Kleandrova, Valeria V; Luan, Feng; González-Díaz, Humberto; Ruso, Juan M; Melo, André; Speck-Planche, Alejandro; Cordeiro, M Natália D S
2014-12-01
Nanotechnology has brought great advances to many fields of modern science. A manifold of applications of nanoparticles have been found due to their interesting optical, electrical, and biological/chemical properties. However, the potential toxic effects of nanoparticles to different ecosystems are of special concern nowadays. Despite the efforts of the scientific community, the mechanisms of toxicity of nanoparticles are still poorly understood. Quantitative-structure activity/toxicity relationships (QSAR/QSTR) models have just started being useful computational tools for the assessment of toxic effects of nanomaterials. But most QSAR/QSTR models have been applied so far to predict ecotoxicity against only one organism/bio-indicator such as Daphnia magna. This prevents having a deeper knowledge about the real ecotoxic effects of nanoparticles, and consequently, there is no possibility to establish an efficient risk assessment of nanomaterials in the environment. In this work, a perturbation model for nano-QSAR problems is introduced with the aim of simultaneously predicting the ecotoxicity of different nanoparticles against several assay organisms (bio-indicators), by considering also multiple measures of ecotoxicity, as well as the chemical compositions, sizes, conditions under which the sizes were measured, shapes, and the time during which the diverse assay organisms were exposed to nanoparticles. The QSAR-perturbation model was derived from a database containing 5520 cases (nanoparticle-nanoparticle pairs), and it was shown to exhibit accuracies of ca. 99% in both training and prediction sets. In order to demonstrate the practical applicability of our model, three different nickel-based nanoparticles (Ni) with experimental values reported in the literature were predicted. The predictions were found to be in very good agreement with the experimental evidences, confirming that Ni-nanoparticles are not ecotoxic when compared with other nanoparticles. The results of this study thus provide a single valuable tool toward an efficient prediction of the ecotoxicity of nanoparticles under multiple experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Furuhama, A; Hasunuma, K; Aoki, Y; Yoshioka, Y; Shiraishi, H
2011-01-01
The validity of chemical reaction mechanistic domains defined by skin sensitisation in the Quantitative Structure-Activity Relationship (QSAR) ecotoxicity system, KAshinhou Tools for Ecotoxicity (KATE), March 2009 version, has been assessed and an external validation of the current KATE system carried out. In the case of the fish end-point, the group of chemicals with substructures reactive to skin sensitisation always exhibited higher root mean square errors (RMSEs) than chemicals without reactive substructures under identical C- or log P-judgements in KATE. However, in the case of the Daphnia end-point this was not so, and the group of chemicals with reactive substructures did not always have higher RMSEs: the Schiff base mechanism did not function as a high error detector. In addition to the RMSE findings, the presence of outliers suggested that the KATE classification rules needs to be reconsidered, particularly for the amine group. Examination of the dependency of the organism on the toxic action of chemicals in fish and Daphnia revealed that some of the reactive substructures could be applied to the improvement of the KATE system. It was concluded that the reaction mechanistic domains of toxic action for skin sensitisation could provide useful complementary information in predicting acute aquatic ecotoxicity, especially at the fish end-point.
Furuhama, A; Toida, T; Nishikawa, N; Aoki, Y; Yoshioka, Y; Shiraishi, H
2010-07-01
The KAshinhou Tool for Ecotoxicity (KATE) system, including ecotoxicity quantitative structure-activity relationship (QSAR) models, was developed by the Japanese National Institute for Environmental Studies (NIES) using the database of aquatic toxicity results gathered by the Japanese Ministry of the Environment and the US EPA fathead minnow database. In this system chemicals can be entered according to their one-dimensional structures and classified by substructure. The QSAR equations for predicting the toxicity of a chemical compound assume a linear correlation between its log P value and its aquatic toxicity. KATE uses a structural domain called C-judgement, defined by the substructures of specified functional groups in the QSAR models. Internal validation by the leave-one-out method confirms that the QSAR equations, with r(2 )> 0.7, RMSE
ECOTOX knowledgebase: New tools for data visualization and database interoperability
The ECOTOXicology knowledgebase (ECOTOX) is a comprehensive, curated database that summarizes toxicology data fromsingle chemical exposure studies to terrestrial and aquatic organisms. The ECOTOX Knowledgebase provides risk assessors and researchers consistent information on toxi...
ECOTOX Knowledgebase: New tools for data visualization and database interoperability -Poster
The ECOTOXicology knowledgebase (ECOTOX) is a comprehensive, curated database that summarizes toxicology data from single chemical exposure studies to terrestrial and aquatic organisms. The ECOTOX Knowledgebase provides risk assessors and researchers consistent information on tox...
ECOTOX Knowledgebase: New tools for data visualization and database interoperability (poster)
The ECOTOXicology knowledgebase (ECOTOX) is a comprehensive, curated database that summarizes toxicology data from single chemical exposure studies to terrestrial and aquatic organisms. The ECOTOX Knowledgebase provides risk assessors and researchers consistent information on tox...
Silva, Aurora; Figueiredo, Sónia A; Sales, M Goreti; Delerue-Matos, Cristina
2009-08-15
The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.
Derivation of Soil Ecological Criteria for Copper in Chinese Soils.
Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J
2015-01-01
Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models--that took into account the effect of soil organic carbon--were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for developing soil ecological criteria for other trace elements in soils.
Derivation of Soil Ecological Criteria for Copper in Chinese Soils
Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J.
2015-01-01
Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82–0.91. The three-factor predictive models – that took into account the effect of soil organic carbon – were more accurate than two-factor models, with R2 of 0.85–0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for developing soil ecological criteria for other trace elements in soils. PMID:26207783
ECOTOX (ECOTOXICOLOGY DATABASE): AN ASSESSMENT TOOL FOR THE 21ST CENTURY
The ECOTOX (ECOTOXicology Database) system developed by the U.S. EPA, National Health and Environmental Effecrs Research Laboratory (NHEERL), Mid-Continent Ecology Division in Duluth, MN, (MED-Duluth), provides a web browser search interface for locating aquatic and terrestrial t...
Peters, Adam; Schlekat, Christian E; Merrington, Graham
2016-10-01
A bioavailability-based environmental quality standard (EQS) was established for nickel in freshwaters under the European Union's Water Framework Directive. Bioavailability correction based on pH, water hardness, and dissolved organic carbon is a demonstrable improvement on existing hardness-based quality standards, which may be underprotective in high-hardness waters. The present study compares several simplified bioavailability tools developed to implement the Ni EQS (biomet, M-BAT, and PNECPro) against the full bioavailability normalization procedure on which the EQS was based. Generally, all tools correctly distinguished sensitive waters from insensitive waters, although with varying degrees of accuracy compared with full normalization. Biomet and M-BAT predictions were consistent with, but less accurate than, full bioavailability normalization results, whereas PNECpro results were generally more conservative. The comparisons revealed important differences in tools in development, which results in differences in the predictions. Importantly, the models used for the development of PNECpro use a different ecotoxicity dataset, and a different bioavailability normalization approach using fewer biotic ligand models (BLMs) than that used for the derivation of the Ni EQS. The failure to include all of the available toxicity data, and all of the appropriate NiBLMs, has led to some significant differences between the predictions provided by PNECpro and those calculated using the process agreed to in Europe under the Water Framework Directive and other chemicals management programs (such as REACH). These considerable differences mean that PNECpro does not reflect the behavior, fate, and ecotoxicity of nickel, and raises concerns about its applicability for checking compliance against the Ni EQS. Environ Toxicol Chem 2016;35:2397-2404. © 2016 SETAC. © 2016 SETAC.
Larras, Floriane; Rimet, Frédéric; Gregorio, Vincent; Bérard, Annette; Leboulanger, Christophe; Montuelle, Bernard; Bouchez, Agnès
2016-03-01
Chemical monitoring revealed a regular decrease in herbicide concentration in Lake Geneva since last decades that may be linked to an ecotoxic restoration of nontarget phytoplanktonic communities. The Pollution-induced community tolerance (PICT) approach was tested as a tool to monitor the ecotoxic restoration of Lake Geneva for herbicides from 1999 to 2011. We conducted monthly assessments in 1999 and in 2011 for the tolerance of the phytoplankton communities to two herbicides (atrazine and copper), using PICT bioassays. The taxonomical composition of the communities was determined on the same collecting dates. The herbicide concentration decrease during the 12 years significantly influenced the composition of communities. The PICT monitoring indicated that a significant tolerance decrease in the community to both herbicides accompanied the herbicide concentration decrease. PICT measurements for atrazine and copper also changed at the intra-annual level. These variations were mainly due to community composition shifts linked to seasonal phosphorus and temperature changes. PICT monitoring on a seasonal basis is required to monitor the mean tolerance of communities. PICT appeared to be a powerful tool that reflected the toxic effects on environmental communities and to monitor ecotoxic ecosystem restoration.
Generation of GHS Scores from TEST and online sources ...
Alternatives assessment frameworks such as DfE (Design for the Environment) evaluate chemical alternatives in terms of human health effects, ecotoxicity, and fate. T.E.S.T. (Toxicity Estimation Software Tool) can be utilized to evaluate human health in terms of acute oral rat toxicity, developmental toxicity, endocrine activity, and mutagenicity. It can be used to evaluate ecotoxicity (in terms of acute fathead minnow toxicity) and fate (in terms of bioconcentration factor). It also be used to estimate a variety of key physicochemical properties such as melting point, boiling point, vapor pressure, water solubility, and bioconcentration factor. A web-based version of T.E.S.T. is currently being developed to allow predictions to be made from other web tools. Online data sources such as from NCCT’s Chemistry Dashboard, REACH dossiers, or from ChemHat.org can also be utilized to obtain GHS (Global Harmonization System) scores for comparing alternatives. The purpose of this talk is to show how GHS (Global Harmonization Score) data can be obtained from literature sources and from T.E.S.T. (Toxicity Estimation Software Tool). This data will be used to compare chemical alternatives in the alternatives assessment dashboard (a 2018 CSS product).
Das, Rudra Narayan; Roy, Kunal
2014-06-01
Hazardous potential of ionic liquids is becoming an issue of high concern with increasing application of these compounds in various industrial processes. Predictive toxicological modeling on ionic liquids provides a rational assessment strategy and aids in developing suitable guidance for designing novel analogues. The present study attempts to explore the chemical features of ionic liquids responsible for their ecotoxicity towards the green algae Scenedesmus vacuolatus by developing mathematical models using extended topochemical atom (ETA) indices along with other categories of chemical descriptors. The entire study has been conducted with reference to the OECD guidelines for QSAR model development using predictive classification and regression modeling strategies. The best models from both the analyses showed that ecotoxicity of ionic liquids can be decreased by reducing chain length of cationic substituents and increasing hydrogen bond donor feature in cations, and replacing bulky unsaturated anions with simple saturated moiety having less lipophilic heteroatoms. Copyright © 2013 Elsevier Ltd. All rights reserved.
De Vaugelade, Ségolène; Nicol, Edith; Vujovic, Svetlana; Bourcier, Sophie; Pirnay, Stéphane; Bouchonnet, Stéphane
2017-09-29
The UV-vis photodegradation of α-tocopherol was investigated in a model system and in a cosmetic emulsion. Both gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) and high performance liquid chromatography coupled with ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (LC-UHR-MS) were used for photoproducts structural identification. Nine photoproduct families were detected and identified based on their mass spectra and additional experiments with α-tocopherol-d 9 ; phototransformation mechanisms were postulated to rationalize their formation under irradiation. In silico QSAR (Quantitative Structure Activity Relationship) toxicity predictions were conducted with the Toxicity Estimation Software Tool (T.E.S.T.). Low oral rat LD50 values of 466.78mgkg -1 and 467.9mgkg -1 were predicted for some photoproducts, indicating a potential toxicity more than 10 times greater that of α-tocopherol (5742.54mgkg -1 ). In vitro assays on Vibrio fischeri bacteria showed that the global ecotoxicity of the α-tocopherol solution significantly increases with irradiation time. One identified product should contribute to this ecotoxicity enhancement since in silico estimations for D. magna provide a LC50 value 4 times lower than that of the parent molecule. Copyright © 2017. Published by Elsevier B.V.
In Silico Models for Ecotoxicity of Pharmaceuticals.
Roy, Kunal; Kar, Supratik
2016-01-01
Pharmaceuticals and their active metabolites are one of the significantly emerging environmental toxicants. The major routes of entry of pharmaceuticals into the environment are industries, hospitals, or direct disposal of unwanted or expired drugs made by the patient. The most important and distinct features of pharmaceuticals are that they are deliberately designed to have an explicit mode of action and designed to exert an effect on humans and other living systems. This distinctive feature makes pharmaceuticals and their metabolites different from other chemicals, and this necessitates the evaluation of the direct effects of pharmaceuticals in various environmental compartments as well as to living systems. In this background, the alarming situation of ecotoxicity of diverse pharmaceuticals have forced government and nongovernment regulatory authorities to recommend the application of in silico methods to provide quick information about the risk assessment and fate properties of pharmaceuticals as well as their ecological and indirect human health effects. This chapter aims to offer information regarding occurrence of pharmaceuticals in the environment, their persistence, environmental fate, and toxicity as well as application of in silico methods to provide information about the basic risk management and fate prediction of pharmaceuticals in the environment. Brief ideas about toxicity endpoints, available ecotoxicity databases, and expert systems employed for rapid toxicity predictions of ecotoxicity of pharmaceuticals are also discussed.
Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille
2013-08-01
Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Assessment Tools for the Evaluation of Risk
ASTER (Assessment Tools for the Evaluation of Risk) was developed by the U.S. EPA Mid-Continent Ecology Division, Duluth, MN to assist regulators in performing ecological risk assessments. ASTER is an integration of the ECOTOXicology Database (ECOTOX; Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants.
Ortiz de García, Sheyla Andrea; Pinto Pinto, Gilberto; García-Encina, Pedro A; Irusta-Mata, Rubén
2014-10-01
A wide range of pharmaceuticals and personal care products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The environmental risk assessment of 26 PPCPs of relevant consumption and occurrence in the aquatic environment in Spain was accomplished in this research. Based on the ecotoxicity values obtained by bioluminescence and respirometry assays and by predictions using the US EPA ecological structure-activity relationship (ECOSAR™), the compounds were classified following the Globally Harmonized System of Classification and Labelling of Chemicals. According to the criteria of the European Medicines Agency, the real risk of impact of these compounds in wastewater treatment plants (WWTPs) and in the aquatic environment was predicted. In at least two ecotoxicity tests, 65.4 % of the PPCPs under study showed high toxicity or were harmful to aquatic organisms. The global order of the species' sensitivity to the PPCPs considered was as follows: Vibrio fischeri (5 min) > Vibrio fischeri (15 min) > algae > crustaceans > fish > biomass of WWTP. Acetaminophen, ciprofloxacin, clarithromycin, clofibrate, ibuprofen, omeprazole, triclosan, parabens and 1,4-benzoquinone showed some type of risk for the aquatic environments and/or for the activated sludge of WWTPs. Development of acute and chronic ecotoxicity data, the determination of predicted and measured environmental concentrations of PPCPs, the inclusion of metabolites and transformation products and the evaluation of mixtures of these compounds will allow further improvements of the results of the ERAs and, finally, to efficiently identify the compounds that could affect the environment.
Wang, Yingfei; Deng, Wen; Wang, Fengliang; Su, Yuehan; Feng, Yiping; Chen, Ping; Ma, Jingshuai; Su, Haiying; Yao, Kun; Liu, Yang; Lv, Wenying; Liu, Guoguang
2017-09-20
The aim of this study was to investigate the photolysis mechanism of ketoprofen (KET) under simulated sunlight. The results demonstrated that the photolysis of KET aligned well with pseudo first-order kinetics. Radical scavenging experiments and dissolved oxygen experiments revealed that the superoxide anion radical (O 2 ˙ - ) played a primary role in the photolytic process in pure water. Bicarbonate slightly increased the photodegradation of KET through generating carbonate radicals, while DOM inhibited the photolysis via both attenuating light and competing radicals. Moreover, Zhujiang river water inhibited KET phototransformation. Potential KET degradation pathways were proposed based on the identification of products using LC/MS/MS and GC/MS techniques. The theoretical prediction of reaction sites was derived from Frontier Electron Densities (FEDs), which primarily involved the KET decarboxylation reaction. The ecotoxicity of the treated solutions was evaluated by employing Daphnia magna and V. fischeri as biological indicators. Ecotoxicity was also hypothetically predicted through the "ecological structure-activity relationship" (ECOSAR) program, which revealed that toxic products might be generated during the photolysis process.
Buch, Andressa Cristhy; Niemeyer, Júlia Carina; Fernandes Correia, Maria Elizabeth; Silva-Filho, Emmanoel Vieira
2016-05-01
Mercury (Hg) is a highly toxic nonessential trace metal. Despite its natural occurrence in the Earth's Crust, its concentrations have been steadily increasing in the environment due to anthropogenic sources. Recent studies have showed great concern about soil fauna, once the potential adverse effects of mercury concentrations in the environment of these invertebrates are still poorly understood, especially when linked to forest soils and tropical biota. Different collembolan species can show distinct toxicity effects to the contaminants, impairing its developing lifelong and affecting its diversity and abundance in the environment. Laboratory studies were performed to evaluate the ecotoxicity of Hg(II) to collembolan species collected in Brazil, Proisotoma minuta (autochthonous) and Folsomia candida (allochthonous), as a tool to predict effects in ecological risk assessment of tropical regions. Behavioral, acute and chronic tests were carried under temperatures of 20°C and 24°C using two test soils, natural and artificial, spiked with increasing mercury concentrations. F. candida was more sensitive to mercury contamination than P. minuta, presenting the most restrictive values of EC50 and LC50. Reproduction was a considerably more sensitive endpoint than avoidance and mortality. The 28-day lower EC50 values were found in chronic tests for F. candida in natural soil to 24°C (3.32mgHgkg(-1)), while for P. minuta was in tropical artificial soil to 20°C (4.43mgHgkg(-1)). There were similarity for each collembolan species to respond at the Hg(II) effects when exposed at 20°C and 24°C. F. candida can be suitable as a bioindicator species to mercury ecotoxicity tests in tropical forest soils. Copyright © 2016 Elsevier Inc. All rights reserved.
Life-cycle assessment of engineered nanomaterials: a literature review of assessment status
NASA Astrophysics Data System (ADS)
Miseljic, Mirko; Olsen, Stig I.
2014-06-01
The potential environmental impacts of engineered nanomaterials (ENMs), and their engineered nanoparticles (ENPs), have, in recent years, been a cause of concern. Life-cycle assessment (LCA) is a highly qualified tool to assess products and systems and has an increasing extent been applied to ENMs. However, still only 29 case studies on LCA of ENMs have been published in journals and this article investigates these studies. Generally, data on production of ENMs as well as the coverage of the life cycle are limited. In particular, within use and disposal stages data are scarce due to many unknowns regarding the potential release and fate of ENMs/ENPs to and in the environment. This study investigates the sensitivity of case studies with respect to ecotoxicity impacts through a quantification of the potential ecotoxicity impacts to algae, daphnia and fish as a result of direct release of Ag and TiO2 ENPs (mainly <200 nm in nominal diameter size) from various ENM products to the freshwater compartment. It was found that Ag and TiO2 release, from 1 g Ag or TiO2 ENM product, poses up to ca. 3.5 orders of magnitude higher ecotoxicity impact than the production of 1 g polymer (PP, PE and PET average) or 1 Wh of grid mix electricity from Scandinavia. ENMs from Ag had higher ecotoxic impact than those from TiO2 and there was a linear regression between Ag ENM content in the considered products and the potential ecotoxicity impacts to the freshwater species, according to release of total Ag during use (mainly washing).
Aquatic effects assessment: needs and tools.
Marchini, Silvia
2002-01-01
In the assessment of the adverse effects pollutants can produce on exposed ecosystems, different approaches can be followed depending on the quality and quantity of information available, whose advantages and limits are discussed with reference to the aquatic compartment. When experimental data are lacking, a predictive approach can be pursued by making use of validated quantitative structure-activity relationships (QSARs), which provide reliable ecotoxicity estimates only if appropriate models are applied. The experimental approach is central to any environmental hazard assessment procedure, although many uncertainties underlying the extrapolation from a limited set of single species laboratory data to the complexity of the ecosystem (e.g., the limitations of common summary statistics, the variability of species sensitivity, the need to consider alterations at higher level of integration) make the task difficult. When adequate toxicity information are available, the statistical extrapolation approach can be used to predict environmental compatible concentrations.
Characterisation of the ecotoxicity of hospital effluents: a review.
Orias, Frédéric; Perrodin, Yves
2013-06-01
The multiple activities that take place in hospitals (surgery, drug treatments, radiology, cleaning of premises and linen, chemical and biological analysis laboratories, etc.), are a major source of pollutant emissions into the environment (disinfectants, detergents, drug residues, etc.). Most of these pollutants can be found in hospital effluents (HWW), then in urban sewer networks and WWTP (weakly adapted for their treatment) and finally in aquatic environments. In view to evaluating the impact of these pollutants on aquatic ecosystems, it is necessary to characterise their ecotoxicity. Several reviews have focused on the quantitative and qualitative characterisation of pollutants present in HWW. However, none have focused specifically on the characterisation of their experimental ecotoxicity. We have evaluated this according to two complementary approaches: (i) a "substance" approach based on the identification of the experimental data in the literature for different substances found in hospital effluents, and on the calculation of their PNEC (Predicted Non Effect Concentration), (ii) a "matrix" approach for which we have synthesised ecotoxicity data obtained from the hospital effluents directly. This work first highlights the diversity of the substances present within hospital effluents, and the very high ecotoxicity of some of them (minimum PNEC observed close to 0,01 pg/L). We also observed that the consumption of drugs in hospitals was a predominant factor chosen by authors to prioritise the compounds to be sought. Other criteria such as biodegradability, excretion rate and the bioaccumulability of pollutants are considered, though more rarely. Studies of the ecotoxicity of the particulate phase of effluents must also be taken into account. It is also necessary to monitor the effluents of each of the specialised departments of the hospital studied. These steps is necessary to define realistic environmental management policies for hospitals (replacement of toxic products by less pollutant ones, etc.). Copyright © 2013 Elsevier B.V. All rights reserved.
Pickup, John Alexander; Dewaele, Joost; Furmanski, Nicola L; Kowalczyk, Agnieszka; Luijkx, Gerard Ca; Mathieu, Sophie; Stelter, Norbert
2017-01-01
Cleaning products have long been a focus of efforts to improve sustainability and assure safety for the aquatic environment when disposed of after use. The latter is addressed at ingredient level through environmental risk assessment, including in formal frameworks such as REACH. Nevertheless, in the context of programs to improve overall sustainability, stakeholders demand both environmental safety assurance and progress at product level. Current product-level approaches for aquatic toxicity (e.g., USEtox™, Critical Dilution Volume) can be seen as predominantly hazard-based. The more logical approach would be risk-based, because ecotoxicity is generally threshold-dependent and hazard-based assessment produces conflicts with risk-based learnings. The development of a risk-based approach to assess formulated products is described: the International Association for Soaps, Detergents and Maintenance Products (A.I.S.E.) Charter Environmental Safety Check (ESC), which is consistent with the scientific principles underlying REACH. This is implemented through a simple spreadsheet tool and internal database of ingredient parameters including predicted no-effect concentration (PNEC) and removal rate. A novel feature is applying market volume information for both product types and ingredients to permit a risk-based calculation. To pass the ESC check, the projected environmental safety ratio (PESR) for each ingredient as formulated and dosed (unless cleared by a published risk assessment or exempted as inherently low risk) must be less than 1. The advantages of a risk-based approach are discussed. The strengths and limitations of various possible approaches to standard-setting, product-ranking and driving continuous improvement in respect of potential ecotoxic impacts on the aquatic environment are considered. It is proposed that as ecotoxicity is generally accepted to be threshold-dependent, with no effect below the threshold, the most constructive approach to continuous improvement of sustainability with regard to ecotoxicity is to focus efforts on instances where the safety margins for ingredients as used in specific products are narrow. This necessitates a risk-based approach. Integr Environ Assess Manag 2017;13:127-138. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.
Generation of GHS Scores from TEST and online sources
Alternatives assessment frameworks such as DfE (Design for the Environment) evaluate chemical alternatives in terms of human health effects, ecotoxicity, and fate. T.E.S.T. (Toxicity Estimation Software Tool) can be utilized to evaluate human health in terms of acute oral rat tox...
Generation of Alternative Assessment Scores using TEST and online data sources
Alternatives assessment frameworks such as DfE (Design for the Environment) evaluate chemical alternatives in terms of human health effects, ecotoxicity, and fate. T.E.S.T. (Toxicity Estimation Software Tool) can be utilized to evaluate human health in terms of acute oral rat tox...
Drug residues in urban water: A database for ecotoxicological risk management.
Destrieux, Doriane; Laurent, François; Budzinski, Hélène; Pedelucq, Julie; Vervier, Philippe; Gerino, Magali
2017-12-31
Human-use drug residues (DR) are only partially eliminated by waste water treatment plants (WWTPs), so that residual amounts can reach natural waters and cause environmental hazards. In order to properly manage these hazards in the aquatic environment, a database is made available that integrates the concentration ranges for DR, which cause adverse effects for aquatic organisms, and the temporal variations of the ecotoxicological risks. To implement this database for the ecotoxicological risk assessment (ERA database), the required information for each DR is the predicted no effect concentrations (PNECs), along with the predicted environmental concentrations (PECs). The risk assessment is based on the ratio between the PNECs and the PECs. Adverse effect data or PNECs have been found in the publicly available literature for 45 substances. These ecotoxicity test data have been extracted from 125 different sources. This ERA database contains 1157 adverse effect data and 287 PNECs. The efficiency of this ERA database was tested with a data set coming from a simultaneous survey of WWTPs and the natural environment. In this data set, 26 DR were searched for in two WWTPs and in the river. On five sampling dates, concentrations measured in the river for 10 DR could pose environmental problems of which 7 were measured only downstream of WWTP outlets. From scientific literature and measurements, data implementation with unit homogenisation in a single database facilitates the actual ecotoxicological risk assessment, and may be useful for further risk coming from data arising from the future field survey. Moreover, the accumulation of a large ecotoxicity data set in a single database should not only improve knowledge of higher risk molecules but also supply an objective tool to help the rapid and efficient evaluation of the risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Risk assessment for ecotoxicity of pharmaceuticals--an emerging issue.
Kar, Supratik; Roy, Kunal
2012-03-01
Existence of a large amount of pharmaceuticals and their active metabolites in the environment has recently been considered as one of the most serious concerns in environmental sciences. Large diversity of pharmaceuticals has been found in the environmental domain in considerable amounts that are not only destructive to environment but also fatal for human and animal fraternity. There is a considerable lack of knowledge about the environmental fate and quantification of a large number of pharmaceuticals. This communication aims to review the literature information regarding occurrence of pharmaceuticals and their metabolites in the environment, their persistence, environmental fate and toxicity as well as application of theoretical, non-experimental, non-animal, alternative and, in particular, in silico methods to provide information about the basic physicochemical and fate properties of pharmaceuticals to the environment. The reader will gain an overview of risk assessment strategies for ecotoxicity of pharmaceuticals and advances in application of quantitative structure-toxicity relationship (QSTR) in this field. This review justifies the need to develop more QSTR models for prediction of ecotoxicity of pharmaceuticals in order to reduce time and cost involvement in such exercise.
Lacrămă, Ana-Maria; Putz, Mihai V.; Ostafe, Vasile
2007-01-01
Within the recently launched the spectral-structure activity relationship (S-SAR) analysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, along with the associated algebraic correlation factor in terms of the measured and predicted activity norms. The reliability of the present scheme is tested by assessing the Hansch factors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicity endpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium, choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, while confirming the cationic dominant influence when only lipophylicity is considered, demonstrate that the anionic effect dominates all other more specific interactions. It was also proved that the S-SAR vectorial model predicts considerably higher activity for the ionic liquids than for its anionic and cationic subsystems separately, in all considered cases. Moreover, through applying the least norm-correlation path principle, the complete toxicological hierarchies are presented, unfolding the ecological rules of combined cationic and anionic influences in ionic liquid toxicity.
The ECOTOXicology Knowledgebase (ECOTOX), is a comprehensive, curated database that summarizes toxicology data fromsingle chemical exposure studies to aquatic life, terrestrial plants, and wildlife. The ECOTOX Knowledgebase currently has curated data from over 47,000 references a...
Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
1995-01-01
The Handbook of Ecotoxicology offers 34 chapters with contributions from over 50 selected international experts. The book is divided into four major sections: I. Quantifying and Measuring Ecotoxicological Effects, II. Contaminant Sources and Effects, III. Case Histories and Ecosystem Surveys, and IV. Methods for Making Estimates and Predictability in Ecotoxicology. Concepts and methodology are presented for many types of aquatic and terrestrial ecotoxicity test protocols for both controlled and field assessments. Chapters are offered on such diverse topics as sediment and soil ecotoxicity, landscape indicators, biomonitoring, and use of current bioindicators. The roles of deforestation and global warming, pathogens and disease in ecotoxicology, abiotic factors, urban runoff, predictive ecotoxicology, population modeling, and restoration ecology are discussed. This book was designed to serve as a reference book for students entering the fields of ecotoxicology, aquatic toxicology, terrestrial wildlife toxicology, and other environmental sciences. Many portions of this handbook will serve as a convenient reference text for established investigators, resource managers, and those involved in risk assessment and risk management within regulatory agencies and the private sector.
Lebrun, Jérémie D; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Mougin, Christian
2010-04-01
The relationship between the physiological state of fungi and the response of their functional system to metals is not known, limiting the use of fungal enzymes as tools for assessing metal ecotoxicity in terrestrial ecosystems. The present study attempts to establish how the development phases modulate the secretion of enzymes in the filamentous fungus Trametes versicolor after exposure to Cu. For that purpose, extracellular hydrolases (acid and alkaline phosphatases, aryl-sulfatase, beta-glucosidase, beta-galactosidase, and N-acetyl-beta-glucosaminidase) and oxidoreductases (laccase, manganese and lignin peroxidases) were monitored in liquid cultures for 2 weeks. Copper was added during either the growth or the stationary phases at 20 or 200 ppm. Results of the present study showed that Cu at the highest concentration modifies the secretion of enzymes, regardless of the development phase to which the fungus was exposed. However, the sensitivity of enzyme responses to Cu depended on the phase development and the type of secreted enzyme. In a general way, the production of hydrolases was decreased by Cu, whereas that of oxidoreductases was highly increased. Furthermore, lignin peroxidase was not detected in control cultures and was specifically produced in the presence of Cu. In conclusion, fungal oxidoreductases may be enzymatic biomarkers of copper exposure for ecotoxicity assessment. (c) 2009 SETAC.
Gene prediction in the fathead minnow [Pimephales promelas] genome-presentation
The fathead minnow is a well-established ecotoxicological model organism, having been widely used for regulatory ecotoxicity testing and research for over a half century. While a large amount of molecular information has been gathered on the organism over the years, to date, the ...
Gene prediction in the fathead minnow [Pimephales promelas] genome
The fathead minnow is a well-established model organism which has been widely used for regulatory ecotoxicity testing and research for over half century. While much information has been gathered on the organism over the years, the fathead minnow genome, a critical source of infor...
A framework for predicting impacts on ecosystem services from (sub)organismal responses to chemicals
Protection of ecosystem services is increasingly emphasized as a risk-assessment goal, but there are wide gaps between current ecological risk-assessment endpoints and potential effects on services provided by ecosystems. The authors present a framework that links common ecotoxic...
ECOTOX knowledgebase: Search features and customized reports
The ECOTOXicology knowledgebase (ECOTOX) is a comprehensive, publicly available knowledgebase developed and maintained by ORD/NHEERL. It is used for environmental toxicity data on aquatic life, terrestrial plants and wildlife. ECOTOX has the capability to refine and filter search...
Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub
2016-11-05
Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.
González-García, Sara; García Lozano, Raúl; Moreira, M Teresa; Gabarrell, Xavier; Rieradevall i Pons, Joan; Feijoo, Gumersindo; Murphy, Richard J
2012-06-01
The environmental profile of a set of wood furniture was carried out to define the best design criteria for its eco-design. A baby cot convertible into a bed, a study desk and a bedside table were the objects of study. Two quantitative and qualitative environmental approaches were combined in order to propose improvement alternatives: Life Cycle Assessment (LCA) and Design for Environment (DfE). In the first case Life Cycle Assessment (LCA) was applied to identify the hot spots in the product system. As a next step, LCA information was used in eco-briefing to determine several improvement alternatives. A wood products company located in Catalonia (NE Spain) was assessed in detail, dividing the process into three stages: assembly, finishing and packaging. Ten impact categories were considered in the LCA study: abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity and photochemical oxidant formation. Two processes can be considered the key environmental factors: the production of the wooden boards and electricity, with contributions of 45-68% and 14-33% respectively depending on the impact categories. Subsequently, several improvement alternatives were proposed in the eco-design process (DfE) to achieve reductions in a short-medium period of time in the environmental impact. These eco-design strategies could reduce the environmental profile of the setup by 14%. The correct methodological adaptation of the concept of eco-briefing, as a tool for communication among environmental technicians and designers, the simplification of the analytical tool used and the LCA, could facilitate the environmental analysis of a product. The results obtained provide information that can help the furniture sector to improve their environmental performance. Copyright © 2012 Elsevier B.V. All rights reserved.
Minefields Associated with Mining Data from Peer-reviewed Literature
The USEPA’s ECOTOX database is the largest compilation of ecotoxicity study results, providing information on the adverse effects of single chemical stressors to ecologically relevant aquatic and terrestrial species. The primary source of data included in the ECOTOX database is t...
20180312 - Ensemble QSAR Modeling to Predict Multispecies Fish Toxicity Points of Departure (SOT)
Due to the large quantity of new chemicals being developed and potentially introduced into aquatic ecosystems, there is a need to prioritize chemicals with the greatest likelihood of ecological hazard for further research. To this end, a useful in silico estimation of ecotoxicity...
Enhancing the Utility of the ECOTOX knowledgebase (ECOTOX KB) via ontology-based semantics mapping
The US Environmental Protection Agency’s Ecological Toxicology (ECOTOX) knowledgebase contains more than 30 years of reported single chemical toxicity effects data on aquatic and terrestrial organisms. Approximately 900,000 test results covering more than 11,000 chemicals ...
THE ECOTOX DATABASE AND ECOLOGICAL SOIL SCREENING LEVEL (ECO-SSL) WEB SITES
The EPA's ECOTOX database (http://www.epa.gov/ecotox/) provides a web browser search interface for locating aquatic and terrestrial toxic effects information. Data on more than 8100 chemicals and 5700 terrestrial and aquatic species are included in the database. Information is ...
This initiative, though focusing perhaps on individual assays at the beginning, recognizes the need for a tiered strategy for ecotoxicity tests that better integrates new techniques (models, in vitro methods, new technologies) to improve ecotoxicity testing as a whole. The reali...
Juraske, Ronnie; Sanjuán, Neus
2011-02-01
The relative impacts of 25 pesticides including acaricides, fungicides, herbicides, insecticides, and post-harvest fungicides, used in the production of oranges in Spain were assessed with current life cycle impact assessment (LCIA) tools. Chemical specific concentrations were combined with pesticide emission data and information on chemical toxicity to assess human toxicity and freshwater ecotoxicity impacts. As a case study, the relative impacts of two orange production systems in the region of Valencia, integrated pest management (IP) and organic production (OP), were assessed. The evaluation of active ingredients showed that on average acaricides have the highest human toxicity impact scores, while for freshwater ecotoxicity insecticides show the highest impact. In both impact categories the lowest impact scores were calculated for herbicides. In the production of 1 kg of orange fruits, where several kinds of pesticides are combined, results show that post-harvest fungicides can contribute more than 95% to the aggregate human toxicity impacts. More than 85% of aquatic ecotoxicity is generated by fungicides applied before harvest. The potential to reduce impacts on freshwater ecosystems is seven orders of magnitude, while impacts on human health can be reduced by two orders of magnitude. Hence, this stresses the importance of a careful pre-selection of active ingredients. In both impact categories, organic production represents the least toxic pest-control method. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wiberg-Larsen, Peter; Graeber, Daniel; Kristensen, Esben A; Baattrup-Pedersen, Annette; Friberg, Nikolai; Rasmussen, Jes J
2016-05-17
We exposed 34 species of stream macroinvertebrates, representing 29 families, to a 90 min pulse of the pyrethroid λ-cyhalothrin. For 28 of these species, no pyrethroid ecotoxicity data exist. We recorded mortality rates 6 days post-exposure, and the behavioral response to pyrethroid exposure was recorded using automated video tracking. Most arthropod species showed mortality responses to the exposure concentrations (0.01-10 μg L(-1)), whereas nonarthropod species remained unaffected. LC50 varied by at least a factor of 1000 among arthropod species, even within the same family. This variation could not be predicted using ecotoxicity data from closely related species, nor using species-specific indicator values from traditional ecological quality indices. Moreover, LC50 was not significantly correlated to effect thresholds for behavioral responses. Importantly, however, the measured surface area-weight ratio and the preference for coarse substrates significantly influenced the LC50 for arthropod species, with the combination of small individuals and strong preference for coarse substrates indicating higher pyrethroid sensitivity. Our study highlights that existing pesticide ecotoxicity data should be extrapolated to untested species with caution and that actual body size (not maximum potential body size, as is usually available in traits databases) and habitat preference are central parameters determining species sensitivities to pyrethroids.
Preliminary Ecotoxicity and Biodegradability Assessment of Metalworking Fluids
NASA Astrophysics Data System (ADS)
Gerulová, Kristína; Amcha, Peter; Filická, Slávka
2010-01-01
The main aim of this study was to evaluate the potential of activated sludge from sewage treatment plant to degrade selected MWFs (ecotoxicity to bacterial consortium) and to evaluate the ecotoxicity by Lemna minor-higher plant. After evaluating the ecotoxicity, biodegradations rate with activated sludge was assessed on the basis of COD measurement. Preliminary study of measuring the ecotoxicity according to OECD 221 by Lemna minor shows effective concentration of Emulzin H at the rate of 81.6 mg l-1, for Ecocool 82.9 mg l-1, for BC 25 about 99.3 mg l-1, and for Dasnobor about 97.3 mg l-1. Preliminary study of measuring the ecotoxicity by bacterial consortium according to OECD 209 (STN EN ISO 8192) shows effective concentration of Blasocut BC 25 at the rate 227.4 mg l-1. According to OECD 302B, the biodegradations level of Emulzin H, Ecocool and BC 25 achieved 80% in 10 days. It can be stated that these MWFs have potential to ultimate degradation, but the statement has to be confirmed by a biodegradability test with other parameters than COD, which exhibits some disadvantages in testing O/W emulsions.
In June 2010, the ILSI Health and Environmental Sciences Institute (HESI) with support from sanofi-aventis, NC3Rs, the Humane Society, L’Oreal, and ECVAM, held a workshop aimed at examining critical science needs related to the development of alternatives to chronic fish toxicity...
Niemeyer, Júlia Carina; Moreira-Santos, Matilde; Ribeiro, Rui; Rutgers, Michiel; Nogueira, Marco Antonio; da Silva, Eduardo Mendes; Sousa, José Paulo
2015-01-01
This study presents data on the detailed evaluation (tier 2) of a site-specific ecological risk assessment (ssERA) in a former smelter area contaminated with metals (Santo Amaro, Bahia, Brazil). Combining information from three lines of evidence (LoE), chemical (ChemLoE), ecotoxicological (EcotoxLoE) and ecological (EcoLoE), in the Triad approach, integrated risk values were calculated to rank sites and confirm the potential risk disclosed with tier 1. Risk values were calculated for the habitat and for the retention functions in each sampling point. Habitat function included the ChemLoE calculated from total metal concentrations. The EcotoxLoE was based on reproduction tests with terrestrial invertebrates (Folsomia candida, Enchytraeus crypticus, Eisenia andrei), shoot length and plant biomass (Avena sativa, Brassica rapa). For the EcoLoE, ecological parameters (microbial parameters, soil invertebrate community, litter breakdown) were used to derive risk values. Retention function included the ChemLoE, calculated from extractable metal concentrations, and the EcotoxLoE based on eluate tests with aquatic organisms (Daphnia magna reproduction and Pseudokirchneriella subcapitata growth). Results related to the habitat function indicated that the metal residues are sufficient to cause risk to biota, while the low metal levels in extracts and the general lack of toxicity in aquatic tests indicated a high soil retention capacity in most sampling points. Integrated risk of tier 2 showed the same trend of tier 1, suggesting the need to proceed with remediation actions. The high risk levels were related to direct toxicity to organisms and indirect effects, such as failure in the establishment of vegetation and the consequent loss of habitat quality for microorganisms and soil fauna. This study shed some light on the selection of tools for the tier 2 of an ssERA in tropical metal-contaminated sites, focusing on ecological receptors at risk and using available chemical methods, ecological surveys and ecotoxicity tests.
Ecological Risk Assessment of a Metal-Contaminated Area in the Tropics. Tier II: Detailed Assessment
Niemeyer, Júlia Carina; Moreira-Santos, Matilde; Ribeiro, Rui; Rutgers, Michiel; Nogueira, Marco Antonio; da Silva, Eduardo Mendes; Sousa, José Paulo
2015-01-01
This study presents data on the detailed evaluation (tier 2) of a site-specific ecological risk assessment (ssERA) in a former smelter area contaminated with metals (Santo Amaro, Bahia, Brazil). Combining information from three lines of evidence (LoE), chemical (ChemLoE), ecotoxicological (EcotoxLoE) and ecological (EcoLoE), in the Triad approach, integrated risk values were calculated to rank sites and confirm the potential risk disclosed with tier 1. Risk values were calculated for the habitat and for the retention functions in each sampling point. Habitat function included the ChemLoE calculated from total metal concentrations. The EcotoxLoE was based on reproduction tests with terrestrial invertebrates (Folsomia candida, Enchytraeus crypticus, Eisenia andrei), shoot length and plant biomass (Avena sativa, Brassica rapa). For the EcoLoE, ecological parameters (microbial parameters, soil invertebrate community, litter breakdown) were used to derive risk values. Retention function included the ChemLoE, calculated from extractable metal concentrations, and the EcotoxLoE based on eluate tests with aquatic organisms (Daphnia magna reproduction and Pseudokirchneriella subcapitata growth). Results related to the habitat function indicated that the metal residues are sufficient to cause risk to biota, while the low metal levels in extracts and the general lack of toxicity in aquatic tests indicated a high soil retention capacity in most sampling points. Integrated risk of tier 2 showed the same trend of tier 1, suggesting the need to proceed with remediation actions. The high risk levels were related to direct toxicity to organisms and indirect effects, such as failure in the establishment of vegetation and the consequent loss of habitat quality for microorganisms and soil fauna. This study shed some light on the selection of tools for the tier 2 of an ssERA in tropical metal-contaminated sites, focusing on ecological receptors at risk and using available chemical methods, ecological surveys and ecotoxicity tests. PMID:26528915
Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.
Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne
2016-02-01
Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.
Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.
Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong
2016-02-01
A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.
Silva, Valéria C; Almeida, Sônia M; Resgalla, Charrid; Masfaraud, Jean-François; Cotelle, Sylvie; Radetski, Claudemir M
2013-06-01
It is useful to test ecotoxicity and genotoxicity endpoints in the environmental impact assessment. Here, we compare and discuss ecotoxicity and genotoxicity effects in organisms in response to exposure to arsenate (As V) in solution. Eco(geno)toxicity responses in Aliivibrio fischeri, Lytechinus variegatus, Daphnia magna, Skeletonema costatum and Vicia faba were analyzed by assessing different endpoints: biomass growth, peroxidase activity, mitotic index, micronucleus frequency, and lethality in accordance with the international protocols. Quantitative sensitivity relationships (QSR) between these endpoints were established in order to rank endpoint sensitivity. The results for the QSR values based on the lowest observed effect concentration (LOEC) ratios varied from 2 (for ratio of root peroxidase activity to leaf peroxidase activity) to 2286 (for ratio of higher plant biomass growth to root peroxidase activity). The QSR values allowed the following sensitivity ranking to be established: higher plant enzymatic activity>daphnids≈echinoderms>bacteria≈algae>higher plant biomass growth. The LOEC values for the mitotic index and micronucleus frequency (LOEC=0.25mgAsL(-1)) were similar to the lowest LOEC values observed in aquatic organisms. This approach to the QSR of different endpoints could form the basis for monitoring and predicting early effects of pollutants before they give rise to significant changes in natural community structures. Copyright © 2013 Elsevier Inc. All rights reserved.
Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya
2015-06-01
In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.
Saouter, Erwan; Aschberger, Karin; Fantke, Peter; Hauschild, Michael Z; Bopp, Stephanie K; Kienzler, Aude; Paini, Alicia; Pant, Rana; Secchi, Michela; Sala, Serenella
2017-12-01
The scientific consensus model USEtox ® is recommended by the European Commission as the reference model to characterize life cycle chemical emissions in terms of their potential human toxicity and freshwater aquatic ecotoxicity impacts in the context of the International Reference Life Cycle Data System Handbook and the Environmental Footprint pilot phase looking at products (PEF) and organizations (OEF). Consequently, this model has been systematically used within the PEF/OEF pilot phase by 25 European Union industry sectors, which manufacture a wide variety of consumer products. This testing phase has raised some questions regarding the derivation of and the data used for the chemical-specific freshwater ecotoxicity effect factor in USEtox. For calculating the potential freshwater aquatic ecotoxicity impacts, USEtox bases the effect factor on the chronic hazard concentration (HC50) value for a chemical calculated as the arithmetic mean of all logarithmized geometric means of species-specific chronic median lethal (or effect) concentrations (L[E]C50). We investigated the dependency of the USEtox effect factor on the selection of ecotoxicological data source and toxicological endpoints, and we found that both influence the ecotoxicity ranking of chemicals and may hence influence the conclusions of a PEF/OEF study. We furthermore compared the average measure (HC50) with other types of ecotoxicity effect indicators, such as the lowest species EC50 or no-observable-effect concentration, frequently used in regulatory risk assessment, and demonstrated how they may also influence the ecotoxicity ranking of chemicals. We acknowledge that these indicators represent different aspects of a chemical's ecotoxicity potential and discuss their pros and cons for a comparative chemical assessment as performed in life cycle assessment and in particular within the PEF/OEF context. Environ Toxicol Chem 2017;36:3450-3462. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht
2010-06-01
Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The maximum conductivity of the samples was 43,700 microS cm(-1) and indicates that salts might contribute to the overall toxicity. Half of the wastewater samples proved to be biologically well treatable in the Zahn-Wellens test with COD elimination above 80%, whilst the others were insufficiently biodegraded (COD elimination 28-74%). After the pretreatment in the Zahn-Wellens test, wastewater samples from four (out of ten) companies were extremely ecotoxic especially to algae (maximum LID(A) = 16,384). Three wastewater samples were genotoxic in the umu test. Applying the rules for salt correction of test results as allowed in the German Wastewater Ordinance, only a small part of toxicity could be attributed to salts. Considering the PBS, wastewater from the metal surface treatment industry exhibited very low levels of PBS. In one factory, the origin of ecotoxicity has been attributed to the organosulphide dimethyldithiocarbamate (DMDTC) used as a water treatment chemical for metal precipitation. The assumption based on rough calculation of input of the organosulphide into the wastewater was confirmed in practice by testing its ecotoxicity at the corresponding dilution ratio after pretreatment in the Zahn-Wellens test. Whilst the COD elimination of DMDTC was only 32% in 7 days, the pretreated sample exhibited a high ecotoxicity to algae (LID(A) = 1,536) and luminescent bacteria (LID(lb) = 256). Comparative data from wastewater surveillance by authorities (data from 1993 to 2007) confirmed the range of ecotoxicity observed in the study. Whilst wastewater from the metal surface treatment industry usually did not exhibit ecotoxicity (median LID 1-2), the maximum LID values reported for the algae, daphnia and luminescent bacteria tests were very high (LID(A) up to 3,072, LID(D) up to 512 and LID(lb) up to 2,048). DMDTC was found to be one important source of ecotoxicity in galvanic wastewater. DMDTC is added in surplus, and according to the supplier, the amount in excess should be detoxified with ferric chloride or iron sulphate. The operator of one electroplating company had not envisaged a separate treatment of the organosulphide wastewater but was assuming that excess organosulphide would be bound by other heavy metals in the sewer. DMDTC degrades via hydrolysis to carbon disulfide (which is also toxic to animals and aquatic organisms), carbonyl sulphide, hydrogen sulphide and dimethylamine, but forms complexes with metals which stabilise the compound with respect to transformation. Although no impact on the WWTP is expected, the question arises whether the organosulphide is completely degraded during the passage of the WWTP. The results show that the organic load of wastewater from the electroplating industry has been underestimated by focussing on inorganic parameters such heavy metals, sulphide, cyanide, etc. Bioassays are a suitable tool for assessing the ecotoxicological relevance of these complex organic mixtures. The proof of biodegradability of the organic load (and its toxicity) can be provided by the Zahn-Wellens test. The environmental safety of water treatment chemicals should be better considered. The combination of the Zahn-Wellens test followed by the performance of ecotoxicity tests turned out to be a cost-efficient suitable instrument for the evaluation of indirect dischargers and considers the requirements of the IPPC Directive.
Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordborg, Maria, E-mail: maria.nordborg@chalmers.se; Arvidsson, Rickard; Finnveden, Göran
In a recent paper, Sörme et al. (Environ. Impact Assess. Rev., 56, 2016), took a first step towards an indicator of a national chemical footprint, and applied it to Sweden. Using USEtox 1.01, they calculated national impact potentials for human toxicity and ecotoxicity. The results showed that zinc dominated impacts, both for human toxicity and ecotoxicity. We calculated updated indicators of the Swedish national human toxicity and ecotoxicity footprint using USEtox 2.01. We also compared impact potentials based on USEtox with the mass of chemical emissions. The two model versions produced relatively consistent results. Zinc is still a major contributormore » to the human toxicity and ecotoxicity impact potentials when characterized with USEtox 2.01. The mass-based indicator pinpoints somewhat different substances than the impact-based indicators. - Highlights: • USEtox 1.01 and 2.01 are relatively consistent in identifying the substances with largest impact potentials. • Metals were identified as a priority group of substances for both human toxicity and ecotoxicity. • Zinc is a major contributor to the human toxicity impact potential, in both model versions. • Zinc’s dominance concerning human toxicity sharply contrasts results from other studies: this is somewhat of a paradox. • Using the mass of chemical emissions as a simplified indicator pinpoints somewhat different substances.« less
Application of Bioassays for the Ecotoxicity Assessment of Contaminated Soils
NASA Astrophysics Data System (ADS)
Fernández, María D.; Babín, Mar; Tarazona, José V.
The use of bioassays for soil characterization is receiving significant attention as a complementary tool to chemical analysis. Bioassays consist of direct toxicity assays of environmental samples that are transferred to the laboratory and analyzed for toxicity against selected organisms. Such soil samples contain the combination of the different pollutants present in situ and enable factors such as the bioavailability of contaminants or the interactions (synergic and antagonic) between them to be simultaneously studied.
Lebrun, Jérémie D; Demont-Caulet, Nathalie; Cheviron, Nathalie; Laval, Karine; Trinsoutrot-Gattin, Isabelle; Mougin, Christian
2011-01-01
The relationship between the expression of extracellular enzymatic system and a metal stress is scarce in fungi, hence limiting the possible use of secretion profiles as tools for metal ecotoxicity assessment. In the present study, we investigated the effect of Zn, Cu, Pb and Cd, tested alone or in equimolar cocktail, on the secretion profiles at enzymatic and protein levels in Trametesversicolor. For that purpose, extracellular hydrolases (acid phosphatase, β-glucosidase, β-galactosidase and N-acetyl-β-glucosaminidase) and ligninolytic oxidases (laccase, Mn-peroxidase) were monitored in liquid cultures. Fungal secretome was analyzed by electrophoresis and laccase secretion was characterized by western-blot and mass spectrometry analyses. Our results showed that all hydrolase activities were inhibited by the metals tested alone or in cocktail, whereas oxidase activities were specifically stimulated by Cu, Cd and metal cocktail. At protein level, metal exposure modified the electrophoretic profiles of fungal secretome and affected the diversity of secreted proteins. Two laccase isoenzymes, LacA and LacB, identified by mass spectrometry were differentially glycosylated according to the metal exposure. The amount of secreted LacA and LacB was strongly correlated with the stimulation of laccase activity by Cu, Cd and metal cocktail. These modifications of extracellular enzymatic system suggest that fungal oxidases could be used as biomarkers of metal exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.
The database provides chemical-specific toxicity information for aquatic life, terrestrial plants, and terrestrial wildlife. ECOTOX is a comprehensive ecotoxicology database and is therefore essential for providing and suppoirting high quality models needed to estimate population...
Enabling rapid behavioral ecotoxicity studies using an integrated lab-on-a-chip systems
NASA Astrophysics Data System (ADS)
Huang, Yushi; Nugegoda, Dayanthi; Wlodkowic, Donald
2015-12-01
Behavioral ecotoxicity tests are gaining an increasing recognition in environmental toxicology. Behavior of sensitive bioindicator species can change rapidly in response to an acute exposure to contaminants and thus has a much higher sensitivity as compared to conventional LC50 mortality tests. Furthermore, behavioral endpoints seems to be very good candidates to develop early-warning biomonitoring systems needed for rapid chemical risk assessment. Behavioral tests are non-invasive, fast, do not harm indicator organisms (behavioural changes are very rapid) and are thus fully compatible with 3R (Replacement - Reduction - Refinement) principle encouraging alternatives to conventional animal testing. These characteristics are essential when designing improved ecotoxicity tests for chemical risk assessment. In this work, we present a pilot development of miniaturized Lab-on-a-Chip (LOC) devices for studying toxin avoidance behaviors of small aquatic crustaceans. As an investigative tool, LOCs represent a new direction that may miniaturize and revolutionize behavioral ecotoxicology. Specifically our innovative microfluidic prototype: (i) enables convening "caging" of specimens for real-time videomicroscopy; (ii) eliminates the evaporative water loss thus providing an opportunity for long-term behavioral studies; (iii) exploits laminar fluid flow under low Reynolds numbers to generate discrete domains and gradients enabling for the first time toxin avoidance studies on small aquatic crustaceans; (iv) integrates off-the-chip mechatronic interfaces and video analysis algorithms for single animal movement analysis. We provide evidence that by merging innovative bioelectronic and biomicrofluidic technologies we can deploy inexpensive and reliable systems for culture, electronic tracking and complex computational analysis of behavior of bioindicator organisms.
Neuwoehner, Judith; Reineke, Anne-Kirsten; Hollender, Juliane; Eisentraeger, Adolf
2009-03-01
In the groundwater of a timber impregnation site higher concentrations of hydroxylated quinolines compared to their parent compounds quinoline and isoquinoline were found. Studying the toxicity of parent compounds and metabolites, genotoxicity was found with metabolic activation in the SOS-Chromotest and Ames fluctuation test only for quinoline. An adverse effect on algae was observed only for the parent compounds quinoline and isoquinoline, while in the Daphnia magna immobilization assay most hydroxylated quinoline derivatives showed toxicity. The highest ecotoxic potential was observed in the Vibrio fischeri luminescence-inhibition assay. Comparing experimental EC50-values with QSAR predicted ones, for all compounds apart from isoquinoline and 2(1H)-quinolinone in the V. fischeri test baseline toxicity or polar nacrosis is indicated. In conclusion, the hydroxylation of quinoline leads to a detoxification of the genotoxic potential, while taken additive mixture toxicity and a safety factor into account parent compounds and metabolites are found of ecotoxicological relevance in the groundwater.
Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa
2017-12-01
In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.
Ilyas, A; Persson, K M; Persson, M
2015-09-01
A common assumption regarding the residual organic matter, in bottom ash, is that it does not represent a significant pool of organic carbon and, beyond metal-ion complexation process, it is of little consequence to evolution of ash/leachate chemistry. This article evaluates the effect of residual organic matter and associated microbial respiratory processes on leaching of toxic metals (i.e. arsenic, copper, chromium, molybdenum, nickel, lead, antimony and zinc), eco-toxicity of ash leachates. Microbial respiration was quantified with help of a respirometric test equipment OXITOP control system. The effect of microbial respiration on metal/residual organic matter leaching and eco-toxicity was quantified with the help of batch leaching tests and an eco-toxicity assay - Daphnia magna. In general, the microbial respiration process decreased the leachate pH and eco-toxicity, indicating modification of bioavailability of metal species. Furthermore, the leaching of critical metals, such as copper and chromium, decreased after the respiration in both ash types (fresh and weathered). It was concluded that microbial respiration, if harnessed properly, could enhance the stability of fresh bottom ash and may promote its reuse. © The Author(s) 2015.
ECOTOX database; new additions and future direction
The ECOTOXicology database (ECOTOX) is a comprehensive, publicly available knowledgebase developed and maintained by ORD/NHEERL. It is used for environmental toxicity data on aquatic life, terrestrial plants and wildlife. Publications are identified for potential applicability af...
In formulating hypothesis related to extrapolations across species and/or chemicals, the ECOTOX database provides researchers a means of locating high quality ecological effects data for a wide-range of terrestrial and aquatic receptors. Currently the database includes more than ...
EPA MED-DULUTH'S ECOTOX AND ECO-SSL WEB APPLICATIONS
The ECOTOX (ECOTOXicology Database) system developed by the USEPA, National Health and Environmental Effects Research Laboratory (NHEERL), Mid-Continent Ecology Division in Duluth, MN (MED-Duluth), provides a web browser search interface for locating aquatic and terrestrial toxic...
Alternative approaches for vertebrate ecotoxicity tests in the ...
The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments (ERA) has even been banned, and in other situations the numbers of organisms tested has been dramatically reduced, or the severity of the procedure refined. However, there is still a long way to go to achieve replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is not just based on ethical considerations but also to reduce the cost of performing vertebrate ecotoxicity tests and in some cases to provide better information aimed at improving ERAs. The present focus paper provides an overview of the considerable advances that have been made towards alternative approaches for ecotoxicity assessments over the last few decades. The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organi
1993-06-01
will be compared to common laboratory bioassay tests (fathea minnow survival, rice seed germination test, etc.), relative to their ability to pre- ’dict...rice seed germination , and Ceriodaphnia assays. At the ecosystem level, in situ small mammal total biomass, sex ratios, reproduction, recruit- ment...bioassay tests (fathead minnow survival, rice seed germination test, etc.), relative to their ability to predict ecotoxicity risks (as indexed by
Pourzahedi, Leila; Vance, Marina; Eckelman, Matthew J
2017-06-20
Increasing use of silver nanoparticles (AgNPs) in consumer products as antimicrobial agents has prompted extensive research toward the evaluation of their potential release to the environment and subsequent ecotoxicity to aquatic organisms. It has also been shown that AgNPs can pose significant burdens to the environment from life cycle emissions associated with their production, but these impacts must be considered in the context of actual products that contain nanosilver. Here, a cradle-to-gate life cycle assessment for the production of 15 different AgNP-enabled consumer products was performed, coupled with release studies of those same products, thus providing a consistent analytical platform for investigation of potential nanosilver impacts across a range of product types and concentrations. Environmental burdens were assessed over multiple impact categories defined by the United States Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI 2.1) method. Depending on the product composition and silver loading, the contribution of AgNP synthesis to the overall impacts was seen to vary over a wide range from 1% to 99%. Release studies found that solid polymeric samples lost more silver during wash compared to fibrous materials. Estimates of direct ecotoxicity impacts of AgNP releases from those products with the highest leaching rates resulted in lower impact levels compared to cradle-to-gate ecotoxicity from production for those products. Considering both cradle-to-gate production impacts and nanoparticle release studies, in conjunction with estimates of life cycle environmental and health benefits of nanoparticle incorporation, can inform sustainable nanoenabled product design.
FOCUS AREA 4 BACKGROUND PAPER: AQUATIC ECOTOXICITY ASSESSMENT
In parallel with a growing literature on the presence of Active Pharmaceutical Ingredients (APIs) in effluents and surface waters, recent years have witnessed a steady increase in published studies on the ecotoxicity of APIs to aquatic organisms. Against this background, key issu...
Wang, Lu; Wang, Hualin; Chen, Xiurong; Xu, Yan; Zhou, Tianjun; Wang, Xiaoxiao; Lu, Qian; Ruan, Roger
2018-04-01
Chlorella vulgaris was cultivated in varying proportions of toxic sludge extracts obtained from a sequencing batch reactor for treating synthetic wastewater containing chlorophenols. C. vulgaris could reduce the ecotoxicity from sludge extracts, and a positive correlation was noted between ecotoxicity removal and total organic carbon removal. In terms of cell density, the optimal proportion of sludge extracts required for the cultivation of C. vulgaris was lower than 50%. The correlation between protein content in per 10 6 algae and inhibition extent of ecotoxicity of the 5 groups on the day of inoculation (0.9182, p < .05) indicated a positive relationship between algal protein secretion and ecotoxicity. According to the protein expression and differential protein expression analysis, we concluded that C. vulgaris produced proteins that involved in the stress response/redox system and energy metabolism/biosynthesis to respond to the toxic environment and some other proteins related to mixotrophic metabolism. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Integrated evaluation of circular agriculture system: a life cycle perspective].
Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng
2010-11-01
For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.
Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates.
Rasmussen, Jes J; McKnight, Ursula S; Sonne, Anne Th; Wiberg-Larsen, Peter; Bjerg, Poul L
2016-02-01
Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown ecotoxicity, but they are continuously discharged into the stream by way of a long-lasting source generating long-term chronic exposure of the stream biota. Our results show that taxonomical density and diversity of especially sediment dwelling taxa were reduced by >50 % at the sampling sites situated in the primary inflow zone of the contaminated GW. Moreover, macroinvertebrate communities at these sampling sites could be distinguished from those at upstream control sites and sites situated along a downstream dilution gradient using multidimensional scaling. Importantly, macroinvertebrate indices currently used did not identify this impairment, thus underpinning an urgent need for developing suitable tools for the assessment of ecological effects of contaminated sites in streams.
Quality Assurance Project Plan for Verification of Sediment Ecotoxicity Assessment Ring(SEA Ring)
The objective of the verification is to test the efficacy and ability of the Sediment Ecotoxicity Assessment Ring (SEA Ring) to evaluate the toxicity of contaminants in the sediment, at the sediment-water interface, and WC to organisms that live in those respective environments.
NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials.
Juganson, Katre; Ivask, Angela; Blinova, Irina; Mortimer, Monika; Kahru, Anne
2015-01-01
The increasing production and use of engineered nanomaterials (ENMs) inevitably results in their higher concentrations in the environment. This may lead to undesirable environmental effects and thus warrants risk assessment. The ecotoxicity testing of a wide variety of ENMs rapidly evolving in the market is costly but also ethically questionable when bioassays with vertebrates are conducted. Therefore, alternative methods, e.g., models for predicting toxicity mechanisms of ENMs based on their physico-chemical properties (e.g., quantitative (nano)structure-activity relationships, QSARs/QNARs), should be developed. While the development of such models relies on good-quality experimental toxicity data, most of the available data in the literature even for the same test species are highly variable. In order to map and analyse the state of the art of the existing nanoecotoxicological information suitable for QNARs, we created a database NanoE-Tox that is available as Supporting Information File 1. The database is based on existing literature on ecotoxicology of eight ENMs with different chemical composition: carbon nanotubes (CNTs), fullerenes, silver (Ag), titanium dioxide (TiO2), zinc oxide (ZnO), cerium dioxide (CeO2), copper oxide (CuO), and iron oxide (FeO x ; Fe2O3, Fe3O4). Altogether, NanoE-Tox database consolidates data from 224 articles and lists altogether 1,518 toxicity values (EC50/LC50/NOEC) with corresponding test conditions and physico-chemical parameters of the ENMs as well as reported toxicity mechanisms and uptake of ENMs in the organisms. 35% of the data in NanoE-Tox concerns ecotoxicity of Ag NPs, followed by TiO2 (22%), CeO2 (13%), and ZnO (10%). Most of the data originates from studies with crustaceans (26%), bacteria (17%), fish (13%), and algae (11%). Based on the median toxicity values of the most sensitive organism (data derived from three or more articles) the toxicity order was as follows: Ag > ZnO > CuO > CeO2 > CNTs > TiO2 > FeO x . We believe NanoE-Tox database contains valuable information for ENM environmental hazard estimation and development of models for predicting toxic potential of ENMs.
Ducrot, Virginie; Péry, Alexandre R R; Quéau, Hervé; Mons, Raphaël; Lafont, Michel; Garric, Jeanne
2007-10-01
This paper provides original collection, acclimatizing, rearing and toxicity test methods for the freshwater worm Branchiura sowerbyi, an alternative species to Tubifex tubifex for ecotoxicity evaluation of sediments. Influence of the substrate, type of food, and feeding level on individual performances was assessed in short-term tests, in order to set up optimal culture and test conditions. Low-size particles and high organic matter content favoured the growth and reproduction of B. sowerbyi. The relative contribution of sediments and fish food to the individual food intake was assessed using a foraging efficiency model based upon the dynamic energy budget theory. Individual performances were optimal when the substrate plus fish food provided the energy equivalent to 5 mg Tetramin per worm per day, which is the ad libitum food level for adults at 21 degrees C. The life-cycle of the worm was fully characterized using a life-cycle test conducted under the previously defined optimal conditions. Hatching rates were low (32%), whereas newborn and juveniles exhibited high survival (>80%) and growth (2.4 mg/day in juveniles) rates. Age at puberty was low (60 days) when compared to the maximal life span (1100 days) as predicted using a Weibull model. Adults reproduced every other month with a constant fecundity (0.16 cocoon/worm/day). The mean values of the life-cycle parameters and their variability and reproducibility among laboratory studies were discussed in order to identify relevant endpoints to be used in ecotoxicity tests. Survival, juvenile growth, and fecundity may constitute suitable test endpoints, whereas hatching rate and adult growth should not be used as endpoints in B. sowerbyi.
Fernandes, Neemias Cintra; Brito, Lara Barroso; Costa, Gessyca Gonçalves; Taveira, Stephânia Fleury; Cunha-Filho, Marcílio Sérgio Soares; Oliveira, Gisele Augusto Rodrigues; Marreto, Ricardo Neves
2018-06-06
The conventional treatment of textile effluents is usually inefficient in removing azo dyes and can even generate more toxic products than the original dyes. The aim of the present study was to optimize the process factors in the degradation of Disperse Red 343 by Fenton and Fenton-like processes, as well as to investigate the ecotoxicity of the samples treated under optimized conditions. A Box-Behnken design integrated with the desirability function was used to optimize dye degradation, the amount of residual H 2 O 2 [H 2 O 2residual ], and the ecotoxicity of the treated samples (lettuce seed, Artemia salina, and zebrafish in their early-life stages). Dye degradation was affected only by catalyst concentration [Fe] in both the Fenton and Fenton-like processes. In the Fenton reaction, [H 2 O 2residual ] was significantly affected by initial [H 2 O 2 ] and its interaction with [Fe]; however, in the Fenton-like reaction, it was affected by initial [H 2 O 2 ] only. A. salina mortality was affected by different process factors in both processes, which suggests the formation of different toxic products in each process. The desirability function was applied to determine the best process parameters and predict the responses, which were confirmed experimentally. Optimal conditions facilitated the complete degradation of the dye without [H 2 O 2residual ] or toxicity for samples treated with the Fenton-like process, whereas the Fenton process induced significant mortality for A. salina. Results indicate that the Fenton-like process is superior to the Fenton reaction to degrade Disperse Red 343. Copyright © 2018 Elsevier B.V. All rights reserved.
Cerrillo, Cristina; Barandika, Gotzone; Igartua, Amaya; Areitioaurtena, Olatz; Marcaide, Arrate; Mendoza, Gemma
2015-08-01
There are currently a variety of applications for multiwalled carbon nanotubes (MWCNTs), but considerable concerns exist regarding their release into the environment. Their potential accumulation by aquatic organisms could lead to transfer throughout food chains. Considering the divergences in experimental data published on the ecotoxicity of carbon nanotubes, further research is required. The dispersion of MWCNTs in aqueous culturing media of organisms as well as the determination of concentrations are relevant aspects to obtain accurate ecotoxicity results. Ultraviolet-visible spectroscopy is one of the most reported techniques to analyze concentration quickly and economically, but the methodologies to prepare dispersions and selecting the wavelengths for ultraviolet-visible measurements have not yet been clearly defined. The present study demonstrates that dispersion procedures influence absorbance, and an approach to determine the most appropriate measurement wavelength is proposed. Ecotoxicity tests with MWCNTs were performed on Vibrio fischeri bacteria, and divergences in the results were observed with respect to those previously reported. The present study contributes to the attempt to overcome the lack of standardization in the environmental assessment of MWCNTs. © 2015 SETAC.
Ecotoxicity testing: science, politics and ethics.
Walker, Colin H
2008-02-01
Animal welfare organisations have long been concerned about the use of animals for ecotoxicity testing. Ecotoxicity testing is a necessary part of the statutory risk assessment of chemicals that may be released into the environment. It is sometimes also carried out during the development of new chemicals and in the investigation of pollution in the field. This review considers the existing requirements for ecotoxicity testing, with particular reference to practices in the European Union, including the recent REACH system proposals, before discussing criticisms that have been made of existing practices for environmental risk assessment. These criticisms have been made on scientific and ethical grounds, as well as on questions of cost. A case is made for greater investment in the development of alternative testing methods, which could improve the science, as well as serving the cause of animal welfare. It has frequently been suggested that the statutory requirements for environmental risk assessment are too rigid and bureaucratic. A case is made for flexibility and the greater involvement of scientists in the risk assessment procedure, in the interests of both improved science and improved animal welfare.
Lillicrap, Adam; Belanger, Scott; Burden, Natalie; Du Pasquier, David; Embry, Michelle; Halder, Marlies; Lampi, Mark; Lee, Lucy; Norberg-King, Teresa J.; Rattner, Barnett A.; Schirmer, Kristin; Thomas, Paul
2016-01-01
The need for alternative approaches to the use of vertebrate animals for hazard assessment of chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimized wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments has been banned; in other situations, the number of organisms tested has been dramatically reduced or the severity of the procedure refined. However, there is still a long way to go to achieve a complete replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is based not just on ethical considerations but also on reducing the cost of performing vertebrate ecotoxicity tests and in some cases on providing better information aimed at improving environmental risk assessments. The present Focus article provides an overview of the considerable advances that have been made toward alternative approaches for ecotoxicity assessments over the last few decades.
Tsiridis, Vasilios; Petala, Maria; Koukiotis, Chris; Darakas, Efthymios
2017-01-02
The complex nature and behavior of Engineered Nanomaterials (ENMs) has led to adoption of customized experimental ecotoxicity practices that are prone to possible artefacts in the inherent toxic properties of ENMs. In addition, the lack of standardized handling procedures for the ecotoxicity testing of ENMs prevents the development of experimental protocols for regulatory purposes. In this study, a suite of techniques for dispersion of ENMs was adopted and tested for two types of surface-modified alumina nanoparticles-one hydrophobic and one hydrophilic-towards the bacteria, Vibrio fischeri. The effect of certain handling practices on the observed ecotoxic effects on V. fischeri was examined. The overall goal was to evaluate by what means the handling practices of ENMs may affect the obtained toxicity results. It was realized that the toxicity of the hydrophilic and hydrophobic ENMs was mainly affected by the centrifugation and the salinity of the tested dispersions, respectively. It is more likely that both aluminium and coating substance contributed to the overall toxicity. Toxicity results are discussed with regard to generic physicochemical characteristics of the dispersions.
ERIC Educational Resources Information Center
Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.
2017-01-01
A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…
The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate or...
Study of ecotoxicity of silver nanoparticles using algae
NASA Astrophysics Data System (ADS)
Kustov, L. M.; Abramenko, N. B.
2016-11-01
Silver nanoparticles have been prepared and tested for their ecotoxicity using Chlorella vulgaris Beijer. algae as a hydrobiotic test organism and a photometric method of control. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.
Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment.
Müller, Nienke; de Zwart, Dick; Hauschild, Michael; Kijko, Gaël; Fantke, Peter
2017-02-01
Toxicity models in life cycle impact assessment (LCIA) currently only characterize a small fraction of marketed substances, mostly because of limitations in the underlying ecotoxicity data. One approach to improve the current data situation in LCIA is to identify new data sources, such as the European Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) database. The present study explored REACH as a potential data source for LCIA based on matching reported ecotoxicity data for substances that are currently also included in the United Nations Environment Programme/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) scientific consensus model USEtox for characterizing toxicity impacts. Data are evaluated with respect to number of data points, reported reliability, and test duration, and are compared with data listed in USEtox at the level of hazardous concentration for 50% of the covered species per substance. The results emphasize differences between data available via REACH and in USEtox. The comparison of ecotoxicity data from REACH and USEtox shows potential for using REACH ecotoxicity data in LCIA toxicity characterization, but also highlights issues related to compliance of submitted data with REACH requirements as well as different assumptions underlying regulatory risk assessment under REACH versus data needed for LCIA. Thus, further research is required to address data quality, pre-processing, and applicability, before considering data submitted under REACH as a data source for use in LCIA, and also to explore additionally available data sources, published studies, and reports. Environ Toxicol Chem 2017;36:492-500. © 2016 SETAC. © 2016 SETAC.
Dries, Jan; Daens, Dominique; Geuens, Luc; Blust, Ronny
2014-01-01
The present study compares conventional wastewater treatment technologies (coagulation-flocculation and activated sludge) and powdered activated carbon (PAC) treatment for the removal of acute ecotoxicity from wastewater generated by tank truck cleaning (TTC) processes. Ecotoxicity was assessed with a battery of four commercially available rapid biological toxicity testing systems, verified by the US Environmental Protection Agency. Chemical coagulation-flocculation of raw TTC wastewater had no impact on the inhibition of the bioluminescence by Vibrio fischeri (BioTox assay). Subsequent biological treatment with activated sludge without PAC resulted in BioTox inhibition-free effluent (<10% inhibition). In contrast, activated sludge treatment without PAC produced an effluent that significantly inhibited (>50%) (i) the bioluminescence by Photobacterium leiognathi (ToxScreen³ test kit), (ii) the photosynthesis by the green algae Chlorella vulgaris (LuminoTox SAPS test kit), and (iii) the particle ingestion by the crustacean Thamnocephalus platyurus (Rapidtoxkit test kit). The lowest inhibition was measured after activated sludge treatment with the highest PAC dose (400 mg/L), demonstrating the effectiveness of PAC treatment for ecotoxicity removal from TTC wastewater. In conclusion, the combination of bioassays applied in the present study represents a promising test battery for rapid ecotoxicty assessment in wastewater treatment.
Lillicrap, Adam; Belanger, Scott; Burden, Natalie; Pasquier, David Du; Embry, Michelle R; Halder, Marlies; Lampi, Mark A; Lee, Lucy; Norberg-King, Teresa; Rattner, Barnett A; Schirmer, Kristin; Thomas, Paul
2016-11-01
The need for alternative approaches to the use of vertebrate animals for hazard assessment of chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimized wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments has been banned; in other situations, the number of organisms tested has been dramatically reduced or the severity of the procedure refined. However, there is still a long way to go to achieve a complete replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is based not just on ethical considerations but also on reducing the cost of performing vertebrate ecotoxicity tests and in some cases on providing better information aimed at improving environmental risk assessments. The present Focus article provides an overview of the considerable advances that have been made toward alternative approaches for ecotoxicity assessments over the last few decades. Environ Toxicol Chem 2016;35:2637-2646. © 2016 SETAC. © 2016 SETAC.
Aquatic concentrations of chemical analytes compared to ecotoxicity estimates
Kostich, Mitchell S.; Flick, Robert W.; Angela L. Batt,; Mash, Heath E.; Boone, J. Scott; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.
2017-01-01
We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes.
Aquatic concentrations of chemical analytes compared to ecotoxicity estimates.
Kostich, Mitchell S; Flick, Robert W; Batt, Angela L; Mash, Heath E; Boone, J Scott; Furlong, Edward T; Kolpin, Dana W; Glassmeyer, Susan T
2017-02-01
We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes. Published by Elsevier B.V.
Life cycle assessment of electronic waste treatment.
Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi
2015-04-01
Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.
Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H
2007-01-01
Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.
Osorio, Victoria; Larrañaga, Aitor; Aceña, Jaume; Pérez, Sandra; Barceló, Damià
2016-01-01
Considerable amounts of pharmaceuticals are used in human and veterinary medicine, which are not efficiently removed during wastewater and slurries treatment and subsequently entering continuously into freshwater systems. The intrinsic biological activity of these non-regulated pollutants turns their presence in the aquatic environment into an ecological matter of concern. We present the first quantitative study relating the presence of pharmaceuticals and their predicted ecotoxicological effects with human population and livestock units. Four representative Iberian River basins (Spain) were studied: Llobregat, Ebro, Júcar and Guadalquivir. The levels of pharmaceuticals were determined in surface water and sediment samples collected from 77 locations along their stream networks. Predicted total toxic units to algae, Daphnia and fish were estimated for pharmaceuticals detected in surface waters. The use of chemometrics enabled the study of pharmaceuticals for: their spatial distribution along the rivers in two consecutive years; their potential ecotoxicological risk to aquatic organisms; and the relationships among their occurrence and predicted ecotoxicity with human population and animal farming pressure. The Llobregat and the Ebro River basins were characterized as the most polluted and at highest ecotoxicological risk, followed by Júcar and Guadalquivir. No significant acute risks of pharmaceuticals to aquatic organisms were observed. However potential chronic ecotoxicological effects on algae could be expected at two hot spots of pharmaceuticals pollution identified in the Llobregat and Ebro basins. Analgesics/antiinflammatories, antibiotics and diuretics were the most relevant therapeutic groups across the four river basins. Among them, hydrochlorothiazide and gemfibrozil, as well as azithromycin and ibuprofen were widely spread and concentrated pharmaceuticals in surface waters and sediments, respectively. Regarding their predicted ecotoxicity, sertraline, gemfibrozil and loratidine were identified as the more concerning compounds. Significantly positive relationships were found among levels of pharmaceuticals and toxic units and population density and livestock units in both surface water and sediment matrices. Copyright © 2015. Published by Elsevier B.V.
Ženko, Maja
2018-01-01
Background Benzalkonium chloride (BAC) is one of the most common ingredients of the disinfectants. It is commonly detected in surface and wastewaters where it can interact with the residues of pharmaceuticals that are also common wastewater pollutants. Among the latter, the residues of antineoplastic drugs are of particular concern as recent studies showed that they can induce adverse effect in aquatic organisms at environmentally relevant concentrations. Methods Ecotoxicity of BAC as an individual compound and in a binary mixture with an antineoplastic drug 5-fluorouracil (5-FU) was determined towards alga Pseudokirchneriella subcapitata, a representative of primary producers. The toxicity of the BAC+5-FU binary mixture was predicted by the two basic models: concentration addition (CA) and independent action (IA), and compared to the experimentally determined toxicity. Additionally combination index (CI) was calculated to determine the type of interaction. Results After 72 h exposure to BAC a concentration dependent growth inhibition of P. subcapitata was observed with an EC50 0.255 mg/L. Comparing the predicted no effect concentration to the measured concentrations in the surface waters indicate that BAC at current applications and occurrence in aquatic environment may affect algal populations. The measured toxicity of the mixture was higher from the predicted and calculated CI confirmed synergistic effect on the inhibition of algal growth, at least at EC50 concentration. The observed synergism may have impact on the overall toxicity of wastewaters, whereas it is less likely for general environments because the concentrations of 5-FU are several orders of magnitude lower from its predicted no effect concentration. Discussion These results indicate that combined effects of mixtures of disinfectants and antineoplastic drugs should be considered in particular when dealing with environmental risk assessment as well as the management of municipal and hospital wastewaters. PMID:29938131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunahara, G.I.; Renoux, A.Y.; Dodard, S.
1995-12-31
The environmental impact of energetic substances (TNT, RDX, GAP, NC) in soil is being examined using ecotoxicity bioassays. An extraction method was characterized to optimize bioassay assessment of TNT toxicity in different soil types. Using the Microtox{trademark} (Photobacterium phosphoreum) assay and non-extracted samples, TNT was most acutely toxic (IC{sub 50} = 1--9 PPM) followed by RDX and GAP; NC did not show obvious toxicity (probably due to solubility limitations). TNT (in 0.25% DMSO) yielded an IC{sub 50} 0.98 + 0.10 (SD) ppm. The 96h-EC{sub 50} (Selenastrum capricornutum growth inhibition) of TNT (1. 1 ppm) was higher than GAP and RDX;more » NC was not apparently toxic (probably due to solubility limitations). Soil samples (sand or a silt-sand mix) were spiked with either 2,000 or 20,000 mg TNT/kg soil, and were adjusted to 20% moisture. Samples were later mixed with acetonitrile, sonicated, and then treated with CaCl{sub 2} before filtration, HPLC and ecotoxicity analyses. Results indicated that: the recovery of TNT from soil (97.51% {+-} 2.78) was independent of the type of soil or moisture content; CaCl{sub 2} interfered with TNT toxicity and acetonitrile extracts could not be used directly for algal testing. When TNT extracts were diluted to fixed concentrations, similar TNT-induced ecotoxicities were generally observed and suggested that, apart from the expected effects of TNT concentrations in the soil, the soil texture and the moisture effects were minimal. The extraction procedure permits HPLC analyses as well as ecotoxicity testing and minimizes secondary soil matrix effects. Studies will be conducted to study the toxic effects of other energetic substances present in soil using this approach.« less
Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation.
Bori, Jaume; Vallès, Bettina; Ortega, Lina; Riva, Maria Carme
2016-09-01
In this study chemical analyses and ecotoxicity tests were applied for the assessment of a heavily hydrocarbon-contaminated soil prior and after the application of a remediation procedure that consisted in the stimulation of soil autochthonous populations of hydrocarbon degraders in static-ventilated biopiles. Terrestrial bioassays were applied in mixtures of test soils and artificial control soil and studied the survival and reproduction of Eisenia fetida and the avoidance response of E. fetida and Folsomia candida. Effects on aquatic organisms were studied by means of acute tests with Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna performed on aqueous elutriates from test soils. The bioremediation procedure led to a significant reduction in the concentration of hydrocarbons (from 34264 to 3074 mg kg(-1), i.e., 91 % decrease) and toxicity although bioassays were not able to report a percentage decrease of toxicity as high as the percentage reduction. Sublethal tests proved the most sensitive terrestrial bioassays and avoidance tests with earthworms and springtails showed potential as monitoring tools of hydrocarbon remediation due to their high sensitivity and short duration. The concentrations of hydrocarbons in water extracts from test soils were 130 and 100 μg L(-1) before and after remediation, respectively. Similarly to terrestrial tests, most aquatic bioassays detected a significant reduction in toxicity, which was almost negligible at the end of the treatment. D. magna survival was the most affected by soil elutriates although toxicity to the crustacean was associated to the salinity of the samples rather than to the concentration of hydrocarbons. Ecotoxicity tests with aqueous soil elutriates proved less relevant in the assessment of hydrocarbon-contaminated soils due to the low hydrosolubility of hydrocarbons and the influence of the physicochemical parameters of the aquatic medium.
Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C
2013-10-01
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. Copyright © 2013. Published by Elsevier Ltd.
Heger, Sebastian; Du, Miaomiao; Bauer, Kevin; Schäffer, Andreas; Hollert, Henner
2018-08-01
The ecotoxicity of two biofuel candidates (1‑octanol and 2‑butanone) was investigated by an integrative test strategy using three bioassays: the acute immobilisation test with water flea (D. magna), the fish embryo acute toxicity test with zebrafish (Danio rerio) and the in vitro micronucleus assay with Chinese hamster (Cricetulus griseus) V79 cells. The median effective concentration (EC 50 ) values were 14.9±0.66mgL -1 for 1‑octanol, and 2152.1±44.6mgL -1 for 2‑butanone in the D. magna test. Both 1‑octanol and 2‑butanone caused teratogenic and lethal effects on zebrafish embryos, while exposure to 1‑octanol significantly induced these effects at concentrations ≥2.0mgL -1 . These results indicate that 1‑octanol exert much higher ecotoxicity than 2‑butanone to D. magna and zebrafish embryos. Moreover, both 1‑octanol and 2‑butanone did not cause significant genotoxic effects, while their metabolites significantly induced micronuclei in V79 cells. The present study proposed an integrative test approach to evaluate the potential ecotoxicity of biofuels using simple, quick and inexpensive bioassays. Copyright © 2018 Elsevier B.V. All rights reserved.
Biczak, R; Turek, M; Pawłowska, B; Różycka-Sokołowska, E; Marciniak, B; Deska, M; Krupa, P; Jatulewicz, I; Skalik, J; Bałczewski, P
2018-07-15
2,2'-Thiodiacetates with their excellent complexing properties may be used as metal extraction agents, fluorescent and superparamagnetic materials, antibacterial and anticancer medical agents, however there are no data concerning the environmental impact of 2,2'-thiodiacetates derivatives and data definying the potential hazard connected with their use. This study describes the ecotoxicity assessment of seven 2,2'-thiodiacetates with non-metallic, alkyl and aryl ammonium cations, which were obtained in an environmentally friendly, solvent-free syntheses. The ecotoxicity of these water soluble compounds was tested in aquatic and benthic environments using luminescent marine bacteria Vibrio fischeri (Microtox ® test) and the crustaceans Heterocypris incongruens (Ostracodtoxkit F™), respectively. The antimicrobial and antifungal activity against Trichoderma viridis, Aspergillus niger, Rhizoctonia solani and Escherichia coli was also investigated. The results showed how structural changes within ammonium cations themselves influence ecotoxicity: the QASs with alkylammonium cations exhibited a similar, rather low toxicity both to Vibrio fischeri and Heterocypris incongruens, and they would not pose a risk to these organisms in case of leakage. Higher toxicity was observed in case of two isoquinolinium salts, however it was rather associated with the heteroaromatic cation, than with the 2,2'-thiodiacetate anion. Copyright © 2018 Elsevier Inc. All rights reserved.
Ecotoxicity of diethylene glycol and risk assessment for marine environment.
Manfra, L; Tornambè, A; Savorelli, F; Rotini, A; Canepa, S; Mannozzi, M; Cicero, A M
2015-03-02
Diethylene glycol (DEG) is a chemical compound used during offshore oil activities to prevent hydrate formation, and it may be released into the sea. A full ecotoxicological characterization is required according to European and Italian regulations for chemical substances. We have evaluated long-term toxic effects of DEG on indicator species of the marine environment as algae (Phaeodactylum tricornutum), crustaceans (Artemia franciscana), molluscs (Tapes philippinarum) and fish (Dicentrarchus labrax). A range of no observed effect concentrations (365-25,000 mg/L) has been identified. Based on the toxicity results and the ratio between predicted environmental concentration and predicted no-effect concentration, we have estimated the maximum allowable value of DEG in the marine environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Ecotoxicity of Mine Tailings: Unrehabilitated Versus Rehabilitated.
Maboeta, M S; Oladipo, O G; Botha, S M
2018-05-01
Earthworms are bioindicators of soil pollution. The ecotoxicity of tailings from selected gold mines in South Africa was investigated utilizing Eisenia andrei bioassays and biomarkers. Samples were obtained from unrehabilitated, rehabilitated and naturally vegetated sites. Biomass, neutral red retention time (NRRT), survival and reproduction were assessed using standardized protocols. Earthworm biomass, NRRT and reproductive success in rehabilitated tailings (comparable to naturally vegetated site) were significantly higher (p < 0.05) than in unrehabilitated tailings. In addition, significantly lower (p < 0.05) body tissue concentrations of As, Cd, Co, Cu and Ni contents were found in the rehabilitated tailings compared to the unrehabilitated. Further, significantly lower (p < 0.05) soil Mn and Zn concentrations were obtained in unrehabilitated tailings than the rehabilitated and naturally vegetated sites. Overall, reduced ecotoxicity effects were confirmed in rehabilitated compared to unrehabilitated tailings. This suggests that rehabilitation as a post-mining restorative strategy has strong positive influence on mine tailings.
Devi, Parmila; Saroha, Anil K
2014-06-01
The risk analysis was performed to study the bioavailability and eco-toxicity of heavy metals in biochar obtained from pyrolysis of sludge of pulp and paper mill effluent treatment plant. The sludge was pyrolyzed at different temperatures (200-700°C) and the resultant biochar were analyzed for fractionation of heavy metals by sequential extraction procedure. It was observed that all the heavy metals get enriched in biochar matrix after pyrolysis, but the bioavailability and eco-toxicity of the heavy metals in biochar were significantly reduced as the mobile and bioavailable heavy metal fractions were transformed into the relatively stable fractions. Moreover, it was observed that the leaching potential of heavy metals decreased after pyrolysis and the best results were obtained for biochar pyrolyzed at 700°C. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beta-blockers in the environment: part II. Ecotoxicity study.
Maszkowska, Joanna; Stolte, Stefan; Kumirska, Jolanta; Łukaszewicz, Paulina; Mioduszewska, Katarzyna; Puckowski, Alan; Caban, Magda; Wagil, Marta; Stepnowski, Piotr; Białk-Bielińska, Anna
2014-09-15
The increasing consumption of beta-blockers (BB) has caused their presence in the environment to become more noticeable. Even though BB are safe for human and veterinary usage, ecosystems may be exposed to these substances. In this study, three selected BB: propranolol, metoprolol and nadolol were subjected to ecotoxicity study. Ecotoxicity evaluation was based on a flexible ecotoxicological test battery including organisms, representing different trophic levels and complexity: marine bacteria (Vibrio fischeri), soil/sediment bacteria (Arthrobacter globiformis), green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor). All the ecotoxicological studies were supported by instrumental analysis to measure deviation between nominal and real test concentrations. Based on toxicological data from the green algae test (S. vacuolatus) propranolol and metoprolol can be considered to be harmful to aquatic organisms. However, sorption explicitly inhibits the hazardous effects of BB, therefore the risks posed by these compounds for the environment are of minor importance. Copyright © 2014 Elsevier B.V. All rights reserved.
Messiaen, Marlies; Janssen, Colin Roger; De Meester, Luc; De Schamphelaere, Karel André Clara
2013-11-15
Genetic variation complicates predictions of both the initial tolerance and the long-term (micro-evolutionary) response of natural Daphnia populations to chemical stressors from results of standard single-clone laboratory ecotoxicity tests. In order to investigate possible solutions to this problem, we aimed to compare the initial sub-lethal tolerance to Cd of 10 naïve natural pond populations of Daphnia magna as well as their evolutionary potential to develop increased resistance. We did so by measuring reproductive performance of 120 clones, i.e. 12 clones hatched from the recent dormant egg bank of each of 10 populations, both in absence (Cd-free control) and presence of 4.4 μg Cd/L. We show that the initial tolerance, defined as the reproductive performance of individuals of the first generation exposed to Cd relative to that in a Cd-free control was not significantly different among the 10 studied pond populations and averaged 0.82 ± 0.04 over these populations. Moreover, these populations' initial tolerances were also not significantly different from the mean initial tolerance of 0.87 ± 0.08 at 4.0 μg Cd/L measured for a group of 7 often-used laboratory clones, collected from a range of European ecotoxicity testing laboratories. This indicates that the initial response of naïve natural pond populations to sub-lethal Cd can be relatively accurately predicted from ecotoxicity test data from only a handful of laboratory clones. We then used estimates of broad-sense heritability of Cd tolerance (H(2)) - based on the same dataset - as a proxy of these populations' capacities to evolutionarily respond to Cd in terms of the development of increased resistance, which is here defined as the increase with time of the frequency of clones with a higher Cd tolerance in the population (accompanied with an increase of mean Cd-tolerance of the population above the initial tolerance). We show that the populations' estimated H(2) values of Cd-tolerance cover almost the entire theoretically possible range, ranging from not significantly different from zero (for five populations) to between 0.48 and 0.81 (for the five other populations). This indicates that, unlike the initial tolerance to Cd, the (long-term) micro-evolutionary response to Cd may be very different among natural pond populations. Therefore, we conclude that it may be very difficult to predict the long-term response of an unstudied population to chemical stress from tolerance data on a sample of other populations. It is therefore suggested that new methods for forecasting long-term responses should be explored, such as the development of predictive models based on the combination of population-genomic and tolerance time-series data. Copyright © 2013 Elsevier B.V. All rights reserved.
Bernardo, Maria S; Lapa, N; Barbosa, R; Gonçalves, M; Mendes, B; Pinto, F; Gulyurtlu, I
2009-07-15
A mixture of 70% (w/w) pine biomass and 30% (w/w) plastics (mixture of polypropylene, polyethylene, and polystyrene) was subjected to pyrolysis at 400 degrees C, for 15 min, with an initial pressure of 40 MPa. Part of the solid residue produced was subjected to extraction with dichloromethane (DCM). The extracted residue (residue A) and raw residue (residue B) were analyzed by weight loss combustion and submitted to the leaching test ISO/TS 21268-2 using two different leachants: DCM (0.2%, v/v) and calcium chloride (0.001 mol/L). The concentrations of the heavy metals Cd, Cr, Ni, Zn, Pb and Cu were determined in the eluates and in the two residues. The eluates were further characterized by determining their pH and the concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX). The presence of other organic contaminants in the eluates was qualitatively evaluated by gas chromatography, coupled with mass spectrometry. An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Ecotoxicity (CEMWE). Residue A was not considered to be ecotoxic by the ecotoxicological criterion (EC(50) (30 min) >or=10%), but it was considered to be ecotoxic by the chemical criterion (Ni>or=0.5mg/L). Residue B was considered to be ecotoxic by the ecotoxicological criterion: EC(50) (30 min)
Kwon, Jung-Hwan; Lee, So-Young; Kang, Hyun-Joong; Mayer, Philipp; Escher, Beate I
2016-11-01
Worldwide, regulations of chemicals require short-term toxicity data for evaluating hazards and risks of the chemicals. Current data requirements on the registration of chemicals are primarily based on tonnage and do not yet consider properties of chemicals. For example, short-term ecotoxicity data are required for chemicals with production volume greater than 1 or 10 ton/y according to REACH, without considering chemical properties. Highly hydrophobic chemicals are characterized by low water solubility and slow bioconcentration kinetics, which may hamper the interpretation of short-term toxicity experiments. In this work, internal concentrations of highly hydrophobic chemicals were predicted for standard acute ecotoxicity tests at three trophic levels, algae, invertebrate, and fish. As demonstrated by comparison with maximum aqueous concentrations at water solubility, chemicals with an octanol-water partition coefficient (K ow ) greater than 10 6 are not expected to reach sufficiently high internal concentrations for exerting effects within the test duration of acute tests with fish and invertebrates, even though they might be intrinsically toxic. This toxicity cutoff was explained by the slow uptake, i.e., by kinetics, not by thermodynamic limitations. Predictions were confirmed by data entries of the OECD's screening information data set (SIDS) (n = 746), apart from a few exceptions concerning mainly organometallic substances and those with inconsistency between water solubility and K ow . Taking error propagation and model assumptions into account, we thus propose a revision of data requirements for highly hydrophobic chemicals with log K ow > 7.4: Short-term toxicity tests can be limited to algae that generally have the highest uptake rate constants, whereas the primary focus of the assessment should be on persistence, bioaccumulation, and long-term effects.
Sorption ability of the soil and its impact on environmental contamination
Gargošová, Helena Zlámalová; Vávrová, Milada
2014-01-01
From the physical point of view, soil is a heterogenic polydisperse system. It often becomes a place of a secondary contamination during extinguishing uncontrolled areal fires in nature. Foam extinguishing agents (FEAs), used at these events, basically contain surface active substances and perfluorinated compounds. These tend to be captured in the soil matrix due to their specific properties. Contaminants could be partly flushed out with rainwater, which causes several times dilution of contamination and lower ecotoxic activity. However in the dry season, foam solution infiltrates into the bed soil without any dilution. This study deals with the direct influence of soil the sorption complex on ecotoxicity of five selected FEAs, i.e. Expyrol F 15, Finiflam F 15, Moussol APS F 15, Pyrocool B and Sthamex F 15. The substances tested were prepared in concentration of work solution and then applied on standard soil matrix LUFA 2.3. For experimental purposes, a column infiltration apparatus was designed and compiled. Filtrates were collected and then tested using the plant organisms Sinapis alba and Allium cepa L. The study compared ecotoxicologic effects of filtrates with an original work solution. Moussol APS F 15 seems to be the least ecotoxic of the FEAs tested. A direct influence of soil sorption complex onto ecotoxicity reduction was also established. This finding demonstrates the sorption ability of soil particles and ion exchange activity of the soil matrix. It is a positive finding for biota of aquatic environment, yet at the expense of those in soil. PMID:26109897
Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation.
Tiensing, T; Preston, S; Strachan, N; Paton, G I
2001-02-01
The suitability of two different techniques (centrifugation and Rhizon sampler) for obtaining the interstitial pore water of soil (soil solution), integral to the ecotoxicity assessment of metal contaminated soil, were investigated by combining chemical analyses and a luminescence-based microbial biosensor. Two different techniques, centrifugation and Rhizon sampler, were used to extract the soil solution from Insch (a loamy sand) and Boyndie (a sandy loam) soils, which had been amended with different concentrations of Zn and Cd. The concentrations of dissolved organic carbon (DOC), major anions (F- , CI-, NO3, SO4(2-)) and major cations (K+, Mg2+, Ca2+) in the soil solutions varied depending on the extraction technique used. Overall, the concentrations of Zn and Cd were significantly higher in the soil solution extracted using the centrifugation technique compared with that extracted using the Rhizon sampler technique. Furthermore, the differences observed between the two extraction techniques depended on the type of soil from which the solution was being extracted. The luminescence-based biosensor Escherichia coli HB101 pUCD607 was shown to respond to the free metal concentrations in the soil solutions and showed that different toxicities were associated with each soil, depending on the technique used to extract the soil solution. This study highlights the need to characterise the type of extraction technique used to obtain the soil solution for ecotoxicity testing in order that a representative ecotoxicity assessment can be carried out.
Ranking of ecotoxisity tests for underground water assessment using the Hasse diagram technique.
Kudłak, Błażej; Tsakovski, Stefan; Simeonov, Vasil; Sagajdakow, Agnieszka; Wolska, Lidia; Namieśnik, Jacek
2014-01-01
The present study deals with the novel application of the Hasse diagram technique (HDT) for the specific ranking of ecotoxicity tests capable of assessment of underground water quality. The area studied is a multi-municipal landfill in the northern Poland. The monitoring network of the landfill constitutes of 27 piezometers for underground water monitoring and two observation points at surface water courses. After sampling, chemical analysis of various water parameters was performed (pH, conductivity, temperature, turbidity (TURB), color, taste, smell and atmospheric conditions: temperature, precipitation and cloud cover, heavy metals content (Cu, Zn, Pb, Cd, Cr(6+), Hg), total organic carbon (TOC), sum of Polycyclic Aromatic Hydrocarbons (PAHs), Na, Mg, K, Ca, Mn, Fe, Ni, alkalinity (Alkal), general hardness, total suspended matter (SUSP), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), chlorides, fluorides, sulphides, sulphates, ammonium nitrogen, total nitrogen, nitrate and nitrite nitrogen, volatile phenols, ether extracts (ETHER), dry residues (DRY_RES), dissolved compounds). Parallel to the chemical parameters assessment six different ecotoxicity tests were applied (% root length(PG)/germination(PR) inhibition of Sorghum saccharatum (respectively PGSS/PRSS), Sinapis alba (respectively PGSA/PRSA), Lepidium sativum (respectively PGLS/PRLS), % bioluminescence inhibition of Vibrio fischeri (MT), % mortality of Daphnia magna (DM), % mortality of Thamnocephalus platyrus (TN)). In order to determine the applicability of the various ecotoxicity tests, a ranking of samples from different monitoring levels according to the test used (attributes) is done by using HDT. Further, the sensitivity of the biotests was determined and compared. From the sensitivity analysis of the both monitoring levels was evident that the choice of ecotoxicity tests could be optimized by the use of HDT strategy. Most reliable results could be expected by the application of root growth inhibition of Sorghum saccharatum (PGSS test). In order to clarify the relationship between the chemical parameters measured and each of the ecotoxicity tests a optimized similarity analysis between Hasse diagrams for the ecotoxicity tests for different levels of monitoring and Hasse diagrams obtained by the use of the chemical parameters was performed. Finally, it could be concluded that for reliable monitoring of underground waters passing a dump collector following chemical parameters are of significance: water hardness, dissolved matter, total nitrogen (ammonia and nitrate nitrogen), nickel, chlorides, alkalinity, total organic carbon and ether extract and the proper battery test could include PGSA, PGSS and PRSS. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pharmaceutical metabolites in the environment: analytical challenges and ecological risks.
Celiz, Mary D; Tso, Jerry; Aga, Diana S
2009-12-01
The occurrence of human and veterinary pharmaceuticals in the environment has been a subject of concern for the past decade because many of these emerging contaminants have been shown to persist in soil and water. Although recent studies indicate that pharmaceutical contaminants can pose long-term ecological risks, many of the investigations regarding risk assessment have only considered the ecotoxicity of the parent drug, with very little attention given to the potential contributions that metabolites may have. The scarcity of available environmental data on the human metabolites excreted into the environment or the microbial metabolites formed during environmental biodegradation of pharmaceutical residues can be attributed to the difficulty in analyzing trace amounts of previously unknown compounds in complex sample matrices. However, with the advent of highly sensitive and powerful analytical instrumentations that have become available commercially, it is likely that an increased number of pharmaceutical metabolites will be identified and included in environmental risk assessment. The present study will present a critical review of available literature on pharmaceutical metabolites, primarily focusing on their analysis and toxicological significance. It is also intended to provide an overview on the recent advances in analytical tools and strategies to facilitate metabolite identification in environmental samples. This review aims to provide insight on what future directions might be taken to help scientists in this challenging task of enhancing the available data on the fate, behavior, and ecotoxicity of pharmaceutical metabolites in the environment.
Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests.
Kalcíková, G; Vávrová, M; Zagorc-Koncan, J; Gotvajn, A Zgajnar
2011-01-01
The aim of our research was to assess the ecotoxicity and biodegradability of leachates originating from two parts of a municipal landfill before and after biological treatment in the existing treatment plant. Biotests represent important tools for adequate environmental characterization of landfill leachates and could be helpful in reliable assessment and monitoring of the treatment plant efficiency. For ecotoxicity testing of landfill leachate before and after biological treatment, different organisms were chosen: the bacteria Vibrio fischeri, a mixed culture of activated sludge, duckweed Lemna minor, white mustard Sinapis alba, brine shrimp Artemia salina, and water flea Daphnia magna. For assessment of biodegradability, the method for determination of oxygen demand in a closed respirometer was used. The investigated leachates were heavily polluted, and in some cases, effluent limits were exceeded even after treatment. Results indicated that toxicity tests and physico-chemical parameters determined before and after treatment equivalently assess the efficiency of the existing treatment plant. However, the investigated leachates showed higher toxicity to Daphnia magna and especially to Lemna minor in contrast to Vibrio fischeri and Artemia salina (neither was sensitive to any of the leachates). No leachates were readily biodegradable. Experiments confirmed that the battery of toxicity tests should be applied for more comprehensive assessment of landfill leachate treatment and for reliable assessment of the treated leachate's subsequent environmental impact. It was confirmed that treated leachate, in spite of its better physico-chemical characteristics, still represents a potential environmental risk and thus should not be released into the environment.
TRACI 2.0 - The Tool for the Reduction and Assessment of ...
TRACI 2.0, the Tool for the Reduction and Assessment of Chemical and other environmental Impacts 2.0, has been expanded and developed for sustainability metrics, life cycle impact assessment, industrial ecology, and process design impact assessment for developing increasingly sustainable products, processes, facilities, companies, and communities. TRACI 2.0 allows the quantification of stressors that have potential effects, including ozone depletion, global warming, acidification, eutrophication, tropospheric ozone (smog) formation, human health criteria-related effects, human health cancer, human health noncancer, ecotoxicity, and fossil fuel depletion effects. Research is on going to quantify the use of land and water in a future version of TRACI. The original version of TRACI released in August 2002, has been used in many prestigious applications including: the US Green Building Council’s LEED Certification, the National Institute of Standards and Technology’s BEES (Building for Environment and Economic Sustainability) which is used by US EPA for Environmentally Preferable Purchasing, the US Marine Corps’ EKAT (Environmental Knowledge and Assessment Tool) for military and non-military uses, and within numerous college curriculums in engineering and design departments. To inform the public.
Sydow, Mateusz; Chrzanowski, Łukasz; Cedergreen, Nina; Owsianiak, Mikołaj
2017-08-01
Development of comparative toxicity potentials of cationic metals in soils for applications in hazard ranking and toxic impact assessment is currently jeopardized by the availability of experimental effect data. To compensate for this deficiency, data retrieved from experiments carried out in standardized artificial soils, like OECD soils, could potentially be tapped as a source of effect data. It is, however, unknown whether such data are applicable to natural soils where the variability in pore water concentrations of dissolved base cations is large, and where mass transfer limitations of metal uptake can occur. Here, free ion activity models (FIAM) and empirical regression models (ERM, with pH as a predictor) were derived from total metal EC50 values (concentration with effects in 50% of individuals) using speciation for experiments performed in artificial OECD soils measuring ecotoxicological endpoints for terrestrial earthworms, potworms, and springtails. The models were validated by predicting total metal based EC50 values using backward speciation employing an independent set of natural soils with missing information about ionic composition of pore water, as retrieved from a literature review. ERMs performed better than FIAMs. Pearson's r for log 10 -transformed total metal based EC50s values (ERM) ranged from 0.25 to 0.74, suggesting a general correlation between predicted and measured values. Yet, root-mean-square-error (RMSE) ranged from 0.16 to 0.87 and was either smaller or comparable with the variability of measured EC50 values, suggesting modest performance. This modest performance was mainly due to the omission of pore water concentrations of base cations during model development and their validation, as verified by comparisons with predictions of published terrestrial biotic ligand models. Thus, the usefulness of data from artificial OECD soils for global-scale assessment of terrestrial ecotoxic impacts of Cd, Pb and Zn in soils is limited due to relatively small variability of pore water concentrations of dissolved base cations in OECD soils, preventing their inclusion in development of predictive models. Our findings stress the importance of considering differences in ionic composition of soil pore water when characterizing terrestrial ecotoxicity of cationic metals in natural soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morais, Sérgio Alberto; Delerue-Matos, Cristina; Gabarrell, Xavier
2014-08-15
In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results. Copyright © 2014. Published by Elsevier B.V.
Wilde, Marcelo L; Schneider, Mandy; Kümmerer, Klaus
2017-04-01
Pharmaceuticals do not occur isolated in the environment but in multi-component mixtures and may exhibit antagonist, synergistic or additive behavior. Knowledge on this is still scarce. The situation is even more complicated if effluents or potable water is treated by oxidative processes or such transformations occur in the environment. Thus, determining the fate and effects of parent compounds, metabolites and transformation products (TPs) formed by transformation and degradation processes in the environment is needed. This study investigated the fate and preliminary ecotoxicity of the phenothiazine pharmaceuticals, Promazine (PRO), Promethazine (PRM), Chlorpromazine (CPR), and Thioridazine (THI) as single and as components of the resulting mixtures obtained from their treatment by Fenton process. The Fenton process was carried out at pH7 and by using 0.5-2mgL -1 of [Fe 2+ ] 0 and 1-12.5mgL -1 of [H 2 O 2 ] 0 at the fixed ratio [Fe 2+ ] 0 :[H 2 O 2 ] 0 of 1:10 (w:w). No complete mineralization was achieved. Constitutional isomers and some metabolite-like TPs formed were suggested based on their UHPLC-HRMS n data. A degradation pathway was proposed considering interconnected mechanisms such as sulfoxidation, hydroxylation, N-dealkylation, and dechlorination steps. Aerobic biodegradation tests (OECD 301 D and OECD 301 F) were applied to the parent compounds separately, to the mixture of parent compounds, and for the cocktail of TPs present after the treatment by Fenton process. The samples were not readily biodegradable. However, LC-MS analysis revealed that abiotic transformations, such hydrolysis, and autocatalytic transformations occurred. The initial ecotoxicity tested towards Vibrio fischeri as individual compounds featured a reduction in toxicity of PRM and CPR by the treatment process, whereas PRO showed an increase in acute luminescence inhibition and THI a stable luminescence inhibition. Concerning effects of the mixture components, reduction in toxicity by the Fenton process was predicted by concentration addition and independent action models. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecotoxicity evaluation of a liquid detergent using the automatic biotest ECOTOX.
Azizullah, Azizullah; Richter, Peter; Ullah, Waheed; Ali, Imran; Häder, Donat-Peter
2013-08-01
Synthetic detergents are common pollutants reaching aquatic environments in different ways after usage at homes, institutions and industries. In this study a liquid detergent, used for dish washing, was evaluated for its toxicity during long- and short-term tests using the automatic biotest ECOTOX. Different parameters of Euglena gracilis like motility, swimming velocity, gravitactic orientation, cell compactness and cell growth were used as end points. In short-term experiments, the maximum adverse effects on motility, velocity, cell shape and gravitaxis were observed after 1 h of exposure. With further increase in exposure time to the detergent a slight recovery of these parameters was observed. In long-term experiments, the detergent caused severe disturbances to E. gracilis. Motility, cell growth and cell compactness (shape) with EC50 values of 0.064, 0.18 and 2.05 %, respectively, were found as the most sensitive parameters to detergent stress. There was a slight positive effect on gravitactic orientation at the lowest two concentrations; at higher concentrations of the detergent cells orientation was highly impaired giving EC50 values of 1.75 and 2.52 % for upward swimming and r-value, respectively.
[Priority pollutants ranking and screening of coke industry based on USEtox model].
Hao, Tian; Du, Peng-Fei; Du, Bin; Zeng, Si-Yu
2014-01-01
Thesis aims at evaluating and setting priority to human toxicity and ecotoxicity of coking pollutants. A field research and sampling project are conducted in coke plant in Shanxi so as to complete the coke emission inventory. The USEtox model representing recommended practice in LCIA characterization is applied to the emission inventory to quantify the potential impacts on human toxicity and ecotoxicity of emerging pollutants. Priority pollutants, production procedures and effects of changing plant site on the toxicity are analyzed. As conclusions, benzo(a) pyrene, benzene, Zn and As are identified as the priority pollutants in human toxicity, while pyrene and anthracene in ecotoxicity. Coal charging is the dominant procedure for organic toxicity and priority pollutants include benzo (a) pyrene, benzene, naphthalene, etc. While coke drenching is the dominant procedure for metal toxicity and priority pollutants include Zn, As, Ti, Hg etc. Emission to rural environment can reduce the organic toxicity significantly compared to the emission to urban environment. However, the site changing has no effect on metal toxicity and might increase the risk of the metal pollution to rural water and soil.
Unintended environmental consequences and co-benefits of economic restructuring.
Liang, Sai; Xu, Ming; Suh, Sangwon; Tan, Raymond R
2013-11-19
Current economic restructuring policies have ignored unintended environmental consequences and cobenefits, the understanding of which can provide foundations for effective policy decisions for green economy transformation. Using the input-output life cycle assessment model and taking China as an example, we find that household consumption, fixed capital formation, and export are main drivers to China's environmental impacts. At the product scale, major contributors to environmental impacts vary across different types of impacts. Stimulating the development of seven strategic emerging industries will cause unintended consequences, such as increasing nonferrous metal ore usage, terrestrial acidification, photochemical oxidant formation, human toxicity, and terrestrial ecotoxicity. Limiting the surplus outputs in the construction materials industry and metallurgy industry may only help mitigate some of the environmental impacts caused by China's regulated pollutants, with little effect on reducing other impacts, such as marine eutrophication, terrestrial acidification, photochemical oxidant formation, and particulate matter formation. However, it will bring cobenefits by simultaneously reducing mineral ore usage, human toxicity, marine ecotoxicity, and terrestrial ecotoxicity. Sustainable materials management and integrated policy modeling are possible ways for policy-making to avoid unintended consequences and effectively utilize cobenefits.
Ecotoxicity of artificial sweeteners and stevioside.
Stolte, Stefan; Steudte, Stephanie; Schebb, Nils Helge; Willenberg, Ina; Stepnowski, Piotr
2013-10-01
Produced, consumed and globally released into the environment in considerable quantities, artificial sweeteners have been identified as emerging pollutants. Studies of environmental concentrations have confirmed the widespread distribution of acesulfame (ACE), cyclamate (CYC), saccharin (SAC) and sucralose (SUC) in the water cycle at levels that are among the highest known for anthropogenic trace pollutants. Their ecotoxicity, however, has yet to be investigated at a larger scale. The present study aimed to fill this knowledge gap by systematically assessing the influence of ACE, CYC and SAC and complementing the data on SUC. Therefore we examined their toxicity towards an activated sewage sludge community (30min) and applying tests with green algae Scenedesmus vacuolatus (24h), water fleas Daphnia magna (48h) and duckweed Lemna minor (7d). We also examined the effects caused by the natural sweetener stevioside. The high No Observed Effect Concentrations (NOECs) yielded by this initial evaluation indicated a low hazard and risk potential towards these aquatic organisms. For a complete risk assessment, however, several kinds of data are still lacking. In this context, obligatory ecotoxicity testing and stricter environmental regulations regarding food additives appear to be necessary. © 2013.
Life cycle assessment of electronic waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jinglan, E-mail: hongjing@sdu.edu.cn; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012; Shi, Wenxiao
Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies havemore » a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelghani, A.; Pramar, Y.; Mandal, T.
1996-05-02
This project assesses the levels of xenobiotics in Devils Swamp and studies their biological fate, transport, ecotoxicity, and potential toxicity to man. This article reports on the following studies: assessment of the acute toxicity of individual xenobiotics and toxicity of organic compounds hexachlorobutadience (HCB) and hexachlorobenzene (HCBD) on juvenile crayfish; determination of the biotic influence of temperature, salinity, pH, oxidation-reduction potential, and sediment composition on the migration of xenobiotics; development of a pharmacokinetics model for xenobiotic absorption and storage, distribution and excretion by fish and crayfish.
NASA Astrophysics Data System (ADS)
Quinteiro, Paula; Van de Broek, Marijn; Cláudia Dias, Ana; Ridoutt, Bradley; Arroja, Luís
2016-04-01
High concentrations of suspended solids (SS), particularly in the clay and silt size fractions, reaching lotic environments and remaining in suspension can be a significant stressors to the biodiversity of these aquatic systems, degrading the water quality and directly affecting the aquatic biota, namely macroinvertebrates, algae and macrophytes. This damage is presently not considered in Life Cycle Assessment studies. This study is devoted to the effects of SS into freshwater systems due to topsoil erosion by water (environmental mechanism), translated into damage to aquatic ecosystem diversity (endpoint impact category), namely to macroinvertebrates, algae and macrophytes. For this, we have developed a framework to conduct an erosion inventory using the WaTEM/SEDEM model and linked this with, a method to derive regional characterisation for endpoint damage on aquatic ecosystem diversity. A case study was performed for Eucalyptus globulus stands in Portugal, with a functional unit of one hectare of land under production forestry management. To demonstrate how this newly SS ecosystem method can help to improve the environmental assessment in forestry, results were compared with the earlier commonly used impact categories from ReCiPe method. The relevance of the impact from SS delivery to freshwater streams is shown, providing a more comprehensive assessment of the SS impact from land use systems on aquatic environments. The SS impacts ranged from 15.5 to 1234.9 PDF.m3.yr.ha-1.revolution-1 for macroinvertebrates, and from 5.2 to 411.9 PDF.m3.yr.ha-1.revolution-1 for algae and macrophytes. For some stands, SS potential impacts on macroinvertebrates have the same order of magnitude than freshwater eutrophication, freshwater ecotoxicity, terrestrial ecotoxicity and terrestrial acidification impacts. For algae and macrophytes, most of the stands present SS impacts of the same order of magnitude as terrestrial ecotoxicity, one order of magnitude higher than freshwater eutrophication, and two orders of magnitude lower than freshwater ecotoxicity and terrestrial acidification. The SS impact results allow to conclude that the increase of SS in the water column can cause biodiversity damage and that the calculated impacts can have a similar or even higher contribution to the total environmental impact than the commonly established endpoint impact categories of the ReCiPe method (such as freshwater eutrophication, freshwater ecotoxicity, terrestrial ecotoxicity and terrestrial acidification). The present study proves that SS impacts on aquatic organisms can vary substantially when using a detailed regionalisation level such as the local resolution scale. A wide application of the framework and method developed at a local scale enable the establishment of a regionalised SS inventory database and a deep characterisation of the potential environmental impacts of SS on local aquatic environments. Keywords: Eucalyptus globulus, land use, life cycle assessment, suspended solids, topsoil erosion
Ferrari, Benoît; Paxéus, Nicklas; Lo Giudice, Roberto; Pollio, Antonino; Garric, Jeanne
2003-07-01
In four countries (France, Greece, Italy, and Sweden) occurrence in sewage treatment plant (STP) effluents and ecotoxicity of the pharmaceuticals carbamazepine, clofibric acid, and diclofenac were investigated. Bioassays were performed on bacteria, algae, microcrustaceans, and fishes in order to calculate their predicted no-effect concentrations (PNEC) and to perform a first approach of risk characterization. For this aim, risk has been estimated by the predicted environmental concentration/PNEC ratio and the measured environmental concentration/PNEC ratio. First, regarding the PNEC, carbamazepine appears to be the more hazardous compound. Second, even though it is demonstrated that carbamazepine, clofibric acid, and diclofenac have been detected in effluents, only carbamazepine have been detected in all sewage treatment plants with the greatest concentrations. Third, risk quotients greater than unity were calculated only for carbamazepine, suggesting that risk for the water compartment is expected.
Detoxification of kraft pulp ECF bleaching effluents by catalytic hydrotreatment.
Calvo, L; Gilarranz, M A; Casas, J A; Mohedano, A F; Rodríguez, J J
2007-02-01
Two different effluents from the D(1) and E(1) stages of the ECF bleaching of Eucalyptus globulus kraft pulp were treated by catalytic hydrogenation in a trickle bed reactor using commercial and homemade Pd/AC catalysts. The reactor was fed with the bleaching effluent and a H(2)/N(2) gas stream. The variables studied were space-time (1.4-5g(cat)min/mL), gas to liquid flow ratio (286-1000vol.), gas feed concentration (H(2):N(2), 1:1-1:7.3vol.), temperature (25-100 degrees C) and pressure (1-11bar). Hydrotreatment performance was evaluated in terms of ecotoxicity, adsorbable organic halogen (AOX), chemical oxygen demand (COD), biological oxygen demand (BOD(5)) and colour removal. In all the runs, the ecotoxicity of the effluents decreased as a result of the treatment, achieving reductions that ranged from 70% to 98%. Simultaneously to the reduction of toxicity, the hydrotreatment led to a decrease of the colour of the effluents, being the decrease significantly higher in the case of E(1) effluent. The AOX content was reduced by 85% and 23% for E(1) and D(1) effluents, respectively. In the case of D(1) effluent the removal of ecotoxicity was significantly higher than that of AOX, which indicates that much of the toxicity of the effluent must be associated to non-chlorinated organics. In spite of the important reduction of ecotoxicity, the biodegradability of the effluents only increased slightly. The homemade catalysts, prepared from activated carbons with a high external or non-microporous surface area and mesopore volume and a convenient surface chemistry showed a higher efficiency than the commercial one.
Heavy metal speciation and toxicity characteristics of tannery sludge
NASA Astrophysics Data System (ADS)
Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir
2016-07-01
Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.
Pathiratne, Asoka; Kroon, Frederieke J
2016-02-01
To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species. © 2015 SETAC.
Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P
2013-11-30
The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. Copyright © 2013 Elsevier Ltd. All rights reserved.
Menz, Jakob; Müller, Julia; Olsson, Oliver; Kümmerer, Klaus
2018-06-05
There are growing concerns that antibiotic pollution impacts environmental microbiota and facilitates the propagation of antibiotic resistance. However, the prediction or analytical determination of bioavailable concentrations of antibiotics in soil is still subject to great uncertainty. Biological assays are increasingly recognized as valuable complementary tools that allow a more direct determination of the residual antibiotic activity. This study assessed the bioavailability of structurally diverse antibiotics at a soil-water interface applying activity-based analyses in conjunction with equilibrium partitioning (EqP) modeling. The activity against Gram-positive and Gram-negative bacteria of nine antibiotics from different classes was determined in the presence and absence of standard soil (LUFA St. 2.2). The addition of soil affected the activity of different antibiotics to highly varying degrees. Moreover, a highly significant correlation ( p < 0.0001) between the experimentally observed and the EqP-derived log EC 50 (half-maximal effective concentration) values was observed. The innovative experimental design of this study provided new insights on the bioavailability of antibiotics at soil-water interfaces. EqP appears to be applicable to a broad range of antibiotics for the purpose of screening-level risk assessment. However, EqP estimates cannot replace soil-specific ecotoxicity testing in higher-tier assessments, since their accuracy is still compromised by a number of factors.
Key challenges for nanotechnology: Standardization of ecotoxicity testing.
Cerrillo, Cristina; Barandika, Gotzone; Igartua, Amaya; Areitioaurtena, Olatz; Mendoza, Gemma
2017-04-03
Nanotechnology is expected to contribute to the protection of the environment, but many uncertainties exist regarding the environmental and human implications of manufactured nanomaterials (MNMs). Contradictory results have been reported for their ecotoxicity to aquatic organisms, which constitute one of the most important pathways for their entrance and transfer throughout the food web. The present review is focused on the international strategies that are laying the foundations of the ecotoxicological assessment of MNMs. Specific advice is provided on the preparation of MNM dispersions in the culture media of the organisms, which is considered a key factor to overcome the limitations in the standardization of the test methodologies.
Furuhama, A; Hasunuma, K; Aoki, Y
2015-01-01
In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.
Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge.
Xiao, Zhihua; Yuan, Xingzhong; Leng, Lijian; Jiang, Longbo; Chen, Xiaohong; Zhibin, Wu; Xin, Peng; Jiachao, Zhang; Zeng, Guangming
2016-02-01
Fly ash and slag are important by-products obtained from combustion of municipal sewage sludge (MSS) after pelletization. The quantitative environmental impact assessment of heavy metals in fly ash and slag, compared to MSS, were performed in accordance with bioavailability and eco-toxicity, geo-accumulation index (GAI), risk assessment code (RAC), and potential ecological risk index (PERI). The results demonstrated that not only direct but also long-term bioavailability and eco-toxicity of heavy metals in fly ash and slag decreased except direct bioavailability and eco-toxicity of Pb in fly ash. The GAI demonstrated that combustion significantly weakened (P < 0.05) the pollution levels of heavy metals. PERI indicated that all risks attributed to heavy metals were significantly lowered (P < 0.05) from 777.07 (very high risk) in MSS to 288.72 (moderate risk) and 64.55 (low risk) in fly ash and slag, respectively. In terms of the RAC, seven heavy metals had low even no risk to the environments after combustion besides As in slag. The environmental risk of heavy metals in fly ash and slag was decreased compared with MSS. However, the results of PERI showed that fly ash had a moderate risk.
Adira Wan Khalit, Wan Nor; Tay, Kheng Soo
2016-05-18
Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination.
Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H
2013-02-01
In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl(-), Mg(2+), and Ca(2+), may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing impacts by approximately 90% in most categories, like global warming, photochemical ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Therefore, leachate recirculation is considered a cost-effective and environmentally viable solution for the current situation, and landfill gas treatment is urgently required. These results can provide important evidence for leachate and gas management of landfill in arid regions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Beronius, Anna; Molander, Linda; Zilliacus, Johanna; Rudén, Christina; Hanberg, Annika
2018-05-28
The Science in Risk Assessment and Policy (SciRAP) web-based platform was developed to promote and facilitate structure and transparency in the evaluation of ecotoxicity and toxicity studies for hazard and risk assessment of chemicals. The platform includes sets of criteria and a colour-coding tool for evaluating the reliability and relevance of individual studies. The SciRAP method for evaluating in vivo toxicity studies was first published in 2014 and the aim of the work presented here was to evaluate and develop that method further. Toxicologists and risk assessors from different sectors and geographical areas were invited to test the SciRAP criteria and tool on a specific set of in vivo toxicity studies and to provide feedback concerning the scientific soundness and user-friendliness of the SciRAP approach. The results of this expert assessment were used to refine and improve both the evaluation criteria and the colour-coding tool. It is expected that the SciRAP web-based platform will continue to be developed and enhanced to keep up to date with the needs of end-users. Copyright © 2018 John Wiley & Sons, Ltd.
Hennebert, Pierre; van der Sloot, Hans A; Rebischung, Flore; Weltens, Reinhilde; Geerts, Lieve; Hjelmar, Ole
2014-10-01
Hazard classification of waste is a necessity, but the hazard properties (named "H" and soon "HP") are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors. In this paper the different proposed methods have been applied to a large assortment of solid and liquid wastes (>100). Data for 45 wastes - documented with extensive chemical analysis and flammability test - were assessed in terms of the different HP criteria and results were compared to LoW for lack of an independent classification. For most waste streams the classification matches with the designation provided in the LoW. This indicates that the criteria used by LoW are similar to the HP limit values. This data set showed HP 14 'Ecotoxic chronic' is the most discriminating HP. All wastes classified as acute ecotoxic are also chronic ecotoxic and the assessment of acute ecotoxicity separately is therefore not needed. The high number of HP 14 classified wastes is due to the very low limit values when stringent M factors are applied to total concentrations (worst case method). With M factor set to 1 the classification method is not sufficiently discriminating between hazardous and non-hazardous materials. The second most frequent hazard is HP 7 'Carcinogenic'. The third most frequent hazard is HP 10 'Toxic for reproduction' and the fourth most frequent hazard is HP 4 "Irritant - skin irritation and eye damage". In a stepwise approach, it seems relevant to assess HP 14 first, then, if the waste is not classified as hazardous, to assess subsequently HP 7, HP 10 and HP 4, and then if still not classified as hazardous, to assess the remaining properties. The elements triggering the HP 14 classification in order of importance are Zn, Cu, Pb, Cr, Cd and Hg. Progress in the speciation of Zn and Cu is essential for HP 14. Organics were quantified by the proposed method (AFNOR XP X30-489) and need no speciation. Organics can contribute significantly to intrinsic toxicity in many waste materials, but they are only of minor importance for the assessment of HP 14 as the metal concentrations are the main HP 14 classifiers. Organic compounds are however responsible for other toxicological characteristics (hormone disturbance, genotoxicity, reprotoxicity…) and shall be taken into account when the waste is not HP 14 classified. Copyright © 2014 Elsevier Ltd. All rights reserved.
Szczepańska, Natalia; Marć, Mariusz; Kudłak, Błażej; Simeonov, Vasil; Tsakovski, Stefan; Namieśnik, Jacek
2018-09-30
The development of new methods for identifying a broad spectrum of analytes, as well as highly selective tools to provide the most accurate information regarding the processes and relationships in the world, has been an area of interest for researchers for many years. The information obtained with these tools provides valuable data to complement existing knowledge but, above all, to identify and determine previously unknown hazards. Recently, attention has been paid to the migration of xenobiotics from the surfaces of various everyday objects and the resulting impacts on human health. Since children are among those most vulnerable to health consequences, one of the main subjects of interest is the migration of low-molecular-weight compounds from toys and products intended for children. This migration has become a stimulus for research aimed at determining the degree of release of compounds from popular commercially available chocolate/toy sets. One of main objectives of this research was to determine the impact of time on the ecotoxicity (with Vibrio fischeri bioluminescent bacteria) of extracts of products intended for children and to assess the correlation with total volatile organic compound emissions using basic chemometric methods. The studies on endocrine potential (with XenoScreen YES/YAS) of the extracts and showed that compounds released from the studied objects (including packaging foils, plastic capsules storing toys, most of toys studied and all chocolate samples) exhibit mostly androgenic antagonistic behavior while using artificial saliva as extraction medium increased the impact observed. The impact of time in most cases was positive one and increased with prolonging extraction time. The small-scale stationary environmental test chambers - μ-CTE™ 250 system was employed to perform the studies aimed at determining the profile of total volatile organic compounds (TVOCs) emissions. Due to this it was possible to state that objects from which the greatest amounts of contaminants are released are plastic containers (with emission rate falling down from 3273 to 2280 ng/g of material at 6 h of conditioning in elevated temperature). Copyright © 2018 Elsevier Inc. All rights reserved.
Potential ecotoxic effects of polychlorinated biphenyls on Xenopus laevis.
Qin, Zhan-Fen; Zhou, Jing-Ming; Cong, Lin; Xu, Xiao-Bai
2005-10-01
We examined potential ecotoxic effects of polychlorinated biphenyl (PCB)3, PCB5, Aroclor 1254, and Aroclor 1242 on Xenopus laevis. Tadpoles were exposed to PCBs from stage 46/47 (system of Nieuwkoop and Faber) to the completion of metamorphosis. We demonstrated, to our knowledge for the first time, forelimb malformations caused by PCBs (malformation rate, > 70%). The malformed forelimbs were fixed in the adduction-backward rotation position and could not move. Therefore, malformed male frogs were destined to have no offspring, because they could not grasp the females with their forelimbs to mate. Alcian blue-alizarin red double-staining indicated that the forelimb malformation resulted from the shoulder abnormality. Compared with the normal shoulder joint, the proximal humerus with the humerus inter-rotated 90 degrees in the abnormal shoulder joint. Moreover, testes from more than a third of male frogs with exposed to PCBs exhibited feminization to different degrees at gross morphology and histology, with fewer or abnormal spermatogonia and oocytes. Gonadal abnormalities would lead directly to reproductive dysfunction and population decline. These results suggest that PCBs have potentially ecotoxic effects on amphibian populations. We infer that PCBs could play roles in amphibian malformations and population declines, at least at sites that are polluted heavily with PCBs.
Singh, Nitin Kumar; Singh, Rana Pratap; Kazmi, Absar Ahmad
2017-05-01
In the present study, a life cycle assessment (LCA) approach was used to analyse the environmental impacts associated with the construction and operational phases of an integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater. This study was conducted within the boundaries of a research project that aimed to investigate the implementation related challenges of a package type IFAS reactor from an environmental perspective. Along with the LCA results of the construction phase, a comparison of the LCA results of seven operational phases is also presented in this study. The results showed that among all the inputs, the use of stainless steel in the construction phase caused the highest impact on environment, followed by electricity consumption in raw materials production. The impact of the construction phase on toxicity impact indicators was found to be significant compared to all operational phases. Among the seven operational phases of this study, the dissolved oxygen phase III, having a concentration of ∼4.5 mg/L, showed the highest impact on abiotic depletion, acidification, global warming, ozone layer depletion, human toxicity, fresh water eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity, and photochemical oxidation. However, better effluent quality in this phase reduced the eutrophication load on environment.
NASA Astrophysics Data System (ADS)
Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka
2017-07-01
The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.
Jeong, Seung-Woo; An, Youn-Joo
2014-01-01
This study suggested the first Korean site-specific ecological surface water quality criteria for the protection of ecosystems near an artillery range at a Korean military training facility. Surface water quality (SWQ) criteria in Korea address human health protection but do not encompass ecological criteria such as limits for metals and explosives. The first objective of this study was to derive site-specific SWQ criteria for the protection of aquatic ecosystems in Hantan River, Korea. The second objective was to establish discharge criteria for the artillery range to protect the aquatic ecosystems of Hantan River. In this study, we first identified aquatic organisms living in the Hantan River, including fishes, reptiles, invertebrates, phytoplankton, zooplankton, and amphibians. Second, we collected ecotoxicity data for these aquatic organisms and constructed an ecotoxicity database for Cd, Cu, Zn, TNT, and RDX. This study determined the ecological maximum permissible concentrations for metals and explosives based on the ecotoxicity database and suggested ecological surface water quality criteria for the Hantan River by considering analytical detection limits. Discharge limit criteria for the shooting range were determined based on the ecological surface water quality criteria suggested for Hantan River with further consideration of the dilution of the contaminants discharged into the river.
García-Delgado, Carlos; Alfaro-Barta, Irene; Eymar, Enrique
2015-03-21
Soils impregnated with creosote contain high concentrations of polycyclic aromatic hydrocarbons (PAH). To bioremediate these soils and avoid PAH spread, different bioremediation strategies were tested, based on natural attenuation, biochar application, wheat straw biostimulation, Pleurotus ostreatus mycoremediation, and the novel sequential application of biochar for 21 days and P. ostreatus 21 days more. Soil was sampled after 21 and 42 days after the remediation application. The efficiency and effectiveness of each remediation treatment were assessed according to PAH degradation and immobilization, fungal and bacterial development, soil eco-toxicity and legal considerations. Natural attenuation and biochar treatments did not achieve adequate PAH removal and soil eco-toxicity reduction. Biostimulation showed the highest bacterial development but low PAH degradation rate. Mycoremediation achieved the best PAH degradation rate and the lowest bioavailable fraction and soil eco-toxicity. This bioremediation strategy achieved PAH concentrations below Spanish legislation for contaminated soils (RD 9/2005). Sequential application of biochar and P. ostreatus was the second treatment most effective for PAH biodegradation and immobilization. However, the activity of P. ostreatus was increased by previous biochar application and PAH degradation efficiency was increased. Therefore, the combined strategy for PAH degradation have high potential to increase remediation efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.
García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores
2010-11-15
The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sági, Gyuri; Bezsenyi, Anikó; Kovács, Krisztina; Klátyik, Szandra; Darvas, Béla; Székács, András; Wojnárovits, László; Takács, Erzsébet
2018-03-01
AOP are in the focus of interest as a result of their high efficiency in persistent organic pollutant removal. In the vast majority of experiments targeting quantification of changes in biodegradability or toxicity, conclusions are drawn by a simple comparison of solutions obtained at different stages of the oxidation. These results do not express properly the toxic potential or biodegradability of distinctive product groups, due to performing investigations without taking into account the decrease of organic content caused by mineralization. Moreover, the presence of H2O2 is very often also neglected, although it usually exerts strong interfering effects in the analytical methods applied routinely. The aim of present study was to draw attention towards these effects. In this work, the H2O2 content was removed by catalytic decomposition with MnO2, while exposure to equal pollutant concentrations was achieved by setting the solutions to equal COD or TOC values. Results obtained in such way (biological approach) have been compared to data obtained by neglecting both factors (technological approach). Biodegradation and ecotoxicity experiments were performed on the example of 0.1 mmol dm-3 sulfamethoxazole solutions oxidized during gamma irradiation. Significant differences were evidenced between the two approaches. Technological approach indicted only moderate transformation to bioavailable substances (BOD5 COD-1 = 0.33), while the biological approach referred to ready biodegradability (0.82). Ecotoxicity assessment performed with Vibrio fischeri bacteria demonstrated differences not only in the extent but also in the tendency of inhibition changes. In order to make reliable ecotoxicity assays, the H2O2 concentrations should be reduced to at least 0.05 mmol dm-3 in V. fischeri and P. subcapitata experiments, while, practically complete removal is needed in case of D. magna. In BOD measurements performed by manometric techniques, reducing the H2O2 concentration to at least 0.05 mmol dm-3 is also recommended.
Lapa, N; Santos, Oliveira J F; Camacho, S L; Circeo, L J
2002-01-01
Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples was determined to be very low.
Kwok, K W H; Leung, K M Y
2005-01-01
Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 x 3 x 4 factorial design (i.e. two temperatures: 25 and 35 degrees C; three salinities: 15.0 per thousand, 34.5 per thousand and 45.0 per thousand; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96 h-LC50s of Cu and TBT were 1024 and 0.149 microg l(-1) respectively (at 25 degrees C; 34.5 per thousand) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using 'concentration' as the covariate and both 'temperature' and 'salinity' as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.
Environmental comparison of alternative treatments for sewage sludge: An Italian case study.
Lombardi, Lidia; Nocita, Cristina; Bettazzi, Elena; Fibbi, Donatella; Carnevale, Ennio
2017-11-01
A Life Cycle Assessment (LCA) was applied to compare different alternatives for sewage sludge treatment: such as land spreading, composting, incineration, landfill and wet oxidation. The LCA system boundaries include mechanical dewatering, the alternative treatment, transport, and final disposal/recovery of residues. Cases of recovered materials produced as outputs from the systems, were resolved by expanding the system boundaries to include avoided primary productions. The impact assessment was calculated using the CML-IA baseline method. Results showed that the incineration of sewage sludge with electricity production and solid residues recovery collects the lowest impact indicator values in the categories human toxicity, fresh water aquatic ecotoxicity, acidification and eutrophication, while it has the highest values for the categories global warming and ozone layer depletion. Land spreading has the lowest values for the categories abiotic depletion, fossil fuel depletion, global warming, ozone layer depletion and photochemical oxidation, while it collects the highest values for terrestrial ecotoxicity and eutrophication. Wet oxidation has just one of the best indicators (terrestrial ecotoxicity) and three of the worst ones (abiotic depletion, human toxicity and fresh water aquatic ecotoxicity). Composting process shows intermediate results. Landfill has the worst performances in global warming, photochemical oxidation and acidification. Results indicate that if the aim is to reduce the effect of the common practice of sludge land spreading on human and ecosystem toxicity, on acidification and on eutrophication, incineration with energy recovery would clearly improve the environmental performance of those indicators, but an increase in resource depletion and global warming is unavoidable. However, these conclusions are strictly linked to the effective recovery of solid residues from incineration, as the results are shown to be very sensitive with respect to this assumption. Similarly, the quality of the wet oxidation process residues plays an important role in defining the impact of this treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario.
Marquès, Montse; Mari, Montse; Audí-Miró, Carme; Sierra, Jordi; Soler, Albert; Nadal, Martí; Domingo, José L
2016-04-01
The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum δ(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Risch, Eva; Gasperi, Johnny; Gromaire, Marie-Christine; Chebbo, Ghassan; Azimi, Sam; Rocher, Vincent; Roux, Philippe; Rosenbaum, Ralph K; Sinfort, Carole
2018-01-01
Sewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment. In typical Life Cycle Assessment (LCA) studies of urban wastewater systems (UWS), average dry-weather conditions are modelled while wet-weather flows from UWS, presenting a high temporal variability, are not currently accounted for. In this context, the loads from several storm events could be important contributors to the impact categories freshwater eutrophication and ecotoxicity. In this study we investigated the contributions of these wet-weather-induced discharges relative to average dry-weather conditions in the life cycle inventory for UWS. In collaboration with the Paris public sanitation service (SIAAP) and Observatory of Urban Pollutants (OPUR) program researchers, this work aimed at identifying and comparing contributing flows from the UWS in the Paris area by a selection of routine wastewater parameters and priority pollutants. This collected data is organized according to archetypal weather days during a reference year. Then, for each archetypal weather day and its associated flows to the receiving river waters (Seine), the parameters of pollutant loads (statistical distribution of concentrations and volumes) were determined. The resulting inventory flows (i.e. the potential loads from the UWS) were used as LCA input data to assess the associated impacts. This allowed investigating the relative importance of episodic wet-weather versus "continuous" dry-weather loads with a probabilistic approach to account for pollutant variability within the urban flows. The analysis at the scale of one year showed that storm events are significant contributors to the impacts of freshwater eutrophication and ecotoxicity compared to those arising from treated effluents. At the rain event scale the wet-weather contributions to these impacts are even more significant, accounting for example for up to 62% of the total impact on freshwater ecotoxicity. This also allowed investigating and discussing the ecotoxicity contribution of each class of pollutants among the broad range of inventoried substances. Finally, with such significant contributions of pollutant loads and associated impacts from wet-weather events, further research is required to better include temporally-differentiated emissions when evaluating eutrophication and ecotoxicity. This will provide a better understanding of how the performance of an UWS system affects the receiving environment for given local weather conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses.
Campisi, Tiziana; Samorì, Chiara; Torri, Cristian; Barbera, Giuseppe; Foschini, Anna; Kiwan, Alisar; Galletti, Paola; Tagliavini, Emilio; Pasteris, Andrea
2016-10-01
In view of the potential use of pyrolysis-based technologies, it is crucial to understand the environmental hazards of pyrolysis-derived products, in particular bio-oils. Here, three bio-oils were produced from fast pyrolysis of pine wood and intermediate pyrolysis of corn stalk and poultry litter. They were fully characterized by chemical analysis and tested for their biodegradability and their ecotoxicity on the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. These tests were chosen as required by the European REACH regulation. These three bio-oils were biodegradable, with 40-60% of biodegradation after 28 days, and had EC50 values above 100mgL(-1) for the crustacean and above 10mgL(-1) for the alga, showing low toxicity to the aquatic life. The toxic unit approach was applied to verify whether the observed toxicity could be predicted from the data available for the substances detected in the bio-oils. The predicted values largely underestimated the experimental values. Copyright © 2016 Elsevier Inc. All rights reserved.
Silva, Vera P.; Moreira-Santos, Matilde; Mateus, Carla; Teixeira, Tânia; Ribeiro, Rui; Viegas, Cristina A.
2015-01-01
In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate) instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days) bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed. PMID:26662024
Fit reduced GUTS models online: From theory to practice.
Baudrot, Virgile; Veber, Philippe; Gence, Guillaume; Charles, Sandrine
2018-05-20
Mechanistic modeling approaches, such as the toxicokinetic-toxicodynamic (TKTD) framework, are promoted by international institutions such as the European Food Safety Authority and the Organization for Economic Cooperation and Development to assess the environmental risk of chemical products generated by human activities. TKTD models can encompass a large set of mechanisms describing the kinetics of compounds inside organisms (e.g., uptake and elimination) and their effect at the level of individuals (e.g., damage accrual, recovery, and death mechanism). Compared to classical dose-response models, TKTD approaches have many advantages, including accounting for temporal aspects of exposure and toxicity, considering data points all along the experiment and not only at the end, and making predictions for untested situations as realistic exposure scenarios. Among TKTD models, the general unified threshold model of survival (GUTS) is within the most recent and innovative framework but is still underused in practice, especially by risk assessors, because specialist programming and statistical skills are necessary to run it. Making GUTS models easier to use through a new module freely available from the web platform MOSAIC (standing for MOdeling and StAtistical tools for ecotoxIClogy) should promote GUTS operability in support of the daily work of environmental risk assessors. This paper presents the main features of MOSAIC_GUTS: uploading of the experimental data, GUTS fitting analysis, and LCx estimates with their uncertainty. These features will be exemplified from literature data. Integr Environ Assess Manag 2018;00:000-000. © 2018 SETAC. © 2018 SETAC.
Influence of leaching conditions for ecotoxicological classification of ash.
Stiernström, S; Enell, A; Wik, O; Hemström, K; Breitholtz, M
2014-02-01
The Waste Framework Directive (WFD; 2008/98/EC) states that classification of hazardous ecotoxicological properties of wastes (i.e. criteria H-14), should be based on the Community legislation on chemicals (i.e. CLP Regulation 1272/2008). However, harmonizing the waste and chemical classification may involve drastic changes related to choice of leaching tests as compared to e.g. the current European standard for ecotoxic characterization of waste (CEN 14735). The primary aim of the present study was therefore to evaluate the influence of leaching conditions, i.e. pH (inherent pH (∼10), and 7), liquid to solid (L/S) ratio (10 and 1000 L/kg) and particle size (<4 mm, <1 mm, and <0.125 mm), for subsequent chemical analysis and ecotoxicity testing in relation to classification of municipal waste incineration bottom ash. The hazard potential, based on either comparisons between element levels in leachate and literature toxicity data or ecotoxicity testing of the leachates, was overall significantly higher at low particle size (<0.125 mm) as compared to particle fractions <1mm and <4mm, at pH 10 as compared to pH 7, and at L/S 10 as compared to L/S 1000. These results show that the choice of leaching conditions is crucial for H-14 classification of ash and must be carefully considered in deciding on future guidance procedures in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.
Goix, Sylvaine; Lévêque, Thibaut; Xiong, Tian-Tian; Schreck, Eva; Baeza-Squiban, Armelle; Geret, Florence; Uzu, Gaëlle; Austruy, Annabelle; Dumat, Camille
2014-08-01
This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO(4), Sb(2)O(3), and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl2~CdO>CuO>PbO>ZnO>PbSO(4)>Sb(2)O(3). Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb(2)O(3) threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. Copyright © 2014 Elsevier Inc. All rights reserved.
May, T W; Wiedmeyer, R H; Gober, J; Larson, S
2001-01-01
Water and sediment samples were collected from streams in Spearfish Creek, Whitewood Creek, and Bear Butte Creek watersheds in the Black Hills, SD, an area impacted by gold mining operations. Arsenic concentrations that exceeded the U.S. Environmental Protection Agency's Maximum Concentration Limit of 50 microg/L for drinking water were found in water from Annie Creek, a tributary of Spearfish Creek, and from Whitewood Creek. Gold Run, a tributary of Whitewood Creek, and Annie Creek contained Se concentrations in water that exceeded the EPA Ecotox threshold of 5 microg/L and were classified as a high hazard for Se accumulation from water into the planktonic food chain and for resultant toxicity to fish and aquatic birds. Concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in sediment exceeded EPA Ecotox thresholds in one or more of the watersheds suggesting potential adverse ecological effects. Sediment from Rubicon Creek, a tributary of Spearfish Creek, contained Se concentrations high enough (4.0 microg/g) to be a moderate hazard for accumulation from sediments into the benthic food chain, with resultant dietary toxicity to fish and aquatic birds. These results are discussed in light of historical mining activities and recent clean-up and reclamation efforts. Based on the results and comparisons to Ecotox tresholds, further studies of ecological effects are warranted.
González-García, Sara; Mola-Yudego, Blas; Dimitriou, Ioannis; Aronsson, Pär; Murphy, Richard
2012-04-01
The present paper analyzed the environmental assessment of short rotation willow plantations in Sweden based on the standard framework of Life Cycle Assessment (LCA) from the International Standards Organisation. The analysis is focused on two alternative management regimes for willow plantations dedicated to biomass production for energy purposes. The data used included the averages of a large sample of commercial plantations. One of the scenarios is carried out under nitrogen based fertilized conditions and the other under non-fertilized management with total biomass yields (dry weight) of 140t/ha and 86t/ha over a 21 and 22-year life time respectively. The environmental profile was analyzed in terms of the potentials for abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, photochemical oxidant formation, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. In addition, an energy analysis was performed using the cumulative energy demand method (CED). The application of nitrogen based fertilizers allows an increase in the biomass yield per ha of up to 40% although the contributions to almost all impact categories, particularly the eutrophication potential and toxicity potential impact categories are also considerably higher. Conversely, due to the higher biomass yields achieved with fertilization of these willow plantations, that regime presents a better overall environmental profile in terms of energy yield and global warming potential. Copyright © 2012 Elsevier B.V. All rights reserved.
May, T.W.; Wiedmeyer, Ray H.; Gober, J.; Larson, S.
2001-01-01
Water and sediment samples were collected from streams in Spearfish Creek, Whitewood Creek, and Bear Butte Creek watersheds in the Black Hills, SD, an area impacted by gold mining operations. Arsenic concentrations that exceeded the U.S. Environmental Protection Agency's Maximum Concentration Limit of 50 μg/L for drinking water were found in water from Annie Creek, a tributary of Spearfish Creek, and from Whitewood Creek. Gold Run, a tributary of Whitewood Creek, and Annie Creek contained Se concentrations in water that exceeded the EPA Ecotox threshold of 5 μg/L and were classified as a high hazard for Se accumulation from water into the planktonic food chain and for resultant toxicity to fish and aquatic birds. Concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in sediment exceeded EPA Ecotox thresholds in one or more of the watersheds suggesting potential adverse ecological effects. Sediment from Rubicon Creek, a tributary of Spearfish Creek, contained Se concentrations high enough (4.0 μg/g) to be a moderate hazard for accumulation from sediments into the benthic food chain, with resultant dietary toxicity to fish and aquatic birds. These results are discussed in light of historical mining activities and recent clean-up and reclamation efforts. Based on the results and comparisons to Ecotox tresholds, further studies of ecological effects are warranted.
Integrated microfluidic technology for sub-lethal and behavioral marine ecotoxicity biotests
NASA Astrophysics Data System (ADS)
Huang, Yushi; Reyes Aldasoro, Constantino Carlos; Persoone, Guido; Wlodkowic, Donald
2015-06-01
Changes in behavioral traits exhibited by small aquatic invertebrates are increasingly postulated as ethically acceptable and more sensitive endpoints for detection of water-born ecotoxicity than conventional mortality assays. Despite importance of such behavioral biotests, their implementation is profoundly limited by the lack of appropriate biocompatible automation, integrated optoelectronic sensors, and the associated electronics and analysis algorithms. This work outlines development of a proof-of-concept miniaturized Lab-on-a-Chip (LOC) platform for rapid water toxicity tests based on changes in swimming patterns exhibited by Artemia franciscana (Artoxkit M™) nauplii. In contrast to conventionally performed end-point analysis based on counting numbers of dead/immobile specimens we performed a time-resolved video data analysis to dynamically assess impact of a reference toxicant on swimming pattern of A. franciscana. Our system design combined: (i) innovative microfluidic device keeping free swimming Artemia sp. nauplii under continuous microperfusion as a mean of toxin delivery; (ii) mechatronic interface for user-friendly fluidic actuation of the chip; and (iii) miniaturized video acquisition for movement analysis of test specimens. The system was capable of performing fully programmable time-lapse and video-microscopy of multiple samples for rapid ecotoxicity analysis. It enabled development of a user-friendly and inexpensive test protocol to dynamically detect sub-lethal behavioral end-points such as changes in speed of movement or distance traveled by each animal.
Validity and validation of expert (Q)SAR systems.
Hulzebos, E; Sijm, D; Traas, T; Posthumus, R; Maslankiewicz, L
2005-08-01
At a recent workshop in Setubal (Portugal) principles were drafted to assess the suitability of (quantitative) structure-activity relationships ((Q)SARs) for assessing the hazards and risks of chemicals. In the present study we applied some of the Setubal principles to test the validity of three (Q)SAR expert systems and validate the results. These principles include a mechanistic basis, the availability of a training set and validation. ECOSAR, BIOWIN and DEREK for Windows have a mechanistic or empirical basis. ECOSAR has a training set for each QSAR. For half of the structural fragments the number of chemicals in the training set is >4. Based on structural fragments and log Kow, ECOSAR uses linear regression to predict ecotoxicity. Validating ECOSAR for three 'valid' classes results in predictivity of > or = 64%. BIOWIN uses (non-)linear regressions to predict the probability of biodegradability based on fragments and molecular weight. It has a large training set and predicts non-ready biodegradability well. DEREK for Windows predictions are supported by a mechanistic rationale and literature references. The structural alerts in this program have been developed with a training set of positive and negative toxicity data. However, to support the prediction only a limited number of chemicals in the training set is presented to the user. DEREK for Windows predicts effects by 'if-then' reasoning. The program predicts best for mutagenicity and carcinogenicity. Each structural fragment in ECOSAR and DEREK for Windows needs to be evaluated and validated separately.
Hu, Changwei; Hu, Naitao; Li, Xiuling; Zhao, Yongjun
2016-10-01
The extensive industrial application of graphene oxide (GO), has increased its exposure risk to various aquatic organisms and its potential to affect the toxicity of other environmental pollutants. In this study, we investigated the combined toxicity of GO and copper on the freshwater microalga Scenedesmus obliquus, using the MIXTOX model. The effects of low concentration (1mg/L) exposure to GO were investigated with environmentally relevant concentrations of copper by using a 12-d subacute toxicity test, with pre- and post-GO treatment. Results showed that there were significant antagonistic effects between GO and copper on S. obliquus, and GO was found to reduce ecotoxicity of copper even at low and environmentally relevant concentrations (1mg/L). Copyright © 2016 Elsevier Inc. All rights reserved.
2017-01-01
Earthworm metabolism is recognized as a useful tool for monitoring environmental insults and measuring ecotoxicity, yet extensive earthworm metabolic profiling using 1H nuclear magnetic resonance (NMR) spectroscopy has been limited in scope. This study aims to expand the embedded metabolic material in earthworm coelomic fluid, coelomocytes, and tissue to aid systems toxicology research. Fifty-nine metabolites within Eisenia fetida were identified, with 47 detected in coelomic fluid, 41 in coelomocytes, and 54 in whole-worm samples and tissue extracts. The newly detected but known metabolites 2-aminobutyrate, nicotinurate, Nδ,Nδ,Nδ-trimethylornithine, and trigonelline are reported along with a novel compound, malylglutamate, elucidated using 2D NMR and high-resolution MS/MS. We postulate that malylglutamate acts as a glutamate/malate store, chelator, and anionic osmolyte and helps to provide electrolyte balance. PMID:28753027
Griffith, Corey M; Williams, Preston B; Tinoco, Luzineide W; Dinges, Meredith M; Wang, Yinsheng; Larive, Cynthia K
2017-09-01
Earthworm metabolism is recognized as a useful tool for monitoring environmental insults and measuring ecotoxicity, yet extensive earthworm metabolic profiling using 1 H nuclear magnetic resonance (NMR) spectroscopy has been limited in scope. This study aims to expand the embedded metabolic material in earthworm coelomic fluid, coelomocytes, and tissue to aid systems toxicology research. Fifty-nine metabolites within Eisenia fetida were identified, with 47 detected in coelomic fluid, 41 in coelomocytes, and 54 in whole-worm samples and tissue extracts. The newly detected but known metabolites 2-aminobutyrate, nicotinurate, Nδ,Nδ,Nδ-trimethylornithine, and trigonelline are reported along with a novel compound, malylglutamate, elucidated using 2D NMR and high-resolution MS/MS. We postulate that malylglutamate acts as a glutamate/malate store, chelator, and anionic osmolyte and helps to provide electrolyte balance.
Environmental accounting--a decision support tool in WWTP operation and management.
Clauson-Kaas, J; Poulsen, T S; Jacobsen, B N; Guildal, T; Wenzel, H
2001-01-01
The various emissions to water, air and soil from the municipal wastewater treatment plant of Avedore Wastewater Service Company are accounted for and quantified in terms of the environmental impacts to which they contribute: global warming, acidification, eutrophication, space demand for controlled deposition of residues, as well as persistent toxicity, human toxicity and eco-toxicity. The impacts are expressed on the same scale, namely as fraction of the total per capita loads in a national scenario 1990, also called the person equivalent or PE1990. This provides a compact and informative overview of the environmental impacts and allows for a holistic prioritisation in the operation and management of the plant. The accounting shows that the resulting emissions per person in the catchment area of the plant correspond to 0.5-5.0% of the average Danish PE1990 for the impacts in question.
DSSTOX WEBSITE LAUNCH: IMPROVING PUBLIC ACCESS ...
DSSTox Website Launch: Improving Public Access to Databases for Building Structure-Toxicity Prediction ModelsAnn M. RichardUS Environmental Protection Agency, Research Triangle Park, NC, USADistributed: Decentralized set of standardized, field-delimited databases, each separatelyauthored and maintained, that are able to accommodate diverse toxicity data content;Structure-Searchable: Standard format (SDF) structure-data files that can be readily imported into available chemical relational databases and structure-searched;Tox: Toxicity data as it exists in widely disparate forms in current public databases, spanning diverse toxicity endpoints, test systems, levels of biological content, degrees of summarization, and information content.INTRODUCTIONThe economic and social pressures to reduce the need for animal testing and to better anticipate the potential for human and eco-toxicity of environmental, industrial, or pharmaceutical chemicals are as pressing today as at any time prior. However, the goal of predicting chemical toxicity in its many manifestations, the `T' in 'ADMET' (adsorption, distribution, metabolism, elimination, toxicity), remains one of the most difficult and largely unmet challenges in a chemical screening paradigm [1]. It is widely acknowledged that the single greatest hurdle to improving structure-activity relationship (SAR) toxicity prediction capabilities, in both the pharmaceutical and environmental regulation arenas, is the lack of suffici
NASA Astrophysics Data System (ADS)
Taing, Eric
The environmental fate of dioxins and furans, or polychlorodibenzo-p-dioxins and -furans (PCDD/Fs), leaching from wood poles treated with pentachlorophenol (PCP) oil is modified by the presence of oil. Interactions between co-contaminants, which also exist for other pollutants within the mixtures, were shown in the specific context of risk analysis, but have never been taken into account for the generic context of life cycle assessment (LCA). This decision-making tool relies on characterization factors (CF) to estimate the potential impacts of an emitted amount of a pollutant in different impact categories such as aquatic ecotoxicity and human toxicity. For these two impact categories, CFs are calculated from a cause-effect chain that models the environmental fate, exposure and effects of the pollutant (represented by a matrix of fate FF, exposure XF and effect EF, respectively), meaning that a modification of PCDD/Fs fate induces a change in PCDD/Fs CFs. The research question is therefore as follows: In life cycle impact assessment (LCIA), to what extent would the potential impacts of PCDD/Fs on aquatic ecotoxicity and human toxicity change when taking into account the influence of a complex organic mixture on PCDD/Fs fate?. Thus, the main objective is to develop CFs of PCDD/Fs when their fate is influenced by PCP oil and compare them with the CFs of PCDD/Fs without oil for the aquatic ecotoxicity and human toxicity impact categories. A mathematic approach is established to determine the new environmental distribution of PCDD/Fs in the presence of oil and a new FF' matrix is calculated from this new distribution to obtain new CFs' integrating oil influence. FF' and CF' are then compared to FF and CF of PCDD/Fs without the oil. Finally, potential (eco)toxic impacts of the PCDD/F Canadian emissions are calculated with the new CFs' of PCDD/Fs in presence of oil. By only focusing on the results for an emission into air, freshwater and natural soil on a continental scale, the overall elimination fractions of 2,3,7,8-TCDD changed significantly. For the three emissions, organic fractions increased the overall elimination fraction of 2,3,7,8-TCDD into the continental air compartment, induced by a higher volatility of organic fractions than 2,3,7,8-TCDD: for an emission into continental air, organic fractions increased the overall elimination fraction of 2,3,7,8-TCDD in the continental air from 29% to 49% at most. For an emission into continental freshwater, 2,3,7,8-TCDD fate was mainly influenced by two groups of organic fractions: the lightest ones that volatilize into continental air (overall elimination fraction of 2,3,7,8-TCDD increasing from 2% to 35%) and the heaviest ones that are removed by sedimentation (DTCDD,fwC,fwC from 87% up to 96%). Therefore, an approach has been proposed to represent the carrier behaviour of the oil for PCDD/Fs. PCDD/F potential impacts in aquatic ecotoxicity and human toxicity change in a range up to two orders of magnitude depending on the emitting compartment (except for the seawater and ocean compartments). As 2,3,7,8-TCDD is one of the most toxic pollutant, this changing is significant in LCA. To assess the validity of the model's result, it is recommended to carry out laboratory experiments on the PCDD/F volatilization with oil. In addition, it could be interesting to integrate the influence of PCP on PCDD/Fs fate and, more broadly, the influence of all cocontaminants on PCDD/Fs exposure and effects. Moreover having a unique CFeco and CF tox via a weighting of the 17 CF'eco and the 17 CF' tox, respectively, is necessary for a use in LCA. Unfortunately the variability of the composition makes the weighting difficult, so it is suggested to calculate the mean CF'eco and CF'tox. Finally this research could be carried out on other pollutants whose fate is known to be modified by a complex organic mixture in an effort to ensure that impact characterization better reflects reality. (Abstract shortened by UMI.).
[DESIDENT CaviCide a new disinfectant].
Severa, J; Klaban, V
2009-01-01
The properties of the new disinfection agent DESIDENT CaviCide, such as characteristics, disinfection efficiency, biological degradability and ecotoxicity are described. Also areas and forms of usage this biocidal agent are mentioned.
Soils are repositories for environmental contaminants (COCs) in terrestrial ecosystems. Time, effort, and money repeatedly are invested in literature-based evaluations of potential soil-ecotoxicity...
Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran.
Farahani, Saeid Shahvarooghi; Asoodar, Mohammad Amin
2017-10-01
In recent years, bioethanol from sugarcane molasses has been produced on an industrial scale in Iran. The aim of this study was to evaluate molasses-based bioethanol production from an environmental point of view. Data were collected from Debel Khazai agro-industry situated in southern region of Iran by using face-to-face interviews and annual statistics of 2010 to 2016 (6-year life cycle of sugarcane cultivation). Ten impact categories including abiotic depletion (AD), acidification (AC), eutrophication (EP), global warming potential (GWP), ozone layer depletion (OLD), human toxicity (HT), freshwater aquatic ecotoxicity (FE), marine aquatic ecotoxicity (ME), terrestrial ecotoxicity (TE), and photochemical oxidation (PO) were selected based on CML methodology. Inventory data for production of the inputs were taken from Ecoinvent, BUWAL 250, and IDMAT 2001 databases. The results revealed that in sugarcane cultivation process, electricity and trash burning were the most important contributors to all impact categories except OLD and TE. In industrial phase, natural gas had the highest contribution to the most impact categories. Greenhouse gas (GHG) emission for production of 1000 L molasses-based bioethanol was 1322.78 kg CO 2 eq. By comparing total GHG emissions from 1000 L bioethanol to gasoline, the net avoided GHG emissions came out at 503.17 kg CO 2 eq. According to results, it is clear that with increasing irrigation efficiency and improving performance of heating systems in industrial phase, environmental burdens would be significantly reduced.
2015-01-01
Novel physicochemistries of engineered nanomaterials (ENMs) offer considerable commercial potential for new products and processes, but also the possibility of unforeseen and negative consequences upon ENM release into the environment. Investigations of ENM ecotoxicity have revealed that the unique properties of ENMs and a lack of appropriate test methods can lead to results that are inaccurate or not reproducible. The occurrence of spurious results or misinterpretations of results from ENM toxicity tests that are unique to investigations of ENMs (as opposed to traditional toxicants) have been reported, but have not yet been systemically reviewed. Our objective in this manuscript is to highlight artifacts and misinterpretations that can occur at each step of ecotoxicity testing: procurement or synthesis of the ENMs and assessment of potential toxic impurities such as metals or endotoxins, ENM storage, dispersion of the ENMs in the test medium, direct interference with assay reagents and unacknowledged indirect effects such as nutrient depletion during the assay, and assessment of the ENM biodistribution in organisms. We recommend thorough characterization of initial ENMs including measurement of impurities, implementation of steps to minimize changes to the ENMs during storage, inclusion of a set of experimental controls (e.g., to assess impacts of nutrient depletion, ENM specific effects, impurities in ENM formulation, desorbed surface coatings, the dispersion process, and direct interference of ENM with toxicity assays), and use of orthogonal measurement methods when available to assess ENMs fate and distribution in organisms. PMID:24617739
Jang, Min-Hee; Lim, Myunghee; Hwang, Yu Sik
2014-01-01
Nanoscale zero-valent iron (nZVI) particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. In this regard, the primary focus of future study should be on 1) the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2) assessing their potential environmental risks using in situ field scale applications.
Jang, Min-Hee; Lim, Myunghee; Hwang, Yu Sik
2014-01-01
Objectives Nanoscale zero-valent iron (nZVI) particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1) the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2) assessing their potential environmental risks using in situ field scale applications. PMID:25518840
Hjorth, Rune; Coutris, Claire; Nguyen, Nhung H A; Sevcu, Alena; Gallego-Urrea, Juliàn Alberto; Baun, Anders; Joner, Erik J
2017-09-01
Nanoremediation with iron (Fe) nanomaterials opens new doors for treating contaminated soil and groundwater, but is also accompanied by new potential risks as large quantities of engineered nanomaterials are introduced into the environment. In this study, we have assessed the ecotoxicity of four engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron ® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata, Chlamydomonas sp.), crustaceans (D. magna), worms (E. fetida, L. variegatus) and plants (R. sativus, L. multiflorum). The tested materials are commercially available and include Fe oxide and nanoscale zero valent iron (nZVI), but also hybrid products with Fe loaded into a matrix. All but one material, a ball milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity, aggregation and sedimentation behavior in aqueous media. This paper provides a number of recommendations concerning future testing of Fe nanomaterials and discusses environmental risk assessment considerations related to these. Copyright © 2017 Elsevier Ltd. All rights reserved.
Park, Keun-Young; Choi, Su-Young; Lee, Seung-Hoon; Kweon, Ji-Hyang; Song, Ji-Hyeon
2016-08-01
This study compared the two most frequently used disinfectants (i.e., chlorine and ozone) to understand their efficiency in wastewater effluents and the ecotoxicity of disinfection by-products created during chlorination and ozonation. Four trihalomethanes (THMs) and nine haloacetic acids (HAAs) were measured from a chlorine-disinfected sample and two aldehydes (i.e., formaldehydes and acetaldehydes) were analyzed after ozonation. Chlorination was effective for total coliform removal with Ct value in the range of 30-60 mg-min/L. Over 1.6 mg/L of ozone dose and 0.5 min of the contact time presented sufficient disinfection efficiency. The concentration of THMs increased with longer contact time (24 h), but that of HAAs showed little change with contact time. The measured concentration of formaldehyde at the ozone dose of 1.6 mg/L and the contact time of 9 min showed the greatest value in this study, approximately 330 μg L(-1), from which the corresponding ecotoxicity was determined using an indicator species, Daphnia magna. The ecotoxicity results were consistent with the toxicological features judged by occurrence, genotoxicity, and carcinogenicity. Both the disinfection efficiency as well as the DBP formation potential should therefore be considered to avoid harmful impacts on aquatic environments when a disinfection method is used for wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Utilizing Eisenia andrei to assess the ecotoxicity of platinum mine tailings disposal facilities.
Jubileus, Mandy T; Theron, Pieter D; van Rensburg, Leon; Maboeta, Mark S
2013-03-01
South Africa is an important platinum mining country which results in environmental impacts due to the construction of tailing disposal facilities (TDFs). It is unclear what the effects of ageing are on the ecotoxicity of TDFs and whether it increases or decreases over time. The aim of this study was to determine the ecotoxicity of differently aged TDFs by investigating earthworm (Eisenia andrei) responses viz. growth, reproduction, neutral red retention times (NRRT) and tissue metal concentrations. Further, to evaluate the status of these in terms of a geoaccumulation index (I(geo)), pollution index and integrated pollution index. Results indicated that earthworms showed reduced reproductive success (hatchlings per cocoon) and decreased NRRT in all the sites. Juveniles per cocoon between all of the different treatment groups were; control (2.83 ± 0.54) > site 2 (20 years old; 1.83 ± 0.27) > sites 1 and 3 (40 years old; 1.06 ± 0.15 and 6 years old; 0.88 ± 0.39). This might be ascribed to the elevated levels of Cr (±200 to 1,166 μg g(-1)) and Ni (±100 to 316 μg g(-1)) in all of the sites. Earthworms did not bioaccumulate metals with bioconcentration factors for all the different treatments <0.01. Studies like these could be useful when establishing a ranking of TDFs in the future to provide legislative institutions with an indication of the environmental liabilities of platinum mines.
Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
Nendza, Monika; Wenzel, Andrea
2006-05-01
Predictive toxicology, particularly quantitative structure-activity relationships (QSARs), require classification of chemicals by mode of action (MOA). MOA is, however, not a constant property of a compound but it varies between species and may change with concentration and duration of exposure. A battery of MOA-specific in-vitro and low-complexity assays, featuring biomolecular targets for major classes of environmental pollutants, provides characteristic responses for (1.) classification of chemicals by MOA, (2.) identification of (eco)toxicity profiles of chemicals, (3.) identification of chemicals with specific MOAs, (4.) indication of most sensitive species, (5.) identification of chemicals that are outliers in QSARs and (6.) selection of appropriate QSARs for predictions. Chemicals covering nine distinct modes of toxic action (non-polar non-specific toxicants (n=14), polar non-specific toxicants (n=18), uncouplers of oxidative phosphorylation (n=25), inhibitors of photosynthesis (n=15), inhibitors of acetylcholinesterase (n=14), inhibitors of respiration (n=3), thiol-alkylating agents (n=9), reactives (irritants) (n=8), estrogen receptor agonists (n=9)) were tested for cytotoxicity in the neutralred assay, oxygen consumption in isolated mitochondria, oxygen production in algae, inhibition of AChE, reaction with GSH and activity in the yeast estrogen receptor assay. Data on in-vivo aquatic toxicity (LC50, EC50) towards fish, daphnids, algae and bacteria were collected from the literature for reasons of comparison and reference scaling. In the MOA-specific in-vitro test battery, most test chemicals are specifically active at low concentrations, though multiple effects do occur. Graphical and statistical evaluation of the individual classes versus MOA 1 (non-polar non-specific toxicants) identifies interactions related to predominant MOA. Discriminant analyses (DA) on subsets of the data revealed correct classifications between 70% (in-vivo data) and >90% (in-vitro data). Functional similarity of chemical substances is defined in terms of their (eco)toxicity profiles. Within each MOA class, the compounds share some properties related to the rate-limiting interactions, e.g., steric fit to the target site and/or reactivity with target biomolecules, revealing a specific pattern (fingerprint) of characteristic effects. The successful discrimination of toxicant classes by MOA is based on comprehensive characterization of test chemicals' properties related to interactions with target sites. The suite of aquatic in-vivo tests using fish, daphnids, algae and bacteria covers most acute effects, whilst long-term (latent) impacts are generally neglected. With the MOA-specific in-vitro test battery such distinctions are futile, because it focuses on isolated targets, i.e. it indicates the possible targets of a chemical regardless of the timescale of effects. The data analysis indicates that the in-vitro battery covers most effects in vivo and moreover provides additional aspects of the compounds' MOA. Translating in-vitro effects to in-vivo toxicity requires combining physiological and chemical knowledge about underlying processes. Comparison of the specific in-vitro effects of a compound with the respective sensitivities of aquatic organisms indicates particularly sensitive species. Classifications of toxicants by MOA based on physicochemical descriptors provides insight to interactions and directs to mechanistic QSARs.
An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters
Straub, Jürg Oliver
2013-01-01
An environmental risk assessment (ERA) for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP), comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs) are compared with measured environmental concentrations (MECs) from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs) were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC) and risk graphs, there is no significant risk to surface waters. PMID:27029296
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, Ralph K.; Bachmann, Till M.; Swirsky Gold, Lois
2008-02-03
Background, Aim and Scope. In 2005 a comprehensive comparison of LCIA toxicity characterisation models was initiated by the UNEP-SETAC Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON, and EcoSense. In this paper we describe this model-comparison process and its results--in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (i) to identify specific sources of differences between the models' results and structure, (ii) to detect the indispensable model components, and (iii) to build a scientific consensus model from them, representing recommended practice. Methods. Amore » chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Results. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than 2 orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment, or nesting an urban box in a continental box. Discussion. The precision of the new characterisation factors (CFs) is within a factor of 100-1000 for human health and 10-100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement.Conclusions. USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC's Life Cycle Initiative regarding characterization of toxic impacts in Life Cycle Assessment. Recommendations and Perspectives. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.« less
Gao, Pei; Li, Zhengyan; Gibson, Mark; Gao, Huiwang
2014-06-01
Nonylphenol (NP) is an endocrine disruptor and causes feminization and carcinogenesis in various organisms. Consequently, the environmental distribution and ecological risks of NP have received wide concern. China accounts for approximately 10% of the total NP usage in the world, but the water quality criteria of NP have not been established in China and the ecological risks of this pollutant cannot be properly assessed. This study thus aims to determine the predicted no effect concentration (PNEC) of NP and to assess the ecological risks of NP in coastal waters of China with the PNEC as water quality criteria. To obtain the HC5 (hazardous concentration for 5% of biological species) and PNEC estimates, the species sensitivity distributions (SSDs) models were built with chronic toxicity data of NP on aquatic organisms screened from the US Environmental Protection Agency (USEPA) ECOTOX database. The results showed that the PNEC for NP in freshwater and seawater was 0.48 μg L(-1) and 0.28 μg L(-1), respectively. The RQ (risk quotient) values of NP in coastal waters of China ranged from 0.01 to 69.7. About 60% of the reported areas showed a high ecological risk with an RQ value ≥ 1.00. NP therefore exists ubiquitously in coastal waters of China and it poses various risks to aquatic ecosystems in the country. This study demonstrates that the SSD methodology can provide a feasible tool for the establishment of water quality criteria for emergent new pollutants when sufficient toxicity data is available. Copyright © 2013 Elsevier Ltd. All rights reserved.
Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech
2016-09-01
Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmentally friendly and biobased lubricants
USDA-ARS?s Scientific Manuscript database
Biobased and environmentally friendly lubricants are finding applications in many areas ranging from hydraulic fluids to grease. They offer excellent biodegradability and very low ecotoxicity; high viscosity index; improved tribological properties; lower volatility and flash points relative to petro...
Miller, M A; Bankier, C; Al-Shaeri, M A M; Hartl, M G J
2015-12-30
The purpose of the present study was to compare two neutral red retention methods, the more established but very labour-intensive microscope method (NRR) against the more recently developed microplate method (NRU). The intention was to explore whether the sample volume throughput could be increased and potential operator bias avoided. Mussels Mytilus sp. were exposed in vivo to 50, 250 and 500 μg L(-1) single (SWCNTs) or multi-walled carbon nanotubes (MWCNTs). Using the NRR method, SWCNTs and MWCNTs caused concentration dependent decreases in neutral red retention time. However, a concentration dependent decrease in optical density was not observed using the NRU method. We conclude that the NRU method is not sensitive enough to assess carbon nanotube ecotoxicity in vivo in environmentally relevant media, and recommend using the NRR method. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms.
Wagil, Marta; Białk-Bielińska, Anna; Puckowski, Alan; Wychodnik, Katarzyna; Maszkowska, Joanna; Mulkiewicz, Ewa; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan
2015-02-01
Flubendazole (FLU) and fenbendazole (FEN) belong to benzimidazoles-pharmaceuticals widely used in veterinary and human medicine for the treatment of intestinal parasites as well as for the treatment of systemic worm infections. In recent years, usage of these drugs increased, which resulted in a larger contamination of the environment and possible negative effects on biota. Hence, in our research, we investigated an aquatic ecotoxicity of these pharmaceuticals towards: marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustacean (Daphnia magna). Ecotoxicity tests were combined with chemical analysis in order to investigate the actual exposure concentration of the compounds used in the experiment as well as to stability and adsorption studies. As a result, study evaluating sensitivity of different aquatic organisms to these compounds and new ecotoxicological data is presented. The strongest negative impact of FLU and FEN was observed to D. magna.
Environmental behavior of cement-based stabilized foundry sludge products incorporating additives.
Ruiz, M C; Irabien, A
2004-06-18
A series of experiments were conducted to stabilize the inorganic and organic pollutants in a foundry sludge from a cast iron activity using Portland cement as binder and three different types of additives, organophilic bentonite, lime and coal fly ash. Ecotoxicological and chemical behavior of stabilized mixes of foundry sludge were analyzed to assess the feasibility to immobilize both types of contaminants, all determined on the basis of compliance leaching tests. The incorporation of lime reduces the ecotoxicity of stabilized mixes and enhances stabilization of organic pollutants obtaining better results when a 50% of cement is replaced by lime. However, the alkalinity of lime increases slightly the leached zinc up to concentrations above the limit set under neutral conditions by the European regulations. The addition of organophilic bentonite and coal fly ash can immobilize the phenolic compounds but are inefficient to reduce the ecotoxicity and mobility of zinc of final products.
Removal of veterinary antibiotics from wastewater by electrocoagulation.
Baran, Wojciech; Adamek, Ewa; Jajko, Marcin; Sobczak, Andrzej
2018-03-01
The aim of this study was to assess the effectiveness of veterinary antibiotic removal from wastewater using an electrocoagulation method. The removal efficiency of ampicillin, doxycycline, sulfathiazole and tylosin; the antibiotic degradation degree after electrolysis; and the toxicity and qualitative composition of antibiotic solutions after electrocoagulation were determined in the experiments. HPLC-QTOF was used for quantitative and qualitative determination. The eco-toxicity was assessed using the MARA ® assay. After electrocoagulation, the concentration of ampicillin, doxycycline, sulfathiazole and tylosin in wastewater decreased 3.6 ± 3.2%, ∼100%, 3.3 ± 0.4% and 3.1 ± 0.3%, respectively. Doxycycline was the only antibiotic effectively removed from wastewater during electrocoagulation. Simultaneously, part of this antibiotic underwent oxidative degradation. As a result of this process, the eco-toxicity in the reaction environment decreased. Copyright © 2017. Published by Elsevier Ltd.
Behera, Bijay Kumar; Das, Abhishek; Sarkar, Dhruba Jyoti; Weerathunge, Pabudi; Parida, Pranaya Kumar; Das, Basanta Kumar; Thavamani, Palanisami; Ramanathan, Rajesh; Bansal, Vipul
2018-05-25
Polycyclic Aromatic Hydrocarbons (PAHs) are among the most ubiquitous environmental pollutants of high global concern. PAHs belong to a diverse family of hydrocarbons with over one hundred compounds known, each containing at least two aromatic rings in their structure. Due to hydrophobic nature, PAHs tend to accumulate in the aquatic sediments, leading to bioaccumulation and elevated concentrations over time. In addition to their well-manifested mutagenic and carcinogenic effects in humans, they pose severe detrimental effects to aquatic life. The high eco-toxicity of PAHs has attracted a number of reviews, each dealing specifically with individual aspects of this global pollutant. However, efficient management of PAHs warrants a holistic approach that combines a thorough understanding of their physico-chemical properties, modes of environmental distribution and bioaccumulation, efficient detection, and bioremediation strategies. Currently, there is a lack of a comprehensive study that amalgamates all these aspects together. The current review, for the first time, overcomes this constraint, through providing a high level comprehensive understanding of the complexities faced during PAH management, while also recommending future directions through potentially viable solutions. Importantly, effective management of PAHs strongly relies upon reliable detection tools, which are currently non-existent, or at the very best inefficient, and therefore have a strong prospect of future development. Notably, the currently available biosensor technologies for PAH monitoring have not so far been compiled together, and therefore a significant focus of this article is on biosensor technologies that are critical for timely detection and efficient management of PAHs. This review is focussed on inland aquatic ecosystems with an emphasis on fish biodiversity, as fish remains a major source of food and livelihood for a large proportion of the global population. This thought provoking study is likely to instigate new collaborative approaches for protecting aquatic biodiversity from PAHs-induced eco-toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Djae, Tanalou; Bravin, Matthieu N; Garnier, Cédric; Doelsch, Emmanuel
2017-04-01
Parameterizing speciation models by setting the percentage of dissolved organic matter (DOM) that is reactive (% r-DOM) toward metal cations at a single 65% default value is very common in predictive ecotoxicology. The authors tested this practice by comparing the free copper activity (pCu 2+ = -log 10 [Cu 2+ ]) measured in 55 soil sample solutions with pCu 2+ predicted with the Windermere humic aqueous model (WHAM) parameterized by default. Predictions of Cu toxicity to soil organisms based on measured or predicted pCu 2+ were also compared. Default WHAM parameterization substantially skewed the prediction of measured pCu 2+ by up to 2.7 pCu 2+ units (root mean square residual = 0.75-1.3) and subsequently the prediction of Cu toxicity for microbial functions, invertebrates, and plants by up to 36%, 45%, and 59% (root mean square residuals ≤9 %, 11%, and 17%), respectively. Reparametrizing WHAM by optimizing the 2 DOM binding properties (i.e., % r-DOM and the Cu complexation constant) within a physically realistic value range much improved the prediction of measured pCu 2+ (root mean square residual = 0.14-0.25). Accordingly, this WHAM parameterization successfully predicted Cu toxicity for microbial functions, invertebrates, and plants (root mean square residual ≤3.4%, 4.4%, and 5.8%, respectively). Thus, it is essential to account for the real heterogeneity in DOM binding properties for relatively accurate prediction of Cu speciation in soil solution and Cu toxic effects on soil organisms. Environ Toxicol Chem 2017;36:898-905. © 2016 SETAC. © 2016 SETAC.
Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area.
Jun-hui, Zhang; Hang, Min
2009-06-15
Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg(-1)), and weakly contaminated with Cu (256.36 mg kg(-1)) and Zn (209.85 mg kg(-1)). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.
Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms.
Princz, Juliska; Becker, Leonie; Scheffczyk, Adam; Stephenson, Gladys; Scroggins, Rick; Moser, Thomas; Römbke, Jörg
2017-05-01
To verify the continuous sensitivity of ecotoxicological tests (mainly the test organisms), reference substances with known toxicity are regularly tested. Ideally, this substance(s) would lack specificity in its mode action, be bioavailable and readily attainable with cost-effective means of chemical characterization. Boric acid has satisfied these criteria, but has most recently been characterized as a substance of very high concern, due to reproductive effects in humans, thus limiting its recommendation as an ideal reference toxicant. However, there is probably no other chemical for which ecotoxicity in soil has been so intensively studied; an extensive literature review yielded lethal (including avoidance) and sublethal data for 38 taxa. The ecotoxicity data were evaluated using species sensitivity distributions, collectively across all taxa, and separately according to species type, endpoints, soil type and duration. The lack of specificity in the mode of action yielded broad toxicity among soil taxa and soil types, and provided a collective approach to assessing species sensitivity, while taking into consideration differences in test methodologies and exposure durations. Toxicity was species-specific with Folsomia candida and enchytraied species demonstrating the most sensitivity; among plants, the following trend occurred: dicotyledonous (more sensitive) ≫ monocotyledonous ≫ gymnosperm species. Sensitivity was also time and endpoint specific, with endpoints such as lethality and avoidance being less sensitive than reproduction effects. Furthermore, given the breadth of data and toxicity demonstrated by boric acid, lessons learned from its evaluation are discussed to recommend the properties required by an ideal reference substance for the soil compartment.
Ecotoxicity testing of chemicals with particular reference to pesticides.
Walker, Colin H
2006-07-01
Ecotoxicity tests are performed on vertebrates and invertebrates for the environmental risk assessment of pesticides and other chemicals and for a variety of ecotoxicological studies in the laboratory and in the field. Existing practices and strategies in ecotoxicity testing are reviewed, including an account of current requirements of the European Commission for the testing of pesticides and the recent REACH (Registration, Evaluation, Authorisation and Restrictions of Chemicals) proposals for industrial chemicals. Criticisms of existing practices have been made on both scientific and ethical grounds, and these are considered before dealing with the question of possible alternative methods and strategies both for environmental risk assessment and for ecotoxicological studies more generally. New approaches from an ecological point of view are compared with recent developments in laboratory-based methods such as toxicity tests, biomarker assays and bioassays. With regard to the development of new strategies for risk assessment, it is suggested that full consideration should be given to the findings of earlier long-term studies of pollution, which identified mechanisms of action by which environmental chemicals can cause natural populations to decline. Neurotoxicity and endocrine disruption are two cases in point, and biomarker assays for them could have an important role in testing new chemicals suspected of having these properties. In a concluding discussion, possible ways of improving testing protocols are discussed, having regard for current issues in the field of environmental risk assessment as exemplified by the debate over the REACH proposals. The importance of flexibility and the roles of ecologists and ecotoxicologists are stressed in the context of environmental risk assessment.
Igos, Elorri; Moeller, Ruth; Benetto, Enrico; Biwer, Arno; Guiton, Mélanie; Dieumegard, Philippe
2014-04-01
Because of the more and more stringent regulations and customer demand, dishwasher detergent manufacturers are constantly improving the composition of the products towards better environmental performances. In order to quantify the pros and cons of these changes on the lifecycle of detergents, as compared to conventional products, the use of Life Cycle Assessment (LCA) is a meaningful opportunity. However, the application of the methodology is hampered by the lack of Characterisation Factors (CFs) relative to the specific chemical substances included in the detergents composition, which cannot be included in the impact assessment of the effluent discharge. In this study we have tackled this problem, taking advantage of the specific case of three dishwasher detergents produced by the Chemolux/McBride group: phosphate-based, eco-labelled and phosphate-free formulations. Nine CFs for freshwater ecotoxicity and seven CFs for human toxicity have been developed, using the USEtox methodology and data made available under the REACH regulation. As a result, the dishwasher effluent composition could be characterised by more than 95% for freshwater ecotoxicity whereas for human toxicity the percentage was less than 36%, due to the lack of adequate and reliable repeated dose toxicity studies. The main contributing substances to freshwater ecotoxicity were found to be sodium percarbonate and sodium triphosphate, the latter confirming the pertinence of phosphates banning in the detergent industry. Regarding human toxicity, zinc shows the highest contribution. Further comparison to previous studies and sensitivity analysis substantiated the robustness of these conclusions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Das, Debadrito; Kumbhakar, Divya Vishambhar; Ghosh, Bapi; Pramanik, Ankita; Gupta, Sudha; Mandal, Aninda
2017-01-01
NPs synthesis, characterization and azo-dye degradation A facile cost effective wet chemical method of synthesis is proposed for Cu-NPs, CuO-NPs and Cu-doped ZnO-NPs. The nanomaterials are opto-physically characterized for nano standard quality. Cu-doped ZnO-NPs based catalytic system is found to possess most efficient photocatalytic activity in degradation of two organic azo-dyes namely methyl red (MR) and malachite green (MG) that are released as industrial effluents in eco-environment intercollegium. Two possible photocatalytic degradation pathways are proposed to understand the mechanism of interaction prevailing during the mineralization of MR and MG dyes. Such study provides insight for waste water management. The uniqueness of the present work is 1) possible routes of MG dye degradation by Cu-doped ZnO-NPs and subsequent intermediate by-products are novel and pioneered of its kind. 2) two new intermediate byproducts are identified suggesting prevalence of multiple MR degradation pathways by Cu-doped ZnO-NPs. Assessment of ecotoxicity For assessment of residual NPs impact on environment, eco-toxicological assay is performed using plant system (Sesamum indicum L.) as model. The study encompasses seed germination, seedling morphology, quantification of endogenous H2O2 and MDA generation, estimation of DNA double strand break and analysis of cell cycle inhibition. Results highlight reduced ecotoxicity of Cu-doped ZnO-NPs compared to the other synthesized nanomaterials thereby suggesting better environmental applicability in waste water purification. PMID:28796823
Ding, Cheng; Chen, Tianming; Li, Zhaoxia; Yan, Jinlong
2015-05-01
Using the standardized polyurethane foam unit (PFU) method, a preliminary investigation was carried out on the bioaccumulation and the ecotoxic effects of the pulp and paper wastewater for irrigating reed fields. Static ectoxicity test had shown protozoal communities were very sensitive to variations in toxin time and effective concentration (EC) of the pulp and paper wastewater. Shannon-Wiener diversity index (H) was a more suitable indicator of the extent of water pollution than Gleason and Margalef diversity index (d), Simpson's diversity index (D), and Pielou's index (J). The regression equation between S eq and EC was S eq = - 0.118EC + 18.554. The relatively safe concentration and maximum acceptable toxicant concentration (MATC) of the wastewater for the protozoal communities were about 20 % and 42 %, respectively. To safely use this wastewater for irrigation, more than 58 % of the toxins must be removed or diluted by further processing. Monitoring of the wastewater in representative irrigated reed fields showed that the regularity of the protozoal colonization process was similar to the static ectoxicity, indicating that the toxicity of the irrigating pulp and paper wastewater was not lethal to protozoal communities in the reed fields. This study demonstrated the applicability of the PFU method in monitoring the ecotoxic effects of pulp and paper wastewater on the level of microbial communities and may guide the supervision and control of pulp and paper wastewater irrigating within the reed fields ecological system (RFES).
Technological and life cycle assessment of organics processing odour control technologies.
Bindra, Navin; Dubey, Brajesh; Dutta, Animesh
2015-09-15
As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sörme, L., E-mail: louise.sorme@scb.se; Palm, V.; KTH Royal Institute of Technology, Division of Environmental Strategies Research, SE-100 44 Stockholm
2016-01-15
There is a great need for indicators to monitor the use and potential impacts of hazardous chemicals. Today there is a huge lack of data, methods and results and method development and studies should be given urgent priority. The aim of this paper was to develop and test an approach to calculate the potential environmental impacts of chemicals for a whole country using the E-PRTR (European Pollutant Release and Transfer Register) as a database and Sweden as an example. Swedish data from 2008 on emissions to air and water for 54 substances from point sources were retrieved from an openmore » database. The data were transformed and aggregated using USEtox, a life-cycle impact assessment (LCIA) method for calculating potential human toxicity and ecotoxicity, both from industrial emissions directly and after input–output analysis (IO analysis) to reallocate emissions to product categories. Zinc to air and water contributed most to human toxicity followed by mercury to air. The largest contribution by industry to potential human toxicity came from the metal industry, followed by the paper and paper product industry. For potential ecotoxicity, zinc, fluoranthene and copper contributed the most. The largest contributions by industry came from the paper and paper products manufacturing sector, followed by the basic metals manufacturing sector. The approach used here can be seen as the first step towards a chemical footprint for nations. By adding data from other countries and other sources, a more complete picture can be gained in line with other footprint calculations. Furthermore, diffuse emissions from, for example, transport or emissions of pesticides could also be added for a more holistic assessment. Since the area of chemicals is complicated, it is probably necessary to develop and use several indicators that complement each other. It is suggested that the approach outlined here could be useful in developing a method for establishing a national chemical footprint. - Highlights: • European Pollutant and Transfer Register (E-PRTR) used to develop indicators • Study combined emissions to air and water from E-PRTR with USEtox and IO analysis • Metals and especially zinc contributed most to potential human toxicity and ecotoxicity • Paper and metal industries contribute most to potential human toxicity and ecotoxicity • This new assessment could be used by many countries and can be developed further.« less
Vasquez, M I; Garcia-Käufer, M; Hapeshi, E; Menz, J; Kostarelos, K; Fatta-Kassinos, D; Kümmerer, K
2013-04-15
Ofloxacin (OFL), a broad-spectrum and widespread-used photolabile fluoroquinolone, is frequently found in treated wastewaters, aquatic and terrestrial ecosystems leading to increasing concern during the past decades regarding its effects to the environment and human health. The elimination of OFL and other xenobiotics by the application of advanced oxidation processes using photolytic (PL) and photocatalytic (PC) treatments seems promising. However, an integrated assessment scheme is needed, in which, not only the removal of the parent compound, but also the effects of the photo-transformation products (PTPs) are investigated. For this purpose, in the present study, a chronic ecotoxic assessment using representative bacteria of marine and terrestrial ecosystems and a cytostatic and genotoxic evaluation using hepatoma cell line were performed. PL and PC treatments of OFL were applied using UV radiation. The photo-transformation of OFL during the treatments was monitored by DOC measurements and UPLC-MS/MS analysis. The chronic ecotoxicity of OFL and treated samples was evaluated using Pseudomonas putida and Vibrio fischeri; whereas the cytostasis and genotoxicity were estimated by the cytokinesis-block micronucleus assay (CBMN). The main results suggest that photo-transformation of OFL took place during these treatments since the concentration of OFL decreased when the irradiation time increased, as quantified by UPLC-MS/MS analysis, and this was not coupled with an analogous DOC removal. Furthermore, nine compounds were identified as probable PTPs formed through piperazinyl dealkylation and decarboxylation. The ecotoxicity of treated solutions to the bacteria studied decreased while the cytostasis to the hepatoma cell line remained at low levels during both treatments. However, the genotoxicity to the hepatoma cell line demonstrated a different pattern in which treated samples induced a greater number of MNi for the 4-16 min of irradiation (p<0.05) during both treatments. After 64 min of irradiation, the effects decreased to non genotoxic levels (p<0.05). These findings suggest that UV radiation for various treatment processes (catalytic or not), such as disinfection, may create genotoxic by-products. Therefore, in relevant technical applications, the residence time during treatment should receive special attention. Copyright © 2012. Published by Elsevier B.V.
Susceptibility of non-target invertebrates to Brazilian microbial pest control agents.
Oliveira-Filho, Eduardo Cyrino; Muniz, Daphne Heloisa Freitas; Freire, Ingrid Souza; Ramos, Felipe Rosa; Alves, Roberto Teixeira; Jonsson, Claudio Martin; Grisolia, Cesar Koppe; Monnerat, Rose Gomes
2011-08-01
Microbial pest control agents or entomopathogens have been considered an interesting alternative to use instead of chemical insecticides. Knowledge of ecotoxicity data is very important to predict the hazard of any product released in the environment and subsidize the regulation of these products by governmental agencies. In the present study four new Brazilian strains of Bacillus and one fungus were tested to evaluate their acute toxicity to the microcrustacean Daphnia similis, the snail Biomphalaria glabrata and the dung beetle Digitonthophagus gazella. The microcrustaceans and the snails were exposed to entomopathogens in synthetic softwater and the beetles were exposed directly in cattle dung. Obtained data reveal low susceptibility of the non-target species to tested microorganisms, with lethal concentrations being observed only at much higher concentrations than that effective against target insects. These results show that the tested strains are selective in their action mode and seem to be non-hazardous to non-target species.
Ecotoxicity of Manufactured ZnO Nanoparticles - A Review
This report presents an exhaustive literature review on the toxicity of manufactured ZnO nanoparticles (NPs) to ecological receptors across different phylum: bacteria, algae and plants, aquatic and terrestrial invertebrates and freshwater fish. Results show that the majority of s...
Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.
Nendza, Monika; Müller, Martin; Wenzel, Andrea
2017-03-22
Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log K ow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR predictions.
Terrestrial Eco-Toxicological Tests as Screening Tool to Assess Soil Contamination in Krompachy Area
NASA Astrophysics Data System (ADS)
Ol'ga, Šestinová; Findoráková, Lenka; Hančuľák, Jozef; Fedorová, Erika; Tomislav, Špaldon
2016-10-01
In this study, we present screening tool of heavy metal inputs to agricultural and permanent grass vegetation of the soils in Krompachy. This study is devoted to Ecotoxicity tests, Terrestrial Plant Test (modification of OECD 208, Phytotoxkit microbiotest on Sinapis Alba) and chronic tests of Earthworm (Dendrobaena veneta, modification of OECD Guidelines for the testing of chemicals 317, Bioaccumulation in Terrestrial Oligochaetes) as practical and sensitive screening method for assessing the effects of heavy metals in Krompachy soils. The total Cu, Zn, As, Pb and Hg concentrations and eco-toxicological tests of soils from the Krompachy area were determined of 4 sampling sites in 2015. An influence of the sampling sites distance from the copper smeltery on the absolutely concentrations of metals were recorded for copper, lead, zinc, arsenic and mercury. The highest concentrations of these metals were detected on the sampling sites up to 3 km from the copper smeltery. The samples of soil were used to assess of phytotoxic effect. Total mortality was established at earthworms using chronic toxicity test after 7 exposure days. The results of our study confirmed that no mortality was observed in any of the study soils. Based on the phytotoxicity testing, phytotoxic effects of the metals contaminated soils from the samples 3KR (7-9) S.alba seeds was observed.
Aquatic concentrations of chemical analytes compared to ecotoxicity estimates
We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concent...
CHARACTERIZATION OF METABOLITES IN SMALL FISH BIOFLUIDS AND TISSUES BY NMR SPECTROSCOPY
Nuclear magnetic resonance (NMR) spectroscopy has been utilized for assessing ecotoxicity in small fish models by means of metabolomics. Two fundamental challenges of NMR-based metabolomics are the detection limit and characterization of metabolites (or NMR resonance assignments...
Aquatic Animal Models – Not Just for Ecotox Anymore
A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...
An Evaluation of Ecotoxicity Test Guidelines: Their Adequacy for Nanomaterials
Advances in nanotechnology are resulting in the production of new nanomaterials at a rapid pace. Driving the dramatic development of new materials and products is the prospect of stronger and lighter materials, better and more efficient energy systems, potential tremendous benefi...
Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young
2016-02-01
Automobile shredder residue (ASR) fraction (size <0.25mm) can be considered as hazardous due to presence of high concentrations of heavy metals. Hydrogen peroxide combined with nitric acid has been used for the recovery of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd and Cr) from the fine fraction of ASR. A sequential extraction procedure has also been used to determine the heavy metal speciation in the fine fraction of ASR before and after treatment. A risk analysis of the fine fraction of ASR before and after treatment was conducted to assess the bioavailability and eco-toxicity of heavy metals. These results showed that the recovery of heavy metals from ASR increased with an increase in the hydrogen peroxide concentration. A high concentration of heavy metals was found to be present in Cbio fractions (the sum of the exchangeable and carbonate fractions) in the fine fraction of ASR, indicating high toxicity risk. The Cbio rate of all selected heavy metals was found to range from 8.6% to 33.4% of the total metal content in the fine fraction of ASR. After treatment, Cbio was reduced to 0.3-3.3% of total metal upon a treatment with 2.0% hydrogen peroxide. On the basis of the risk assessment code (RAC), the environmental risk values for heavy metals in the fine fraction of ASR reflect high risk/medium risk. However, after treatment, the heavy metals would be categorized as low risk/no risk. The present study concludes that hydrogen peroxide combined with nitric acid is a promising treatment for the recovery and reduction of the eco-toxicity risk of heavy metals in ASR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zepon Tarpani, Raphael Ricardo; Azapagic, Adisa
2018-06-01
Pharmaceutical and personal care products (PPCPs) are of increasing interest because of their ecotoxicological properties and environmental impacts. Wastewater treatment plants (WWTPs) are the main pathway for their release into freshwaters due to the inefficiency of conventional WWTPs in removing many of these contaminants from effluents. Therefore, different advanced effluent treatment techniques have been proposed for their treatment. However, it is not known at present how effective these treatment methods are and whether on a life cycle basis they cause other environmental impacts which may outweigh the benefits of the treatment. In an effort to provide an insight into this question, this paper considers life cycle environmental impacts of the following advanced treatment techniques aimed at reducing freshwater ecotoxicity potential of PPCPs: granular activated carbon (GAC), nanofiltration (NF), solar photo-Fenton (SPF) and ozonation. The results suggest that on average NF has the lowest impacts for 13 out of 18 categories considered. GAC is the best alternative for five impacts, including metals and water depletion, but it has the highest marine eutrophication. SPF and ozonation are the least sustainable for eight impacts, including ecotoxicity and climate change. GAC and NF are also more efficient in treating heavy metals while avoiding generation of harmful by-products during the treatment, thus being more suitable for potable reuse of wastewater. However, releasing the effluent without advanced treatment to agricultural land achieves a much higher reduction of freshwater ecotoxicity than treating it by any of the advanced treatments and releasing to the environment. Therefore, the use of advanced effluent treatment for agricultural purposes is not recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goix, Sylvaine; UMR 5245 CNRS-INP-UPS, EcoLab; Lévêque, Thibaut
2014-08-15
This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score duemore » to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.« less
Hu, Xintao; Zhu, Jianxin; Ding, Qiong
2011-07-15
Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process. Copyright © 2011 Elsevier B.V. All rights reserved.
Boncel, Sławomir; Kyzioł-Komosińska, Joanna; Krzyżewska, Iwona; Czupioł, Justyna
2015-10-01
Due to their unique molecular architecture translating into numerous every-day applications, carbon nanotubes (CNTs) will be ultimately an increasingly significant environmental contaminant. This work reviews qualitative/quantitative analyses of interactions of various types of CNTs and their chemically modified analogues with aqueous/aquatic media containing organic and inorganic contaminants and selected organisms of aquatic ecosystems. A special emphasis was placed on physicochemical interactions between CNTs as adsorbents of heavy metal cations and aromatic compounds (dyes) with its environmental consequences. The studies revealed CNTs as more powerful adsorbents of aromatic compounds (an order of magnitude higher adsorption capacity) than metal cations. Depending on the presence of natural organic matter (NOM) and/or co-contaminants, CNTs may act as Trojan horse while passing through biological membranes (in the absence of NOM coordinating metal ions). Nanotubes, depending on flow conditions and their morphology/surface chemistry, may travel with natural waters or sediment with immobilized PAHs or metals and/or increase cyto- and ecotoxicity of PAHs/metal ions by their release via competitive complexation, or cause synergic ecotoxicity while adsorbing nutrients. Additionally, toxicity of CNTs against exemplary aquatic microorganisms was reviewed. It was found for Daphnia magna that longer exposures to CNTs led to higher ecotoxicity with a prolonged CNTs excretion. SWCNTs were more toxic than MWCNTs, while hydrophilization of CNTs via oxidation or anchoring thereto polar/positively charged polymer chains enhanced stability of nanotubes dispersion in aqueous media. On the other hand, bioavailability of functionalized CNTs was improved leading to more complex both mechanisms of uptake and cytotoxic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Freitas, José Henrique Edmilson Souza; de Santana, Keissy Vanderley; do Nascimento, Ana Cláudia Claudina; de Paiva, Sérgio Carvalho; de Moura, Maiara Celine; Coelho, Luana Cassandra Breitenbach Barroso; de Oliveira, Maria Betânia Melo; Paiva, Patrícia Maria Guedes; do Nascimento, Aline Elesbão; Napoleão, Thiago Henrique
2016-11-01
Aluminum salts are used as coagulants in water treatment; however, the exposure to residual aluminum has been associated with human brain lesions. The water-soluble Moringa oleifera lectin (WSMoL), which is extracted with distilled water and isolated by chitin chromatography, has coagulant activity and is able to reduce the concentration of metal ions in aqueous solutions. This study evaluated the potential of using aluminum sulfate and WSMoL to reduce the turbidity and toxicity of water from the Cavouco stream located in Recife, Pernambuco, Brazil. The water sample used (called P1) was collected from the stream source, which was found to be strongly polluted based on physicochemical and water quality analyses, as well as ecotoxicity assays with Artemia salina and seeds of Eruca sativa and Lactuca sativa. The assays combining WSMoL and aluminum sulfate were more efficient than those that used these agents separately. Furthermore, the greatest reduction in turbidity (96.8%) was obtained with the treatment using aluminum sulfate followed by WSMoL, compared to when they were applied simultaneously (91.3%). In addition, aluminum sulfate followed by WSMoL treatment resulted in residual aluminum concentration (0.3 mg/L) that was much lower than that recorded after the treatment using only the salt (35.5 mg/L). The ecotoxicity of P1 was also strongly reduced after the treatments. In summary, the combined use of aluminum sulfate and WSMoL was efficient in promoting a strong reduction of turbidity and ecotoxicity of a polluted water sample, without resulting in a high residual aluminum concentration at the conclusion of the treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cleuvers, Michael
2004-11-01
The ecotoxicity of the nonsteroidal anti-inflammatory drugs (NSAIDs) diclofenac, ibuprofen, naproxen, and acetylsalicylic acid (ASA) has been evaluated using acute Daphnia and algal tests. Toxicities were relatively low, with half-maximal effective concentration (EC50) values obtained using Daphnia in the range from 68 to 166 mg L(-1) and from 72 to 626 mg L(-1) in the algal test. Acute effects of these substances seem to be quite improbable. The quantitative structure-activity relationships (QSAR) approach showed that all substances act by nonpolar narcosis; thus, the higher the n-octanol/water partitioning coefficient (log Kow) of the substances, the higher is their toxicity. Mixture toxicity of the compounds could be accurately predicted using the concept of concentration addition. Toxicity of the mixture was considerable, even at concentrations at which the single substances showed no or only very slight effects, with some deviations in the Daphnia test, which could be explained by incompatibility of the very steep dose-response curves and the probit analysis of the data. Because pharmaceuticals in the aquatic environment occur usually as mixtures, an accurate prediction of the mixture toxicity is indispensable for environmental risk assessment.
EPA's New Oil and Dispersant Testing Program
The U.S. EPA has initiated a new component of its oil spills research program to develop baseline data on the ecotoxicity of selected petroleum products and toxicity and efficacy of dispersant agents. Two diluted bitumens (dilbits) from the Alberta Tar Sands are currently being t...
Bringing the fathead minnow (Pimephales promelas) into the genomic era
The fathead minnow (Pimephales promelas) is a well-established ecotoxicological model organism that has been widely used for regulatory ecotoxicity testing and research for over a half century. Throughout this time, a lot of knowledge has been gained about the fathead minnow&rsqu...
Bringing the fathead minnow into the genomic era
The fathead minnow is a well-established ecotoxicological model organism that has been widely used for regulatory ecotoxicity testing and research for over a half century. While a large amount of molecular information has been gathered on the fathead minnow over the years, the la...
New approach to the ecotoxicological risk assessment of artificial outdoor sporting grounds.
Krüger, O; Kalbe, U; Richter, E; Egeler, P; Römbke, J; Berger, W
2013-04-01
Artificial surfaces for outdoor sporting grounds may pose environmental and health hazards that are difficult to assess due to their complex chemical composition. Ecotoxicity tests can indicate general hazardous impacts. We conducted growth inhibition (Pseudokirchneriella subcapitata) and acute toxicity tests (Daphnia magna) with leachates obtained from batch tests of granular infill material and column tests of complete sporting ground assemblies. Ethylene propylene diene monomer rubber (EPDM) leachate showed the highest effect on Daphnia magna (EC(50) < 0.4% leachate) and the leachate of scrap tires made of styrene butadiene rubber (SBR) had the highest effect on P. subcapitata (EC(10) = 4.2% leachate; EC(50) = 15.6% leachate). We found no correlations between ecotoxicity potential of leachates and zinc and PAH concentrations. Leachates obtained from column tests revealed lower ecotoxicological potential. Leachates of column tests of complete assemblies may be used for a reliable risk assessment of artificial sporting grounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Antibacterial activity and toxicity of silver - nanosilver versus ionic silver
NASA Astrophysics Data System (ADS)
Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R.
2011-07-01
The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.
Stolte, Stefan; Steudte, Stephanie; Areitioaurtena, Olatz; Pagano, Francesco; Thöming, Jorg; Stepnowski, Piotr; Igartua, Amaya
2012-11-01
This paper reports on the (eco)toxicity and biodegradability of ionic liquids considered for application as lubricants or lubrication additives. Ammonium- and pyrrolidinium-based cations combined with methylsulphate, methylsulphonate and/or (CF(3)SO(2))(2)N(-) anions were investigated in tests to determine their aquatic toxicity using water fleas Daphnia magna, green algae Selenastrum capricornutum and marine bacteria (Vibrio fischeri). Additional test systems with an isolated enzyme (acetylcholinesterase) and isolated leukaemia cells from rats (IPC-81) were used to assess the biological activity of the ionic liquids. These compounds generally exhibit low acute toxicity and biological activity. Their biodegradability was screened according to OECD test procedures 301 B and 301 F. For choline and methoxy-choline ionic liquids ready biodegradability was observed within 5 or 10 d, respectively. Some of the compounds selected have a considerable potential to contribute to the development of more sustainable products and processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Formation and ecotoxicity of N-heterocyclic compounds on ammoxidation of mono- and polysaccharides.
Klinger, Karl Michael; Liebner, Falk; Fritz, Ines; Potthast, Antje; Rosenau, Thomas
2013-09-25
Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16-30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4-160.5 mg/g of educt) and polysaccharides (140 °C: 5.52-16.03 mg/g of educt).
Ecotoxicological and genotoxic assessment of hospital laundry wastewaters.
Kern, Deivid Ismael; Schwaickhardt, Rômulo de Oliveira; Lutterbeck, Carlos Alexandre; Kist, Lourdes Teresinha; Alcayaga, Eduardo Alexis Lobo; Machado, Ênio Leandro
2015-01-01
The aim of the present study was to assess the ecotoxicity and genotoxicity of hospital laundry wastewaters generated from a regional hospital located in Rio Pardo Valley in the state of Rio Grande do Sul, Brazil. Physicochemical, microbiological, ecotoxicological, and genotoxic analyses were performed, and the results indicate that some parameters were not in accordance with the limit concentrations established by Brazilian and international guidelines for urban wastewaters. Daphnia magna (EC50 2.01%) and Danio rerio (LC50 29.25%) acute toxicity was detected, and sublethal effects were identified in Lactuca sativa (IC25 12.50%) and Allium cepa (IC25 51.25%). Cytotoxicity was observed at the five wastewater concentrations used yielding statistically significant differences (p < 0.05) in the meristematic cells of A. cepa compared with the negative control. The results obtained here warn about the necessity to develop treatment methods that can mitigate the environmental impacts caused by the ecotoxicity and genotoxicity of hospital laundry wastewaters.
The application of a carrier-based bioremediation strategy for marine oil spills.
Sheppard, Petra J; Simons, Keryn L; Adetutu, Eric M; Kadali, Krishna K; Juhasz, Albert L; Manefield, Mike; Sarma, Priyangshu M; Lal, Banwari; Ball, Andrew S
2014-07-15
The application of recycled marine materials to develop sustainable remediation technologies in marine environment was assessed. The remediation strategy consisted of a shell carrier mounted bacterial consortium composed of hydrocarbonoclastic strains enriched with nutrients (Bioaug SC). Pilot scale studies (5000 l) were used to examine the ability of Bioaug-SC to degrade weathered crude oil (10 g l(-1); initially 315,000±44,000 mg l(-1)) and assess the impacts of the introduction and biodegradation of oil. Total petroleum hydrocarbon mass was effectively reduced by 53.3 (±5.75)% to 147,000 (±21,000) mg l(-1) within 27 weeks. 16S rDNA bacterial community profiling using Denaturant Gradient Gel Electrophoresis revealed that cyanobacteria and Proteobacteria dominated the microbial community. Aquatic toxicity assessment was conducted by ecotoxicity assays using brine shrimp hatchability, Microtox and Phaeodactylum tricornutum. This study revealed the importance of combining ecotoxicity assays with oil chemistry analysis to ensure safe remediation methods are developed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling.
Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto
2015-10-15
The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity and the predicted environmental concentrations based on the conditions of use are lower than the NOAEC for soils but higher than the NOAEC for water, posing a potential risk to the waters due to the levels of foaming agents in the muck. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing the environmental risk of manufactured nanomaterials (NMs) presents a significant and growing challenge for environmental regulators. These materials, defined as having at least one physical dimensions between 1 and 100 nanometers are being developed, produced, and inco...
Sediment Ecotoxicity Assessment Ring Verification Report and Statement
The SEA Ring (U.S. Patent No. 8,011,239) is an integrated, field tested, toxicity and bioavailability assessment device. This device was developed at SPAWAR in San Diego, California and is commercially available from Zebra-Tech, Ltd. The SEA Ring was designed to evaluate toxicity...
Application of computational toxicology to prospective and diagnostic ecological risk assessment
When the National Research Council published their Vision and Strategy for Toxicity Testing in the 21st Century, the sole focus was human health-related toxicity testing. However, ecotoxicity testing faces many of the same challenges and limitations relative to its traditional re...
Bringing the fathead minnow into the genomic era | Science ...
The fathead minnow is a well-established ecotoxicological model organism that has been widely used for regulatory ecotoxicity testing and research for over a half century. While a large amount of molecular information has been gathered on the fathead minnow over the years, the lack of genomic sequence data has limited the utility of the fathead minnow for certain applications. To address this limitation, high-throughput Illumina sequencing technology was employed to sequence the fathead minnow genome. Approximately 100X coverage was achieved by sequencing several libraries of paired-end reads with differing genome insert sizes. Two draft genome assemblies were generated using the SOAPdenovo and String Graph Assembler (SGA) methods, respectively. When these were compared, the SOAPdenovo assembly had a higher scaffold N50 value of 60.4 kbp versus 15.4 kbp, and it also performed better in a Core Eukaryotic Genes Mapping Analysis (CEGMA), mapping 91% versus 67% of genes. As such, this assembly was selected for further development and annotation. The foundation for genome annotation was generated using AUGUSTUS, an ab initio method for gene prediction. A total of 43,345 potential coding sequences were predicted on the genome assembly. These predicted sequences were translated to peptides and queried in a BLAST search against all vertebrates, with 28,290 of these sequences corresponding to zebrafish peptides and 5,242 producing no significant alignments. Additional ty
Prioritizing human pharmaceuticals for ecological risks in the freshwater environment of Korea.
Ji, Kyunghee; Han, Eun Jeong; Back, Sunhyoung; Park, Jeongim; Ryu, Jisung; Choi, Kyungho
2016-04-01
Pharmaceutical residues are potential threats to aquatic ecosystems. Because more than 3000 active pharmaceutical ingredients (APIs) are in use, identifying high-priority pharmaceuticals is important for developing appropriate management options. Priority pharmaceuticals may vary by geographical region, because their occurrence levels can be influenced by demographic, societal, and regional characteristics. In the present study, the authors prioritized human pharmaceuticals of potential ecological risk in the Korean water environment, based on amount of use, biological activity, and regional hydrologic characteristics. For this purpose, the authors estimated the amounts of annual production of 695 human APIs in Korea. Then derived predicted environmental concentrations, using 2 approaches, to develop an initial candidate list of target pharmaceuticals. Major antineoplastic drugs and hormones were added in the initial candidate list regardless of their production amount because of their high biological activity potential. The predicted no effect concentrations were derived for those pharmaceuticals based on ecotoxicity information available in the literature or by model prediction. Priority lists of human pharmaceuticals were developed based on ecological risks and availability of relevant information. Those priority APIs identified include acetaminophen, clarithromycin, ciprofloxacin, ofloxacin, metformin, and norethisterone. Many of these pharmaceuticals have been neither adequately monitored nor assessed for risks in Korea. Further efforts are needed to improve these lists and to develop management decisions for these compounds in Korean water. © 2015 SETAC.
Straub, Jürg Oliver
2016-04-01
Sulfamethoxazole (SMX) is an old sulfonamide antibiotic that was launched first in combination with trimethoprim in 1969 by F.Hoffmann-La Roche. Although sales figures for SMX have been declining over the past 20 yr, the compound is still widely used; moreover, many measured environmental concentrations (MECs) are available from Europe, the United States, Asia, Australia, and Africa. To assess aquatic risks of SMX in Europe, the exposure of European surface waters was predicted based on actual sales figures from IMS Health, incorporating environmental fate data on one side, and based on collated MECs representing more than 5500 single measurements in Europe on the other. Environmental effects were assessed using chronic and subchronic ecotoxicity data for 16 groups of aquatic organisms, from periphyton communities to cyanobacteria, algae, higher plants, various invertebrates, and vertebrates. Predicted no-effect concentrations (PNECs) were derived using both deterministic and probabilistic methodology. The predicted environmental concentration (PEC)/PNEC and MEC/PNEC comparisons overall showed no appreciable risk, except in a low incidence (<0.55%) of cases in which exceptionally high MECs led to MEC/PNEC risk characterization ratios greater than 1. The PNECs derived in the present study can be used to extend aquatic environmental risk assessment for SMX to other continents. No risk appears for indirect human exposure to SMX via the environment. © 2015 SETAC.
Bringing the fathead minnow (Pimephales promelas) into the ...
The fathead minnow (Pimephales promelas) is a well-established ecotoxicological model organism that has been widely used for regulatory ecotoxicity testing and research for over a half century. Throughout this time, a lot of knowledge has been gained about the fathead minnow’s biological responses to various xenobiotics. However, despite its importance as a model organism, the fathead minnow still has few publicly available gene sequences. Recently, Burns et al. (2015; Environ. Toxicol. Chem. 35:212) described the sequencing and de-novo assembly of the fathead minnow genome. Two draft genome assemblies are now publicly available on the GenBank database. However, on their own the draft assemblies remain of limited use to researchers who are primarily interested in the functional units of the genome, i.e. the genes. In the present study, an annotation pipeline, consisting of gene prediction, evidence alignment, and data synthesis, was applied to the fathead minnow SOAPdenovo assembly. Ab initio gene prediction was performed using AUGUSTUS, which provided a starting point of 43,345 gene predictions. Fathead minnow Expressed Sequence Tags (ESTs) and zebrafish protein-coding sequences (CDSs) were then aligned to the assembly using the corresponding spliced alignment methods of the program Exonerate. Of the over 240,000 EST alignments, 73% were successfully aligned with 90% or greater sequence identity and query coverage. Similarly, 39% of nearly 45,000 zebrafish co
Sanderson, Hans; Thomsen, Marianne
2009-06-01
Pharmaceuticals have been reported to be ubiquitously present in surface waters prompting concerns of effects of these bioactive substances. Meanwhile, there is a general scarcity of publicly available ecotoxicological data concerning pharmaceuticals. The aim of this paper was to compile a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68% of the pharmaceuticals have a non-specific MOA. Additionally, the acute-to-chronic ratio (ACR) for 70% of the analyzed pharmaceuticals was below 25 further suggesting a non-specific MOA. Sub-lethal receptor-mediated effects may however have a more specific MOA.
Adipose tissue represents an important and understudied component of the endocrine system. Recent evidence suggests that endocrine-disrupting chemicals (EDCs) may be able to alter lipid development (e.g., adipogenesis) and/or the balance of lipid metabolism. The environmentally a...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... with this standard by using a well-designed filtration system. Manufacturers and engineers cannot...) Embryos. Environmental Toxicology and Chemistry. 26:708-716. 5. EPA. (2010) Material Characterization of...) Ecotoxicity and Analysis of Nanomaterials in the Aquatic Environment. Analytical and Bioanalytical Chemistry...
Generating ecotoxicity information on microcystins and prymnesins: A different approach
There is a lack of information for estimating safe levels for aquatic life concerning the toxicity of natural toxins produced by cyanobacteria and algae. There are a number of reviews that have indicated that the toxicity of microcystins to daphnia and zebrafish is not as great a...
Overview of Aquatic Toxicity Testing under the U.S. EPA Oil Research Program
The U.S. EPA Office of Research and Development is developing baseline data on the ecotoxicity of selected petroleum products, chemical dispersants, and other spill mitigating substances as part of its Oil Research Program. Two diluted bitumens (dilbits) from the Alberta Tar Sand...
Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids.
Hund-Rinke, Kerstin; Simon, Markus
2006-07-01
Due to their large potential for manifold applications, the use of nanoparticles is of increasing importance. As large amounts of nanoparticles may reach the environment voluntarily or by accident, attention should be paid on the potential impacts on the environment. First studies on potential environmental effects of photocatalytic TiO2 nanoparticles have been performed on the basis of widely accepted, standardized test systems which originally had been developed for the characterization of chemicals. The methods were adapted to the special requirements of testing photocatalytic nanoparticles. Suspensions of two different nanoparticles were illuminated to induce their photocatalytic activity. For testing, the growth inhibition test with the green alga Desmodesmus subspicatus and the immobilization test with the daphnid Daphnia magna were selected and performed following the relevant guidelines (algae: ISO 8692, OECD 201, DIN 38412-33; daphnids: ISO 6341, OECD 202, DIN 38412-30). The guidelines were adapted to meet the special requirements for testing photocatalytic nanoparticles. The results indicate that it is principally possible to determine the ecotoxicity of nanoparticles. It was shown that nanoparticles may have ecotoxicological effects which depend on the nature of the particles. Both products tested differ in their toxicity. Product 1 shows a clear concentration-effect curve in the test with algae (EC50: 44 mg/L). It could be proven that the observed toxicity was not caused by accompanying contaminants, since the toxic effect was comparable for the cleaned and the commercially available product. For product 2, no toxic effects were determined (maximum concentration: 50 mg/L). In the tests with daphnids, toxicity was observed for both products, although the concentration effect-curves were less pronounced. The two products differed in their toxicity; moreover, there was a difference in the toxicity of illuminated and non-illuminated products. Both products differ in size and crystalline form, so that these parameters are assumed to contribute to the different toxicities. The concentration-effect curves for daphnids, which are less-pronounced than the curves obtained for algae, may be due to the different test organisms and/or the differing test designs. The increased toxicity of pre-illuminated particles in the tests with daphnids demonstrates that the photocatalytic activity of nanoparticles lasts for a period of time. The following conclusions can be drawn from the test results: (I) It is principally possible to determine the ecotoxicity of (photocatalytic) nanoparticles. Therefore, they can be assessed using methods comparable to the procedures applied for assessing soluble chemicals. (II) Nanoparticles may exert ecotoxicological effects, which depend on the specific nanoparticle. (III) Comparable to traditional chemicals, the ecotoxicity depends on the test organisms and their physiology. (IV) The photocatalytic activity of nanoparticles lasts for a relevant period of time. Therefore, pre-illumination may be sufficient to detect a photocatalytic activity even by using test organisms which are not suitable for application in the pre-illumination-phase. First results are presented which indicate that the topic 'ecotoxicity and environmental effects of nanoparticles' should not be neglected. In testing photocatalytic nanoparticles, there are still many topics that need clarification or improvement, such as the cause for an observed toxicity, the improvement of the test design, the elaboration of a test battery and an assessment strategy. On the basis of optimized test systems, it will be possible to test nanoparticles systematically. If a potential risk by specific photocatalytic particles is known, a risk-benefit analysis can be performed and, if required, risk reducing measures can be taken.
Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits.
Ippolito, A; Todeschini, R; Vighi, M
2012-03-01
Assessing the sensitivity of different species to chemicals is one of the key points in predicting the effects of toxic compounds in the environment. Trait-based predicting methods have proved to be extremely efficient for assessing the sensitivity of macroinvertebrates toward compounds with non specific toxicity (narcotics). Nevertheless, predicting the sensitivity of organisms toward compounds with specific toxicity is much more complex, since it depends on the mode of action of the chemical. The aim of this work was to predict the sensitivity of several freshwater macroinvertebrates toward three classes of plant protection products: organophosphates, carbamates and pyrethroids. Two databases were built: one with sensitivity data (retrieved, evaluated and selected from the U.S. Environmental Protection Agency ECOTOX database) and the other with biological traits. Aside from the "traditional" traits usually considered in ecological analysis (i.e. body size, respiration technique, feeding habits, etc.), multivariate analysis was used to relate the sensitivity of organisms to some other characteristics which may be involved in the process of intoxication. Results confirmed that, besides traditional biological traits, related to uptake capability (e.g. body size and body shape) some traits more related to particular metabolic characteristics or patterns have a good predictive capacity on the sensitivity to these kinds of toxic substances. For example, behavioral complexity, assumed as an indicator of nervous system complexity, proved to be an important predictor of sensitivity towards these compounds. These results confirm the need for more complex traits to predict effects of highly specific substances. One key point for achieving a complete mechanistic understanding of the process is the choice of traits, whose role in the discrimination of sensitivity should be clearly interpretable, and not only statistically significant.
ECOSAR model performance with a large test set of industrial chemicals.
Reuschenbach, Peter; Silvani, Maurizio; Dammann, Martina; Warnecke, Dietmar; Knacker, Thomas
2008-05-01
The widely used ECOSAR computer programme for QSAR prediction of chemical toxicity towards aquatic organisms was evaluated by using large data sets of industrial chemicals with varying molecular structures. Experimentally derived toxicity data covering acute effects on fish, Daphnia and green algae growth inhibition of in total more than 1,000 randomly selected substances were compared to the prediction results of the ECOSAR programme in order (1) to assess the capability of ECOSAR to correctly classify the chemicals into defined classes of aquatic toxicity according to rules of EU regulation and (2) to determine the number of correct predictions within tolerance factors from 2 to 1,000. Regarding ecotoxicity classification, 65% (fish), 52% (Daphnia) and 49% (algae) of the substances were correctly predicted into the classes "not harmful", "harmful", "toxic" and "very toxic". At all trophic levels about 20% of the chemicals were underestimated in their toxicity. The class of "not harmful" substances (experimental LC/EC(50)>100 mg l(-1)) represents nearly half of the whole data set. The percentages for correct predictions of toxic effects on fish, Daphnia and algae growth inhibition were 69%, 64% and 60%, respectively, when a tolerance factor of 10 was allowed. Focussing on those experimental results which were verified by analytically measured concentrations, the predictability for Daphnia and algae toxicity was improved by approximately three percentage points, whereas for fish no improvement was determined. The calculated correlation coefficients demonstrated poor correlation when the complete data set was taken, but showed good results for some of the ECOSAR chemical classes. The results are discussed in the context of literature data on the performance of ECOSAR and other QSAR models.
Ultimate biodegradability and ecotoxicity of orally administered antidiabetic drugs.
Markiewicz, Marta; Jungnickel, Christian; Stolte, Stefan; Białk-Bielińska, Anna; Kumirska, Jolanta; Mrozik, Wojciech
2017-07-05
Hypoglycaemic pharmaceuticals are recently more and more frequently detected in the environment. In our previous study, we have shown that even though many of them undergo significant primary degradation some are transformed to stable products or undergo such transformation that a large part of the structure is still preserved. One of the main routes of elimination from wastewaters or surface waters is biodegradation and a lack thereof leads to accumulation in the environment. Within this work we tested the ultimate biodegradability of six oral antidiabetics: metformin and its main metabolite guanylurea, acarbose, glibenclamide, gliclazide, glimepiride and repaglinide. We also compared the experimental results obtained in this and accompanying work with models designed to predict biodegradability and showed that these models are only moderately successful. Additionally, we examined these compounds in acute Daphnia magna test to check if they might pose an ecotoxicological threat. Combining the results of biodegradability and toxicity tests allows a preliminary assessment of their potential environmental impact. Copyright © 2017 Elsevier B.V. All rights reserved.
Martins, Samantha Eslava; Fillmann, Gilberto; Lillicrap, Adam; Thomas, Kevin V
2018-01-01
Hazard assessments of Irgarol 1051, diuron, 2-(thiocyanomethylthio)benzothiazole (TCMTB), dichloro-octylisothiazolin (DCOIT), chlorothalonil, dichlofluanid, thiram, zinc pyrithione, copper pyrithione, triphenylborane pyridine (TPBP), capsaicin, nonivamide, tralopyril and medetomidine were performed to establish robust environmental quality standards (EQS), based on predicted no effect concentrations (PNECs). Microalgae, zooplankton, fish and amphibians were the most sensitive ecological groups to all the antifoulants evaluated, especially in the early life stages. No differences were identified between freshwater and seawater species. The use of toxicity tests with non-standard species is encouraged because they increase the datasets, allowing EQS to be derived from probabilistic-based PNECs whilst reducing uncertainties. The global ban of tributyltin (TBT) has been heralded as a major environmental success; however, substitute antifoulants may also pose risks to aquatic ecosystems. Environmental risk assessments (ERAs) have driven decision-makings for regulating antifouling products, but in many countries there is still a lack of regulation of antifouling biocides which should be addressed.
The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening thousands of chemicals for their potential to affect the endocrine systems of humans and wildlife. In vitro high throughput screening (HTS) assays have been proposed as a way to prioritize...
The U.S. EPA Office of Research and Development has developed baseline data on the ecotoxicity of selected petroleum products and several chemical dispersants as part of its oil spills research program. Two diluted bitumens (dilbits) from the Alberta Tar Sands were tested for acu...
Potential resource and toxicity impacts from metals in waste electronic devices.
Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin
2016-04-01
As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices. © 2015 SETAC.
Orias, Frédéric; Simon, Laurent; Perrodin, Yves
2015-12-01
Nowadays, pharmaceuticals (PCs) are ubiquitous in aquatic ecosystems. It is known that these compounds have ecotoxic effects on aquatic organisms at low concentrations. Moreover, some of them can bioaccumulate inside organisms or trophic webs exposed at environmental concentrations and amplify ecotoxic impacts. PCs can bioaccumulate in two ways: exposure to a medium (e.g., respiration, diffusion, etc.) and/or through the dietary route. Here, we try to assess the respective contributions of these two forms of contamination of the first two levels of an aquatic trophic web. We exposed Daphnia magna for 5 days to 0, 5, and 50 μg/L (15)N-tamoxifen and then fed them with control and contaminated diets. We used an isotopic method to measure the tamoxifen content inside the daphnids after several minutes' exposure and every day before and after feeding. We found that tamoxifen is very bioaccumulative inside daphnids (BCF up to 12,000) and that the dietary route has a significant impact on contamination by tamoxifen (BAF up to 22,000), especially at low concentrations in medium.
Burton, G Allen; Rosen, Gunther; Chadwick, D Bart; Greenberg, Marc S; Taulbee, W Keith; Lotufo, Guilherme R; Reible, Danny D
2012-03-01
In situ-based testing using aquatic organisms has been widely reported, but is often limited in scope and practical usefulness in making decisions on ecological risk and remediation. To provide this capability, an integrated deployment system, the Sediment Ecotoxicity Assessment (SEA) Ring was developed, which incorporates rapid in situ hydrological, chemical, bioaccumulation, and toxicological Lines-of-Evidence (LoE) for assessing sediment and overlying water contamination. The SEA Ring system allows for diver-assisted, or diverless, deployment of multiple species of ecologically relevant and indigenous organisms in three different exposures (overlying water, sediment-water interface, and bulk sediment) for periods ranging from two days to three weeks, in a range of water systems. Measured endpoints were both sublethal and lethal effects as well as bioaccumulation. In addition, integrated passive sampling devices for detecting nonpolar organics (solid phase micro-extraction fibers) and metals (diffusive gradients in thin films) provided gradient measures in overlying waters and surficial sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.
Míguez, Diana M; Huertas, Raquel; Carrara, María V; Carnikián, Agustín; Bouvier, María E; Martínez, María J; Keel, Karen; Pioda, Carolina; Darré, Elena; Pérez, Ramiro; Viera, Santiago; Massa, Enrique
2012-04-01
Bioassays of two sites along the Rio Negro in Uruguay indicate ecotoxicity, which could be attributable to trace concentrations of lead in river sediments. Monthly samples at two sites at Baygorria and Bonete locations were analyzed for both particle size and lead. Lead was determined by atomic spectrometry in river water and sediment and particle size by sieving and sedimentation. Data showed that Baygorria's sediments have greater percentage of clay than Bonete's (20.4 and 5.8%, respectively). Lead was measurable in Baygorria's sediments, meanwhile in Bonete's, it was always below the detection limit. In water samples, lead was below detection limit at both sites. Bioassays using sub-lethal growth and survival test with Hyalella curvispina amphipod, screening with bioluminescent bacteria Photobacterium leiognathi, and acute toxicity bioassay with Pimephales promelas fish indicated toxicity at Baygorria, with much less effect at Bonete. Even though no lethal effects could be demonstrated, higher sub-lethal toxicity was found in samples from Baygorria site, showing a possible concentration of the contaminant in the clay fraction.
Huang, Hui; Yao, Wenlin; Li, Ronghua; Ali, Amjad; Du, Juan; Guo, Di; Xiao, Ran; Guo, Zhanyu; Zhang, Zengqiang; Awasthi, Mukesh Kumar
2018-02-01
This study aimed to evaluate the chemical forms, behavior and environmental risk of heavy metal (HMs) Zn, Pb and Cd in phytoremediation residue (PMR) pyrolyzed at 350 °C, 550 °C and 750 °C, respectively. The behavior of HMs variation during the PMR pyrolysis process was analyzed and the potential HMs environmental risk of phytoremediation residue biochars (PMB) was assessed which was seldom investigated before. The results showed that the pyrolysis temperature increase decreased the soluble/exchangeable HMs fraction and alleviated the HMs bioavailability. When the temperature was over 550 °C, the adsorbed Zn(II), Pb(II) and Cd(II) were turned into oxides forms and concentrated in PMB with more stable forms exhibiting lower risk assessment code and potential ecological risk index. The ecotoxicity test showed higher pyrolysis temperature favored the reduction of PMB ecotoxicity. It is suggested that pyrolysis temperature above 550°C may be suitable for thermal treatment of PMR with acceptable environmental risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Formation and Ecotoxicity of N-Heterocyclic Compounds on Ammoxidation of Mono- and Polysaccharides
2013-01-01
Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16–30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4–160.5 mg/g of educt) and polysaccharides (140 °C: 5.52–16.03 mg/g of educt). PMID:23967874
Perdigón-Melón, J A; Carbajo, J B; Petre, A L; Rosal, R; García-Calvo, E
2010-09-15
A coupled coagulation-Fenton process was applied for the treatment of cosmetic industry effluents. In a first step, FeSO(4) was used as coagulant and the non-precipitated Fe(2+) remaining in dissolution was used as catalyst in the further Fenton process. In the coagulation process a huge decrease in total organic carbon (TOC) was achieved, but the high concentration of phenol derivatives was not diminished. The decrease in TOC in the coagulation step significantly reduces the amount of H(2)O(2) required in the Fenton process for phenol depletion. The coupled process, using a H(2)O(2) dose of only 2 g l(-1), reduced TOC and total phenol to values lower than 40 and 0.10 mg l(-1), respectively. The short reaction period (less than 15 min) in TOC and phenol degradation bodes well for improving treatment in a continuous regime. The combination of both processes significantly reduced the ecotoxicity of raw effluent and markedly increased its biodegradability, thus allowing easier treatment by the conventional biological units in conventional sewage treatment plants (STPs). Copyright 2010 Elsevier B.V. All rights reserved.
Herrmann, Henning; Nolde, Jürgen; Berger, Svend; Heise, Susanne
2016-02-01
Rare earth elements (REE) used to be taken as tracers of geological origin for fluvial transport. Nowadays their increased applications in innovative environmental-friendly technology (e.g. in catalysts, superconductors, lasers, batteries) and medical applications (e.g. MRI contrast agent) lead to man-made, elevated levels in the environment. So far, no regulatory thresholds for REE concentrations and emissions to the environment have been set because information on risks from REE is scarce. However, evidence gathers that REE have to be acknowledged as new, emerging contaminants with manifold ways of entry into the environment, e.g. through waste water from hospitals or through industrial effluents. This paper reviews existing information on bioaccumulation and ecotoxicity of lanthanum in the aquatic environment. Lanthanum is of specific interest as one of the major lanthanides in industrial effluents. This review focuses on the freshwater and the marine environment, and tackles the water column and sediments. From these data, methods to derive quality criteria for sediment and water are discussed and preliminary suggestions are made. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Rosen, Gunther; Chadwick, D Bart; Burton, G Allen; Taulbee, W Keith; Greenberg, Marc S; Lotufo, Guilherme R; Reible, Danny D
2012-03-01
A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach. Published by Elsevier Ltd.
Boivin, Arnaud; Poulsen, Véronique
2017-03-01
Pesticide risk assessment in the European regulatory framework is mandatory performed for active substances (pesticides) and the plant protection products they are constituents of. The aim is to guarantee that safe use can be achieved for the intended use of the product. This paper provides a feedback on the regulatory environmental risk assessment performed for pesticide registration at the EU and member state levels. The different steps of pesticide registration are addressed considering both exposure and hazard. In this paper, we focus on the environmental fate and behaviour in surface water together with the aquatic ecotoxicity of the substances to illustrate pesticide regulatory risk assessment performed for aquatic organisms. Current methodologies are presented along with highlights on potential improvements. For instance, as regards exposure aspects, moving from field based to landscape risk assessments is promising. Regarding ecotoxicology, ecological models may be valuable tools when applied to chemical risk assessment. In addition, interest and further developments to better take into account mitigation measures in risk assessment and management are also presented.
Integrated testing strategy (ITS) for bioaccumulation assessment under REACH.
Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio; Nendza, Monika; Segner, Helmut; Fernández, Alberto; Kühne, Ralph; Franco, Antonio; Pauné, Eduard; Schüürmann, Gerrit
2014-08-01
REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool. Copyright © 2014 Elsevier Ltd. All rights reserved.
Norman, Anders; Hansen, Lars Hestbjerg; Sørensen, Søren J
2006-02-28
Whole-cell biosensors have become popular tools for detection of ecotoxic compounds in environmental samples. We have developed an assay optimized for flow cytometry with detection of genotoxic compounds in mind. The assay features extended pre-incubation and a cell density of only 10(6)-10(7) cells/mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS-induction in whole soil samples. Soil microcosms were spiked with a dilution-series of crude broth extract from the mitomycin C-producing streptomycete Streptomyces caespitosus. Biosensors extracted from these microcosms after 1 day of incubation at 30 degrees C were easily distinguished from extracts of non-contaminated soil particles when using flow cytometry, and induction of the biosensor by mitomycin C was detectable at concentrations as low as 2.5 ng/g of soil.
Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater.
Liang, Jieying; Ning, Xun-An; Kong, Minyi; Liu, Daohua; Wang, Guangwen; Cai, Haili; Sun, Jian; Zhang, Yaping; Lu, Xingwen; Yuan, Yong
2017-12-01
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% COD Cr were removed following treatment at the four plants. The average concentration of Σ 12 PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ 12 PAEs in effluent of the four plants were >0.1, indicating that Σ 12 PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and COD Cr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants. Copyright © 2017. Published by Elsevier Ltd.
Freshwater ecotoxicity impacts from pesticide use in animal and vegetable foods produced in Sweden.
Nordborg, Maria; Davis, Jennifer; Cederberg, Christel; Woodhouse, Anna
2017-03-01
Chemical pesticides are widely used in modern agriculture but their potential negative impacts are seldom considered in environmental assessments of food products. This study aims to assess and compare the potential freshwater ecotoxicity impacts due to pesticide use in the primary production of six food products: chicken fillet, minced pork, minced beef, milk, pea soup, and wheat bread. The assessment is based on a detailed and site-specific inventory of pesticide use in the primary production of the food products, all of which are produced in Sweden. Soybeans, used to produce the animal-based food products, are grown in Brazil. Pesticide emissions to air and surface water were calculated using PestLCI v. 2.0.5. Ecotoxicity impacts were assessed using USEtox v. 2.01, and expressed in relation to five functional units. The results show that the animal-based food products have considerably larger impact potentials than the plant-based food products. In relation to kg pea soup, impact potentials of bread, milk, minced beef, chicken fillet and minced pork are ca. 2, 3, 50, 140 and 170 times larger, respectively. All mass-based functional units yield the same ranking. Notably, chicken fillet and minced pork have larger impacts than minced beef and milk, regardless of functional unit, due to extensive use of pesticides, some with high toxicity, in soybean production. This result stands in sharp contrast to typical carbon footprint and land use results which attribute larger impacts to beef than to chicken and pork. Measures for reducing impacts are discussed. In particular, we show that by substituting soybeans with locally sourced feed crops, the impact potentials of minced pork and chicken fillet are reduced by ca. 70 and 90%, respectively. Brazilian soybean production is heavily reliant on pesticides. We propose that weak legislation, in combination with tropical climate and agronomic practices, explains this situation. Copyright © 2016. Published by Elsevier B.V.
Saouter, Erwan; Aschberger, Karin; Fantke, Peter; Hauschild, Michael Z; Kienzler, Aude; Paini, Alicia; Pant, Rana; Radovnikovic, Anita; Secchi, Michela; Sala, Serenella
2017-12-01
The scientific consensus model USEtox ® has been developed since 2003 under the auspices of the United Nations Environment Programme-Society of Environmental Toxicology and Chemistry Life Cycle Initiative as a harmonized approach for characterizing human and freshwater toxicity in life cycle assessment and other comparative assessment frameworks. Using physicochemical substance properties, USEtox quantifies potential human toxicity and freshwater ecotoxicity impacts by combining environmental fate, exposure, and toxicity effects information, considering multimedia fate and multipathway exposure processes. The main source to obtain substance properties for USEtox 1.01 and 2.0 is the Estimation Program Interface (EPI Suite™) from the US Environmental Protection Agency. However, since the development of the original USEtox substance databases, new chemical regulations have been enforced in Europe, such as the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and the Plant Protection Products regulations. These regulations require that a chemical risk assessment for humans and the environment is performed before a chemical is placed on the European market. Consequently, additional physicochemical property data and new toxicological endpoints are now available for thousands of chemical substances. The aim of the present study was to explore the extent to which the new available data can be used as input for USEtox-especially for application in environmental footprint studies-and to discuss how this would influence the quantification of fate and exposure factors. Initial results show that the choice of data source and the parameters selected can greatly influence fate and exposure factors, leading to potentially different rankings and relative contributions of substances to overall human toxicity and ecotoxicity impacts. Moreover, it is crucial to discuss the relevance of the exposure factor for freshwater ecotoxicity impacts, particularly for persistent highly adsorbing and bioaccumulating substances. Environ Toxicol Chem 2017;36:3463-3470. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
Svartz, Gabriela; Papa, Mariana; Gosatti, Marina; Jordán, Marianela; Soldati, Analia; Samter, Paula; Guraya, María M; Pérez Coll, Cristina; Perez Catán, Soledad
2017-10-01
The increasing application of nanoparticles (NPs) to a variety of new technologies has become a matter of concern due to the potential toxicity of these materials. Many questions about the fate of NPs in the environment and the subsequent impact on ecosystems need to be answered. The aim of this work was to evaluate the ecotoxicity of two alumina-based nanoceramics, γ-Al2O3 (NC) and Ni/ γ-Al2O3 (NiNC) by means of three different standardized tests: Biochemical Oxygen Demand (BOD5), bioassay with luminescent bacteria (Vibrio fischeri; Microtox), and bioassay on amphibian larvae (Rhinella arenarum) (AMPHITOX). BOD5 values of a very biodegradable mixture (glucose/glutamic acid) decreased with the addition of NiNC(43.8%) and NC (31.6%) with respect to control samples (52.9%). Microtox test results indicated that NiNC presents higher toxicity than NC, with EC50s values of 16.1% and 29.9% respectively; a reduced toxicity was observed, however, in presence of organic matter, thus obtaining EC50s of 37.8% and 19.4%. The results of AMPHITOX test showed a significant increase in the toxicity of both substances over time, the NiNC toxicity being greater than that of NC. The values of 96h-LC50 and 504h-LC50 determined for NiNC were 1.58 and 0.83mg/L, respectively, and 14.5 and 10.5mg/L for NC samples. Amphibian larvae exhibited collapsed cavities, edema, axial flexures, and behavioral alterations as hyperkinesia and reduced movements. These results evidence the vulnerability of wildlife to xenobiotics and the need to develop specific standardized ecotoxicity tests in order to help environmental sustainability and natural species conservation. Copyright © 2017. Published by Elsevier Inc.
Camuel, Alexandre; Guieysse, Benoit; Alcántara, Cynthia; Béchet, Quentin
2017-06-01
In order to develop a rapid assay suitable for algal eco-toxicity assessments under conditions representative of natural ecosystems, this study evaluated the short-term (<1h) response of algae exposed to atrazine and DCMU using oxygen productivity measurements. When Chlorella vulgaris was exposed to these herbicides under 'standard' low light intensity (as prescribed by OECD201 guideline), the 20min-EC 50 values recorded via oxygen productivity (atrazine: 1.32±0.07μM; DCMU: 0.31±0.005μM) were similar the 96-h EC 50 recorded via algal growth (atrazine: 0.56μM; DCMU: 0.41μM), and within the range of values reported in the literature. 20min-EC50 values increased by factors of 3.0 and 2.1 for atrazine and DCMU, respectively, when light intensity increased from 60 to 1400μmolm -2 s -1 of photosynthetically active radiation, or PAR. Further investigation showed that exposure time significantly also impacted the sensitivity of C. vulgaris under high light intensity (>840μmolm -2 s -1 as PAR) as the EC 50 for atrazine and DCMU decreased by up to 6.2 and 2.1 folds, respectively, after 50min of exposure at a light irradiance of 1400μmolm -2 s -1 as PAR. This decrease was particularly marked at high light intensities and low algae concentrations and is explained by the herbicide disruption of the electron transfer chain triggering photo-inhibition at high light intensities. Eco-toxicity assessments aiming to understand the potential impact of toxic compounds on natural ecosystems should therefore be performed over sufficient exposure times (>20min for C. vulgaris) and under light intensities relevant to these ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.
Pilot scale aided-phytoremediation of a co-contaminated soil.
Marchand, Charlotte; Mench, Michel; Jani, Yahya; Kaczala, Fabio; Notini, Peter; Hijri, Mohamed; Hogland, William
2018-03-15
A pilot scale experiment was conducted to investigate the aided-phytoextraction of metals and the aided-phytodegradation of petroleum hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% w/w) and assembled into piles (Unp-10%C). Then, a phyto-cap of Medicago sativa L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion planting (MSHA-10%C) was sown on the topsoil. Physico-chemical parameters and contaminants in the soil and its leachates were measured at the beginning and the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5months, PH C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and H) degradation and was less efficient for PH C10-C40 and PAH-L as compared to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual soil ecotoxicity after 5months showed a positive effect of co-planting on L. sativum shoot dry weight (DW) yield. However, high contaminant concentrations in soil and leachate still inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessment of the Risks of Mixtures of Major Use Veterinary Antibiotics in European Surface Waters.
Guo, Jiahua; Selby, Katherine; Boxall, Alistair B A
2016-08-02
Effects of single veterinary antibiotics on a range of aquatic organisms have been explored in many studies. In reality, surface waters will be exposed to mixtures of these substances. In this study, we present an approach for establishing risks of antibiotic mixtures to surface waters and illustrate this by assessing risks of mixtures of three major use antibiotics (trimethoprim, tylosin, and lincomycin) to algal and cyanobacterial species in European surface waters. Ecotoxicity tests were initially performed to assess the combined effects of the antibiotics to the cyanobacteria Anabaena flos-aquae. The results were used to evaluate two mixture prediction models: concentration addition (CA) and independent action (IA). The CA model performed best at predicting the toxicity of the mixture with the experimental 96 h EC50 for the antibiotic mixture being 0.248 μmol/L compared to the CA predicted EC50 of 0.21 μmol/L. The CA model was therefore used alongside predictions of exposure for different European scenarios and estimations of hazards obtained from species sensitivity distributions to estimate risks of mixtures of the three antibiotics. Risk quotients for the different scenarios ranged from 0.066 to 385 indicating that the combination of three substances could be causing adverse impacts on algal communities in European surface waters. This could have important implications for primary production and nutrient cycling. Tylosin contributed most to the risk followed by lincomycin and trimethoprim. While we have explored only three antibiotics, the combined experimental and modeling approach could readily be applied to the wider range of antibiotics that are in use.
Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches.
de Morais E Silva, Luana; Alves, Mateus Feitosa; Scotti, Luciana; Lopes, Wilton Silva; Scotti, Marcus Tullius
2018-05-30
Persistent organic products are compounds used for various purposes, such as personal care products, surfactants, colorants, industrial additives, food, pesticides and pharmaceuticals. These substances are constantly introduced into the environment and many of these pollutants are difficult to degrade. Toxic compounds classified as MoA 1 (Mode of Action 1) are low toxicity compounds that comprise nonreactive chemicals. In silico methods such as Quantitative Structure-Activity Relationships (QSARs) have been used to develop important models for prediction in several areas of science, as well as aquatic toxicity studies. The aim of the present study was to build a QSAR model-based set of theoretical Volsurf molecular descriptors using the fish acute toxicity values of compounds defined as MoA 1 to identify the molecular properties related to this mechanism. The selected Partial Least Squares (PLS) results based on the values of cross-validation coefficients of determination (Q cv 2 ) show the following values: Q cv 2 = 0.793, coefficient of determination (R 2 ) = 0.823, explained variance in external prediction (Q ext 2 ) = 0.87. From the selected descriptors, not only the hydrophobicity is related to the toxicity as already mentioned in previously published studies but other physicochemical properties combined contribute to the activity of these compounds. The symmetric distribution of the hydrophobic moieties in the structure of the compounds as well as the shape, as branched chains, are important features that are related to the toxicity. This information from the model can be useful in predicting so as to minimize the toxicity of organic compounds. Copyright © 2018. Published by Elsevier Inc.
Toxicity of metals in field settings can vary widely among ionic chemical species and across biological receptors. Thus, a challenge often found in developing TRVs for the risk assessment of metals is identifying the most appropriate metal and biological species combinations for...
BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...
Purpose This study demonstrates an approach to assess human health and ecotoxicity impacts of pesticide use by including multiple environmental pathways and various exposure routes using the case of corn grown for bio-based fuel or chemical production in US Midwestern states.Meth...
PurposeThis study demonstrates an approach to assess human health and ecotoxicity impacts of pesticide use by including multiple environmental pathways and various exposure routes using the case of corn grown for bio-based fuel or chemical production in US Midwestern states.Metho...
75 FR 8889 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... ecotoxicity studies have been conducted on hydrogen sulfide, mainly on freshwater invertebrates and fish... values for freshwater invertebrates ranged from 0.021 mg/L (amphipod) to 1.07 mg/L (isopod), and 48- to 96- hour LC 50 values for estuarine/marine invertebrates ranged from 0.063 mg/L (saltwater shrimp) to...
Phytotoxicity results from the publicly-available ECOTOX database were summarized for 20 chemicals and 188 aquatic plants to determine species sensitivities and the ability of a species-limited toxicity data set to serve as a surrogate for a larger data set. The lowest effect con...
Lim, Seong-Rin; Lam, Carl W; Schoenung, Julie M
2011-09-01
Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yuan, Nannan; Wang, Changhui; Pei, Yuansheng
2016-08-01
Drinking water treatment residuals (WTRs) have a potential to realize eutrophication control objectives by reducing the internal phosphorus (P) load of lake sediments. Information regarding the ecological risk of dewatered WTR reuse in aquatic environments is generally lacking, however. In this study, we analyzed the eco-toxicity of leachates from sediments with or without dewatered WTRs toward algae Chlorella vulgaris via algal growth inhibition testing with algal cell density, chlorophyll content, malondialdehyde content, antioxidant enzyme superoxide dismutase activity, and subcellular structure indices. The results suggested that leachates from sediments unanimously inhibited algal growth, with or without the addition of different WTR doses (10% or 50% of the sediment in dry weight) at different pH values (8-9), as well as from sediments treated for different durations (10 or 180days). The inhibition was primarily the result of P deficiency in the leachates owing to WTR P adsorption, however, our results suggest that the dewatered WTRs were considered as a favorable potential material for internal P loading control in lake restoration projects, as it shows acceptably low risk toward aquatic plants. Copyright © 2016. Published by Elsevier B.V.
Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater.
Bradford-Hartke, Zenah; Lane, Joe; Lant, Paul; Leslie, Gregory
2015-07-21
The environmental benefits and burdens of phosphorus recovery in four centralized and two decentralized municipal wastewater systems were compared using life cycle assessment (LCA). In centralized systems, phosphorus recovered as struvite from the solids dewatering liquid resulted in an environmental benefit except for the terrestrial ecotoxicity and freshwater eutrophication impact categories, with power and chemical use offset by operational savings and avoided fertilizer production. Chemical-based phosphorus recovery, however, generally required more resources than were offset by avoided fertilizers, resulting in a net environmental burden. In decentralized systems, phosphorus recovery via urine source separation reduced the global warming and ozone depletion potentials but increased terrestrial ecotoxicity and salinization potentials due to application of untreated urine to land. Overall, mineral depletion and eutrophication are well-documented arguments for phosphorus recovery; however, phosphorus recovery does not necessarily present a net environmental benefit. While avoided fertilizer production does reduce potential impacts, phosphorus recovery does not necessarily offset the resources consumed in the process. LCA results indicate that selection of an appropriate phosphorus recovery method should consider both local conditions and other environmental impacts, including global warming, ozone depletion, toxicity, and salinization, in addition to eutrophication and mineral depletion impacts.
Bioremediation of soil contaminated crude oil by Agaricomycetes.
Mohammadi-Sichani, M Maryam; Assadi, M Mazaheri; Farazmand, A; Kianirad, M; Ahadi, A M; Ghahderijani, H Hadian
2017-01-01
One of the most important environmental problems is the decontamination of petroleum hydrocarbons polluted soil, particularly in the oil-rich country. Bioremediation is the most effective way to remove these pollutants in the soil. Spent mushroom compost has great ability to decompose lignin-like pollution. The purpose of this study was the bioremediation of soil contaminated with crude oil by an Agaricomycetes . Soil sample amended with spent mushroom compost into 3%, 5% and 10% (w/w) with or without fertilizer. Ecotoxicity germination test was conducted with Lipidium sativa . The amplified fragment (18 s rDNA) sequence of this mushroom confirmed that the strain belonged to Pleurotus ostreatus species with complete homology (100% identity). All tests experiment sets were effective at supporting the degradation of petroleum hydrocarbons contaminated soil after three months. Petroleum contaminated soil amended with Spent mushroom compost 10% and fertilizer removed 64.7% of total petroleum hydrocarbons compared control. The germination index (%) in ecotoxicity tests ranged from 60.4 to 93.8%. This showed that the petroleum hydrocarbons contaminated soil amended with 10% Spent mushroom compost had higher bioremediation ability and reduced soil toxicity in less than three months.
Ecotoxicological survey of MNEI and Y65R-MNEI proteins as new potential high-intensity sweeteners.
Rega, Michele Fortunato; Siciliano, Antonietta; Gesuele, Renato; Lofrano, Giusy; Carpentieri, Andrea; Picone, Delia; Guida, Marco
2017-04-01
Low-calorie sweeteners are widespread. They are routinely introduced into commonly consumed food such as diet sodas, cereals, and sugar-free desserts. Recent data revealed the presence in considerable quantities of some of these artificial sweeteners in water samples qualifying them as a class of potential new emerging contaminants. This study aimed at evaluating the ecotoxicity profile of MNEI and Y65R-MNEI, two engineered products derived from the natural protein monellin, employing representative test organism such as Daphnia magna, Ceriodaphnia dubia, and Raphidocelis subcapitata. Potential genotoxicity and mutagenicity effects on Salmonella typhimurium (strain TA97a, TA98, TA100, and TA1535) and Escherichia coli (strain WP2 pkM101) were evaluated. No genotoxicity effects were detected, whereas slight mutagenicity was highlighted by TA98 S. typhimurium. Ecotoxicity results evidenced effects approximately up to 14 and 20% with microalgae at 500 mg/L of MNEI and Y65R-MNEI, in that order. Macrophytes and crustaceans showed no significant effects. No median effective concentrations were determined. Overall, MNEI and Y65R-MNEI can be classified as not acutely toxic for the environment.
Bjørn, Anders; Diamond, Miriam; Birkved, Morten; Hauschild, Michael Zwicky
2014-11-18
The ecological footprint method has been successful in communicating environmental impacts of anthropogenic activities in the context of ecological limits. We introduce a chemical footprint method that expresses ecotoxicity impacts from anthropogenic chemical emissions as the dilution needed to avoid freshwater ecosystem damage. The indicator is based on USEtox characterization factors with a modified toxicity reference point. Chemical footprint results can be compared to the actual dilution capacity within the geographic vicinity receiving the emissions to estimate whether its ecological limit has been exceeded and hence whether emissions can be expected to be environmentally sustainable. The footprint method was illustrated using two case studies. The first was all inventoried emissions from European countries and selected metropolitan areas in 2004, which indicated that the dilution capacity was likely exceeded for most European countries and all landlocked metropolitan areas. The second case study indicated that peak application of pesticides alone was likely to exceed Denmark's freshwater dilution capacity in 1999-2011. The uncertainty assessment showed that better spatially differentiated fate factors would be useful and pointed out other major sources of uncertainty and some opportunities to reduce these.
Werner, Inge; Aldrich, Annette; Becker, Benjamin; Becker, Dennis; Brinkmann, Markus; Burkhardt, Michael; Caspers, Norbert; Campiche, Sophie; Chèvre, Nathalie; Düring, Rolf-Alexander; Escher, Beate I; Fischer, Fabian; Giebner, Sabrina; Heye, Katharina; Hollert, Henner; Junghans, Marion; Kienle, Cornelia; Knauer, Katja; Korkaric, Muris; Märkl, Veronika; Muncke, Jane; Oehlmann, Jörg; Reifferscheid, Georg; Rensch, Daniel; Schäffer, Andreas; Schiwy, Sabrina; Schwarz, Simon; Segner, Helmut; Simon, Eszter; Triebskorn, Rita; Vermeirssen, Etiënne L M; Wintgens, Thomas; Zennegg, Markus
2016-01-01
This report provides a brief review of the 20th annual meeting of the German Language Branch of the Society of Environmental Toxicology and Chemistry (SETAC GLB) held from September 7th to 10th 2015 at ETH (Swiss Technical University) in Zurich, Switzerland. The event was chaired by Inge Werner, Director of the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) Eawag-EPFL, and organized by a team from Ecotox Centre, Eawag, Federal Office of the Environment, Federal Office of Agriculture, and Mesocosm GmbH (Germany). Over 200 delegates from academia, public agencies and private industry of Germany, Switzerland and Austria attended and discussed the current state of science and its application presented in 75 talks and 83 posters. In addition, three invited keynote speakers provided new insights into scientific knowledge 'brokering', and-as it was the International Year of Soil-the important role of healthy soil ecosystems. Awards were presented to young scientists for best oral and poster presentations, and for best 2014 master and doctoral theses. Program and abstracts of the meeting (mostly in German) are provided as Additional file 1.
Walker, C; Kaiser, K; Klein, W; Lagadic, L; Peakall, D; Sheffield, S; Soldan, T; Yasuno, M
1998-01-01
There is growing public pressure to minimize the use of vertebrates in ecotoxicity testing; therefore, effective alternatives to toxicity tests causing suffering are being sought. This report discusses alternatives and differs in some respects from the reports of the other three groups because the primary concern is with harmful effects of chemicals at the level of population and above rather than with harmful effects upon individuals. It is concluded that progress toward the objective of minimizing testing that causes suffering would be served by the following initiatives--a clearer definition of goals and strategies when undertaking testing procedures; development of alternative assays, including in vitro test systems, that are based on new technology; development of nondestructive assays for vertebrates (e.g., biomarkers) that do not cause suffering; selection of most appropriate species, strains, and developmental stages for testing procedures (but no additional species for basic testing); better integrated and more flexible testing procedures incorporating biomarker responses, ecophysiological concepts, and ecological end points (progress in this direction depends upon expert judgment). In general, testing procedures could be made more realistic, taking into account problems with mixtures, and with volatile or insoluble chemicals. PMID:9599690
Hotta, Yudai; Hosoda, Akifumi; Sano, Fumihiko; Wakayama, Manabu; Niwa, Katsuki; Yoshikawa, Hiromichi; Tamura, Hiroto
2010-01-27
The bacteria Sphingomonas sp. strain BSN22, isolated from bean fields, degraded octylphenol polyethoxylates (OPEO(n)) to octylphenol (OP) under aerobic conditions. This biodegradation mechanism proceeded by the following two-step degradation process: (1) degradation of OPEO(n) to octylphenol triethoxylate (OPEO(3)), (2) degradation from OPEO(3) to OP via octylphenoxy acetic acid (OPEC(1)). The chemical structure of OPEC(1) was confirmed by analysis using (18)O-labeled water. Quantitative studies revealed that magnesium (Mg(2+)) and calcium (Ca(2+)) ions were essential for the biodegradation of OPEO(n). Furthermore, the rate of biodegradation was especially accelerated by ferric ions (Fe(3+)), and the accumulated amounts of endocrine active chemicals, such as OP, OPEO(1), and OPEC(1), significantly increased to the concentration of 22.8, 221.7, and 961.1 microM in the presence of 37.0 microM Fe(3+), respectively. This suggests that environmental elements significantly influence the resultant ecotoxicity as well as the rate of their biodegradation in the environment. This study on the mechanism of OPEO(n) biodegradation may play an important role in understanding and managing environmental safety, including drinking water safety.
How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?
Steinmann, Zoran J N; Schipper, Aafke M; Hauck, Mara; Huijbregts, Mark A J
2016-04-05
Numerous indicators are currently available for environmental impact assessments, especially in the field of Life Cycle Impact Assessment (LCIA). Because decision-making on the basis of hundreds of indicators simultaneously is unfeasible, a nonredundant key set of indicators representative of the overall environmental impact is needed. We aimed to find such a nonredundant set of indicators based on their mutual correlations. We have used Principal Component Analysis (PCA) in combination with an optimization algorithm to find an optimal set of indicators out of 135 impact indicators calculated for 976 products from the ecoinvent database. The first four principal components covered 92% of the variance in product rankings, showing the potential for indicator reduction. The same amount of variance (92%) could be covered by a minimal set of six indicators, related to climate change, ozone depletion, the combined effects of acidification and eutrophication, terrestrial ecotoxicity, marine ecotoxicity, and land use. In comparison, four commonly used resource footprints (energy, water, land, materials) together accounted for 84% of the variance in product rankings. We conclude that the plethora of environmental indicators can be reduced to a small key set, representing the major part of the variation in environmental impacts between product life cycles.
Life Cycle Assessment for Proton Conducting Ceramics Synthesized by the Sol-Gel Process.
Lee, Soo-Sun; Hong, Tae-Whan
2014-09-16
In this report, the environmental aspects of producing proton conducting ceramics are investigated by means of the environmental Life Cycle Assessment (LCA) method. The proton conducting ceramics BaZr 0.8 Y 0.2 O 3-δ (BZY), BaCe 0.9 Y 0.1 O 2.95 (BCY10), and Sr(Ce 0.9 Zr 0.1 ) 0.95 Yb 0.05 O 3-δ (SCZY) were prepared by the sol-gel process. Their material requirements and environmental emissions were inventoried, and their energy requirements were determined, based on actual production data. This latter point makes the present LCA especially worthy of attention as a preliminary indication of future environmental impact. The analysis was performed according to the recommendations of ISO norms 14040 and obtained using the Gabi 6 software. The performance of the analyzed samples was also compared with each other. The LCA results for these proton conducting ceramics production processes indicated that the marine aquatic ecotoxicity potential (MAETP) made up the largest part, followed by fresh-water aquatic ecotoxicity potential (FAETP) and Human Toxicity Potential (HTP). The largest contribution was from energy consumption during annealing and calcinations steps.
Rodea-Palomares, Ismael; González-Pleiter, Miguel; Martín-Betancor, Keila; Rosal, Roberto; Fernández-Piñas, Francisca
2015-01-01
Understanding the effects of exposure to chemical mixtures is a common goal of pharmacology and ecotoxicology. In risk assessment-oriented ecotoxicology, defining the scope of application of additivity models has received utmost attention in the last 20 years, since they potentially allow one to predict the effect of any chemical mixture relying on individual chemical information only. The gold standard for additivity in ecotoxicology has demonstrated to be Loewe additivity which originated the so-called Concentration Addition (CA) additivity model. In pharmacology, the search for interactions or deviations from additivity (synergism and antagonism) has similarly captured the attention of researchers over the last 20 years and has resulted in the definition and application of the Combination Index (CI) Theorem. CI is based on Loewe additivity, but focused on the identification and quantification of synergism and antagonism. Despite additive models demonstrating a surprisingly good predictive power in chemical mixture risk assessment, concerns still exist due to the occurrence of unpredictable synergism or antagonism in certain experimental situations. In the present work, we summarize the parallel history of development of CA, IA, and CI models. We also summarize the applicability of these concepts in ecotoxicology and how their information may be integrated, as well as the possibility of prediction of synergism. Inside the box, the main question remaining is whether it is worthy to consider departures from additivity in mixture risk assessment and how to predict interactions among certain mixture components. Outside the box, the main question is whether the results observed under the experimental constraints imposed by fractional approaches are a de fide reflection of what it would be expected from chemical mixtures in real world circumstances. PMID:29051468
PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals.
Sangion, Alessandro; Gramatica, Paola
2016-05-01
The strong and widespread use of pharmaceuticals, together with incorrect disposal procedures, has recently made these products contaminants of emerging concern (CEC). Unfortunately, little is known about pharmaceuticals' environmental behaviour and ecotoxicity, so that EMEA (European Medicines Agency) released guidelines for the pharmaceuticals' environmental risk assessment. In particular, there is a severe lack of information about persistence, bioaccumulation and toxicity (PBT) of the majority of the thousands of substances on the market. Computational tools, like QSAR (Quantitative Structure Activity Relationship) models, are the only way to screen large sets of chemicals in short time, with the aim of ranking, highlighting and prioritizing the most environmentally hazardous for focusing further experimental studies. In this work we propose a screening method to assess the potential persistence, bioaccumulation and toxicity of more than 1200 pharmaceutical ingredients, based on the application of two different QSAR models. We applied the Insubria-PBT Index, a MLR (Multiple Linear Regression) QSAR model based on four simple molecular descriptors, implemented in QSARINS software, and able to synthesize the PBT potential in a unique cumulative value and the US-EPA PBT Profiler that assesses the PBT behaviour evaluating separately P, B and T. Particular attention was given to the study of Applicability Domain in order to provide reliable predictions. An agreement of 86% was found between the two models and a priority list of 35 pharmaceuticals, highlighted as potential PBTs by consensus, was proposed for further experimental validation. Moreover, the results of this computational screening are in agreement with preliminary experimental data in the literature. This study shows how in silico models can be applied in the hazard assessment to perform preliminary screening and prioritization of chemicals, and how the identification of the structural features, mainly associated with the potential PBT behaviour of the prioritized pharmaceuticals, is particularly relevant to perform the rational a priori design of new, environmentally safer, pharmaceuticals. Copyright © 2016 Elsevier Inc. All rights reserved.
Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui
2018-04-01
Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors that dictate organisms' spatial distribution in connected ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects on aquatic and human health due to large scale bioenergy crop expansion.
Love, Bradley J; Einheuser, Matthew D; Nejadhashemi, A Pouyan
2011-08-01
In this study, the environmental impacts of large scale bioenergy crops were evaluated using the Soil and Water Assessment Tool (SWAT). Daily pesticide concentration data for a study area consisting of four large watersheds located in Michigan (totaling 53,358 km²) was estimated over a six year period (2000-2005). Model outputs for atrazine, bromoxynil, glyphosate, metolachlor, pendimethalin, sethoxydim, triflualin, and 2,4-D model output were used to predict the possible long-term implications that large-scale bioenergy crop expansion may have on the bluegill (Lepomis macrochirus) and humans. Threshold toxicity levels were obtained for the bluegill and for human consumption for all pesticides being evaluated through an extensive literature review. Model output was compared to each toxicity level for the suggested exposure time (96-hour for bluegill and 24-hour for humans). The results suggest that traditional intensive row crops such as canola, corn and sorghum may negatively impact aquatic life, and in most cases affect the safe drinking water availability. The continuous corn rotation, the most representative rotation for current agricultural practices for a starch-based ethanol economy, delivers the highest concentrations of glyphosate to the stream. In addition, continuous canola contributed to a concentration of 1.11 ppm of trifluralin, a highly toxic herbicide, which is 8.7 times the 96-hour ecotoxicity of bluegills and 21 times the safe drinking water level. Also during the period of study, continuous corn resulted in the impairment of 541,152 km of stream. However, there is promise with second-generation lignocellulosic bioenergy crops such as switchgrass, which resulted in a 171,667 km reduction in total stream length that exceeds the human threshold criteria, as compared to the base scenario. Results of this study may be useful in determining the suitability of bioenergy crop rotations and aid in decision making regarding the adaptation of large-scale bioenergy cropping systems. Published by Elsevier B.V.
Žižek, Suzana; Zidar, Primož
2013-07-01
Lasalocid is a veterinary ionophore antibiotic used for prevention and treatment of coccidiosis in poultry. It enters the environment with the use of contaminated manure on agricultural land. Despite its extensive use, the effects of lasalocid on non-target soil organisms are poorly explored. We used classical subleathal ecotoxicity tests to assess the effects of lasalocid on earthworms (Eisenia andrei) and isopods (Porcellio scaber) and compared the results with tests using avoidance behaviour as the endpoint. The results showed that avoidance is a much more sensitive endpoint. For earthworms, EC50 for avoidance (12.3 mg kg(-1) dry soil) was more than five times lower than EC50 for reproduction (69.6 mg kg(-1) dry soil). In isopods the sensitivity of the behavioural response test was even higher. While the highest lasalocid concentration 202 mg kg(-1) had no significant effects on isopod growth or survival, already the lowest used concentration in the behavioural assay (4.51 mg kg(-1)) caused significant impact on isopod behaviour. Using the avoidance test results for calculating the predicted no-effect concentration (PNEC) of lasalocid to soil invertebrates, the value is close to the predicted environmental concentration (PEC). This indicates that the use of lasalocid-contaminated manure could potentially impair the habitat function of agricultural soils. Copyright © 2013 Elsevier Ltd. All rights reserved.
Schupp, Thomas; Austin, Tom; Eadsforth, Charles V; Bossuyt, Bart; Shen, Summer M; West, Robert J
"Polyalkylene glycol" is the name given to a broad class of synthetic organic chemicals which are produced by polymerization of one or more alkylene oxide (epoxide) monomers, such as ethylene oxide (EO) and propylene oxide (PO), with various initiator substances which possess amine or alcohol groups. A generalization of this polymerization reaction is illustrated in Fig. 1.
USDA-ARS?s Scientific Manuscript database
Excessive selenium (Se) in soils and waters present in the westside of central California was determined to be responsible for ecotoxicities observed in water fowl frequenting large bodies of water, i.e., evaporation ponds. In order to monitor the fate and potentially design an aquatic Se remediatio...
Bondarenko, Olesja M; Heinlaan, Margit; Sihtmäe, Mariliis; Ivask, Angela; Kurvet, Imbi; Joonas, Elise; Jemec, Anita; Mannerström, Marika; Heinonen, Tuula; Rekulapelly, Rohit; Singh, Shashi; Zou, Jing; Pyykkö, Ilmari; Drobne, Damjana; Kahru, Anne
2016-11-01
Within EU FP7 project NANOVALID, the (eco)toxicity of 7 well-characterized engineered nanomaterials (NMs) was evaluated by 15 bioassays in 4 laboratories. The highest tested nominal concentration of NMs was 100 mg/l. The panel of the bioassays yielded the following toxicity order: Ag > ZnO > CuO > TiO2 > MWCNTs > SiO2 > Au. Ag, ZnO and CuO proved very toxic in the majority of assays, assumingly due to dissolution. The latter was supported by the parallel analysis of the toxicity of respective soluble metal salts. The most sensitive tests/species were Daphnia magna (towards Ag NMs, 24-h EC50 = 0.003 mg Ag/l), algae Raphidocelis subcapitata (ZnO and CuO, 72-h EC50 = 0.14 mg Zn/l and 0.7 mg Cu/l, respectively) and murine fibroblasts BALB/3T3 (CuO, 48-h EC50 = 0.7 mg Cu/l). MWCNTs showed toxicity only towards rat alveolar macrophages (EC50 = 15.3 mg/l) assumingly due to high aspect ratio and TiO2 towards R. subcapitata (EC50 = 6.8 mg Ti/l) due to agglomeration of TiO2 and entrapment of algal cells. Finally, we constructed a decision tree to select the bioassays for hazard ranking of NMs. For NM testing, we recommend a multitrophic suite of 4 in vitro (eco)toxicity assays: 48-h D. magna immobilization (OECD202), 72-h R. subcapitata growth inhibition (OECD201), 30-min Vibrio fischeri bioluminescence inhibition (ISO2010) and 48-h murine fibroblast BALB/3T3 neutral red uptake in vitro (OECD129) representing crustaceans, algae, bacteria and mammalian cells, respectively. Notably, our results showed that these assays, standardized for toxicity evaluation of "regular" chemicals, proved efficient also for shortlisting of hazardous NMs. Additional assays are recommended for immunotoxicity evaluation of high aspect ratio NMs (such as MWCNTs).
Degradation in soil and water and ecotoxicity of rimsulfuron and its metabolites.
Martins, J M; Chevre, N; Spack, L; Tarradellas, J; Mermoud, A
2001-11-01
The degradation and ecotoxicity of sulfonylurea herbicide rimsulfuron and its major metabolites were examined in batch samples of an alluvial sandy loam and in freshwater. An HPLC-DAD method was adapted to simultaneously identify and quantify rimsulfuron and its metabolites, which was successfully validated by GC-MS analysis. In aqueous solutions, pure rimsulfuron was rapidly hydrolyzed into metabolite 1 (N-(4,6-dimethoxypyrimidin-2-yl)-N-(3-(ethylsulfonyl)-2-pyridinylurea)), which itself was transformed into the more stable metabolite 2 (N-((3-(ethylsulfonyl)-2-pyridinyl)-4,6-dimethoxy-2-pyrimidineamine)), with half-life (t(1/2)) values of 2 and 2.5 days, respectively. Hydrolysis was instantaneous under alkaline conditions (pH = 10). In aqueous suspensions of the alluvial soil (pH = 8), formulated rimsulfuron had a half-life of 7 days, whereas that of metabolite 1 was similar to that in water (about 3.5 days). The degradation of the two major metabolites was also studied in soil suspensions with the pure compounds at concentrations ranging from 1 to 10 mg l(-1). The half-life of metabolite 1 ranged from 3.9 to 5 days, close to the previous values. Metabolite 2 was more persistent and its degradation is strongly dependent on the initial concentration (C0): half-life values ranged from 8.1 to 55 days at 2-10 mg l(-1), respectively. These values are higher than those determined from the kinetics of metabolite 1 transformation into metabolite 2 (t(1/2) = 8-19 days). The ecotoxicity of the three chemicals was evaluated through their effect on Daphnia magna and Vibrio fischeri (Microtox bioassay). No effect was observed on D. magna with 24 and 48 h acute toxicity tests. Similarly, no toxic effect was observed with the Microtox test for the three chemicals in the range of concentrations tested that included the field application dose. Thus, being of low persistence and lacking acute toxicity, these chemicals present a low environmental risk. However, chronic effects should be studied in order to confirm the safety of rimsulfuron and its major metabolites.
Bondarenko, Olesja M.; Heinlaan, Margit; Sihtmäe, Mariliis; Ivask, Angela; Kurvet, Imbi; Joonas, Elise; Jemec, Anita; Mannerström, Marika; Heinonen, Tuula; Rekulapelly, Rohit; Singh, Shashi; Zou, Jing; Pyykkö, Ilmari; Drobne, Damjana; Kahru, Anne
2016-01-01
Abstract Within EU FP7 project NANOVALID, the (eco)toxicity of 7 well-characterized engineered nanomaterials (NMs) was evaluated by 15 bioassays in 4 laboratories. The highest tested nominal concentration of NMs was 100 mg/l. The panel of the bioassays yielded the following toxicity order: Ag > ZnO > CuO > TiO2 > MWCNTs > SiO2 > Au. Ag, ZnO and CuO proved very toxic in the majority of assays, assumingly due to dissolution. The latter was supported by the parallel analysis of the toxicity of respective soluble metal salts. The most sensitive tests/species were Daphnia magna (towards Ag NMs, 24-h EC50 = 0.003 mg Ag/l), algae Raphidocelis subcapitata (ZnO and CuO, 72-h EC50 = 0.14 mg Zn/l and 0.7 mg Cu/l, respectively) and murine fibroblasts BALB/3T3 (CuO, 48-h EC50 = 0.7 mg Cu/l). MWCNTs showed toxicity only towards rat alveolar macrophages (EC50 = 15.3 mg/l) assumingly due to high aspect ratio and TiO2 towards R. subcapitata (EC50 = 6.8 mg Ti/l) due to agglomeration of TiO2 and entrapment of algal cells. Finally, we constructed a decision tree to select the bioassays for hazard ranking of NMs. For NM testing, we recommend a multitrophic suite of 4 in vitro (eco)toxicity assays: 48-h D. magna immobilization (OECD202), 72-h R. subcapitata growth inhibition (OECD201), 30-min Vibrio fischeri bioluminescence inhibition (ISO2010) and 48-h murine fibroblast BALB/3T3 neutral red uptake in vitro (OECD129) representing crustaceans, algae, bacteria and mammalian cells, respectively. Notably, our results showed that these assays, standardized for toxicity evaluation of “regular” chemicals, proved efficient also for shortlisting of hazardous NMs. Additional assays are recommended for immunotoxicity evaluation of high aspect ratio NMs (such as MWCNTs). PMID:27259032
Chemical databases evaluated by order theoretical tools.
Voigt, Kristina; Brüggemann, Rainer; Pudenz, Stefan
2004-10-01
Data on environmental chemicals are urgently needed to comply with the future chemicals policy in the European Union. The availability of data on parameters and chemicals can be evaluated by chemometrical and environmetrical methods. Different mathematical and statistical methods are taken into account in this paper. The emphasis is set on a new, discrete mathematical method called METEOR (method of evaluation by order theory). Application of the Hasse diagram technique (HDT) of the complete data-matrix comprising 12 objects (databases) x 27 attributes (parameters + chemicals) reveals that ECOTOX (ECO), environmental fate database (EFD) and extoxnet (EXT)--also called multi-database databases--are best. Most single databases which are specialised are found in a minimal position in the Hasse diagram; these are biocatalysis/biodegradation database (BID), pesticide database (PES) and UmweltInfo (UMW). The aggregation of environmental parameters and chemicals (equal weight) leads to a slimmer data-matrix on the attribute side. However, no significant differences are found in the "best" and "worst" objects. The whole approach indicates a rather bad situation in terms of the availability of data on existing chemicals and hence an alarming signal concerning the new and existing chemicals policies of the EEC.
Modeling the changes in the concentration of aromatic hydrocarbons from an oil-coated gravel column
NASA Astrophysics Data System (ADS)
Jung, Jee-Hyun; Kang, Hyun-Joong; Kim, Moonkoo; Yim, Un Hyuk; An, Joon Geon; Shim, Won Joon; Kwon, Jung-Hwan
2015-12-01
The performance of a lab-scale flow-through exposure system designed for the evaluation of ecotoxicity due to oil spills was evaluated. The system simulates a spill event using an oil-coated gravel column through which filtered seawater is passed and flows into an aquarium containing fish embryos of olive flounder ( Paralichthys olivaceus) and spotted sea bass ( Lateolabrax maculates). The dissolved concentrations of individual polycyclic aromatic hydrocarbons (PAHs) in the column effluent were monitored and compared with theoretical solubilities predicted by Raoult's law. The effluent concentrations after 24 and 48 h were close to the theoretical predictions for the higher molecular weight PAHs, whereas the measured values for the lower molecular weight PAHs were lower than predicted. The ratios of the concentration of PAHs in flounder embryos to that in seawater were close to the lipid-water partition coefficients for the less hydrophobic PAHs, showing that equilibrium was attained between embryos and water. On the other hand, 48 h were insufficient to attain phase equilibrium for the more hydrophobic PAHs, indicating that the concentration in fish embryos may be lower than expected by equilibrium assumption. The results indicate that the equilibrium approach may be suitable for less hydrophobic PAHs, whereas it might overestimate the effects of more hydrophobic PAHs after oil spills because phase equilibrium in an oil-seawater-biota system is unlikely to be achieved. The ecotoxicological endpoints that were affected within a few days are likely to be influenced mainly by moderately hydrophobic components such as 3-ring PAHs.
Prognostic and Prediction Tools in Bladder Cancer: A Comprehensive Review of the Literature.
Kluth, Luis A; Black, Peter C; Bochner, Bernard H; Catto, James; Lerner, Seth P; Stenzl, Arnulf; Sylvester, Richard; Vickers, Andrew J; Xylinas, Evanguelos; Shariat, Shahrokh F
2015-08-01
This review focuses on risk assessment and prediction tools for bladder cancer (BCa). To review the current knowledge on risk assessment and prediction tools to enhance clinical decision making and counseling of patients with BCa. A literature search in English was performed using PubMed in July 2013. Relevant risk assessment and prediction tools for BCa were selected. More than 1600 publications were retrieved. Special attention was given to studies that investigated the clinical benefit of a prediction tool. Most prediction tools for BCa focus on the prediction of disease recurrence and progression in non-muscle-invasive bladder cancer or disease recurrence and survival after radical cystectomy. Although these tools are helpful, recent prediction tools aim to address a specific clinical problem, such as the prediction of organ-confined disease and lymph node metastasis to help identify patients who might benefit from neoadjuvant chemotherapy. Although a large number of prediction tools have been reported in recent years, many of them lack external validation. Few studies have investigated the clinical utility of any given model as measured by its ability to improve clinical decision making. There is a need for novel biomarkers to improve the accuracy and utility of prediction tools for BCa. Decision tools hold the promise of facilitating the shared decision process, potentially improving clinical outcomes for BCa patients. Prediction models need external validation and assessment of clinical utility before they can be incorporated into routine clinical care. We looked at models that aim to predict outcomes for patients with bladder cancer (BCa). We found a large number of prediction models that hold the promise of facilitating treatment decisions for patients with BCa. However, many models are missing confirmation in a different patient cohort, and only a few studies have tested the clinical utility of any given model as measured by its ability to improve clinical decision making. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
A critical assessment of topologically associating domain prediction tools
Dali, Rola
2017-01-01
Abstract Topologically associating domains (TADs) have been proposed to be the basic unit of chromosome folding and have been shown to play key roles in genome organization and gene regulation. Several different tools are available for TAD prediction, but their properties have never been thoroughly assessed. In this manuscript, we compare the output of seven different TAD prediction tools on two published Hi-C data sets. TAD predictions varied greatly between tools in number, size distribution and other biological properties. Assessed against a manual annotation of TADs, individual TAD boundary predictions were found to be quite reliable, but their assembly into complete TAD structures was much less so. In addition, many tools were sensitive to sequencing depth and resolution of the interaction frequency matrix. This manuscript provides users and designers of TAD prediction tools with information that will help guide the choice of tools and the interpretation of their predictions. PMID:28334773
Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa.
Zhang, Wenjun; Cheng, Cheng; Chen, Li; Di, Shanshan; Liu, Chunxiao; Diao, Jinling; Zhou, Zhiqiang
2016-09-01
Enantioselectivity in ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to Chlorella pyrenoidosa was studied. The 96h-EC50 values of rac- and the four enantiomers were 9.005, 6.616, 8.311, 4.290 and 9.410 mg/L, respectively. At the concentrations of 8 mg/L and 14 mg/L, the contents of pigments exposed in rac-, enantiomer-2 and 4 were higher than that exposed in enantiomer-1 and 3. The superoxide dismutase (SOD) and catalase (CAT) activity of algae exposed to enantiomer-1 and 3 was higher than that exposed to the rac-, enantiomer-2 and 4 at three levels. In addition, the malondialdehyde (MDA) concentrations in algae disposed with enantiomer-1 and 3 were increased remarkably at three levels. For the digestion experiment, the half-lives of four enantiomers in algae suspension were 28.06, 19.10, 21.13, 15.17 days, respectively. During the uptake experiment, the order of the concentrations of cyproconazole in algae cells was enantiomer-4, 2, 3 and 1. Based on these data, we concluded that ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to C. pyrenoidosa were enantioselective, and such enantiomeric differences must be taken into consideration when assessing the risk of cyproconazole to environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simplício, Nathan de Castro Soares; Muniz, Daphne Heloísa de Freitas; Rocha, Fernanda Regina Moreira; Martins, Denis Cavalcanti; Dias, Zélia Malena Barreira; Farias, Bruno Pereira da Costa; Oliveira-Filho, Eduardo Cyrino
2016-01-01
This study aimed to analyze the ecotoxicity of nitrogen-, phosphorus-, and potassium-based compounds to organisms of two different trophic levels in order to compare the toxic effect between high-purity substances and these substances as components of fertilizers. Dilutions were made with the fertilizers’ potassium chloride, potassium nitrate, superphosphate, urea, and their equivalent reagents, to conduct assays to establish the acute lethal concentration for half of the population (LC50). Ten individuals of the benthic snail Biomphalaria glabrata and the fish Danio rerio were exposed to each concentration of tested compounds. As a result, the toxicity levels of potassium chloride, potassium nitrate, and urea were obtained for B. glabrata and D. rerio, with the fish being more susceptible to potassium chloride in the fertilizer and the snail to potassium nitrate and urea, in both commercial and reagent forms. Regarding superphosphate, no significant toxicity was found. This study concluded that among the tested substances, KNO3 and KCl were the most toxic substances and urea the least toxic. It was not possible to establish the most sensitive species since, for KCl, the fish were more susceptible to the fertilizer and the snail to the reagent, while for KNO3 the opposite was observed. PMID:29051434
Lucchetti, Roberta; Siciliano, Antonietta; Clarizia, Laura; Russo, Danilo; Di Somma, Ilaria; Di Natale, Francesco; Guida, Marco; Andreozzi, Roberto; Marotta, Raffaele
2017-02-01
The photocatalytic removal of nitrate with simultaneous hydrogen generation was demonstrated using zero-valent nano-copper-modified titania (P25) as photocatalyst in the presence of UV-A-Vis radiation. Glycerol, a by-product in biodiesel production, was chosen as a hole scavenger. Under the adopted experimental conditions, a nitrate removal efficiency up to 100% and a simultaneous hydrogen production up to 14 μmol/L of H 2 were achieved (catalyst load = 150 mg/L, initial concentration of nitrate = 50 mg/L, initial concentration of glycerol = 0.8 mol/L). The reaction rates were independent of the starting glycerol concentration. This process allows accomplishing nitrate removal, with the additional benefit of producing hydrogen under artificial UV-A radiation. A kinetic model was also developed and it may represent a benchmark for a detailed understanding of the process kinetics. A set of acute and chronic bioassays (Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna) was performed to evaluate the potential ecotoxicity of the nitrate/by-product mixture formed during the photocatalytic process. The ecotoxicological assessment indicated an ecotoxic effect of oxidation intermediates and by-products produced during the process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
This progress report covers activities for the period January 1 - March 31, 1995 on project concerning `Hazardous Materials in Aquatic Environments of the Mississippi River Basin.` The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants inmore » aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl.« less
Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun
2012-01-01
The freshwater luminescent bacteria Vibrio-qinghaiensis sp.-Q67 test and the Vicia faba root tip test associated with solid-phase extraction were applied for cytotoxicity and genotoxicity assessment of organic substances in three rivers, two lakes and effluent flows from two wastewater treatment plants (WWTPs) in Xi'an, China. Although the most seriously polluted river with high chemical oxygen demand (COD) and total organic carbon (TOC) showed high cytotoxicity (expressed as TII50, the toxicity impact index) and genotoxicity (expressed as RMCN, the relative frequency of micronucleus), no correlative relation was found between the ecotoxicity and organic content of the water samples. However, there was a linear correlative relation between TII50 and RMCN for most water samples except that from the Zaohe River, which receives discharge from WWTP and untreated industrial wastewaters. The ecotoxicity of the organic toxicants in the Chanhe River and Zaohe River indicated that cytotoxic and genotoxic effects were related to the pollutant source. The TII50 and RMCN were also found to correlate roughly to the dissolved oxygen concentration of the water. Sufficient dissolved oxygen in surface water is thus proved to be an indicator of a healthy water environmental condition.
Berto, Josiani; Rochenbach, Gisele Canan; Barreiros, Marco Antonio B; Corrêa, Albertina X R; Peluso-Silva, Sandra; Radetski, Claudemir Marcos
2009-05-01
Hospital wastewater is considered a complex mixture populated with pathogenic microorganisms. The genetic constitution of these microorganisms can be changed through the direct and indirect effects of hospital wastewater constituents, leading to the appearance of antibiotic multi-resistant bacteria. To avoid environmental contamination hospital wastewaters must be treated. The objective of this study was to evaluate the efficiency of hospital wastewater treated by a combined process of biological degradation (septic tank) and the Fenton reaction. Thus, after septic tank biodegradation, batch Fenton reaction experiments were performed in a laboratory-scale reactor and the effectiveness of this sequential treatment was evaluated by a physico-chemical/microbiological time-course analysis of COD, BOD(5), and thermotolerant and total coliforms. The results showed that after 120min of Fenton treatment BOD(5) and COD values decreased by 90.6% and 91.0%, respectively. The BOD(5)/COD ratio changed from 0.46 to 0.48 after 120min of treatment. Bacterial removal efficiency reached 100%, while biotests carried out with Scenedesmus subspicatus and Daphnia magna showed a significant decrease in the ecotoxicity of hospital wastewater after the sequential treatment. The use of this combined system would ensure that neither multi-resistant bacteria nor ecotoxic substances are released to the environment through hospital wastewater discharge.
Sánchez Pérez, José Antonio; Román Sánchez, Isabel María; Carra, Irene; Cabrera Reina, Alejandro; Casas López, José Luis; Malato, Sixto
2013-01-15
The aim of this paper is to carry out an economic assessment on a solar photo-Fenton/MBR combined process to treat industrial ecotoxic wastewater. This study focuses on the impact of the contamination present in wastewater, the photochemical oxidation, the use of an MBR as biological process and the plant size on operating and amortization costs. As example of ecotoxic pollutant, a mixture of five commercial pesticides commonly used in the Mediterranean area has been used, ranging from 500 mg/L to 50mg/L, expressed as dissolved organic carbon concentration. The economic evaluation shows that (i) the increase in pollution load does not always involve an increase in photo-Fenton costs because they also depend on organic matter mineralization; (ii) the use of an MBR process permits lower photochemical oxidation requirements than other biological treatments, resulting in approximately 20% photo-Fenton cost reduction for highly polluted wastewater; (iii) when pollution load decreases, the contribution of reactant consumption to the photo-Fenton process costs increase with regard to amortization costs; (iv) 30% total cost reduction can be gained treating higher daily volumes, obtaining competitive costs that vary from 1.1-1.9 €/m(3), depending on the pollution load. Copyright © 2012 Elsevier B.V. All rights reserved.
A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles.
Sørensen, Sara N; Engelbrekt, Christian; Lützhøft, Hans-Christian H; Jiménez-Lamana, Javier; Noori, Jafar S; Alatraktchi, Fatima A; Delgado, Cristina G; Slaveykova, Vera I; Baun, Anders
2016-10-04
The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Growth rate inhibition occurred in standard ISO tests (EC 50 values of 15-200 mg Pt/L), but also in a double-vial setup, separating cells from PtNPs, thus demonstrating shading as an important artifact for PtNP toxicity. Negligible membrane damage, but substantial oxidative stress was detected at 0.1-80 mg Pt/L in both algal species using flow cytometry. PtNPs caused growth rate inhibition and oxidative stress in P. subcapitata, beyond what was accounted for by dissolved Pt, indicating NP-specific toxicity of PtNPs. Overall, P. subcapitata was found to be more sensitive toward PtNPs and higher body burdens were measured in this species, possibly due to a favored binding of Pt to the polysaccharide-rich cell wall of this algal species. This study highlights the importance of using multimethod approaches in nanoecotoxicological studies to elucidate toxicity mechanisms, influence of NP-interactions with media/organisms, and ultimately to identify artifacts and appropriate end points for NP-ecotoxicity testing.
Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening.
Cordella, Mauro; Torri, Cristian; Adamiano, Alessio; Fabbri, Daniele; Barontini, Federica; Cozzani, Valerio
2012-09-15
Bio-oils were produced from bench-scale slow-pyrolysis of three different biomass samples (corn stalks, poplar and switchgrass). Experimental protocols were developed and applied in order to screen their chemical composition. Several hazardous compounds were detected in the bio-oil samples analysed, including phenols, furans and polycyclic aromatic hydrocarbons. A procedure was outlined and applied to the assessment of toxicological and carcinogenic hazards of the bio-oils. The following hazardous properties were considered: acute toxicity; ecotoxicity; chronic toxicity; carcinogenicity. Parameters related to these properties were quantified for each component identified in the bio-oils and overall values were estimated for the bio-oils. The hazard screening carried out for the three bio-oils considered suggested that: (i) hazards to human health could be associated with chronic exposures to the bio-oils; (ii) acute toxic effects on humans and eco-toxic effects on aquatic ecosystems could also be possible in the case of loss of containment; and (iii) bio-oils may present a marginal potential carcinogenicity. The approach outlined allows the collection of screening information on the potential hazards posed by the bio-oils. This can be particularly useful when limited time and analytical resources reduce the possibility to obtain detailed specific experimental data. Copyright © 2012 Elsevier B.V. All rights reserved.
Environmental assessment of cement/foundry sludge products.
Ruiz, M C; Andrés, A; Irabien, A
2003-05-01
This work deals with the environmental assessment of products based on cement and a waste from a cast iron activity. The waste is a foundry sludge from wastewater treatment previously characterized. This industrial waste shows a high water content (62.4%) and a hazardous behavior due to its metallic content mainly Zn (16.5%), together with a low fraction of organic pollutants, mainly phenolic compounds. The feasibility of immobilizing both typs of contaminants was studied using Portland cement as binder at different cement/waste ratios. The parameters of environmental control were the ecotoxicity and mobilization of zinc and phenolic compounds, all determined on the basis of compliance leaching tests. The acid neutralization capacity of the cement/waste products was measured in order to obtain information on their buffering capacity. Experimental results from chemical analysis of leachates led to a non ecotoxic character of cement/waste products Although the metallic ions were mobilized within the cement mattices, the organic matter did not allow the formation of monolithic forms and an efficient immobilization of phenolic compounds. Concerning the acid neutralization capacity, this parameter was shown to depend mainly on the quantity of cement, although a decrease in alkalinity was observed when the amount of water in the cement/waste products increased.
Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions
NASA Astrophysics Data System (ADS)
Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.
2014-12-01
Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.
Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin
2015-03-01
Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was the main process leading to the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Marine Aquatic Ecotoxicity Potential, Freshwater Aquatic Ecotoxicity Potential, Human Toxicity Potential. While for Hyundai ICEV, gasoline production and tailpipe emission were the primary sources of environmental impact in the use phase. Tailpipe emission was a significant cause for increase in Eutrophication Potential and Global Warming Potential, and so forth. On the basis of inventory data analysis and 2010 Beijing electricity mix, the comparative results of haze-induced pollutants emissions showed that the full life cycle emissions of PM2.5, NO(x), SO(x), VOCs of Midi EV were higher than those of Hyundai ICEV, but the emission of NH3 was lower than that of Hyundai ICEV. Different emissions in use phase were the chief reason leading to this trend. In addition, by sensitivity analysis the results indicated that with the increase of lifetime mileage and proportion of cleaning energy, the rate of GHG( Green House Gas) emission reduction per kilometer of Midi EV became higher with respect to Hyundai ICEV. Haze-induced pollutants emission from EV could be significantly reduced using cleaner power energy. According to the assessment results, some management strategies aiming at electric car promotion were proposed.
A thermal sensation prediction tool for use by the profession
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fountain, M.E.; Huizenga, C.
1997-12-31
As part of a recent ASHRAE research project (781-RP), a thermal sensation prediction tool has been developed. This paper introduces the tool, describes the component thermal sensation models, and presents examples of how the tool can be used in practice. Since the main end product of the HVAC industry is the comfort of occupants indoors, tools for predicting occupant thermal response can be an important asset to designers of indoor climate control systems. The software tool presented in this paper incorporates several existing models for predicting occupant comfort.
2017-04-01
A COMPARISON OF PREDICTIVE THERMO AND WATER SOLVATION PROPERTY PREDICTION TOOLS AND EXPERIMENTAL DATA FOR...4. TITLE AND SUBTITLE A Comparison of Predictive Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected...1 2. EXPERIMENTAL PROCEDURE
Towards a generalized energy prediction model for machine tools
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan
2017-01-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687
Towards a generalized energy prediction model for machine tools.
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan
2017-04-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.
Aquatic concentrations of chemical analytes compared to ...
We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes. Purpose: to provide sc
Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms.
Yamashita, N; Yasojima, M; Nakada, N; Miyajima, K; Komori, K; Suzuki, Y; Tanaka, H
2006-01-01
Contamination of surface waters by pharmaceutical chemicals is an emerging environmental problem. This study evaluated the toxic effects of the antibacterial agents levofloxacin (LVFX) and clarithromycin (CAM), which are widely used in Japan, on aquatic organisms. Ecotoxicity tests using a bacterium, alga and crustacean were conducted. Microtox test using a marine fluorescent bacterium showed that LVFX and CAM have no acute toxicity to the bacterium. From the results of the Daphnia immobilisation test, LVFX and CAM did not show acute toxicity to the crustacean. Meanwhile, an algal growth inhibition test revealed that LVFX and CAM have high toxicity to the microalga. The phytotoxicity of CAM was about 100-fold higher than that of LVFX from a comparison of EC50 (median effective concentration) value. From the Daphnia reproduction test, LVFX and CAM also showed chronic toxicity to the crustacean. Concentrations of LVFX and CAM in the aquatic environment were compared with PNEC (predicted no effect concentration) to evaluate the ecological risk. As a result, the ecological risk of LVFX is considered to be low, but that of CAM is higher, suggesting that CAM discharged into an aquatic environment after therapeutic use may affect organisms in the aquatic environment.
Oulas, Anastasis; Karathanasis, Nestoras; Louloupi, Annita; Pavlopoulos, Georgios A; Poirazi, Panayiota; Kalantidis, Kriton; Iliopoulos, Ioannis
2015-01-01
Computational methods for miRNA target prediction are currently undergoing extensive review and evaluation. There is still a great need for improvement of these tools and bioinformatics approaches are looking towards high-throughput experiments in order to validate predictions. The combination of large-scale techniques with computational tools will not only provide greater credence to computational predictions but also lead to the better understanding of specific biological questions. Current miRNA target prediction tools utilize probabilistic learning algorithms, machine learning methods and even empirical biologically defined rules in order to build models based on experimentally verified miRNA targets. Large-scale protein downregulation assays and next-generation sequencing (NGS) are now being used to validate methodologies and compare the performance of existing tools. Tools that exhibit greater correlation between computational predictions and protein downregulation or RNA downregulation are considered the state of the art. Moreover, efficiency in prediction of miRNA targets that are concurrently verified experimentally provides additional validity to computational predictions and further highlights the competitive advantage of specific tools and their efficacy in extracting biologically significant results. In this review paper, we discuss the computational methods for miRNA target prediction and provide a detailed comparison of methodologies and features utilized by each specific tool. Moreover, we provide an overview of current state-of-the-art high-throughput methods used in miRNA target prediction.
Common features of microRNA target prediction tools
Peterson, Sarah M.; Thompson, Jeffrey A.; Ufkin, Melanie L.; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates
2014-01-01
The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output. PMID:24600468
Common features of microRNA target prediction tools.
Peterson, Sarah M; Thompson, Jeffrey A; Ufkin, Melanie L; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates
2014-01-01
The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.
Comparison of Performance Predictions for New Low-Thrust Trajectory Tools
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Kos, Larry; Hopkins, Randall; Crane, Tracie
2006-01-01
Several low thrust trajectory optimization tools have been developed over the last 3% years by the Low Thrust Trajectory Tools development team. This toolset includes both low-medium fidelity and high fidelity tools which allow the analyst to quickly research a wide mission trade space and perform advanced mission design. These tools were tested using a set of reference trajectories that exercised each tool s unique capabilities. This paper compares the performance predictions of the various tools against several of the reference trajectories. The intent is to verify agreement between the high fidelity tools and to quantify the performance prediction differences between tools of different fidelity levels.
Life cycle assessment of EPS and CPB inserts: design considerations and end of life scenarios.
Tan, Reginald B H; Khoo, Hsien H
2005-02-01
Expanded polystyrene (EPS) and corrugated paperboard (CPB) are used in many industrial applications, such as containers, shock absorbers or simply as inserts. Both materials pose two different types of environmental problems. The first is the pollution and resource consumption that occur during the production of these materials; the second is the growing landfills that arise out of the excessive disposal of these packaging materials. Life cycle assessment or LCA will be introduced in this paper as a useful tool to compare the environmental performance of both EPS and CPB throughout their life cycle stages. This paper is divided into two main parts. The first part investigates the environmental impacts of the production of EPS and CPB from 'cradle-to-gate', comparing two inserts--both the original and proposed new designs. In the second part, LCA is applied to investigate various end-of-life cases for the same materials. The study will evaluate the environmental impacts of the present waste management practices in Singapore. Several 'what-if' cases are also discussed, including various percentages of landfilling and incineration. The SimaPro LCA Version 5.0 software's Eco-indicator 99 method is used to investigate the following five environmental impact categories: climate change, acidification/eutrophication, ecotoxicity, fossil fuels and respiratory inorganics.
Toxicity and chemical analyses of airport runoff waters in Poland.
Sulej, Anna Maria; Polkowska, Zaneta; Wolska, Lidia; Cieszynska, Monika; Namieśnik, Jacek
2014-05-01
The aim of this study was to assess the ecotoxicological effects of various compounds in complex airport effluents using a chemical and ecotoxicological integrated strategy. The present work deals with the determination of sum of PCBs, PAHs, pesticides, cations, anions, phenols, anionic, cationic, non-ionic detergents, formaldehyde and metals--as well as TOC and conductivity--in runoff water samples collected from 2009 to 2011 at several locations on two Polish international airports. Two microbiotests (Vibrio fischeri bacteria and the crustacean Thamnocephalus platyurus) have been used to determine the ecotoxicity of airport runoff waters. The levels of many compounds exceeded several or even several tens of times the maximum permissible levels. Analysis of the obtained data shows that samples that displayed maximum toxicity towards the bioindicators Vibrio fischeri were not toxic towards Thamnocephalus platyurus. Levels of toxicity towards T. platyurus are strongly correlated with pollutants that originate from the technological operations related to the maintenance of airport infrastructure. The integrated (chemical-ecotoxicological) approach to environmental contamination assessment in and around airports yields extensive information on the quality of the environment. These methodologies can be then used as tools for tracking the environmental fate of these compounds and for assessing the environmental effect of airports. Subsequently, these data will provide a basis for airport infrastructure management.
Predictive models in cancer management: A guide for clinicians.
Kazem, Mohammed Ali
2017-04-01
Predictive tools in cancer management are used to predict different outcomes including survival probability or risk of recurrence. The uptake of these tools by clinicians involved in cancer management has not been as common as other clinical tools, which may be due to the complexity of some of these tools or a lack of understanding of how they can aid decision-making in particular clinical situations. The aim of this article is to improve clinicians' knowledge and understanding of predictive tools used in cancer management, including how they are built, how they can be applied to medical practice, and what their limitations may be. Literature review was conducted to investigate the role of predictive tools in cancer management. All predictive models share similar characteristics, but depending on the type of the tool its ability to predict an outcome will differ. Each type has its own pros and cons, and its generalisability will depend on the cohort used to build the tool. These factors will affect the clinician's decision whether to apply the model to their cohort or not. Before a model is used in clinical practice, it is important to appreciate how the model is constructed, what its use may add over and above traditional decision-making tools, and what problems or limitations may be associated with it. Understanding all the above is an important step for any clinician who wants to decide whether or not use predictive tools in their practice. Copyright © 2016 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Water footprint and life cycle assessment of concrete roof tile and brick products at PT. XYZ
NASA Astrophysics Data System (ADS)
Octavia, Caesara; Laurence; Hartono, Natalia
2017-12-01
PT. XYZ is an Indonesian company engaged in manufacturing concrete roof tile and paving block. The company has not paid attention to the environmental and human health aspects of their production activity, where there is so much water used and discarded during the production process and no water treatment for the wastewater produced. Therefore this topic proposed in order to determine the resulting impacts from the production processes of concrete roof tile and brick at PT. XYZ on the environment and human health. The impact on the environment and human health were identified through water footprint assessment (WFA) and life cycle assessment (LCA). Through the WFA accounting, it is known that the amount of water needed to produce a concrete roof tile is 21.384 L which consists of 16.433 L blue water and 4.951 L grey water, whereas for a brick is 10.496 L which consists of 10.48 L blue water and 0.016 L grey water. With ReCiPe midpoint (H) method, it is known that the dominant impact categories generated in one batch production processes of concrete roof tile and brick are natural land transformation, marine eco-toxicity, freshwater eutrophication, and freshwater eco-toxicity, where those impact categories represent the average of 75.5% from overall impact category for concrete roof tile and brick products.
[Effect of Environmental Factors on the Ecotoxicity of Pharmaceuticals and Personal Care Products].
Sugihara, Kazumi
2018-01-01
In recent years, pharmaceuticals and personal care products (PPCPs) have emerged as significant pollutants of aquatic environments and have been detected at levels in the range of ng/L to μg/L. The source of PPCPs is humans and livestock that have been administered pharmaceuticals and subsequently excreted them via urine and feces. Unlike agricultural chemicals, the environmental dynamics of PPCPs is not examined and they would undergo structural transformation by environmental factors, e.g., sunlight, microorganisms and treatments in sewage treatment plants (STPs). Processing at STPs can remove various PPCPs; however, they are not removed completely and some persist in the effluents. In this study, we examined the degradation of 9 pharmaceuticals (acetaminophen, amiodarone, dapsone, dexamethasone, indomethacin, raloxifene, phenytoin, naproxen, and sulindac) by sunlight or UV, and investigated the ecotoxicological variation of degradation products. Sunlight (UVA and UVB) degraded most pharmaceuticals, except acetaminophen and phenytoin. Similar results were obtained with UVB and UVA. All the pharmaceuticals were photodegraded by UVC, which is used for sterilization in STPs. Ecotoxicity assay using the luminescent bacteria test (ISO11348) indicated that UVC irradiation increased the toxicity of acetaminophen and phenytoin significantly. The photodegraded product of acetaminophen was identified as 1-(2-amino-5-hydroxyphenyl)ethanone and that of phenytoin as benzophenone, and the authentic compounds showed high toxicity. Photodegraded products of PPCPs are a concern in ecotoxicology.
Kobeticová, Klára; Hofman, Jakub; Holoubek, Ivan
2010-04-01
Contact bioassays are important for testing the ecotoxicity of solid materials. However, survival and reproduction tests are often not practical due to their duration which may last for several weeks. Avoidance tests with soil invertebrates may offer an alternative or extension to the classic test batteries due to their short duration (days rather than weeks) and due to a sensitive sub-acute endpoint (behavior). (a) to evaluate the effects of three solid industrial wastes (incineration ash, contaminated wood chips and contaminated soil) on three Oligochaeta species (enchytraeids Enchytraeusalbidus, Enchytraeus crypticus and earthworm Eisenia fetida) in avoidance tests; (b) to compare the sensitivity among the species and to compare results of avoidance test to reproduction tests; (c) to elucidate if measuring the weight in the earthworm avoidance test could be reasonable additional endpoint. Avoidance mostly increased with the increasing percent of waste in the mixture showing a dose-response curve. E. fetida was the most sensitive species and E. crypticus the least one. An additional endpoint, (changes in weight after two-day exposure) was not found to be more sensitive than avoidance reaction, but it confirmed that earthworms staying in the highest concentrations of the waste mixture were affected showing apparent weight reduction. Our results indicate that avoidance tests with earthworms and enchytraeids are feasible for waste testing. Copyright 2009 Elsevier Ltd. All rights reserved.
Ecotoxicity hazard assessment of styrene.
Cushman, J R; Rausina, G A; Cruzan, G; Gilbert, J; Williams, E; Harrass, M C; Sousa, J V; Putt, A E; Garvey, N A; St Laurent, J P; Hoberg, J R; Machado, M W
1997-07-01
The ecotoxicity of styrene was evaluated in acute toxicity studies of fathead minnows (Pimephales promelas), daphnids (Daphnia magna), amphipods (Hyalella azteca), and freshwater green algae (Selenastrum capricornutum), and a subacute toxicity study of earthworms (Eisenia fostida). Stable exposure levels were maintained in the studies with fathead minnows, daphnids, and amphipods using sealed, flowthrough, serial dilution systems and test vessels. The algae were evaluated in a sealed, static system. The earthworms were exposed in artificial soil which was renewed after 7 days. Styrene concentrations in water and soil were analyzed by gas chromatography with flame ionization detection following extraction into hexane. Test results are based on measured concentrations. Styrene was moderately toxic to fathead minnows, daphnids, and amphipods: fathead minnow: LC50 (96 hr), 10 mg/liter, and NOEC, 4.0 mg/liter; daphnids: EC50 (48 hr), 4.7 mg/liter, and NOEC, 1.9 mg/liter; amphipods: LC50 (96 hr), 9.5 mg/liter, and NOEC, 4.1 mg/liter. Styrene was highly toxic to green algae: EC50 (96 hr), 0.72 mg/liter, and NOEC, 0.063 mg/liter; these effects were found to be algistatic rather than algicidal. Styrene was slightly toxic to earthworms: LC50 (14 days), 120 mg/kg, and NOEC, 44 mg/kg. There was no indication of a concern for chronic toxicity based on these studies. Styrene's potential impact on aquatic and soil environments is significantly mitigated by its volatility and biodegradability.
Le, Thi Xuan Huong; Nguyen, Thi Van; Amadou Yacouba, Zoulkifli; Zoungrana, Laetitia; Avril, Florent; Nguyen, Duy Linh; Petit, Eddy; Mendret, Julie; Bonniol, Valerie; Bechelany, Mikhael; Lacour, Stella; Lesage, Geoffroy; Cretin, Marc
2017-04-01
The evolution of the degradation by-products of an acetaminophen (ACE) solution was monitored by HPLC-UV/MS and IC in parallel with its ecotoxicity (Vibrio fischeri 81.9%, Microtox ® screening tests) during electro-Fenton (EF) oxidation performed on carbon felt. The aromatic compounds 2-hydroxy-4-(N-acetyl) aminophenol, 1,4-benzoquinone, benzaldehyde and benzoic acid were identified as toxic sub-products during the first stage of the electrochemical treatment, whereas aliphatic short-chain carboxylic acids (oxalic, maleic, oxamic, formic, acetic and fumaric acids) and inorganic ions (ammonium and nitrate) were well identified as non-toxic terminal sub-products. Electrogenerated hydroxyl radicals then converted the eco-toxic and bio-refractory property of initial ACE molecule (500 mL, 1 mM) and subsequent aromatic sub-products into non-toxic compounds after 2 h of EF treatment. The toxicity of every intermediate produced during the mineralization of ACE was quantified, and a relationship was established between the degradation pathway of ACE and the global toxicity evolution of the solution. After 8 h of treatment, a total organic carbon removal of 86.9% could be reached for 0.1 mM ACE at applied current of 500 mA with 0.2 mM of Fe 2+ used as catalyst. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms.
Kobashi, Koji; Harada, Takaaki; Adachi, Yoshihiro; Mori, Miho; Ihara, Makoto; Hayasaka, Daisuke
2017-04-01
There are growing concerns about the impacts of neonicotinoid insecticides on ecosystems worldwide, and yet ecotoxicity of many of these chemicals at community or ecosystem levels have not been evaluated under realistic conditions. In this study, effects of two neonicotinoid insecticides, imidacloprid and dinotefuran, on aquatic insect assemblages were evaluated in experimental rice mesocosms. During the 5-month period of the rice-growing season, residual concentrations of imidacloprid were 5-10 times higher than those of dinotefuran in both soil and water. Imidacloprid treatment (10kg/ha) reduced significantly the populations of, Crocothemis servilia mariannae and Lyriothemis pachygastra nymphs, whereas those of Orthetrum albistylum speciosum increased slightly throughout the experimental period. However, Notonecta triguttata, which numbers were high from the start, later declined, indicating possible delayed chronic toxicity, while Guignotus japonicus disappeared. In contrast, dinotefuran (10kg/ha) did not decrease the populations of any species, but rather increased the abundance of some insects, particularly Chironominae spp. larvae and C. servilia mariannae nymphs, with the latter being 1.7x higher than those of controls. This was an indirect effect resulting from increased prey (e.g., chironomid larvae) and lack of competition with other dragonfly species. The susceptibilities of dragonfly nymphs to neonicotinoids, particularly imidacloprid, were consistent with those reported elsewhere. In general, imidacloprid had higher impacts on aquatic insects compared to dinotefuran. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparative analysis of water quality and toxicity assessment methods for urban highway runoff.
Chen, Rui-Hong; Li, Fei-Peng; Zhang, Hai-Ping; Jiang, Yue; Mao, Ling-Chen; Wu, Ling-Ling; Chen, Ling
2016-05-15
In this study, comparative analyses of highway runoff samples obtained from seventeen storm events have been conducted between the traditional water quality assessment method and biotoxicity tests, using zebrafish (Danio rerio) embryos and luminous bacteria (Vibrio qinghaiensis. Q67) to provide useful information for ecotoxicity assessment of urban highway runoff. The study results showed that the Nemerow pollution index based on US EPA recommended Criteria Maximum Concentrations (CMC) (as traditional water quality assessment method) had no significant correlation with luminous bacteria acute toxicity test results, while significant correlation has been observed with two indicators of 72 hpf (hours post fertilization) hour hatching rate and 96 hpf abnormality rate from the toxicity test with zebrafish embryos. It is therefore concluded that the level of mixture toxicity of highway runoff could not be adequately measured by the Nemerow assessment method. Moreover, the key pollutants identified from the water quality assessment and from the biotoxicity evaluation were not consistent. For biotoxic effect evaluation of highway runoff, three indexes were found to be sensitive, i.e. 24 hpf lethality and 96 hpf abnormality of zebrafish embryos, as well as the inhibition rate for luminous bacteria Q67. It is therefore recommended that these indexes could be incorporated into the traditional Nemerow method to provide a more reasonable evaluation of the highway runoff quality and ecotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
Xiong, Jiu-Qiang; Kurade, Mayur B; Jeon, Byong-Hun
2017-07-01
Enrofloxacin (ENR), a fluoroquinolone antibiotic, has gained big scientific concern due to its ecotoxicity on aquatic microbiota. The ecotoxicity and removal of ENR by five individual microalgae species and their consortium were studied to correlate the behavior and interaction of ENR in natural systems. The individual microalgal species (Scenedesmus obliquus, Chlamydomonas mexicana, Chlorella vulgaris, Ourococcus multisporus, Micractinium resseri) and their consortium could withstand high doses of ENR (≤1 mg L -1 ). Growth inhibition (68-81%) of the individual microalgae species and their consortium was observed in ENR (100 mg L -1 ) compared to control after 11 days of cultivation. The calculated 96 h EC 50 of ENR for individual microalgae species and microalgae consortium was 9.6-15.0 mg ENR L -1 . All the microalgae could recover from the toxicity of high concentrations of ENR during cultivation. The biochemical characteristics (total chlorophyll, carotenoid, and malondialdehyde) were significantly influenced by ENR (1-100 mg L -1 ) stress. The individual microalgae species and microalgae consortium removed 18-26% ENR at day 11. Although the microalgae consortium showed a higher sensitivity (with lower EC 50 ) toward ENR than the individual microalgae species, the removal efficiency of ENR by the constructed microalgae consortium was comparable to that of the most effective microalgal species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ozkaleli, Merve; Erdem, Ayca
2018-01-01
TiO2 nanoparticles (NPs), which are mainly used in consumer products (mostly cosmetics), have been found to cause ecotoxic effects in the aquatic environment. The green algae Raphidocelis subcapitata, as a representative of primary producers of the freshwater ecosystem, has been frequently used to study the effects of metal oxide NPs. An ecotoxicity study was conducted herein to investigate the effects of TiO2 NPs on survival and membrane deformation of algal cells. Five different concentrations of nano-TiO2 particles (1, 10, 50, 100 and 500 mg/L) were prepared in synthetic surface water samples with five different water quality characteristics (pH 6.4–8.4, hardness 10–320 mg CaCO3/L, ionic strength 0.2–8 mM, and alkalinity 10–245 mg CaCO3/L). Results showed a significant increase in the hydrodynamic diameter of NPs with respect to both NP concentrations and ionic content of the test system. A soft synthetic freshwater system at pH 7.3 ± 0.2 appeared to provide the most effective water type, with more than 95% algal mortality observed at 50, 100 and 500 mg/L NP concentrations. At high exposure concentrations, increased malondialdehyde formations were observed. Moreover, due to membrane deformation, TEM images correlated the uptake of the NPs. PMID:29495534
NASA Astrophysics Data System (ADS)
Brehmer, P.; Laugier, T.; Kantoussan, J.; Galgani, F.; Mouillot, D.
2013-07-01
Ensuring the sustainability of fish resources necessitates understanding their interaction with coastal habitats, which is becoming ever more challenging in the context of ever increasing anthropogenic pressures. The ability of coastal lagoons, exposed to major sources of disturbance, to provide resources and suitable habitats for growth and survival of juvenile fish is especially important. We analysed three lagoons with different ecological statuses and habitat quality on the basis of their eutrophication and ecotoxicity (Trix test) levels. Fish abundances were sampled using fishing and horizontal beaming acoustic surveys with the same protocols in the same year. The relative abundance of Anguilla anguilla, Dicentrarchus labrax or the Mugilidae group was not an indicator of habitat quality, whereas Atherina boyeri and Sparus aurata appeared to be more sensitive to habitat quality. Fish abundance was higher in the two lagoons with high eutrophication and ecotoxicity levels than in the less impacted lagoon, while fish sizes were significantly higher in the two most severely impacted lagoons. This leads us to suggest low habitat quality may increase fish growth rate (by the mean of a cascading effect), but may reduce lagoon juvenile abundance by increasing larval mortality. Such a hypothesis needs to be further validated using greater investigations which take into account more influences on fish growth and recruitment in such variable environments under complex multi-stressor conditions.
Wenzel, H; Larsen, H F; Clauson-Kaas, J; Høibye, L; Jacobsen, B N
2008-01-01
Much research and development effort is directed towards advances in municipal wastewater treatment aiming at reducing the effluent content of micro-pollutants and pathogens. The objective is to further reduce the eco-toxicity, hormone effects and pathogenic effects of the effluent. Such further polishing of the effluent, however, involves an environmental trade-off: the reduction in eco-toxicity, hormone effects, etc. will happen at the expense of increased resource- and energy consumption. Obviously, at some point of further advances, there must be an 'environmental break-even'. This trade-off was investigated using Life Cycle Assessment (LCA) methodology and based on a literature review of advanced treatment performance. The LCA evaluation comprised sand filtration, ozonation and MBRs and assessed the effect of extending existing tertiary treatment with these technologies on a variety of micro-pollutants being: heavy metals (Cd, Pb, Ni), endocrine disruptors (E2 and EE2), PAH, DEHP, and detergents (LAS & NPE). It was found, in some of the studied scenarios, that more environmental impact may be induced than removed by the advanced treatment. The study showed that for the 3 technologies, sand filtration has the best balance between prevented and induced impacts, and sand filtration proved to have a net environmental benefit under the assumptions used in the study. But the outcome of the study suggests that this is not always the case for ozonation and MBR.
Morais, Sérgio Alberto; Delerue-Matos, Cristina; Gabarrell, Xavier
2013-03-15
In life cycle impact assessment (LCIA) models, the sorption of the ionic fraction of dissociating organic chemicals is not adequately modeled because conventional non-polar partitioning models are applied. Therefore, high uncertainties are expected when modeling the mobility, as well as the bioavailability for uptake by exposed biota and degradation, of dissociating organic chemicals. Alternative regressions that account for the ionized fraction of a molecule to estimate fate parameters were applied to the USEtox model. The most sensitive model parameters in the estimation of ecotoxicological characterization factors (CFs) of micropollutants were evaluated by Monte Carlo analysis in both the default USEtox model and the alternative approach. Negligible differences of CFs values and 95% confidence limits between the two approaches were estimated for direct emissions to the freshwater compartment; however the default USEtox model overestimates CFs and the 95% confidence limits of basic compounds up to three orders and four orders of magnitude, respectively, relatively to the alternative approach for emissions to the agricultural soil compartment. For three emission scenarios, LCIA results show that the default USEtox model overestimates freshwater ecotoxicity impacts for the emission scenarios to agricultural soil by one order of magnitude, and larger confidence limits were estimated, relatively to the alternative approach. Copyright © 2013 Elsevier B.V. All rights reserved.
Hartmann, Nanna B; Jensen, Keld Alstrup; Baun, Anders; Rasmussen, Kirsten; Rauscher, Hubert; Tantra, Ratna; Cupi, Denisa; Gilliland, Douglas; Pianella, Francesca; Riego Sintes, Juan M
2015-01-01
Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.
Fodelianakis, S; Antoniou, E; Mapelli, F; Magagnini, M; Nikolopoulou, M; Marasco, R; Barbato, M; Tsiola, A; Tsikopoulou, I; Giaccaglia, L; Mahjoubi, M; Jaouani, A; Amer, R; Hussein, E; Al-Horani, F A; Benzha, F; Blaghen, M; Malkawi, H I; Abdel-Fattah, Y; Cherif, A; Daffonchio, D; Kalogerakis, N
2015-04-28
Oil-polluted sediment bioremediation depends on both physicochemical and biological parameters, but the effect of the latter cannot be evaluated without the optimization of the former. We aimed in optimizing the physicochemical parameters related to biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to oil-polluted sediment, in order to determine the added effect of bioaugmentation by four allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and hydrolytic activity, bacterial population sizes and bacterial community dynamics, characterizing the dominant taxa through time and at each treatment. We observed no significant differences in total degradation, but increased ecotoxicity between the different treatments receiving both biostimulation and bioaugmentation and the biostimulated-only control. Moreover, the added allochthonous bacteria quickly perished and were rarely detected, their addition inducing minimal shifts in community structure although it altered the distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that biodegradation was mostly performed by the autochthonous populations while bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our results indicate that when environmental conditions are optimized, the indigenous microbiome at a polluted site will likely outperform any allochthonous consortium. Copyright © 2015 Elsevier B.V. All rights reserved.
Le Guernic, Antoine; Sanchez, Wilfried; Palluel, Olivier; Bado-Nilles, Anne; Turies, Cyril; Chadili, Edith; Cavalié, Isabelle; Adam-Guillermin, Christelle; Porcher, Jean-Marc; Geffard, Alain; Betoulle, Stéphane; Gagnaire, Béatrice
2016-04-01
The aim of this study was to evaluate the effects of caging constraints on multiple fish biomarkers used during ecotoxicological studies (biometric data, immune and antioxidant systems, and energetic status). Two of these constraints were linked to caging: starvation and fish density in cages, and one in relation to the post-caging handling: a short transport. Three in situ experiments were conducted with three-spined sticklebacks (Gasterosteus aculeatus). The first experiment compared the effects of three densities (low, medium, and high). The second experiment compared effects of starvation in fish fed every two days with fish that were not fed. Finally comparisons between sticklebacks which have suffered a short car transport after caging and sticklebacks killed without preliminary transport were made. The lack of food had no effect on fish energetic reserves but negatively affected their condition index and their immune system. Transport and high density induced oxidative stress, defined as an overproduction of reactive oxygen species and a stimulation of the antioxidant system. These two constraints also harmed the leucocyte viability. In order not to have any impact on ecotoxicity biomarkers during in situ experiments, it is preferable to decrease fish density in cages, prevent transport before dissections, and feed fish when the caging lasts more than two weeks.
Phoungthong, Khamphe; Zhang, Hua; Shao, Li-Ming; He, Pin-Jing
2016-03-01
Municipal solid waste incinerator bottom ash (MSWIBA) has long been regarded as an alternative building material in the construction industry. However, the pollutants contained in the bottom ash could potentially leach out and contaminate the local environment, which presents an obstacle to the reuse of the materials. To evaluate the environmental feasibility of using MSWIBA as a recycled material in construction, the leaching derived ecotoxicity was assessed. The leaching behavior of MSWIBA under various conditions, including the extractant type, leaching time, liquid-to-solid (L/S) ratio, and leachate pH were investigated, and the phytotoxicity of these leachates on wheat (Triticum aestivum L.) seed germination was determined. Moreover, the correlation between the germination index and the concentrations of various chemical constituents in the MSWIBA leachates was assessed using multivariate statistics with principal component analysis and Pearson's correlation analysis. It was found that, heavy metal concentrations in the leachate were pH and L/S ratio dependent, but were less affected by leaching time. Heavy metals were the main pollutants present in wheat seeds. Heavy metals (especially Ba, Cr, Cu and Pb) had a substantial inhibitory effect on wheat seed germination and root elongation. To safely use MSWIBA in construction, the potential risk and ecotoxicity of leached materials must be addressed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manusadžianas, Levonas; Darginavičienė, Jūratė; Gylytė, Brigita; Jurkonienė, Sigita; Krevš, Alina; Kučinskienė, Alė; Mačkinaitė, Rimutė; Pakalnis, Romas; Sadauskas, Kazys; Sendžikaitė, Jūratė; Vitkus, Rimantas
2014-10-15
The replacement of autochthonous tree species by invasive ones in coastal zones of freshwater bodies induces additional alteration of hydrochemical and microbiological characteristics due to decomposition of fallen leaves of non-indigenous species, which can lead to ecotoxic response of the littoral biota. Leaves of invasive to Lithuania boxelder maple (Acer negundo) and autochthonous black alder (Alnus glutinosa) lost more than half of biomass and released stable amount of DOC (60-70 mg/L) throughout 90-day mesocosm experiment under aerobic conditions. This, along with the relatively small BOD7 values detected after some variation within the first month confirms effective biodegradation by fungi and bacteria. The ambient water was more enriched with different forms of N and P by decomposing boxelder maple than by alder leaves. During the first month, both leachates were more toxic to charophyte (Nitellopsis obtusa) at mortality and membrane depolarization levels, while later to two crustacean species. Biomarker response, H(+)-ATPase activity in membrane preparations from N. obtusa, was stronger for A. negundo. Generally, boxelder maple leaf leachates were more toxic to tested hydrobionts and this coincides with previous study on leaves of the same pair of tree species conducted under microaerobic conditions (Krevš et al., 2013). Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Callaghan, Michael E., E-mail: elspeth.raymond@health.sa.gov.au; Freemasons Foundation Centre for Men's Health, University of Adelaide; Urology Unit, Repatriation General Hospital, SA Health, Flinders Centre for Innovation in Cancer
Purpose: To identify, through a systematic review, all validated tools used for the prediction of patient-reported outcome measures (PROMs) in patients being treated with radiation therapy for prostate cancer, and provide a comparative summary of accuracy and generalizability. Methods and Materials: PubMed and EMBASE were searched from July 2007. Title/abstract screening, full text review, and critical appraisal were undertaken by 2 reviewers, whereas data extraction was performed by a single reviewer. Eligible articles had to provide a summary measure of accuracy and undertake internal or external validation. Tools were recommended for clinical implementation if they had been externally validated and foundmore » to have accuracy ≥70%. Results: The search strategy identified 3839 potential studies, of which 236 progressed to full text review and 22 were included. From these studies, 50 tools predicted gastrointestinal/rectal symptoms, 29 tools predicted genitourinary symptoms, 4 tools predicted erectile dysfunction, and no tools predicted quality of life. For patients treated with external beam radiation therapy, 3 tools could be recommended for the prediction of rectal toxicity, gastrointestinal toxicity, and erectile dysfunction. For patients treated with brachytherapy, 2 tools could be recommended for the prediction of urinary retention and erectile dysfunction. Conclusions: A large number of tools for the prediction of PROMs in prostate cancer patients treated with radiation therapy have been developed. Only a small minority are accurate and have been shown to be generalizable through external validation. This review provides an accessible catalogue of tools that are ready for clinical implementation as well as which should be prioritized for validation.« less
NASA Technical Reports Server (NTRS)
Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.
2016-01-01
A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.
PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri
2014-01-01
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961
Decision-making tools in prostate cancer: from risk grouping to nomograms.
Fontanella, Paolo; Benecchi, Luigi; Grasso, Angelica; Patel, Vipul; Albala, David; Abbou, Claude; Porpiglia, Francesco; Sandri, Marco; Rocco, Bernardo; Bianchi, Giampaolo
2017-12-01
Prostate cancer (PCa) is the most common solid neoplasm and the second leading cause of cancer death in men. After the Partin tables were developed, a number of predictive and prognostic tools became available for risk stratification. These tools have allowed the urologist to better characterize this disease and lead to more confident treatment decisions for patients. The purpose of this study is to critically review the decision-making tools currently available to the urologist, from the moment when PCa is first diagnosed until patients experience metastatic progression and death. A systematic and critical analysis through Medline, EMBASE, Scopus and Web of Science databases was carried out in February 2016 as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The search was conducted using the following key words: "prostate cancer," "prediction tools," "nomograms." Seventy-two studies were identified in the literature search. We summarized the results into six sections: Tools for prediction of life expectancy (before treatment), Tools for prediction of pathological stage (before treatment), Tools for prediction of survival and cancer-specific mortality (before/after treatment), Tools for prediction of biochemical recurrence (before/after treatment), Tools for prediction of metastatic progression (after treatment) and in the last section biomarkers and genomics. The management of PCa patients requires a tailored approach to deliver a truly personalized treatment. The currently available tools are of great help in helping the urologist in the decision-making process. These tests perform very well in high-grade and low-grade disease, while for intermediate-grade disease further research is needed. Newly discovered markers, genomic tests, and advances in imaging acquisition through mpMRI will help in instilling confidence that the appropriate treatments are being offered to patients with prostate cancer.
Automated benchmarking of peptide-MHC class I binding predictions.
Trolle, Thomas; Metushi, Imir G; Greenbaum, Jason A; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2015-07-01
Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. mniel@cbs.dtu.dk or bpeters@liai.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Automated benchmarking of peptide-MHC class I binding predictions
Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2015-01-01
Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196
State of Jet Noise Prediction-NASA Perspective
NASA Technical Reports Server (NTRS)
Bridges, James E.
2008-01-01
This presentation covers work primarily done under the Airport Noise Technical Challenge portion of the Supersonics Project in the Fundamental Aeronautics Program. To provide motivation and context, the presentation starts with a brief overview of the Airport Noise Technical Challenge. It then covers the state of NASA s jet noise prediction tools in empirical, RANS-based, and time-resolved categories. The empirical tools, requires seconds to provide a prediction of noise spectral directivity with an accuracy of a few dB, but only for axisymmetric configurations. The RANS-based tools are able to discern the impact of three-dimensional features, but are currently deficient in predicting noise from heated jets and jets with high speed and require hours to produce their prediction. The time-resolved codes are capable of predicting resonances and other time-dependent phenomena, but are very immature, requiring months to deliver predictions without unknown accuracies and dependabilities. In toto, however, when one considers the progress being made it appears that aeroacoustic prediction tools are soon to approach the level of sophistication and accuracy of aerodynamic engineering tools.
Khan, Abdul Arif; Khan, Zakir; Kalam, Mohd Abul; Khan, Azmat Ali
2018-01-01
Microbial pathogenesis involves several aspects of host-pathogen interactions, including microbial proteins targeting host subcellular compartments and subsequent effects on host physiology. Such studies are supported by experimental data, but recent detection of bacterial proteins localization through computational eukaryotic subcellular protein targeting prediction tools has also come into practice. We evaluated inter-kingdom prediction certainty of these tools. The bacterial proteins experimentally known to target host subcellular compartments were predicted with eukaryotic subcellular targeting prediction tools, and prediction certainty was assessed. The results indicate that these tools alone are not sufficient for inter-kingdom protein targeting prediction. The correct prediction of pathogen's protein subcellular targeting depends on several factors, including presence of localization signal, transmembrane domain and molecular weight, etc., in addition to approach for subcellular targeting prediction. The detection of protein targeting in endomembrane system is comparatively difficult, as the proteins in this location are channelized to different compartments. In addition, the high specificity of training data set also creates low inter-kingdom prediction accuracy. Current data can help to suggest strategy for correct prediction of bacterial protein's subcellular localization in host cell. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Family-Based Benchmarking of Copy Number Variation Detection Software.
Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael
2015-01-01
The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico.
RNA-SSPT: RNA Secondary Structure Prediction Tools.
Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad
2013-01-01
The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.
RNA-SSPT: RNA Secondary Structure Prediction Tools
Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad
2013-01-01
The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115
Siedlecki, Sandra L; Albert, Nancy M
This article will describe how to assess interrater reliability and validity of risk assessment tools, using easy-to-follow formulas, and to provide calculations that demonstrate principles discussed. Clinical nurse specialists should be able to identify risk assessment tools that provide high-quality interrater reliability and the highest validity for predicting true events of importance to clinical settings. Making best practice recommendations for assessment tool use is critical to high-quality patient care and safe practices that impact patient outcomes and nursing resources. Optimal risk assessment tool selection requires knowledge about interrater reliability and tool validity. The clinical nurse specialist will understand the reliability and validity issues associated with risk assessment tools, and be able to evaluate tools using basic calculations. Risk assessment tools are developed to objectively predict quality and safety events and ultimately reduce the risk of event occurrence through preventive interventions. To ensure high-quality tool use, clinical nurse specialists must critically assess tool properties. The better the tool's ability to predict adverse events, the more likely that event risk is mediated. Interrater reliability and validity assessment is relatively an easy skill to master and will result in better decisions when selecting or making recommendations for risk assessment tool use.
Amorim, Mónica J B; Lin, Sijie; Schlich, Karsten; Navas, José M; Brunelli, Andrea; Neubauer, Nicole; Vilsmeier, Klaus; Costa, Anna L; Gondikas, Andreas; Xia, Tian; Galbis, Liliana; Badetti, Elena; Marcomini, Antonio; Hristozov, Danail; Kammer, Frank von der; Hund-Rinke, Kerstin; Scott-Fordsmand, Janeck J; Nel, André; Wohlleben, Wendel
2018-02-06
Nanoenabled products (NEPs) have numerous outdoor uses in construction, transportation or consumer scenarios, and there is evidence that their fragments are released in the environment at low rates. We hypothesized that the lower surface availability of NEPs fragment reduced their environmental effects with respect to pristine nanomaterials. This hypothesis was explored by testing fragments generated by intentional micronisation ("the SUN approach"; Nowack et al. Meeting the Needs for Released Nanomaterials Required for Further Testing: The SUN Approach. Environmental Science & Technology, 2016 (50), 2747). The NEPs were composed of four matrices (epoxy, polyolefin, polyoxymethylene, and cement) with up to 5% content of three nanomaterials (carbon nanotubes, iron oxide, and organic pigment). Regardless of the type of nanomaterial or matrix used, it was observed that nanomaterials were only partially exposed at the NEP fragment surface, indicating that mostly the intrinsic and extrinsic properties of the matrix drove the NEP fragment toxicity. Ecotoxicity in multiple assays was done covering relevant media from terrestrial to aquatic, including sewage treatment plant (biological activity), soil worms (Enchytraeus crypticus), and fish (zebrafish embryo and larvae and trout cell lines). We designed the studies to explore the possible modulation of ecotoxicity by nanomaterial additives in plastics/polymer/cement, finding none. The results support NEPs grouping by the matrix material regarding ecotoxicological effect during the use phase. Furthermore, control results on nanomaterial-free polymer fragments representing microplastic had no significant adverse effects up to the highest concentration tested.
Occulti, Fabio; Roda, Giovanni Camera; Berselli, Sara; Fava, Fabio
2008-04-15
A two phases process consisting of a soya lecithin (SL)-based soil washing process followed by the photocatalytic treatment of resulting effluents was developed and applied at the laboratory scale in the remediation of an actual-site soil historically contaminated by 0.65 g/kg of polychlorinated biphenyls (PCBs). Triton X-100 (TX) was employed in the same process as a control surfactant. SL and TX, both applied as 2.25 g/L aqueous solutions, displayed a comparable ability to remove PCBs from the soil. However, SL solution displayed a lower ecotoxicity, a lower ability to mobilize soil constituents and a higher soil detoxification capacity with respect to the TX one. The photocatalytic treatment resulted in marked depletions (from 50% to 70%) of total organic carbon (TOC) and PCBs initially occurring in the SL and TX contaminated effluents. Despite the ability of SL to adversely affect the rate of TOC and PCB photodegradation, higher PCB depletion and dechlorination yields along with lower increases of ecotoxicity were observed in SL-containing effluents with respect to the TX ones at the end of 15 days of treatment. The two phases process developed and tested for the first time in this study seems to have the required features to become, after a proper optimization and scale up, a challenging procedure for the sustainable remediation of actual site, poorly biotreatable PCB-contaminated soils. Copyright 2007 Wiley Periodicals, Inc.
Assessment of environment impacts of egg production chain using life cycle assessment.
Ghasempour, Atena; Ahmadi, Ebrahim
2016-12-01
In this study we have to deal with the assessment of environment impacts of laying hen in the Alborz province, Iran. This assessment was carried out for one kg of egg during a period of 420 days for 1000 chickens. Then due to significant consumption of diet during period of question, three main products including corn, soybean and wheat which are consist of 80 percent of the combination of laying chicken diet, also collected the information about their production and it has been evaluated the indicators of their environment individually and eventually, the results has been considered as a title for inputs of poultry. Data for production of inputs were taken from EcoInvent 2.0 database, and SimaPro software was used for analysis. Ten classification impacts including Abiotic Depletion potential, Acidification potential, Eutrophication potential, Global Warming potential for time horizon 100 years, Ozone Depletion potential, Human Toxicity potential, Freshwater and Marine Aquatic Eco-toxicity potential, Terrestrial Eco-toxicity potential, and Photochemical Oxidation potential were selected based on the CML 2 baseline 2000 V2/world, 1990/characterization method. Due to the results, for each kilograms of egg, 30/09 MJ and also the value of greenhouse gas emissions is 4/07 Kg CO 2 eq was calculated. According to the obtained results, the production of diet has made the most negative charge of environment among the inputs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ravikumar, K V G; Kumar, Deepak; Rajeshwari, A; Madhu, G M; Mrudula, P; Chandrasekaran, Natarajan; Mukherjee, Amitava
2016-02-01
In the present communication, we report a comparative study of Cr (VI) removal using biologically synthesized nano zero valent iron (BS-nZVI) and chemically synthesized nZVI (CS-nZVI), both immobilized in calcium alginate beads. The parameters like initial Cr (VI) concentration, nZVI concentration, and the contact time for Cr (VI) removal were optimized based on Box-Behnken design (BBD) by response surface modeling at a constant pH 7. Under the optimized conditions (concentration of nZVI = 1000 mg L(-1), contact time = ∼ 80 min, and initial concentration of Cr (VI) = 10 mg L(-1)), the Cr (VI) removal by the immobilized BS-nZVI and CS-nZVI alginate beads was 80.04 and 81.08 %, respectively. The adsorption of Cr (VI) onto the surface of alginate beads was confirmed by scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. The applicability of the process using both the sorbents was successfully test medium Cr (VI) spiked environmental water samples. In order to assess the ecotoxic effects of nZVI, the decline in cell viability, generation of intracellular reactive oxygen species (ROS), cell membrane damage, and biouptake was studied at 1000 mg L(-1) concentration, with five indigenous bacterial isolates from chromium-contaminated lake sediments and their consortium.
Soil contamination in landfills: a case study of a landfill in Czech Republic
NASA Astrophysics Data System (ADS)
Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.
2016-02-01
A phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as a bioindicator of heavy metals. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body, and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu, and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth, or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body, and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity - in particular samples 3 to 8 - yet the seed germination capacity in all eight samples of tested soils ranges between 86 and 137 %.
Soil contaminations in landfill: a case study of the landfill in Czech Republic
NASA Astrophysics Data System (ADS)
Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.
2015-10-01
Phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as heavy metals bioindicator. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity; in particular samples 3 to 8, yet the seed germination capacity in all 8 samples of tested soils range between 86 and 137 %.
Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment.
Henriksson, Patrik J G; Rico, Andreu; Zhang, Wenbo; Ahmad-Al-Nahid, Sk; Newton, Richard; Phan, Lam T; Zhang, Zongfeng; Jaithiang, Jintana; Dao, Hai M; Phu, Tran M; Little, David C; Murray, Francis J; Satapornvanit, Kriengkrai; Liu, Liping; Liu, Qigen; Haque, M Mahfujul; Kruijssen, Froukje; de Snoo, Geert R; Heijungs, Reinout; van Bodegom, Peter M; Guinée, Jeroen B
2015-12-15
We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia, and pangasius catfish in Bangladesh, China, Thailand, and Vietnam by using life cycle assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing different aquatic food products. Our starting hypothesis was that different production systems are associated with significantly different environmental impacts, as the production of these aquatic species differs in intensity and management practices. In order to test this hypothesis, we estimated each system's global warming, eutrophication, and freshwater ecotoxicity impacts. The contribution to these impacts and the overall dispersions relative to results were propagated by Monte Carlo simulations and dependent sampling. Paired testing showed significant (p < 0.05) differences between the median impacts of most production systems in the intraspecies comparisons, even after a Bonferroni correction. For the full distributions instead of only the median, only for Asian tiger shrimp did more than 95% of the propagated Monte Carlo results favor certain farming systems. The major environmental hot-spots driving the differences in environmental performance among systems were fishmeal from mixed fisheries for global warming, pond runoff and sediment discards for eutrophication, and agricultural pesticides, metals, benzalkonium chloride, and other chlorine-releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should therefore strive toward farming systems relying upon pelleted species-specific feeds, where the fishmeal inclusion is limited and sourced sustainably. Also, excessive nutrients should be recycled in integrated organic agriculture together with efficient aeration solutions powered by renewable energy sources.
Daouk, Silwan; Copin, Pierre-Jean; Rossi, Luca; Chèvre, Nathalie; Pfeifer, Hans-Rudolf
2013-09-01
The use of pesticides may lead to environmental problems, such as surface water pollution, with a risk for aquatic organisms. In the present study, a typical vineyard river of western Switzerland was first monitored to measure discharged loads, identify sources, and assess the dynamic of the herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Second, based on river concentrations, an associated environmental risk was calculated using laboratory tests and ecotoxicity data from the literature. Measured concentrations confirmed the mobility of these molecules with elevated peaks during flood events, up to 4970 ng/L. From April 2011 to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Compared with the existing literature, this load represents an important fraction (6-12%) of the estimated amount applied because of the steep vineyard slopes (∼10%). The associated risk of these compounds toward aquatic species was found to be negligible in the present study, as well as for other rivers in Switzerland. A growth stimulation was nevertheless observed for the algae Scenedesmus vacuolatus with low concentrations of glyphosate, which could indicate a risk of perturbation in aquatic ecosystems, such as eutrophication. The combination of field and ecotoxicity data allowed the performance of a realistic risk assessment for glyphosate and AMPA, which should be applied to other pesticide molecules. Copyright © 2013 SETAC.
Advancing the 3Rs in regulatory ecotoxicology: A pragmatic cross-sector approach.
Burden, Natalie; Benstead, Rachel; Clook, Mark; Doyle, Ian; Edwards, Peter; Maynard, Samuel K; Ryder, Kathryn; Sheahan, Dave; Whale, Graham; van Egmond, Roger; Wheeler, James R; Hutchinson, Thomas H
2016-07-01
The ecotoxicity testing of chemicals for prospective environmental safety assessment is an area in which a high number of vertebrates are used across a variety of industry sectors. Refining, reducing, and replacing the use of animals such as fish, birds, and amphibians for this purpose addresses the ethical concerns and the increasing legislative requirements to consider alternative test methods. Members of the UK-based National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) Ecotoxicology Working Group, consisting of representatives from academia, government organizations, and industry, have worked together over the past 6 y to provide evidence bases to support and advance the application of the 3Rs in regulatory ecotoxicity testing. The group recently held a workshop to identify the areas of testing, demands, and drivers that will have an impact on the future of animal use in regulatory ecotoxicology. As a result of these discussions, we have developed a pragmatic approach to prioritize and realistically address key opportunity areas, to enable progress toward the vision of a reduced reliance on the use of animals in this area of testing. This paper summarizes the findings of this exercise and proposes a pragmatic strategy toward our key long-term goals-the incorporation of reliable alternatives to whole-organism testing into regulations and guidance, and a culture shift toward reduced reliance on vertebrate toxicity testing in routine environmental safety assessment. Integr Environ Assess Manag 2016;12:417-421. © 2015 SETAC. © 2015 SETAC.
Kołtowski, Michał; Charmas, Barbara; Skubiszewska-Zięba, Jadwiga; Oleszczuk, Patryk
2017-02-01
The objective of the study was to determine the effect of various methods of biochar activation on the ecotoxicity of soils with various properties and with various content and origin of contaminants. The biochar produced from willow (at 700°C) was activated by 1) microwaves (in a microwave reactor under an atmosphere of water vapour), 2) carbon dioxide (in the quartz fluidized bed reactor) and 3) superheated steam (in the quartz fluidized bed reactor). Three different soils were collected from industrial areas. The soils were mixed with biochar and activated biochars at the dose of 5% and ecotoxicological parameters of mixture was evaluated using two solid phase test - Phytotoxkit F (Lepidium sativum) and Collembolan test (Folsomia candida) and one liquid phase test - Microtox® (Vibrio fischeri). Biochar activation had both positive and negative impacts, depending on the activation method, kind of bioassay and kind of soil. Generally, biochar activated by microwaves increased the effectiveness of ecotoxicity reduction relative to non-activated biochars. Whereas, biochar activated with CO 2 most often cause a negative effect manifested by deterioration or as a lack of improvement in relation to non-activated biochar or to non-amended soil. It was also demonstrated that the increase of biochar specific surface area caused a significant reduction of toxicity of water leachates from the studied soils. Effectiveness of the reduction of leachate toxicity was weakened in the presence of dissolved organic carbon in the soil. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling
2014-01-01
In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants.
Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling
2014-01-01
In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants. PMID:25111307
An automated benchmarking platform for MHC class II binding prediction methods.
Andreatta, Massimo; Trolle, Thomas; Yan, Zhen; Greenbaum, Jason A; Peters, Bjoern; Nielsen, Morten
2018-05-01
Computational methods for the prediction of peptide-MHC binding have become an integral and essential component for candidate selection in experimental T cell epitope discovery studies. The sheer amount of published prediction methods-and often discordant reports on their performance-poses a considerable quandary to the experimentalist who needs to choose the best tool for their research. With the goal to provide an unbiased, transparent evaluation of the state-of-the-art in the field, we created an automated platform to benchmark peptide-MHC class II binding prediction tools. The platform evaluates the absolute and relative predictive performance of all participating tools on data newly entered into the Immune Epitope Database (IEDB) before they are made public, thereby providing a frequent, unbiased assessment of available prediction tools. The benchmark runs on a weekly basis, is fully automated, and displays up-to-date results on a publicly accessible website. The initial benchmark described here included six commonly used prediction servers, but other tools are encouraged to join with a simple sign-up procedure. Performance evaluation on 59 data sets composed of over 10 000 binding affinity measurements suggested that NetMHCIIpan is currently the most accurate tool, followed by NN-align and the IEDB consensus method. Weekly reports on the participating methods can be found online at: http://tools.iedb.org/auto_bench/mhcii/weekly/. mniel@bioinformatics.dtu.dk. Supplementary data are available at Bioinformatics online.
Updating Risk Prediction Tools: A Case Study in Prostate Cancer
Ankerst, Donna P.; Koniarski, Tim; Liang, Yuanyuan; Leach, Robin J.; Feng, Ziding; Sanda, Martin G.; Partin, Alan W.; Chan, Daniel W; Kagan, Jacob; Sokoll, Lori; Wei, John T; Thompson, Ian M.
2013-01-01
Online risk prediction tools for common cancers are now easily accessible and widely used by patients and doctors for informed decision-making concerning screening and diagnosis. A practical problem is as cancer research moves forward and new biomarkers and risk factors are discovered, there is a need to update the risk algorithms to include them. Typically the new markers and risk factors cannot be retrospectively measured on the same study participants used to develop the original prediction tool, necessitating the merging of a separate study of different participants, which may be much smaller in sample size and of a different design. Validation of the updated tool on a third independent data set is warranted before the updated tool can go online. This article reports on the application of Bayes rule for updating risk prediction tools to include a set of biomarkers measured in an external study to the original study used to develop the risk prediction tool. The procedure is illustrated in the context of updating the online Prostate Cancer Prevention Trial Risk Calculator to incorporate the new markers %freePSA and [−2]proPSA measured on an external case control study performed in Texas, U.S.. Recent state-of-the art methods in validation of risk prediction tools and evaluation of the improvement of updated to original tools are implemented using an external validation set provided by the U.S. Early Detection Research Network. PMID:22095849
Updating risk prediction tools: a case study in prostate cancer.
Ankerst, Donna P; Koniarski, Tim; Liang, Yuanyuan; Leach, Robin J; Feng, Ziding; Sanda, Martin G; Partin, Alan W; Chan, Daniel W; Kagan, Jacob; Sokoll, Lori; Wei, John T; Thompson, Ian M
2012-01-01
Online risk prediction tools for common cancers are now easily accessible and widely used by patients and doctors for informed decision-making concerning screening and diagnosis. A practical problem is as cancer research moves forward and new biomarkers and risk factors are discovered, there is a need to update the risk algorithms to include them. Typically, the new markers and risk factors cannot be retrospectively measured on the same study participants used to develop the original prediction tool, necessitating the merging of a separate study of different participants, which may be much smaller in sample size and of a different design. Validation of the updated tool on a third independent data set is warranted before the updated tool can go online. This article reports on the application of Bayes rule for updating risk prediction tools to include a set of biomarkers measured in an external study to the original study used to develop the risk prediction tool. The procedure is illustrated in the context of updating the online Prostate Cancer Prevention Trial Risk Calculator to incorporate the new markers %freePSA and [-2]proPSA measured on an external case-control study performed in Texas, U.S.. Recent state-of-the art methods in validation of risk prediction tools and evaluation of the improvement of updated to original tools are implemented using an external validation set provided by the U.S. Early Detection Research Network. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Efficacy of Violence Prediction: A Meta-Analytic Comparison of Nine Risk Assessment Tools
ERIC Educational Resources Information Center
Yang, Min; Wong, Stephen C. P.; Coid, Jeremy
2010-01-01
Actuarial risk assessment tools are used extensively to predict future violence, but previous studies comparing their predictive accuracies have produced inconsistent findings as a result of various methodological issues. We conducted meta-analyses of the effect sizes of 9 commonly used risk assessment tools and their subscales to compare their…
The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...
Parry, S; Denehy, L; Berney, S; Browning, L
2014-03-01
(1) To determine the ability of the Melbourne risk prediction tool to predict a pulmonary complication as defined by the Melbourne Group Scale in a medically defined high-risk upper abdominal surgery population during the postoperative period; (2) to identify the incidence of postoperative pulmonary complications; and (3) to examine the risk factors for postoperative pulmonary complications in this high-risk population. Observational cohort study. Tertiary Australian referral centre. 50 individuals who underwent medically defined high-risk upper abdominal surgery. Presence of postoperative pulmonary complications was screened daily for seven days using the Melbourne Group Scale (Version 2). Postoperative pulmonary risk prediction was calculated according to the Melbourne risk prediction tool. (1) Melbourne risk prediction tool; and (2) the incidence of postoperative pulmonary complications. Sixty-six percent (33/50) underwent hepatobiliary or upper gastrointestinal surgery. Mean (SD) anaesthetic duration was 377.8 (165.5) minutes. The risk prediction tool classified 84% (42/50) as high risk. Overall postoperative pulmonary complication incidence was 42% (21/50). The tool was 91% sensitive and 21% specific with a 50% chance of correct classification. This is the first study to externally validate the Melbourne risk prediction tool in an independent medically defined high-risk population. There was a higher incidence of pulmonary complications postoperatively observed compared to that previously reported. Results demonstrated poor validity of the tool in a population already defined medically as high risk and when applied postoperatively. This observational study has identified several important points to consider in future trials. Copyright © 2013 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.
Rotini, A; Gallo, A; Parlapiano, I; Berducci, M T; Boni, R; Tosti, E; Prato, E; Maggi, C; Cicero, A M; Migliore, L; Manfra, L
2018-01-01
Metal oxide nanoparticles, among them copper oxide nanoparticles (CuO NPs), are widely used in different applications (e.g. batteries, gas sensors, superconductors, plastics and metallic coatings), increasing their potential release in the environment. In aquatic matrix, the behavior of CuO NPs may strongly change, depending on their surface charge and some physical-chemical characteristics of the medium (e.g. ionic strength, salinity, pH and natural organic matter content). Ecotoxicity of CuO NPs to aquatic organisms was mainly studied on freshwater species, few tests being performed on marine biota. The aim of this study was to assess the toxicity of CuO NPs on suitable indicator species, belonging to the ecologically relevant level of consumers. The selected bioassays use reference protocols to identify Effect/Lethal Concentrations (E(L)C), by assessing lethal and sub-lethal endpoints. Mortality tests were performed on rotifer (Brachionus plicatilis), shrimp (Artemia franciscana) and copepod (Tigriopus fulvus). While moult release failure and fertilization rate were studied, as sub-lethal endpoints, on T. fulvus and sea urchin (Paracentrotus lividus), respectively. The size distribution and sedimentation rates of CuO NPs, together with the copper dissolution, were also analyzed in the exposure media. The CuO NP ecotoxicity assessment showed a concentration-dependent response for all species, indicating similar mortality for B. plicatilis (48hLC 50 = 16.94 ± 2.68mg/l) and T. fulvus (96hLC 50 = 12.35 ± 0.48mg/l), followed by A. franciscana (48hLC 50 = 64.55 ± 3.54mg/l). Comparable EC 50 values were also obtained for the sub-lethal endpoints in P. lividus (EC 50 = 2.28 ± 0.06mg/l) and T. fulvus (EC 50 = 2.38 ± 0.20mg/l). Copper salts showed higher toxicity than CuO NPs for all species, with common sensitivity trend as follows: P. lividus ≥ T. fulvus (sublethal endpoint) ≥ B. plicatilis >T. fulvus (lethal endpoint) >A. franciscana. CuO NP micrometric aggregates and high sedimentation rates were observed in the exposure media, with different particle size distributions depending on the medium. The copper dissolution was about 0.16% of the initial concentration, comparable to literature values. The integrated ecotoxicological-physicochemical approach was used to better describe CuO NP toxicity and behavior. In particular, the successful application of ecotoxicological reference protocols allowed to produce reliable L(E)C data useful to identify thresholds and assess potential environmental hazard due to NPs. Copyright © 2017 Elsevier Inc. All rights reserved.
A community resource benchmarking predictions of peptide binding to MHC-I molecules.
Peters, Bjoern; Bui, Huynh-Hoa; Frankild, Sune; Nielson, Morten; Lundegaard, Claus; Kostem, Emrah; Basch, Derek; Lamberth, Kasper; Harndahl, Mikkel; Fleri, Ward; Wilson, Stephen S; Sidney, John; Lund, Ole; Buus, Soren; Sette, Alessandro
2006-06-09
Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools.
ClubSub-P: Cluster-Based Subcellular Localization Prediction for Gram-Negative Bacteria and Archaea
Paramasivam, Nagarajan; Linke, Dirk
2011-01-01
The subcellular localization (SCL) of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned SCLs. This and other problems in SCL prediction, such as the relatively high false-positive and false-negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing SCL prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false-positive and false-negative predictions. ClubSub-P can assign the SCL of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the SCL prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/ PMID:22073040
Mulhearn, Tyler J; Watts, Logan L; Todd, E Michelle; Medeiros, Kelsey E; Connelly, Shane; Mumford, Michael D
2017-01-01
Although recent evidence suggests ethics education can be effective, the nature of specific training programs, and their effectiveness, varies considerably. Building on a recent path modeling effort, the present study developed and validated a predictive modeling tool for responsible conduct of research education. The predictive modeling tool allows users to enter ratings in relation to a given ethics training program and receive instantaneous evaluative information for course refinement. Validation work suggests the tool's predicted outcomes correlate strongly (r = 0.46) with objective course outcomes. Implications for training program development and refinement are discussed.
Fate and bioaccumulation of isoproturon in outdoor aquatic microcosms.
Merlin, Gerard; Vuillod, Maryline; Lissolo, Thierry; Clement, Bernard
2002-06-01
To gain information concerning the ecotoxicity of isoproturon (IPU) on aquatic ecosystems, six experimental ponds of 5 m3 each were studied. All the experiments were conducted during the summer over two years. Three different types of ecosystems were tested in 1994 and one type of ecosystem was selected and repeated in 1995 with three replicates. In each case, the initial concentration of IPU contamination was set at 10 microg/L. The IPU concentration was determined in the water column and in different species (mainly plants) of the microcosms. A first-order kinetic decrease in IPU concentration was observed in 1994, with half-life ranging from 15 to 35 d, depending on the microcosms. This relatively fast decrease was also confirmed in 1995, but it reached a constant value after two months. A high variability of the IPU concentration was observed in exposed plants, with bioconcentration factors ranging from 100 to 1,200 with large coefficients of variation. The observed plant bioconcentration factors are higher than those predicted by usual numerical models, probably due to the specific binding of IPU on one protein of the photosynthetic apparatus. Our data show that bioconcentration does not occur in mollusks but is important in photosynthetic organisms. Plant bioconcentration and microbial biodegradation are the main processes involved in the IPU decay in our outdoor aquatic microcosms.
Experimental investigation to evaluate the potential environmental hazards of photovoltaic panels.
Tammaro, Marco; Salluzzo, Antonio; Rimauro, Juri; Schiavo, Simona; Manzo, Sonia
2016-04-05
Recently the potential environmental hazard of photovoltaic modules together with their management as waste has attracted the attention of scientists. Particular concern is aroused by the several metals contained in photovoltaic panels whose potential release in the environment were scarcely investigated. Here, for the first time, the potential environmental hazard of panels produced in the last 30 years was investigated through the assessment of up to 18 releasable metals. Besides, the corresponding ecotoxicological effects were also evaluated. Experimental data were compared with the current European and Italian law limits for drinking water, discharge on soil and landfill inert disposal in order to understand the actual pollution load. Results showed that less than 3% of the samples respected all law limits and around 21% was not ecotoxic. By considering the technological evolutions in manufacturing, we have shown that during the years crystalline silicon panels have lower tendency to release hazardous metals with respect to thin film panels. In addition, a prediction of the amounts of lead, chromium, cadmium and nickel releasable from next photovoltaic waste was performed. The prevision up to 2050 showed high amounts of lead (30t) and cadmium (2.9t) releasable from crystalline and thin film panels respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.
Leung, Yu Hang; Yung, Mana M N; Ng, Alan M C; Ma, Angel P Y; Wong, Stella W Y; Chan, Charis M N; Ng, Yip Hang; Djurišić, Aleksandra B; Guo, Muyao; Wong, Mabel Ting; Leung, Frederick C C; Chan, Wai Kin; Leung, Kenneth M Y; Lee, Hung Kay
2015-04-01
Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results. Copyright © 2015 Elsevier B.V. All rights reserved.
Peters, Adam; Lofts, Stephen; Merrington, Graham; Brown, Bruce; Stubblefield, William; Harlow, Keven
2011-11-01
Ecotoxicity tests were performed with fish, invertebrates, and algae to investigate the effect of water quality parameters on Mn toxicity. Models were developed to describe the effects of Mn as a function of water quality. Calcium (Ca) has a protective effect on Mn toxicity for both fish and invertebrates, and magnesium (Mg) also provides a protective effect for invertebrates. Protons have a protective effect on Mn toxicity to algae. The models derived are consistent with models of the toxicity of other metals to aquatic organisms in that divalent cations can act as competitors to Mn toxicity in fish and invertebrates, and protons act as competitors to Mn toxicity in algae. The selected models are able to predict Mn toxicity to the test organisms to within a factor of 2 in most cases. Under low-pH conditions invertebrates are the most sensitive taxa, and under high-pH conditions algae are most sensitive. The point at which algae become more sensitive than invertebrates depends on the Ca concentration and occurs at higher pH when Ca concentrations are low, because of the sensitivity of invertebrates under these conditions. Dissolved organic carbon concentrations have very little effect on the toxicity of Mn to aquatic organisms. Copyright © 2011 SETAC.
Mbeutcha, Aurélie; Mathieu, Romain; Rouprêt, Morgan; Gust, Kilian M; Briganti, Alberto; Karakiewicz, Pierre I; Shariat, Shahrokh F
2016-10-01
In the context of customized patient care for upper tract urothelial carcinoma (UTUC), decision-making could be facilitated by risk assessment and prediction tools. The aim of this study was to provide a critical overview of existing predictive models and to review emerging promising prognostic factors for UTUC. A literature search of articles published in English from January 2000 to June 2016 was performed using PubMed. Studies on risk group stratification models and predictive tools in UTUC were selected, together with studies on predictive factors and biomarkers associated with advanced-stage UTUC and oncological outcomes after surgery. Various predictive tools have been described for advanced-stage UTUC assessment, disease recurrence and cancer-specific survival (CSS). Most of these models are based on well-established prognostic factors such as tumor stage, grade and lymph node (LN) metastasis, but some also integrate newly described prognostic factors and biomarkers. These new prediction tools seem to reach a high level of accuracy, but they lack external validation and decision-making analysis. The combinations of patient-, pathology- and surgery-related factors together with novel biomarkers have led to promising predictive tools for oncological outcomes in UTUC. However, external validation of these predictive models is a prerequisite before their introduction into daily practice. New models predicting response to therapy are urgently needed to allow accurate and safe individualized management in this heterogeneous disease.
The development and testing of a skin tear risk assessment tool.
Newall, Nelly; Lewin, Gill F; Bulsara, Max K; Carville, Keryln J; Leslie, Gavin D; Roberts, Pam A
2017-02-01
The aim of the present study is to develop a reliable and valid skin tear risk assessment tool. The six characteristics identified in a previous case control study as constituting the best risk model for skin tear development were used to construct a risk assessment tool. The ability of the tool to predict skin tear development was then tested in a prospective study. Between August 2012 and September 2013, 1466 tertiary hospital patients were assessed at admission and followed up for 10 days to see if they developed a skin tear. The predictive validity of the tool was assessed using receiver operating characteristic (ROC) analysis. When the tool was found not to have performed as well as hoped, secondary analyses were performed to determine whether a potentially better performing risk model could be identified. The tool was found to have high sensitivity but low specificity and therefore have inadequate predictive validity. Secondary analysis of the combined data from this and the previous case control study identified an alternative better performing risk model. The tool developed and tested in this study was found to have inadequate predictive validity. The predictive validity of an alternative, more parsimonious model now needs to be tested. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
The aquatic animals' transcriptome resource for comparative functional analysis.
Chou, Chih-Hung; Huang, Hsi-Yuan; Huang, Wei-Chih; Hsu, Sheng-Da; Hsiao, Chung-Der; Liu, Chia-Yu; Chen, Yu-Hung; Liu, Yu-Chen; Huang, Wei-Yun; Lee, Meng-Lin; Chen, Yi-Chang; Huang, Hsien-Da
2018-05-09
Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/ .
Ecotoxicity and environmental safety related to nano-scale zerovalent iron remediation applications.
Semerád, Jaroslav; Cajthaml, Tomáš
2016-12-01
This mini-review summarizes the current information that has been published on the various effects of nano-scale zerovalent iron (nZVI) on microbial biota, with an emphasis on reports that highlight the positive aspects of its application or its stimulatory effects on microbiota. By nature, nZVI is a highly reactive substance; thus, the possibility of nZVI being toxic is commonly suspected. Accordingly, the cytotoxicity of nZVI and the toxicity of nZVI-related products have been detected by laboratory tests and documented in the literature. However, there are numerous other published studies on its useful nature, which are usually skipped in reviews that deal only with the phenomenon of toxicity. Therefore, the objective of this article is to review both recent publications reporting the toxic effects of nZVI on microbiota and studies documenting the positive effects of nZVI on various environmental remediation processes. Although cytotoxicity is an issue of general importance and relevance, nZVI can reduce the overall toxicity of a contaminated site, which ultimately results in the creation of better living conditions for the autochthonous microflora. Moreover, nZVI changes the properties of the site in a manner such that it can also be used as a tool in a tailor-made approach to support a specific microbial community for the decontamination of a particular polluted site.
Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials.
Bermejo-Nogales, A; Fernández-Cruz, M L; Navas, J M
2017-11-01
Risk assessment of engineered nanomaterials (ENMs) is being hindered by the sheer production volume of these materials. In this regard, the grouping and ranking of ENMs appears as a promising strategy. Here we sought to evaluate the usefulness of in vitro systems based on fish cell lines for ranking a set of ENMs on the basis of their cytotoxicity. We used the topminnow (Poeciliopsis lucida) liver cell line (PLHC-1) and the rainbow trout (Oncorhynchus mykiss) fibroblast-like gonadal cell line (RTG-2). ENMs were obtained from the EU Joint Research Centre repository. The size frequency distribution of ENM suspensions in cell culture media was characterized. Cytotoxicity was evaluated after 24 h of exposure. PLHC-1 cells exhibited higher sensitivity to the ENMs than RTG-2 cells. ZnO-NM was found to exert toxicity mainly by altering lysosome function and metabolic activity, while multi-walled carbon nanotubes (MWCNTs) caused plasma membrane disruption at high concentrations. The hazard ranking for toxicity (ZnO-NM > MWCNT ≥ CeO 2 -NM = SiO 2 -NM) was inversely related to the ranking in size detected in culture medium. Our findings reveal the suitability of fish cell lines for establishing hazard rankings of ENMs in the framework of integrated approaches to testing and assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
Van Hoeck, Arne; Horemans, Nele; Monsieurs, Pieter; Cao, Hieu Xuan; Vandenhove, Hildegarde; Blust, Ronny
2015-01-01
Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. The 472 Mbp assembly of the L. minor genome (2n = 40; estimated 481 Mbp; 98.1 %) contains 22,382 protein-coding genes and 61.5 % repetitive sequences. The repeat content explains 94.5 % of the genome size difference in comparison with the greater duckweed, Spirodela polyrhiza (2n = 40; 158 Mbp; 19,623 protein-coding genes; and 15.79 % repetitive sequences). Comparison of proteins from other monocot plants, protein ortholog identification, OrthoMCL, suggests 1356 duckweed-specific groups (3367 proteins, 15.0 % total L. minor proteins) and 795 Lemna-specific groups (2897 proteins, 12.9 % total L. minor proteins). Interestingly, proteins involved in biosynthetic processes in response to various stimuli and hydrolase activities are enriched in the Lemna proteome in comparison with the Spirodela proteome. The genome sequence and annotation of L. minor protein-coding genes provide new insights in biological understanding and biomass production applications of Lemna species.
Barjhoux, Iris; Fechner, Lise C; Lebrun, Jérémie D; Anzil, Adriana; Ayrault, Sophie; Budzinski, Hélène; Cachot, Jérôme; Charron, Laetitia; Chaumot, Arnaud; Clérandeau, Christelle; Dedourge-Geffard, Odile; Faburé, Juliette; François, Adeline; Geffard, Olivier; George, Isabelle; Labadie, Pierre; Lévi, Yves; Munoz, Gabriel; Noury, Patrice; Oziol, Lucie; Quéau, Hervé; Servais, Pierre; Uher, Emmanuelle; Urien, Nastassia; Geffard, Alain
2016-06-08
Quality assessment of environments under high anthropogenic pressures such as the Seine Basin, subjected to complex and chronic inputs, can only be based on combined chemical and biological analyses. The present study integrates and summarizes a multidisciplinary dataset acquired throughout a 1-year monitoring survey conducted at three workshop sites along the Seine River (PIREN-Seine program), upstream and downstream of the Paris conurbation, during four seasonal campaigns using a weight-of-evidence approach. Sediment and water column chemical analyses, bioaccumulation levels and biomarker responses in caged gammarids, and laboratory (eco)toxicity bioassays were integrated into four lines of evidence (LOEs). Results from each LOE clearly reflected an anthropogenic gradient, with contamination levels and biological effects increasing from upstream to downstream of Paris, in good agreement with the variations in the structure and composition of bacterial communities from the water column. Based on annual average data, the global hazard was summarized as "moderate" at the upstream station and as "major" at the two downstream ones. Seasonal variability was also highlighted; the winter campaign was least impacted. The model was notably improved using previously established reference and threshold values from national-scale studies. It undoubtedly represents a powerful practical tool to facilitate the decision-making processes of environment managers within the framework of an environmental risk assessment strategy.
Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.
Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion
2007-06-01
This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (p<0.05). The average peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (p<0.05), whereas target torque and predicted handle displacement did not show statistically significant differences. The study concluded that quantification of handle reaction force, rather than target torque alone, is necessary for identifying stressful power hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered.
Lee, Ciaran M; Davis, Timothy H; Bao, Gang
2018-04-01
What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Hale, Beverley; Gopalapillai, Yamini; Pellegrino, Amanda; Jennett, Tyson; Kikkert, Julie; Lau, Wilson; Schlekat, Christian; McLaughlin, Mike J
2017-12-01
The Existing Substances Regulation Risk Assessments by the European Union (EU RA) generated new toxicity data for soil organisms exposed to Ni added to sixteen field-collected soils with low background concentration of metals and varying physico-chemical soil characteristics. Using only effective cation exchange capacity (eCEC) as a bioavailability correction, chronic toxicity of Ni in soils with a wide range of characteristics could be predicted within a factor of two. The objective of the present study was to determine whether this was also the case for three independent data sets of Ni toxicity thresholds. Two of the data sets were from Community Based Risk Assessments in Port Colborne ON, and Sudbury ON (Canada) for soils containing elevated concentrations of Ni, Co and Cu arising from many decades of Ni mining, smelting and refining. The third data set was the Metals in Asia study of soluble Ni added to field soils in China. These data yielded 72 leached and aged EC 10 /NOEC values for soil Ni, for arthropods, higher plants and woodlot structure and function. These were reduced to nine most sensitive single or geometric mean species/function endpoints, none of which were lower than the HC 5 predicted for a soil with an eCEC of 20 cmol/kg. Most of these leached and aged EC 10 /NOEC values were from soils co-contaminated with Cu, in some cases at its median HC 5 as predicted by the EU RA from soil characteristics. We conclude that the EU RA is protective of Ni toxicity to higher-tier ecological endpoints, including in mixture with Cu, before the assessment factor of 2 is applied. We suggest that for prospective risk assessment, the bioavailability based PNEC (HC 5 /2) be used as a conservative screen, but for retrospective and site-specific risk assessment, the bioavailability based HC 5 is sufficient. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zabor, Emily C; Coit, Daniel; Gershenwald, Jeffrey E; McMasters, Kelly M; Michaelson, James S; Stromberg, Arnold J; Panageas, Katherine S
2018-02-22
Prognostic models are increasingly being made available online, where they can be publicly accessed by both patients and clinicians. These online tools are an important resource for patients to better understand their prognosis and for clinicians to make informed decisions about treatment and follow-up. The goal of this analysis was to highlight the possible variability in multiple online prognostic tools in a single disease. To demonstrate the variability in survival predictions across online prognostic tools, we applied a single validation dataset to three online melanoma prognostic tools. Data on melanoma patients treated at Memorial Sloan Kettering Cancer Center between 2000 and 2014 were retrospectively collected. Calibration was assessed using calibration plots and discrimination was assessed using the C-index. In this demonstration project, we found important differences across the three models that led to variability in individual patients' predicted survival across the tools, especially in the lower range of predictions. In a validation test using a single-institution data set, calibration and discrimination varied across the three models. This study underscores the potential variability both within and across online tools, and highlights the importance of using methodological rigor when developing a prognostic model that will be made publicly available online. The results also reinforce that careful development and thoughtful interpretation, including understanding a given tool's limitations, are required in order for online prognostic tools that provide survival predictions to be a useful resource for both patients and clinicians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starke, Michael R; Abdelaziz, Omar A; Jackson, Rogerick K
Residential Simulation Tool was developed to understand the impact of residential load consumption on utilities including the role of demand response. This is complicated as many different residential loads exist and are utilized for different purposes. The tool models human behavior and contributes this to load utilization, which contributes to the electrical consumption prediction by the tool. The tool integrates a number of different databases from Department of Energy and other Government websites to support the load consumption prediction.
Moser, Heidrun; Roembke, Joerg; Donnevert, Gerhild; Becker, Roland
2011-02-01
The ecotoxicological characterization of waste is part of its assessment as hazardous or non-hazardous according to the European Waste List. For this classification 15 hazard criteria are derived from the Council Directive 91/689/EEC on hazardous waste. Some of the hazard criteria are based on the content of dangerous substances. The criterion H14 'ecotoxic' lacks of an assessment and testing strategy and no specific threshold values have been defined so far. Based on the recommendations of CEN guideline 14735 (2005), an international round robin test (ring test) was organized by the German Federal Environment Agency in order to define suitable test methods for the biological assessment of waste and waste eluates. A basic test battery, consisting of three aquatic and three terrestrial tests, was compiled. In addition, data were submitted for ten additional tests (five aquatic (including a genotoxicity test) and five terrestrial ones). The tests were performed with three representative waste types: an ash from an incineration plant, a soil containing high concentrations of organic contaminants (polycyclic aromatic hydrocarbons) and a preserved wood waste. The results of this ring test confirm that a combination of a battery of biological tests and chemical residual analysis is needed for an ecotoxicological characterization of wastes. With small modifications the basic test battery is considered to be well suitable for the hazard and risk assessment of wastes and waste eluates. All results and documents are accessible via a web-based data bank application.
Environmental profile evaluations of piezoelectric polymers using life cycle assessment
NASA Astrophysics Data System (ADS)
Parvez Mahmud, M. A.; Huda, Nazmul; Hisan Farjana, Shahjadi; Lang, Candace
2018-05-01
Piezoelectric materials are indispensable to produce electricity, harvesting ambient mechanical energy through motion for sectors and products, from sensors, to biomedical systems, to tiny electronics. Nylon 66 and tetrafluoroethylene dominate the market among thousands of piezoelectric materials to provide an autonomous power supply. Emphasis has been given on investigating the environmental impacts of both materials due to the growing consciousness of the ecological and health risks of piezoelectric polymers. The fabrication steps of these polymers from raw materials are extremely hazardous to the environment in terms of toxicity and human health effects. However, no quantification of the possible environmental impacts for the manufacturing of nylon 66 and tetrafluoroethylene exists. This research paper addresses their comparative environmental effects, in terms of chemical constituents. Life cycle impact analysis has been carried out by ReCipe 2016 Endpoint, Ecopoints 97, Raw material flows and CML-IA baseline methods, using Australasian life cycle inventory database and SimaPro software. The impacts are considered in categories like global warming, eutrophication, terrestrial ecotoxicity, human carcinogenic toxicity, fine particulates, and marine ecotoxicity. The results show that there is a significant environmental impact caused by tetrafluoroethylene in comparison with nylon 66 polymer during the manufacturing process. These impacts occur due to the quantity of toxic chemical elements present as constituents of tetrafluoroethylene raw material and its fabrication periods. It can be anticipated that a better ecological performance can be attained through optimization, especially by cautiously picking substitute materials and machines, taking into account the toxicity aspects, and by minimizing the impacts related to designs, fabrication processes and usage.
Assessing the reliability of ecotoxicological studies: An overview of current needs and approaches.
Moermond, Caroline; Beasley, Amy; Breton, Roger; Junghans, Marion; Laskowski, Ryszard; Solomon, Keith; Zahner, Holly
2017-07-01
In general, reliable studies are well designed and well performed, and enough details on study design and performance are reported to assess the study. For hazard and risk assessment in various legal frameworks, many different types of ecotoxicity studies need to be evaluated for reliability. These studies vary in study design, methodology, quality, and level of detail reported (e.g., reviews, peer-reviewed research papers, or industry-sponsored studies documented under Good Laboratory Practice [GLP] guidelines). Regulators have the responsibility to make sound and verifiable decisions and should evaluate each study for reliability in accordance with scientific principles regardless of whether they were conducted in accordance with GLP and/or standardized methods. Thus, a systematic and transparent approach is needed to evaluate studies for reliability. In this paper, 8 different methods for reliability assessment were compared using a number of attributes: categorical versus numerical scoring methods, use of exclusion and critical criteria, weighting of criteria, whether methods are tested with case studies, domain of applicability, bias toward GLP studies, incorporation of standard guidelines in the evaluation method, number of criteria used, type of criteria considered, and availability of guidance material. Finally, some considerations are given on how to choose a suitable method for assessing reliability of ecotoxicity studies. Integr Environ Assess Manag 2017;13:640-651. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
NASA Astrophysics Data System (ADS)
You, Y.; Wang, L.; Poulson, S.; Wang, X.; Xing, B.; Yang, Y.
2015-12-01
Due to their unique electrical, optical and mechanical properties, carbon nanotubes (CNTs) have been substantially produced and widely applied during the past decades, leading to their increased probability of entering the environment. Some estimation suggests that CNTs are accumulated in agricultural systems with their soil concentration increasing by 0.4-157 ng/kg/year. This has raised concerns about environmental impacts of these emerging contaminants including their ecotoxicity. Meanwhile, transformation of CNTs in the environment can significantly affect their transport, bioavailability and thereby ecotoxicity. So far, environmental biodegradation of CNTs remains obscure. Given the high diversity of soil microorganisms and their metabolic potentials, it is important to investigate microbial biodegradation of CNTs under various environmental conditions. This study focuses on an aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, as a model microorganism capable of ring cleavage. We hypothesize that bacterial activities could transform CNTs to more hydrophilic forms, increasing their aqueous stability and environmental reactivity. We incubated M. vanbaalenii PYR-1 with 13C-labeded multiwall carbon nanotubes (MWCNTs) for 30 days, monitored δ13C in the system, characterized MWCNTs before and after the reaction, and compared the results with culture-negative controls. To investigate effects of various environmental conditions, including the presence of extracellular oxidative enzymes from white-rot fungi, additional experiments will be conducted and results compared will be compared among different setups. Moreover, we will measure adverse impacts of CNTs on the metabolic activities of M. vanbaalenii PYR-1, particularly its biodegradation of polycyclic aromatic hydrocarbons.
Hayasaka, Daisuke; Korenaga, Tomoko; Suzuki, Kazutaka; Sánchez-Bayo, Francisco; Goka, Koichi
2012-03-01
Differences in susceptibility of five cladocerans to the neonicotinoid imidacloprid and the phenyl-pyrazole fipronil, which have been dominantly used in rice fields of Japan in recent years, were examined based on short-term (48-h), semi-static acute immobilization exposure tests. Additionally, we compared the species sensitivity distribution (SSD) patterns of both insecticides between two sets of species: the five tested cladocerans and all other aquatic organisms tested so far, using data from the ECOTOX database of U.S. Environmental Protection Agency (USEPA). The sensitivity of the test species to either imidacloprid or fipronil was consistent, spanning similar orders of magnitude (100 times). At the genus level, sensitivities to both insecticides were in the following descending order: Ceriodaphnia > Moina > Daphnia. A positive relationship was found between body lengths of each species and the acute toxicity (EC(50)) of the insecticides, in particular fipronil. Differences in SSD patterns of imidacloprid were found between the species groups compared, indicating that test cladocerans are much less susceptible than other aquatic species including amphibians, crustaceans, fish, insects, mollusks and worms. However, the SSD patterns for fipronil indicate no difference in sensitivity between cladocerans tested and other aquatic organisms despite the greater exposure, which overestimates the results, of our semi-static tests. From these results, Ceriodaphnia sp. should be considered as more sensitive bioindicators (instead of the standard Daphnia magna) for ecotoxicological assessments of aquatic ecosystems. In addition, we propose that ecotoxicity data associated with differences in susceptibility among species should be investigated whenever pesticides have different physicochemical properties and mode of action.
Kadirova, Zukhra C; Hojamberdiev, Mirabbos; Katsumata, Ken-ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi
2014-03-01
TiO2-supported activated carbon felts (TiO2-ACFTs) were prepared by dip coating of felts composed of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) and/or a polyethylene pulp (PE-W15) in a TiO2 aqueous suspension followed by calcination at 250 °C for 1 h. The as-prepared TiO2-ACFTs with 29-35 wt.% TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption. The TiO2-ACFT(PS-A20) samples with 0 and 29 wt.% TiO2 were microporous with specific surface areas (S BET) of 996 and 738 m(2)/g, respectively, whereas the TiO2-ACFT(PE-W15) samples with 0 and 35 wt.% TiO2 were mesoporous with S BET of 826 and 586 m(2)/g, respectively. Adsorption and photocatalytic activity of the as-prepared samples were evaluated by measuring adsorption in the dark and photodegradation of gaseous acetaldehyde (AcH) and methylene blue (MB) in aqueous solution under UV light. The TiO2 loading caused a considerable decrease in the S BET and MB adsorption capacity along with an increase in MB photodegradation and AcH mineralization. Lemna minor was chosen as a representative aquatic plant for ecotoxicity tests measuring detoxification of water obtained from the MB photodegradation reaction with the TiO2-ACFT samples under UV light.
An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment.
Johnson, Andrew C; Donnachie, Rachel L; Sumpter, John P; Jürgens, Monika D; Moeckel, Claudia; Pereira, M Gloria
2017-12-01
This work presents a new and unbiased method of risk ranking chemicals based on the threat they pose to the aquatic environment. The study ranked 12 metals, 23 pesticides, 11 other persistent organic pollutants (POPs), 13 pharmaceuticals, 10 surfactants and similar compounds and 2 nanoparticles (total of 71) of concern against one another by comparing their median UK river water and median ecotoxicity effect concentrations. To complement this, by giving an assessment on potential wildlife impacts, risk ranking was also carried out by comparing the lowest 10th percentile of the effects data with the highest 90th percentile of the exposure data. In other words, risk was pared down to just toxicity versus exposure. Further modifications included incorporating bioconcentration factors, using only recent water measurements and excluding either lethal or sub-lethal effects. The top ten chemicals, based on the medians, which emerged as having the highest risk to organisms in UK surface waters using all the ecotoxicity data were copper, aluminium, zinc, ethinylestradiol (EE2), linear alkylbenzene sulfonate (LAS), triclosan, manganese, iron, methomyl and chlorpyrifos. By way of contrast, using current UK environmental quality standards as the comparator to median UK river water concentrations would have selected 6 different chemicals in the top ten. This approach revealed big differences in relative risk; for example, zinc presented a million times greater risk then metoprolol and LAS 550 times greater risk than nanosilver. With the exception of EE2, most pharmaceuticals were ranked as having a relatively low risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecotoxicity and biodegradability of new brominated flame retardants: a review.
Ezechiáš, M; Covino, S; Cajthaml, T
2014-12-01
Brominated flame retardants (BFRs) have been routinely used as additives in a number of consumer products for several decades in order to reduce the risk of fire accidents. Concerns about the massive use of these substances have increased due to their possible toxicity, endocrine disrupting properties and occurrence in almost all the environmental compartments, including humans and wildlife organisms. Several conventional BFRs (e.g. polybrominated diphenylethers (PBDE)) have been included in the list of Persistent Organic Pollutants and their use has been restricted because of their established toxicity and environmental persistence. Over the past few years, these compounds have been replaced with "new" BFRs (NBFRs). Despite the fact that NBFRs are different chemical molecules than traditional BFRs, most of physical-chemical properties (e.g. aromatic moiety, halogen substitution, lipophilic character) are common to both groups; therefore, their fate in the environment is potentially similar to the banned BFRs. Therefore, this article has been compiled to summarize the published scientific data regarding the biodegradability of the most widely used NBFRs, a key factor in their potential persistency in the environment, and their ecotoxicological effects on humans and test organisms. The data reviewed here document that the mechanisms through NBFRs exibit their ecotoxicity and the processes leading to their biotransformation in the environment are still poorly understood. Thus emphasis is placed on the need for further research in these areas is therefore emphasized, in order to avoid the massive use of further potentially harmful and recalcitrant substances of anthropogenic origin. Copyright © 2014 Elsevier Inc. All rights reserved.
How reliable are data for the ecotoxicity of trivalent chromium to Daphnia magna?
Ponti, Benedetta; Bettinetti, Roberta; Dossi, Carlo; Vignati, Davide Anselmo Luigi
2014-10-01
Risk assessments from the European Union and the World Health Organization report values for acute and chronic toxicity of Cr(III) to Daphnia magna in the range of 0.6 mg/L to 111 mg/L and 0.047 mg/L to 3.4 mg/L, respectively. To understand whether factors other than the use of different test media and data reporting contribute to this variability, the authors tested the acute (48-h) and chronic (21-d) toxicities of Cr(III) to D. magna according to Organisation for Economic Co-operation and Development (OECD) methods. Filterable (0.45-µm) chromium concentrations were measured at 0 h, 6 h, 24 h, and 48 h, the latter value corresponding to the total duration of the acute tests and to the interval between medium renewals in chronic tests. In highly alkaline media (4.9 meq/L), Cr concentrations decreased rapidly below the analytical detection limit, and no toxicity was observed. In less alkaline media (approximately 0.8 meq/L), the decrease in filterable Cr concentrations was inversely proportional to the quantity of added Cr(III). The authors concluded that existing data likely underestimate the ecotoxicity of Cr(III) to D. magna. A reliable assessment of the hazard of Cr(III) to D. magna must consider that exposure concentrations can decrease markedly from the beginning to the end of a test and that medium alkalinity strongly influences the outcome of laboratory toxicity tests. © 2014 SETAC.
Automation of daphtoxkit-F biotest using a microfluidic lab-on-a-chip technology
NASA Astrophysics Data System (ADS)
Huang, Yushi; Nugegoda, Dayanthi; Wlodkowic, Donald
2015-12-01
An increased rigor in water quality monitoring is not only a legal requirement, but is also critical to ensure timely chemical hazard emergency responses and protection of human and animal health. Bioindication is a method that applies very sensitive living organisms to detect environmental changes using their natural responses. Although bioindicators do not deliver information on an exact type or intensity of toxicants present in water samples, they do provide an overall snapshot and early-warning information about presence of harmful and dangerous parameters. Despite the advantages of biotests performed on sentinel organisms, their wider application is limited by the nonexistence of high-throughput laboratory automation systems. As a result majority of biotests used in ecotoxicology require time-consuming and laborious manual procedures. In this work, we present development of a miniaturized Lab-on-a-Chip (LOC) platform for automation and enhancement of acute ecotoxicity test based on immobilization of a freshwater crustacean Daphnia magna (Daphtoxkit-FTM). Daphnids' immobilization in response to sudden changes in environment parameters is fast, unambiguous, and easy to record optically. We also for the first time demonstrate that LOC system enables studies of sub-lethal ecotoxic effects using behavioral responses of Daphnia magna as sentinels of water pollution. The system working principle incorporated a high definition (HD) time-resolved video data analysis to dynamically assess impact of the reference toxicant on swimming behavior of D. magna. Our system design combined: (i) microfluidic device for caging of Daphnia sp.; (ii) mechatronic interface for fluidic actuation; (iii) video data acquisition; and (iv) algorithms for animal movement tracking and analysis.
Cuervo Lumbaque, Elisabeth; Gomes, Monike Felipe; Da Silva Carvalho, Vanessa; de Freitas, Adriane Martins; Tiburtius, Elaine Regina Lopes
2017-03-01
This research paper describes the study of a reduction-oxidation system using commercial steel wool (Fe 0 ) and H 2 O 2 for degradation of the dye Reactive Black 5 and aromatic compounds in water. The reductive process alone allowed the almost complete removal of color (97 ± 1 %) after 60 min of reaction. The decrease in spectral area (λ = 599 nm) associated with the chromophore group indicates breakage of the azo bonds. Moreover, the significant change in UV spectra can be associated with the formation of aromatic amines. Regarding the transformation products, a spectrophotometric method based on the diazotization reaction was employed to identify aromatic amines after reductive process, using sulfanilic acid as a model of aromatic amines. In addition, association with Fenton reagents improved the efficiency in the system with 93 ± 1 % degradation of intermediates formed during the reductive process. Ecotoxicological analysis revealed that the dye solution, after the reductive and oxidative processes, was not toxic to Lactuca sativa seeds. For Daphnia magna, the EC 50 (%) values observed revealed that dye solution has an EC 50 (%) = 74.1 and after reductive process, the toxicity increased (EC 50 (%) = 63.5), which might be related to the formation of aromatic amines. However, after the Fenton process, the EC 50 (%) was >100. These results demonstrated that the Fenton reaction using steel wool as an iron source was very efficient to decrease color, aromatic transformation products, and the ecotoxicity of Reactive Black 5 in solution.
Overholt, Will A.; Marks, Kala P.; Romero, Isabel C.; Hollander, David J.; Snell, Terry W.
2015-01-01
The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration. PMID:26546426
Prioritizing material recovery for end-of-life printed circuit boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xue, E-mail: xxw6590@rit.edu; Gaustad, Gabrielle, E-mail: gabrielle.gaustad@rit.edu
2012-10-15
Highlights: Black-Right-Pointing-Pointer Material recovery driven by composition, choice of ranking, and weighting. Black-Right-Pointing-Pointer Economic potential for new recycling technologies quantified for several metrics. Black-Right-Pointing-Pointer Indicators developed for materials incurring high eco-toxicity costs. Black-Right-Pointing-Pointer Methodology useful for a variety of stakeholders, particularly policy-makers. - Abstract: The increasing growth in generation of electronic waste (e-waste) motivates a variety of waste reduction research. Printed circuit boards (PCBs) are an important sub-set of the overall e-waste stream due to the high value of the materials contained within them and potential toxicity. This work explores several environmental and economic metrics for prioritizing the recovery ofmore » materials from end-of-life PCBs. A weighted sum model is used to investigate the trade-offs among economic value, energy saving potentials, and eco-toxicity. Results show that given equal weights for these three sustainability criteria gold has the highest recovery priority, followed by copper, palladium, aluminum, tin, lead, platinum, nickel, zinc, and silver. However, recovery priority will change significantly due to variation in the composition of PCBs, choice of ranking metrics, and weighting factors when scoring multiple metrics. These results can be used by waste management decision-makers to quantify the value and environmental savings potential for recycling technology development and infrastructure. They can also be extended by policy-makers to inform possible penalties for land-filling PCBs or exporting to the informal recycling sector. The importance of weighting factors when examining recovery trade-offs, particularly for policies regarding PCB collection and recycling are explored further.« less
Somensi, Cleder A; Simionatto, Edésio L; Bertoli, Sávio L; Wisniewski, Alberto; Radetski, Claudemir M
2010-03-15
In this study, ozonation of raw textile wastewater was conducted in a pilot-scale plant and the efficiency of this treatment was evaluated based on the parameters color removal and soluble organic matter measured as chemical oxygen demand (COD), at two pH values (9.1 and 3.0). Identification of intermediate and final degradation products of ozone pre-treatment, as well as the evaluation of the final ecotoxicity (Lumistox test) of pre-treated wastewater, was also carried out. After 4h of ozone treatment with wastewater recirculation (flow rate of 0.45 m(3)h(-1)) the average efficiencies for color removal were 67.5% (pH 9.1) and 40.6% (pH 3.0), while COD reduction was 25.5% (pH 9.1) and 18.7% (pH 3.0) for an ozone production capacity of 20 g h(-1). Furthermore, ozonation enhances the biodegradability of textile wastewater (BOD(5)/COD ratios) by a factor of up to 6.8-fold. A GC-MS analysis of pre-treated textile wastewater showed that some products were present at the end of the pre-treatment time. In spite of this fact, the bacterial luminescence inhibition test (Lumistox test) showed a significant toxicity reduction on comparing the raw and treated textile wastewater. In conclusion, pre-ozonation of textile wastewater is an important step in terms of improving wastewater biodegradability, as well as reducing acute ecotoxicity, which should be removed completely through sequential biological treatment. (c) 2009. Published by Elsevier B.V.
Compostability assessment of nano-reinforced poly(lactic acid) films.
Balaguer, M P; Aliaga, C; Fito, C; Hortal, M
2016-02-01
Nanomaterials can provide plastics with great advantages on mechanical and active properties (i.e. release and capture of specific substances). Therefore, packaging is expected to become one of the leading applications for these substances by 2020. There are some applications already in the market. Nevertheless, there is still some areas under development. A key issue to be analyzed is the end-of-life of these materials once they become waste, and specifically when nanomaterials are used in biodegradable products. The present study evaluated the disintegration, biodegradability, and ecotoxicity of poly(lactic acid) films reinforced with the three following nanomaterials: (1) montmorillonite modified with an ammonium quaternary salt, (2) calcium carbonate and (3) silicon dioxide. Results on disintegration showed that films completely disintegrated into visually indistinguishable residues after 6-7weeks of incubation in composting environment. Moreover, no differences were observed in the evolution of the bioresidue with respect to color, aspect, and odor in comparison with the control. It was also observed that nanomaterials did not significantly reduce the level of biodegradability of PLA (p>0.05). In fact, biodegradation was higher, without finding significant differences (p>0.05), in all the nano-reinforced samples with respect to PLA after 130days in composting (9.4% in PLA+Nano-SiO2; 34.0% in PLA+Clay1; 48.0% in PLA+Nano-CaCO3). Finally, no significant differences (p>0.05) in ecotoxicity in plants were observed as a result of the incorporation of nanoparticles in the PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cohen-Stavi, Chandra; Leventer-Roberts, Maya; Balicer, Ran D
2017-01-01
Objective To directly compare the performance and externally validate the three most studied prediction tools for osteoporotic fractures—QFracture, FRAX, and Garvan—using data from electronic health records. Design Retrospective cohort study. Setting Payer provider healthcare organisation in Israel. Participants 1 054 815 members aged 50 to 90 years for comparison between tools and cohorts of different age ranges, corresponding to those in each tools’ development study, for tool specific external validation. Main outcome measure First diagnosis of a major osteoporotic fracture (for QFracture and FRAX tools) and hip fractures (for all three tools) recorded in electronic health records from 2010 to 2014. Observed fracture rates were compared to probabilities predicted retrospectively as of 2010. Results The observed five year hip fracture rate was 2.7% and the rate for major osteoporotic fractures was 7.7%. The areas under the receiver operating curve (AUC) for hip fracture prediction were 82.7% for QFracture, 81.5% for FRAX, and 77.8% for Garvan. For major osteoporotic fractures, AUCs were 71.2% for QFracture and 71.4% for FRAX. All the tools underestimated the fracture risk, but the average observed to predicted ratios and the calibration slopes of FRAX were closest to 1. Tool specific validation analyses yielded hip fracture prediction AUCs of 88.0% for QFracture (among those aged 30-100 years), 81.5% for FRAX (50-90 years), and 71.2% for Garvan (60-95 years). Conclusions Both QFracture and FRAX had high discriminatory power for hip fracture prediction, with QFracture performing slightly better. This performance gap was more pronounced in previous studies, likely because of broader age inclusion criteria for QFracture validations. The simpler FRAX performed almost as well as QFracture for hip fracture prediction, and may have advantages if some of the input data required for QFracture are not available. However, both tools require calibration before implementation. PMID:28104610
Prediction of morbidity and mortality in patients with type 2 diabetes.
Wells, Brian J; Roth, Rachel; Nowacki, Amy S; Arrigain, Susana; Yu, Changhong; Rosenkrans, Wayne A; Kattan, Michael W
2013-01-01
Introduction. The objective of this study was to create a tool that accurately predicts the risk of morbidity and mortality in patients with type 2 diabetes according to an oral hypoglycemic agent. Materials and Methods. The model was based on a cohort of 33,067 patients with type 2 diabetes who were prescribed a single oral hypoglycemic agent at the Cleveland Clinic between 1998 and 2006. Competing risk regression models were created for coronary heart disease (CHD), heart failure, and stroke, while a Cox regression model was created for mortality. Propensity scores were used to account for possible treatment bias. A prediction tool was created and internally validated using tenfold cross-validation. The results were compared to a Framingham model and a model based on the United Kingdom Prospective Diabetes Study (UKPDS) for CHD and stroke, respectively. Results and Discussion. Median follow-up for the mortality outcome was 769 days. The numbers of patients experiencing events were as follows: CHD (3062), heart failure (1408), stroke (1451), and mortality (3661). The prediction tools demonstrated the following concordance indices (c-statistics) for the specific outcomes: CHD (0.730), heart failure (0.753), stroke (0.688), and mortality (0.719). The prediction tool was superior to the Framingham model at predicting CHD and was at least as accurate as the UKPDS model at predicting stroke. Conclusions. We created an accurate tool for predicting the risk of stroke, coronary heart disease, heart failure, and death in patients with type 2 diabetes. The calculator is available online at http://rcalc.ccf.org under the heading "Type 2 Diabetes" and entitled, "Predicting 5-Year Morbidity and Mortality." This may be a valuable tool to aid the clinician's choice of an oral hypoglycemic, to better inform patients, and to motivate dialogue between physician and patient.
Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.
2016-01-01
Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.
Knecht, Carolin; Mort, Matthew; Junge, Olaf; Cooper, David N.; Krawczak, Michael
2017-01-01
Abstract The in silico prediction of the functional consequences of mutations is an important goal of human pathogenetics. However, bioinformatic tools that classify mutations according to their functionality employ different algorithms so that predictions may vary markedly between tools. We therefore integrated nine popular prediction tools (PolyPhen-2, SNPs&GO, MutPred, SIFT, MutationTaster2, Mutation Assessor and FATHMM as well as conservation-based Grantham Score and PhyloP) into a single predictor. The optimal combination of these tools was selected by means of a wide range of statistical modeling techniques, drawing upon 10 029 disease-causing single nucleotide variants (SNVs) from Human Gene Mutation Database and 10 002 putatively ‘benign’ non-synonymous SNVs from UCSC. Predictive performance was found to be markedly improved by model-based integration, whilst maximum predictive capability was obtained with either random forest, decision tree or logistic regression analysis. A combination of PolyPhen-2, SNPs&GO, MutPred, MutationTaster2 and FATHMM was found to perform as well as all tools combined. Comparison of our approach with other integrative approaches such as Condel, CoVEC, CAROL, CADD, MetaSVM and MetaLR using an independent validation dataset, revealed the superiority of our newly proposed integrative approach. An online implementation of this approach, IMHOTEP (‘Integrating Molecular Heuristics and Other Tools for Effect Prediction’), is provided at http://www.uni-kiel.de/medinfo/cgi-bin/predictor/. PMID:28180317
Moon, Ji Hyun; Kim, Lee Oh; Kim, Hyeon Ju; Kong, Mi Hee
2016-11-01
We previously proposed the Predictive Index for Osteoporosis as a new index to identify men who require bone mineral density measurement. However, the previous study had limitations such as a single-center design and small sample size. Here, we evaluated the usefulness of the Predictive Index for Osteoporosis using the nationally representative data of the Korea National Health and Nutrition Examination Survey. Participants underwent bone mineral density measurements via dual energy X-ray absorptiometry, and the Predictive Index for Osteoporosis and Osteoporosis Self-Assessment Tool for Asians were assessed. Receiver operating characteristic analysis was used to obtain optimal cut-off points for the Predictive Index for Osteoporosis and Osteoporosis Self-Assessment Tool for Asians, and the predictability of osteoporosis for the 2 indices was compared. Both indices were useful clinical tools for identifying osteoporosis risk in Korean men. The optimal cut-off value for the Predictive Index for Osteoporosis was 1.07 (sensitivity, 67.6%; specificity, 72.7%; area under the curve, 0.743). When using a cut-off point of 0.5 for the Osteoporosis Self-Assessment Tool for Asians, the sensitivity and specificity were 71.9% and 64.0%, respectively, and the area under the curve was 0.737. The Predictive Index for Osteoporosis was as useful as the Osteoporosis Self-Assessment Tool for Asians as a screening index to identify candidates for dual energy X-ray absorptiometry among men aged 50-69 years.
2014-01-01
Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231
Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin
2014-04-28
It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.
Validation of Predictors of Fall Events in Hospitalized Patients With Cancer.
Weed-Pfaff, Samantha H; Nutter, Benjamin; Bena, James F; Forney, Jennifer; Field, Rosemary; Szoka, Lynn; Karius, Diana; Akins, Patti; Colvin, Christina M; Albert, Nancy M
2016-10-01
A seven-item cancer-specific fall risk tool (Cleveland Clinic Capone-Albert [CC-CA] Fall Risk Score) was shown to have a strong concordance index for predicting falls; however, validation of the model is needed. The aims of this study were to validate that the CC-CA Fall Risk Score, made up of six factors, predicts falls in patients with cancer and to determine if the CC-CA Fall Risk Score performs better than the Morse Fall Tool. Using a prospective, comparative methodology, data were collected from electronic health records of patients hospitalized for cancer care in four hospitals. Risk factors from each tool were recorded, when applicable. Multivariable models were created to predict the probability of a fall. A concordance index for each fall tool was calculated. The CC-CA Fall Risk Score provided higher discrimination than the Morse Fall Tool in predicting fall events in patients hospitalized for cancer management.
Virtual Beach: Decision Support Tools for Beach Pathogen Prediction
The Virtual Beach Managers Tool (VB) is decision-making software developed to help local beach managers make decisions as to when beaches should be closed due to predicted high levels of water borne pathogens. The tool is being developed under the umbrella of EPA's Advanced Monit...
A simple prediction tool for inhaled corticosteroid response in asthmatic children.
Wu, Yi-Fan; Su, Ming-Wei; Chiang, Bor-Luen; Yang, Yao-Hsu; Tsai, Ching-Hui; Lee, Yungling L
2017-12-07
Inhaled corticosteroids are recommended as the first-line controller medication for childhood asthma owing to their multiple clinical benefits. However, heterogeneity in the response towards these drugs remains a significant clinical problem. Children aged 5 to 18 years with mild to moderate persistent asthma were recruited into the Taiwanese Consortium of Childhood Asthma Study. Their responses to inhaled corticosteroids were assessed based on their improvements in the asthma control test and peak expiratory flow. The predictors of responsiveness were demographic and clinical features that were available in primary care settings. We have developed a prediction model using logistic regression and have simplified it to formulate a practical tool. We assessed its predictive performance using the area under the receiver operating characteristic curve. Of the 73 asthmatic children with baseline and follow-up outcome measurements for inhaled corticosteroids treatment, 24 (33%) were defined as non-responders. The tool we have developed consisted of three predictors yielding a total score between 0 and 5, which are comprised of the following parameters: the age at physician-diagnosis of asthma, sex, and exhaled nitric oxide. Sensitivity and specificity of the tool for prediction of inhaled corticosteroids non-responsiveness, for a score of 3, were 0.75 and 0.69, respectively. The areas under the receiver operating characteristic curve for the prediction tool was 0.763. Our prediction tool represents a simple and low-cost method for predicting the response of inhaled corticosteroids treatment in asthmatic children.
Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.
2008-01-01
A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.
Predicting Operator Execution Times Using CogTool
NASA Technical Reports Server (NTRS)
Santiago-Espada, Yamira; Latorella, Kara A.
2013-01-01
Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.
Assessing the Ecotoxicologic Hazards of a Pandemic Influenza Medical Response
Colizza, Vittoria; Schmitt, Heike; Andrews, Johanna; Balcan, Duygu; Huang, Wei E.; Keller, Virginie D.J.; Vespignani, Alessandro; Williams, Richard J.
2011-01-01
Background: The global public health community has closely monitored the unfolding of the 2009 H1N1 influenza pandemic to best mitigate its impact on society. However, little attention has been given to the impact of this response on the environment. Antivirals and antibiotics prescribed to treat influenza are excreted into wastewater in a biologically active form, which presents a new and potentially significant ecotoxicologic challenge to microorganisms responsible for wastewater nutrient removal in wastewater treatment plants (WWTPs) and receiving rivers. Objectives: We assessed the ecotoxicologic risks of a pandemic influenza medical response. Methods: To evaluate this risk, we coupled a global spatially structured epidemic model that simulates the quantities of antivirals and antibiotics used during an influenza pandemic of varying severity and a water quality model applied to the Thames catchment to determine predicted environmental concentrations. An additional model was then used to assess the effects of antibiotics on microorganisms in WWTPs and rivers. Results: Consistent with expectations, our model projected a mild pandemic to exhibit a negligible ecotoxicologic hazard. In a moderate and severe pandemic, we projected WWTP toxicity to vary between 0–14% and 5–32% potentially affected fraction (PAF), respectively, and river toxicity to vary between 0–14% and 0–30% PAF, respectively, where PAF is the fraction of microbial species predicted to be growth inhibited (lower and upper 95% reference range). Conclusions: The current medical response to pandemic influenza might result in the discharge of insufficiently treated wastewater into receiving rivers, thereby increasing the risk of eutrophication and contamination of drinking water abstraction points. Widespread drugs in the environment could hasten the generation of drug resistance. Our results highlight the need for empirical data on the effects of antibiotics and antiviral medications on WWTPs and freshwater ecotoxicity. PMID:21367688
Assessing the ecotoxicologic hazards of a pandemic influenza medical response.
Singer, Andrew C; Colizza, Vittoria; Schmitt, Heike; Andrews, Johanna; Balcan, Duygu; Huang, Wei E; Keller, Virginie D J; Vespignani, Alessandro; Williams, Richard J
2011-08-01
The global public health community has closely monitored the unfolding of the 2009 H1N1 influenza pandemic to best mitigate its impact on society. However, little attention has been given to the impact of this response on the environment. Antivirals and antibiotics prescribed to treat influenza are excreted into wastewater in a biologically active form, which presents a new and potentially significant ecotoxicologic challenge to microorganisms responsible for wastewater nutrient removal in wastewater treatment plants (WWTPs) and receiving rivers. We assessed the ecotoxicologic risks of a pandemic influenza medical response. To evaluate this risk, we coupled a global spatially structured epidemic model that simulates the quantities of antivirals and antibiotics used during an influenza pandemic of varying severity and a water quality model applied to the Thames catchment to determine predicted environmental concentrations. An additional model was then used to assess the effects of antibiotics on microorganisms in WWTPs and rivers. Consistent with expectations, our model projected a mild pandemic to exhibit a negligible ecotoxicologic hazard. In a moderate and severe pandemic, we projected WWTP toxicity to vary between 0-14% and 5-32% potentially affected fraction (PAF), respectively, and river toxicity to vary between 0-14% and 0-30% PAF, respectively, where PAF is the fraction of microbial species predicted to be growth inhibited (lower and upper 95% reference range). The current medical response to pandemic influenza might result in the discharge of insufficiently treated wastewater into receiving rivers, thereby increasing the risk of eutrophication and contamination of drinking water abstraction points. Widespread drugs in the environment could hasten the generation of drug resistance. Our results highlight the need for empirical data on the effects of antibiotics and antiviral medications on WWTPs and freshwater ecotoxicity.
Validation of the Nickel Biotic Ligand Model for Locally Relevant Species in Australian Freshwaters.
Peters, Adam; Merrington, Graham; Schlekat, Christian; De Schamphelaere, Karel; Stauber, Jennifer; Batley, Graeme; Harford, Andrew; van Dam, Rick; Pease, Ceiwen; Mooney, Tom; Warne, Michael; Hickey, Chris; Glazebrook, Peter; Chapman, John; Smith, Ross; Krassoi, Rick
2018-06-20
Australian freshwaters have relatively low water hardness and different calcium to magnesium ratios compared with those in Europe. The hardness values of a substantial proportion of Australian freshwaters fall below the application boundary of the existing European nickel Biotic Ligand Models (NiBLMs) of 2 mg Ca/L. Toxicity testing was undertaken using Hydra viridissima to assess the predictive ability of the existing NiBLM for this species in extremely soft waters. This testing revealed an increased competitive effect of calcium and magnesium with nickel for binding to the biotic ligand in soft water (<10 mg CaCO 3 /L) than at higher water hardness. Modifications were made to the NiBLM by increasing the binding constants for Ca and Mg at the biotic ligand to account for softer waters encountered in Australia and the more important competitive effect of calcium and magnesium on nickel toxicity. To validate the modified NiBLM, ecotoxicity testing was performed on five Australian test species in five different natural Australian waters. Overall, no single water chemistry parameter was able to indicate the trends in toxicity to all of the test species. The modified NiBLMs were able to predict the toxicity of nickel to the test species in the validation studies in natural waters better than the existing NiBLMs. This work suggests that the overarching mechanisms defining nickel bioavailability to freshwater species are globally similar, and that NiBLMs can be used in all freshwater systems with minor modifications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
van Zelm, Rosalie; Stam, Gea; Huijbregts, Mark A J; van de Meent, Dik
2013-01-01
Freshwater fate and exposure factors were determined for organic acids and bases, making use of the knowledge on electrical interaction of ionizing chemicals and their sorption to particles. The fate factor represents the residence time in the environment whereas exposure factors equal the dissolved fraction of a chemical. Multimedia fate, exposure, and effect model USES-LCA was updated to take into account the influence of ionization, based upon the acid dissociation constant (pK(a)) of a chemical, and the environmental pH. Freshwater fate (FF) and exposure (XF) factors were determined for 415 acids and 496 bases emitted to freshwater, air, and soil. The relevance of taking account of the degree of ionization of chemicals was tested by determining the ratio (R) of the new vs. fate and exposure factors determined with USES-LCA suitable for neutral chemicals only. Our results show that the majority of freshwater fate and exposure factors of chemicals that are largely ionized in the environment are larger with the ionics model compared to the factors determined with the neutrals model version. R(FF) ranged from 2.4×10(-1) to 1.6×10(1) for freshwater emissions, from 1.2×10(-2) to 2.0×10(4) for soil emissions and from 5.8×10(-2) to 6.0×10(3) for air emissions, and R(XF) from 5.3×10(-1) to 2.2×10(1). Prediction of changed solid-water partitioning, implying a change in runoff and in removal via sedimentation, and prediction of negligible air-water partition coefficient, leading to negligible volatilization were the main contributors to the changes in freshwater fate factors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Signal Detection Theory as a Tool for Successful Student Selection
ERIC Educational Resources Information Center
van Ooijen-van der Linden, Linda; van der Smagt, Maarten J.; Woertman, Liesbeth; te Pas, Susan F.
2017-01-01
Prediction accuracy of academic achievement for admission purposes requires adequate "sensitivity" and "specificity" of admission tools, yet the available information on the validity and predictive power of admission tools is largely based on studies using correlational and regression statistics. The goal of this study was to…
Predictive Model of Linear Antimicrobial Peptides Active against Gram-Negative Bacteria.
Vishnepolsky, Boris; Gabrielian, Andrei; Rosenthal, Alex; Hurt, Darrell E; Tartakovsky, Michael; Managadze, Grigol; Grigolava, Maya; Makhatadze, George I; Pirtskhalava, Malak
2018-05-29
Antimicrobial peptides (AMPs) have been identified as a potential new class of anti-infectives for drug development. There are a lot of computational methods that try to predict AMPs. Most of them can only predict if a peptide will show any antimicrobial potency, but to the best of our knowledge, there are no tools which can predict antimicrobial potency against particular strains. Here we present a predictive model of linear AMPs being active against particular Gram-negative strains relying on a semi-supervised machine-learning approach with a density-based clustering algorithm. The algorithm can well distinguish peptides active against particular strains from others which may also be active but not against the considered strain. The available AMP prediction tools cannot carry out this task. The prediction tool based on the algorithm suggested herein is available on https://dbaasp.org.
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 User Guide
User Guide to describe the complete functionality of the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 online tool. The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqa...
van Bokhorst-de van der Schueren, Marian A E; Guaitoli, Patrícia Realino; Jansma, Elise P; de Vet, Henrica C W
2014-02-01
Numerous nutrition screening tools for the hospital setting have been developed. The aim of this systematic review is to study construct or criterion validity and predictive validity of nutrition screening tools for the general hospital setting. A systematic review of English, French, German, Spanish, Portuguese and Dutch articles identified via MEDLINE, Cinahl and EMBASE (from inception to the 2nd of February 2012). Additional studies were identified by checking reference lists of identified manuscripts. Search terms included key words for malnutrition, screening or assessment instruments, and terms for hospital setting and adults. Data were extracted independently by 2 authors. Only studies expressing the (construct, criterion or predictive) validity of a tool were included. 83 studies (32 screening tools) were identified: 42 studies on construct or criterion validity versus a reference method and 51 studies on predictive validity on outcome (i.e. length of stay, mortality or complications). None of the tools performed consistently well to establish the patients' nutritional status. For the elderly, MNA performed fair to good, for the adults MUST performed fair to good. SGA, NRS-2002 and MUST performed well in predicting outcome in approximately half of the studies reviewed in adults, but not in older patients. Not one single screening or assessment tool is capable of adequate nutrition screening as well as predicting poor nutrition related outcome. Development of new tools seems redundant and will most probably not lead to new insights. New studies comparing different tools within one patient population are required. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Cockpit System Situational Awareness Modeling Tool
NASA Technical Reports Server (NTRS)
Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara
2004-01-01
This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.
Bolt, H. L.; Williams, C. E. J.; Brooks, R. V.; ...
2017-01-13
Hydrophobicity has proven to be an extremely useful parameter in small molecule drug discovery programmes given that it can be used as a predictive tool to enable rational design. For larger molecules, including peptoids, where folding is possible, the situation is more complicated and the average hydrophobicity (as determined by RP-HPLC retention time) may not always provide an effective predictive tool for rational design. Herein, we report the first ever application of partitioning experiments to determine the log D values for a series of peptoids. By comparing log D and average hydrophobicities we highlight the potential advantage of employing themore » former as a predictive tool in the rational design of biologically active peptoids.« less
Furmanchuk, Al'ona; Saal, James E; Doak, Jeff W; Olson, Gregory B; Choudhary, Alok; Agrawal, Ankit
2018-02-05
The regression model-based tool is developed for predicting the Seebeck coefficient of crystalline materials in the temperature range from 300 K to 1000 K. The tool accounts for the single crystal versus polycrystalline nature of the compound, the production method, and properties of the constituent elements in the chemical formula. We introduce new descriptive features of crystalline materials relevant for the prediction the Seebeck coefficient. To address off-stoichiometry in materials, the predictive tool is trained on a mix of stoichiometric and nonstoichiometric materials. The tool is implemented into a web application (http://info.eecs.northwestern.edu/SeebeckCoefficientPredictor) to assist field scientists in the discovery of novel thermoelectric materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolt, H. L.; Williams, C. E. J.; Brooks, R. V.
Hydrophobicity has proven to be an extremely useful parameter in small molecule drug discovery programmes given that it can be used as a predictive tool to enable rational design. For larger molecules, including peptoids, where folding is possible, the situation is more complicated and the average hydrophobicity (as determined by RP-HPLC retention time) may not always provide an effective predictive tool for rational design. Herein, we report the first ever application of partitioning experiments to determine the log D values for a series of peptoids. By comparing log D and average hydrophobicities we highlight the potential advantage of employing themore » former as a predictive tool in the rational design of biologically active peptoids.« less
Artificial Neural Networks: A New Approach to Predicting Application Behavior.
ERIC Educational Resources Information Center
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
2002-01-01
Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)
Awasthi, Abhishek Kumar; Pandey, Akhilesh Kumar; Khan, Jamaluddin
2017-07-01
Municipal solid waste (MSW) contains contaminants that could possibly leach out and pollute the soil, water sources. In this investigation, the MSW leachate toxicity was evaluated using wheat seedling plant bioassay. The eco-toxicity activities of leachate at several time intervals were explored, and the toxicity of these leachates on wheat (Triticum aestivum L.) seed germination and chlorophyll a and chlorophyll b (Chl a and Chl b) levels were determined. The findings showed that leachate can affect the metabolic activity of the wheat plant. Therefore, in order to protect the environment, the polluted leachate should be treated.
Prostate cancer: predicting high-risk prostate cancer-a novel stratification tool.
Buck, Jessica; Chughtai, Bilal
2014-05-01
Currently, numerous systems exist for the identification of high-risk prostate cancer, but few of these systems can guide treatment strategies. A new stratification tool that uses common diagnostic factors can help to predict outcomes after radical prostatectomy. The tool aids physicians in the identification of appropriate candidates for aggressive, local treatment.
Predictive Data Tools Find Uses in Schools
ERIC Educational Resources Information Center
Sparks, Sarah D.
2011-01-01
The use of analytic tools to predict student performance is exploding in higher education, and experts say the tools show even more promise for K-12 schools, in everything from teacher placement to dropout prevention. Use of such statistical techniques is hindered in precollegiate schools, however, by a lack of researchers trained to help…
NASA Technical Reports Server (NTRS)
Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris
2011-01-01
A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.
Kashani-Amin, Elaheh; Tabatabaei-Malazy, Ozra; Sakhteman, Amirhossein; Larijani, Bagher; Ebrahim-Habibi, Azadeh
2018-02-27
Prediction of proteins' secondary structure is one of the major steps in the generation of homology models. These models provide structural information which is used to design suitable ligands for potential medicinal targets. However, selecting a proper tool between multiple secondary structure prediction (SSP) options is challenging. The current study is an insight onto currently favored methods and tools, within various contexts. A systematic review was performed for a comprehensive access to recent (2013-2016) studies which used or recommended protein SSP tools. Three databases, Web of Science, PubMed and Scopus were systematically searched and 99 out of 209 studies were finally found eligible to extract data. Four categories of applications for 59 retrieved SSP tools were: (I) prediction of structural features of a given sequence, (II) evaluation of a method, (III) providing input for a new SSP method and (IV) integrating a SSP tool as a component for a program. PSIPRED was found to be the most popular tool in all four categories. JPred and tools utilizing PHD (Profile network from HeiDelberg) method occupied second and third places of popularity in categories I and II. JPred was only found in the two first categories, while PHD was present in three fields. This study provides a comprehensive insight about the recent usage of SSP tools which could be helpful for selecting a proper tool's choice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Conser, Christiana; Seebacher, Lizbeth; Fujino, David W; Reichard, Sarah; DiTomaso, Joseph M
2015-01-01
Weed Risk Assessment (WRA) methods for evaluating invasiveness in plants have evolved rapidly in the last two decades. Many WRA tools exist, but none were specifically designed to screen ornamental plants prior to being released into the environment. To be accepted as a tool to evaluate ornamental plants for the nursery industry, it is critical that a WRA tool accurately predicts non-invasiveness without falsely categorizing them as invasive. We developed a new Plant Risk Evaluation (PRE) tool for ornamental plants. The 19 questions in the final PRE tool were narrowed down from 56 original questions from existing WRA tools. We evaluated the 56 WRA questions by screening 21 known invasive and 14 known non-invasive ornamental plants. After statistically comparing the predictability of each question and the frequency the question could be answered for both invasive and non-invasive species, we eliminated questions that provided no predictive power, were irrelevant in our current model, or could not be answered reliably at a high enough percentage. We also combined many similar questions. The final 19 remaining PRE questions were further tested for accuracy using 56 additional known invasive plants and 36 known non-invasive ornamental species. The resulting evaluation demonstrated that when "needs further evaluation" classifications were not included, the accuracy of the model was 100% for both predicting invasiveness and non-invasiveness. When "needs further evaluation" classifications were included as either false positive or false negative, the model was still 93% accurate in predicting invasiveness and 97% accurate in predicting non-invasiveness, with an overall accuracy of 95%. We conclude that the PRE tool should not only provide growers with a method to accurately screen their current stock and potential new introductions, but also increase the probability of the tool being accepted for use by the industry as the basis for a nursery certification program.
Conser, Christiana; Seebacher, Lizbeth; Fujino, David W.; Reichard, Sarah; DiTomaso, Joseph M.
2015-01-01
Weed Risk Assessment (WRA) methods for evaluating invasiveness in plants have evolved rapidly in the last two decades. Many WRA tools exist, but none were specifically designed to screen ornamental plants prior to being released into the environment. To be accepted as a tool to evaluate ornamental plants for the nursery industry, it is critical that a WRA tool accurately predicts non-invasiveness without falsely categorizing them as invasive. We developed a new Plant Risk Evaluation (PRE) tool for ornamental plants. The 19 questions in the final PRE tool were narrowed down from 56 original questions from existing WRA tools. We evaluated the 56 WRA questions by screening 21 known invasive and 14 known non-invasive ornamental plants. After statistically comparing the predictability of each question and the frequency the question could be answered for both invasive and non-invasive species, we eliminated questions that provided no predictive power, were irrelevant in our current model, or could not be answered reliably at a high enough percentage. We also combined many similar questions. The final 19 remaining PRE questions were further tested for accuracy using 56 additional known invasive plants and 36 known non-invasive ornamental species. The resulting evaluation demonstrated that when “needs further evaluation” classifications were not included, the accuracy of the model was 100% for both predicting invasiveness and non-invasiveness. When “needs further evaluation” classifications were included as either false positive or false negative, the model was still 93% accurate in predicting invasiveness and 97% accurate in predicting non-invasiveness, with an overall accuracy of 95%. We conclude that the PRE tool should not only provide growers with a method to accurately screen their current stock and potential new introductions, but also increase the probability of the tool being accepted for use by the industry as the basis for a nursery certification program. PMID:25803830
In silico prediction of splice-altering single nucleotide variants in the human genome.
Jian, Xueqiu; Boerwinkle, Eric; Liu, Xiaoming
2014-12-16
In silico tools have been developed to predict variants that may have an impact on pre-mRNA splicing. The major limitation of the application of these tools to basic research and clinical practice is the difficulty in interpreting the output. Most tools only predict potential splice sites given a DNA sequence without measuring splicing signal changes caused by a variant. Another limitation is the lack of large-scale evaluation studies of these tools. We compared eight in silico tools on 2959 single nucleotide variants within splicing consensus regions (scSNVs) using receiver operating characteristic analysis. The Position Weight Matrix model and MaxEntScan outperformed other methods. Two ensemble learning methods, adaptive boosting and random forests, were used to construct models that take advantage of individual methods. Both models further improved prediction, with outputs of directly interpretable prediction scores. We applied our ensemble scores to scSNVs from the Catalogue of Somatic Mutations in Cancer database. Analysis showed that predicted splice-altering scSNVs are enriched in recurrent scSNVs and known cancer genes. We pre-computed our ensemble scores for all potential scSNVs across the human genome, providing a whole genome level resource for identifying splice-altering scSNVs discovered from large-scale sequencing studies.
Mahmood, Khalid; Jung, Chol-Hee; Philip, Gayle; Georgeson, Peter; Chung, Jessica; Pope, Bernard J; Park, Daniel J
2017-05-16
Genetic variant effect prediction algorithms are used extensively in clinical genomics and research to determine the likely consequences of amino acid substitutions on protein function. It is vital that we better understand their accuracies and limitations because published performance metrics are confounded by serious problems of circularity and error propagation. Here, we derive three independent, functionally determined human mutation datasets, UniFun, BRCA1-DMS and TP53-TA, and employ them, alongside previously described datasets, to assess the pre-eminent variant effect prediction tools. Apparent accuracies of variant effect prediction tools were influenced significantly by the benchmarking dataset. Benchmarking with the assay-determined datasets UniFun and BRCA1-DMS yielded areas under the receiver operating characteristic curves in the modest ranges of 0.52 to 0.63 and 0.54 to 0.75, respectively, considerably lower than observed for other, potentially more conflicted datasets. These results raise concerns about how such algorithms should be employed, particularly in a clinical setting. Contemporary variant effect prediction tools are unlikely to be as accurate at the general prediction of functional impacts on proteins as reported prior. Use of functional assay-based datasets that avoid prior dependencies promises to be valuable for the ongoing development and accurate benchmarking of such tools.
ReactPRED: a tool to predict and analyze biochemical reactions.
Sivakumar, Tadi Venkata; Giri, Varun; Park, Jin Hwan; Kim, Tae Yong; Bhaduri, Anirban
2016-11-15
Biochemical pathways engineering is often used to synthesize or degrade target chemicals. In silico screening of the biochemical transformation space allows predicting feasible reactions, constituting these pathways. Current enabling tools are customized to predict reactions based on pre-defined biochemical transformations or reaction rule sets. Reaction rule sets are usually curated manually and tailored to specific applications. They are not exhaustive. In addition, current systems are incapable of regulating and refining data with an aim to tune specificity and sensitivity. A robust and flexible tool that allows automated reaction rule set creation along with regulated pathway prediction and analyses is a need. ReactPRED aims to address the same. ReactPRED is an open source flexible and customizable tool enabling users to predict biochemical reactions and pathways. The tool allows automated reaction rule creation from a user defined reaction set. Additionally, reaction rule degree and rule tolerance features allow refinement of predicted data. It is available as a flexible graphical user interface and a console application. ReactPRED is available at: https://sourceforge.net/projects/reactpred/ CONTACT: anirban.b@samsung.com or ty76.kim@samsung.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cost Minimization Using an Artificial Neural Network Sleep Apnea Prediction Tool for Sleep Studies
Teferra, Rahel A.; Grant, Brydon J. B.; Mindel, Jesse W.; Siddiqi, Tauseef A.; Iftikhar, Imran H.; Ajaz, Fatima; Aliling, Jose P.; Khan, Meena S.; Hoffmann, Stephen P.
2014-01-01
Rationale: More than a million polysomnograms (PSGs) are performed annually in the United States to diagnose obstructive sleep apnea (OSA). Third-party payers now advocate a home sleep test (HST), rather than an in-laboratory PSG, as the diagnostic study for OSA regardless of clinical probability, but the economic benefit of this approach is not known. Objectives: We determined the diagnostic performance of OSA prediction tools including the newly developed OSUNet, based on an artificial neural network, and performed a cost-minimization analysis when the prediction tools are used to identify patients who should undergo HST. Methods: The OSUNet was trained to predict the presence of OSA in a derivation group of patients who underwent an in-laboratory PSG (n = 383). Validation group 1 consisted of in-laboratory PSG patients (n = 149). The network was trained further in 33 patients who underwent HST and then was validated in a separate group of 100 HST patients (validation group 2). Likelihood ratios (LRs) were compared with two previously published prediction tools. The total costs from the use of the three prediction tools and the third-party approach within a clinical algorithm were compared. Measurements and Main Results: The OSUNet had a higher +LR in all groups compared with the STOP-BANG and the modified neck circumference (MNC) prediction tools. The +LRs for STOP-BANG, MNC, and OSUNet in validation group 1 were 1.1 (1.0–1.2), 1.3 (1.1–1.5), and 2.1 (1.4–3.1); and in validation group 2 they were 1.4 (1.1–1.7), 1.7 (1.3–2.2), and 3.4 (1.8–6.1), respectively. With an OSA prevalence less than 52%, the use of all three clinical prediction tools resulted in cost savings compared with the third-party approach. Conclusions: The routine requirement of an HST to diagnose OSA regardless of clinical probability is more costly compared with the use of OSA clinical prediction tools that identify patients who should undergo this procedure when OSA is expected to be present in less than half of the population. With OSA prevalence less than 40%, the OSUNet offers the greatest savings, which are substantial when the number of sleep studies done annually is considered. PMID:25068704
Mueller, Martina; Wagner, Carol L; Annibale, David J; Knapp, Rebecca G; Hulsey, Thomas C; Almeida, Jonas S
2006-03-01
Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore, extubation decisions for premature infants require complex informational processing, techniques implicitly learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians, especially during peak neonatal intensive care unit (NICU) census. A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought processes comprised one model. Variables from that model were used to develop two mathematical models for the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR). The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext Markup Language (HTML) and the mathematical model employing the ANN. CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p = 0.0006). Of the original 51 potentially predictive variables, the 13 most predictive variables were used to develop an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0-1 score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ from the data originally used for the development of the prediction tool. State-of-the-art, machine-learning methods can be employed for the development of sophisticated tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool for clinicians which can be made widely available and potentially improve patient care world wide.
Ernst, Corinna; Hahnen, Eric; Engel, Christoph; Nothnagel, Michael; Weber, Jonas; Schmutzler, Rita K; Hauke, Jan
2018-03-27
The use of next-generation sequencing approaches in clinical diagnostics has led to a tremendous increase in data and a vast number of variants of uncertain significance that require interpretation. Therefore, prediction of the effects of missense mutations using in silico tools has become a frequently used approach. Aim of this study was to assess the reliability of in silico prediction as a basis for clinical decision making in the context of hereditary breast and/or ovarian cancer. We tested the performance of four prediction tools (Align-GVGD, SIFT, PolyPhen-2, MutationTaster2) using a set of 236 BRCA1/2 missense variants that had previously been classified by expert committees. However, a major pitfall in the creation of a reliable evaluation set for our purpose is the generally accepted classification of BRCA1/2 missense variants using the multifactorial likelihood model, which is partially based on Align-GVGD results. To overcome this drawback we identified 161 variants whose classification is independent of any previous in silico prediction. In addition to the performance as stand-alone tools we examined the sensitivity, specificity, accuracy and Matthews correlation coefficient (MCC) of combined approaches. PolyPhen-2 achieved the lowest sensitivity (0.67), specificity (0.67), accuracy (0.67) and MCC (0.39). Align-GVGD achieved the highest values of specificity (0.92), accuracy (0.92) and MCC (0.73), but was outperformed regarding its sensitivity (0.90) by SIFT (1.00) and MutationTaster2 (1.00). All tools suffered from poor specificities, resulting in an unacceptable proportion of false positive results in a clinical setting. This shortcoming could not be bypassed by combination of these tools. In the best case scenario, 138 families would be affected by the misclassification of neutral variants within the cohort of patients of the German Consortium for Hereditary Breast and Ovarian Cancer. We show that due to low specificities state-of-the-art in silico prediction tools are not suitable to predict pathogenicity of variants of uncertain significance in BRCA1/2. Thus, clinical consequences should never be based solely on in silico forecasts. However, our data suggests that SIFT and MutationTaster2 could be suitable to predict benignity, as both tools did not result in false negative predictions in our analysis.
Ingham, Steven C; Fanslau, Melody A; Burnham, Greg M; Ingham, Barbara H; Norback, John P; Schaffner, Donald W
2007-06-01
A computer-based tool (available at: www.wisc.edu/foodsafety/meatresearch) was developed for predicting pathogen growth in raw pork, beef, and poultry meat. The tool, THERM (temperature history evaluation for raw meats), predicts the growth of pathogens in pork and beef (Escherichia coli O157:H7, Salmonella serovars, and Staphylococcus aureus) and on poultry (Salmonella serovars and S. aureus) during short-term temperature abuse. The model was developed as follows: 25-g samples of raw ground pork, beef, and turkey were inoculated with a five-strain cocktail of the target pathogen(s) and held at isothermal temperatures from 10 to 43.3 degrees C. Log CFU per sample data were obtained for each pathogen and used to determine lag-phase duration (LPD) and growth rate (GR) by DMFit software. The LPD and GR were used to develop the THERM predictive tool, into which chronological time and temperature data for raw meat processing and storage are entered. The THERM tool then predicts a delta log CFU value for the desired pathogen-product combination. The accuracy of THERM was tested in 20 different inoculation experiments that involved multiple products (coarse-ground beef, skinless chicken breast meat, turkey scapula meat, and ground turkey) and temperature-abuse scenarios. With the time-temperature data from each experiment, THERM accurately predicted the pathogen growth and no growth (with growth defined as delta log CFU > 0.3) in 67, 85, and 95% of the experiments with E. coli 0157:H7, Salmonella serovars, and S. aureus, respectively, and yielded fail-safe predictions in the remaining experiments. We conclude that THERM is a useful tool for qualitatively predicting pathogen behavior (growth and no growth) in raw meats. Potential applications include evaluating process deviations and critical limits under the HACCP (hazard analysis critical control point) system.
Strange, Alison; Park, Julian; Bennett, Richard; Phipps, Richard
2008-05-01
Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.
Meng, Qingyu; Lu, Shou-En; Buckley, Barbara; Welsh, William J.; Whitsel, Eric A.; Hanna, Adel; Yeatts, Karin B.; Warren, Joshua; Herring, Amy H.; Xiu, Aijun
2013-01-01
Background: This paper presents an application of quantitative ion character–activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. Objectives: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. Methods: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. Results: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. Conclusion: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations. PMID:23462649
Rico, Andreu; Van den Brink, Paul J
2015-08-01
In the present study, the authors evaluated the vulnerability of aquatic invertebrates to insecticides based on their intrinsic sensitivity and their population-level recovery potential. The relative sensitivity of invertebrates to 5 different classes of insecticides was calculated at the genus, family, and order levels using the acute toxicity data available in the US Environmental Protection Agency ECOTOX database. Biological trait information was linked to the calculated relative sensitivity to evaluate correlations between traits and sensitivity and to calculate a vulnerability index, which combines intrinsic sensitivity and traits describing the recovery potential of populations partially exposed to insecticides (e.g., voltinism, flying strength, occurrence in drift). The analysis shows that the relative sensitivity of arthropods depends on the insecticide mode of action. Traits such as degree of sclerotization, size, and respiration type showed good correlation to sensitivity and can be used to make predictions for invertebrate taxa without a priori sensitivity knowledge. The vulnerability analysis revealed that some of the Ephemeroptera, Plecoptera, and Trichoptera taxa were vulnerable to all insecticide classes and indicated that particular gastropod and bivalve species were potentially vulnerable. Microcrustaceans (e.g., daphnids, copepods) showed low potential vulnerability, particularly in lentic ecosystems. The methods described in the present study can be used for the selection of focal species to be included as part of ecological scenarios and higher tier risk assessments. © 2015 SETAC.
Prophinder: a computational tool for prophage prediction in prokaryotic genomes.
Lima-Mendez, Gipsi; Van Helden, Jacques; Toussaint, Ariane; Leplae, Raphaël
2008-03-15
Prophinder is a prophage prediction tool coupled with a prediction database, a web server and web service. Predicted prophages will help to fill the gaps in the current sparse phage sequence space, which should cover an estimated 100 million species. Systematic and reliable predictions will enable further studies of prophages contribution to the bacteriophage gene pool and to better understand gene shuffling between prophages and phages infecting the same host. Softare is available at http://aclame.ulb.ac.be/prophinder
Reifman, Jaques; Kumar, Kamal; Wesensten, Nancy J; Tountas, Nikolaos A; Balkin, Thomas J; Ramakrishnan, Sridhar
2016-12-01
Computational tools that predict the effects of daily sleep/wake amounts on neurobehavioral performance are critical components of fatigue management systems, allowing for the identification of periods during which individuals are at increased risk for performance errors. However, none of the existing computational tools is publicly available, and the commercially available tools do not account for the beneficial effects of caffeine on performance, limiting their practical utility. Here, we introduce 2B-Alert Web, an open-access tool for predicting neurobehavioral performance, which accounts for the effects of sleep/wake schedules, time of day, and caffeine consumption, while incorporating the latest scientific findings in sleep restriction, sleep extension, and recovery sleep. We combined our validated Unified Model of Performance and our validated caffeine model to form a single, integrated modeling framework instantiated as a Web-enabled tool. 2B-Alert Web allows users to input daily sleep/wake schedules and caffeine consumption (dosage and time) to obtain group-average predictions of neurobehavioral performance based on psychomotor vigilance tasks. 2B-Alert Web is accessible at: https://2b-alert-web.bhsai.org. The 2B-Alert Web tool allows users to obtain predictions for mean response time, mean reciprocal response time, and number of lapses. The graphing tool allows for simultaneous display of up to seven different sleep/wake and caffeine schedules. The schedules and corresponding predicted outputs can be saved as a Microsoft Excel file; the corresponding plots can be saved as an image file. The schedules and predictions are erased when the user logs off, thereby maintaining privacy and confidentiality. The publicly accessible 2B-Alert Web tool is available for operators, schedulers, and neurobehavioral scientists as well as the general public to determine the impact of any given sleep/wake schedule, caffeine consumption, and time of day on performance of a group of individuals. This evidence-based tool can be used as a decision aid to design effective work schedules, guide the design of future sleep restriction and caffeine studies, and increase public awareness of the effects of sleep amounts, time of day, and caffeine on alertness. © 2016 Associated Professional Sleep Societies, LLC.
Li, Mei-Hui
2016-08-01
The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. Copyright © 2016. Published by Elsevier Inc.
Saxena, Prem Narain
2013-01-01
Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals) for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS) based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil). Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies. PMID:24324663
Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves
2015-03-01
Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs.
Tenenhaus-Aziza, Fanny; Ellouze, Mariem
2015-02-01
The 8th International Conference on Predictive Modelling in Food was held in Paris, France in September 2013. One of the major topics of this conference was the transfer of knowledge and tools between academics and stakeholders of the food sector. During the conference, a "Software Fair" was held to provide information and demonstrations of predictive microbiology and risk assessment software. This article presents an overall description of the 16 software tools demonstrated at the session and provides a comparison based on several criteria such as the modeling approach, the different modules available (e.g. databases, predictors, fitting tools, risk assessment tools), the studied environmental factors (temperature, pH, aw, etc.), the type of media (broth or food) and the number and type of the provided micro-organisms (pathogens and spoilers). The present study is a guide to help users select the software tools which are most suitable to their specific needs, before they test and explore the tool(s) in more depth. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brand, Caroline; Lowe, Adrian; Hall, Stephen
2008-01-01
Background Patients with rheumatoid arthritis have a higher risk of low bone mineral density than normal age matched populations. There is limited evidence to support cost effectiveness of population screening in rheumatoid arthritis and case finding strategies have been proposed as a means to increase cost effectiveness of diagnostic screening for osteoporosis. This study aimed to assess the performance attributes of generic and rheumatoid arthritis specific clinical decision tools for diagnosing osteoporosis in a postmenopausal population with rheumatoid arthritis who attend ambulatory specialist rheumatology clinics. Methods A cross-sectional study of 127 ambulatory post-menopausal women with rheumatoid arthritis was performed. Patients currently receiving or who had previously received bone active therapy were excluded. Eligible women underwent clinical assessment and dual-energy-xray absorptiometry (DXA) bone mineral density assessment. Clinical decision tools, including those specific for rheumatoid arthritis, were compared to seven generic post-menopausal tools to predict osteoporosis (defined as T score < -2.5). Sensitivity, specificity, positive predictive and negative predictive values and area under the curve were assessed. The diagnostic attributes of the clinical decision tools were compared by examination of the area under the receiver-operator-curve. Results One hundred and twenty seven women participated. The median age was 62 (IQR 56–71) years. Median disease duration was 108 (60–168) months. Seventy two (57%) women had no record of a previous DXA examination. Eighty (63%) women had T scores at femoral neck or lumbar spine less than -1. The area under the ROC curve for clinical decision tool prediction of T score <-2.5 varied between 0.63 and 0.76. The rheumatoid arthritis specific decision tools did not perform better than generic tools, however, the National Osteoporosis Foundation score could potentially reduce the number of unnecessary DXA tests by approximately 45% in this population. Conclusion There was limited utility of clinical decision tools for predicting osteoporosis in this patient population. Fracture prediction tools that include risk factors independent of BMD are needed. PMID:18230132
Controlling silver nanoparticle exposure in algal toxicity testing – A matter of timing
Baun, Anders
2015-01-01
The aquatic ecotoxicity testing of nanoparticles is complicated by unstable exposure conditions resulting from various transformation processes of nanoparticles in aqueous suspensions. In this study, we investigated the influence of exposure timing on the algal test response to silver nanoparticles (AgNPs), by reducing the incubation time and by aging the AgNPs in algal medium prior to testing. The freshwater green algae Pseudokirchneriella subcapitata were exposed to AgNO3, NM-300 K (a representative AgNP) and citrate stabilized AgNPs from two different manufacturers (AgNP1 and AgNP2) in a standard algal growth inhibition test (ISO 8692:2004) for 48 h and a short-term (2 h) 14C-assimilation test. For AgNO3, similar responses were obtained in the two tests, whereas freshly prepared suspensions of citrate stabilized AgNPs were less toxic in the 2-h tests compared to the 48-h tests. The 2-h test was found applicable for dissolved silver, but yielded non-monotonous concentration–response relationships and poor reproducibility for freshly prepared AgNP suspensions. However, when aging AgNPs in algal medium 24 h prior to testing, clear concentration–response patterns emerged and reproducibility increased. Prolonged aging to 48 h increased toxicity in the 2-h tests whereas aging beyond 48 h reduced toxicity. Our results demonstrate that the outcome of algal toxicity testing of AgNPs is highly influenced not only by the test duration, but also by the time passed from the moment AgNPs are added to the test medium. This time-dependency should be considered when nanomaterial dispersion protocols for ecotoxicity testing are developed. PMID:24842597
Vázquez-Rowe, Ian; Torres-García, Jorge Renato; Cáceres, Ana Lucía; Larrea-Gallegos, Gustavo; Quispe, Isabel; Kahhat, Ramzy
2017-12-01
The environmental sustainability of the cultivation of grapes for the production of alcoholic beverages has been extensively analyzed in the literature from a Life Cycle Assessment perspective, although certain impact categories have been repeatedly neglected despite their importance, such as toxic emissions or the depletion of freshwater resources. Hence, the current study provides a detailed assessment of water footprint-related impact categories, including toxicity, for the cultivation of grapes for pisco production, an alcoholic beverage produced in coastal Peru in hyper-arid areas that suffer high levels of water scarcity. Characterization factors at a sub-watershed level were used to calculate water consumption impact assessment of grape production using the AWARE method. Site-specific toxic emissions were modelled using the PestLCI model, considering primary climate and soil data. The USEtox assessment method was then used to compute freshwater eco-toxicity with these data. Results demonstrate the high water footprint of irrigating vineyards in coastal Peru, especially considering the inefficient flooding irrigation process. In terms of water consumption, despite the high variability shown between sub-watersheds, the shift to other irrigation technologies must be analyzed with care due to the high competition for water existing in the area. Eutrophication potential showed particularly high values compared to the literature, whereas freshwater eco-toxicity impacts were relatively low due to the high volatilization of pesticides to air. Nevertheless, the lack of an adequate wastewater management system implies that the estimated potential toxic and eutrophying emissions may constitute a further environmental threat to water bodies. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecological risk estimation of organophosphorus pesticides in riverine ecosystems.
Wee, Sze Yee; Aris, Ahmad Zaharin
2017-12-01
Pesticides are of great concern because of their existence in ecosystems at trace concentrations. Worldwide pesticide use and its ecological impacts (i.e., altered environmental distribution and toxicity of pesticides) have increased over time. Exposure and toxicity studies are vital for reducing the extent of pesticide exposure and risk to the environment and humans. Regional regulatory actions may be less relevant in some regions because the contamination and distribution of pesticides vary across regions and countries. The risk quotient (RQ) method was applied to assess the potential risk of organophosphorus pesticides (OPPs), primarily focusing on riverine ecosystems. Using the available ecotoxicity data, aquatic risks from OPPs (diazinon and chlorpyrifos) in the surface water of the Langat River, Selangor, Malaysia were evaluated based on general (RQ m ) and worst-case (RQ ex ) scenarios. Since the ecotoxicity of quinalphos has not been well established, quinalphos was excluded from the risk assessment. The calculated RQs indicate medium risk (RQ m = 0.17 and RQ ex = 0.66; 0.1 ≤ RQ < 1) of overall diazinon. The overall chlorpyrifos exposure was observed at high risk (RQ ≥ 1) based on RQ m and RQ ex at 1.44 and 4.83, respectively. A contradictory trend of RQs > 1 (high risk) was observed for both the general and worst cases of chlorpyrifos, but only for the worst cases of diazinon at all sites from downstream to upstream regions. Thus, chlorpyrifos posed a higher risk than diazinon along the Langat River, suggesting that organisms and humans could be exposed to potentially high levels of OPPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Campos-Garcia, Janaína; Martinez, Diego Stéfani T; Alves, Oswaldo L; Leonardo, Antônio Fernando Gervásio; Barbieri, Edison
2015-01-01
The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H
2012-10-01
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ecotoxicity of waste water from industrial fires fighting
NASA Astrophysics Data System (ADS)
Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.
2012-04-01
As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.
Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I
2010-01-01
The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.
Hund-Rinke, Kerstin; Baun, Anders; Cupi, Denisa; Fernandes, Teresa F; Handy, Richard; Kinross, John H; Navas, José M; Peijnenburg, Willie; Schlich, Karsten; Shaw, Benjamin J; Scott-Fordsmand, Janeck J
2016-12-01
Regulatory ecotoxicity testing of chemicals is of societal importance and a large effort is undertaken at the OECD to ensure that OECD test guidelines (TGs) for nanomaterials (NMs) are available. Significant progress to support the adaptation of selected TGs to NMs was achieved in the context of the project MARINA ( http://www.marina-fp7.eu/ ) funded within the 7th European Framework Program. Eight OECD TGs were adapted based on the testing of at least one ion-releasing NM (Ag) and two inert NMs (TiO 2 ). With the materials applied, two main variants of NMs (ion releasing vs. inert NMs) were addressed. As the modifications of the test guidelines refer to general test topics (e.g. test duration or measuring principle), we assume that the described approaches and modifications will be suitable for the testing of further NMs with other chemical compositions. Firm proposals for modification of protocols with scientific justification(s) are presented for the following tests: growth inhibition using the green algae Raphidocelis subcapitata (formerly: Pseudokirchneriella subcapitata; TG 201), acute toxicity with the crustacean Daphnia magna (TG 202), development toxicity with the fish Danio rerio (TG 210), reproduction of the sediment-living worm Lumbriculus variegatus (TG 225), activity of soil microflora (TGs 216, 217), and reproduction of the invertebrates (Enchytraeus crypticus, Eisenia fetida, TGs 220, 222). Additionally, test descriptions for two further test systems (root elongation of plants in hydroponic culture; test on fish cells) are presented. Ecotoxicological data obtained with the modified test guidelines for TiO 2 NMs and Ag NM and detailed method descriptions are available.
Phillips, Robert; Jeswani, Harish Kumar; Azapagic, Adisa; Apul, Defne
2018-09-15
Current life cycle assessment (LCA) models do not explicitly incorporate the impacts from urban stormwater pollution. To address this issue, a framework to estimate the impacts from urban stormwater pollution over the lifetime of a system has been developed, laying the groundwork for subsequent improvements in life cycle databases and LCA modelling. The proposed framework incorporates urban stormwater event mean concentration (EMC) data into existing LCA impact categories to account for the environmental impacts associated with urban land occupation across the whole life cycle of a system. It consists of five steps: (1) compilation of inventory of urban stormwater pollutants; (2) collection of precipitation data; (3) classification and characterisation within existing midpoint impact categories; (4) collation of inventory data for impermeable urban land occupation; and (5) impact assessment. The framework is generic and can be applied to any system using any LCA impact method. Its application is demonstrated by two illustrative case studies: electricity generation and production of construction materials. The results show that pollutants in urban stormwater have an influence on human toxicity, freshwater and marine ecotoxicity, marine eutrophication, freshwater eutrophication and terrestrial ecotoxicity. Among these, urban stormwater pollution has the highest relative contribution to the eutrophication potentials. The results also suggest that stormwater pollution from urban areas can have a substantial effect on the life cycle impacts of some systems (construction materials), while for some systems the effect is small (e.g. electricity generation). However, it is not possible to determine a priori which systems are affected so that the impacts from stormwater pollution should be considered routinely in future LCA studies. The paper also proposes ways to incorporate stormwater pollution burdens into the life cycle databases. Copyright © 2018 Elsevier B.V. All rights reserved.
Ecotoxicological risks of the abandoned F-Ba-Pb-Zn mining area of Osor (Spain).
Bori, Jaume; Vallès, Bettina; Navarro, Andrés; Riva, Maria Carme
2017-06-01
Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb-Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F-Ba-Pb-Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250-5110 mg kg -1 ), Pb (940 to >5000 mg kg -1 ) and Zn (2370-11,300 mg kg -1 ) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98-9.15 µg L -1 ), Pb (2.11-326 µg L -1 ) and Zn (280-2900 µg L -1 ) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.
NASA Astrophysics Data System (ADS)
Salieri, Beatrice; Pasteris, Andrea; Netkueakul, Woranan; Hischier, Roland
2017-03-01
Currently, a noncomprehensive understanding of the physicochemical properties of carbon-based nanomaterial (CBNs), which may affect toxic effects, is still observable. In this study, an exploratory systematic investigation into the key physicochemical properties of multiwall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), and C60-fullerene on their ecotoxicity has been undertaken. We undertook an extensive survey of the literature pertaining to the ecotoxicity of organism representative of the trophic level of algae, crustaceans, and fish. Based on this, a set of data reporting both the physicochemical properties of carbon-based nanomaterial and the observed toxic effect has been established. The relationship between physicochemical properties and observed toxic effect was investigated based on various statistical approaches. Specifically, analysis of variance by one-way ANOVA was used to assess the effect of categorical properties (use of a dispersant or treatments in the test medium, type of carbon-based nanomaterial, i.e., SWCNT, MWCNT, C60-fullerene, functionalization), while multiple regression analysis was used to assess the effect of quantitative properties (i.e., diameter length of nanotubes, secondary size) on the toxicity values. The here described investigations revealed significant relationships among the physicochemical properties and observed toxic effects. The research was mainly affected by the low availability of data and also by the low variability of the studies collected. Overall, our results demonstrate that the here proposed and applied approach could have a major role in identifying the physicochemical properties of relevance for the toxicity of nanomaterial. However, the future success of the approach would require that the ENMs and the experimental conditions used in the toxicity studies are fully characterized.
Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming
2016-05-01
The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O
2007-01-01
This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.
An integrative approach to ortholog prediction for disease-focused and other functional studies.
Hu, Yanhui; Flockhart, Ian; Vinayagam, Arunachalam; Bergwitz, Clemens; Berger, Bonnie; Perrimon, Norbert; Mohr, Stephanie E
2011-08-31
Mapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward. We report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt), for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM) and genes in genome-wide association study (GWAS) data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist). DIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.
Comparison of in silico models for prediction of mutagenicity.
Bakhtyari, Nazanin G; Raitano, Giuseppa; Benfenati, Emilio; Martin, Todd; Young, Douglas
2013-01-01
Using a dataset with more than 6000 compounds, the performance of eight quantitative structure activity relationships (QSAR) models was evaluated: ACD/Tox Suite, Absorption, Distribution, Metabolism, Elimination, and Toxicity of chemical substances (ADMET) predictor, Derek, Toxicity Estimation Software Tool (T.E.S.T.), TOxicity Prediction by Komputer Assisted Technology (TOPKAT), Toxtree, CEASAR, and SARpy (SAR in python). In general, the results showed a high level of performance. To have a realistic estimate of the predictive ability, the results for chemicals inside and outside the training set for each model were considered. The effect of applicability domain tools (when available) on the prediction accuracy was also evaluated. The predictive tools included QSAR models, knowledge-based systems, and a combination of both methods. Models based on statistical QSAR methods gave better results.
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitat...
A web accessible software tool is being developed to predict the toxicity of unknown chemicals for a wide variety of endpoints. The tool will enable a user to easily predict the toxicity of a query compound by simply entering its structure in a 2-dimensional (2-D) chemical sketc...
NASA Astrophysics Data System (ADS)
Nurhuda; Lukito, A.; Masriyah
2018-01-01
This study aims to develop instructional tools and implement it to see the effectiveness. The method used in this research referred to Designing Effective Instruction. Experimental research with two-group pretest-posttest design method was conducted. The instructional tools have been developed is cooperative learning model with predict-observe-explain strategy on the topic of cuboid and cube volume which consist of lesson plans, POE tasks, and Tests. Instructional tools were of good quality by criteria of validity, practicality, and effectiveness. These instructional tools was very effective for teaching the volume of cuboid and cube. Cooperative instructional tool with predict-observe-explain (POE) strategy was good of quality because the teacher was easy to implement the steps of learning, students easy to understand the material and students’ learning outcomes completed classically. Learning by using this instructional tool was effective because learning activities were appropriate and students were very active. Students’ learning outcomes were completed classically and better than conventional learning. This study produced a good instructional tool and effectively used in learning. Therefore, these instructional tools can be used as an alternative to teach volume of cuboid and cube topics.
NASA Astrophysics Data System (ADS)
Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.
2017-12-01
In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.
Narayanan, V.; Dickinson, A.; Victor, C.; Griffiths, C.; Humphrey, D.
2016-01-01
Objectives There is an urgent need to improve the care of older people at risk of falls or who experience falls in mental health settings. The aims of this study were to evaluate the individual falls risk assessment tools adopted by National Health Service (NHS) mental health trusts in England and healthcare boards in Wales, to evaluate the comprehensiveness of these tools and to review their predictive validity. Methods All NHS mental health trusts in England (n = 56) and healthcare boards in Wales (n = 6) were invited to supply their falls policies and other relevant documentation (e.g. local falls audits). In order to check the comprehensiveness of tools listed in policy documents, the risk variables of the tools adopted by the mental health trusts’ policies were compared with the 2004 National Institute for Health and Care Excellence (NICE) falls prevention guidelines. A comprehensive analytical literature review was undertaken to evaluate the predictive validity of the tools used in these settings. Results Falls policies were obtained from 46 mental health trusts. Thirty-five policies met the study inclusion criteria and were included in the analysis. The main falls assessment tools used were the St. Thomas’ Risk Assessment Tool in Falling Elderly Inpatients (STRATIFY), Falls Risk Assessment Scale for the Elderly, Morse Falls Scale (MFS) and Falls Risk Assessment Tool (FRAT). On detailed examination, a number of different versions of the FRAT were evident; validated tools had inconsistent predictive validity and none of them had been validated in mental health settings. Conclusions Falls risk assessment is the most commonly used component of risk prevention strategies, but most policies included unvalidated tools and even well validated tool such as the STRATIFY and the MFS that are reported to have inconsistent predictive accuracy. This raises questions about operational usefulness, as none of these tools have been tested in acute mental health settings. The falls risk assessment tools from only four mental health trusts met all the recommendations of the NICE falls guidelines on multifactorial assessment for prevention of falls. The recent NICE (2013) guidance states that tools predicting risk using numeric scales should no longer be used; however, multifactorial risk assessment and interventions tailored to patient needs is recommended. Trusts will need to update their policies in response to this guidance. PMID:26395210
Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.
Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun
2015-11-07
In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.
Computer assisted blast design and assessment tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, A.R.; Kleine, T.H.; Forsyth, W.W.
1995-12-31
In general the software required by a blast designer includes tools that graphically present blast designs (surface and underground), can analyze a design or predict its result, and can assess blasting results. As computers develop and computer literacy continues to rise the development of and use of such tools will spread. An example of the tools that are becoming available includes: Automatic blast pattern generation and underground ring design; blast design evaluation in terms of explosive distribution and detonation simulation; fragmentation prediction; blast vibration prediction and minimization; blast monitoring for assessment of dynamic performance; vibration measurement, display and signal processing;more » evaluation of blast results in terms of fragmentation; and risk and reliability based blast assessment. The authors have identified a set of criteria that are essential in choosing appropriate software blasting tools.« less
Predicting performance with traffic analysis tools : final report.
DOT National Transportation Integrated Search
2008-03-01
This document provides insights into the common pitfalls and challenges associated with use of traffic analysis tools for predicting future performance of a transportation facility. It provides five in-depth case studies that demonstrate common ways ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel; Makarov, PNNL Yuri; Subbarao, PNNL Kris
RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The tool dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variablemore » resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.« less
Rauh, Simone P; Rutters, Femke; van der Heijden, Amber A W A; Luimes, Thomas; Alssema, Marjan; Heymans, Martijn W; Magliano, Dianna J; Shaw, Jonathan E; Beulens, Joline W; Dekker, Jacqueline M
2018-02-01
Chronic cardiometabolic diseases, including cardiovascular disease (CVD), type 2 diabetes (T2D) and chronic kidney disease (CKD), share many modifiable risk factors and can be prevented using combined prevention programs. Valid risk prediction tools are needed to accurately identify individuals at risk. We aimed to validate a previously developed non-invasive risk prediction tool for predicting the combined 7-year-risk for chronic cardiometabolic diseases. The previously developed tool is stratified for sex and contains the predictors age, BMI, waist circumference, use of antihypertensives, smoking, family history of myocardial infarction/stroke, and family history of diabetes. This tool was externally validated, evaluating model performance using area under the receiver operating characteristic curve (AUC)-assessing discrimination-and Hosmer-Lemeshow goodness-of-fit (HL) statistics-assessing calibration. The intercept was recalibrated to improve calibration performance. The risk prediction tool was validated in 3544 participants from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Discrimination was acceptable, with an AUC of 0.78 (95% CI 0.75-0.81) in men and 0.78 (95% CI 0.74-0.81) in women. Calibration was poor (HL statistic: p < 0.001), but improved considerably after intercept recalibration. Examination of individual outcomes showed that in men, AUC was highest for CKD (0.85 [95% CI 0.78-0.91]) and lowest for T2D (0.69 [95% CI 0.65-0.74]). In women, AUC was highest for CVD (0.88 [95% CI 0.83-0.94)]) and lowest for T2D (0.71 [95% CI 0.66-0.75]). Validation of our previously developed tool showed robust discriminative performance across populations. Model recalibration is recommended to account for different disease rates. Our risk prediction tool can be useful in large-scale prevention programs for identifying those in need of further risk profiling because of their increased risk for chronic cardiometabolic diseases.
Evaluation of in silico tools to predict the skin sensitization potential of chemicals.
Verheyen, G R; Braeken, E; Van Deun, K; Van Miert, S
2017-01-01
Public domain and commercial in silico tools were compared for their performance in predicting the skin sensitization potential of chemicals. The packages were either statistical based (Vega, CASE Ultra) or rule based (OECD Toolbox, Toxtree, Derek Nexus). In practice, several of these in silico tools are used in gap filling and read-across, but here their use was limited to make predictions based on presence/absence of structural features associated to sensitization. The top 400 ranking substances of the ATSDR 2011 Priority List of Hazardous Substances were selected as a starting point. Experimental information was identified for 160 chemically diverse substances (82 positive and 78 negative). The prediction for skin sensitization potential was compared with the experimental data. Rule-based tools perform slightly better, with accuracies ranging from 0.6 (OECD Toolbox) to 0.78 (Derek Nexus), compared with statistical tools that had accuracies ranging from 0.48 (Vega) to 0.73 (CASE Ultra - LLNA weak model). Combining models increased the performance, with positive and negative predictive values up to 80% and 84%, respectively. However, the number of substances that were predicted positive or negative for skin sensitization in both models was low. Adding more substances to the dataset will increase the confidence in the conclusions reached. The insights obtained in this evaluation are incorporated in a web database www.asopus.weebly.com that provides a potential end user context for the scope and performance of different in silico tools with respect to a common dataset of curated skin sensitization data.
Predicting tool life in turning operations using neural networks and image processing
NASA Astrophysics Data System (ADS)
Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D.
2018-05-01
A two-step method is presented for the automatic prediction of tool life in turning operations. First, experimental data are collected for three cutting edges under the same constant processing conditions. In these experiments, the parameter of tool wear, VB, is measured with conventional methods and the same parameter is estimated using Neural Wear, a customized software package that combines flank wear image recognition and Artificial Neural Networks (ANNs). Second, an ANN model of tool life is trained with the data collected from the first two cutting edges and the subsequent model is evaluated on two different subsets for the third cutting edge: the first subset is obtained from the direct measurement of tool wear and the second is obtained from the Neural Wear software that estimates tool wear using edge images. Although the complete-automated solution, Neural Wear software for tool wear recognition plus the ANN model of tool life prediction, presented a slightly higher error than the direct measurements, it was within the same range and can meet all industrial requirements. These results confirm that the combination of image recognition software and ANN modelling could potentially be developed into a useful industrial tool for low-cost estimation of tool life in turning operations.
About Using Predictive Models and Tools To Assess Chemicals under TSCA
As part of EPA's effort to promote chemical safety, OPPT provides public access to predictive models and tools which can help inform the public on the hazards and risks of substances and improve chemical management decisions.
The user's guide describes the methods used by TEST to predict toxicity and physical properties (including the new mode of action based method used to predict acute aquatic toxicity). It describes all of the experimental data sets included in the tool. It gives the prediction res...
Modeling and Prediction of Fan Noise
NASA Technical Reports Server (NTRS)
Envia, Ed
2008-01-01
Fan noise is a significant contributor to the total noise signature of a modern high bypass ratio aircraft engine and with the advent of ultra high bypass ratio engines like the geared turbofan, it is likely to remain so in the future. As such, accurate modeling and prediction of the basic characteristics of fan noise are necessary ingredients in designing quieter aircraft engines in order to ensure compliance with ever more stringent aviation noise regulations. In this paper, results from a comprehensive study aimed at establishing the utility of current tools for modeling and predicting fan noise will be summarized. It should be emphasized that these tools exemplify present state of the practice and embody what is currently used at NASA and Industry for predicting fan noise. The ability of these tools to model and predict fan noise is assessed against a set of benchmark fan noise databases obtained for a range of representative fan cycles and operating conditions. Detailed comparisons between the predicted and measured narrowband spectral and directivity characteristics of fan nose will be presented in the full paper. General conclusions regarding the utility of current tools and recommendations for future improvements will also be given.
Siaw-Sakyi, Vincent
2017-12-01
Wound infection is proving to be a challenge for health care professionals. The associated complications and cost of wound infection is immense and can lead to death in extreme cases. Current management of wound infection is largely subjective and relies on the knowledge of the health care professional to identify and initiate treatment. In response, we have developed an infection prediction and assessment tool. The Wound Infection Risk-Assessment and Evaluation tool (WIRE) and its management strategy is a tool with the aim to bring objectivity to infection prediction, assessment and management. A local audit carried out indicated a high infection prediction rate. More work is being done to improve its effectiveness.
Tools for studying dry-cured ham processing by using computed tomography.
Santos-Garcés, Eva; Muñoz, Israel; Gou, Pere; Sala, Xavier; Fulladosa, Elena
2012-01-11
An accurate knowledge and optimization of dry-cured ham elaboration processes could help to reduce operating costs and maximize product quality. The development of nondestructive tools to characterize chemical parameters such as salt and water contents and a(w) during processing is of special interest. In this paper, predictive models for salt content (R(2) = 0.960 and RMSECV = 0.393), water content (R(2) = 0.912 and RMSECV = 1.751), and a(w) (R(2) = 0.906 and RMSECV = 0.008), which comprise the whole elaboration process, were developed. These predictive models were used to develop analytical tools such as distribution diagrams, line profiles, and regions of interest (ROIs) from the acquired computed tomography (CT) scans. These CT analytical tools provided quantitative information on salt, water, and a(w) in terms of content but also distribution throughout the process. The information obtained was applied to two industrial case studies. The main drawback of the predictive models and CT analytical tools is the disturbance that fat produces in water content and a(w) predictions.
Tang, Haiming; Thomas, Paul D
2016-07-15
PANTHER-PSEP is a new software tool for predicting non-synonymous genetic variants that may play a causal role in human disease. Several previous variant pathogenicity prediction methods have been proposed that quantify evolutionary conservation among homologous proteins from different organisms. PANTHER-PSEP employs a related but distinct metric based on 'evolutionary preservation': homologous proteins are used to reconstruct the likely sequences of ancestral proteins at nodes in a phylogenetic tree, and the history of each amino acid can be traced back in time from its current state to estimate how long that state has been preserved in its ancestors. Here, we describe the PSEP tool, and assess its performance on standard benchmarks for distinguishing disease-associated from neutral variation in humans. On these benchmarks, PSEP outperforms not only previous tools that utilize evolutionary conservation, but also several highly used tools that include multiple other sources of information as well. For predicting pathogenic human variants, the trace back of course starts with a human 'reference' protein sequence, but the PSEP tool can also be applied to predicting deleterious or pathogenic variants in reference proteins from any of the ∼100 other species in the PANTHER database. PANTHER-PSEP is freely available on the web at http://pantherdb.org/tools/csnpScoreForm.jsp Users can also download the command-line based tool at ftp://ftp.pantherdb.org/cSNP_analysis/PSEP/ CONTACT: pdthomas@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ecotoxicity assessment of artificial groundwater recharge with reclaimed water: a pilot-scale study.
Zhang, Xue; Zhao, Xuan
2013-11-01
A demonstration of artificial groundwater recharge with tertiary effluent was evaluated using a set of bioassays (acute toxicity to Daphnia, genotoxicity, estrogenic and antiestrogenic toxicity). Around 95 % genotoxicity and 53 % antiestrogenicity were removed from the feed water by ozonation, whereas significant reduction of acute toxicity to Daphnia magna was achieved during a 3 days vadose soil treatment. The toxicity was further removed to the same level as the local groundwater during a 20 days aquifer soil treatment. The pilot study has shown that ozonation and soil treatments can improve the quality of municipal wastewater treatment plant effluents for possible groundwater recharge purposes.
An Update on Design Tools for Optimization of CMC 3D Fiber Architectures
NASA Technical Reports Server (NTRS)
Lang, J.; DiCarlo, J.
2012-01-01
Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.
Force Modelling in Orthogonal Cutting Considering Flank Wear Effect
NASA Astrophysics Data System (ADS)
Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.
2017-05-01
In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.
Frailty Screening Tools for Elderly Patients Incident to Dialysis.
van Loon, Ismay N; Goto, Namiko A; Boereboom, Franciscus T J; Bots, Michiel L; Verhaar, Marianne C; Hamaker, Marije E
2017-09-07
A geriatric assessment is an appropriate method for identifying frail elderly patients. In CKD, it may contribute to optimize personalized care. However, a geriatric assessment is time consuming. The purpose of our study was to compare easy to apply frailty screening tools with the geriatric assessment in patients eligible for dialysis. A total of 123 patients on incident dialysis ≥65 years old were included <3 weeks before to ≤2 weeks after dialysis initiation, and all underwent a geriatric assessment. Patients with impairment in two or more geriatric domains on the geriatric assessment were considered frail. The diagnostic abilities of six frailty screening tools were compared with the geriatric assessment: the Fried Frailty Index, the Groningen Frailty Indicator, Geriatric8, the Identification of Seniors at Risk, the Hospital Safety Program, and the clinical judgment of the nephrologist. Outcome measures were sensitivity, specificity, positive predictive value, and negative predictive value. In total, 75% of patients were frail according to the geriatric assessment. Sensitivity of frailty screening tools ranged from 48% (Fried Frailty Index) to 88% (Geriatric8). The discriminating features of the clinical judgment were comparable with the other screening tools. The Identification of Seniors at Risk screening tool had the best discriminating abilities, with a sensitivity of 74%, a specificity of 80%, a positive predictive value of 91%, and a negative predictive value of 52%. The negative predictive value was poor for all tools, which means that almost one half of the patients screened as fit (nonfrail) had two or more geriatric impairments on the geriatric assessment. All frailty screening tools are able to detect geriatric impairment in elderly patients eligible for dialysis. However, all applied screening tools, including the judgment of the nephrologist, lack the discriminating abilities to adequately rule out frailty compared with a geriatric assessment. Copyright © 2017 by the American Society of Nephrology.
Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models
Keith Grabner; John Dwyer; Bruce Cutter
1997-01-01
Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...
RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction
Cruz, José Almeida; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cao, Song; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Flores, Samuel Coulbourn; Huang, Lili; Lavender, Christopher A.; Lisi, Véronique; Major, François; Mikolajczak, Katarzyna; Patel, Dinshaw J.; Philips, Anna; Puton, Tomasz; Santalucia, John; Sijenyi, Fredrick; Hermann, Thomas; Rother, Kristian; Rother, Magdalena; Serganov, Alexander; Skorupski, Marcin; Soltysinski, Tomasz; Sripakdeevong, Parin; Tuszynska, Irina; Weeks, Kevin M.; Waldsich, Christina; Wildauer, Michael; Leontis, Neocles B.; Westhof, Eric
2012-01-01
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises. PMID:22361291
D-MATRIX: A web tool for constructing weight matrix of conserved DNA motifs
Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok
2009-01-01
Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. DMATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the coregulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sosbox cisregulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. DMATRIX tool is accessible through the CIMAP domain network. Availability http://203.190.147.116/dmatrix/ PMID:19759861
D-MATRIX: a web tool for constructing weight matrix of conserved DNA motifs.
Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok
2009-07-27
Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D-MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co-regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos-box cis-regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D-MATRIX tool is accessible through the CIMAP domain network. http://203.190.147.116/dmatrix/
Online Analysis of Wind and Solar Part I: Ramping Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.
2012-01-31
To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.
Gene Unprediction with Spurio: A tool to identify spurious protein sequences.
Höps, Wolfram; Jeffryes, Matt; Bateman, Alex
2018-01-01
We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation. Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases. We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes. Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.
Fazel, Seena; Singh, Jay P; Doll, Helen; Grann, Martin
2012-07-24
To investigate the predictive validity of tools commonly used to assess the risk of violence, sexual, and criminal behaviour. Systematic review and tabular meta-analysis of replication studies following PRISMA guidelines. PsycINFO, Embase, Medline, and United States Criminal Justice Reference Service Abstracts. We included replication studies from 1 January 1995 to 1 January 2011 if they provided contingency data for the offending outcome that the tools were designed to predict. We calculated the diagnostic odds ratio, sensitivity, specificity, area under the curve, positive predictive value, negative predictive value, the number needed to detain to prevent one offence, as well as a novel performance indicator-the number safely discharged. We investigated potential sources of heterogeneity using metaregression and subgroup analyses. Risk assessments were conducted on 73 samples comprising 24,847 participants from 13 countries, of whom 5879 (23.7%) offended over an average of 49.6 months. When used to predict violent offending, risk assessment tools produced low to moderate positive predictive values (median 41%, interquartile range 27-60%) and higher negative predictive values (91%, 81-95%), and a corresponding median number needed to detain of 2 (2-4) and number safely discharged of 10 (4-18). Instruments designed to predict violent offending performed better than those aimed at predicting sexual or general crime. Although risk assessment tools are widely used in clinical and criminal justice settings, their predictive accuracy varies depending on how they are used. They seem to identify low risk individuals with high levels of accuracy, but their use as sole determinants of detention, sentencing, and release is not supported by the current evidence. Further research is needed to examine their contribution to treatment and management.
Sperschneider, Jana; Williams, Angela H; Hane, James K; Singh, Karam B; Taylor, Jennifer M
2015-01-01
The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen's advantage. Proteinaceous effectors are synthesized intracellularly and must be externalized to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score) and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localization predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes.
Konc, Janez; Janežič, Dušanka
2017-09-01
ProBiS (Protein Binding Sites) Tools consist of algorithm, database, and web servers for prediction of binding sites and protein ligands based on the detection of structurally similar binding sites in the Protein Data Bank. In this article, we review the operations that ProBiS Tools perform, provide comments on the evolution of the tools, and give some implementation details. We review some of its applications to biologically interesting proteins. ProBiS Tools are freely available at http://probis.cmm.ki.si and http://probis.nih.gov. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kazaura, Kamugisha; Omae, Kazunori; Suzuki, Toshiji; Matsumoto, Mitsuji; Mutafungwa, Edward; Korhonen, Timo O; Murakami, Tadaaki; Takahashi, Koichi; Matsumoto, Hideki; Wakamori, Kazuhiko; Arimoto, Yoshinori
2006-06-12
The deterioration and deformation of a free-space optical beam wave-front as it propagates through the atmosphere can reduce the link availability and may introduce burst errors thus degrading the performance of the system. We investigate the suitability of utilizing soft-computing (SC) based tools for improving performance of free-space optical (FSO) communications systems. The SC based tools are used for the prediction of key parameters of a FSO communications system. Measured data collected from an experimental FSO communication system is used as training and testing data for a proposed multi-layer neural network predictor (MNNP) used to predict future parameter values. The predicted parameters are essential for reducing transmission errors by improving the antenna's accuracy of tracking data beams. This is particularly essential for periods considered to be of strong atmospheric turbulence. The parameter values predicted using the proposed tool show acceptable conformity with original measurements.
Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study
NASA Astrophysics Data System (ADS)
Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash
2018-02-01
Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.
Kohonen, Pekka; Parkkinen, Juuso A.; Willighagen, Egon L.; Ceder, Rebecca; Wennerberg, Krister; Kaski, Samuel; Grafström, Roland C.
2017-01-01
Predicting unanticipated harmful effects of chemicals and drug molecules is a difficult and costly task. Here we utilize a ‘big data compacting and data fusion’—concept to capture diverse adverse outcomes on cellular and organismal levels. The approach generates from transcriptomics data set a ‘predictive toxicogenomics space’ (PTGS) tool composed of 1,331 genes distributed over 14 overlapping cytotoxicity-related gene space components. Involving ∼2.5 × 108 data points and 1,300 compounds to construct and validate the PTGS, the tool serves to: explain dose-dependent cytotoxicity effects, provide a virtual cytotoxicity probability estimate intrinsic to omics data, predict chemically-induced pathological states in liver resulting from repeated dosing of rats, and furthermore, predict human drug-induced liver injury (DILI) from hepatocyte experiments. Analysing 68 DILI-annotated drugs, the PTGS tool outperforms and complements existing tests, leading to a hereto-unseen level of DILI prediction accuracy. PMID:28671182
ATLAS trigger operations: Upgrades to ``Xmon'' rate prediction system
NASA Astrophysics Data System (ADS)
Myers, Ava; Aukerman, Andrew; Hong, Tae Min; Atlas Collaboration
2017-01-01
We present ``Xmon,'' a tool to monitor trigger rates in the Control Room of the ATLAS Experiment. We discuss Xmon's recent (1) updates, (2) upgrades, and (3) operations. (1) Xmon was updated to modify the tool written for the three-level trigger architecture in Run-1 (2009-2012) to adapt to the new two-level system for Run-2 (2015-current). The tool takes as input the beam luminosity to make a rate prediction, which is compared with incoming rates to detect anomalies that occur both globally throughout a run and locally within a run. Global offsets are more commonly caught by the predictions based upon past runs, where offline processing allows for function adjustments and fit quality through outlier rejection. (2) Xmon was upgraded to detect local offsets using on-the-fly predictions, which uses a sliding window of in-run rates to make predictions. (3) Xmon operations examples are given. Future work involves further automation of the steps to provide the predictive functions and for alerting shifters.
Fan Noise Prediction with Applications to Aircraft System Noise Assessment
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Envia, Edmane; Burley, Casey L.
2009-01-01
This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.
Assessing Bleeding Risk in Patients Taking Anticoagulants
Shoeb, Marwa; Fang, Margaret C.
2013-01-01
Anticoagulant medications are commonly used for the prevention and treatment of thromboembolism. Although highly effective, they are also associated with significant bleeding risks. Numerous individual clinical factors have been linked to an increased risk of hemorrhage, including older age, anemia, and renal disease. To help quantify hemorrhage risk for individual patients, a number of clinical risk prediction tools have been developed. These risk prediction tools differ in how they were derived and how they identify and weight individual risk factors. At present, their ability to effective predict anticoagulant-associated hemorrhage remains modest. Use of risk prediction tools to estimate bleeding in clinical practice is most influential when applied to patients at the lower spectrum of thromboembolic risk, when the risk of hemorrhage will more strongly affect clinical decisions about anticoagulation. Using risk tools may also help counsel and inform patients about their potential risk for hemorrhage while on anticoagulants, and can identify patients who might benefit from more careful management of anticoagulation. PMID:23479259
Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos
Fraser, L.-A.; Langsetmo, L.; Berger, C.; Ioannidis, G.; Goltzman, D.; Adachi, J. D.; Papaioannou, A.; Josse, R.; Kovacs, C. S.; Olszynski, W. P.; Towheed, T.; Hanley, D. A.; Kaiser, S. M.; Prior, J.; Jamal, S.; Kreiger, N.; Brown, J. P.; Johansson, H.; Oden, A.; McCloskey, E.; Kanis, J. A.
2016-01-01
Summary A new Canadian WHO fracture risk assessment (FRAX®) tool to predict 10-year fracture probability was compared with observed 10-year fracture outcomes in a large Canadian population-based study (CaMos). The Canadian FRAX tool showed good calibration and discrimination for both hip and major osteoporotic fractures. Introduction The purpose of this study was to validate a new Canadian WHO fracture risk assessment (FRAX®) tool in a prospective, population-based cohort, the Canadian Multi-centre Osteoporosis Study (CaMos). Methods A FRAX tool calibrated to the Canadian population was developed by the WHO Collaborating Centre for Metabolic Bone Diseases using national hip fracture and mortality data. Ten-year FRAX probabilities with and without bone mineral density (BMD) were derived for CaMos women (N=4,778) and men (N=1,919) and compared with observed fracture outcomes to 10 years (Kaplan–Meier method). Cox proportional hazard models were used to investigate the contribution of individual FRAX variables. Results Mean overall 10-year FRAX probability with BMD for major osteoporotic fractures was not significantly different from the observed value in men [predicted 5.4% vs. observed 6.4% (95%CI 5.2–7.5%)] and only slightly lower in women [predicted 10.8% vs. observed 12.0% (95%CI 11.0–12.9%)]. FRAX was well calibrated for hip fracture assessment in women [predicted 2.7% vs. observed 2.7% (95%CI 2.2–3.2%)] but underestimated risk in men [predicted 1.3% vs. observed 2.4% (95%CI 1.7–3.1%)]. FRAX with BMD showed better fracture discrimination than FRAX without BMD or BMD alone. Age, body mass index, prior fragility fracture and femoral neck BMD were significant independent predictors of major osteoporotic fractures; sex, age, prior fragility fracture and femoral neck BMD were significant independent predictors of hip fractures. Conclusion The Canadian FRAX tool provides predictions consistent with observed fracture rates in Canadian women and men, thereby providing a valuable tool for Canadian clinicians assessing patients at risk of fracture. PMID:21161508
NASA Astrophysics Data System (ADS)
Hadder, Eric Michael
There are many computer aided engineering tools and software used by aerospace engineers to design and predict specific parameters of an airplane. These tools help a design engineer predict and calculate such parameters such as lift, drag, pitching moment, takeoff range, maximum takeoff weight, maximum flight range and much more. However, there are very limited ways to predict and calculate the minimum control speeds of an airplane in engine inoperative flight. There are simple solutions, as well as complicated solutions, yet there is neither standard technique nor consistency throughout the aerospace industry. To further complicate this subject, airplane designers have the option of using an Automatic Thrust Control System (ATCS), which directly alters the minimum control speeds of an airplane. This work addresses this issue with a tool used to predict and calculate the Minimum Control Speed on the Ground (VMCG) as well as the Minimum Control Airspeed (VMCA) of any existing or design-stage airplane. With simple line art of an airplane, a program called VORLAX is used to generate an aerodynamic database used to calculate the stability derivatives of an airplane. Using another program called Numerical Propulsion System Simulation (NPSS), a propulsion database is generated to use with the aerodynamic database to calculate both VMCG and VMCA. This tool was tested using two airplanes, the Airbus A320 and the Lockheed Martin C130J-30 Super Hercules. The A320 does not use an Automatic Thrust Control System (ATCS), whereas the C130J-30 does use an ATCS. The tool was able to properly calculate and match known values of VMCG and VMCA for both of the airplanes. The fact that this tool was able to calculate the known values of VMCG and VMCA for both airplanes means that this tool would be able to predict the VMCG and VMCA of an airplane in the preliminary stages of design. This would allow design engineers the ability to use an Automatic Thrust Control System (ATCS) as part of the design of an airplane and still have the ability to predict the VMCG and VMCA of the airplane.