams, stream channelization, mining of sediment, and levee /canal construction. Typically these alterations reduce the ecosystem services that functioning floodplains provide and may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Additionally, human alterations typically shift affected streams away from a state of natural dynamic equilibrium, where net sediment deposition is approximately in balance with net erosion. Lack of equilibrium typically affects the degree to which floodplain ecosystems are connected to streamflow regime. Low connectivity, usually from human- or climate-induced incision, may result in reduced flow on floodplains and lowered water tables. High connectivity may result in severe sediment deposition. Connectivity has a direct impact on vegetation communities. Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Multivariate analysis reveals distinct quantitative vegetation patterns related to six fluvial geomorphic surfaces. Analysis of vegetation data also shows distinct associations of plants with adjustment processes related to the stage of channel evolution. Plant distribution patterns coincide with disturbance/landform/soil moisture gradients. Species richness increases from channel bed to terrace and on heterogeneous riparian areas, while species richness decreases from moderate to intense incision and from low to intense narrowing. As a feedback mechanism, woody vegetation in particular may facilitate geomorphic recovery of floodplains by affecting sedimentation dynamics. Identification and understanding of critical fluvial parameters related to floodplain connectivity (e.g. stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services.

  3. Integrating the provision of ecosystem services and trawl fisheries for the management of the marine environment.

    PubMed

    Muntadas, Alba; de Juan, Silvia; Demestre, Montserrat

    2015-02-15

    The species interaction and their biological traits (BT) determine the function of benthic communities and, hence, the delivery of ecosystem services. Therefore, disturbance of benthic communities by trawling may compromise ecosystem service delivery, including fisheries' catches. In this work, we explore 1) the impact of trawling activities on benthic functional components (after the BTA approach) and 2) how trawling impact may affect the ecosystem services delivered by benthic communities. To this aim, we assessed the provision of ecosystem services by adopting the concept of Ecosystem Service Providers (ESP), i.e. ecological units that perform ecosystem functions that will ultimately deliver ecosystem services. We studied thirteen sites subjected to different levels of fishing effort in the Mediterranean. From a range of environmental variables included in the study, we found ESPs to be mainly affected by fishing effort and grain size. Our results suggested that habitat type has significant effects on the distribution of ESPs and this natural variability influences ESP response to trawling at a specific site. In order to summarize the complex relationships between human uses, ecosystem components and the demand for ecosystem services in trawling grounds, we adapted a DPSIR (Drivers-Pressures-State Change-Impact-Response) framework to the study area, emphasizing the role of society as Drivers of change and actors demanding management Responses. This integrative framework aims to inform managers about the interactions between all the elements involved in the management of trawling grounds, highlighting the need for an integrated approach in order to ensure ecosystem service provision. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Long-term monitoring of coral reef fish assemblages in the Western central pacific.

    PubMed

    Heenan, Adel; Williams, Ivor D; Acoba, Tomoko; DesRochers, Annette; Kosaki, Randall K; Kanemura, Troy; Nadon, Marc O; Brainard, Russell E

    2017-12-05

    Throughout the tropics, coral reef ecosystems, which are critically important to people, have been greatly altered by humans. Differentiating human impacts from natural drivers of ecosystem state is essential to effective management. Here we present a dataset from a large-scale monitoring program that surveys coral reef fish assemblages and habitats encompassing the bulk of the US-affiliated tropical Pacific, and spanning wide gradients in both natural drivers and human impact. Currently, this includes >5,500 surveys from 39 islands and atolls in Hawaii (including the main and Northwestern Hawaiian Islands) and affiliated geo-political regions of American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the Pacific Remote Islands Areas. The dataset spans 2010-2017, during which time, each region was visited at least every three years, and ~500-1,000 surveys performed annually. This standardised dataset is a powerful resource that can be used to understand how human, environmental and oceanographic conditions influence coral reef fish community structure and function, providing a basis for research to support effective management outcomes.

  5. Long-term monitoring of coral reef fish assemblages in the Western central pacific

    PubMed Central

    Heenan, Adel; Williams, Ivor D.; Acoba, Tomoko; DesRochers, Annette; Kosaki, Randall K.; Kanemura, Troy; Nadon, Marc O.; Brainard, Russell E.

    2017-01-01

    Throughout the tropics, coral reef ecosystems, which are critically important to people, have been greatly altered by humans. Differentiating human impacts from natural drivers of ecosystem state is essential to effective management. Here we present a dataset from a large-scale monitoring program that surveys coral reef fish assemblages and habitats encompassing the bulk of the US-affiliated tropical Pacific, and spanning wide gradients in both natural drivers and human impact. Currently, this includes >5,500 surveys from 39 islands and atolls in Hawaii (including the main and Northwestern Hawaiian Islands) and affiliated geo-political regions of American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the Pacific Remote Islands Areas. The dataset spans 2010–2017, during which time, each region was visited at least every three years, and ~500–1,000 surveys performed annually. This standardised dataset is a powerful resource that can be used to understand how human, environmental and oceanographic conditions influence coral reef fish community structure and function, providing a basis for research to support effective management outcomes. PMID:29206219

  6. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan.

    PubMed

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-06-09

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  7. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    PubMed Central

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-01-01

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health. PMID:26067989

  8. The Relationships Among Ecosystem Services and Human Well Being and the Construction of an Index of Well Being

    EPA Science Inventory

    The Millennium Ecosystem Assessment produced a compelling synthesis of the global value of ecosystem services to human well-being. While the MEA was a critical, initial step to demonstrate the potential for assessing global trends in ecosystem services, it is important to note th...

  9. Connecting southern Californians with nature

    Treesearch

    Deborah J. Chavez

    2006-01-01

    Ecosystem services is a term used to describe the benefits to people fiom natural areas (Millennium Ecosystem Assessment, 2005). Services to humans can range from food production to water purification to aesthetics. The Millennium Ecosystem Assessment (MEA) was initiated in 2001 to assess the consequences of ecosystem change for human well-being and the scientific...

  10. Alternative stable states and the sustainability of forests, grasslands, and agriculture.

    PubMed

    Henderson, Kirsten A; Bauch, Chris T; Anand, Madhur

    2016-12-20

    Endangered forest-grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human-environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations-especially for forests-due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human-environment mosaic ecosystems.

  11. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gilbert, D.; Gooday, A.; Levin, L.; Naqvi, W.; Middelburg, J.; Scranton, M.; Ekau, W.; Pena, A.; Dewitte, B.; Oguz, T.; Monteiro, P. M. S.; Urban, E.; Rabalais, N.; Ittekkot, V.; Kemp, W. M.; Ulloa, O.; Elmgren, R.; Escobar-Briones, E.; van der Plas, A.

    2009-11-01

    Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes deterioration of structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include fresh water runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses; their different interactions set up mechanisms that drive the system towards hypoxia. However, whether the coastal environment becomes hypoxic or not, under the combination of external forcings, depends also on the nature of the ecosystem, e.g. physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences can be compression and loss of habitat, as well as change in life cycle and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in a non-linear way and has pronounced feedbacks to other compartments of the Earth System, hence affecting human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behaviour that will improve confidence in remediation management strategies for coastal hypoxia.

  12. Accounting for ecosystem services in Life Cycle Assessment, Part II: toward an ecologically based LCA.

    PubMed

    Zhang, Yi; Baral, Anil; Bakshi, Bhavik R

    2010-04-01

    Despite the essential role of ecosystem goods and services in sustaining all human activities, they are often ignored in engineering decision making, even in methods that are meant to encourage sustainability. For example, conventional Life Cycle Assessment focuses on the impact of emissions and consumption of some resources. While aggregation and interpretation methods are quite advanced for emissions, similar methods for resources have been lagging, and most ignore the role of nature. Such oversight may even result in perverse decisions that encourage reliance on deteriorating ecosystem services. This article presents a step toward including the direct and indirect role of ecosystems in LCA, and a hierarchical scheme to interpret their contribution. The resulting Ecologically Based LCA (Eco-LCA) includes a large number of provisioning, regulating, and supporting ecosystem services as inputs to a life cycle model at the process or economy scale. These resources are represented in diverse physical units and may be compared via their mass, fuel value, industrial cumulative exergy consumption, or ecological cumulative exergy consumption or by normalization with total consumption of each resource or their availability. Such results at a fine scale provide insight about relative resource use and the risk and vulnerability to the loss of specific resources. Aggregate indicators are also defined to obtain indices such as renewability, efficiency, and return on investment. An Eco-LCA model of the 1997 economy is developed and made available via the web (www.resilience.osu.edu/ecolca). An illustrative example comparing paper and plastic cups provides insight into the features of the proposed approach. The need for further work in bridging the gap between knowledge about ecosystem services and their direct and indirect role in supporting human activities is discussed as an important area for future work.

  13. Lessons learned studying design issues for lunar and Mars settlements

    NASA Technical Reports Server (NTRS)

    Litton, C. E.

    1997-01-01

    In a study of lunar and Mars settlement concepts, an analysis was made of fundamental design assumptions in five technical areas against a model list of occupational and environmental health concerns. The technical areas included the proposed science projects to be supported, habitat and construction issues, closed ecosystem issues, the "MMM" issues (mining, material processing, and manufacturing), and the human elements of physiology, behavior, and mission approach. Four major lessons were learned. First it is possible to relate public health concerns to complex technological development in a proactive design mode, which has the potential for long-term cost savings. Second, it became very apparent that prior to committing any nation or international group to spending the billions to start and complete a lunar settlement, over the next century, that a significantly different approach must be taken from those previously proposed, to solve the closed ecosystem and "MMM" problems. Third, it also appears that the health concerns and technology issues to be addressed for human exploration into space are fundamentally those to be solved for human habitation of the Earth (as a closed ecosystem) in the 21st century. Finally, it is proposed that ecosystem design modeling must develop new tools, based on probabilistic models as a step up from closed circuit models.

  14. Lessons learned studying design issues for lunar and Mars settlements.

    PubMed

    Litton, C E

    1997-01-01

    In a study of lunar and Mars settlement concepts, an analysis was made of fundamental design assumptions in five technical areas against a model list of occupational and environmental health concerns. The technical areas included the proposed science projects to be supported, habitat and construction issues, closed ecosystem issues, the "MMM" issues (mining, material processing, and manufacturing), and the human elements of physiology, behavior, and mission approach. Four major lessons were learned. First it is possible to relate public health concerns to complex technological development in a proactive design mode, which has the potential for long-term cost savings. Second, it became very apparent that prior to committing any nation or international group to spending the billions to start and complete a lunar settlement, over the next century, that a significantly different approach must be taken from those previously proposed, to solve the closed ecosystem and "MMM" problems. Third, it also appears that the health concerns and technology issues to be addressed for human exploration into space are fundamentally those to be solved for human habitation of the Earth (as a closed ecosystem) in the 21st century. Finally, it is proposed that ecosystem design modeling must develop new tools, based on probabilistic models as a step up from closed circuit models.

  15. Human impacts in African savannas are mediated by plant functional traits.

    PubMed

    Osborne, Colin P; Charles-Dominique, Tristan; Stevens, Nicola; Bond, William J; Midgley, Guy; Lehmann, Caroline E R

    2018-05-28

    Tropical savannas have a ground cover dominated by C 4 grasses, with fire and herbivory constraining woody cover below a rainfall-based potential. The savanna biome covers 50% of the African continent, encompassing diverse ecosystems that include densely wooded Miombo woodlands and Serengeti grasslands with scattered trees. African savannas provide water, grazing and browsing, food and fuel for tens of millions of people, and have a unique biodiversity that supports wildlife tourism. However, human impacts are causing widespread and accelerating degradation of savannas. The primary threats are land cover-change and transformation, landscape fragmentation that disrupts herbivore communities and fire regimes, climate change and rising atmospheric CO 2 . The interactions among these threats are poorly understood, with unknown consequences for ecosystem health and human livelihoods. We argue that the unique combinations of plant functional traits characterizing the major floristic assemblages of African savannas make them differentially susceptible and resilient to anthropogenic drivers of ecosystem change. Research must address how this functional diversity among African savannas differentially influences their vulnerability to global change and elucidate the mechanisms responsible. This knowledge will permit appropriate management strategies to be developed to maintain ecosystem integrity, biodiversity and livelihoods. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  16. An experimental analysis of granivory in a desert ecosystem: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.H.

    1987-03-01

    Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less

  17. Terrestrial acidification and ecosystem services: effects of acid rain on bunnies, baseball, and Christmas trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, Irina C.; Greaver, Tara; Phelan, Jennifer

    Often termed “acid rain,” combined nitrogen and sulfur deposition can directly and indirectly impact the condition and health of forest ecosystems. Researchers use critical loads (CLs) to describe response thresholds, and recent studies on acid-sensitive biological indicators show that forests continue to be at risk from terrestrial acidification. However, rarely are impacts translated into changes in “ecosystem services” that impact human well-being. Further, the relevance of this research to the general public is seldom communicated in terms that can motivate action to protect valuable resources. To understand how changes in biological indicators affect human well-being, we used the STEPS (Stressor–Ecologicalmore » Production function–final ecosystem Services) Framework to quantitatively and qualitatively link CL exceedances to ecosystem service impacts. We specified the cause-and-effect ecological processes linking changes in biological indicators to final ecosystem services. The Final Ecosystem Goods and Services Classification System (FEGS-CS) was used within the STEPS Framework to classify the ecosystem component and the beneficiary class that uses or values the component. We analyzed two acid-sensitive tree species, balsam fir (Abies balsamea) and white ash (Fraxinus americana), that are common in northeastern USA. These well-known species provide habitat for animals and popular forest products that are relatable to a broad audience. We identified 160 chains with 10 classes of human beneficiaries for balsam fir and white ash combined, concluding that there are resources at risk that the public may value. Two stories resulting from these explorations into the cascading effects of acid rain on terrestrial resources are ideal for effective science communication: the relationship between (1) balsam fir as a popular Christmas tree and habitat for the snowshoe hare, a favorite of wildlife viewers, and (2) white ash because it is used for half of all baseball bats, fine wood products, and musical instruments. Thus, rather than focusing on biological indicators that may only be understood or appreciated by specific stakeholders or experts, this approach extends the analysis to include impacts on FEGS and humans. It also lays the foundation for developing stakeholder-specific narratives, quantitative measures of endpoints, and for conducting demand-based valuations of affected ecosystem services.« less

  18. Terrestrial acidification and ecosystem services: effects of acid rain on bunnies, baseball, and Christmas trees

    DOE PAGES

    Irvine, Irina C.; Greaver, Tara; Phelan, Jennifer; ...

    2017-06-22

    Often termed “acid rain,” combined nitrogen and sulfur deposition can directly and indirectly impact the condition and health of forest ecosystems. Researchers use critical loads (CLs) to describe response thresholds, and recent studies on acid-sensitive biological indicators show that forests continue to be at risk from terrestrial acidification. However, rarely are impacts translated into changes in “ecosystem services” that impact human well-being. Further, the relevance of this research to the general public is seldom communicated in terms that can motivate action to protect valuable resources. To understand how changes in biological indicators affect human well-being, we used the STEPS (Stressor–Ecologicalmore » Production function–final ecosystem Services) Framework to quantitatively and qualitatively link CL exceedances to ecosystem service impacts. We specified the cause-and-effect ecological processes linking changes in biological indicators to final ecosystem services. The Final Ecosystem Goods and Services Classification System (FEGS-CS) was used within the STEPS Framework to classify the ecosystem component and the beneficiary class that uses or values the component. We analyzed two acid-sensitive tree species, balsam fir (Abies balsamea) and white ash (Fraxinus americana), that are common in northeastern USA. These well-known species provide habitat for animals and popular forest products that are relatable to a broad audience. We identified 160 chains with 10 classes of human beneficiaries for balsam fir and white ash combined, concluding that there are resources at risk that the public may value. Two stories resulting from these explorations into the cascading effects of acid rain on terrestrial resources are ideal for effective science communication: the relationship between (1) balsam fir as a popular Christmas tree and habitat for the snowshoe hare, a favorite of wildlife viewers, and (2) white ash because it is used for half of all baseball bats, fine wood products, and musical instruments. Thus, rather than focusing on biological indicators that may only be understood or appreciated by specific stakeholders or experts, this approach extends the analysis to include impacts on FEGS and humans. It also lays the foundation for developing stakeholder-specific narratives, quantitative measures of endpoints, and for conducting demand-based valuations of affected ecosystem services.« less

  19. Entomophagy: A key to space agriculture

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Takaoki, M.; Yamashita, M.; Nakayama, S.; Kiguchi, K.; Kok, R.; Wada, H.; Mitsuhashi, J.

    The intentional inclusion of insects in space-based agricultural schemes and their use as human food (entomophagy) were examined. Insects could be useful both from an ecosystem design point of view, as well as serving as a protein-rich food for human occupants. Some candidate species are the silkworm, the hawkmoth, the drugstore beetle, and the termite. Plants in the ecosystem would include rice, soybean, sweet potato, and green yellow vegetable but in combination they still lead to a diet that is deficient (for humans) in several nutrients. Normally these are supplied with animal-derived foods such as meat, poultry, fish, eggs, dairy products, etc. However, they can also be derived from insects which may be much easier to produce than any of the foregoing, and can also fulfill other useful ecological roles. Spinoff from this research could include some solutions to terrestrial problems such as supplying critical amino acids to people who suffer from a shortage of more conventional animal-derived proteins.

  20. Coastal wetlands: an integrated ecosystem approach

    USGS Publications Warehouse

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  1. Green Infrastructure, Ecosystem Services, and Human Health

    PubMed Central

    Coutts, Christopher; Hahn, Micah

    2015-01-01

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture—in the form of a primer—of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being. PMID:26295249

  2. Geoethics in the Years of Living Dangerously

    NASA Astrophysics Data System (ADS)

    Schmitt, J.

    2014-12-01

    The geosciences lag behind the ecologic and atmospheric sciences in addressing the major scientific and societal ethical issues facing the inhabitants of planet Earth. Regardless, major emerging ethical issues at the interface of the earth system with society demand geoscientist engagement. These include climate change, extinction and biodiversity decline, transformation of terrestrial landscapes and related impacts on ocean ecosystems, and the consequential resonance of these changes on human health, economic and environmental justice, and political stability. The societal factors driving these issues derive from a world view founded on speciesism (human dominion), utilitarian use of resources, unquestioned population and economic growth, and human difficulty in perceiving deep time and large spatial scale. Accommodation of the supernatural, mythical, and political realms with science has led to widespread conflation of scientific consensus with opinion, driving denial of both climate change and evolution. Future success in rationally addressing these ethical conundrums requires geoscientist engagement across the social, political, economic, ethical, philosophical, and historical realms of inquiry. Geoscientists must be well-versed in earth system science principles and the major geologic concepts relevant to understanding anthropogenic change including deep time, the fossil record of evolution, and changes across multiple spatial and temporal scales that transcend human experience. They must also: 1) confront the global population issue, using the archaeological and historical record of its recent rapidly accelerated growth, especially as it impacts resource consumption and earth system function, 2) forcefully address the effects of agriculture on the atmosphere, terrestrial and marine ecosystems, disease, urbanization, and political instability, 3) apply the synthetic principles of conservation biology, including ecosystem science, geoecology, and major advances in understanding the cognitive abilities and social dimensions of non-human animals to address ethical issues involving humanity's impact on the Earth's biota, and 4) work to end the accommodation of belief systems with science that invariably leads to denialism and historical confabulation.

  3. Humans in changing shrubland ecosystems

    Treesearch

    Rosemary L. Pendleton; Stanley G. Kitchen; Andres F. Cibils

    2014-01-01

    Emerging arid-land research and management approaches are increasingly shaped by the recognition of the fact that humans are an integral part of ecosystems. The thrust to study the coupled natural-human dynamics of such systems1 and the growing awareness of the social-ecological nature of rangeland ecosystems2 are prompting a shift in the way we think about current and...

  4. Multiple hypotheses testing of fish incidence patterns in an urbanized ecosystem

    USGS Publications Warehouse

    Chizinski, C.J.; Higgins, C.L.; Shavlik, C.E.; Pope, K.L.

    2006-01-01

    Ecological and evolutionary theories have focused traditionally on natural processes with little attempt to incorporate anthropogenic influences despite the fact that humans are such an integral part of virtually all ecosystems. A series of alternate models that incorporated anthropogenic factors and traditional ecological mechanisms of invasion to account for fish incidence patterns in urban lakes was tested. The models were based on fish biology, human intervention, and habitat characteristics. However, the only models to account for empirical patterns were those that included fish invasiveness, which incorporated species-specific information about overall tolerance and fecundity. This suggests that species-specific characteristics are more important in general distributional patterns than human-mediated dispersal. Better information of illegal stocking activities is needed to improve human-mediated models, and more insight into basic life history of ubiquitous species is needed to truly understand underlying mechanisms of biotic homogenization. ?? Springer 2005.

  5. Comparing patterns of ecosystem service consumption and perceptions of range management between ethnic herders in Inner Mongolia and Mongolia

    NASA Astrophysics Data System (ADS)

    Zhen, L.; Ochirbat, B.; Lv, Y.; Wei, Y. J.; Liu, X. L.; Chen, J. Q.; Yao, Z. J.; Li, F.

    2010-01-01

    Ecosystems in the Central Asian Plateau, which includes the Mongolian Plateau, are becoming increasingly sensitive to human interventions, leading to deterioration of already fragile ecosystems. The goal of this paper is to illustrate human dependence on an ecosystem by identifying patterns of resource consumption in this region and investigating the knowledge and perceptions of herders living in these ecosystems. Data on consumption in the two regions were collected using structured questionnaires delivered to a total of 252 herders from Mongolia and China's Inner Mongolia. Meat and other animal products remain the dominant food items for most households, accompanied by various vegetables and cereals. This unbalanced diet leads to excessive consumption of protein and fat from animal sources. The major energy sources used by herders are fuelwood, animal dung, crop residues, and dry grass, but consumption patterns differed between the two areas. Mongolian herders rely more heavily on livestock for meeting their consumption needs than herders in Inner Mongolia. Herder knowledge and perceptions of ecosystem conditions and consumption of resources differed between Mongolia and Inner Mongolia, reflecting the influence of different state policies. The data reported and the conclusions drawn are relevant for developing resource management policies for the Mongolian Plateau, but also provide useful insights for any region where livestock production dominates the use of rangeland resources.

  6. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    PubMed

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  7. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    USGS Publications Warehouse

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  8. Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems

    EPA Pesticide Factsheets

    The module provides a link to an article that is part of a series of articles in Issues in Ecology. This article discusses the many services an ecosystem provides in order to sustain and fulfill human needs.

  9. Freshwater as shared between society and ecosystems: from divided approaches to integrated challenges.

    PubMed

    Falkenmark, Malin

    2003-12-29

    The paper has its focus on water's key functions behind ecosystem dynamics and the water-related balancing involved in a catchment-based ecosystem approach. A conceptual framework is being developed to address fundamental trade-offs between humans and ecosystems. This is done by paying attention to society's unavoidable landscape modifications and their unavoidable ecological effects mediated by water processes. Because the coevolution of societal and environmental processes indicates resonance rather than a cause-effect relationship, humanity will have to learn to live with change while securing ecosystem resilience. In view of the partial incompatibility of the social imperative of the millennium goals and its environmental sustainability goal, human activities and ecosystems have to be orchestrated for compatibility. To this end a catchment-based approach has to be taken by integrating water, land use and ecosystems. It is being suggested that ecosystem protection has to be thought of in two scales: site-specific biotic landscape components to be protected for their social value, and a catchment-based ecosystem approach to secure sustainable supply of crucial ecosystem goods and services on which social and economic development depends.

  10. Manatees as sentinels of marine ecosystem health: are they the 2000-pound canaries?

    USGS Publications Warehouse

    Bonde, R.K.; Aguirre, A.A.; Powell, J.

    2004-01-01

    The order Sirenia is represented by three species of manatees and one species of dugong distributed in tropical and subtropical regions of the world and considered vulnerable to extinction. The sentinel species concept is useful to identify indicators of the environment and may reflect the quality of health in marine ecosystems. The single species approach to evaluate ecological health may provide a series of “snap shots” of environmental changes to determine if animal, human, or ecosystem health may be affected. Under this concept, marine vertebrates may be good integrators of changes over space and time, and excellent sentinels of ecosystem health. Based on their life history, manatees may or may not be ideal sentinels, as they are robust, long-lived species and appear remarkably resilient to natural disease and the effects of human-related injury and trauma. These characteristics might be the result of an efficient and responsive immune system compared to other marine mammals. Although relatively immune to infectious agents, manatees face other potentially serious threats, including epizootic diseases and pollution while in large aggregations. Manatees can serve as excellent sentinels of harmful algal blooms due to their high sensitivity, specifically to brevetoxicosis, which has caused at least two major die-offs in recent times. Threats to manatees worldwide, such as illegal hunting and boat collisions, are increasing. Habitat is being lost at an alarming rate and the full effects of uncontrolled human population growth on the species are unknown. The manatee may serve as a sentinel species, prognosticating the deleterious effects of unhealthy marine and aquatic ecosystems on humans. We have identified a number of critical research needs and opportunities for transdisciplinary collaboration that could help advance the use of the sentinel species concept in marine ecosystem health and monitoring of disease emergence using our knowledge on these magnificent sirenians.

  11. Assessing the main threats to marine ecosystem components of the Adriatic - Ionian Region for the implementation of Maritime Spatial Planning

    NASA Astrophysics Data System (ADS)

    Lipizer, Marina

    2015-04-01

    Marine and coastal ecosystems and the related benefits they provide for humans are threatened by increasing pressures and competing usages. To address these issues, in the last decade, several EU legislations have been formulated to guarantee and promote sustainable use of the sea (e.g. Common Fishery Policy, Marine Strategy Framework Directive, Maritime Spatial Planning). As a first step to implement cross-border Maritime Spatial Planning (MSP) in the Adriatic - Ionian Seas, a review of the main anthropogenic pressures due to maritime activities involving the Adriatic - Ionian Region (AIR) as well as of the most relevant environmental components has been carried out. The main objective of the analysis is to better identify the spatial distribution of human uses of the sea and of the key environmental components and the ecosystem services provided. The analysis of the existing conditions includes a description of the human activities per economic sector, considering type, location, dimension and magnitude of the activity in the AIR and the spatial extent of the main environmental and ecological values present in the AIR. The environmental status has been characterized according to the descriptors proposed by the Marine Strategy Framework Directive (MSFD Directive 2008/56/EC) and the most sensitive ecosystem components in the AIR have been pointed out. A qualitative analysis of the relationships between good environmental status descriptors sensu MSFD and ecosystem services in the AIR has been carried out to provide useful information for the implementation of MSP. Cross-border Maritime Spatial Planning is particularly needed in a semi-enclosed basin such as the Adriatic Sea, hosting very diverse human activities, ranging from fishery to tourism, sand extraction, commercial and passenger transport, oil and gas exploration and exploitation, which may partially overlap and severely threaten ecosystem functioning and the associated services.

  12. Changing Arctic ecosystems--research to understand and project changes in marine and terrestrial ecosystems of the Arctic

    USGS Publications Warehouse

    Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary

    2012-01-01

    Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.

  13. Monitoring Ground-Water Quality in Coastal Ecosystems

    USGS Publications Warehouse

    Colman, John A.; Masterson, John P.

    2007-01-01

    INTRODUCTION The Cape Cod National Seashore (CACO) extends along more than 70 km of Atlantic Ocean open-beach coastline and includes three large saltwater bays - Wellfleet Harbor, Nauset Marsh, and Pleasant Bay (fig. 1). CACO encompasses about 18,000 ha of uplands, lakes, wetlands, and tidal lands (Godfrey and others, 1999) including most habitats typical of the sandy coast in National seashores and parks extending southward from Massachusetts to Florida. In 1995, CACO was selected by the National Park Service (NPS) as a prototype park typifying the Atlantic and Gulf Coast biogeographic region for long-term coastal ecosystem monitoring. The U.S. Geological Survey (USGS) is currently (2007) assisting the NPS in the development of protocols for a Long-Term Coastal Ecosystem Monitoring Program at the CACO in Massachusetts. The overall purpose of the monitoring program is to characterize both natural and human-induced change in the biological resources of the CACO, over a time scale of decades, in the context of a changing global ecosystem.

  14. Linking the influence and dependence of people on biodiversity across scales

    PubMed Central

    Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M.; Wardle, David A.; O’Connor, Mary I.; Duffy, J. Emmett; Turnbull, Lindsay A.; Thompson, Patrick L.; Larigauderie, Anne

    2017-01-01

    Biodiversity enhances many of nature’s benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth’s history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation. PMID:28569811

  15. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops.

    PubMed

    Corbel, Sylvain; Mougin, Christian; Bouaïcha, Noureddine

    2014-02-01

    The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Are Seagrass effective Sentinels of Ecosystem Health in Port Phillip Bay, Australia?

    NASA Astrophysics Data System (ADS)

    Lee, R. S.; Cook, P. L. M.; Jenkins, G.; Nayar, S.; Hirst, A.; Keough, M. J.; Smith, T.; Ferguson, A.; Gay, J.; Longmore, A. R.; Macreadie, P.; Sherman, C.; Ross, J.; York, P.

    2016-02-01

    Seagrasses are an important part of many coastal systems, but are also under threat in many areas, as a result of a wide range of human activities, including habitat loss and changes to water quality. Due to these sensitivities seagrass are often selected as sentinels of change for coastal marine ecosystems, but could these sensitivities be too complex and varied to provide a clear or reliable measure of change? A recent three year study focused on the resilience of Zostera seagrasses in Port Phillip Bay, Southern Australia, where these ecosystem "engineers", have a dramatic influence on biodiversity and ecosystem function. This large temperate embayment experiences extreme climatic variability, significant loading from urbanized catchments and inflows from the largest sewage treatment facility in Australia, making it a challenging case study for assessing seagrass as a suitable ecosystem metric. Studies on the influence of nutrients, light and sediments using modelling, chemical analyses and field experiments assessed characteristics of Zostera habitat within the bay. Nutrients could be obtained directly in dissolved form from the water column, or sediment, or as atmospheric nitrogen fixed by bacteria associated with the root/rhizome system. Isotopic nutrients were traced to a variety of sources including river inflows, sewage discharges, groundwater, the open ocean, the atmosphere and indirectly via phytoplankton and detritus. Broad-scale seagrass coverage is often depth limited by light, however for regions of significant wave exposure deeper beds existed adjacent to less favorable shallows. Ephemeral beds in more exposed regions showed the greatest potential for responding to change. For these beds, resilience was dependent on bed architecture, connectivity to indirect nutrient sources, and genetic interactions with seagrass communities around the bay. While observed changes in seagrass cover may be a symptomatic trigger of ecosystem health, much as high blood pressure is to the human body, this study has shown that an understanding of the relative threats, system connectivity and co-dependencies of the more vulnerable communities can provide the most accurate account of ecosystem health.

  17. Assessing Freshwater Ecosystem Service Risk over Ecological, Socioeconomic, and Cultural Gradients: Problem Space Characterization and Methodology

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.; Villamizar, S. R.; Conde, D.; Rusak, J.; Reid, B.; Astorga, A.; Perillo, G. M.; Piccolo, M. C.; Zilio, M.; London, S.; Velez, M.; Hoyos, N.; Escobar, J.

    2014-12-01

    Freshwater ecosystems and the services they provide are under increasing anthropogenic pressure at local (e.g., irrigation diversions, wastewater discharge) and global scales (e.g., climate change, global trading). The impact depends on an ecosystem's sensitivity, which is determined by its geophysical and ecological settings, and the population and activities in its surrounding watershed. Given the importance of ecosystem services, it is critical that we improve our ability to identify and understand changes in aquatic ecosystems, and translate them to risk of service loss. Furthermore, to inspire changes in human behavior, it is equally critical that we learn to communicate risk, and pose risk mitigation strategies, in a manner acceptable to a broad spectrum of stakeholders. Quantifying the nature and timing of the risk is difficult because (1) we often fail to understand the connection between anthropogenic pressures and the timing and extent of ecosystem changes; and (2) the concept of risk is inherently coupled to human perception, which generally differs with cultural and socio-economic conditions. In this study, we endeavor to assess aquatic ecosystem risks across an international array of six study sites. The challenge is to construct a methodology capable of capturing the marked biogeographical, socioeconomic, and cultural differences among the sites, which include: (1) Muskoka River watershed in humid continental Ontario, Canada; (2) Lower San Joaquin River, an impounded snow-fed river in semi-arid Central California; (3) Ciénaga Grande de Santa Marta, a tropical coastal lagoon in Colombia; (4) Senguer River basin in the semi-arid part of Argentina; (5) Laguna de Rocha watershed in humid subtropical Uruguay; and (6) Palomas Lake complex in oceanic Chilean Patagonia. Results will include a characterization of the experimental gradient over the six sites, an overview of the risk assessment methodology, and preliminary findings for several of the sites.

  18. Software Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1989

    1989-01-01

    Reviews of seven software packages are presented including "The Environment I: Habitats and EcoSystems; II Cycles and Interactions"; "Super Sign Maker"; "The Great Knowledge Race: Substance Abuse"; "Exploring Science: Temperature"; "Fast Food Calculator and RD Aide"; "The Human Body:…

  19. Assessing climate change risks to the natural environment to facilitate cross-sectoral adaptation policy.

    PubMed

    Brown, Iain

    2018-06-13

    Climate change policy requires prioritization of adaptation actions across many diverse issues. The policy agenda for the natural environment includes not only biodiversity, soils and water, but also associated human benefits through agriculture, forestry, water resources, hazard alleviation, climate regulation and amenity value. To address this broad agenda, the use of comparative risk assessment is investigated with reference to statutory requirements of the UK Climate Change Risk Assessment. Risk prioritization was defined by current adaptation progress relative to risk magnitude and implementation lead times. Use of an ecosystem approach provided insights into risk interactions, but challenges remain in quantifying ecosystem services. For all risks, indirect effects and potential systemic risks were identified from land-use change, responding to both climate and socio-economic drivers, and causing increased competition for land and water resources. Adaptation strategies enhancing natural ecosystem resilience can buffer risks and sustain ecosystem services but require improved cross-sectoral coordination and recognition of dynamic change. To facilitate this, risk assessments need to be reflexive and explicitly assess decision outcomes contingent on their riskiness and adaptability, including required levels of human intervention, influence of uncertainty and ethical dimensions. More national-scale information is also required on adaptation occurring in practice and its efficacy in moderating risks.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  20. Assessing climate change risks to the natural environment to facilitate cross-sectoral adaptation policy

    NASA Astrophysics Data System (ADS)

    Brown, Iain

    2018-06-01

    Climate change policy requires prioritization of adaptation actions across many diverse issues. The policy agenda for the natural environment includes not only biodiversity, soils and water, but also associated human benefits through agriculture, forestry, water resources, hazard alleviation, climate regulation and amenity value. To address this broad agenda, the use of comparative risk assessment is investigated with reference to statutory requirements of the UK Climate Change Risk Assessment. Risk prioritization was defined by current adaptation progress relative to risk magnitude and implementation lead times. Use of an ecosystem approach provided insights into risk interactions, but challenges remain in quantifying ecosystem services. For all risks, indirect effects and potential systemic risks were identified from land-use change, responding to both climate and socio-economic drivers, and causing increased competition for land and water resources. Adaptation strategies enhancing natural ecosystem resilience can buffer risks and sustain ecosystem services but require improved cross-sectoral coordination and recognition of dynamic change. To facilitate this, risk assessments need to be reflexive and explicitly assess decision outcomes contingent on their riskiness and adaptability, including required levels of human intervention, influence of uncertainty and ethical dimensions. More national-scale information is also required on adaptation occurring in practice and its efficacy in moderating risks. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  1. Transnational corporations as 'keystone actors' in marine ecosystems.

    PubMed

    Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Crona, Beatrice; Troell, Max; Merrie, Andrew; Rockström, Johan

    2015-01-01

    Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons) and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems.

  2. Transnational Corporations as ‘Keystone Actors’ in Marine Ecosystems

    PubMed Central

    Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Crona, Beatrice; Troell, Max; Merrie, Andrew; Rockström, Johan

    2015-01-01

    Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons) and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems. PMID:26017777

  3. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    NASA Astrophysics Data System (ADS)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.

  4. 30 CFR 282.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality of the human environment requiring preparation of an Environmental Impact Statement (EIS) pursuant... quality of the marine ecosystem, including the waters of the high seas, the contiguous zone, transitional... found on or below the surface of the seabed but does not include oil, gas, or sulphur; salt or sand and...

  5. RESTORING COASTAL ECOSYSTEMS: ABRUPT CLIMATE CHANGE

    EPA Science Inventory

    Consensus exists that U.S. coastal ecosystems are severely degraded due to a variety of human-factors requiring large financial expenditures to restore and manage. Yet, even as controversy surrounds human factors in ecosystem degradation in the Gulf of Mexico, Chesapeake Bay, an...

  6. Biological Systems, Energy Sources, and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Tribe, Michael; Pritchard, Alan J.

    This five-chapter document (part of a series on biology and human welfare) focuses on biological systems as energy sources and on the teaching of this subject area. Chapter 1 discusses various topics related to energy and ecology, including biomass, photosynthesis and world energy balances, energy flow through ecosystems, and others. Chapter 2…

  7. Fisheries indicators, freshwater

    USGS Publications Warehouse

    Kwak, Thomas J.

    2010-01-01

    Freshwater fisheries exist among diverse ecosystems and fauna, provide societal benefits, and are influenced by human activities. Fisheries scientists assess the status and sustainability of fisheries by multiple approaches, including abundance and condition indices, population parameters, community indices, modeling, and surveys of habitat and human dimensions. The future sustainability of freshwater fisheries is limited not by available methods but by society’s will.

  8. Toward Sustainable Communities: A Resource Book for Municipal and Local Governments.

    ERIC Educational Resources Information Center

    Roseland, Mark

    This book is intended as a resource for elected officials, municipal staff, and citizens who would like to apply the concept of sustainable development in their communities through an ecosystems approach to human settlements management. The subcomponents of human community life and its impact on the environment are explored. Included are tested,…

  9. Decomposition

    USGS Publications Warehouse

    Middleton, Beth A.

    2014-01-01

    A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.

  10. Evaluation of effects of shellfish aquaculture and capture fishery on a semi-closed bay ecosystem

    NASA Astrophysics Data System (ADS)

    Han, Dongyan; Chen, Yong; Zhang, Chongliang; Ren, Yiping; Xu, Binduo; Xue, Ying

    2018-07-01

    Coastal waters in the world are suffering from multiple anthropogenic disturbances, including capture fisheries and aquaculture. Ignoring possible interactions between multiple disturbances may cause serious consequences in our understanding of ecosystem dynamics. This study simulates individual and combined effects of fishing activities and shellfish cultivation on a semi-closed bay ecosystem using Ecopath with Ecosim (EwE). The changes of biomass and ecosystem structure were examined for three scenarios of having fishing alone, shellfish cultivation alone and both fishing and aquaculture. We found considerable impacts of shellfish aquaculture but minor impacts from fishing, suggesting shellfish aquaculture had dominated impacts on the study ecosystem. In addition, the effects of fishing and shellfish aquaculture were not additive on species biomass, rather showing a combined effect with synergy. Given the same loss in fisheries yield, controlling fishing and shellfish aquaculture simultaneously was more efficient for increasing nekton biomass compared to the control of either activity. We highlight the necessity for integrating management of multiple human stressors for an ecosystem-based management.

  11. Biodiversity in a complex world: consolidation and progress in functional biodiversity research.

    PubMed

    Hillebrand, Helmut; Matthiessen, Birte

    2009-12-01

    The global decline of biodiversity caused by human domination of ecosystems worldwide is supposed to alter important process rates and state variables in these ecosystems. However, there is considerable debate on the prevalence and importance of biodiversity effects on ecosystem function (BDEF). Here, we argue that much of the debate stems from two major shortcomings. First, most studies do not directly link the traits leading to increased or decreased function to the traits needed for species coexistence and dominance. We argue that implementing a trait-based approach and broadening the perception of diversity to include trait dissimilarity or trait divergence will result in more realistic predictions on the consequences of altered biodiversity. Second, the empirical and theoretical studies do not reflect the complexity of natural ecosystems, which makes it difficult to transfer the results to natural situations of species loss. We review how different aspects of complexity (trophic structure, multifunctionality, spatial or temporal heterogeneity, and spatial population dynamics) alter our perception of BDEF. We propose future research avenues concisely testing whether acknowledging this complexity will strengthen the observed biodiversity effects. Finally, we propose that a major future task is to disentangle biodiversity effects on ecosystem function from direct changes in function due to human alterations of abiotic constraints.

  12. A Spatially-Explicit Technique for Evaluation of Alternative ...

    EPA Pesticide Factsheets

    Ecosystems contribute to maintaining human well-being directly through provision of goods and indirectly through provision of services that support clean water, clean air, flood protection and atmospheric stability. Transparently accounting for biophysical attributes from which humans derive benefit is essential to support dialog among the public, resource managers, decision makers, and scientists. We analyzed the potential ecosystem goods and services production from alternative future land use scenarios in the US Tampa Bay region. Ecosystem goods and service metrics included carbon sequestration, nitrogen removal, air pollutant removal, and stormwater retention. Each scenario was compared to a 2006 baseline land use. Estimated production of denitrification services changed by 28% and carbon sequestration by 20% between 2006 and the “business as usual” scenario. An alternative scenario focused on “natural resource protection” resulted in an estimated 9% loss in air pollution removal. Stormwater retention was estimated to change 18% from 2006 to 2060 projections. Cost effective areas for conservation, almost 1588 ha, beyond current conservation lands, were identified by comparing ecosystem goods and services production to assessed land values. Our ecosystem goods and services approach provides a simple and quantitative way to examine a more complete set of potential outcomes from land use decisions. This study demonstrates an approach for spatially expli

  13. Whole-ecosystem experimental manipulations of tropical forests.

    PubMed

    Fayle, Tom M; Turner, Edgar C; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech

    2015-06-01

    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Science for the sustainable use of ecosystem services

    PubMed Central

    Bennett, Elena M.; Chaplin-Kramer, Rebecca

    2016-01-01

    Sustainability is a key challenge for humanity in the 21st century. Ecosystem services—the benefits that people derive from nature and natural capital—is a concept often used to help explain human reliance on nature and frame the decisions we make in terms of the ongoing value of nature to human wellbeing. Yet ecosystem service science has not always lived up to the promise of its potential. Despite advances in the scientific literature, ecosystem service science has not yet answered some of the most critical questions posed by decision-makers in the realm of sustainability. Here, we explore the history of ecosystem service science, discuss advances in conceptualization and measurement, and point toward further work needed to improve the use of ecosystem service in decisions about sustainable development. PMID:27853527

  15. The One Health Concept: 10 Years Old and a Long Road Ahead.

    PubMed

    Destoumieux-Garzón, Delphine; Mavingui, Patrick; Boetsch, Gilles; Boissier, Jérôme; Darriet, Frédéric; Duboz, Priscilla; Fritsch, Clémentine; Giraudoux, Patrick; Le Roux, Frédérique; Morand, Serge; Paillard, Christine; Pontier, Dominique; Sueur, Cédric; Voituron, Yann

    2018-01-01

    Over the past decade, a significant increase in the circulation of infectious agents was observed. With the spread and emergence of epizootics, zoonoses, and epidemics, the risks of pandemics became more and more critical. Human and animal health has also been threatened by antimicrobial resistance, environmental pollution, and the development of multifactorial and chronic diseases. This highlighted the increasing globalization of health risks and the importance of the human-animal-ecosystem interface in the evolution and emergence of pathogens. A better knowledge of causes and consequences of certain human activities, lifestyles, and behaviors in ecosystems is crucial for a rigorous interpretation of disease dynamics and to drive public policies. As a global good, health security must be understood on a global scale and from a global and crosscutting perspective, integrating human health, animal health, plant health, ecosystems health, and biodiversity. In this study, we discuss how crucial it is to consider ecological, evolutionary, and environmental sciences in understanding the emergence and re-emergence of infectious diseases and in facing the challenges of antimicrobial resistance. We also discuss the application of the "One Health" concept to non-communicable chronic diseases linked to exposure to multiple stresses, including toxic stress, and new lifestyles. Finally, we draw up a list of barriers that need removing and the ambitions that we must nurture for the effective application of the "One Health" concept. We conclude that the success of this One Health concept now requires breaking down the interdisciplinary barriers that still separate human and veterinary medicine from ecological, evolutionary, and environmental sciences. The development of integrative approaches should be promoted by linking the study of factors underlying stress responses to their consequences on ecosystem functioning and evolution. This knowledge is required for the development of novel control strategies inspired by environmental mechanisms leading to desired equilibrium and dynamics in healthy ecosystems and must provide in the near future a framework for more integrated operational initiatives.

  16. Linking Ecosystem Services and Human Health: The Eco-Health Relationship Browser#

    EPA Science Inventory

    Ecosystems and the services they provide have been linked in the literature to multiple human health outcomes. Demonstrated and proposed mechanisms focus on hazard buffering and health-promotional aspects of ecosystems. Services such as air and water filtration, heat mitigation...

  17. UTILITY OF GENETIC INDICATORS FOR MONITORING ECOLOGICAL CONDITION

    EPA Science Inventory

    It is evident that Earth's ecosystems have been steadily deteriorating due to relatively recent human activities. Since quality of life depends upon the ecosystem services, the impacts of deterioration of ecosystems on human health and on wild life populations has been amply de...

  18. A Participatory Assessment of Ecosystem Services and Human Wellbeing in Rural Costa Rica Using Photo-Voice

    NASA Astrophysics Data System (ADS)

    Berbés-Blázquez, Marta

    2012-04-01

    Human well-being is intricately connected to ecosystem services. A keystone contribution to the ecosystem service literature has been the Millennium Ecosystem Assessment, MA, (Ecosystems and human well-being: a framework for assessment, Island Press, Washington, DC; 2003, 2005). Much of the work on ecosystem services to date has focused on the assessment and classification of environmental functions. The need for inclusion of community perspectives in ecosystem assessments has been widely recognized in order to better understand the distribution of impacts and benefits resulting from natural resource use. Communities can offer a direct route to understanding the complex relationships between ecosystems and human well-being and how environmental management affects their livelihoods. Photovoice has been made popular as a tool for participatory needs assessment but it has had limited use in ecosystem assessments to date. The purpose of this paper is twofold: (1) to present the results of a community-level assessment of environmental services in a watershed dominated by pineapple monoculture in Costa Rica; and (2) to evaluate the strengths and the limitations of photovoice as a tool for mapping the relationship between ecosystems and people. I argue that photovoice is an underutilized methodology that has the potential to complement biophysical ecosystem service assessments in the context of impoverished and resource-dependent communities, particularly, since assessing ecosystem services and acting upon that information requires integrating the knowledges of diverse stakeholders, recognizing power imbalances, and grappling with the complexity of social-ecological systems. Processes such as photovoice have the potential to catalyze community self-organization, which is a critical component for empowerment.

  19. A participatory assessment of ecosystem services and human wellbeing in rural Costa Rica using photo-voice.

    PubMed

    Berbés-Blázquez, Marta

    2012-04-01

    Human well-being is intricately connected to ecosystem services. A keystone contribution to the ecosystem service literature has been the Millennium Ecosystem Assessment, MA, (Ecosystems and human well-being: a framework for assessment, Island Press, Washington, DC; 2003, 2005). Much of the work on ecosystem services to date has focused on the assessment and classification of environmental functions. The need for inclusion of community perspectives in ecosystem assessments has been widely recognized in order to better understand the distribution of impacts and benefits resulting from natural resource use. Communities can offer a direct route to understanding the complex relationships between ecosystems and human well-being and how environmental management affects their livelihoods. Photovoice has been made popular as a tool for participatory needs assessment but it has had limited use in ecosystem assessments to date. The purpose of this paper is twofold: (1) to present the results of a community-level assessment of environmental services in a watershed dominated by pineapple monoculture in Costa Rica; and (2) to evaluate the strengths and the limitations of photovoice as a tool for mapping the relationship between ecosystems and people. I argue that photovoice is an underutilized methodology that has the potential to complement biophysical ecosystem service assessments in the context of impoverished and resource-dependent communities, particularly, since assessing ecosystem services and acting upon that information requires integrating the knowledges of diverse stakeholders, recognizing power imbalances, and grappling with the complexity of social-ecological systems. Processes such as photovoice have the potential to catalyze community self-organization, which is a critical component for empowerment.

  20. [Research progress on the degradation mechanisms and restoration of riparian ecosystem].

    PubMed

    Huang, Kai; Guo, Huai-cheng; Liu, Yong; Yu, Ya-juan; Zhou, Feng

    2007-06-01

    Restoration and reconstruction of degraded riparian ecosystem caused by natural and anthropogenic disturbances is one of the important issues in restoration ecology and watershed ecology. The disturbances on riparian ecosystem include flow regime alteration, direct modification and watershed disturbance, which have different affecting mechanisms. Flow regime alteration affects riparian ecosystem by changing riparian soil humidity, oxidation-reduction potential, biotaliving environment, and sediment transfer; direct modification affects riparian vegetation diversity through human activities and exotic plants invasion; and watershed disturbance mainly manifests in the channel degradation, aggradation or widening, the lowering of groundwater table, and the modification in fluvial process. The assessment objects of riparian restoration are riparian ecosystem components, and the assessment indicators are shifted from ecological to synthetic indices. Riparian restoration should be based on the detailed understanding of the biological and physical processes which affect riparian ecosystem, and implemented by vegetation restoration and hydrological adjustment at watershed or landscape scale. To extend the research scales and objects and to apply interdisciplinary approaches should be the key points in the further studies on the degradation mechanisms and restoration of riparian ecosystem.

  1. IDENTIFYING ENDOCRINE DISRUPTORS BY HIGH-RESOLUTION MASS SPECTROMETRY

    EPA Science Inventory

    The EPA is currently interested in human and ecosystem exposure to endocrine disruptors (1)-compounds that interfere with endogenous hormone systems. Possible endocrine disruptors in the environment include certain pesticides, industrial by-products, and pharmaceuticals. Such c...

  2. A National Approach to Quantify and Map Biodiversity Conservation Metrics within an Ecosystem Services Framework

    EPA Science Inventory

    Ecosystem services, i.e., "services provided to humans from natural systems," have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have be...

  3. National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application

    EPA Science Inventory

    Understanding the ways in which ecosystems provide flows of “services” to humans is critical for decision making in many contexts; however, relationships between natural and human systems are complex. A well-defined framework for classifying ecosystem services is essential for sy...

  4. Biodiversity of Fungi : Inventory and Monitoring Methods

    USGS Publications Warehouse

    Mueller, G.M.; Bills, G.F.; Foster, M.S.

    2004-01-01

    Biodiversity of Fungi is essential for anyone collecting and/or monitoring any fungi. Fascinating and beautiful, fungi are vital components of nearly all ecosystems and impact human health and our economy in a myriad of ways. Standardized methods for documenting diversity and distribution have been lacking. An wealth of information, especially regrading sampling protocols, compiled by an international team of fungal biologists, make Biodiversity of Fungi an incredible and fundamental resource for the study of organismal biodiversity. Chapters cover everything from what is a fungus, to maintaining and organizing a permanent study collection with associated databases; from protocols for sampling slime molds to insect associated fungi; from fungi growing on and in animals and plants to mushrooms and truffles. The chapters are arranged both ecologically and by sampling method rather than by taxonomic group for ease of use. The information presented here is intended for everyone interested in fungi, anyone who needs tools to study them in nature including naturalists, land managers, ecologists, mycologists, and even citizen scientists and sophiscated amateurs. Fungi are among the most important organisms in the world; they play vital roles in ecosystem functions and have wide-ranging effects, both positive and negative, on humans and human-related activities. There are about 1.5 million species of fungi. The combination of fungal species and abundances in an ecosystem are often used as indicators of ecosystem health and as indicators of the effects of pollution and of different management and use plans. Because of their significance, it is important that these organisms be monitored. This book is the first comprehensive treatment of fungal inventory and monitoring, including standardized sampling protocols as well as information on study design, sample preservation, and data analysis.

  5. COUNTERACTING ECOSYSTEM LOSSES DUE TO DEVELOPMENT

    EPA Science Inventory

    Interventions into ecosystems to develop the built/socio-physical environment involve normative decisions regarding human well-being that inevitably compromise ecosystem capacities, but ecosystem sustainability is conditioned by properties established by ecosystems and unrelated ...

  6. Valuing trade-offs of river ecosystem services in large hydropower development in Tibet, China

    NASA Astrophysics Data System (ADS)

    Yu, B.; Xu, L.

    2015-12-01

    Hydropower development can be considered as a kind of trade-offs of ecosystem services generated by human activity for their economic and energy demand, because it can increase some river ecosystem services but decrease others. In this context, an ecosystem service trade-off framework in hydropower development was proposed in this paper. It aims to identify the ecological cost of river ecosystem and serve for the ecological compensation during hydropower development, for the hydropower services cannot completely replace the regulating services of river ecosystem. The valuing trade-offs framework was integrated by the influenced ecosystem services identification and ecosystem services valuation, through ecological monitoring and ecological economic methods, respectively. With a case study of Pondo hydropower project in Tibet, China, the valuing trade-offs of river ecosystem services in large hydropower development was illustrated. The typical ecological factors including water, sediment and soil were analyzed in this study to identify the altered river ecosystem services by Pondo hydropower project. Through the field monitoring and valuation, the results showed that the Lhasa River ecosystem services value could be changed annually by Pondo hydropower project with the increment of 5.7E+8CNY, and decrement of 5.1E+7CNY. The ecological compensation for river ecosystem should be focus on water and soil conservation, reservoir dredging and tributaries habitat protection.

  7. The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery

    PubMed Central

    Scott, Abigail L.; York, Paul H.; Duncan, Clare; Macreadie, Peter I.; Connolly, Rod M.; Ellis, Megan T.; Jarvis, Jessie C.; Jinks, Kristin I.; Marsh, Helene; Rasheed, Michael A.

    2018-01-01

    Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services – including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top–down and bottom–up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services. PMID:29487606

  8. Evaluation of Environmental Quality Productive Ecosystem Guayas (Ecuador).

    NASA Astrophysics Data System (ADS)

    Pozo, Wilson; Pardo, Francisco; Sanfeliu, Teófilo; Carrera, Gloria; Jordan, Manuel; Bech, Jaume; Roca, Núria

    2015-04-01

    Natural resources are deteriorating very rapidly in the Gulf of Guayaquil and the area of influence in the Guayas Basin due to human activity. Specific problems are generated by the mismanagement of the aquaculture industry affecting the traditional agricultural sectors: rice, banana, sugarcane, cocoa, coffee, and soya also studied, and by human and industrial settlements. The development of industrial activities such as aquaculture (shrimp building for shrimp farming in ponds) and agriculture, have increasingly contributed to the generation of waste, degrading and potentially toxic elements in high concentrations, which can have adverse effects on organisms in the ecosystems, in the health of the population and damage the ecological and environmental balance. The productive Guayas ecosystem, consists of three interrelated ecosystems, the Gulf of Guayaquil, the Guayas River estuary and the Guayas Basin buffer. The objective of this study was to evaluate the environmental quality of the productive Guayas ecosystem (Ecuador), through operational and specific objectives: 1) Draw up the transition coastal zone in the Gulf of Guayaquil, 2) Set temporal spatial variability of soil salinity in wetlands rice, Lower Guayas Basin, 3) evaluate the heavy metals in wetland rice in the Lower Basin of Guayas. The physical and chemical parameters of the soils have been studied. These are indicators of environmental quality. The multivariate statistical method showed the relations of similarities and dissimilarities between variables and parameter studies as stable. Moreover, the boundaries of coastal transition areas, temporal spatial variability of soil salinity and heavy metals in rice cultivation in the Lower Basin of Guayas were researched. The sequential studies included and discussed represent a broad framework of fundamental issues that has been valued as a basic component of the productive Guayas ecosystem. They are determinants of the environmental quality of the Guayas productive ecosystem. Keyword: Evaluation, Environmental Quality, Productive Ecosystem

  9. Freshwater as shared between society and ecosystems: from divided approaches to integrated challenges.

    PubMed Central

    Falkenmark, Malin

    2003-01-01

    The paper has its focus on water's key functions behind ecosystem dynamics and the water-related balancing involved in a catchment-based ecosystem approach. A conceptual framework is being developed to address fundamental trade-offs between humans and ecosystems. This is done by paying attention to society's unavoidable landscape modifications and their unavoidable ecological effects mediated by water processes. Because the coevolution of societal and environmental processes indicates resonance rather than a cause-effect relationship, humanity will have to learn to live with change while securing ecosystem resilience. In view of the partial incompatibility of the social imperative of the millennium goals and its environmental sustainability goal, human activities and ecosystems have to be orchestrated for compatibility. To this end a catchment-based approach has to be taken by integrating water, land use and ecosystems. It is being suggested that ecosystem protection has to be thought of in two scales: site-specific biotic landscape components to be protected for their social value, and a catchment-based ecosystem approach to secure sustainable supply of crucial ecosystem goods and services on which social and economic development depends. PMID:14728797

  10. Effects of climate variability and human activities on Chesapeake Bay and the implications for ecosystem restoration

    USGS Publications Warehouse

    Cronin, Thomas M.; Willard, Debra A.; Phillips, Scott

    2000-01-01

    Chesapeake Bay, the Nation’s largest and most productive estuary (fig. 1), faces complex environmental issues related to nutrients and oxygen, turbidity and sedimentation, toxic dinoflagellates, sea-level rise, and coastal erosion. The Chesapeake Bay Program (CBP) is a partnership among the Chesapeake Bay Commission, the Federal Government, the District of Columbia, and the States of Maryland, Virginia, and Pennsylvania. The CBP is working to preserve, restore, and protect the bay’s living resources, vital habitats, and water quality, to protect human health, and to promote sound land-use policies in the watershed. The CBP began to set restoration goals for the ecosystem in the mid-1980’s and is now refining current goals and setting new ones as part of a new bay agreement— Chesapeake 2000. As the CBP sets restoration goals for the next 10–20 years, it will be critical to understand the long-term changes of the bay ecosystem due to climate variability and the influence of past and future human activities.For the past 4 years, the U.S. Geological Survey (USGS) has been engaged in research designed to provide objective scientific answers to questions about long-term changes in the bay ecosystem: What paleoecological and geochemical methods are best for documenting trends in the bay ecosystem?How does climate variability, including drought, affect the bay?What are historical trends in dissolved oxygen?What is the relationship between sedimentation and water clarity, and what is the effect of turbidity on living resources?How have past land-use changes affected bay habitats and living resources?

  11. A critical analysis of ecosystem services as a tool in conservation projects: the possible perils, the promises,and the partnerships.

    PubMed

    Goldman, Rebecca L; Tallis, Heather

    2009-04-01

    Human modifications of the environment are growing in number and geographic extent, expanding to all of the Earth's surfaces and affecting the vast majority of the Earth's natural resources. Increases in demand for resources, growing levels of poverty, and more extensive urbanization, among other changes, lead to a need to move beyond parks and classic conservation approaches to incorporate humans and working landscapes more directly in conservation efforts. One approach to do this is to focus on ecosystem services, the benefits ecosystems provide to humans. Here conservation projects that focus only on biodiversity are analytically compared with those that include ecosystem-service goals to dispel myths and explore promises. Projects conducted by The Nature Conservancy, the world's largest conservation organization, are used, and it is demonstrated that not only do ecosystem-service approaches engage new landscapes, stakeholders, and funding sources, but that they do so without neglecting traditional biodiversity goals and the traditional approaches of protection and preservation. Seven case studies that uniquely create a broker-type structure to determine how to distribute money for the provision of particular services to the satisfaction of a wide range of stakeholder interests are focused on. It is found that all use local, independent leadership to initiate partnership formation, which then leads to the creation of a separate institutional entity that has legal rights to determine fund provision. The activities encouraged by these entities, and which therefore appear to satisfy a wide array of interests, are supporting education, rewarding best management practice, creating jobs, and monitoring outcomes.

  12. Ecosystem goods and services from Swedish coastal habitats: identification, valuation, and implications of ecosystem shifts.

    PubMed

    Rönnbäck, Patrik; Kautsky, Nils; Pihl, Leif; Troell, Max; Söderqvist, Tore; Wennhage, Håkan

    2007-11-01

    Coastal areas are exposed to a variety of threats due to high population densities and rapid economic development. How will this affect human welfare and our dependence on nature's capacity to provide ecosystem goods and services? This paper is original in evaluating this concern for major habitats (macroalgae, seagrasses, blue mussel beds, and unvegetated soft bottoms) in a temperate coastal setting. More than 40 categories of goods and services are classified into provisional, regulating, and cultural services. A wide variety of Swedish examples is described for each category, including accounts of economic values and the relative importance of different habitats. For example, distinguishing characteristics would be the exceptional importance of blue mussels for mitigation of eutrophication, sandy soft bottoms for recreational uses, and seagrasses and macroalgae for fisheries production and control of wave and current energy. Net changes in the provision of goods and services are evaluated for three cases of observed coastal ecosystem shifts: i) seagrass beds into unvegetated substrate; ii) unvegetated shallow soft bottoms into filamentous algal mat dominance; and iii) macroalgae into mussel beds on hard substrate. The results are discussed in a management context including accounts of biodiversity, interconnectedness of ecosystems, and potential of economic valuation.

  13. Space-time modeling in EPA's Ecosystem Services Research Program

    EPA Science Inventory

    The US EPA is conducting a long-term research program on the effects of human actions on ecosystem services. Ecosystem services are defined in this program as “the products of ecological functions or processes that directly or indirectly contribute to human well-being.” Modelin...

  14. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    PubMed

    Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized framework for describing moisture recycling as an ecosystem service. We conclude that future work ought to disentangle whether and how this vegetation-regulated moisture recycling interacts with other ecosystem services, so that trade-offs can be assessed in a comprehensive and sustainable manner.

  15. Adaptive management for ecosystem services (j/a) | Science ...

    EPA Pesticide Factsheets

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with manage

  16. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs

    PubMed Central

    Stewart, Jill R; Gast, Rebecca J; Fujioka, Roger S; Solo-Gabriele, Helena M; Meschke, J Scott; Amaral-Zettler, Linda A; del Castillo, Erika; Polz, Martin F; Collier, Tracy K; Strom, Mark S; Sinigalliano, Christopher D; Moeller, Peter DR; Holland, A Fredrick

    2008-01-01

    Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans. PMID:19025674

  17. Large-scale degradation of Amazonian freshwater ecosystems

    NASA Astrophysics Data System (ADS)

    Castello, L.; Macedo, M.

    2016-12-01

    The integrity of freshwater ecosystems depends on their hydrological connectivity with land, water, and climate systems. Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. However, the hydrological connectivity of Amazonian freshwater ecosystems is increasingly disrupted by construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation; evaluates their impacts on hydrological connectivity; and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 155 large hydroelectric dams in operation, 21 dams under construction, and there will be only three free-flowing tributaries if all 277 planned dams for the Basin are built. Land-cover changes driven by mining, dam and road construction, and agriculture and cattle ranching have already affected 20% of the Basin and up to 50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g. droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and do not consider the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basin-wide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.

  18. Development of the human infant intestinal microbiota.

    PubMed

    Palmer, Chana; Bik, Elisabeth M; DiGiulio, Daniel B; Relman, David A; Brown, Patrick O

    2007-07-01

    Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  19. A Consideration of the Health and Environmental Risks/Effects of Geoengineering

    NASA Astrophysics Data System (ADS)

    Hemming, B. L.; Felgenhauer, T. N.; Miller, C. A.

    2014-12-01

    The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. A number of geoengineering strategies have been proposed and, to date, a few are being seriously investigated as possible approaches to reducing the degree of climate change. Whether under the broad rubrics of solar radiation management (SRM) or carbon dioxide removal (CDR), these projects would involve major, intentional intervention in the world's climate. Even if successful in off-setting the global radiative imbalance induced by human activities, it is not at all clear how well humans and the ecosystems upon which they depend will weather the climate system perturbations induced by the implementation of a large-scale geoengineering program. It is reasonable to expect that such perturbations could exacerbate the existing health and environmental consequences of anthropogenic climate change at large and small scales, or create entirely new ones. An accounting of the derivative physical and biological effects of consequence to human health and ecosystems welfare that may result from the use of geoengineering is a necessary part of any policy-relevant analysis. However, the scientific understanding required to quantitatively assess these potential impacts is absent in most cases, and still nascent in others. Furthermore, current discussions and existing literature lack the fully integrated "systems" approach required for adequately assessing the short- and long-term impacts of geoengineering strategies on ecosystems and human populations. We present an overview of critical science questions, including broad questions concerning the potential response of the complex earth system to further human interference and those concerning potential impacts to local environmental metrics such as air and water quality and ecosystem viability.

  20. The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems

    PubMed Central

    Innes, Clinton; Anand, Madhur; Bauch, Chris T.

    2013-01-01

    Forest-grassland mosaic ecosystems can exhibit alternative stables states, whereby under the same environmental conditions, the ecosystem could equally well reside either in one state or another, depending on the initial conditions. We develop a mathematical model that couples a simplified forest-grassland mosaic model to a dynamic model of opinions about conservation priorities in a population, based on perceptions of ecosystem rarity. Weak human influence increases the region of parameter space where alternative stable states are possible. However, strong human influence precludes bistability, such that forest and grassland either co-exist at a single, stable equilibrium, or their relative abundance oscillates. Moreover, a perturbation can shift the system from a stable state to an oscillatory state. We conclude that human-environment interactions can qualitatively alter the composition of forest-grassland mosaic ecosystems. The human role in such systems should be viewed as dynamic, responsive element rather than as a fixed, unchanging entity. PMID:24048359

  1. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    USGS Publications Warehouse

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The second cross-cutting topic is the rapidly advancing field of climate adaptation, where there has been significant progress in developing the conceptual framework, planning approaches, and strategies for safeguarding biodiversity and other ecological resources. At the same time, ecosystem-based adaptation is becoming more prominent as a way to utilize ecosystem services to help human systems adapt to climate change. In this summary, we present key findings of the technical input, focusing on themes that can be found throughout the report. Thus, this summary takes a more integrated look at the question of how climate change is affecting our ecological resources, the implications for humans, and possible response strategies. This integrated approach better reflects the impacts of climate in the real world, where changes in ecosystem structure or function will alter the viability of different species and the efficacy of ecosystem services. Likewise, adaptation to climate change will simultaneously address a range of conservation goals. Case studies are used to illustrate this complete picture throughout the report; a snapshot of one case study, 2011 Las Conchas, New Mexico Fire, is included in this summary.

  2. Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics

    PubMed Central

    Gillings, Michael R.; Paulsen, Ian T.; Tetu, Sasha G.

    2015-01-01

    Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century. PMID:26371047

  3. Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics.

    PubMed

    Gillings, Michael R; Paulsen, Ian T; Tetu, Sasha G

    2015-09-08

    Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.

  4. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA

    USGS Publications Warehouse

    Hupp, C.R.; Pierce, Aaron R.; Noe, G.B.

    2009-01-01

    Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.

  5. A National Approach to Quantify and Map Biodiversity ...

    EPA Pesticide Factsheets

    Ecosystem services, i.e., "services provided to humans from natural systems," have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human welfare. The degradation of natural ecosystems and climate variation impact the environment and society by affecting ecological integrity and ecosystems’ capacity to provide critical services (i.e., the contributions of ecosystems to human well-being). These challenges will require complex management decisions that can often involve significant trade-offs between societal desires and environmental needs. Evaluating trade-offs in terms of ecosystem services and human well-being provides an intuitive and comprehensive way to assess the broad implications of our decisions and to help shape policies that enhance environmental and social sustainability. In answer to this challenge, the U.S. government has created a partnership among the U.S. Environmental Protection Agency, other Federal agencies, academic institutions, and, Non-Governmental Organizations to develop the EnviroAtlas, an online Decision Support Tool that allows users (e.g., planners, policy-makers, resource managers, NGOs, private indu

  6. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    USGS Publications Warehouse

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  7. Biodiversity Performs!

    ERIC Educational Resources Information Center

    World Wildlife Fund, Washington, DC.

    This document features a lesson plan in which students work in teams to act out different ecosystem services, describe several free services that biodiversity provides to human, and explain how these services make life on earth possible. Samples of instruction and assessment are included. (KHR)

  8. Information for Species Status and Environmental Baseline for National-Scale Pesticide Listed Species Assessments

    EPA Pesticide Factsheets

    Guidance to support an analysis of the effects of past and ongoing human and natural factors leading to the current status of the species, its habitat, (including designated critical habitat), and ecosystem.

  9. Disturbance, life history, and optimal management for biodiversity

    USGS Publications Warehouse

    Guo, Q.

    2003-01-01

    Both frequency and intensity of disturbances in many ecosystems have been greatly enhanced by increasing human activities. As a consequence, the short-lived plant species including many exotics might have been dramatically increased in term of both richness and abundance on our planet while many long-lived species might have been lost. Such conclusions can be drawn from broadly observed successional cycles in both theoretical and empirical studies. This article discusses two major issues that have been largely overlooked in current ecosystem management policies and conservation efforts, i.e., life history constraints and future global warming trends. It also addresses the importance of these two factors in balancing disturbance frequency and intensity for optimal biodiversity maintenance and ecosystem management.

  10. Ecosystem services altered by human changes in the nitrogen cycle: A new perspective for assessment

    EPA Science Inventory

    Human alteration of the nitrogen (N) cycle has produced benefits for health and well-being, but excess N has altered many ecosystems and degraded air and water quality. US regulations mandate protection of the environment in terms that directly connect to ecosystem services. Here...

  11. Habitat restoration from an ecosystem goods and services perspective: Application of a spatially explicit individual-based model

    EPA Science Inventory

    Estuarine ecosystems provide many services to humans, but these ecosystems are also under pressure from human development, which has led to large investments in habitat protection and restoration. Restoration in estuaries is typically focused on emergent and submerged vegetation ...

  12. An Integrative Approach to Ecosystem Goods and Services – Putting the Pieces Together for the Tampa Bay Region

    EPA Science Inventory

    Ecosystem goods and services production, delivery, and use by humans involve multiple systems working together at various different spatial and temporal scales. Assessments of ecosystem goods and services and their benefits to current and or future human populations in any given ...

  13. [Microbiota and representations of the human body].

    PubMed

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body. © 2016 médecine/sciences – Inserm.

  14. Human health and ecological assessment programs for Hebei Spirit oil spill accident of 2007: Status, lessons, and future challenges.

    PubMed

    Jung, Dawoon; Kim, Jung-Ah; Park, Myung-Sook; Yim, Un Hyuk; Choi, Kyungho

    2017-04-01

    Hebei Spirit oil spill (HSOS) of December 2007 is one of the worst oil spill accidents that occurred in Yellow Sea. The affected coastline along the west coast of Korean Peninsula hosts one of the largest tidal flats worldwide, and is home to tens of thousands of human residents. Based on nation-wide concerns on ecosystem damages and adverse human health effects, two separate surveillance programs on ecosystem and human health were initiated: a 10-year follow-up program by Ministry of Oceans and Fisheries to assess ecological impacts of the oil spill, and an exposure and health effect assessment program by Ministry of Environment for the residents of Taean and its vicinity. For the past eight years, extensive monitoring and surveillance data on ecosystem and humans have been accumulated through these programs. But these studies have been conducted mostly independently, and collaborations were seldom made between two programs. The lack of communication resulted in gaps and overlaps between the programs which led to loss of critical information and efficiency. As oil spill can affect both humans and ecosystem through various pathways, collaboration and communication between human and ecosystem health surveillance programs are necessary, and will synergize the success of both programs. Such concerted efforts will provide better platform for understanding the status of impact, and for developing approaches to address human and ecosystem health challenges that may be faced following environmental disasters like HSOS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biological invasions in the Antarctic: extent, impacts and implications.

    PubMed

    Frenot, Yves; Chown, Steven L; Whinam, Jennie; Selkirk, Patricia M; Convey, Peter; Skotnicki, Mary; Bergstrom, Dana M

    2005-02-01

    Alien microbes, fungi, plants and animals occur on most of the sub-Antarctic islands and some parts of the Antarctic continent. These have arrived over approximately the last two centuries, coincident with human activity in the region. Introduction routes have varied, but are largely associated with movement of people and cargo in connection with industrial, national scientific program and tourist operations. The large majority of aliens are European in origin. They have both direct and indirect impacts on the functioning of species-poor Antarctic ecosystems, in particular including substantial loss of local biodiversity and changes to ecosystem processes. With rapid climate change occurring in some parts of Antarctica, elevated numbers of introductions and enhanced success of colonization by aliens are likely, with consequent increases in impacts on ecosystems. Mitigation measures that will substantially reduce the risk of introductions to Antarctica and the sub-Antarctic must focus on reducing propagule loads on humans, and their food, cargo, and transport vessels.

  16. Mathematical modeling relevant to closed artificial ecosystems

    USGS Publications Warehouse

    DeAngelis, D.L.

    2003-01-01

    The mathematical modeling of ecosystems has contributed much to the understanding of the dynamics of such systems. Ecosystems can include not only the natural variety, but also artificial systems designed and controlled by humans. These can range from agricultural systems and activated sludge plants, down to mesocosms, microcosms, and aquaria, which may have practical or research applications. Some purposes may require the design of systems that are completely closed, as far as material cycling is concerned. In all cases, mathematical modeling can help not only to understand the dynamics of the system, but also to design methods of control to keep the system operating in desired ranges. This paper reviews mathematical modeling relevant to the simulation and control of closed or semi-closed artificial ecosystems designed for biological production and recycling in applications in space. Published by Elsevier Science Ltd on behalf of COSPAR.

  17. Novel ecosystems: Theoretical and management aspects of the new ecological world order

    USGS Publications Warehouse

    Hobbs, R.J.; Arico, S.; Aronson, J.; Baron, Jill S.; Bridgewater, P.; Cramer, V.A.; Epstein, P.R.; Ewel, J.J.; Klink, C.A.; Lugo, A.E.; Norton, D.; Ojima, D.; Richardson, D.M.; Sanderson, E.W.; Valladares, F.; Vila, M.; Zamora, R.; Zobel, M.

    2006-01-01

    We explore the issues relevant to those types of ecosystems containing new combinations of species that arise through human action, environmental change, and the impacts of the deliberate and inadvertent introduction of species from other regions. Novel ecosystems (also termed ‘emerging ecosystems’) result when species occur in combinations and relative abundances that have not occurred previously within a given biome. Key characteristics are novelty, in the form of new species combinations and the potential for changes in ecosystem functioning, and human agency, in that these ecosystems are the result of deliberate or inadvertent human action. As more of the Earth becomes transformed by human actions, novel ecosystems increase in importance, but are relatively little studied. Either the degradation or invasion of native or ‘wild’ ecosystems or the abandonment of intensively managed systems can result in the formation of these novel systems. Important considerations are whether these new systems are persistent and what values they may have. It is likely that it may be very difficult or costly to return such systems to their previous state, and hence consideration needs to be given to developing appropriate management goals and approaches.

  18. Conservation of living resources in a changing world

    NASA Astrophysics Data System (ADS)

    Teer, James G.

    1996-11-01

    Conservation of living resources is no longer parochial in scope; it is a global challenge. Ecological, social, political, and business interests operate in a network that reaches across seas, continents, and nations. Industries, including the electric utility industry, are diversifying in products and expanding into international markets. They soon discover that, while all nations have common goals for their peoples, conservation and environmental issues in less-developed nations have different dimensions and norms than are encountered in Western, affluent societies. In developing countries, survival is more of an issue than quality of life, and burgeoning human numbers have put tremendous pressures on resources including wildlife and its habitats. Human population, urbanization of society, changes in single-species to ecosystem and landscape levels of management, and protectionists and animal rights philosophies are influences with which conservation of resources and the environment must contend. The human condition and conservation efforts are inextricably linked. Examples to demonstrate this fact are given for Project Tiger in India, the jaguar in Latin America, and the Serengeti ecosystem in Kenya and Tanzania.

  19. Social Values for Ecosystem Services (SolVES): using GIS to include social values information in ecosystem services assessments

    USGS Publications Warehouse

    Sherrouse, B.C.; Semmens, D.J.

    2010-01-01

    Ecosystem services can be defined in various ways; simply put, they are the benefits provided by nature, which contribute to human well-being. These benefits can range from tangible products such as food and fresh water to cultural services such as recreation and esthetics. As the use of these benefits continues to increase, additional pressures are placed on the natural ecosystems providing them. This makes it all the more important when assessing possible tradeoffs among ecosystem services to consider the human attitudes and preferences that express underlying social values associated with their benefits. While some of these values can be accounted for through economic markets, other values can be more difficult to quantify, and attaching dollar amounts to them may not be very useful in all cases. Regardless of the processes or units used for quantifying such values, the ability to map them across the landscape and relate them to the ecosystem services to which they are attributed is necessary for effective assessments. To address some of the needs associated with quantifying and mapping social values for inclusion in ecosystem services assessments, scientists at the Rocky Mountain Geographic Science Center (RMGSC), in collaboration with Colorado State University, have developed a public domain tool, Social Values for Ecosystem Services (SolVES). SolVES is a geographic information system (GIS) application designed to use data from public attitude and preference surveys to assess, map, and quantify social values for ecosystem services. SolVES calculates and maps a 10-point Value Index representing the relative perceived social values of ecosystem services such as recreation and biodiversity for various groups of ecosystem stakeholders. SolVES output can also be used to identify and model relationships between social values and physical characteristics of the underlying landscape. These relationships can then be used to generate predicted Value Index maps for areas where survey data are not available. RMGSC will continue to develop more robust versions of SolVES by pursuing opportunities to work with land and resource managers as well as other researchers to apply SolVES to specific ecosystem management problems.

  20. Embedding ecosystem services into the Marine Strategy Framework Directive: Illustrated by eutrophication in the North Sea

    NASA Astrophysics Data System (ADS)

    O'Higgins, T. G.; Gilbert, A. J.

    2014-03-01

    The introduction of the Marine Strategy Framework Directive (MSFD) with its focus on an Ecosystem Approach places an emphasis on the human dimensions of environmental problems. Human activities may be the source of marine degradation, but may also be adversely affected should degradation compromise the provision of ecosystem services. The MSFD marks a shift away from management aiming to restore past, undegraded states toward management for Good Environmental Status (GEnS) based on delivery of marine goods and services. An example relating ecosystem services to criteria for Good Environmental Status is presented for eutrophication, a long recognised problem in many parts of Europe's seas and specifically targeted by descriptors for GEnS. Taking the North Sea as a case study the relationships between the eutrophication criteria of the MSFD and final and intermediate marine ecosystem services are examined. Ecosystem services are valued, where possible in monetary terms, in order to illustrate how eutrophication affects human welfare (economic externalities) through its multiple effects on ecosystem services.

  1. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries.

    PubMed

    Alho, Cleber J R; Reis, Roberto E; Aquino, Pedro P U

    2015-09-01

    Matching the trend seen among the major large rivers of the globe, the Amazon River and its tributaries are facing aquatic ecosystem disruption that is affecting freshwater habitats and their associated biodiversity, including trends for decline in fishery resources. The Amazon's aquatic ecosystems, linked natural resources, and human communities that depend on them are increasingly at risk from a number of identified threats, including expansion of agriculture; cattle pastures; infrastructure such as hydroelectric dams, logging, mining; and overfishing. The forest, which regulates the hydrological pulse, guaranteeing the distribution of rainfall and stabilizing seasonal flooding, has been affected by deforestation. Flooding dynamics of the Amazon Rivers are a major factor in regulating the intensity and timing of aquatic organisms. This study's objective was to identify threats to the integrity of freshwater ecosystems, and to seek instruments for conservation and sustainable use, taking principally fish diversity and fisheries as factors for analysis.

  2. River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors.

    PubMed

    von Schiller, Daniel; Acuña, Vicenç; Aristi, Ibon; Arroita, Maite; Basaguren, Ana; Bellin, Alberto; Boyero, Luz; Butturini, Andrea; Ginebreda, Antoni; Kalogianni, Eleni; Larrañaga, Aitor; Majone, Bruno; Martínez, Aingeru; Monroy, Silvia; Muñoz, Isabel; Paunović, Momir; Pereda, Olatz; Petrovic, Mira; Pozo, Jesús; Rodríguez-Mozaz, Sara; Rivas, Daniel; Sabater, Sergi; Sabater, Francesc; Skoulikidis, Nikolaos; Solagaistua, Libe; Vardakas, Leonidas; Elosegi, Arturo

    2017-10-15

    River ecosystems are subject to multiple stressors that affect their structure and functioning. Ecosystem structure refers to characteristics such as channel form, water quality or the composition of biological communities, whereas ecosystem functioning refers to processes such as metabolism, organic matter decomposition or secondary production. Structure and functioning respond in contrasting and complementary ways to environmental stressors. Moreover, assessing the response of ecosystem functioning to stressors is critical to understand the effects on the ecosystem services that produce direct benefits to humans. Yet, there is more information on structural than on functional parameters, and despite the many approaches available to measure river ecosystem processes, structural approaches are more widely used, especially in management. One reason for this discrepancy is the lack of synthetic studies analyzing river ecosystem functioning in a way that is useful for both scientists and managers. Here, we present a synthesis of key river ecosystem processes, which provides a description of the main characteristics of each process, including criteria guiding their measurement as well as their respective sensitivity to stressors. We also discuss the current limitations, potential improvements and future steps that the use of functional measures in rivers needs to face. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    PubMed

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  4. Ecosystem services of Phragmites in North America with emphasis on habitat functions

    PubMed Central

    Kiviat, Erik

    2013-01-01

    Phragmites australis (common reed) is widespread in North America, with native and non-native haplotypes. Many ecologists and wetland managers have considered P. australis a weed with little value to the native biota or human society. I document important ecosystem services of Phragmites including support for many common and rare species of plants and animals. This paper is based on an extensive review of the ecology and natural history literature, discussions with field workers, and observations in 13 US states and one Canadian province during the past 40 years. Phragmites sequesters nutrients, heavy metals and carbon, builds and stabilizes soils, and creates self-maintaining vegetation in urban and industrial areas where many plants do not thrive. These non-habitat ecosystem services are proportional to biomass and productivity. Phragmites was widely used by Native Americans for many purposes; the most important current direct use is for the treatment of wastes. Most of the knowledge of non-habitat ecosystem services is based on studies of P. australis haplotype M (an Old World haplotype). Phragmites also has habitat functions for many organisms. These functions depend on the characteristics of the landscape, habitat, Phragmites stand, species using Phragmites and life history element. The functions that Phragmites provides for many species are optimal at lower levels of Phragmites biomass and extent of stands. Old World Phragmites, contrary to many published statements, as well as North American native Phragmites, provide valuable ecosystem services including products for human use and habitat functions for other organisms. Phragmites stands may need management (e.g. thinning, fragmentation, containment or removal) to create or maintain suitable habitat for desired species of animals and plants.

  5. Benchmarking Terrestrial Ecosystem Models in the South Central US

    NASA Astrophysics Data System (ADS)

    Kc, M.; Winton, K.; Langston, M. A.; Luo, Y.

    2016-12-01

    Ecosystem services and products are the foundation of sustainability for regional and global economy since we are directly or indirectly dependent on the ecosystem services like food, livestock, water, air, wildlife etc. It has been increasingly recognized that for sustainability concerns, the conservation problems need to be addressed in the context of entire ecosystems. This approach is even more vital in the 21st century with formidable increasing human population and rapid changes in global environment. This study was conducted to find the state of the science of ecosystem models in the South-Central region of US. The ecosystem models were benchmarked using ILAMB diagnostic package developed as a result of International Land Model Benchmarking (ILAMB) project on four main categories; viz, Ecosystem and Carbon Cycle, Hydrology Cycle, Radiation and Energy Cycle and Climate forcings. A cumulative assessment was generated with weighted seven different skill assessment metrics for the ecosystem models. This synthesis on the current state of the science of ecosystem modeling in the South-Central region of US will be highly useful towards coupling these models with climate, agronomic, hydrologic, economic or management models to better represent ecosystem dynamics as affected by climate change and human activities; and hence gain more reliable predictions of future ecosystem functions and service in the region. Better understandings of such processes will increase our ability to predict the ecosystem responses and feedbacks to environmental and human induced change in the region so that decision makers can make an informed management decisions of the ecosystem.

  6. Centuries of human-driven change in salt marsh ecosystems.

    PubMed

    Gedan, K Bromberg; Silliman, B R; Bertness, M D

    2009-01-01

    Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems--exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

  7. Future generations, environmental ethics, and global environmental change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey,more » renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.« less

  8. Caring for our natural assets: an ecosystem services perspective.

    Treesearch

    2007-01-01

    Global attention to climate change has advanced an awareness of human impacts on the environment. Progressing more slowly is recognition of the critical link between forest ecosystems and human welfare. Forests provide a number of societal benefits or ecosystem services, such as water purification, climate and flood regulation, recreational opportunities, and spiritual...

  9. Effects of climate change on ecosystem services [Chapter 13

    Treesearch

    Travis W. Warziniack; Matthew J. Elmer; Chris J. Miller; S. Karen Dante-Wood; Christopher W. Woodall; Michael C. Nichols; Grant M. Domke; Keith D. Stockmann; John G. Proctor; Allison M. Borchers

    2018-01-01

    Ecosystem services are benefits to humans from the natural environment. These benefits that humans derive from ecosystems are the tangible connection between society and the natural environment. Some of these benefits are timber harvesting, rangeland grazing, municipal water use, carbon sequestration, and pollinators—all discussed in this chapter. The typology...

  10. The EnviroAtlas ‐ Developing a National Approach to Quantify and Map Metrics within an Ecosystem Services Framework. Subfocus: Multi‐scale Biodiversity Conservation Metrics

    EPA Science Inventory

    Ecosystem services, i.e., "services provided to humans from natural systems," have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have become stra...

  11. An operational structured decision making framework for assessing changes in final ecosystem goods and services and consequences to human well-being

    EPA Science Inventory

    Pressure to develop an operational framework for decision makers to employ the concepts of ecosystem goods and services for assessing changes to human well-being has been increasing since these concepts gained widespread notoriety after the Millennium Ecosystem Assessment Report....

  12. Linking ecosystem services and human-values theory.

    PubMed

    Hicks, Christina C; Cinner, Joshua E; Stoeckl, Natalie; McClanahan, Tim R

    2015-10-01

    Understanding why people make the decisions they do remains a fundamental challenge facing conservation science. Ecosystem service (ES) (a benefit people derive from an ecosystem) approaches to conservation reflect efforts to anticipate people's preferences and influence their environmental behavior. Yet, the design of ES approaches seldom includes psychological theories of human behavior. We sought to alleviate this omission by applying a psychological theory of human values to a cross-cultural ES assessment. We used interviews and focus groups with fish workers from 28 coral reef fishing communities in 4 countries to qualitatively identify the motivations (i.e., human values) underlying preferences for ES; quantitatively evaluate resource user ES priorities; and identify common patterns among ES motivations and ES priorities (i.e., trade-offs and synergies). Three key findings are evident that align with human values theory. First, motivations underlying preferences for individual ESs reflected multiple human values within the same value domain (e.g., self-enhancement). Second, when averaged at community or country scales, the order of ES priorities was consistent. However, the order belied significant variation that existed among individuals. Third, in line with human values theory, ESs related to one another in a consistent pattern; certain service pairs reflected trade-off relationships (e.g., supporting and provisioning), whereas other service pairs reflected synergistic relationships (e.g., supporting and regulating). Together, these findings help improve understanding of when and why convergence and trade-offs in people's preferences for ESs occur, and this knowledge can inform the development of suitable conservation actions. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of the Society for Conservation Biology.

  13. Ecosystem health: I. Measuring ecosystem health

    NASA Astrophysics Data System (ADS)

    Schaeffer, David J.; Herricks, Edwin E.; Kerster, Harold W.

    1988-07-01

    Ecosystem analysis has been advanced by an improved understanding of how ecosystems are structured and how they function. Ecology has advanced from an emphasis on natural history to consideration of energetics, the relationships and connections between species, hierarchies, and systems theory. Still, we consider ecosystems as entities with a distinctive character and individual characteristics. Ecosystem maintenance and preservation form the objective of impact analysis, hazard evaluation, and other management or regulation activities. In this article we explore an approach to ecosystem analysis which identifies and quantifies factors which define the condition or state of an ecosystem in terms of health criteria. We relate ecosystem health to human/nonhuman animal health and explore the difficulties of defining ecosystem health and suggest criteria which provide a functional definition of state and condition. We suggest that, as has been found in human/nonhuman animal health studies, disease states can be recognized before disease is of clinical magnitude. Example disease states for ecosystems are functionally defined and discussed, together with test systems for their early detection.

  14. Risks of large-scale use of systemic insecticides to ecosystem functioning and services.

    PubMed

    Chagnon, Madeleine; Kreutzweiser, David; Mitchell, Edward A D; Morrissey, Christy A; Noome, Dominique A; Van der Sluijs, Jeroen P

    2015-01-01

    Large-scale use of the persistent and potent neonicotinoid and fipronil insecticides has raised concerns about risks to ecosystem functions provided by a wide range of species and environments affected by these insecticides. The concept of ecosystem services is widely used in decision making in the context of valuing the service potentials, benefits, and use values that well-functioning ecosystems provide to humans and the biosphere and, as an endpoint (value to be protected), in ecological risk assessment of chemicals. Neonicotinoid insecticides are frequently detected in soil and water and are also found in air, as dust particles during sowing of crops and aerosols during spraying. These environmental media provide essential resources to support biodiversity, but are known to be threatened by long-term or repeated contamination by neonicotinoids and fipronil. We review the state of knowledge regarding the potential impacts of these insecticides on ecosystem functioning and services provided by terrestrial and aquatic ecosystems including soil and freshwater functions, fisheries, biological pest control, and pollination services. Empirical studies examining the specific impacts of neonicotinoids and fipronil to ecosystem services have focused largely on the negative impacts to beneficial insect species (honeybees) and the impact on pollination service of food crops. However, here we document broader evidence of the effects on ecosystem functions regulating soil and water quality, pest control, pollination, ecosystem resilience, and community diversity. In particular, microbes, invertebrates, and fish play critical roles as decomposers, pollinators, consumers, and predators, which collectively maintain healthy communities and ecosystem integrity. Several examples in this review demonstrate evidence of the negative impacts of systemic insecticides on decomposition, nutrient cycling, soil respiration, and invertebrate populations valued by humans. Invertebrates, particularly earthworms that are important for soil processes, wild and domestic insect pollinators which are important for plant and crop production, and several freshwater taxa which are involved in aquatic nutrient cycling, were all found to be highly susceptible to lethal and sublethal effects of neonicotinoids and/or fipronil at environmentally relevant concentrations. By contrast, most microbes and fish do not appear to be as sensitive under normal exposure scenarios, though the effects on fish may be important in certain realms such as combined fish-rice farming systems and through food chain effects. We highlight the economic and cultural concerns around agriculture and aquaculture production and the role these insecticides may have in threatening food security. Overall, we recommend improved sustainable agricultural practices that restrict systemic insecticide use to maintain and support several ecosystem services that humans fundamentally depend on.

  15. Ecosystem Services

    EPA Pesticide Factsheets

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  16. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America

    USGS Publications Warehouse

    Perry, Laura G.; Andersen, Douglas C.; Reynolds, Lindsay V.; Nelson, S. Mark; Shafroth, Patrick B.

    2012-01-01

    Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO2 concentrations ([CO2]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO2], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO2] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate-driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate-driven changes in streamflow are likely to reduce abundance of dominant, native, early-successional tree species, favor herbaceous species and both drought-tolerant and late-successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate-driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian ecosystems to allow rapid detection and response to undesirable ecological change.

  17. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity.

    PubMed

    Isbell, Forest; Reich, Peter B; Tilman, David; Hobbie, Sarah E; Polasky, Stephen; Binder, Seth

    2013-07-16

    Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiments have shown that random losses of species impact the functioning of ecosystems, human-caused losses of biodiversity are rarely random. Here we use results from long-term grassland field experiments to test for direct effects of chronic nutrient enrichment on ecosystem productivity, and for indirect effects of enrichment on productivity mediated by resultant species losses. We found that ecosystem productivity decreased through time most in plots that lost the most species. Chronic nitrogen addition also led to the nonrandom loss of initially dominant native perennial C4 grasses. This loss of dominant plant species was associated with twice as great a loss of productivity per lost species than occurred with random species loss in a nearby biodiversity experiment. Thus, although chronic nitrogen enrichment initially increased productivity, it also led to loss of plant species, including initially dominant species, which then caused substantial diminishing returns from nitrogen fertilization. In contrast, elevated CO2 did not decrease grassland plant diversity, and it consistently promoted productivity over time. Our results support the hypothesis that the long-term impacts of anthropogenic drivers of environmental change on ecosystem functioning can strongly depend on how such drivers gradually decrease biodiversity and restructure communities.

  18. Defining groundwater-dependent ecosystems and assessing critical water needs for their foundational plant communities

    NASA Astrophysics Data System (ADS)

    Stella, J. C.

    2017-12-01

    In many water-limited regions, human water use in conjunction with increased climate variability threaten the sustainability of groundwater-dependent plant communities and the ecosystems that depend on them (GDEs). Identifying and delineating vulnerable GDEs and determining critical functional thresholds for their foundational species has proved challenging, but recent research across several disciplines shows great promise for reducing scientific uncertainty and increasing applicability to ecosystem and groundwater management. Combining interdisciplinary approaches provides insights into indicators that may serve as early indicators of ecosystem decline, or alternatively demonstrate lags in responses depending on scale or sensitivity, or that even may decouple over time (Fig. 1). At the plant scale, miniaturization of plant sap flow sensors and tensiometers allow for non-destructive, continual measurements of plant water status in response to environmental stressors. Novel applications of proven tree-ring and stable isotope methods provide multi-decadal chronologies of radial growth, physiological function (using d13C ratios) and source water use (using d18O ratios) in response to annual variation in climate and subsurface water availability to plant roots. At a landscape scale, integration of disparate geospatial data such as hyperspectral imagery and LiDAR, as well as novel spectral mixing analysis promote the development of novel water stress indices such as vegetation greenness and non-photosynthetic (i.e., dead) vegetation (Fig. 2), as well as change detection using time series (Fig. 3). Furthermore, increases in data resolution across numerous data types can increasingly differentiate individual plant species, including sensitive taxa that serve as early warning indicators of ecosystem impairment. Combining and cross-calibrating these approaches provide insight into the full range of GDE response to environmental change, including increased climate drought and variability, human groundwater extraction and flow regulation. We review the range of emerging water stress indicators at multiple scales, and illustrate their application and integration in current projects in semi-arid ecosystems of the U.S. Southwest and in southern Europe.

  19. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    PubMed

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of human-dominated watersheds.

  20. Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?

    PubMed Central

    Chan, Kai M. A.; Hoshizaki, Lara; Klinkenberg, Brian

    2011-01-01

    There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost and with greater co-benefits. PMID:21915318

  1. Connecting nitrogen deposition and ecosystem services

    EPA Science Inventory

    There are tremendous human health and well-being consequences of nitrogen release to the atmosphere, land and water. The effects on human health are related to the fundamental ecosystem services providing clean air and water for human consumption. Among the highest available da...

  2. Ecosystem services provided by waterbirds.

    PubMed

    Green, Andy J; Elmberg, Johan

    2014-02-01

    Ecosystem services are ecosystem processes that directly or indirectly benefit human well-being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  3. An invasive foundation species enhances multifunctionality in a coastal ecosystem.

    PubMed

    Ramus, Aaron P; Silliman, Brian R; Thomsen, Mads S; Long, Zachary T

    2017-08-08

    While invasive species often threaten biodiversity and human well-being, their potential to enhance functioning by offsetting the loss of native habitat has rarely been considered. We manipulated the abundance of the nonnative, habitat-forming seaweed Gracilaria vermiculophylla in large plots (25 m 2 ) on southeastern US intertidal landscapes to assess impacts on multiple ecosystem functions underlying coastal ecosystem services. We document that in the absence of native habitat formers, this invasion has an overall positive, density-dependent impact across a diverse set of ecosystem processes (e.g., abundance and richness of nursery taxa, flow attenuation). Manipulation of invader abundance revealed both thresholds and saturations in the provisioning of ecosystem functions. Taken together, these findings call into question the focus of traditional invasion research and management that assumes negative effects of nonnatives, and emphasize the need to consider context-dependence and integrative measurements when assessing the impact of an invader, including density dependence, multifunctionality, and the status of native habitat formers. This work supports discussion of the idea that where native foundation species have been lost, invasive habitat formers may be considered as sources of valuable ecosystem functions.

  4. Modeling for Ecosystem Services: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Brauman, K. A.; Ghile, Y.

    2012-12-01

    Ecosystem services are those values provided to human society by the structure and processes of ecosystems and landscapes. Water-related services include the transformation of precipitation impulses into supplies of water for hydropower, irrigation, and industrial and municipal uses, the retention and removal of applied nutrients and pollutants, flood-damage mitigation, recreation, and the provision of cultural and aesthetic values. Incorporation of changes to the value of these services in land-use planning and decision making requires identification of the relevant services, engagement of stakeholders, knowledge of how land-use changes impact water quality, quantity, and timing, and mechanisms for putting value on the hydrologic and biogeochemical changes. We present three examples that highlight the characteristics, challenges, and opportunities associated with prototypical decisions that incorporate ecosystem services values: scenario analysis, payment for ecosystem services, and optimal spatial planning. Through these examples, we emphasize the challenges of data availability, model resolution and complexity, and attribution of value. We also provide some suggestions for ways forward.

  5. Meter-Scale Urban Land Cover in EPA EnviroAtlas: Data, Methods and Applications for Assessing Ecosystem Services in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Endres, K.; Pardo, S.; Khopkar, A.; Rosenbaum, D.; Fizer, C.; Panlasigui, S.; Neale, A. C.

    2016-12-01

    US EPA EnviroAtlas provides interactive tools and resources for exploring the benefits people receive from nature or "ecosystem goods and services". Ecosystem goods and services are critically important to human health and well-being, but they are often overlooked due to lack of information. Using EnviroAtlas, many types of users can access, view, and analyze diverse information to better understand the potential impacts of various decisions. EnviroAtlas data is available at two spatial scales: national and community. To enable meaningful analysis at the community-scale EPA has developed meter-scale urban land cover (MULC). data This high-resolution foundational data permit fine-grained analysis of ecosystem services in heterogeneous urban landscapes. Here we present the data and methods used to develop the MULC, and comment on best practices and lessons learned. We also present ecosystem service use cases that feature MULC data, including stream and road vegetative buffers, tree planting, and urban heat island reduction due to vegetation.

  6. Mangrove ecosystems under climate change

    USGS Publications Warehouse

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  7. Urban forest influences on exposure to UV radiation and potential consequences for human health

    Treesearch

    Gordon M. Heisler

    2010-01-01

    This chapter explores the literature on ultraviolet (UV) irradiance in urban ecosystems with respect to the likely effects on human health. The focus was the question of whether the health effects of UV radiation should be included in the planning of landscape elements such as trees and shading structures, especially for high use pedestrian areas and school play...

  8. Understanding How Preservice Teachers' Fear, Perceived Danger and Disgust Affects the Incorporation of Arachnid Information into the Elementary Science Classroom

    ERIC Educational Resources Information Center

    Wagler, Ron; Wagler, Amy

    2017-01-01

    Arachnids are predatory arthropods that are beneficial to humans in many ways, with common examples including spiders and scorpions. Despite the importance of arachnids to global ecosystems, the fear of spiders in specific human groups is well documented. Arachnids are a very diverse class (i.e., Arachnida) encompassing eleven extant orders with…

  9. Impacts of land-use change to ecosystem services

    USGS Publications Warehouse

    Stohlgren, Tom; Holcombe, Tracy R.

    2013-01-01

    Increasing human populations on the landscape and globe coincide with increasing demands for food, energy, and other natural resources, with generally negative impacts to wildlife habitat, air and water quality, and natural scenery. Here we define and describe the impacts of land-use change on ecosystem services – the services that ecosystems provide humans such as filtering air and water, providing food, resources, recreation, and esthetics. We show how the human footprint is rapidly expanding due to population growth, demand for resources, and globalization. Increased trade and transportation has brought all the continents back together, creating new challenges for conserving native species and ecosystems.

  10. A Conceptual Model of Natural and Anthropogenic Drivers and Their Influence on the Prince William Sound, Alaska, Ecosystem

    PubMed Central

    Harwell, Mark A.; Gentile, John H.; Cummins, Kenneth W.; Highsmith, Raymond C.; Hilborn, Ray; McRoy, C. Peter; Parrish, Julia; Weingartner, Thomas

    2010-01-01

    Prince William Sound (PWS) is a semi-enclosed fjord estuary on the coast of Alaska adjoining the northern Gulf of Alaska (GOA). PWS is highly productive and diverse, with primary productivity strongly coupled to nutrient dynamics driven by variability in the climate and oceanography of the GOA and North Pacific Ocean. The pelagic and nearshore primary productivity supports a complex and diverse trophic structure, including large populations of forage and large fish that support many species of marine birds and mammals. High intra-annual, inter-annual, and interdecadal variability in climatic and oceanographic processes as drives high variability in the biological populations. A risk-based conceptual ecosystem model (CEM) is presented describing the natural processes, anthropogenic drivers, and resultant stressors that affect PWS, including stressors caused by the Great Alaska Earthquake of 1964 and the Exxon Valdez oil spill of 1989. A trophodynamic model incorporating PWS valued ecosystem components is integrated into the CEM. By representing the relative strengths of driver/stressors/effects, the CEM graphically demonstrates the fundamental dynamics of the PWS ecosystem, the natural forces that control the ecological condition of the Sound, and the relative contribution of natural processes and human activities to the health of the ecosystem. The CEM illustrates the dominance of natural processes in shaping the structure and functioning of the GOA and PWS ecosystems. PMID:20862192

  11. Ecotoxicology of tropical marine ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, E.C.; Gassman, N.J.; Firman, J.C.

    1997-01-01

    The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metalsmore » have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.« less

  12. A Conceptual Model of Natural and Anthropogenic Drivers and Their Influence on the Prince William Sound, Alaska, Ecosystem.

    PubMed

    Harwell, Mark A; Gentile, John H; Cummins, Kenneth W; Highsmith, Raymond C; Hilborn, Ray; McRoy, C Peter; Parrish, Julia; Weingartner, Thomas

    2010-07-01

    Prince William Sound (PWS) is a semi-enclosed fjord estuary on the coast of Alaska adjoining the northern Gulf of Alaska (GOA). PWS is highly productive and diverse, with primary productivity strongly coupled to nutrient dynamics driven by variability in the climate and oceanography of the GOA and North Pacific Ocean. The pelagic and nearshore primary productivity supports a complex and diverse trophic structure, including large populations of forage and large fish that support many species of marine birds and mammals. High intra-annual, inter-annual, and interdecadal variability in climatic and oceanographic processes as drives high variability in the biological populations. A risk-based conceptual ecosystem model (CEM) is presented describing the natural processes, anthropogenic drivers, and resultant stressors that affect PWS, including stressors caused by the Great Alaska Earthquake of 1964 and the Exxon Valdez oil spill of 1989. A trophodynamic model incorporating PWS valued ecosystem components is integrated into the CEM. By representing the relative strengths of driver/stressors/effects, the CEM graphically demonstrates the fundamental dynamics of the PWS ecosystem, the natural forces that control the ecological condition of the Sound, and the relative contribution of natural processes and human activities to the health of the ecosystem. The CEM illustrates the dominance of natural processes in shaping the structure and functioning of the GOA and PWS ecosystems.

  13. A methodology for quantifying and mapping ecosystem services provided by watersheds

    USGS Publications Warehouse

    Villamagna, Amy M.; Angermeier, Paul L.

    2015-01-01

    Watershed processes – physical, chemical, and biological – are the foundation for many benefits that ecosystems provide for human societies. A crucial step toward accurately representing those benefits, so they can ultimately inform decisions about land and water management, is the development of a coherent methodology that can translate available data into the ecosystem services (ES) produced by watersheds. Ecosystem services (ES) provide an instinctive way to understand the tradeoffs associated with natural resource management. We provide a synthesis of common terminology and explain a rationale and framework for distinguishing among the components of ecosystem service delivery, including: an ecosystem’s capacity to produce a service; societal demand for the service; ecological pressures on this service; and flow of the service to people. We discuss how interpretation and measurement of these components can differ among provisioning, regulating, and cultural services and describe selected methods for quantifying ES components as well as constraints on data availability. We also present several case studies to illustrate our methods, including mapping capacity of several water purification services and demand for two forms of wildlife-based recreation, and discuss future directions for ecosystem service assessments. Our flexible framework treats service capacity, demand, ecological pressure, and flow as separate but interactive entities to better evaluate the sustainability of service provision across space and time and to help guide management decisions.

  14. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape.

    PubMed

    Lohbeck, Madelon; Bongers, Frans; Martinez-Ramos, Miguel; Poorter, Lourens

    2016-10-01

    Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity systems. Here, we test whether different species contribute to different ecosystem functions that are important for carbon cycling in a high-diversity human-modified tropical forest landscape in Southern Mexico. We quantified aboveground standing biomass, primary productivity, litter production, and wood decomposition at the landscape level, and evaluated the extent to which tree species contribute to these ecosystem functions. We used simulations to tease apart the effects of species richness, species dominance and species functional traits on ecosystem functions. We found that dominance was more important than species traits in determining a species' contribution to ecosystem functions. As a consequence of the high dominance in human-modified landscapes, the same small subset of species mattered across different functions. In human-modified landscapes in the tropics, biodiversity may play a limited role for ecosystem multifunctionality due to the potentially large effect of species dominance on biogeochemical functions. However, given the spatial and temporal turnover in species dominance, biodiversity may be critically important for the maintenance and resilience of ecosystem functions. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  15. Capturing multiple values of ecosystem services shaped by environmental worldviews: a spatial analysis.

    PubMed

    Van Riper, Carena J; Kyle, Gerard T

    2014-12-01

    Two related approaches to valuing nature have been advanced in past research including the study of ecosystem services and psychological investigations of the factors that shape behavior. Stronger integration of the insights that emerge from these two lines of enquiry can more effectively sustain ecosystems, economies, and human well-being. Drawing on survey data collected from outdoor recreationists on Santa Cruz Island within Channel Islands National Park, U.S., our study blends these two research approaches to examine a range of tangible and intangible values of ecosystem services provided to stakeholders with differing biocentric and anthropocentric worldviews. We used Public Participation Geographic Information System methods to collect survey data and a Social Values for Ecosystem Services mapping application to spatially analyze a range of values assigned to terrestrial and aquatic ecosystems in the park. Our results showed that preferences for the provision of biological diversity, recreation, and scientific-based values of ecosystem services varied across a spatial gradient. We also observed differences that emerged from a comparison between survey subgroups defined by their worldviews. The implications emanating from this investigation aim to support environmental management decision-making in the context of protected areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Technological Ecosystems in Health Informatics: A Brief Review Article.

    PubMed

    Wu, Zhongmei; Zhang, Xiuxiu; Chen, Ying; Zhang, Yan

    2016-09-01

    The existing models of information technology in health sciences have full scope of betterment and extension. The high demand pressures, public expectations, advanced platforms all collectively contribute towards hospital environment, which has to be kept in kind while designing of advanced technological ecosystem for information technology. Moreover, for the smooth conduct and operation of information system advanced management avenues are also essential in hospitals. It is the top priority of every hospital to deal with the essential needs of care for patients within the available resources of human and financial outputs. In these situations of high demand, the technological ecosystems in health informatics come in to play and prove its importance and role. The present review article would enlighten all these aspects of these ecosystems in hospital management and health care informatics. We searched the electronic database of MEDLINE, EMBASE, and PubMed for clinical controlled trials, pre-clinical studies reporting utilizaiono of ecosysyem advances in health information technology. The primary outcome of eligible studies included confirmation of importance and role of advances ecosystems in health informatics. It was observed that technological ecosystems are the backbone of health informatics. Advancements in technological ecosystems are essential for proper functioning of health information system in clinical setting.

  17. Proactive responses to human impacts that balance development and Atlantic salmon (Salmo salar) conservation: An integrative model

    USGS Publications Warehouse

    Wilzbach, M.A.; Mather, M. E.; Folt, C.L.; Moore, A.; Naiman, R.J.; Youngson, A.F.; McMenemy, J.

    1998-01-01

    Incorporating human impacts into conservation plans is critical to protect natural resources. Using a model that examines how anthropogenic changes might be proactively influenced to promote conservation, we argue that a denser human population does not spell inevitable doom for Atlantic salmon (Salmo salar). Humans affect the Atlantic salmon ecosystem deleteriously through landscape alteration, exploitation, external inputs, and resource competition. An intact ecosystem provides positive feedback to society by providing food, ecosystem services, and improving the quality of life. As Atlantic salmon and associated ecosystem benefits are increasingly valued by society, policies, laws, and regulations that protect salmon populations and habitats are codified into a 'control system' or institutional infrastructure. Via research that helps maintain wild salmon populations and in informing the public about the benefits of a healthy Atlantic salmon ecosystem, scientists can influence public attitudes and facilitate the implementation of environmental policies that moderate harmful anthropogenic changes. Because exchange among scientists is of paramount importance in increasing our understanding of important interrelationships between humans and fish, we recommend the establishment of an international salmon organizational for research.

  18. Increased dependence of humans on ecosystem services and biodiversity.

    PubMed

    Guo, Zhongwei; Zhang, Lin; Li, Yiming

    2010-10-01

    Humans have altered ecosystems more rapidly and extensively than ever, largely to meet rapidly growing demands for resources along with economic development. These demands have been considered important drivers of ecosystem degradation and biodiversity loss. Are humans becoming less dependent on ecosystem services and biodiversity following economic development? Here, we used roundwood production, hydroelectricity generation and tourism investment in 92 biodiversity hotspot and 60 non-hotspot countries as cases to seek the answer. In 1980-2005, annual growth rates of roundwood production, hydroelectricity generation and tourism investment were higher in hotspot countries (5.2, 9.1 and 7.5%) than in non-hotspot countries (3.4, 5.9 and 5.6%), when GDP grew more rapidly in hotspot countries than non-hotspot countries. Annual growth rates of per capita hydropower and per capita tourism investment were higher in hotspot countries (5.3% and 6.1%) than in non-hotspot countries (3.5% and 4.3%); however, the annual growth rate of per capita roundwood production in hotspot countries (1%) was lower than in non-hotspot countries (1.4%). The dependence of humans on cultural services has increased more rapidly than on regulating services, while the dependence on provisioning services has reduced. This pattern is projected to continue during 2005-2020. Our preliminary results show that economic growth has actually made humans more dependent upon ecosystem services and biodiversity. As a consequence, the policies and implementations of both economic development and ecosystems/biodiversity conservation should be formulated and carried out in the context of the increased dependence of humans on ecosystem services along with economic development.

  19. Mitigating Adverse Effects of a Human Mission on Possible Martian Indigenous Ecosystems

    NASA Technical Reports Server (NTRS)

    Lupisella, M. L.

    2000-01-01

    Although human beings are, by most standards, the most capable agents to search for and detect extraterrestrial life, we are also potentially the most harmful. While there has been substantial work regarding forward contamination with respect to robotic missions, the issue of potential adverse effects on possible indigenous Martian ecosystems, such as biological contamination, due to a human mission has remained relatively unexplored and may require our attention now as this presentation will try to demonstrate by exploring some of the relevant scientific questions, mission planning challenges, and policy issues. An informal, high-level mission planning decision tree will be discussed and is included as the next page of this abstract. Some of the questions to be considered are: (1) To what extent could contamination due to a human presence compromise possible indigenous life forms? (2) To what extent can we control contamination? For example, will it be local or global? (3) What are the criteria for assessing the biological status of Mars, both regionally and globally? For example, can we adequately extrapolate from a few strategic missions such as sample return missions? (4) What should our policies be regarding our mission planning and possible interaction with what are likely to be microbial forms of extraterrestrial life? (5) Central to the science and mission planning issues is the role and applicability of terrestrial analogs, such as Lake Vostok for assessing drilling issues, and modeling techniques. Central to many of the policy aspects are scientific value, international law, public concern, and ethics. Exploring this overall issue responsibly requires an examination of all these aspects and how they interrelate. A chart is included, titled 'Mission Planning Decision Tree for Mitigating Adverse Effects to Possible Indigenous Martian Ecosystems due to a Human Mission'. It outlines what questions scientists should ask and answer before sending humans to Mars.

  20. Mitigating Adverse Effects of a Human Mission on Possible Martian Indigenous Ecosystems

    NASA Astrophysics Data System (ADS)

    Lupisella, M. L.

    2000-07-01

    Although human beings are, by most standards, the most capable agents to search for and detect extraterrestrial life, we are also potentially the most harmful. While there has been substantial work regarding forward contamination with respect to robotic missions, the issue of potential adverse effects on possible indigenous Martian ecosystems, such as biological contamination, due to a human mission has remained relatively unexplored and may require our attention now as this presentation will try to demonstrate by exploring some of the relevant scientific questions, mission planning challenges, and policy issues. An informal, high-level mission planning decision tree will be discussed and is included as the next page of this abstract. Some of the questions to be considered are: (1) To what extent could contamination due to a human presence compromise possible indigenous life forms? (2) To what extent can we control contamination? For example, will it be local or global? (3) What are the criteria for assessing the biological status of Mars, both regionally and globally? For example, can we adequately extrapolate from a few strategic missions such as sample return missions? (4) What should our policies be regarding our mission planning and possible interaction with what are likely to be microbial forms of extraterrestrial life? (5) Central to the science and mission planning issues is the role and applicability of terrestrial analogs, such as Lake Vostok for assessing drilling issues, and modeling techniques. Central to many of the policy aspects are scientific value, international law, public concern, and ethics. Exploring this overall issue responsibly requires an examination of all these aspects and how they interrelate. A chart is included, titled 'Mission Planning Decision Tree for Mitigating Adverse Effects to Possible Indigenous Martian Ecosystems due to a Human Mission'. It outlines what questions scientists should ask and answer before sending humans to Mars.

  1. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems

    PubMed Central

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant scale for biodiversity conservation. PMID:26266542

  2. The One Health Concept: 10 Years Old and a Long Road Ahead

    PubMed Central

    Destoumieux-Garzón, Delphine; Mavingui, Patrick; Boetsch, Gilles; Boissier, Jérôme; Darriet, Frédéric; Duboz, Priscilla; Fritsch, Clémentine; Giraudoux, Patrick; Le Roux, Frédérique; Morand, Serge; Paillard, Christine; Pontier, Dominique; Sueur, Cédric; Voituron, Yann

    2018-01-01

    Over the past decade, a significant increase in the circulation of infectious agents was observed. With the spread and emergence of epizootics, zoonoses, and epidemics, the risks of pandemics became more and more critical. Human and animal health has also been threatened by antimicrobial resistance, environmental pollution, and the development of multifactorial and chronic diseases. This highlighted the increasing globalization of health risks and the importance of the human–animal–ecosystem interface in the evolution and emergence of pathogens. A better knowledge of causes and consequences of certain human activities, lifestyles, and behaviors in ecosystems is crucial for a rigorous interpretation of disease dynamics and to drive public policies. As a global good, health security must be understood on a global scale and from a global and crosscutting perspective, integrating human health, animal health, plant health, ecosystems health, and biodiversity. In this study, we discuss how crucial it is to consider ecological, evolutionary, and environmental sciences in understanding the emergence and re-emergence of infectious diseases and in facing the challenges of antimicrobial resistance. We also discuss the application of the “One Health” concept to non-communicable chronic diseases linked to exposure to multiple stresses, including toxic stress, and new lifestyles. Finally, we draw up a list of barriers that need removing and the ambitions that we must nurture for the effective application of the “One Health” concept. We conclude that the success of this One Health concept now requires breaking down the interdisciplinary barriers that still separate human and veterinary medicine from ecological, evolutionary, and environmental sciences. The development of integrative approaches should be promoted by linking the study of factors underlying stress responses to their consequences on ecosystem functioning and evolution. This knowledge is required for the development of novel control strategies inspired by environmental mechanisms leading to desired equilibrium and dynamics in healthy ecosystems and must provide in the near future a framework for more integrated operational initiatives. PMID:29484301

  3. The role of interactions in a world implementing adaptation and mitigation solutions to climate change.

    PubMed

    Warren, Rachel

    2011-01-13

    The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world.

  4. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    PubMed

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant scale for biodiversity conservation.

  5. Human ecology and ethnology [chapter 3

    Treesearch

    Frank E. Wozniak

    1995-01-01

    The relationship of humans with Middle Rio Grande Basin ecosystems is complex. In historic times, humans had a critical role in the evolution of environmental landscapes and ecosystems throughout the Middle Rio Grande Basin. The relationship of humans with the land is based on and regulated by resource availability, environmental conditions, levels of technological...

  6. Nitrogen Cycling In Latin America and : Drivers, Impacts And Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Ometto, J. P.; Bustamante, M.; Forti, M. C.; Peres, T.; Stein, A. F.; Jaramillo, V.; Perez, C.; Pinho, P. F.; Ascarrunz, N.; Austin, A.; Martinelli, L. A.

    2015-12-01

    Latin America is at a crossroads where a balance should be found between production of the major agricultural commodities, reasonable and planned urbanization and conservation of its natural ecosystems and associated goods and services. Most of the natural biological fixation of the globe occurs in forests of Latin America. On the other hand, Latin America has one of the highest rate of deforestation in the world, and one of the highest increases in the use of nitrogen fertilizers. A better understanding of the responses of the N cycle to human impacts will allow better conservation of biodiversity and natural resources, with an improvement in food security and more effective land use choices in biofuel development. Latin America is a unique region in multiple aspects, and particularly relevant for this proposal are the broad climatic gradient and economic patterns that include a diverse range of natural ecosystems and socio-economic development pathways. Additionally, the region is impaired by the lack of information on actual impacts of human activity on N cycling across this diverse range of ecosystems. Finally, the large expanse of tropical ecosystems and reservoirs of biodiversity juxtaposed with an intense economic incentive for development make our understanding of human impacts in this context particularly important for global change research in the region. An evaluation of current and predicted changes in climate and land use on nitrogen stocks and fluxes in the region what is being develop by the Nnet network (Nitrogen Cycling In Latin America: Drivers, Impacts And Vulnerabilities ). This presentation will bring the latest results of this integrative initiative in Latin America, focusing on the nitrogen budget associated to provision of ecosystem services and climate change.

  7. Assessment of Landscape Fragmentation Associated With Urban Centers Using ASTER Data

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.

    2002-12-01

    The role of humans as an integral part of the environment and ecosystem processes has only recently been accepted into mainstream ecological thought. The realization that virtually all ecosystems on Earth have experienced some degree of human alteration or impact has highlighted the need to incorporate humans (and their environmental effects) into ecosystem models. A logical starting point for investigation of human ecosystem dynamics is examination of the land cover characteristics of large urban centers. Land cover and land use changes associated with urbanization are important drivers of local geological, hydrological, ecological, and climatic change. Quantification and monitoring of urban land cover/land use change is part of the primary mission of the ASTER instrument on board the NASA Terra satellite, and comprises the fundamental research objective of the Urban Environmental Monitoring (UEM) Program at Arizona State University. The UEM program seeks to acquire day/night, visible through thermal infrared data twice per year for 100 global urban centers (with an emphasis on semi-arid cities) over the nominal six-year life of the Terra mission. Data have been acquired for the majority of the target urban centers and are used to compare landscape fragmentation patterns on the basis of land cover classifications. Land cover classifications of urban centers are obtained using visible through mid-infrared reflectance and emittance spectra together with calculated vegetation index and spatial variance texture information (all derived from raw ASTER data). This information is combined within a classification matrix, using an expert system framework, to obtain final pixel classifications. Landscape fragmentation is calculated using a pixel per unit area metric for comparison between 55 urban centers with varying geographic and climatic settings including North America, South America, Europe, central and eastern Asia, and Australia. Temporal variations in land cover and landscape fragmentation are assessed for 9 urban centers (Albuquerque, New Mexico, USA; Baghdad, Iraq; Las Vegas, Nevada, USA; Lisbon, Portugal; Madrid, Spain; San Francisco, California, USA; Tokyo, Japan; and Vancouver, Canada). These data provide a useful baseline for comparison of human-dominated ecosystem land cover and associated regional landscape fragmentation. Continued collection of ASTER data throughout the duration of the Terra mission will enable further investigation of urban ecosystem trends.

  8. Modeling of Valued Fish Species in River Networks

    EPA Science Inventory

    Riverine fish provide many ecosystem services in support of human well-being, including food, recreation, and biodiversity. Under future drivers of land use and climate change, inland waters are likely to be impaired, and conservation and protection of fish species and services ...

  9. Exploring: Microbes.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1997-01-01

    This issue of Exploratorium Magazine focuses on microbes. Different types of microorganisms are introduced based on their living environments or whether they are harmful or beneficial. Contents include: (1) "It's a Small World" (Blake Edgar); (2) "The Human Body: A Complex Ecosystem" (Nik Walter); (3) "The Hills That…

  10. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  11. Eco-Health Linkages: Assessing the Role of Ecosystem Goods and Services on Human Health Using Causal Criteria Analysis

    EPA Science Inventory

    Objectives In the last decade, we saw an upsurge of studies evaluating the role of ecosystem goods and services (EGS) on human health (Eco-Health). Most of this work consists of observational research of intermediate processes and few address the full pathways from ecosystem to E...

  12. Non-native plants and adaptive collaborative approaches to ecosystem restoration [Chapter 8

    Treesearch

    John Schelhas; James H. Miller; Jeanne C. Chambers

    2012-01-01

    Non-native invasive plant species (NNIPS) pose a serious socio-ecological challenge due to their potential to replace and damage critical human-sustaining ecosystems (OTA 1993; Mack et al. 2000; Pimentel 2002). The impacts of non-native species are widespread and significant - altering ecosystem structure and function, threatening other species, and imposing human...

  13. Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making Ecology Letters

    EPA Science Inventory

    The human alteration of the nitrogen (N) cycle has yielded many benefits, but also has altered ecosystems and degraded air and water quality in many areas. Here we explore the science available to connect the effects of increasing N on ecosystem structure and function to ecosyst...

  14. Summary of science, activities, programs, and policies that influence the rangewide conservation of Greater Sage-Grouse (Centrocercus urophasianus)

    USGS Publications Warehouse

    Manier, D.J.; Wood, David J.A.; Bowen, Z.H.; Donovan, R.M.; Holloran, M.J.; Juliusson, L.M.; Mayne, K.S.; Oyler-McCance, S.J.; Quamen, F.R.; Saher, D.J.; Titolo, A.J.

    2013-01-01

    The Greater Sage-Grouse, has been observed, hunted, and counted for decades. The sagebrush biome, home to the Greater Sage-Grouse, includes sagebrush-steppe and Great Basin sagebrush communities, interspersed with grasslands, salt flats, badlands, mountain ranges, springs, intermittent creeks and washes, and major river systems, and is one of the most widespread and enigmatic components of Western U.S. landscapes. Over time, habitat conversion, degradation, and fragmentation have accumulated across the entire range such that local conditions as well as habitat distributions at local and regional scales are negatively affecting the long-term persistence of this species. Historic patterns of human use and settlement of the sagebrush ecosystem have contributed to the current condition and status of sage-grouse populations. The accumulation of habitat loss, persistent habitat degradation, and fragmentation by industry and urban infrastructure, as indicated by U.S. Fish and Wildlife Service (USFWS) findings, presents a significant challenge for conservation of this species and sustainable management of the sagebrush ecosystem. Because of the wide variations in natural and human history across these landscapes, no single prescription for management of sagebrush ecosystems (including sage-grouse habitats) will suffice to guide the collective efforts of public and private entities to conserve the species and its habitat. This report documents and summarizes several decades of work on sage-grouse populations, sagebrush as habitat, and sagebrush community and ecosystem functions based on the recent assessment and findings of the USFWS under consideration of the Endangered Species Act. As reflected here, some of these topics receive a greater depth of discussion because of the perceived importance of the issue for sagebrush ecosystems and sage-grouse populations. Drawing connections between the direct effects on sagebrush ecosystems and the effect of ecosystem condition on habitat condition, and finally the connection between habitat quality and sage-grouse population dynamics remains an important goal for science, management, and conservation. This effort is necessary, despite the perception that these complicated, indirect relations are difficult to characterize and manage, and the many advances in understanding and application developed toward this end have been documented here to help inform regional planning and policy decisions.

  15. The Emergence of Land Use as a Global Force in the Earth System

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2015-12-01

    Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem engineering, non-kin exchange relationships, and energy systems. It is hoped that intentional societal efforts to alter the dynamics of human systems can ultimately move Earth systems towards more beneficial and less detrimental outcomes for both human societies and nonhuman species.

  16. A decade of insights into grassland ecosystem responses to global environmental change

    USGS Publications Warehouse

    Borer, Elizabeth T.; Grace, James B.; Harpole, W. Stanley; MacDougall, Andrew S.; Seabloom, Eric W.

    2017-01-01

    Earth’s biodiversity and carbon uptake by plants, or primary productivity, are intricately interlinked, underlie many essential ecosystem processes, and depend on the interplay among environmental factors, many of which are being changed by human activities. While ecological theory generalizes across taxa and environments, most empirical tests of factors controlling diversity and productivity have been observational, single-site experiments, or meta-analyses, limiting our understanding of variation among site-level responses and tests of general mechanisms. A synthesis of results from ten years of a globally distributed, coordinated experiment, the Nutrient Network (NutNet), demonstrates that species diversity promotes ecosystem productivity and stability, and that nutrient supply and herbivory control diversity via changes in composition, including invasions of non-native species and extinction of native species. Distributed experimental networks are a powerful tool for tests and integration of multiple theories and for generating multivariate predictions about the effects of global changes on future ecosystems.

  17. Social-Ecological Controls Over Earth-System Stewardship: a Framework for Sustainability in a Rapidly Changing World

    NASA Astrophysics Data System (ADS)

    Chapin, F. S.; Power, M. E.; Pickett, S.; Jackson, R. B.; Carter, D.; Harden, J. W.

    2010-12-01

    Human actions are having large and accelerating effects on Earth’s climate, environment, and ecosystems, thereby degrading ecosystem services required by society. This unsustainable trajectory demands a dramatic change in the relationship of humans with the environment and life-support systems of the planet. Earth-system stewardship is an action-oriented framework intended to foster social-ecological sustainability of a rapidly changing world. This builds on problem-relevant research about the social-ecological interactions that drive earth-system change. These include spiraling consumption in developed nations and the broadening gap between the livelihoods of rich and poor people within and among countries. Science that contributes effectively to reversing these trends requires an ongoing dialogue between scientists and users at multiple scales, communicated with sensitivity to social and cultural norms. Such science must motivate behavioral change and deliver information that is perceived as objective, timely, and useful to problem-solving. Recent developments identify four strategies that use current understanding in an environment of inevitable uncertainty and abrupt change: (1) reducing the magnitude of, and exposure and sensitivity to, known stresses; (2) focusing on proactive policies that shape change; and (3) avoiding or escaping unsustainable social-ecological traps. All social-ecological systems are vulnerable to change but have sources of adaptive capacity and resilience that can sustain ecosystem services and human well-being. Discovering and nurturing these sources of adaptive capacity requires, and defines active ecosystem stewardship.

  18. USGS River Ecosystem Modeling: Where Are We, How Did We Get Here, and Where Are We Going?

    USGS Publications Warehouse

    Hanson, Leanne; Schrock, Robin; Waddle, Terry; Duda, Jeffrey J.; Lellis, Bill

    2009-01-01

    This report developed as an outcome of the USGS River Ecosystem Modeling Work Group, convened on February 11, 2008 as a preconference session to the second USGS Modeling Conference in Orange Beach, Ala. Work Group participants gained an understanding of the types of models currently being applied to river ecosystem studies within the USGS, learned how model outputs are being used by a Federal land management agency, and developed recommendations for advancing the state of the art in river ecosystem modeling within the USGS. During a break-out session, participants restated many of the recommendations developed at the first USGS Modeling Conference in 2006 and in previous USGS needs assessments. All Work Group recommendations require organization and coordination across USGS disciplines and regions, and include (1) enhancing communications, (2) increasing efficiency through better use of current human and technologic resources, and (3) providing a national infrastructure for river ecosystem modeling resources, making it easier to integrate modeling efforts. By implementing these recommendations, the USGS will benefit from enhanced multi-disciplinary, integrated models for river ecosystems that provide valuable risk assessment and decision support tools for adaptive management of natural and managed riverine ecosystems. These tools generate key information that resource managers need and can use in making decisions about river ecosystem resources.

  19. USGS microbiome research

    USGS Publications Warehouse

    Kellogg, Christina A.; Hopkins, M. Camille

    2017-09-26

    Microbiomes are the communities of microorganisms (for example, bacteria, viruses, and fungi) that live on, in, and around people, plants, animals, soil, water, and the atmosphere. Microbiomes are active in the functioning of diverse ecosystems, for instance, by influencing water quality, nutrient acquisition 
and stress tolerance in plants, and stability of soil and aquatic environments. Microbiome research conducted by the U.S. Geological Survey spans many of our mission areas. Key research areas include water quality, understanding climate effects on soil and permafrost, ecosystem and wildlife health, invasive species, contaminated environments to improve bioremediation, and enhancing energy production. Microbiome research will fundamentally strengthen the ability to address the global challenges of maintaining clean water, ensuring adequate food supply, meeting energy needs, and preserving human and ecosystem health.

  20. Where New England Lives: A Dasymetric Population map for New England

    EPA Science Inventory

    Recent research efforts by the U.S. Environmental Protection Agency focus on the services humans derive from ecosystems. As humans are integral to the definition of ecosystem services, accurate information on the distribution of human populations is critical for this research. ...

  1. ESTIMATING SUSTAINABILITY OF A SIMPLE HUMAN SOCIETY AND ITS ASSOCIATED ECOSYTEM USING RESILIENCE AND FISHER INFORMATION

    EPA Science Inventory

    Sustainability applies to integrated systems comprising humans and the rest of nature. To be considered sustainable, human components (society, economy, law, etc.) that interact with ecosystems cannot decrease the resilience of ecosystem structures and functions (trophic linkages...

  2. Balancing ecosystem function, services and disservices resulting from expanding goose populations.

    PubMed

    Buij, Ralph; Melman, Theodorus C P; Loonen, Maarten J J E; Fox, Anthony D

    2017-03-01

    As goose populations increase in abundance, their influence on ecological processes is increasing. We review the evidence for key ecological functions of wild goose populations in Eurasia and North America, including aquatic invertebrate and plant propagule transport, nutrient deposition in terrestrial and aquatic ecosystems, the influence of goose populations on vegetation biomass, carbon storage and methane emission, species diversity and disease transmission. To estimate the implications of their growing abundance for humans, we explore how these functions contribute to the provision of ecosystem services and disservices. We assess the weight, extent and trends among such impacts, as well as the balance of their value to society. We examine key unresolved issues to enable a more balanced assessment of the economic costs or benefits of migratory geese along their flyways, including the spatial and temporal variation in services and their contrasting value to different user groups. Many ecological functions of geese are concluded to provide neither services nor disservices and, ecosystem disservices currently appear to outweigh services, although this varies between regions. We consider an improved quantification of ecosystem services and disservices, and how these vary along population flyways with respect to variation in valuing certain cultural services, and under different management scenarios aimed at reducing their disservices, essential for a more balanced management of goose populations.

  3. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities.

    PubMed

    Aukema, Juliann E; Pricope, Narcisa G; Husak, Gregory J; Lopez-Carr, David

    2017-01-01

    Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1) Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2) Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change-largely wetting-in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka), posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being.

  4. Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World’s Biodiversity Priorities

    PubMed Central

    Pricope, Narcisa G.; Husak, Gregory J.; Lopez-Carr, David

    2017-01-01

    Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1) Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2) Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change–largely wetting–in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka), posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being. PMID:28125659

  5. Vulnerability and Resilience of the Niger Delta Coastal Communities to Pollution and Environmental Degradation

    NASA Astrophysics Data System (ADS)

    Ndimele, P. E.; Whenu, O. O.; Anwan, H. R.; Anetekhai, M. A.

    2016-02-01

    The Niger Delta is Africa's largest delta consisting of the third largest mangrove forest in the world and covering 70,000km2 of Nigeria land mass. This delta is the largest wetland in Africa and among the ten most important wetland and marine ecosystems in the world. The delta is home to all of Nigeria's endemic or near-endemic mammal species and to six IUCN Red List mammals. The Niger Delta harbours globally outstanding fish fauna and displays exceptional evolutionary phenomena with its higher taxonomic endemism and distinct species assemblages. The Niger delta is blessed with abundance of natural and human resources, including the majority of Nigeria's oil and gas deposits, good agricultural land, extensive forests, excellent fisheries as well as a well-developed industrial base, a large labour force and a vibrant private sector. However, this fragile but rich ecosystem is seriously threatened by increased industrial pollution, resource over-exploitation and environmental degradation caused by over six decades of oil exploitation. Aquatic life has been destroyed with the pollution of traditional fishing grounds, exacerbating hunger and poverty in fishing communities. The multifarious use of the delta has led to human-induced changes in biota, habitats and landscapes necessitating the development of a holistic policy that considers all the interacting factors in the ecosystem. Taking a systems approach incorporating an understanding of The Ecosystem Approach, vulnerability, resilience, the DPSIR framework, ecosystem services and societal benefits are integrated in order to evolve a management tool that will result in sustainable resource exploitation, improvement in living standards of locals and restoration of the ecosystem.

  6. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.

  7. Component modeling in ecological risk assessment: Disturbance in interspecific interactions caused by air toxics introduced into terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Swider, Jan Zenon

    The human health risk assessment (HRA), initiated by the onset of nuclear industry, has been a well established methodology for assessing the impacts of human created contamination on an individual human being and entire population. The wide spread of applications and tools grown upon this methodology allows one not only to identify the hazards, but also to manage the risks. Recently, there has existed an increased awareness of the need to conduct ecological risk assessments (ERA) in addition to HRAs. The ERAs are, by and large, more complex than typical HRAs and involve not only different species but whole ecological systems. Such complex analyses require a thorough understanding of the processes underway in the ecosystem, including the contaminant transport through the food web, population dynamics as well as intra- and inter-specific relationships. The exposure pathways change radically depending on the consumer tier. Plants produce their nutriment from the sunlight and raw inorganic compounds. Animals and other living forms obtain energy by eating plants, other animals and detritus. Their double role as food consumers and food producers causes a trophic structure of the ecological system, where nutrients and energy are transferred from one trophic level to another. This is a dynamic process of energy flow, mostly in the form of food, varying with time and space. In order to conduct an efficient ERA, a multidisciplinary framework is needed. This framework can be enhanced by analyzing predator-prey interactions during the environmental disturbances caused by a pollutant emission, and by assessing the consequences of such disturbances. It is necessary to develop a way to describe how human industrial activity affects the ecosystems. Existing ecological studies have mostly been focused either on pure ecological interdependencies or on limited perspectives of human activities. In this study, we discuss the issues of air pollution and its ecological impacts from the Ecological Risk Assessment standpoint and examine the impact of air toxics emissions on an ecosystem, with particular emphasis on predator-prey interactions. Such analysis may help to identify the most likely conditions leading to the ecosystem instability and possibility of its recuperation.

  8. An evaluation of object-oriented image analysis techniques to identify motorized vehicle effects in semi-arid to arid ecosystems of the American West

    USGS Publications Warehouse

    Mladinich, C.

    2010-01-01

    Human disturbance is a leading ecosystem stressor. Human-induced modifications include transportation networks, areal disturbances due to resource extraction, and recreation activities. High-resolution imagery and object-oriented classification rather than pixel-based techniques have successfully identified roads, buildings, and other anthropogenic features. Three commercial, automated feature-extraction software packages (Visual Learning Systems' Feature Analyst, ENVI Feature Extraction, and Definiens Developer) were evaluated by comparing their ability to effectively detect the disturbed surface patterns from motorized vehicle traffic. Each package achieved overall accuracies in the 70% range, demonstrating the potential to map the surface patterns. The Definiens classification was more consistent and statistically valid. Copyright ?? 2010 by Bellwether Publishing, Ltd. All rights reserved.

  9. Natural capital and ecosystem services informing decisions: From promise to practice

    PubMed Central

    Guerry, Anne D.; Polasky, Stephen; Lubchenco, Jane; Chaplin-Kramer, Rebecca; Daily, Gretchen C.; Griffin, Robert; Ruckelshaus, Mary; Bateman, Ian J.; Duraiappah, Anantha; Elmqvist, Thomas; Feldman, Marcus W.; Folke, Carl; Hoekstra, Jon; Kareiva, Peter M.; Keeler, Bonnie L.; Li, Shuzhuo; McKenzie, Emily; Ouyang, Zhiyun; Reyers, Belinda; Ricketts, Taylor H.; Rockström, Johan; Tallis, Heather; Vira, Bhaskar

    2015-01-01

    The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being. Essential to meeting this challenge is the incorporation of natural capital and the ecosystem services it provides into decision-making. We explore progress and crucial gaps at this frontier, reflecting upon the 10 y since the Millennium Ecosystem Assessment. We focus on three key dimensions of progress and ongoing challenges: raising awareness of the interdependence of ecosystems and human well-being, advancing the fundamental interdisciplinary science of ecosystem services, and implementing this science in decisions to restore natural capital and use it sustainably. Awareness of human dependence on nature is at an all-time high, the science of ecosystem services is rapidly advancing, and talk of natural capital is now common from governments to corporate boardrooms. However, successful implementation is still in early stages. We explore why ecosystem service information has yet to fundamentally change decision-making and suggest a path forward that emphasizes: (i) developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being; (ii) working closely with leaders in government, business, and civil society to develop the knowledge, tools, and practices necessary to integrate natural capital and ecosystem services into everyday decision-making; and (iii) reforming institutions to change policy and practices to better align private short-term goals with societal long-term goals. PMID:26082539

  10. Natural capital and ecosystem services informing decisions: From promise to practice.

    PubMed

    Guerry, Anne D; Polasky, Stephen; Lubchenco, Jane; Chaplin-Kramer, Rebecca; Daily, Gretchen C; Griffin, Robert; Ruckelshaus, Mary; Bateman, Ian J; Duraiappah, Anantha; Elmqvist, Thomas; Feldman, Marcus W; Folke, Carl; Hoekstra, Jon; Kareiva, Peter M; Keeler, Bonnie L; Li, Shuzhuo; McKenzie, Emily; Ouyang, Zhiyun; Reyers, Belinda; Ricketts, Taylor H; Rockström, Johan; Tallis, Heather; Vira, Bhaskar

    2015-06-16

    The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being. Essential to meeting this challenge is the incorporation of natural capital and the ecosystem services it provides into decision-making. We explore progress and crucial gaps at this frontier, reflecting upon the 10 y since the Millennium Ecosystem Assessment. We focus on three key dimensions of progress and ongoing challenges: raising awareness of the interdependence of ecosystems and human well-being, advancing the fundamental interdisciplinary science of ecosystem services, and implementing this science in decisions to restore natural capital and use it sustainably. Awareness of human dependence on nature is at an all-time high, the science of ecosystem services is rapidly advancing, and talk of natural capital is now common from governments to corporate boardrooms. However, successful implementation is still in early stages. We explore why ecosystem service information has yet to fundamentally change decision-making and suggest a path forward that emphasizes: (i) developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being; (ii) working closely with leaders in government, business, and civil society to develop the knowledge, tools, and practices necessary to integrate natural capital and ecosystem services into everyday decision-making; and (iii) reforming institutions to change policy and practices to better align private short-term goals with societal long-term goals.

  11. Historical perspectives on the concept of ecosystem degradation

    USGS Publications Warehouse

    Halvorson, W.L.

    2004-01-01

    The concept of environmental degradation has evolved with the development of human society and settlement. In early human development, tribes went through a series of cycles of taming or developing mastery over the environment, to utilizing the resources of that environment until they could no longer support the population, which lead to moving on to do it again in a new area. There seems to have been little sense that human activity was causing any degradation, it was only that there was no longer enough food. This sense of the concept of degradation can even be seen as late as the 16th and 17th centuries in North America as Europeans "tamed" the land from the south, east, and north. For the Europeans, this taming of the "dangerous" and "inhospitable" lands even included the indigenous peoples. World-wide, as humans gathered into towns and cities, the impacts on the environment became increasingly widespread. Goods had to be brought to the people from further and further away. While agriculture and herd management were being developed, there was still the sense that these activities were improvements. It is a rather modern social understanding that human activities can and do damage and degrade natural ecosystems. The concept began to dawn when society began to understand that some activities caused degraded human health. Only recently has society begun to understand the need for generally healthy natural ecosystems and this understanding has brought with it a whole host of legal and political actions to make it happpen. ?? International Scientific Publications, New Delhi.

  12. Advancing mangrove macroecology

    USGS Publications Warehouse

    Rivera-Monroy, Victor H.; Osland, Michael J.; Day, John W.; Ray, Santanu; Rovai, Andre S.; Day, Richard H.; Mukherjee, Joyita; Rivera-Monroy, Victor H.; Lee, Shing Yip; Kristensen, Erik; Twilley, Robert R.

    2017-01-01

    Mangrove forests provide a wide range of ecosystem services to society, yet they are among the most anthropogenically impacted coastal ecosystems in the world. In this chapter, we discuss and provide examples for how macroecology can advance our understanding of mangrove ecosystems. Macroecology is broadly defined as a discipline that uses statistical analyses to investigate large-scale, universal patterns in the distribution, abundance, diversity, and organization of species and ecosystems, including the scaling of ecological processes and structural and functional relationships. Macroecological methods can be used to advance our understanding of how non-linear responses in natural systems can be triggered by human impacts at local, regional, and global scales. Although macroecology has the potential to gain knowledge on universal patterns and processes that govern mangrove ecosystems, the application of macroecological methods to mangroves has historically been limited by constraints in data quality and availability. Here we provide examples that include evaluations of the variation in mangrove forest ecosystem structure and function in relation to macroclimatic drivers (e.g., temperature and rainfall regimes) and climate change. Additional examples include work focused upon the continental distribution of aboveground net primary productivity and carbon storage, which are rapidly advancing research areas. These examples demonstrate the value of a macroecological perspective for the understanding of global- and regional-scale effects of both changing environmental conditions and management actions on ecosystem structure, function, and the supply of goods and services. We also present current trends in mangrove modeling approaches and their potential utility to test hypotheses about mangrove structural and functional properties. Given the gap in relevant experimental work at the regional scale, we also discuss the potential use of mangrove restoration and rehabilitation projects as macroecological studies that advance the critical selection and conservation of ecosystem services when managing mangrove resources. Future work to further incorporate macroecology into mangrove research will require a concerted effort by research groups and institutions to launch research initiatives and synthesize data collected across broad biogeographic regions.

  13. Perception, acquisition and use of ecosystem services: human behavior, and ecosystem management and policy implications

    Treesearch

    Stanley T. Asah; Anne D. Guerry; Dale J. Blahna; Joshua J. Lawler

    2014-01-01

    Ecosystem services, fundamental to livelihoods and well-being, are reshaping environmental management and policy. However, the behavioral dimensions of ecosystem services and the responses of ordinary people to the management of those services, is less well understood. The ecosystem services framework lends itself to understanding the relationship between ecosystems...

  14. Ways forward for aquatic conservation: Applications of environmental psychology to support management objectives.

    PubMed

    Walker-Springett, Kate; Jefferson, Rebecca; Böck, Kerstin; Breckwoldt, Annette; Comby, Emeline; Cottet, Marylise; Hübner, Gundula; Le Lay, Yves-François; Shaw, Sylvie; Wyles, Kayleigh

    2016-01-15

    The success or failure of environmental management goals can be partially attributed to the support for such goals from the public. Despite this, environmental management is still dominated by a natural science approach with little input from disciplines that are concerned with the relationship between humans and the natural environment such as environmental psychology. Within the marine and freshwater environments, this is particularly concerning given the cultural and aesthetic significance of these environments to the public, coupled with the services delivered by freshwater and marine ecosystems, and the vulnerability of aquatic ecosystems to human-driven environmental perturbations. This paper documents nine case studies which use environmental psychology methods to support a range of aquatic management goals. Examples include understanding the drivers of public attitudes towards ecologically important but uncharismatic river species, impacts of marine litter on human well-being, efficacy of small-scale governance of tropical marine fisheries and the role of media in shaping attitudes towards. These case studies illustrate how environmental psychology and natural sciences can be used together to apply an interdisciplinary approach to the management of aquatic environments. Such an approach that actively takes into account the range of issues surrounding aquatic environment management is more likely to result in successful outcomes, from both human and environmental perspectives. Furthermore, the results illustrate that better understanding the societal importance of aquatic ecosystems can reduce conflict between social needs and ecological objectives, and help improve the governance of aquatic ecosystems. Thus, this paper concludes that an effective relationship between academics and practitioners requires fully utilising the skills, knowledge and experience from both sectors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biodiversity conservation: The key is reducing meat consumption.

    PubMed

    Machovina, Brian; Feeley, Kenneth J; Ripple, William J

    2015-12-01

    The consumption of animal-sourced food products by humans is one of the most powerful negative forces affecting the conservation of terrestrial ecosystems and biological diversity. Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing tropical countries where the majority of biological diversity resides. Bushmeat consumption in Africa and southeastern Asia, as well as the high growth-rate of per capita livestock consumption in China are of special concern. The projected land base required by 2050 to support livestock production in several megadiverse countries exceeds 30-50% of their current agricultural areas. Livestock production is also a leading cause of climate change, soil loss, water and nutrient pollution, and decreases of apex predators and wild herbivores, compounding pressures on ecosystems and biodiversity. It is possible to greatly reduce the impacts of animal product consumption by humans on natural ecosystems and biodiversity while meeting nutritional needs of people, including the projected 2-3 billion people to be added to human population. We suggest that impacts can be remediated through several solutions: (1) reducing demand for animal-based food products and increasing proportions of plant-based foods in diets, the latter ideally to a global average of 90% of food consumed; (2) replacing ecologically-inefficient ruminants (e.g. cattle, goats, sheep) and bushmeat with monogastrics (e.g. poultry, pigs), integrated aquaculture, and other more-efficient protein sources; and (3) reintegrating livestock production away from single-product, intensive, fossil-fuel based systems into diverse, coupled systems designed more closely around the structure and functions of ecosystems that conserve energy and nutrients. Such efforts would also impart positive impacts on human health through reduction of diseases of nutritional extravagance. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  17. Global change pressures on soils from land use and management.

    PubMed

    Smith, Pete; House, Joanna I; Bustamante, Mercedes; Sobocká, Jaroslava; Harper, Richard; Pan, Genxing; West, Paul C; Clark, Joanna M; Adhya, Tapan; Rumpel, Cornelia; Paustian, Keith; Kuikman, Peter; Cotrufo, M Francesca; Elliott, Jane A; McDowell, Richard; Griffiths, Robert I; Asakawa, Susumu; Bondeau, Alberte; Jain, Atul K; Meersmans, Jeroen; Pugh, Thomas A M

    2016-03-01

    Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development. © 2015 John Wiley & Sons Ltd.

  18. Integrating Sustainability Science with the Sciences of Human Well-being to Inform Design and Planning in an Urbanizing World

    NASA Astrophysics Data System (ADS)

    Alberti, M.; Graumlich, L. J.; Frumkin, H.; Friedman, D.

    2012-12-01

    A sustainable human future requires both healthy ecosystems and communities in which people thrive, with opportunities for health, well-being, happiness, economic prosperity, and equity. To make progress towards this goal, two largely disparate communities of scholars and practitioners must come together: sustainability science needs to be integrated with the sciences of human health and well-being. The opportunity for such integration is particularly ripe for urbanizing regions which not only dominate energy and resource use but also increasingly represent the human habitat. We present a conceptual framework that integrates sustainability science with the sciences of human health and well-being to explicitly articulate testable hypotheses on the relationships between humans and their habitat. We are interested in human behaviors and metrics of health and well-being in relationship to the characteristics of the built environment at various scales from buildings to metro regions. Focusing on the U.S. Pacific Northwest (PNW) as a testbed, we are building on our current empirical studies on urban sprawl and ecosystem function including biodiversity, air quality, hydrological, biogeochemical, and human health to develop formal hypotheses on how alternative urban design and development patterns may influence health outcomes and well-being. The PNW is an ideal setting for this work because of the connected metropolitan areas within a region characterized by a spectacular diversity of aquatic and terrestrial ecosystems and deeply held cultural and political aspirations towards sustainability. The framework also highlights opportunities for translation of knowledge to practice in the design and planning of built environments. For example, understanding these associations is critical to assessing tradeoffs in design and planning strategies and exploring potential synergies that optimize both sustainability and human well-being. In complex systems such as cities, managers need to make decisions in the face of uncertainty and limited resources and provide essential human services (e.g., clean water, clean air, protection from diseases etc.) to diverse population groups (e.g., vulnerable populations). We believe that research that advances empirical knowledge at the human well-being -- ecosystem interface will be critical to expanding sustainability science and its effective application to practice in designing buildings, neighborhoods and metropolitan regions that are simultaneously healthy and sustainable.

  19. Beetles among us: Social and economic impacts of the MPB epidemic [Chapter 6

    Treesearch

    Krista Gebert; Greg Jones; Patty Champ; Mike Czaja; Chuck Oliver; Paul E. Cruz; Jessica Clement

    2014-01-01

    Healthy forest ecosystems provide many goods and services that are vital to human well-being. When forest ecosystems are impacted by disturbances, such as the widespread mountain pine beetle (MPB) epidemic, the services provided by these ecosystems are also affected. Likewise, management in response to large-scale forest disturbances impacts both the natural and human...

  20. Human impacts on riparian ecosystems of the Middle Rio Grande Valley during historic times

    Treesearch

    Frank E. Wozniak

    1996-01-01

    The development of irrigation agriculture in historic times has profoundly impacted riparian ecosystems in the Middle Rio Grande Valley of New Mexico. A vital relationship has existed between water resources and settlement in the semi-arid Southwest since prehistoric times. Levels of technology have influenced human generated changes in the riparian ecosystems of the...

  1. Delineation, Validation and Application of EPA’s Level III and IV Ecoregions in New England

    EPA Science Inventory

    EPA’s ecoregions are defined as areas of similarity based on patterns and composition of aquatic and terrestrial ecosystem components of the abiotic (non-living), biotic (living), and cultural (human) environment, including geology, physiography, vegetation, climate, soils, hydro...

  2. Importance of Watershed Land Use in Predicting Benthic Invertebrate Condition in the Virginian Biogeographic Province, USA.

    EPA Science Inventory

    Estuaries are dynamic transition zones linking freshwater and oceanic habitats. These productive ecosystems are threatened by a variety of stressors including human modification of coastal watersheds. In this study we examined potential linkages between estuarine condition and...

  3. Land Use, Environmental Stressors, and Water Resources: Degradation to Restoration

    EPA Science Inventory

    Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, including those in this special issue. We identify stages, which characterize i...

  4. Multi-scale assessment of human-induced changes to Amazonian instream habitats

    EPA Science Inventory

    Context: Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.Objectives: Determine the degree to which ph...

  5. Measuring resilience of coupled human-water systems using ecosystem services compatible indicators

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Mao, F.; Karpouzoglou, T.; Clark, J.; Buytaert, W.

    2017-12-01

    To explore the dynamics of socio-hydrological systems under change, the concepts of resilience and ecosystem services serve as useful tools. In this context, resilience refers to the capacity of a socio-hydrological system to retain its structural and functional state despite perturbations, while ecosystem services offer a good proxy of the state that reflects human-water intersections. Efforts are needed to maintain and improve socio-hydrological resilience for future contingencies to secure hydrological ecosystem services supply. This requires holistic indicators of resilience for coupled human-water systems that are essential for quantitative assessment, change tracking, inter-case comparison, as well as resilience management. However, such indicators are still lacking. Our research aims to propose widely applicable resilience indicators that are suitable for the coupled human-water context, and compatible with ecosystem services. The existing resilience indicators for both eco-hydrological and socio-economic sectors are scrutinised, screened and analysed to build these new indicators. Using the proposed indicators, we compare the resilience and its temporal change among a set of example regions, and discusses the linkages between socio-hydrological resilience and hydrological ecosystem services with empirical cases.

  6. EnviroAtlas Connects Urban Ecosystem Services and Human ...

    EPA Pesticide Factsheets

    Ecosystem services in urban areas can improve public health and well-being by mitigating natural and anthropogenic pollution, and by promoting healthy lifestyles that include engagement with nature and enhanced opportunities for physical activity and social interaction. EPA’s EnviroAtlas online mapping tool identifies urban environmental features linked in the scientific and medical literature to specific aspects of public health and well-being. EnviroAtlas researchers have synthesized newly-generated one-meter resolution landcover data, downscaled census population data, and other existing datasets such as roads and parks. Resulting geospatial metrics represent health-related indicators of urban ecosystem services supply and demand by census block-group and finer scales. EnviroAtlas maps include percent of the population with limited window views of trees, tree cover along walkable roads, overall neighborhood green space, and proximity to parks. Demographic data can be overlaid to perform analyses of disproportionate distribution of urban ecosystem services across population groups. Together with the Eco-Health Relationship Browser, EnviroAtlas data can be linked to numerous aspects of public health and well-being including school performance, physical fitness, social capital, and longevity. EnviroAtlas maps have been developed using consistent methods to allow for comparisons between neighborhoods and across multiple U.S. communities. To feature eco-heal

  7. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    PubMed

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. [Ecological regulation services of Hainan Island ecosystem and their valuation].

    PubMed

    Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke

    2004-08-01

    Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.

  9. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    PubMed Central

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-01-01

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759

  10. Defining, valuing and providing ecosystem goods and services

    Treesearch

    Thomas C. Brown; John C. Bergstrom; John B. Loomis

    2007-01-01

    Ecosystem services are the specific results of ecosystem processes that either directly sustain or enhance human life (as does natural protection from the sun's harmful ultraviolet rays) or maintain the qualify of ecosystem goods (as water purification maintains the quality of streamflow). "Ecosystem service" has come to represent several related topics...

  11. Ecohydrological processes and ecosystem services in the Anthropocene: a review

    Treesearch

    Ge Sun; Dennis Hallema; Heidi Asbjornsen

    2017-01-01

    The framework for ecosystem services has been increasingly used in integrated watershed ecosystem management practices that involve scientists, engineers, managers, and policy makers. The objective of this review is to explore the intimate connections between ecohydrological processes and water-related ecosystem services in human-dominated ecosystems in the...

  12. Applying principles from economics to improve the transfer of ecological production estimates in fisheries ecosystem services research

    EPA Science Inventory

    Ecosystem services (ES) represent a way to represent and quantify multiple uses, values as well as connectivity between ecosystem processes and human well-being. Ecosystem-based fisheries management approaches may seek to quantify expected trade-offs in ecosystem services due to ...

  13. An Exploration of Human Well-Being Bundles as Identifiers of Ecosystem Service Use Patterns

    PubMed Central

    Biggs, Reinette; Reyers, Belinda

    2016-01-01

    We take a social-ecological systems perspective to investigate the linkages between ecosystem services and human well-being in South Africa. A recent paper identified different types of social-ecological systems in the country, based on distinct bundles of ecosystem service use. These system types were found to represent increasingly weak direct feedbacks between nature and people, from rural “green-loop” communities to urban “red-loop” societies. Here we construct human well-being bundles and explore whether the well-being bundles can be used to identify the same social-ecological system types that were identified using bundles of ecosystem service use. Based on national census data, we found three distinct well-being bundle types that are mainly characterized by differences in income, unemployment and property ownership. The distribution of these well-being bundles approximates the distribution of ecosystem service use bundles to a substantial degree: High levels of income and education generally coincided with areas characterised by low levels of direct ecosystem service use (or red-loop systems), while the majority of low well-being areas coincided with medium and high levels of direct ecosystem service use (or transition and green-loop systems). However, our results indicate that transformations from green-loop to red-loop systems do not always entail an immediate improvement in well-being, which we suggest may be due to a time lag between changes in the different system components. Using human well-being bundles as an indicator of social-ecological dynamics may be useful in other contexts since it is based on socio-economic data commonly collected by governments, and provides important insights into the connections between ecosystem services and human well-being at policy-relevant sub-national scales. PMID:27695120

  14. An Exploration of Human Well-Being Bundles as Identifiers of Ecosystem Service Use Patterns.

    PubMed

    Hamann, Maike; Biggs, Reinette; Reyers, Belinda

    2016-01-01

    We take a social-ecological systems perspective to investigate the linkages between ecosystem services and human well-being in South Africa. A recent paper identified different types of social-ecological systems in the country, based on distinct bundles of ecosystem service use. These system types were found to represent increasingly weak direct feedbacks between nature and people, from rural "green-loop" communities to urban "red-loop" societies. Here we construct human well-being bundles and explore whether the well-being bundles can be used to identify the same social-ecological system types that were identified using bundles of ecosystem service use. Based on national census data, we found three distinct well-being bundle types that are mainly characterized by differences in income, unemployment and property ownership. The distribution of these well-being bundles approximates the distribution of ecosystem service use bundles to a substantial degree: High levels of income and education generally coincided with areas characterised by low levels of direct ecosystem service use (or red-loop systems), while the majority of low well-being areas coincided with medium and high levels of direct ecosystem service use (or transition and green-loop systems). However, our results indicate that transformations from green-loop to red-loop systems do not always entail an immediate improvement in well-being, which we suggest may be due to a time lag between changes in the different system components. Using human well-being bundles as an indicator of social-ecological dynamics may be useful in other contexts since it is based on socio-economic data commonly collected by governments, and provides important insights into the connections between ecosystem services and human well-being at policy-relevant sub-national scales.

  15. Constructing Worlds: Cosmovisions as Integral Parts of Human Ecosystems

    NASA Astrophysics Data System (ADS)

    Rappenglück, M. A.

    2009-08-01

    Archaeological and ethnological records worldwide give evidence that cosmovisions played an important role in the life of man since Paleolithic epochs. Parallel to the reduction of instincts man developed cultural systems to establish and maintain order and rhythm in his personal and social life and to organize the world into a meaningful system. Cosmovisions helped man to integrate and orientate himself within changing human ecosystems. These concepts were also useful to answer fundamental human questions about the whys and wherefores of man and the world. Some of the main features of archaic cosmovisions in different cultures across the world and throughout the epochs are discussed with focus on human ecosystems and the human mind.

  16. Biodiversity Metrics

    EPA Science Inventory

    Ecosystem services, i.e., "services provided to humans from natural systems," have become a key focus of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have become strat...

  17. [Advances in plant ecophysiological studies on re-vegetation of degraded ecosystem].

    PubMed

    Zhao, Ping

    2003-11-01

    Natural force and human intervention lead to many local, regional, and sometimes global changes in plant community patterns. Regardless of the cause and intensity of these changes, ecosystem can recover most of their attributes through natural succession, or can be repaired by human assistance. The essentiality of restoration of degraded ecosystem is community succession, a process during which an ecosystem evolves from primary stage to advanced stage, and its structure and function change from simple to complex plant. Ecophysiological study could explain some macroscopical phenomena of the ecology of re-vegetation of degraded ecosystem, and provide a scientific base for assembling pioneering plant community. The advances in plant ecophysiological study on re-vegetation of degraded ecosystems were reviewed in this paper.

  18. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities

    NASA Astrophysics Data System (ADS)

    Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.

    2017-08-01

    Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.

  19. EPA's Southwest Ecosystem Services Research Program

    EPA Science Inventory

    EPA's Ecosystem Services Research Program (ESRP) in the Office of Research and Development (ORD) is studying ecosystem services and the benefits to human well-being provided by ecological services. As part of this research effort, the Southwest Ecosystem Services Research Progra...

  20. Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation

    PubMed Central

    2016-01-01

    Ancient tropical grassy biomes are often misrecognized as severely degraded forests. I trace this confusion to several factors, with roots in the nineteenth century, including misinterpretations of the nature of fire in savannahs, attempts to reconcile savannah ecology with Clementsian succession, use of physiognomic (structural) definitions of savannah and development of tropical degradation frameworks focused solely on forests. Towards clarity, I present two models that conceptualize the drivers of ecosystem degradation as operating in both savannahs and forests. These models highlight how human-induced environmental changes create ecosystems with superficially similar physiognomies but radically different conservation values. Given the limitation of physiognomy to differentiate savannahs from severely degraded forests, I present an alternative approach based on floristic composition. Data from eastern lowland Bolivia show that old-growth savannahs can be reliably distinguished by eight grass species and that species identity influences ecosystem flammability. I recommend that scientists incorporate savannahs in tropical degradation frameworks alongside forests, and that savannah be qualified as old-growth savannah in reference to ancient grassy biomes or derived savannah in reference to deforestation. These conceptual advances will require attention not only to tree cover, but also to savannah herbaceous plant species and their ecologies. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502372

  1. Toward a social-ecological theory of forest macrosystems for improved ecosystem management

    USGS Publications Warehouse

    Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.

    2018-01-01

    The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?

  2. Historical analysis of riparian vegetation change in response to shifting management objectives on the Middle Rio Grande

    USGS Publications Warehouse

    Petrakis, Roy; van Leeuwen, Willem J.D.; Villarreal, Miguel; Tashjian, Paul; Dello Russo, Regina; Scott, Christopher A.

    2017-01-01

    Riparian ecosystems are valuable to the ecological and human communities that depend on them. Over the past century, they have been subject to shifting management practices to maximize human use and ecosystem services, creating a complex relationship between water policy, management, and the natural ecosystem. This has necessitated research on the spatial and temporal dynamics of riparian vegetation change. The San Acacia Reach of the Middle Rio Grande has experienced multiple management and river flow fluctuations, resulting in threats to its riparian and aquatic ecosystems. This research uses remote sensing data, GIS, a review of management decisions, and an assessment of climate to both quantify how riparian vegetation has been altered over time and provide interpretations of the relationships between riparian change and shifting climate and management objectives. This research focused on four management phases from 1935 to 2014, each highlighting different management practices and climate-driven river patterns, providing unique opportunities to observe a direct relationship between river management, climate, and riparian response. Overall, we believe that management practices coupled with reduced surface river-flows with limited overbank flooding influenced the compositional and spatial patterns of vegetation, including possibly increasing non-native vegetation coverage. However, recent restoration efforts have begun to reduce non-native vegetation coverage.

  3. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service

    PubMed Central

    Keys, Patrick W.; Wang-Erlandsson, Lan; Gordon, Line J.

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized framework for describing moisture recycling as an ecosystem service. We conclude that future work ought to disentangle whether and how this vegetation-regulated moisture recycling interacts with other ecosystem services, so that trade-offs can be assessed in a comprehensive and sustainable manner. PMID:26998832

  4. Meeting the challenge of interacting threats in freshwater ecosystems: A call to scientists and managers

    USGS Publications Warehouse

    Craig, Laura S.; Olden, Julian D.; Arthington, Angela; Entrekin, Sally; Hawkins, Charles P.; Kelly, John J.; Kennedy, Theodore A.; Maitland, Bryan M.; Rosi, Emma J.; Roy, Allison; Strayer, David L.; Tank, Jennifer L.; West, Amie O.; Wooten, Matthew S.

    2017-01-01

    Human activities create threats that have consequences for freshwater ecosystems and, in most watersheds, observed ecological responses are the result of complex interactions among multiple threats and their associated ecological alterations. Here we discuss the value of considering multiple threats in research and management, offer suggestions for filling knowledge gaps, and provide guidance for addressing the urgent management challenges posed by multiple threats in freshwater ecosystems. There is a growing literature assessing responses to multiple alterations, and we build off this background to identify three areas that require greater attention: linking observed alterations to threats, understanding when and where threats overlap, and choosing metrics that best quantify the effects of multiple threats. Advancing science in these areas will help us understand existing ecosystem conditions and predict future risk from multiple threats. Because addressing the complex issues and novel ecosystems that arise from the interaction of multiple threats in freshwater ecosystems represents a significant management challenge, and the risks of management failure include loss of biodiversity, ecological goods, and ecosystem services, we also identify actions that could improve decision-making and management outcomes. These actions include drawing insights from management of individual threats, using threat attributes (e.g., causes and spatio-temporal dynamics) to identify suitable management approaches, testing management strategies that are likely to be successful despite uncertainties about the nature of interactions among threats, avoiding unintended consequences, and maximizing conservation benefits. We also acknowledge the broadly applicable challenges of decision-making within a socio-political and economic framework, and suggest that multidisciplinary teams will be needed to innovate solutions to meet the current and future challenge of interacting threats in freshwater ecosystems. 

  5. Large-scale degradation of Amazonian freshwater ecosystems.

    PubMed

    Castello, Leandro; Macedo, Marcia N

    2016-03-01

    Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries. © 2015 John Wiley & Sons Ltd.

  6. Evaluating indicators of human well-being for ecosystem-based management

    Treesearch

    Sara Jo Breslow; Margaret Allen; Danielle Holstein; Brit Sojka; Raz Barnea; Xavier Basurto; Courtney Carothers; Susan Charnley; Sarah Coulthard; Nives Dolšak; Jamie Donatuto; Carlos García-Quijano; Christina C. Hicks; Arielle Levine; Michael B. Mascia; Karma Norman; Melissa Poe; Terre Satterfield; Kevin St. Martin; Phillip S. Levin

    2017-01-01

    Introduction: Interrelated social and ecological challenges demand an understanding of how environmental change and management decisions affect human well-being. This paper outlines a framework for measuring human well-being for ecosystem-based management (EBM). We present a prototype that can be adapted and developed for various scales and...

  7. Relating ecosystem services to domains of human well-being: Foundation for a U.S. index

    EPA Science Inventory

    Humans are dependent upon the services provided by nature, and unless we effectively account for the range of values from ecosystems in our efforts to protect the environment, we cannot sustain human well-being. In light of this dependence, the US Environmental Protections Agency...

  8. Hierarchical Synthesis of Coastal Ecosystem Health Indicators at Karimunjawa National Marine Park

    NASA Astrophysics Data System (ADS)

    Danu Prasetya, Johan; Ambariyanto; Supriharyono; Purwanti, Frida

    2018-02-01

    The coastal ecosystem of Karimunjawa National Marine Park (KNMP) is facing various pressures, including from human activity. Monitoring the health condition of coastal ecosystems periodically is needed as an evaluation of the ecosystem condition. Systematic and consistent indicators are needed in monitoring of coastal ecosystem health. This paper presents hierarchical synthesis of coastal ecosystem health indicators using Analytic Hierarchy Process (AHP) method. Hierarchical synthesis is obtained from process of weighting by paired comparison based on expert judgments. The variables of coastal ecosystem health indicators in this synthesis consist of 3 level of variable, i.e. main variable, sub-variable and operational variable. As a result of assessment, coastal ecosystem health indicators consist of 3 main variables, i.e. State of Ecosystem, Pressure and Management. Main variables State of Ecosystem and Management obtain the same value i.e. 0.400, while Pressure value was 0.200. Each main variable consist of several sub-variable, i.e. coral reef, reef fish, mangrove and seagrass for State of Ecosystem; fisheries and marine tourism activity for Pressure; planning and regulation, institutional and also infrastructure and financing for Management. The highest value of sub-variable of main variable State of Ecosystem, Pressure and Management were coral reef (0.186); marine tourism pressure (0.133) and institutional (0.171), respectively. The highest value of operational variable of main variable State of Ecosystem, Pressure and Management were percent of coral cover (0.058), marine tourism pressure (0.133) and presence of zonation plan, regulation also socialization of monitoring program (0.53), respectively. Potential pressure from marine tourism activity is the variable that most affect the health of the ecosystem. The results of this research suggest that there is a need to develop stronger conservation strategies to facing with pressures from marine tourism activities.

  9. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest.

    PubMed

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.

  10. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    PubMed Central

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695

  11. Enhancing the role of geodiversity and geoheritage in environmental management and policy in a changing world: challenges for geoscience research

    NASA Astrophysics Data System (ADS)

    Gordon, John

    2013-04-01

    Geodiversity delivers or underpins many key ecosystem processes and services that deliver valuable benefits for society. With a growing recognition of the wider economic, social and environmental relevance of geodiversity, it is timely to consider the research requirements and priorities that are necessary to underpin a broader interdisciplinary approach to geodiversity that incorporates the links between natural and human systems in a changing world. A key challenge is to develop the scientific framework of geodiversity and at the same time to enhance the protection of geoheritage. Research that helps to support environmental policy and meet the wider needs of society for sustainable development and improved human wellbeing is fundamental both to improve the recognition of geodiversity and to demonstrate the wider relevance and value of geoheritage and geoconservation. Within this wider context, priorities for research include: 1) assessment of geoheritage and best-practice management of geosites for multiple uses including science, education and tourism; 2) evaluation of geodiversity and the ecosystem services it provides, both in economic and non-economic terms, to help build policy support and public awareness; 3) understanding the functional links between geodiversity and biodiversity across a range of spatial and temporal scales to help assess ecosystem sensitivity and inform management adaptations to climate change, particularly in dynamic environments such as the coast, river catchments and mountain areas; 4) providing a longer time perspective on ecosystem trends and services from palaeoenvironmental records; 5) applications of geodiversity in terrestrial and marine spatial planning.

  12. Understanding human impact on the Baltic ecosystem: changing views in recent decades.

    PubMed

    Elmgren, R

    2001-08-01

    Grave environmental problems, including contamination of biota by organochlorines and heavy metals, and increasing deep-water oxygen deficiency, were discovered in the Baltic Sea in the late 1960s. Toxic pollutants, including the newly discovered PCB, were initially seen as the main threat to the Baltic ecosystem, and the impaired reproduction found in Baltic seals and white-tailed eagles implied a threat also to human fish eaters. Countermeasures gradually gave results, and today the struggle to limit toxic pollution of the Baltic is an international environmental success story. Calculations showed that Baltic deep-water oxygen consumption must have increased, and that the Baltic nutrient load had grown about fourfold for nitrogen and 8 times for phosphorus. Evidence of increased organic production at all trophic levels in the ecosystem gradually accumulated. Phosphorus was first thought to limit Baltic primary production, but measurements soon showed that nitrogen is generally limiting in the open Baltic proper, except for nitrogen-fixing cyanobacteria. Today, the debate is concerned with whether phosphorus, by limiting nitrogen-fixers, can control open-sea ecosystem production, even where phytoplankton is clearly nitrogen limited. The Baltic lesson teaches us that our views of newly discovered environmental problems undergo repeated changes, and that it may take decades for scientists to agree on their causes. Once society decides on countermeasures, it may take decades for them to become effective, and for nature to recover. Thus, environmental management decisions can hardly wait for scientific certainty. We should therefore view environmental management decisions as experiments, to be monitored, learned from, and then modified as needed.

  13. Towards a framework for assessment and management of cumulative human impacts on marine food webs.

    PubMed

    Giakoumi, Sylvaine; Halpern, Benjamin S; Michel, Loïc N; Gobert, Sylvie; Sini, Maria; Boudouresque, Charles-François; Gambi, Maria-Cristina; Katsanevakis, Stelios; Lejeune, Pierre; Montefalcone, Monica; Pergent, Gerard; Pergent-Martini, Christine; Sanchez-Jerez, Pablo; Velimirov, Branko; Vizzini, Salvatrice; Abadie, Arnaud; Coll, Marta; Guidetti, Paolo; Micheli, Fiorenza; Possingham, Hugh P

    2015-08-01

    Effective ecosystem-based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components' vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions. © 2015 Society for Conservation Biology.

  14. Tampa Bay Ecosystem Services Demonstration Project Website: Phase II

    EPA Science Inventory

    The Tampa Bay Ecosystem Services Demonstration Project models the impact of human development and natural stressors on the economic, aesthetic and cultural value of local ecosystems. By linking ecological structures, functions, and condition to the ecosystem services valued by h...

  15. Effective Best Management Practices for Nitrogen Removal in Aquatic Ecosystems

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater are detrimental to human and ecosystem health. The Ground Water and Ecosystems Restoration Division (GWERD) of the USEPA investigates best management practices (BMP’s) that enhance nitrogen removal in aquatic ecosystems througho...

  16. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature

    PubMed Central

    Arkema, Katie K.; Verutes, Gregory M.; Wood, Spencer A.; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M.; Griffin, Robert; Guerry, Anne D.

    2015-01-01

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize’s coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions. PMID:26082545

  17. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature.

    PubMed

    Arkema, Katie K; Verutes, Gregory M; Wood, Spencer A; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M; Griffin, Robert; Guerry, Anne D

    2015-06-16

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize's coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions.

  18. Time to cash in on positive interactions for coral restoration

    PubMed Central

    Silliman, Brian R.

    2017-01-01

    Coral reefs are among the most biodiverse and productive ecosystems on Earth, and provide critical ecosystem services such as protein provisioning, coastal protection, and tourism revenue. Despite these benefits, coral reefs have been declining precipitously across the globe due to human impacts and climate change. Recent efforts to combat these declines are increasingly turning to restoration to help reseed corals and speed-up recovery processes. Coastal restoration theory and practice has historically favored transplanting designs that reduce potentially harmful negative species interactions, such as competition between transplants. However, recent research in salt marsh ecosystems has shown that shifting this theory to strategically incorporate positive interactions significantly enhances restoration yield with little additional cost or investment. Although some coral restoration efforts plant corals in protected areas in order to benefit from the facilitative effects of herbivores that reduce competitive macroalgae, little systematic effort has been made in coral restoration to identify the entire suite of positive interactions that could promote population enhancement efforts. Here, we highlight key positive species interactions that managers and restoration practitioners should utilize to facilitate the restoration of corals, including (i) trophic facilitation, (ii) mutualisms, (iii) long-distance facilitation, (iv) positive density-dependence, (v) positive legacy effects, and (vi) synergisms between biodiversity and ecosystem function. As live coral cover continues to decline and resources are limited to restore coral populations, innovative solutions that increase efficiency of restoration efforts will be critical to conserving and maintaining healthy coral reef ecosystems and the human communities that rely on them. PMID:28652942

  19. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem - Final Report - 09/15/1996 - 09/14/2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, John A.

    The three major components of the research included: (a) a biotechnology based screening system to identify potential hormone mimics and antagonists (b) an animal screening system to identify biomarkers of endocrine effects and (c) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular interest in this study were those that can serve as sentinel species (e.g., amphibians) and thus provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The objective of this basic research is to characterize the potential of common hydrocarbon contaminantsmore » in ecosystems to act as endocrine disruptors. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals and humans, little is known about the capacities of other hydrocarbon contaminants to act as endocrine disruptors. Results obtained from this research project have provided information on endocrine disrupting contaminants for consideration in DOE's risk analyses for determining clean-up levels and priorities at contaminated DOE sites.« less

  20. Consequences of human modification of the global nitrogen cycle.

    PubMed

    Erisman, Jan Willem; Galloway, James N; Seitzinger, Sybil; Bleeker, Albert; Dise, Nancy B; Petrescu, A M Roxana; Leach, Allison M; de Vries, Wim

    2013-07-05

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the 'nitrogen cascade': a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many trans-boundary pollution problems.

  1. Ecological risk assessment of depleted uranium in the environment at Aberdeen Proving Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, W.H.; Kennedy, P.L.; Myers, O.B.

    1993-01-01

    A preliminary ecological risk assessment was conducted to evaluate the effects of depleted uranium (DU) in the Aberdeen Proving Ground (APG) ecosystem and its potential for human health effects. An ecological risk assessment of DU should include the processes of hazard identification, dose-response assessment, exposure assessment, and risk characterization. Ecological risk assessments also should explicitly examine risks incurred by nonhuman as well as human populations, because risk assessments based only on human health do not always protect other species. To begin to assess the potential ecological risk of DU release to the environment we modeled DU transport through the principalmore » components of the aquatic ecosystem at APG. We focused on the APG aquatic system because of the close proximity of the Chesapeake Bay and concerns about potential impacts on this ecosystem. Our objective in using a model to estimate environmental fate of DU is to ultimately reduce the uncertainty about predicted ecological risks due to DU from APG. The model functions to summarize information on the structure and functional properties of the APG aquatic system, to provide an exposure assessment by estimating the fate of DU in the environment, and to evaluate the sources of uncertainty about DU transport.« less

  2. Ecological risk assessment of depleted uranium in the environment at Aberdeen Proving Ground. Annual report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, W.H.; Kennedy, P.L.; Myers, O.B.

    1993-03-01

    A preliminary ecological risk assessment was conducted to evaluate the effects of depleted uranium (DU) in the Aberdeen Proving Ground (APG) ecosystem and its potential for human health effects. An ecological risk assessment of DU should include the processes of hazard identification, dose-response assessment, exposure assessment, and risk characterization. Ecological risk assessments also should explicitly examine risks incurred by nonhuman as well as human populations, because risk assessments based only on human health do not always protect other species. To begin to assess the potential ecological risk of DU release to the environment we modeled DU transport through the principalmore » components of the aquatic ecosystem at APG. We focused on the APG aquatic system because of the close proximity of the Chesapeake Bay and concerns about potential impacts on this ecosystem. Our objective in using a model to estimate environmental fate of DU is to ultimately reduce the uncertainty about predicted ecological risks due to DU from APG. The model functions to summarize information on the structure and functional properties of the APG aquatic system, to provide an exposure assessment by estimating the fate of DU in the environment, and to evaluate the sources of uncertainty about DU transport.« less

  3. Development of a multimetric index for integrated assessment of salt marsh ecosystem condition

    USGS Publications Warehouse

    Nagel, Jessica L.; Neckles, Hilary A.; Guntenspergen, Glenn R.; Rocks, Erika N.; Schoolmaster, Donald; Grace, James B.; Skidds, Dennis; Stevens, Sara

    2018-01-01

    Tools for assessing and communicating salt marsh condition are essential to guide decisions aimed at maintaining or restoring ecosystem integrity and services. Multimetric indices (MMIs) are increasingly used to provide integrated assessments of ecosystem condition. We employed a theory-based approach that considers the multivariate relationship of metrics with human disturbance to construct a salt marsh MMI for five National Parks in the northeastern USA. We quantified the degree of human disturbance for each marsh using the first principal component score from a principal components analysis of physical, chemical, and land use stressors. We then applied a metric selection algorithm to different combinations of about 45 vegetation and nekton metrics (e.g., species abundance, species richness, and ecological and functional classifications) derived from multi-year monitoring data. While MMIs derived from nekton or vegetation metrics alone were strongly correlated with human disturbance (r values from −0.80 to −0.93), an MMI derived from both vegetation and nekton metrics yielded an exceptionally strong correlation with disturbance (r = −0.96). Individual MMIs included from one to five metrics. The metric-assembly algorithm yielded parsimonious MMIs that exhibit the greatest possible correlations with disturbance in a way that is objective, efficient, and reproducible.

  4. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites

    Treesearch

    Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda H. Benson; Emery Boose; Warren A. Brown; John L. Campbell; Alan Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams

    2012-01-01

    Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-...

  5. Ecosystem health and human health: healthy planet, healthy living

    Treesearch

    L. Vasseur; P. G. Schaberg; J. Hounsell; P. O., Jr. Ang; D. Cote; < i> et. al.< /i>

    2002-01-01

    The links between human health and ecosystem health are clear for many people but inaction to bring a balance between the two is still omnipresent among decisionmakers and certain parts of our societies. There is a need for concerted efforts to first educate and inform all people in the world about these links and the fragility of the ecosystems in which we live. While...

  6. Final Ecosystem Goods and Services in Streams and their Linkages to Human Values: Identification of Metrics and the Gap Between What we Measure and What We Want to Know

    EPA Science Inventory

    We've been examining how to practically link ecosystems to human values. We have found that the concept "Final Ecosystem Goods and Services" (FEGS) is a useful way to make this linkage. FEGS are defined as ecological features people perceive as being directly relevant to their ...

  7. Sustainable oceans in a 'civilized' world requires a sustainable human civilization. (Invited)

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Ricke, K.; Maclaren, J. K.

    2013-12-01

    The sustainability of the ocean ecosystems is, in many areas, threatened by local and regional activities, including the discharge of pollutants, loss of wetlands, and overfishing. However, some threats to ocean ecosystems, notably ocean acidification and climate change, are a consequence decisions that cannot be substantively addressed only through action that is proximal to the affected ecosystem. The only practical way to reduce risks to the ocean posed by ocean acidification and climate change is to transform our energy system into one that does not use the atmosphere and the ocean as waste dumps for unwanted byproducts of modern civilization. The required revolution in our systems of energy production and consumption is a key component of the transition to a sustainable human civilization. It would be much easier to maintain a sustainable ocean if doing so did not require creating a sustainable human civilization; but unfortunately the ocean does not get to choose the problems it faces. Damage to the ocean is additive, or perhaps multiplicative. Thus, the response of an ecosystem exposed to coastal pollutants, loss of wetlands, overfishing, ocean acidification, and climate change will likely be more dramatic than the response of an ecosystem exposed to ocean acidification and climate change alone. Thus, there is merit in reducing coastal pollution, preserving and restoring wetlands, and reducing excess fishing, even if the ocean acidification and climate problems are not solved. Furthermore, damage from ocean acidification and climate change is not a yes or no question. Each CO2 emission causes a little more acidification and a little more climate change and thus a little more damage to existing ocean ecosystems. Hence, each CO2 emission that can be avoided helps avoid a little bit of damage to ocean ecosystems the world over. While the overall problem of sustainability of the ocean is very difficult to solve, there is no shortage of things to do that would be helpful. To illustrate the impact of global CO2 emissions on one class of marine ecosystems, we will present results from a recent modeling study on ocean acidification and coral reefs, and discuss recent related observational work we have been conducting in the Great Barrier Reef.

  8. AUTOMATED RESPIROMETER METHOD FOR MICROBIAL TOXICITY ASSESSMENT OF LOW-LEVEL ZINC CONTAMINATION IN SOIL

    EPA Science Inventory

    Zinc is an essential trace element for all living organisms including humans. ecause microbial-based toxicity approaches to assess the changes in ecosystem processes are not well defined for soil application, this laboratory has developed an automated respirometer capable of meas...

  9. Psychology and Environmental Sustainability: A Call for Integration

    ERIC Educational Resources Information Center

    Koger, Susan M.; Scott, Britain A.

    2007-01-01

    Environmental scientists warn that the health of the planet is rapidly deteriorating, and the primary cause of the crisis is human behavior. Psychology can contribute greatly to understanding and changing behaviors that negatively impact global ecosystems; however, environmental issues are not generally included in psychology curricula, and…

  10. Land use, climate, and water resources – global stages of interaction

    EPA Science Inventory

    Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, including those in this special issue. We identify stages, which characterize i...

  11. Microclimate in Forest Ecosystem and Landscape Ecology

    Treesearch

    Jiquan Chen; Sari C. Saunders; Thomas R. Crow; Robert J. Naiman; Kimberley D. Brosofske; Glenn D. Mroz; Brain L. Brookshire; Jerry F. Franklin

    1999-01-01

    Microclimate is the suite of climatic conditions measured in localized areas near the earth's surface (Geiger 1965). These environmental variables, which include temperature, light, windspeed, and moisture, have been critical throughout human history, providing meaningful indicators for habitat selection and other activities. For example, for 2600 years the...

  12. High School Environmental Science Course Guide.

    ERIC Educational Resources Information Center

    Donovan, Edward P.; Korman, Barbara

    A course in environmental science was developed to increase course options for students of all abilities and interest levels. Major topic areas of the course include: introduction to ecological principles and ecosystems; extinction of species; human population dynamics; agricultural systems and pest control; air quality; water quality; solid…

  13. [Eco-value level classification and ecosystem management strategy of broad-leaved Korean pine forest in Changbai Mountain].

    PubMed

    Zheng, Jingming; Jiang, Fengqi; Zeng, Dehui

    2003-06-01

    To realize the sustainable management of forest ecosystems, we should explicitly clarify the types and differences of the ecosystem services provided by different ecosystems under different conditions, with rethinking about the value of forest ecosystems; then solid management strategies and measurements will be enacted and applied to achieve the objects. The broad-leaved Korean pine forest (BLKPF) in Changbai Mountain is a unique and important forest type in China, owing to its many important ecosystem services such as preventing soil erosion, regulating climates, nutrient cycling, providing wood and non-timber forest products, etc. This paper is a preliminary study on the management strategy of BLKPF on the basis of analyzing the characters of the ecosystems and the relative importance of services they provided in this region. Based on the latest research of ecosystem services of BLKPF in Changbai Mountain, an idea of eco-value level (EVL) was introduced, and accordingly, management strategies were summarized by adopting the advanced theories in ecosystem management science and by analyzing field survey data. EVL means the relative amount of the value of ecosystem services provided by certain ecosystem, which can indicate the difference between services in given objects. The EVL classification of BLKPF implies the relative amount of the eco-value of different ecosystems including virgin forest, secondary forest, forest with human disturbance, and man-made forest in the clear-cutting sites. Analytical Hierarchical Processing method was used to formulate the equation for EVL index. Eight factors, namely, slope, soil depth, stability of soil maternal material, coverage of above-ground canopy, species diversity, regeneration rate of the stand, life span of dominant tree species, and intensity of human disturbance were chosen to build the formula. These factors belonged to three aspects affecting ecosystem services including the physical environment, community, and disturbance regime, and their selection and scaling were based on the previous studies on the BLKPF. The equation of EVL index (EI) was expressed as: EI = 0.542A1 + 0.171A2 + 0.072A3 + 0.067B1 + 0.043B2 + 0.014B3 + 0.010B4 + 0.081C1. According to the range of EI, ecosystems were classified into three types: low EVL type with EI from 1.000 to 1.874, medium EVL type with EI 1.874-2.749, and high EVL type with EI 2.749-3.623. Typical plots were surveyed and scaled with EI, and the predominant characters of each EVL type were summarized. Most forests of high EVL type were those in sites at high risk of soil erosion and hard to recover after disrupted. Forests of medium EVL type were those with worse community structure and composition, and were disturbed by human activities in relative steep sites. Forest of low EVL type were those in plane site with serious disruption or some young man-made stands. Based on the analyses of the characters of these three types, different management strategies were put forward. For high EVL type forest, strictly protection is most important to maintain the forest in natural succession and its eco-services. For medium EVL type forest, the key points of management are restoring their health and vigor by regulating their composition and structure in a seminatural way. For low EVL type forest, some area could be used to extensive exploration for economic benefits, and the rests should be reconstructed towards the original stand in composition and structure, based on the 'shadow ecosystem' in a close-to-nature way to promote the capacity of providing more eco-services.

  14. Are carrots, corn and cattle really provided by Nature- If not ...

    EPA Pesticide Factsheets

    People harbor different perspectives regarding the aspects of agroecosystems or cultivated lands that are or could be considered ecosystem services. The first issues that need to be addressed in this regard are to define agro-ecosystem services and to establish their potential purpose (or use) to human beneficiaries. This early decision provides the foundation for what ecosystem services are, who uses them, and if or how they can be quantified. An important point to consider is that agricultural activities, while performed in and on environments provided by nature, are characterized by human labor and capital originating in the human economy. There are inherent reasons to quantify (i.e., measure) ecosystem services in a relatively standard way across landscapes and even within political units, such as counties or nations. Standard approaches to defining and measuring can underpin a multitude of accounting activities such as assigning value to them using either monetary or non-monetary approaches. The ecosystem services community could benefit by applying an ecosystem services definition that embodies from where in the environment the “service” originates and, equally as important, the user or beneficiary of this service. If we focus on the subset of ecosystem services which are Final Ecosystem Goods and Services by adopting the definition of Final Ecosystem Goods and Services (or FEGS), “components of nature, directly enjoyed, consumed or used to yi

  15. Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China

    NASA Astrophysics Data System (ADS)

    Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He

    2012-10-01

    The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.

  16. Linking environmental nutrient enrichment and disease emergence in humans and wildlife

    PubMed Central

    Johnson, Pieter T. J.; Townsend, Alan R.; Cleveland, Cory C.; Glibert, Patricia M.; Howarth, Robert W.; McKenzie, Valerie J.; Rejmankova, Eliska; Ward, Mary H.

    2009-01-01

    Worldwide increases in the numbers of human and wildlife diseases present ecologists with the challenge of understanding how large-scale environmental changes affect host-parasite interactions. One of the most profound changes to Earth’s ecosystems is the alteration of global nutrient cycles, including those of phosphorus (P) and especially nitrogen (N). Alongside the obvious direct benefits of nutrient application for food production, growing evidence suggests that anthropogenic inputs of N and P can indirectly affect the abundance of infectious and noninfectious pathogens, sometimes leading to epidemic conditions. However, the mechanisms underpinning observed correlations, and how such patterns vary with disease type, have long remained conjectural. Here, we discuss recent experimental advances in this area to critically evaluate the relationship between environmental nutrient enrichment and disease. Given the inter-related nature of human and wildlife disease emergence, we include a broad range of human and wildlife examples from terrestrial, marine and freshwater ecosystems. We examine the consequences of nutrient pollution on directly transmitted, vector-borne, complex life cycle, and noninfectious pathogens, including West Nile virus, malaria, harmful algal blooms, coral reef diseases and amphibian malformations. Our synthetic examination suggests that the effects of environmental nutrient enrichment on disease are complex and multifaceted, varying with the type of pathogen, host species and condition, attributes of the ecosystem and the degree of enrichment; some pathogens increase in abundance whereas others decline or disappear. Nevertheless, available evidence indicates that ecological changes associated with nutrient enrichment often exacerbate infection and disease caused by generalist parasites with direct or simple life cycles. Observed mechanisms include changes in host/vector density, host distribution, infection resistance, pathogen virulence or toxicity, or the direct supplementation of pathogens. Collectively, these pathogens may be particularly dangerous because they can continue to cause mortality even as their hosts decline, potentially leading to sustained epidemics or chronic pathology. We suggest that interactions between nutrient enrichment and disease will become increasingly important in tropical and subtropical regions, where forecasted increases in nutrient application will occur in an environment rich with infectious pathogens. We emphasize the importance of careful disease management in conjunction with continued intensification of global nutrient cycles. PMID:20349828

  17. Interaction Between the Environment and Animals in Urban Settings: Integrated and Participatory Planning

    NASA Astrophysics Data System (ADS)

    Tarsitano, Elvira

    2006-11-01

    In urban ecosystems, the ecological system has become completely unbalanced; this, in turn, has led to an increase in well-known problems such as air pollution, ground pollution, and water pollution. This imbalance has also led to the growth and spread of pathogens harmful to man, animals, and plants. Urban sustainability indicators, both global and local, also “indicate” the percentage of population, but these refer only to the human population, not the animal population. Cities need good waste, water, and air management, effective traffic planning, and good zoning of businesses, crafts, and services; over and above these activities, cities also need for planning to take into account the existence of pets (dogs, cats, and etc.) and nonpet animals (insects, birds, mice, etc.). Cities tend to be designed around humans and “on a human scale,” without taking into account the fact that a huge animal population is living side by side with people. That explains why overcrowding tends to go hand in hand with urbanization; all these populations, including humans, need to adapt to new spaces and often need to drastically change their behavior. This is a fact that must be included when drafting sustainable city plans. The supposed strategy is that of “integrated-participatory” control of the interactions between the environment and animals in the cities. Strategy will focus on the development of integrated approaches and tools for environment and animal management in the context of urban settings. This will require such specific methods as ecological balance sheets and ecoplans for the planning, management, and control of the interrelation among environment, animal, and public health. The objective is to develop a better understanding of urban biodiversity and of urban ecosystem functioning, in order to understand and minimize the negative impacts of human activities on them. The research will focus on assessing and forecasting changes in urban biodiversity, structure, function, and dynamics of urban ecosystems, with relationships among society, economy, biodiversity, and habitats.

  18. Resilience, rapid transitions and regime shifts: fingerprinting the responses of Lake Żabińskie (NE Poland) to climate variability and human disturbance since 1000 AD

    NASA Astrophysics Data System (ADS)

    Tylmann, Wojciech; Hernández-Almeida, Iván; Grosjean, Martin; José Gómez Navarro, Juan; Larocque-Tobler, Isabelle; Bonk, Alicja; Enters, Dirk; Ustrzycka, Alicja; Piotrowska, Natalia; Przybylak, Rajmund; Wacnik, Agnieszka; Witak, Małgorzata

    2016-04-01

    Rapid ecosystem transitions and adverse effects on ecosystem services as responses to combined climate and human impacts are of major concern. Yet few quantitative observational data exist, particularly for ecosystems that have a long history of human intervention. Here, we combine quantitative summer and winter climate reconstructions, climate model simulations and proxies for three major environmental pressures (land use, nutrients and erosion) to explore the system dynamics, resilience, and the role of disturbance regimes in varved eutrophic Lake Żabińskie since AD 1000. Comparison between regional and global climate simulations and quantitative climate reconstructions indicate that proxy data capture noticeably natural forced climate variability, while internal variability appears as the dominant source of climate variability in the climate model simulations during most parts of the last millennium. Using different multivariate analyses and change point detection techniques, we identify ecosystem changes through time and shifts between rather stable states and highly variable ones, as expressed by the proxies for land-use, erosion and productivity in the lake. Prior to AD 1600, the lake ecosystem was characterized by a high stability and resilience against considerable observed natural climate variability. In contrast, lake-ecosystem conditions started to fluctuate at high frequency across a broad range of states after AD 1600. The period AD 1748-1868 represents the phase with the strongest human disturbance of the ecosystem. Analyses of the frequency of change points in the multi-proxy dataset suggests that the last 400 years were highly variable and flickering with increasing vulnerability of the ecosystem to the combined effects of climate variability and anthropogenic disturbances. This led to significant rapid ecosystem transformations.

  19. Response of ESV to Climate Change and Human Activities in the Yanqi Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Rusuli, Yusufujiang; Sidik, Halida; Gupur, Adila; Hong, Jiang; Kadir, Rayila

    2016-04-01

    Ecosystem goods and services refer to the dependence of economic wealth and human well-being on natural systems. It is a common knowledge that the changing of structure and function of the ecosystem due to climate change and human activities. It is a priority issue to study on various spatiotemporal scales, the sensitivity of ecosystems to climate change and anthropogenic pressure in inland areas. In an effort to better understand the influence of climate change and human activities on ecosystem services, we evaluated the change in ESV of the Yanqi Basin in Xinjiang, China from 1973 to 2014 employing methods of MK, MK Sneyers, ESV and dynamic degree of LUCC. The Landsat images, digital elevation model (DEM) and metrological data were applied to assessing the ESV and its change. According to the degree of effects of the climate change and human activities, the research area was divided into two parts: the mountain area and the plain oasis area at a contour of 1400 m above sea level. According to type and affect, the land cover was classified as water, wetland, desert, fields, glacier, warm shrub grassland, cold meadow steppe and highland vegetation. We analyzed the relationship between the variation of ESV and precipitation, and evaporation and then quantitatively differentiated the influence of climate change and human activities on ESV. Results show that: (1) distinct change points of precipitation and evaporation in mountain and plain oasis of the Yanqi basin were detected by the MK-Sneyers test. The precipitation increased and the evaporation declined in mountain and plain oasis in the same way. Enlargement of agricultural areas to accommodate an increased population and socio-economic development was detected by conversion matrix of LUCC in oasis area. As a result, the variation of ESV was caused by climate change and human activities jointly; (2) the declining trend of ESV in the mountain area was mainly caused by shrinking of the glacier area; (3) ESV was decreased initially and increased afterwards taking 2004 as a turning point following the trend of increased precipitation and decreased evaporation. Combined effects of climate change and human activities are main cause of ESV variations in the past 40 years in Yanqi basin. The main reasons for increased ESV in plain oasis include enlarging the artificial oasis due to intensified human activities, and supporting favorable climate change (increased precipitation and decreased evaporation). Key words: Climate change; Human activities; Ecosystem Service Value; Yanqi basin Acknowledgements: This work was supported jointly by the Natural Sciences Foundation of China (No.41161007, No. 41461006), the Doctoral Start-up Foundation of Xinjiang Normal University (No.XJNUBS1528) and the Special funds for Key Laboratory of Xinjiang Uyghur Autonomous Region (No.2014KL016).

  20. Ecosystem Health: Energy Indicators.

    EPA Science Inventory

    Just as for human beings health is a concept that applies to the condition of the whole organism, the health of an ecosystem refers to the condition of the ecosystem as a whole. For this reason, the study and characterization of ecosystems is fundamental to establishing accurate ...

  1. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    PubMed Central

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  2. Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts.

    PubMed

    Hunsicker, Mary E; Ciannelli, Lorenzo; Bailey, Kevin M; Buckel, Jeffrey A; Wilson White, J; Link, Jason S; Essington, Timothy E; Gaichas, Sarah; Anderson, Todd W; Brodeur, Richard D; Chan, Kung-Sik; Chen, Kun; Englund, Göran; Frank, Kenneth T; Freitas, Vânia; Hixon, Mark A; Hurst, Thomas; Johnson, Darren W; Kitchell, James F; Reese, Doug; Rose, George A; Sjodin, Henrik; Sydeman, William J; van der Veer, Henk W; Vollset, Knut; Zador, Stephani

    2011-12-01

    Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management. 2011 Blackwell Publishing Ltd/CNRS.

  3. The Effects of Humans and Topography on Wildland Fire, Forests, and Species Abundance

    Treesearch

    Richard P. Guyette; Daniel Dey

    2004-01-01

    Ignitions, fuels, topography, and climate interact through time to create temporal and spatial differences in the frequency of fire, which, in turn, affects ecosystem structure and function. In many ecosystems non-human ignitions are overwhelmed by anthropogenic ignitions. Human population density, culture, and topographic factors are quantitatively related to fire...

  4. Eco-Health Linkages: evidence base and socio-economic considerations for linking ecosystem goods and services to human health

    EPA Science Inventory

    Ecosystem goods and services (EGS) are thought to play a role in protecting human health, but the empirical evidence directly linking EGS to human health outcomes is limited, and our ability to detect Eco-Health linkages is confounded by socio-economic factors. These limitations ...

  5. Historical overfishing and the recent collapse of coastal ecosystems.

    PubMed

    Jackson, J B; Kirby, M X; Berger, W H; Bjorndal, K A; Botsford, L W; Bourque, B J; Bradbury, R H; Cooke, R; Erlandson, J; Estes, J A; Hughes, T P; Kidwell, S; Lange, C B; Lenihan, H S; Pandolfi, J M; Peterson, C H; Steneck, R S; Tegner, M J; Warner, R R

    2001-07-27

    Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

  6. Plant species richness and ecosystem multifunctionality in global drylands

    USGS Publications Warehouse

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  7. Plant species richness and ecosystem multifunctionality in global drylands

    PubMed Central

    Maestre, Fernando T.; Quero, José L.; Gotelli, Nicholas J.; Escudero, Adriá; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P.; Wang, Deli; Zaady, Eli

    2013-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  8. [Ecosystem services evaluation based on geographic information system and remote sensing technology: a review].

    PubMed

    Li, Wen-Jie; Zhang, Shi-Huang; Wang, Hui-Min

    2011-12-01

    Ecosystem services evaluation is a hot topic in current ecosystem management, and has a close link with human beings welfare. This paper summarized the research progress on the evaluation of ecosystem services based on geographic information system (GIS) and remote sensing (RS) technology, which could be reduced to the following three characters, i. e., ecological economics theory is widely applied as a key method in quantifying ecosystem services, GIS and RS technology play a key role in multi-source data acquisition, spatiotemporal analysis, and integrated platform, and ecosystem mechanism model becomes a powerful tool for understanding the relationships between natural phenomena and human activities. Aiming at the present research status and its inadequacies, this paper put forward an "Assembly Line" framework, which was a distributed one with scalable characteristics, and discussed the future development trend of the integration research on ecosystem services evaluation based on GIS and RS technologies.

  9. Ecosystem accounts define explicit and spatial trade-offs for managing natural resources.

    PubMed

    Keith, Heather; Vardon, Michael; Stein, John A; Stein, Janet L; Lindenmayer, David

    2017-11-01

    Decisions about natural resource management are frequently complex and vexed, often leading to public policy compromises. Discord between environmental and economic metrics creates problems in assessing trade-offs between different current or potential resource uses. Ecosystem accounts, which quantify ecosystems and their benefits for human well-being consistent with national economic accounts, provide exciting opportunities to contribute significantly to the policy process. We advanced the application of ecosystem accounts in a regional case study by explicitly and spatially linking impacts of human and natural activities on ecosystem assets and services to their associated industries. This demonstrated contributions of ecosystems beyond the traditional national accounts. Our results revealed that native forests would provide greater benefits from their ecosystem services of carbon sequestration, water yield, habitat provisioning and recreational amenity if harvesting for timber production ceased, thus allowing forests to continue growing to older ages.

  10. The Human Appropriation of Ecosystem Service Values (HAESV) in the Sundarban Biosphere Region Using Biophysical Quantification Approach

    NASA Astrophysics Data System (ADS)

    Sannigrahi, S.; Paul, S. K.; Sen, S.

    2017-12-01

    Human appropriation, especially unusual changes in land-use and land cover, significantly affects ecosystem services and functions. Driven by the growth of the population and the economy, human demands on earth's land surface have increased dramatically in the past 50 - 100 years. The area studied was divided into six major categories; cropland, mangrove forest, sparse vegetation, built-up urban area, water bodies and sandy coast, and the land coverage was calculated for the years 1973, 1988, 2002 and 2013. The spatial explicit value of the primary regulatory and supporting ecosystem services (climate regulation, raw material production, water regulation) were quantified through the indirect market valuation approach. A light use efficiency based ecosystem model, i.e. Carnegie- Ames-Stanford-Approach (CASA) was employed to estimate the carbon sequestration and oxygen production services of the ecosystem. The ArcGIS matrix transform approach calculated LULC dynamics among the classes. Investigation revealed that the built-up urban area increased from 42.9 km2 in 1973 to 308 km2 in 2013 with a 6.6 km2 yr-1 expansion rate. Similarly, water bodies (especially inland water bodies increased dramatically in the north central region) increased from 3392.1 sq.km in 1973 to 5420 sq.km in 2013 at the expense of semi-natural and natural land resulting in significant changes of ecological and ecosystem services. However, the area occupied by dense mangrove forest decreased substantially during the 40 years (1973 -2013); it was recorded to cover 2294 km2 in 1973 and 1820 km2 in 2013. The results showed that the estimated regulatory and supporting ecosystem services respond quite differently to human appropriation across the regions in both the economic and ecological dimensions. While evaluating the trade-of between human appropriation and ecosystem service changes, it has been estimated that the ecosystem service value of organic matter provision services decreased from 755 US ha-1 in 2000 to 608 US ha-1 in 2013. Therefore, the rigorous and centralised policy for sustainable and regionally balanced land-use planning has been essential in the recent era for economic viability, and ecosystem preservation, to prevent undesirable outcomes.

  11. Disturbance in boreal forest ecosystems: human impacts and natural processes. Proceedings of the International Boreal Forest Research Association 1997 annual meeting; 1997 August 4-7; Duluth, Minnesota.

    Treesearch

    2000-01-01

    The papers in these proceedings cover a wide range of topics related to human and natural disturbance processes in forests of the boreal zone in North America and Eurasia. Topics include historic and predicted landscape change; forest management; disturbance by insects, fire, air pollution, severe weather, and global climate change; and carbon cycling.

  12. Exploiting delayed transitions to sustain semiarid ecosystems after catastrophic shifts.

    PubMed

    Vidiella, Blai; Sardanyés, Josep; Solé, Ricard

    2018-06-01

    Semiarid ecosystems (including arid, semiarid and dry-subhumid ecosystems) span more than 40% of extant habitats and contain a similar percentage of the human population. Theoretical models and palaeoclimatic data predict a grim future, with rapid shifts towards a desert state, with accelerated diversity losses and ecological collapses. These shifts are a consequence of the special nonlinearities resulting from ecological facilitation. Here, we investigate a simple model of semiarid ecosystems identifying the so-called ghost, which appears after a catastrophic transition from a vegetated to a desert state once a critical rate of soil degradation is overcome. The ghost involves a slowdown of transients towards the desert state, making the ecosystem seem stable even though vegetation extinction is inevitable. We use this model to show how to exploit the ecological ghosts to avoid collapse. Doing so involves the restoration of small fractions of desert areas with vegetation capable of maintaining a stable community once the catastrophic shift condition has been achieved. This intervention method is successfully tested under the presence of demographic stochastic fluctuations. © 2018 The Author(s).

  13. Neighborhood scale quantification of ecosystem goods and ...

    EPA Pesticide Factsheets

    Ecosystem goods and services are those ecological structures and functions that humans can directly relate to their state of well-being. Ecosystem goods and services include, but are not limited to, a sufficient fresh water supply, fertile lands to produce agricultural products, shading, air and water of sufficient quality for designated uses, flood water retention, and places to recreate. The US Environmental Protection Agency (USEPA) Office of Research and Development’s Tampa Bay Ecosystem Services Demonstration Project (TBESDP) modeling efforts organized existing literature values for biophysical attributes and processes related to EGS. The goal was to develop a database for informing mapped-based EGS assessments for current and future land cover/use scenarios at multiple scales. This report serves as a demonstration of applying an EGS assessment approach at the large neighborhood scale (~1,000 acres of residential parcels plus common areas). Here, we present mapped inventories of ecosystem goods and services production at a neighborhood scale within the Tampa Bay, FL region. Comparisons of the inventory between two alternative neighborhood designs are presented as an example of how one might apply EGS concepts at this scale.

  14. Herbivory Network: An international, collaborative effort to study herbivory in Arctic and alpine ecosystems

    NASA Astrophysics Data System (ADS)

    Barrio, I. C.; Hik, D. S.; Jónsdóttir, I. S.; Bueno, C. G.; Mörsdorf, M. A.; Ravolainen, V. T.

    2016-09-01

    Plant-herbivore interactions are central to the functioning of tundra ecosystems, but their outcomes vary over space and time. Accurate forecasting of ecosystem responses to ongoing environmental changes requires a better understanding of the processes responsible for this heterogeneity. To effectively address this complexity at a global scale, coordinated research efforts, including multi-site comparisons within and across disciplines, are needed. The Herbivory Network was established as a forum for researchers from Arctic and alpine regions to collaboratively investigate the multifunctional role of herbivores in these changing ecosystems. One of the priorities is to integrate sites, methodologies, and metrics used in previous work, to develop a set of common protocols and design long-term geographically-balanced, coordinated experiments. The implementation of these collaborative research efforts will also improve our understanding of traditional human-managed systems that encompass significant portions of the sub-Arctic and alpine areas worldwide. A deeper understanding of the role of herbivory in these systems under ongoing environmental changes will guide appropriate adaptive strategies to preserve their natural values and related ecosystem services.

  15. Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic Region

    USGS Publications Warehouse

    Moore, M.V.; Pace, M.L.; Mather, J.R.; Murdoch, Peter S.; Howarth, R.W.; Folt, C.L.; Chen, C.-Y.; Hemond, Harold F.; Flebbe, P.A.; Driscoll, C.T.

    1997-01-01

    Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 ??CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3-5??C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be ameliorated. Recommendations for future monitoring efforts include: (1) extending and improving data on the distribution, abundance and effect of anthropogenic Stressors (non-point pollution) within the region; and (2) improving scientific knowledge regarding the contemporary distribution and abundance of aquatic species. Research recommendations include: (1) establishing a research centre(s) where field studies designed to understand interactions between freshwater ecosystems and climate change can be conducted; (2) projecting the future distribution, activities and direct effects of humans within the region; (3) developing mathematical analyses, experimental designs and aquatic indicators that distinguish between climatic and anthropogenic effects on aquatic systems; (4) developing and refining projections of climate variability such that the magnitude, frequency and seasonal timing of extreme events can be forecast; and (5) describing quantitatively the flux of materials (sediments, nutrients, metals) from watersheds characterized by a mosaic of land uses. ?? 1997 by John Wiley & Sons, Ltd.

  16. Effects of ship-induced waves on aquatic ecosystems.

    PubMed

    Gabel, Friederike; Lorenz, Stefan; Stoll, Stefan

    2017-12-01

    Most larger water bodies worldwide are used for navigation, and the intensity of commercial and recreational navigation is expected to further increase. Navigation profoundly affects aquatic ecosystems. To facilitate navigation, rivers are trained and developed, and the direct effects of navigation include chemical and biological impacts (e.g., inputs of toxic substances and dispersal of non-native species, respectively). Furthermore, propagating ships create hydrodynamic alterations, often simply summarized as waves. Although ship-induced waves are recognized as influential stressors, knowledge on their effects is poorly synthesized. We present here a review on the effects of ship-induced waves on the structure, function and services of aquatic ecosystems based on more than 200 peer reviewed publications and technical reports. Ship-induced waves act at multiple organizational levels and different spatial and temporal scales. All the abiotic and biotic components of aquatic ecosystems are affected, from the sediment and nutrient budget to the planktonic, benthic and fish communities. We highlight how the effects of ship-induced waves cascade through ecosystems and how different effects interact and feed back into the ecosystem finally leading to altered ecosystem services and human health effects. Based on this synthesis of wave effects, we discuss strategies for mitigation. This may help to develop scientifically based and target-oriented management plans for navigational waters that optimize abiotic and biotic integrity and their ecosystem services and uses. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lake and wetland ecosystem services measuring water storage and local climate regulation

    NASA Astrophysics Data System (ADS)

    Wong, Christina P.; Jiang, Bo; Bohn, Theodore J.; Lee, Kai N.; Lettenmaier, Dennis P.; Ma, Dongchun; Ouyang, Zhiyun

    2017-04-01

    Developing interdisciplinary methods to measure ecosystem services is a scientific priority, however, progress remains slow in part because we lack ecological production functions (EPFs) to quantitatively link ecohydrological processes to human benefits. In this study, we tested a new approach, combining a process-based model with regression models, to create EPFs to evaluate water storage and local climate regulation from a green infrastructure project on the Yongding River in Beijing, China. Seven artificial lakes and wetlands were established to improve local water storage and human comfort; evapotranspiration (ET) regulates both services. Managers want to minimize the trade-off between water losses and cooling to sustain water supplies while lowering the heat index (HI) to improve human comfort. We selected human benefit indicators using water storage targets and Beijing's HI, and the Variable Infiltration Capacity model to determine the change in ET from the new ecosystems. We created EPFs to quantify the ecosystem services as marginal values [Δfinal ecosystem service/Δecohydrological process]: (1) Δwater loss (lake evaporation/volume)/Δdepth and (2) Δsummer HI/ΔET. We estimate the new ecosystems increased local ET by 0.7 mm/d (20.3 W/m2) on the Yongding River. However, ET rates are causing water storage shortfalls while producing no improvements in human comfort. The shallow lakes/wetlands are vulnerable to drying when inflow rates fluctuate, low depths lead to higher evaporative losses, causing water storage shortfalls with minimal cooling effects. We recommend managers make the lakes deeper to increase water storage, and plant shade trees to improve human comfort in the parks.

  18. Community Based Demonstration Projects: Willamette Ecosystem Services Project (WESP)

    EPA Science Inventory

    EPA’s Ecosystem Services Research Program in the Office of Research and Development is focused on the study of ecosystem services and the benefits to human well-being provided by ecological systems. As part of this research effort, the Willamette Ecosystems Services Project (WE...

  19. Mapping ecosystem services in the St. Louis River estuary (presentation)

    EPA Science Inventory

    Management of ecosystems for sustainable provision of services beneficial to human communities requires reliable data about from where in the ecosystem services flow. Our objective is to map ecosystem services in the St. Louis River with the overarching EPA goal of community sust...

  20. A Binary Approach to Define and Classify Final Ecosystem Goods and Services

    EPA Science Inventory

    The ecosystem services literature decries the lack of consistency and standards in the application of ecosystem services as well as the inability of current approaches to explicitly link ecosystem services to human well-being. Recently, SEEA and CICES have conceptually identifie...

  1. Operationalizing Ecosystem Services Indicators for Policy and Decision-Making

    EPA Science Inventory

    The ecosystem services concept has gained popularity as a means of linking ecosystem goods and services to human well-being. Despite its popularity as a concept, there is much progress needed in operationalizing ecosystem services indicators before they are useful for policy and...

  2. Prospects for monitoring freshwater ecosystems towards the 2010 targets

    PubMed Central

    Revenga, C; Campbell, I; Abell, R; de Villiers, P; Bryer, M

    2005-01-01

    Human activities have severely affected the condition of freshwater ecosystems worldwide. Physical alteration, habitat loss, water withdrawal, pollution, overexploitation and the introduction of non-native species all contribute to the decline in freshwater species. Today, freshwater species are, in general, at higher risk of extinction than those in forests, grasslands and coastal ecosystems. For North America alone, the projected extinction rate for freshwater fauna is five times greater than that for terrestrial fauna—a rate comparable to the species loss in tropical rainforest. Because many of these extinctions go unseen, the level of assessment and knowledge of the status and trends of freshwater species are still very poor, with species going extinct before they are even taxonomically classified. Increasing human population growth and achieving the sustainable development targets set forth in 2002 will place even higher demands on the already stressed freshwater ecosystems, unless an integrated approach to managing water for people and ecosystems is implemented by a broad constituency. To inform and implement policies that support an integrated approach to water management, as well as to measure progress in halting the rapid decline in freshwater species, basin-level indicators describing the condition and threats to freshwater ecosystems and species are required. This paper discusses the extent and quality of data available on the number and size of populations of freshwater species, as well as the change in the extent and condition of natural freshwater habitats. The paper presents indicators that can be applied at multiple scales, highlighting the usefulness of using remote sensing and geographical information systems technologies to fill some of the existing information gaps. Finally, the paper includes an analysis of major data gaps and information needs with respect to freshwater species to measure progress towards the 2010 biodiversity targets. PMID:15814353

  3. Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar

    PubMed Central

    Andriamaro, Luciano; Cano, Carlos Andres; Grantham, Hedley S.; Hole, David; Juhn, Daniel; McKinnon, Madeleine; Rasolohery, Andriambolantsoa; Steininger, Marc; Wright, Timothy Max

    2016-01-01

    The importance of ecosystems for supporting human well-being is increasingly recognized by both the conservation and development sectors. Our ability to conserve ecosystems that people rely on is often limited by a lack of spatially explicit data on the location and distribution of ecosystem services (ES), the benefits provided by nature to people. Thus there is a need to map ES to guide conservation investments, to ensure these co-benefits are maintained. To target conservation investments most effectively, ES assessments must be rigorous enough to support conservation planning, rapid enough to respond to decision-making timelines, and often must rely on existing data. We developed a framework for rapid spatial assessment of ES that relies on expert and stakeholder consultation, available data, and spatial analyses in order to rapidly identify sites providing multiple benefits. We applied the framework in Madagascar, a country with globally significant biodiversity and a high level of human dependence on ecosystems. Our objective was to identify the ES co-benefits of biodiversity priority areas in order to guide the investment strategy of a global conservation fund. We assessed key provisioning (fisheries, hunting and non-timber forest products, and water for domestic use, agriculture, and hydropower), regulating (climate mitigation, flood risk reduction and coastal protection), and cultural (nature tourism) ES. We also conducted multi-criteria analyses to identify sites providing multiple benefits. While our approach has limitations, including the reliance on proximity-based indicators for several ES, the results were useful for targeting conservation investments by the Critical Ecosystem Partnership Fund (CEPF). Because our approach relies on available data, standardized methods for linking ES provision to ES use, and expert validation, it has the potential to quickly guide conservation planning and investment decisions in other data-poor regions. PMID:28006005

  4. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    PubMed

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  5. A Comparison of Statistical Techniques for Combining Modeled and Observed Concentrations to Create High-Resolution Ozone Air Quality Surfaces

    EPA Science Inventory

    Air quality surfaces representing pollutant concentrations across space and time are needed for many applications, including tracking trends and relating air quality to human and ecosystem health. The spatial and temporal characteristics of these surfaces may reveal new informat...

  6. Chapter 6. Temporal and spatial scales

    Treesearch

    Robert R. Ziemer

    1997-01-01

    Human activities have degraded substantial portions of the nation’s ecological resources, including physical and biological aquatic systems. The effects are continuing and cumulative, and few high-quality aquatic ecosystems remain in the United States. Concern about these diminishing resources has resulted in numerous restoration programs. Some are well conceived...

  7. Effects of algal-derived carbon on sediment methane production in a eutrophic Ohio reservoir

    EPA Science Inventory

    Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. A...

  8. Network analysis: a new tool for resource managers

    Treesearch

    Ruth H. Allen

    1980-01-01

    Resource managers manipulate ecosystems for direct or indirect human uses. Examples of relatively well studied resource management issues include familiar biological products such as: forests, ranges, fish and wildlife; or physical products such as air, water and soil. Until very recently, urban environments received much less scholarly attention. However, as Spurr (...

  9. MINEBANK RUN PROJECT AS AN APPROACH FOR RESTORING DEGRADED URBAN WATERSHEDS AND RIPARIAN ECOSYSTEMS

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater pose human and ecological threats. Minebank Run, an urban stream in Baltimore MD, will be restored in 2004/2005 using various techniques including reshaping stream banks to reconnect stream channel to flood plain, stream bank r...

  10. Conservation of biological diversity

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Rachel Riemann; Brent Dickinson; W. Keith Moser; Barry T. (Ty) Wilson; James D. Garner

    2016-01-01

    People enjoy a variety of ecosystem services, or benefits, from forests, including water purification, recreation, income from tourism, timber products, and the cultural and economic benefits from hunting, fishing, and gathering (Shvidenko et al. 2005). Across the Northern United States, growing human populations will place increased service demands on forests for the...

  11. HIGHLY SENSITIVE DIOXIN IMMUNOASSAY AND ITS APPLICATIONS TO SOIL AND BIOTA SAMPLES. (R825433)

    EPA Science Inventory

    Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known highly toxic compound that is present in nearly all components of the global ecosystem, including air, soil, sediment, fish and humans. Dioxin analysis is equipment intensive and expensive requiring low ppt or even ppq ...

  12. 77 FR 57070 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... their behavior to mitigate that threat. Type of information collected will include (1) risk perceptions... and Climate Change: Risk Mitigation Behaviors of Homeowners. OMB Control Number: 0596-New. Summary of... risk to human and ecosystem health. In efforts to mitigate this risk the U.S. Forest Service (FS) uses...

  13. LINKING GREAT WATERSHEDS AND RIVERS TO FORECAST THE IMPACT OF CONTAMINANT STRESSORS ON LARGE RECEIVING WATERS

    EPA Science Inventory

    Contaminated sediments are pervasive within the waters of the nation. A number of contaminants are bioaccumulative and are an unacceptable risk to the ecosystem, including humans. Many sites having contaminated sediments are contained within state 305(b) and 303(d) listings and w...

  14. Climate and land-use change in wetlands: A dedication

    USGS Publications Warehouse

    Middleton, Beth A.

    2017-01-01

    Future climate and land-use change may wreak havoc on wetlands, with the potential to erode their values as harbors for biota and providers of human services. Wetlands are important to protect, particularly because these provide a variety of ecosystem services including wildlife habitat, water purification, flood storage, and storm protection (Mitsch, Bernal, and Hernandez 2015). Without healthy wetlands, future generations may become increasingly less in harmony with the sustainability of the Earth. To this end, the thematic feature on climate and land-use change in wetlands explores the critical role of wetlands in the overall health and well-being of humans and our planet. Our special feature contributes to the understanding of the idea that the health of natural ecosystems and humans are linked and potentially stressed by climate change and land-use change (Horton and Lo 2015; McDonald 2015). In particular, this special issue considers the important role of wetlands in the environment, and how land-use and environmental change might affect them in the future.

  15. Fort Collins Science Center - Fiscal Year 2008 Science Accomplishments

    USGS Publications Warehouse

    Wilson, Juliette T.

    2009-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) contribute a unique blend of ecological, socioeconomic, and technological expertise to investigating complicated ecological problems that address critical management questions. In Fiscal Year 2008 (FY08), FORT's scientific and technical professionals continued research vital to the science and management needs of U.S. Department of the Interior agencies and other entities. This annual report describes select FY08 accomplishments in research and technical assistance involving biological information management and delivery; aquatic, riparian, and managed-river ecosystems; invasive species; status and trends of biological resources (including human dimensions and social science); terrestrial ecosystems; and fish and wildlife resources.

  16. Summary: Ecosystem Services and Human Welfare

    EPA Science Inventory

    The ecosystem services paradigm is a framework conceived to engage support among people, especially policy- and decision-makers, for the recognition that human welfare, prosperity, security, and well-being are intrinsically linked to the health of the environment. Simply stated, ...

  17. Quantifying Ecosystem Services, Assessing Human Impacts

    EPA Science Inventory

    Natural and managed ecosystems provide a multitude of resources and services vital to human well-being – provisioning of food, fiber, clean water and air, habitat for fish and wildlife, recreational opportunities, prevention of flooding, reduction of greenhouse gases, among many ...

  18. Extended benefit cost analysis as an instrument of economic valuated in Petungkriyono forest ecosystem services

    NASA Astrophysics Data System (ADS)

    Damayanti, Irma; Nur Bambang, Azis; Retnaningsih Soeprobowati, Tri

    2018-05-01

    Petungkriyono is the last tropical forest in Java and provides biodiversity including rare flora and fauna that must be maintained, managed and utilized in order to give meaning for humanity and sustainability. Services of Forest Ecosystem in Petungkriyono are included such as goods supply, soil-water conservation, climate regulation, purification environment and flora fauna habitats. The approach of this study is the literature review from various studies before perceiving the influenced of economic valuation in determining the measurement conservation strategies of Petungkriyono Natural Forest Ecosystem in Pekalongan Regency. The aims of this study are to analyzing an extended benefit cost of natural forest ecosystems and internalizing them in decision making. The method of quantification and valuation of forest ecosystem is Cost and Benefit Analysis (CBA) which is a standard economic appraisal tools government in development economics. CBA offers the possibility capturing impact of the project. By using productivity subtitution value and extended benefit cost analysis any comodity such as Backwoods,Pine Woods, Puspa woods and Pine Gum. Water value, preventive buildings of landslide and carbon sequestration have total economic value of IDR.163.065.858.080, and the value of Extended Benefit Cost Ratio in Petungkriyono is 281.35 %. However, from the result is expected the local government of Pekalongan to have high motivation in preserve the existence of Petungkriyono forest.

  19. Transforming Ecosystems: When, Where, and How to Restore Contaminated Sites

    PubMed Central

    Rohr, Jason R; Farag, Aïda M; Cadotte, Marc W; Clements, William H; Smith, James R; Ulrich, Cheryl P; Woods, Richard

    2016-01-01

    Chemical contamination has impaired ecosystems, reducing biodiversity and the provisioning of functions and services. This has spurred a movement to restore contaminated ecosystems and develop and implement national and international regulations that require it. Nevertheless, ecological restoration remains a young and rapidly growing discipline and its intersection with toxicology is even more nascent and underdeveloped. Consequently, we provide guidance to scientists and practitioners on when, where, and how to restore contaminated ecosystems. Although restoration has many benefits, it also can be expensive, and in many cases systems can recover without human intervention. Hence, the first question we address is: “When should we restore contaminated ecosystems?” Second, we provide suggestions on what to restore—biodiversity, functions, services, all 3, or something else—and where to restore given expected changes to habitats driven by global climate change. Finally, we provide guidance on how to restore contaminated ecosystems. To do this, we analyze critical aspects of the literature dealing with the ecology of restoring contaminated ecosystems. Additionally, we review approaches for translating the science of restoration to on-the-ground actions, which includes discussions of market incentives and the finances of restoration, stakeholder outreach and governance models for ecosystem restoration, and working with contractors to implement restoration plans. By explicitly considering the mechanisms and strategies that maximize the success of the restoration of contaminated sites, we hope that our synthesis serves to increase and improve collaborations between restoration ecologists and ecotoxicologists and set a roadmap for the restoration of contaminated ecosystems. PMID:26033665

  20. Transforming ecosystems: When, where, and how to restore contaminated sites

    USGS Publications Warehouse

    Rohr, Jason R.; Farag, Aïda M.; Cadotte, Marc W.; Clements, William H.; Smith, James R.; Ulrich, Cheryl P.; Woods, Richard

    2016-01-01

    Chemical contamination has impaired ecosystems, reducing biodiversity and the provisioning of functions and services. This has spurred a movement to restore contaminated ecosystems and develop and implement national and international regulations that require it. Nevertheless, ecological restoration remains a young and rapidly growing discipline and its intersection with toxicology is even more nascent and underdeveloped. Consequently, we provide guidance to scientists and practitioners on when, where, and how to restore contaminated ecosystems. Although restoration has many benefits, it also can be expensive, and in many cases systems can recover without human intervention. Hence, the first question we address is: “When should we restore contaminated ecosystems?” Second, we provide suggestions on what to restore—biodiversity, functions, services, all 3, or something else—and where to restore given expected changes to habitats driven by global climate change. Finally, we provide guidance on how to restore contaminated ecosystems. To do this, we analyze critical aspects of the literature dealing with the ecology of restoring contaminated ecosystems. Additionally, we review approaches for translating the science of restoration to on-the-ground actions, which includes discussions of market incentives and the finances of restoration, stakeholder outreach and governance models for ecosystem restoration, and working with contractors to implement restoration plans. By explicitly considering the mechanisms and strategies that maximize the success of the restoration of contaminated sites, we hope that our synthesis serves to increase and improve collaborations between restoration ecologists and ecotoxicologists and set a roadmap for the restoration of contaminated ecosystems.

  1. Mapping ecosystem services in the St. Louis River Estuary

    EPA Science Inventory

    Sustainable management of ecosystems for the perpetual flow of services beneficial to human communities requires reliable data about from where in the ecosystem services flow. Our objective is to map ecosystem services in the St. Louis River with the overarching U.S. EPA goal of ...

  2. Meeting Report: Methylmercury in Marine Ecosystems—From Sources to Seafood Consumers

    PubMed Central

    Chen, Celia Y.; Serrell, Nancy; Evers, David C.; Fleishman, Bethany J.; Lambert, Kathleen F.; Weiss, Jeri; Mason, Robert P.; Bank, Michael S.

    2008-01-01

    Mercury and other contaminants in coastal and open-ocean ecosystems are an issue of great concern globally and in the United States, where consumption of marine fish and shellfish is a major route of human exposure to methylmercury (MeHg). A recent National Institute of Environmental Health Sciences–Superfund Basic Research Program workshop titled “Fate and Bioavailability of Mercury in Aquatic Ecosystems and Effects on Human Exposure,” convened by the Dartmouth Toxic Metals Research Program on 15–16 November 2006 in Durham, New Hampshire, brought together human health experts, marine scientists, and ecotoxicologists to encourage cross-disciplinary discussion between ecosystem and human health scientists and to articulate research and monitoring priorities to better understand how marine food webs have become contaminated with MeHg. Although human health effects of Hg contamination were a major theme, the workshop also explored effects on marine biota. The workgroup focused on three major topics: a) the biogeochemical cycling of Hg in marine ecosystems, b) the trophic transfer and bioaccumulation of MeHg in marine food webs, and c) human exposure to Hg from marine fish and shellfish consumption. The group concluded that current understanding of Hg in marine ecosystems across a range of habitats, chemical conditions, and ocean basins is severely data limited. An integrated research and monitoring program is needed to link the processes and mechanisms of MeHg production, bioaccumulation, and transfer with MeHg exposure in humans. PMID:19079724

  3. Global urban signatures of phenotypic change in animal and plant populations

    PubMed Central

    Correa, Cristian; Marzluff, John M.; Hendry, Andrew P.; Palkovacs, Eric P.; Hunt, Victoria M.; Apgar, Travis M.; Zhou, Yuyu

    2017-01-01

    Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends. PMID:28049817

  4. Global urban signatures of phenotypic change in animal and plant populations.

    PubMed

    Alberti, Marina; Correa, Cristian; Marzluff, John M; Hendry, Andrew P; Palkovacs, Eric P; Gotanda, Kiyoko M; Hunt, Victoria M; Apgar, Travis M; Zhou, Yuyu

    2017-08-22

    Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends.

  5. Climate, environment and transmission of malaria.

    PubMed

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi

    2016-06-01

    Malaria, the most common parasitic disease in the world, is transmitted to the human host by mosquitoes of the genus Anopheles. The transmission of malaria requires the interaction between the host, the vector and the parasite.The four species of parasites responsible for human malaria are Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Occasionally humans can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of human malaria in South-East Asia since 2004. While P. falciparum is responsible for most malaria cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of human malaria parasites is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to humans and 41 are considered as dominant vector capable of transmitting malaria. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for malaria transmission needs strong interaction between humans, the ecosystem and infected vectors. Global warming induced by human activities has increased the risk of vector-borne diseases such as malaria. Recent decades have witnessed changes in the ecosystem and climate without precedent in human history although the emphasis in the role of temperature on the epidemiology of malaria has given way to predisposing conditions such as ecosystem changes, political instability and health policies that have reduced the funds for vector control, combined with the presence of migratory flows from endemic countries.

  6. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce uncertainty in forecasts of decadal and centennial feedbacks of rising atmospheric CO2 on carbon storage.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    Planning a rational energy future requires anticipating the environmental consequences of various technologies. This is difficult to do with precision as the effects of pollutants are often determined by interactions between and among complex physical (abiotic) and biological (biotic) systems. A given pollutant may affect human beings through direct exposure or indirectly through inducing changes to biological systems which humans need to utilize. The concentration of a toxin in the food chain or the destruction of organisms necessary for the maintenance of high quality water are examples of indirect effects. Pollutants can be transformed and/or degraded as they establish residencemore » in various components of an ecosystem. Anticipation and amelioration of pollutant effects involves the integration of a vast range of data. This data includes: (1) physical and chemical characterization cf the pollutant as it enters the environment; (2) determining effects on the various components (biotic and abiotic) within the context of the functioning ecosystem of interest; (3) transformation in movements and/or degradation of the pollutant within that ecosystem and within specific organisms and physical components; and (4) determining a detailed biochemical and biological picture of the interactions of pollutants with particular organisms and/or their cellular components judged salient for various processes. The major programs described below are designed to answer parts of the above fundamental questions relevant to pollutants generated by energy related technologies. Their emphasis is on anticipating consequences to the biological components of various ecosystems. The work ranges from studies involving parts of a single cell (the membranes) to studies involving the whole ecosystem (in the pelagic zone of a lake). The programs take advantage of expertise and technical abilities present at LBL. Two small exploratory projects which were of brief duration and not related to anticipating biological effects of pollutants are included in this section. They concern geothermal technology and its improvement using techniques based on organic and physical properties of certain materials.« less

  8. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa; hide

    2016-01-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce uncertainty in forecasts of decadal and centennial feedbacks of rising atmospheric CO2 on carbon storage.

  9. The future of nearshore processes research

    USGS Publications Warehouse

    Elko, Nicole A.; Feddersen, Falk; Foster, Diane; Hapke, Cheryl J.; McNinch, Jesse E.; Mulligan, Ryan P.; Tuba Ӧzkan-Haller, H.; Plant, Nathaniel G.; Raubenheimer, Britt

    2014-01-01

    The nearshore is the transition region between land and the continental shelf including (from onshore to offshore) coastal plains, wetlands, estuaries, coastal cliffs, dunes, beaches, surf zones (regions of wave breaking), and the inner shelf (Figure ES-1). Nearshore regions are vital to the national economy, security, commerce, and recreation. The nearshore is dynamically evolving, is often densely populated, and is under increasing threat from sea level rise, long-term erosion, extreme storms, and anthropogenic influences. Worldwide, almost one billion people live at elevations within 10 m of present sea level. Long-term erosion threatens communities, infrastructure, ecosystems, and habitat. Extreme storms can cause billions of dollars of damage. Degraded water quality impacts ecosystem and human health. Nearshore processes, the complex interactions between water, sediment, biota, and humans, must be understood and predicted to manage this often highly developed yet vulnerable nearshore environment. Over the past three decades, the understanding of nearshore processes has improved. However, societal needs are growing with increased coastal urbanization and threats of future climate change, and significant scientific challenges remain. To address these challenges, members of academia, industry, and federal agencies (USGS, USACE, NPS, NOAA, FEMA, ONR) met at the “The Past and Future of Nearshore Processes Research: Reflections on the Sallenger Years and a New Vision for the Future” workshop to develop a nearshore processes research vision where societal needs and science challenges intersect. The resulting vision is comprised of three broad research themes: Long-term coastal evolution due to natural and anthropogenic processes: As global climate change alters the rates of sea level rise and potentially storm patterns and coastal urbanization increases over the coming decades, an understanding of coastal evolution is critical. Improved knowledge of long-term morphological, ecological, and societal processes and their interactions will result in an improved ability to simulate coastal change. This will enable proactive solutions for resilient coasts and better guidance for reducing coastal vulnerability.Extreme Events: Flooding, erosion, and the subsequent recovery: Hurricane Sandy caused flooding and erosion along hundreds of miles of shoreline, flooded New York City, and impacted communities and infrastructure. Overall U.S. coastal extreme event related economic losses have increased substantially. Furthermore, climate change may cause an increase in coastal extreme events and rising sea levels could increase the occurrence of extreme events. Addressing this research theme will result in an improved understanding of the physical processes during extreme events, leading to improved models of flooding, erosion, and recovery. The resulting societal benefit will be more resilient coastal communities.The physical, biological and chemical processes impacting human and ecosystem health: Nearshore regions are used for recreation, tourism, and human habitation, and provide habitat and valuable ecosystem services. These areas must be sustained for future generations, however overall coastal water quality is declining due to microbial pathogens, fertilizers, pesticides, and heavy metal contamination, threatening ecosystem and human health. To ensure sustainable nearshore regions, predictive real-time water- and sediment-based based pollutant modeling capabilities must be developed, which requires expanding our knowledge of the physics, chemistry, and biology of the nearshore. The resulting societal benefits will include better beach safety, healthier ecosystems, and improved mitigation and regulatory policies.The scientists and engineers of the U.S. nearshore community are poised to make significant progress on these research themes, which have significant societal impact. The U.S. nearshore community, including academic, government, and industry colleagues, recommends multi-agency investment into a coordinated development of observational and modeling research infrastructure to address these themes, as discussed in the whitepaper. The observational infrastructure should include development of new sensors and methods, focused observational programs, and expanded nearshore observing systems. The modeling infrastructure should include improved process representation, better model coupling, incorporation of data assimilation techniques, and testing of real-time models. The observations will provide test beds to compare and improve models.

  10. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality

    PubMed Central

    Montiel-Castro, Augusto J.; González-Cervantes, Rina M.; Bravo-Ruiseco, Gabriela; Pacheco-López, Gustavo

    2013-01-01

    Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting it against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called “microbiota–gut–vagus–brain axis,” is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile. PMID:24109440

  11. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality.

    PubMed

    Montiel-Castro, Augusto J; González-Cervantes, Rina M; Bravo-Ruiseco, Gabriela; Pacheco-López, Gustavo

    2013-10-07

    Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting it against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called "microbiota-gut-vagus-brain axis," is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.

  12. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    PubMed Central

    Boivin, Nicole L.; Zeder, Melinda A.; Fuller, Dorian Q.; Crowther, Alison; Larson, Greger; Erlandson, Jon M.; Denham, Tim; Petraglia, Michael D.

    2016-01-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  13. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions.

    PubMed

    Boivin, Nicole L; Zeder, Melinda A; Fuller, Dorian Q; Crowther, Alison; Larson, Greger; Erlandson, Jon M; Denham, Tim; Petraglia, Michael D

    2016-06-07

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.

  14. The role of hydrological and water quality models in the application of the ecosystem services framework for the EU Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Hallouin, Thibault; Bruen, Michael; Feeley, Hugh B.; Christie, Michael; Bullock, Craig; Kelly, Fiona; Kelly-Quinn, Mary

    2017-04-01

    The hydrological cycle is intimately linked with environmental processes that are essential for human welfare in many regards including, among others, the provision of safe water from surface and subsurface waterbodies, rain-fed agricultural production, or the provision of aquatic-sourced food. As well as being a receiver of these natural benefits, the human population is also a manager of the water and other natural resources and, as such, can affect their future sustainable provision. With global population growth and climate change, both the dependence of the human population on water resources and the threat they pose to these resources are likely to intensify so that the sustainability of the coupled natural and human system is threatened. In the European Union, the Water Framework Directive is driving policy and encouraging member states to manage their water resources wisely in order to maintain or restore ecological quality. To this end, the ecosystem services framework can be a useful tool to link the requirements in terms of ecological status into more tangible descriptors, that is the ecosystem services. In the ESManage Project, existing environmental system models such as hydrological models and water quality models are used as the basis to quantify the provision of many hydrological and aquatic ecosystem services by constructing indicators for the ecosystem services from the modelled environmental variables. By allowing different management options and policies to be compared, these models can be a valuable source of information for policy makers when they are used for climate and land use scenario analyses. Not all hydrological models developed for flood forecasting are suitable for this application and inappropriate models can lead to questionable conclusions. This paper demonstrates the readily available capabilities of a specially developed catchment hydrological model coupled with a water quality model to quantify a wide range of biophysically quantifiable water-related ecosystem services such as water provision (river flows, groundwater recharge and vegetation transpiration), flood regulation or nutrient and sediment retention. This combination of models will be used to carry out scenario analyses on IPCC climate change scenarios as well as various land use scenarios. Results will be presented for a test catchment in the Republic of Ireland.

  15. Untangling human development and natural gradients: implications of underlying correlation structure for linking landscapes and riverine ecosystems

    Treesearch

    Yasmin Lucero; E. Ashley Steel; Kelly M. Burnett; Kelly Christiansen

    2011-01-01

    Increasingly, ecologists seek to identify and quantify relationships between landscape gradients and aquatic ecosystems. Considerable statistical challenges emerge in this effort, some of which are attributable to multicollinearity between human development and landscape gradients. In this paper, we measure the covariation between human development—such as agriculture...

  16. Indicators and Methods for Constructing a U.S. Human Well-being Index (HWBI) for Ecosystem Services Research

    EPA Science Inventory

    Humans are dependent upon the services provided by nature, and unless we effectively account for the range of values from ecosystems in our efforts to protect the environment, we cannot sustain human well-being. In light of this dependence, a national measure of well-being is nee...

  17. Human influences on evolution, and the ecological and societal consequences

    PubMed Central

    Hendry, Andrew P.; Svensson, Erik I.

    2017-01-01

    Humans have dramatic, diverse and far-reaching influences on the evolution of other organisms. Numerous examples of this human-induced contemporary evolution have been reported in a number of ‘contexts’, including hunting, harvesting, fishing, agriculture, medicine, climate change, pollution, eutrophication, urbanization, habitat fragmentation, biological invasions and emerging/disappearing diseases. Although numerous papers, journal special issues and books have addressed each of these contexts individually, the time has come to consider them together and thereby seek important similarities and differences. The goal of this special issue, and this introductory paper, is to promote and expand this nascent integration. We first develop predictions as to which human contexts might cause the strongest and most consistent directional selection, the greatest changes in evolutionary potential, the greatest genetic (as opposed to plastic) changes and the greatest effects on evolutionary diversification. We then develop predictions as to the contexts where human-induced evolutionary changes might have the strongest effects on the population dynamics of the focal evolving species, the structure of their communities, the functions of their ecosystems and the benefits and costs for human societies. These qualitative predictions are intended as a rallying point for broader and more detailed future discussions of how human influences shape evolution, and how that evolution then influences species traits, biodiversity, ecosystems and humans. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920373

  18. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and Human Health Act of 2004. Major outcomes of the OHH Act of 2004 include: --A national focus on ocean health and its relation to human health and well-being; --Enhanced interagency coordination and cooperation in research, development, and education; --Emphasis on development of a new, interdisciplinary community of practice; --Increased understanding of linkages between marine animal health and human health and the dangers of transmission of zoonotic diseases from the marine environment; --A richer understanding of factors affecting the occurrence and impacts of ocean health threats; --An enhanced ability of the ocean science and public health communities to respond to health-related emergencies; --A strong focus on development of ecological forecasts that are providing early warning of ocean health threats and impacts, thus improving the effectiveness of protection and mitigation actions. Taken together, these outcomes contribute significantly to more sustainable management of coastal resources and communities.

  19. Planning Sustainability: A Master Plan For Stella, Missouri

    EPA Science Inventory

    Human Life is conditional upon intact ecosystems that provide goods and services required to sustain human life. Because development will incrementally and cumulative consume the biophysical environment, the conditions of intact ecosystems must be the basis for how the environme...

  20. Using iTree Model in Clark County, Nevada

    EPA Science Inventory

    Ecosystem services are the services and benefits that human populations obtain from nature. Whether surrounded by a forested, coastal, or urban area, ecosystems provide recreation, food, shelter, cleaner air and water. As the climate and environment change due to human activity,...

  1. Socio-ecosystems and urban habitats

    Treesearch

    Margarita V. Alario

    2007-01-01

    The Millennium Ecosystem Assessment (MA)—a United Nations effort to assess the health of major global ecosystems—reported that over the past 50 years, humans have changed ecosystems more rapidly and extensively than in any comparable time in history. Around two thirds of the ecosystems services (anything from fresh water to air) are being degraded or used unsustainably...

  2. Fire as an ecosystem process: Chapter 3

    USGS Publications Warehouse

    Keeley, Jon E.; Safford, Hugh D.; Mooney, Harold A.; Zavaleta, Erika S.

    2016-01-01

    This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

  3. Ecology of the seagrasses of south Florida: a community profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zieman, J.C.

    1982-09-01

    A detailed description is given of the community structure and ecosystem processes of the seagrass ecosystems of south Florida. This description is based upon a compilation of information from numerous published and unpublished sources. The material covered includes distribution, systematics, physiology, and growth of the plants, as well as succession and community development. The role of seagrass ecosystems in providing both food and shelter for juveniles as well as foraging grounds for larger organisms is treated in detail. Emphasis is given to the functional role of seagrass communities in the overall coastal marine system. The final section considers the impactsmore » of human development on seagrass ecosystems and their value to both man and the natural system. Because seagrass systems are fully submerged and less visually obvious, recognition of their value as a natural resource has been slower than that of the emergent coastal communities. They must, however, be treated as a valuable natural resource and preserved from further degradation.« less

  4. Fort Collins Science Center Ecosystem Dynamics branch--interdisciplinary research for addressing complex natural resource issues across landscapes and time

    USGS Publications Warehouse

    Bowen, Zachary H.; Melcher, Cynthia P.; Wilson, Juliette T.

    2013-01-01

    The Ecosystem Dynamics Branch of the Fort Collins Science Center offers an interdisciplinary team of talented and creative scientists with expertise in biology, botany, ecology, geology, biogeochemistry, physical sciences, geographic information systems, and remote-sensing, for tackling complex questions about natural resources. As demand for natural resources increases, the issues facing natural resource managers, planners, policy makers, industry, and private landowners are increasing in spatial and temporal scope, often involving entire regions, multiple jurisdictions, and long timeframes. Needs for addressing these issues include (1) a better understanding of biotic and abiotic ecosystem components and their complex interactions; (2) the ability to easily monitor, assess, and visualize the spatially complex movements of animals, plants, water, and elements across highly variable landscapes; and (3) the techniques for accurately predicting both immediate and long-term responses of system components to natural and human-caused change. The overall objectives of our research are to provide the knowledge, tools, and techniques needed by the U.S. Department of the Interior, state agencies, and other stakeholders in their endeavors to meet the demand for natural resources while conserving biodiversity and ecosystem services. Ecosystem Dynamics scientists use field and laboratory research, data assimilation, and ecological modeling to understand ecosystem patterns, trends, and mechanistic processes. This information is used to predict the outcomes of changes imposed on species, habitats, landscapes, and climate across spatiotemporal scales. The products we develop include conceptual models to illustrate system structure and processes; regional baseline and integrated assessments; predictive spatial and mathematical models; literature syntheses; and frameworks or protocols for improved ecosystem monitoring, adaptive management, and program evaluation. The descriptions in this fact sheet provide snapshots of our three research emphases, followed by descriptions of select current projects.

  5. The Landscape Framework for the Spatial Characterization and Mapping of Ecosystem Services: What is the State of the Science?

    EPA Science Inventory

    Ecosystem services (ESS) represent an ecosystems capacity for satisfying essential human needs, directly or indirectly, above that required to maintain ecosystem integrity (structure, function and processes). The spatial characterization and mapping of ESS is an essential first s...

  6. Protecting our environmental wealth: Connecting ecosystem goods and services to human well-being

    EPA Science Inventory

    Ecosystems produce essential outputs upon which people’s well-being and livelihood depend. These outputs are referred to as “ecosystem goods and services” (EGS). National accounting systems do not track the goods and services produced by ecosystems, and we do not have a consist...

  7. A GIS application for assessing, mapping, and quantifying the social values of ecosystem services

    USGS Publications Warehouse

    Sherrouse, Benson C.; Clement, Jessica M.; Semmens, Darius J.

    2011-01-01

    As human pressures on ecosystems continue to increase, research involving the effective incorporation of social values information into the context of comprehensive ecosystem services assessments is becoming more important. Including quantified, spatially explicit social value metrics in such assessments will improve the analysis of relative tradeoffs among ecosystem services. This paper describes a GIS application, Social Values for Ecosystem Services (SolVES), developed to assess, map, and quantify the perceived social values of ecosystem services by deriving a non-monetary Value Index from responses to a public attitude and preference survey. SolVES calculates and maps the Value Index for social values held by various survey subgroups, as distinguished by their attitudes regarding ecosystem use. Index values can be compared within and among survey subgroups to explore the effect of social contexts on the valuation of ecosystem services. Index values can also be correlated and regressed against landscape metrics SolVES calculates from various environmental data layers. Coefficients derived through these analyses were applied to their corresponding data layers to generate a predicted social value map. This map compared favorably with other SolVES output and led to the addition of a predictive mapping function to SolVES for value transfer to areas where survey data are unavailable. A more robust application is being developed as a public domain tool for decision makers and researchers to map social values of ecosystem services and to facilitate discussions among diverse stakeholders involving relative tradeoffs among different ecosystem services in a variety of physical and social contexts.

  8. Reality check of socio-hydrological interactions in water quality and ecosystem management

    NASA Astrophysics Data System (ADS)

    Destouni, Georgia; Fischer, Ida; Prieto, Carmen

    2017-04-01

    Socio-hydrological interactions in water management for improving water quality and ecosystem status include as key components both (i) the societal measures taken for mitigation and control, and (ii) the societal characterization and monitoring efforts made for choosing management targets and checking the effects of measures taken to reach the targets. This study investigates such monitoring, characterization and management efforts and effects over the first six-year management cycle of the EU Water Framework Directive (WFD). The investigation uses Sweden and the WFD-regulated management of its stream and lake waters as a concrete quantification example, with focus on the nutrient and eutrophication conditions that determine the most prominent water quality and ecosystem problems in need of mitigation in the Swedish waters. The case results show a relatively small available monitoring base for determination of these nutrient and eutrophication conditions, even though they constitute key parts in the overall WFD-based approach to classification and management of ecosystem status. Specifically, actual nutrient monitoring exists in only around 1% (down to 0.2% for nutrient loads) of the Swedish stream and lake water bodies; modeling is used to fill the gaps for the remaining unmonitored fraction of classified and managed waters. The available data show that the hydro-climatically driven stream water discharge is a primary explanatory variable for the resulting societal classification of ecosystem status in Swedish waters; this may be due to the discharge magnitude being dominant in determining nutrient loading to these waters. At any rate, with such a hydro-climatically related, rather than human-pressure related, determinant of the societal ecosystem-status classification, the main human-driven causes and effects of eutrophication may not be appropriately identified, and the measures taken for mitigating these may not be well chosen. The available monitoring data from Swedish waters support this hypothesis, by showing that the first WFD management cycle 2009-2015 has led to only slight changes in measured nutrient concentrations, with moderate-to-bad status waters mostly undergoing concentration increases. These management results are in direct contrast to the WFD management goals that ecosystem status in all member-state waters must be improved to at least good level, and in any case not be allowed to further deteriorate. In general, the present results show that societal approaches to ecosystem status classification, monitoring and improvement may need a focus shift for improved identification and quantification of the human-driven components of nutrient inputs, concentrations and loads in water environments. Dominant hydro-climatic change drivers and effects must of course also be understood and accounted for. However, adaptation to hydro-climatic changes should be additional to and aligned with, rather than instead of, necessary mitigation of human-driven eutrophication. The present case results call for further science-based testing and evidence of societal water quality and ecosystem management actually targeting and following up the potential achievement of such mitigation.

  9. Five critical questions of scale for the coastal zone

    NASA Astrophysics Data System (ADS)

    Swaney, D. P.; Humborg, C.; Emeis, K.; Kannen, A.; Silvert, W.; Tett, P.; Pastres, R.; Solidoro, C.; Yamamuro, M.; Hénocque, Y.; Nicholls, R.

    2012-01-01

    Social and ecological systems around the world are becoming increasingly globalized. From the standpoint of understanding coastal ecosystem behavior, system boundaries are not sufficient to define causes of change. A flutter in the stock market in Tokyo or Hong Kong can affect salmon producers in Norway or farmers in Togo. The globalization of opportunistic species and the disempowerment of people trying to manage their own affairs on a local scale seem to coincide with the globalization of trade. Human-accelerated environmental change, including climate change, can exacerbate this sense of disenfranchisement. The structure and functioning of coastal ecosystems have been developed over thousands of years subject to environmental forces and constraints imposed mainly on local scales. However, phenomena that transcend these conventional scales have emerged with the explosion of human population, and especially with the rise of modern global culture. Here, we examine five broad questions of scale in the coastal zone: How big are coastal ecosystems and why should we care? Temporal scales of change in coastal waters and watersheds: Can we detect shifting baselines due to economic development and other drivers? Are footprints more important than boundaries? What makes a decision big? The tyranny of small decisions in coastal regions. Scales of complexity in coastal waters: the simple, the complicated or the complex? These questions do not have straightforward answers. There is no single "scale" for coastal ecosystems; their multiscale nature complicates our understanding and management of them. Coastal ecosystems depend on their watersheds as well as spatially-diffuse "footprints" associated with modern trade and material flows. Change occurs both rapidly and slowly on human time scales, and observing and responding to changes in coastal environments is a fundamental challenge. Apparently small human decisions collectively have potentially enormous consequences for coastal environmental quality, and our success in managing the effects of these decisions will determine the quality of life in the coastal zone in the 21st century and beyond. Vigilant monitoring, creative synthesis of information, and continued research will be necessary to properly understand and govern our coastal environments into the future.

  10. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts.

    PubMed

    Yan, Zhengbing; Han, Wenxuan; Peñuelas, Josep; Sardans, Jordi; Elser, James J; Du, Enzai; Reich, Peter B; Fang, Jingyun

    2016-10-01

    Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well-assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems. © 2016 John Wiley & Sons Ltd/CNRS.

  11. Biogeoengineering for the Anthropocene

    NASA Astrophysics Data System (ADS)

    Peacock, K.

    2015-12-01

    There is an increasing awareness within ecology that all organisms are "engineers" of their own ecosystems. Humans are no exception; indeed, the human impact on the earth system is so massive that it is said to define a new geological epoch, the Anthropocene. Our impact is largely deleterious in the precise sense that it undermines the very ecological conditions that enabled human survival and flourishing in the first place; it is thus ultimately self-defeating. The current crises of biodiversity loss and anthropogenic climate change are only the most dramatic and urgent manifestations of the fact that humanity has not contrived a self-sustaining modality of existence on this planet. As ecologist Eugene Odum put it, "The present concept of 'unlimited exploitation of resources' [must] give way to 'unlimited ingenuity in perpetuating a cyclic abundance of resources' ". While some steps that can be taken to resolve the climate crisis (such as the development of more efficient photovoltaics) are not necessarily biological, an essential component of any effective and sustainable mitigation of global carbonization must include what can be called biogeoengineering, the application of human ingenuity to the support and restoration of the life support systems of the planet. This would include such measures as massive re- and afforestation, the preservation and creation of wildlife corridors and reserves, and soil building. Such steps would play key roles in drawing down atmospheric carbon, but they would have a larger aim: human ingenuity, both social and technological, must be directed to crafting an essentially symbiotic working relationship with the earth system, such that human activities would tend to support the 'ecosystem services' that in turn support humanity. This presentation will outline the theoretical basis for such a possibility, and discuss some of the means that could bring it into being.

  12. Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake.

    PubMed

    Moiseenko, T I; Voinov, A A; Megorsky, V V; Gashkina, N A; Kudriavtseva, L P; Vandish, O I; Sharov, A N; Sharova, Yu; Koroleva, I N

    2006-10-01

    There are rich deposits of mineral and fossil natural resources in the Arctic, which make this region very attractive for extracting industries. Their operations have immediate and vast consequences for ecological systems, which are particularly vulnerable in this region. We are developing a management strategy for Arctic watersheds impacted by industrial production. The case study is Lake Imandra watershed (Murmansk oblast, Russia) that has exceptionally high levels of economic development and large numbers of people living there. We track the impacts of toxic pollution on ecosystem health and then--human health. Three periods are identified: (a) natural, pre-industrial state; (b) disturbed, under rapid economic development; and (c) partial recovery, during recent economic meltdown. The ecosystem is shown to transform into a qualitatively new state, which is still different from the original natural state, even after toxic loadings have substantially decreased. Fish disease where analyzed to produce and integral evaluation of ecosystem health. Accumulation of heavy metals in fish is correlated with etiology of many diseases. Dose-effect relationships are between integral water quality indices and ecosystem health indicators clearly demonstrates that existing water quality standards adopted in Russia are inadequate for Arctic regions. Health was also poor for people drinking water from the Lake. Transport of heavy metals from drinking water, into human organs, and their effect on liver and kidney diseases shows the close connection between ecosystem and human health. A management system is outlined that is based on feedback from indices of ecosystem and human health and control over economic production and/or the amount of toxic loading produced. We argue that prospects for implementation of such a system are quite bleak at this time, and that more likely we will see a continued depopulation of these Northern regions.

  13. The Large Marine Ecosystem Approach for 21st Century Ocean Health and International Sustainable Development

    NASA Astrophysics Data System (ADS)

    Honey, K. T.

    2014-12-01

    The global coastal ocean and watersheds are divided into 66 Large Marine Ecosystems (LMEs), which encompass regions from river basins, estuaries, and coasts to the seaward boundaries of continental shelves and margins of major currents. Approximately 80% of global fisheries catch comes from LME waters. Ecosystem goods and services from LMEs contribute an estimated US 18-25 trillion dollars annually to the global economy in market and non-market value. The critical importance of these large-scale systems, however, is threatened by human populations and pressures, including climate change. Fortunately, there is pragmatic reason for optimism. Interdisciplinary frameworks exist, such as the Large Marine Ecosystem (LME) approach for adaptive management that can integrate both nature-centric and human-centric views into ecosystem monitoring, assessment, and adaptive management practices for long-term sustainability. Originally proposed almost 30 years ago, the LME approach rests on five modules are: (i) productivity, (ii) fish and fisheries, (iii) pollution and ecosystem health, (iv) socioeconomics, and (v) governance for iterative adaptive management at a large, international scale of 200,000 km2 or greater. The Global Environment Facility (GEF), World Bank, and United Nations agencies recognize and support the LME approach—as evidenced by over 3.15 billion in financial assistance to date for LME projects. This year of 2014 is an exciting milestone in LME history, after 20 years of the United Nations and GEF organizations adopting LMEs as a unit for ecosystem-based approaches to management. The LME approach, however, is not perfect. Nor is it immutable. Similar to the adaptive management framework it propones, the LME approach itself must adapt to new and emerging 21st Century technologies, science, and realities. The LME approach must further consider socioeconomics and governance. Within the socioeconomics module alone, several trillion-dollar opportunities exist for interdisciplinary integration with best practices in: (i) water-energy nexus infrastructure; (ii) responsible tourism; and (iii) open data innovations.

  14. One Health, emerging infectious diseases and wildlife: two decades of progress?

    PubMed

    Cunningham, Andrew A; Daszak, Peter; Wood, James L N

    2017-07-19

    Infectious diseases affect people, domestic animals and wildlife alike, with many pathogens being able to infect multiple species. Fifty years ago, following the wide-scale manufacture and use of antibiotics and vaccines, it seemed that the battle against infections was being won for the human population. Since then, however, and in addition to increasing antimicrobial resistance among bacterial pathogens, there has been an increase in the emergence of, mostly viral, zoonotic diseases from wildlife, sometimes causing fatal outbreaks of epidemic proportions. Concurrently, infectious disease has been identified as an increasing threat to wildlife conservation. A synthesis published in 2000 showed common anthropogenic drivers of disease threats to biodiversity and human health, including encroachment and destruction of wildlife habitat and the human-assisted spread of pathogens. Almost two decades later, the situation has not changed and, despite improved knowledge of the underlying causes, little has been done at the policy level to address these threats. For the sake of public health and wellbeing, human-kind needs to work better to conserve nature and preserve the ecosystem services, including disease regulation, that biodiversity provides while also understanding and mitigating activities which lead to disease emergence. We consider that holistic, One Health approaches to the management and mitigation of the risks of emerging infectious diseases have the greatest chance of success.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  15. Ecosystem services impacts associated with environmental reactive nitrogen release in the United States

    EPA Science Inventory

    Nitrogen release to the environment from human activities can have important and costly impacts on human health, recreation, transportation, fisheries, and ecosystem health. Recent efforts to quantify these damage costs have identified annual damages associated with reactive nit...

  16. GeoHealth: A Transdisciplinary Science Comes of Age

    NASA Astrophysics Data System (ADS)

    McEntee, C.

    2016-12-01

    GeoHealth is a transdisciplinary research discipline that connects Earth and environmental sciences with ecosystem and human health sciences. Geohealth research advances both basic and solutions focused research to address global societal challenges in ecosystem and human health. Some of the areas being addressed by geohealth include toxic substances in water, atmosphere, and soil and their effect on human health and environmental health. Geohealth research has been underway for several decades; several examples of recent prominent research findings include identifying complex exposures to dust in the aftermath of the 9/11 attack on the World Trade Center and a better understanding of toxic exposures from the Gulf oil spill and their health effects on humans and other species both on land and in water. Over the past decade, GeoHealth research output has grown significantly as evidenced by research output in both the volume of meeting abstracts and journal articles and by significant funding commitments by governmental funding agencies around the world. This presentation will provide an overview of scientific research areas encompassed in geohealth, data that demonstrate a nearly 50% increase in geohealth research output between 2010 and 2015, the double digit growth of geohealth research output in AGU meetings and journals, and which countries are currently leading in geohealth research output. An overview of government funding sources for geohealth research both within and outside the United States along with new AGU geohealth initiatives will also be presented.

  17. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    PubMed

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans.

  18. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift

    PubMed Central

    Ling, S. D.; Johnson, C. R.; Frusher, S. D.; Ridgway, K. R.

    2009-01-01

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans. PMID:20018706

  19. Biodiversity and leptospirosis risk: a case of pathogen regulation?

    PubMed

    Derne, Bonnie T; Fearnley, Emily J; Lau, Colleen L; Paynter, Stuart; Weinstein, Philip

    2011-09-01

    Well balanced ecosystems have an essential role in disease regulation, and consequently their correct functioning is increasingly recognised as imperative for maintaining human health. Disruptions to ecosystems have been found to increase the risk of several diseases, including Hantavirus, Lyme disease, Ross River virus, malaria and Ciguatera fish poisoning. Leptospirosis is a globally important emerging zoonosis, caused by spirochaete bacteria, borne by many mammalian hosts, and also transmitted environmentally. We propose that leptospirosis incidence in humans is also linked to ecosystem disruption, and that reduced biodiversity (the diversity of species within an ecological community) may be associated with increased leptospirosis incidence. To investigate this hypothesis, the relationship between biodiversity levels of island nations and their annual leptospirosis incidence rates (adjusted for GDP per capita) was examined by linear correlation and regression. Supportive, statistically significant negative associations were obtained between leptospirosis incidence and (a) total number of species (r2=0.69, p<0.001) and (b) number of mammal species (r2=0.80, p<0.001) in univariate analysis. In multivariable analysis only the number of mammal species remained significantly associated (r2=0.81, p=0.007). An association between biodiversity and reduced leptospirosis risk, if supported by further research, would emphasise the importance of managing the emergence of leptospirosis (and other infectious diseases) at a broader, ecosystem level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. River management impacts on riparian forest vegetation along the Middle Rio Grande: 1935-2014

    NASA Astrophysics Data System (ADS)

    Petrakis, Roy E.

    Riparian ecosystems of the southwestern United States are highly valuable to both the ecological and human communities which surround them. Over the past century, they have been subject to shifting management practices to maximize human use, control, ecosystem service, and conservation. This creates a complex relationship between water policy, management, and the natural ecosystem necessitating research on spatial and temporal dynamics of riparian vegetation. The San Acacia Reach of the Middle Rio Grande, a 60 mile stretch from the San Acacia Diversion Dam to San Marcial, has experienced multiple management and river flow fluctuations over the past 80 years, resulting in threats to riparian and aquatic ecosystems. This research was completed through the use and analysis of multi-source remote sensing data, GIS, and a review of the on-the-ground management decisions to better understand how the location and composition of the riparian vegetation has been affected by these shifting practices. This research focused on four phases, each highlighting different management practices and river flow patterns during the last 80-years. Each of these periods provides a unique opportunity to observe a direct relationship between river management and riparian land cover response and change. Overall, management practices reduced surface river flows and limited overbank flooding and resulted in changes in the composition, density, and spatial patterns of the vegetation, including increased non-native vegetation growth. Restoration efforts over the past few decades have begun to reduce the presence of non-native species. Despite these changes, this ecosystem was shown to be extremely resilient in maintaining its function/service throughout the entire study time frame.

Top