Mendola, Meredith L; Baer, Sara G; Johnson, Loretta C; Maricle, Brian R
2015-09-01
Knowledge of the relative strength of evolution and the environment on a phenotype is required to predict species responses to environmental change and decide where to source plant material for ecological restoration. This information is critically needed for dominant species that largely determine the productivity of the central U.S. grassland. We established a reciprocal common garden experiment across a longitudinal gradient to test whether ecotypic variation interacts with the environment to affect growth and nitrogen (N) storage in a dominant grass. We predicted plant growth would increase from west to east, corresponding with increasing precipitation, but differentially among ecotypes due to local adaptation in all ecotypes and a greater range of growth response in ecotypes originating from west to east. We quantified aboveground biomass, root biomass, belowground net primary production (BNPP), root C:N ratio, and N storage in roots of three ecotypes of Andropogon gerardii collected from and reciprocally planted in central Kansas, eastern Kansas, and s6uthern Illinois. Only the ecotype from the most mesic region (southern Illinois) exhibited more growth from west to east. There was evidence for local adaptation in the southern Illinois ecotype by means of the local vs. foreign contrast within a site and the home vs. away contrast when growth in southern Illinois was compared to the most distant 'site in central Kansas. Root biomass of the eastern Kansas ecotype was higher at home than at either away site. The ecotype from the driest region, central Kansas, exhibited the least response across the environmental gradient, resulting in a positive relationship between the range of biomass response and precipitation in ecotype region of origin. Across all sites, ecotypes varied in root C:N ratio (highest in the driest-origin ecotype) and N storage in roots (highest in the most mesic-origin ecotype). The low and limited range of biomass, higher C:N ratio of roots, and lower N storage in the central Kansas ecotype relative to the southern Illinois ecotype suggests that introducing ecotypes of A. gerardii from much drier regions into highly mesic prairie would reduce productivity and alter belowground ecosystem processes under a wide range of conditions.
Accumulation and tolerance of lead in two contrasting ecotypes of Dianthus carthusianorum.
Wójcik, Małgorzata; Tukiendorf, Anna
2014-04-01
Dianthus carthusianorum is one of the dominant plant species colonising the Zn-Pb waste deposits in Bolesław, Southern Poland. It differs in terms of morphology and genetics from ecotypes inhabiting non-metal-polluted areas. The response of waste-heap (metallicolous, M) and reference (nonmetallicolous, NM) ecotypes of D. carthusianorum to Pb in hydroponics was investigated and compared in this study. The plants of the M ecotype were more tolerant to Pb than these of the NM ecotype in spite of accumulation of higher concentrations of Pb. In both ecotypes, about 70-78% of Pb was retained in roots. In non Pb-treated plants, a higher glutathione (GSH) level was found in the M ecotype. After the Pb exposure, the GSH level decreased and was similar in both ecotypes. Lead treatment induced synthesis of phytochelatins (PCs) only in the plant roots, with significantly higher concentrations thereof detected in the NM ecotype. Malate and citrate concentrations were higher in the M ecotype; however, they did not change significantly upon any Pb treatment in either ecotype. The results indicated that neither PCs nor organic acids were responsible for the enhanced Pb tolerance of the waste-heap plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eppel, Amir; Keren, Nir; Salomon, Eitan; Volis, Sergei; Rachmilevitch, Shimon
2013-03-01
The goal of the current research was to study the role of anthocyanin accumulation, O(2)-related photochemical processes and non-photochemical quenching (NPQ) in the response of desert and Mediterranean plants to drought and excessive light. Plants of Hordeum spontaneum were collected from Mediterranean and desert environments and were subjected to terminal drought for 25 days and then measured for PSII yield at 2 and 21% O(2), NPQ, net carbon assimilation, stomatal conductance, leaf relative water content (LRWC), anthocyanin concentration and leaf absorbance. Under terminal drought, LRWC, carbon assimilation and stomatal conductance decreased similarly and significantly in both the Mediterranean and the desert ecotypes. Anthocyanin accumulated more in the desert ecotype than in the Mediterranean ecotype. NPQ increased more in the Mediterranean ecotype as compared with the desert ecotype. PSII yield decreased significantly in the Mediterranean ecotype under drought and was much lower than in the desert ecotype under drought. The relatively high PSII yield under drought in the desert ecotype was O(2) dependent. The response of the H. spontaneum ecotype from a desert environment to drought stress was characterized by anthocyanin accumulation and induction of O(2) dependent photochemical activity, while the response of the Mediterranean ecotype was based on a higher induction of NPQ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Phillips, R D; Bohman, B; Anthony, J M; Krauss, S L; Dixon, K W; Peakall, R
2015-03-01
Plants are predicted to show floral adaptation to geographic variation in the most effective pollinator, potentially leading to reproductive isolation and genetic divergence. Many sexually deceptive orchids attract just a single pollinator species, limiting opportunities to experimentally investigate pollinator switching. Here, we investigate Drakaea concolor, which attracts two pollinator species. Using pollinator choice tests, we detected two morphologically similar ecotypes within D. concolor. The common ecotype only attracted Zaspilothynnus gilesi, whereas the rare ecotype also attracted an undescribed species of Pogonothynnus. The rare ecotype occurred at populations nested within the distribution of the common ecotype, with no evidence of ecotypes occurring sympatrically. Surveying for pollinators at over 100 sites revealed that ecotype identity was not correlated with wasp availability, with most orchid populations only attracting the rare Z. gilesi. Using microsatellite markers, genetic differentiation among populations was very low (GST = 0.011) regardless of ecotype, suggestive of frequent gene flow. Taken together, these results may indicate that the ability to attract Pogonothynnus has evolved recently, but this ecotype is yet to spread. The nested distribution of ecotypes, rather than the more typical formation of ecotypes in allopatry, illustrates that in sexually deceptive orchids, pollinator switching could occur throughout a species' range, resulting from multiple potentially suitable but unexploited pollinators occurring in sympatry. This unusual case of sympatric pollinators highlights D. concolor as a promising study system for further understanding the process of pollinator switching from ecological, chemical and genetic perspectives. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Varied Growth Response of Cogongrass Ecotypes to Elevated CO2.
Runion, G Brett; Prior, Stephen A; Capo-Chichi, Ludovic J A; Torbert, H Allen; van Santen, Edzard
2015-01-01
Cogongrass [Imperata cylindrica (L.) P. Beauv] is an invasive C4 perennial grass which is listed as one of the top ten worst weeds in the world and is a major problem in the Southeast US. Five cogongrass ecotypes [Florida (FL), Hybrid (HY), Louisiana (LA), Mobile (MB), and North Alabama (NA)] collected across the Southeast and a red-tip (RT) ornamental variety were container grown for 6 months in open top chambers under ambient and elevated (ambient plus 200 ppm) atmospheric CO2. Elevated CO2 increased average dry weight (13%) which is typical for grasses. Elevated CO2 increased height growth and both nitrogen and water use efficiencies, but lowered tissue nitrogen concentration; again, these are typical plant responses to elevated CO2. The HY ecotype tended to exhibit the greatest growth (followed by LA, NA, and FL ecotypes) whiles the RT and MB ecotypes were smallest. Interactions of CO2 with ecotype generally showed that the HY, LA, FL, and/or NA ecotypes showed a positive response to CO2 while the MB and RT ecotypes did not. Cogongrass is a problematic invasive weed in the southeastern U.S. and some ecotypes may become more so as atmospheric CO2 continues to rise.
Wood, Chris C; Bickham, John W; John Nelson, R; Foote, Chris J; Patton, John C
2008-01-01
We examine the evolutionary history and speculate about the evolutionary future of three basic life history ecotypes that contribute to the biocomplexity of sockeye salmon (Oncorhynchus nerka). The ‘recurrent evolution’ (RE) hypothesis claims that the sea/river ecotype is ancestral, a ‘straying’ form with poorly differentiated (meta)population structure, and that highly structured populations of lake-type sockeye and kokanee have evolved repeatedly in parallel adaptive radiations between recurrent glaciations of the Pleistocene Epoch. Basic premises of this hypothesis are consistent with new, independent evidence from recent surveys of genetic variation in mitochondrial and microsatellite DNA: (1) sockeye salmon are most closely related to pink (O. gorbuscha) and chum (O. keta) salmon with sea-type life histories; (2) the sockeye life history ecotypes exist as polyphyletic lineages within large drainages and geographic regions; (3) the sea/river ecotype exhibits less genetic differentiation among populations than the lake or kokanee ecotypes both within and among drainages; and (4) genetic diversity is typically higher in the sea/river ecotype than in the lake and kokanee ecotypes. Anthropogenic modification of estuarine habitat and intensive coastal fisheries have likely reduced and fragmented historic metapopulations of the sea/river ecotype, particularly in southern areas. In contrast, the kokanee ecotype appears to be favoured by marine fisheries and predicted changes in climate. PMID:25567627
Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.
Stewart, Jared J; Polutchko, Stephanie K; Adams, William W; Demmig-Adams, Barbara
2017-11-01
This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO 2 uptake under growth conditions with light- and CO 2 -saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO 2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.
Withler, Ruth E.
2017-01-01
Population structure of three ecotypes of Oncorhynchus nerka (sea-type Sockeye Salmon, lake-type Sockeye Salmon, and Kokanee) in the Fraser River and Columbia River drainages was examined with microsatellite variation, with the main focus as to whether Kokanee population structure within the Fraser River drainage suggested either a monophyletic or polyphyletic origin of the ecotype within the drainage. Variation at 14 microsatellite loci was surveyed for sea-type and lake-type Sockeye Salmon and Kokanee sampled from 121 populations in the two river drainages. An index of genetic differentiation, FST, over all populations and loci was 0.087, with individual locus values ranging from 0.031 to 0.172. Standardized to an ecotype sample size of 275 individuals, the least genetically diverse ecotype was sea-type Sockeye Salmon with 203 alleles, whereas Kokanee displayed the greatest number of alleles (260 alleles), with lake-type Sockeye Salmon intermediate (241 alleles). Kokanee populations from the Columbia River drainage (Okanagan Lake, Kootenay Lake), the South Thompson River (a major Fraser River tributary) drainage populations, and the mid-Fraser River populations all clustered together in a neighbor-joining analysis, indicative of a monophyletic origin of the Kokanee ecotype in these regions, likely reflecting the origin of salmon radiating from a refuge after the last glaciation period. However, upstream of the mid-Fraser River populations, there were closer relationships between the lake-type Sockeye Salmon ecotype and the Kokanee ecotype, indicative of the Kokanee ecotype evolving independently from the lake-type Sockeye Salmon ecotype in parallel radiation. Kokanee population structure within the entire Fraser River drainage suggested a polyphyletic origin of the ecotype within the drainage. Studies employing geographically restricted population sampling may not outline accurately the phylogenetic history of salmonid ecotypes. PMID:28886033
Shakeel, Samina; Haq, Noor Ul; Heckathorn, Scott A; Hamilton, E William; Luthe, Dawn S
2011-08-01
Production of chloroplast-localized small heat-shock proteins (Cp-sHSP) is correlated with increased thermotolerance in plants. Ecotypic variation in function and expression of Cp-sHSPs was analyzed in two Chenopodium album ecotypes from cool vs. warm-temperate USA habitats [New York (NY) and Mississippi (MS) respectively]. P(et) was more heat tolerant in the MS than the NY ecotype, and MS ecotype derived proportionally greater protection of P(et) by Cp-sHSP during high temperatures. Four genes encoding Cp-sHSPs were isolated and characterized: CaHSP25.99n (NY-1) and CaHSP26.23n (NY-2) from NY ecotype, and CaHSP26.04m (MS-1) and CaHSP26.26m (MS-2) from MS ecotype. The genes were nearly identical in predicted amino-acid sequence and hydrophobicity. Gene expression analysis indicated that MS-1 and MS-2 transcripts were constitutively expressed at low levels at 25 °C, while no NY-1 and NY-2 transcripts were detected at this temperature. Maximum accumulation of NY-1 and NY-2 transcripts occurred at 33 °C and 40 °C for MS-1 and MS-2. Immunoblot analysis revealed that (1) protein expression was highest at 37 °C in both ecotypes, but was greater in MS than NY ecotype at 40 °C; and (2) import of Cp-sHSP into chloroplasts was more heat-labile in NY ecotype. The higher expression of one isoform in MS ecotype may contribute to its enhanced thermotolerance. Absence of correlation between protein and transcript levels, suggests the post-transcriptional regulation is occurring. Promoter analysis of these genes revealed significant variations in heat-shock elements (HSE), core motifs required for heat-shock-factor binding. We propose a correlation between unique promoter architecture, Cp-sHSP expression and thermotolerance in both ecotypes. Published by Elsevier Masson SAS.
Phusantisampan, Theerawut; Meeinkuirt, Weeradej; Saengwilai, Patompong; Pichtel, John; Chaiyarat, Rattanawat
2016-10-01
Soil contamination by cadmium (Cd) poses a serious environmental and public health concern. Phytoremediation, i.e., the use of plants to remove contaminants from soil, has been proposed for treatment of Cd-contaminated ecosystems. In this study, we demonstrated the potential of Vetiveria zizanioides, commonly known as vetiver, to serve as an effective phytoremediation agent. Two ecotypes, i.e., India and Sri Lanka, were grown in greenhouse pots and in the field. Soils were amended with cow manure, pig manure, bat manure, and an organic fertilizer. Among all amendments, pig manure performed best in both greenhouse and field studies in terms of increasing total V. zizanioides biomass production in both ecotypes. In both greenhouse and in the field, tissue of the Sri Lanka ecotype had higher Cd concentrations than did the India ecotype. In the greenhouse, the presence of Cd did not affect total biomass production or root dry weight. The Sri Lanka ecotype had 2.7 times greater adventitious root numbers and 3.6 times greater Cd accumulation in roots than did the India ecotype. In the field study, the Sri Lanka ecotype offers potential as an excluder species, as it accumulated Cd primarily in roots, with translocation factor values <1 and a bioconcentration coefficient for roots >1 for all experiments except for the pig manure amendment. In addition, the highest Cd concentration in the Sri Lanka ecotype root (71.3 mg kg(-1)) was consistent with highest Cd uptake (10.4 mg plant(-1)) in the cow manure treatment. The India ecotype contained lower root Cd concentrations, and Cd accumulation was slightly higher in shoots compared to roots, with translocation factor (TF) values >1. The India ecotype was therefore not considered as an excluder in the Cd-contaminated soil. With the use of excluder species combined with application of organic amendments, soil contamination by Cd may be treated by alternative remediation methods such as phytostabilization.
The eastern migratory caribou: the role of genetic introgression in ecotype evolution.
Klütsch, Cornelya F C; Manseau, Micheline; Trim, Vicki; Polfus, Jean; Wilson, Paul J
2016-02-01
Understanding the evolutionary history of contemporary animal groups is essential for conservation and management of endangered species like caribou (Rangifer tarandus). In central Canada, the ranges of two caribou subspecies (barren-ground/woodland caribou) and two woodland caribou ecotypes (boreal/eastern migratory) overlap. Our objectives were to reconstruct the evolutionary history of the eastern migratory ecotype and to assess the potential role of introgression in ecotype evolution. STRUCTURE analyses identified five higher order groups (i.e. three boreal caribou populations, eastern migratory ecotype and barren-ground). The evolutionary history of the eastern migratory ecotype was best explained by an early genetic introgression from barren-ground into a woodland caribou lineage during the Late Pleistocene and subsequent divergence of the eastern migratory ecotype during the Holocene. These results are consistent with the retreat of the Laurentide ice sheet and the colonization of the Hudson Bay coastal areas subsequent to the establishment of forest tundra vegetation approximately 7000 years ago. This historical reconstruction of the eastern migratory ecotype further supports its current classification as a conservation unit, specifically a Designatable Unit, under Canada's Species at Risk Act. These findings have implications for other sub-specific contact zones for caribou and other North American species in conservation unit delineation.
Wójcik, Małgorzata; Dresler, Sławomir; Plak, Andrzej; Tukiendorf, Anna
2015-05-01
Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 μM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment.
Hillung, Julia; Cuevas, José M; Valverde, Sergi; Elena, Santiago F
2014-09-01
This study evaluates the extent to which genetic differences among host individuals from the same species condition the evolution of a plant RNA virus. We performed a threefold replicated evolution experiment in which Tobacco etch potyvirus isolate At17b (TEV-At17b), adapted to Arabidopsis thaliana ecotype Ler-0, was serially passaged in five genetically heterogeneous ecotypes of A. thaliana. After 15 passages we found that evolved viruses improved their fitness, showed higher infectivity and stronger virulence in their local host ecotypes. The genome of evolved lineages was sequenced and putative adaptive mutations identified. Host-driven convergent mutations have been identified. Evidences supported selection for increased translational efficiency. Next, we sought for the specificity of virus adaptation by infecting all five ecotypes with all 15 evolved virus populations. We found that some ecotypes were more permissive to infection than others, and that some evolved virus isolates were more specialist/generalist than others. The bipartite network linking ecotypes with evolved viruses was significantly nested but not modular, suggesting that hard-to-infect ecotypes were infected by generalist viruses whereas easy-to-infect ecotypes were infected by all viruses, as predicted by a gene-for-gene model of infection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trumbull, V.L.; McCloud, E.S.; Paige, K.N.
1994-06-01
Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seedmore » number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.« less
The eastern migratory caribou: the role of genetic introgression in ecotype evolution
Klütsch, Cornelya F. C.; Manseau, Micheline; Trim, Vicki; Polfus, Jean; Wilson, Paul J.
2016-01-01
Understanding the evolutionary history of contemporary animal groups is essential for conservation and management of endangered species like caribou (Rangifer tarandus). In central Canada, the ranges of two caribou subspecies (barren-ground/woodland caribou) and two woodland caribou ecotypes (boreal/eastern migratory) overlap. Our objectives were to reconstruct the evolutionary history of the eastern migratory ecotype and to assess the potential role of introgression in ecotype evolution. STRUCTURE analyses identified five higher order groups (i.e. three boreal caribou populations, eastern migratory ecotype and barren-ground). The evolutionary history of the eastern migratory ecotype was best explained by an early genetic introgression from barren-ground into a woodland caribou lineage during the Late Pleistocene and subsequent divergence of the eastern migratory ecotype during the Holocene. These results are consistent with the retreat of the Laurentide ice sheet and the colonization of the Hudson Bay coastal areas subsequent to the establishment of forest tundra vegetation approximately 7000 years ago. This historical reconstruction of the eastern migratory ecotype further supports its current classification as a conservation unit, specifically a Designatable Unit, under Canada’s Species at Risk Act. These findings have implications for other sub-specific contact zones for caribou and other North American species in conservation unit delineation. PMID:26998320
Genome-wide SNP data suggest complex ancestry of sympatric North Pacific killer whale ecotypes.
Foote, A D; Morin, P A
2016-11-01
Three ecotypes of killer whale occur in partial sympatry in the North Pacific. Individuals assortatively mate within the same ecotype, resulting in correlated ecological and genetic differentiation. A key question is whether this pattern of evolutionary divergence is an example of incipient sympatric speciation from a single panmictic ancestral population, or whether sympatry could have resulted from multiple colonisations of the North Pacific and secondary contact between ecotypes. Here, we infer multilocus coalescent trees from >1000 nuclear single-nucleotide polymorphisms (SNPs) and find evidence of incomplete lineage sorting so that the genealogies of SNPs do not all conform to a single topology. To disentangle whether uncertainty in the phylogenetic inference of the relationships among ecotypes could also result from ancestral admixture events we reconstructed the relationship among the ecotypes as an admixture graph and estimated f 4 -statistics using TreeMix. The results were consistent with episodes of admixture between two of the North Pacific ecotypes and the two outgroups (populations from the Southern Ocean and the North Atlantic). Gene flow may have occurred via unsampled 'ghost' populations rather than directly between the populations sampled here. Our results indicate that because of ancestral admixture events and incomplete lineage sorting, a single bifurcating tree does not fully describe the relationship among these populations. The data are therefore most consistent with the genomic variation among North Pacific killer whale ecotypes resulting from multiple colonisation events, and secondary contact may have facilitated evolutionary divergence. Thus, the present-day populations of North Pacific killer whale ecotypes have a complex ancestry, confounding the tree-based inference of ancestral geography.
Johnson, Loretta C; Olsen, Jacob T; Tetreault, Hannah; DeLaCruz, Angel; Bryant, Johnny; Morgan, Theodore J; Knapp, Mary; Bello, Nora M; Baer, Sara G; Maricle, Brian R
2015-01-01
Identifying suitable genetic stock for restoration often employs a ‘best guess’ approach. Without adaptive variation studies, restoration may be misguided. We test the extent to which climate in central US grasslands exerts selection pressure on a foundation grass big bluestem (Andropogon gerardii), widely used in restorations, and resulting in local adaptation. We seeded three regional ecotypes of A. gerardii in reciprocal transplant garden communities across 1150 km precipitation gradient. We measured ecological responses over several timescales (instantaneous gas exchange, medium-term chlorophyll absorbance, and long-term responses of establishment and cover) in response to climate and biotic factors and tested if ecotypes could expand range. The ecotype from the driest region exhibited greatest cover under low rainfall, suggesting local adaptation under abiotic stress. Unexpectedly, no evidence for cover differences between ecotypes exists at mesic sites where establishment and cover of all ecotypes were low, perhaps due to strong biotic pressures. Expression of adaptive differences is strongly environment specific. Given observed adaptive variation, the most conservative restoration strategy would be to plant the local ecotype, especially in drier locations. With superior performance of the most xeric ecotype under dry conditions and predicted drought, this ecotype may migrate eastward, naturally or with assistance in restorations. PMID:26240607
Johnson, Loretta C; Olsen, Jacob T; Tetreault, Hannah; DeLaCruz, Angel; Bryant, Johnny; Morgan, Theodore J; Knapp, Mary; Bello, Nora M; Baer, Sara G; Maricle, Brian R
2015-08-01
Identifying suitable genetic stock for restoration often employs a 'best guess' approach. Without adaptive variation studies, restoration may be misguided. We test the extent to which climate in central US grasslands exerts selection pressure on a foundation grass big bluestem (Andropogon gerardii), widely used in restorations, and resulting in local adaptation. We seeded three regional ecotypes of A. gerardii in reciprocal transplant garden communities across 1150 km precipitation gradient. We measured ecological responses over several timescales (instantaneous gas exchange, medium-term chlorophyll absorbance, and long-term responses of establishment and cover) in response to climate and biotic factors and tested if ecotypes could expand range. The ecotype from the driest region exhibited greatest cover under low rainfall, suggesting local adaptation under abiotic stress. Unexpectedly, no evidence for cover differences between ecotypes exists at mesic sites where establishment and cover of all ecotypes were low, perhaps due to strong biotic pressures. Expression of adaptive differences is strongly environment specific. Given observed adaptive variation, the most conservative restoration strategy would be to plant the local ecotype, especially in drier locations. With superior performance of the most xeric ecotype under dry conditions and predicted drought, this ecotype may migrate eastward, naturally or with assistance in restorations.
Melendrez, Melanie C.; Lange, Rachel K.; Cohan, Frederick M.; Ward, David M.
2011-01-01
Previous research has shown that sequences of 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions may not have enough genetic resolution to define all ecologically distinct Synechococcus populations (ecotypes) inhabiting alkaline, siliceous hot spring microbial mats. To achieve higher molecular resolution, we studied sequence variation in three protein-encoding loci sampled by PCR from 60°C and 65°C sites in the Mushroom Spring mat (Yellowstone National Park, WY). Sequences were analyzed using the ecotype simulation (ES) and AdaptML algorithms to identify putative ecotypes. Between 4 and 14 times more putative ecotypes were predicted from variation in protein-encoding locus sequences than from variation in 16S rRNA and 16S-23S rRNA internal transcribed spacer sequences. The number of putative ecotypes predicted depended on the number of sequences sampled and the molecular resolution of the locus. Chao estimates of diversity indicated that few rare ecotypes were missed. Many ecotypes hypothesized by sequence analyses were different in their habitat specificities, suggesting different adaptations to temperature or other parameters that vary along the flow channel. PMID:21169433
Genome-wide SNP data suggest complex ancestry of sympatric North Pacific killer whale ecotypes
Foote, A D; Morin, P A
2016-01-01
Three ecotypes of killer whale occur in partial sympatry in the North Pacific. Individuals assortatively mate within the same ecotype, resulting in correlated ecological and genetic differentiation. A key question is whether this pattern of evolutionary divergence is an example of incipient sympatric speciation from a single panmictic ancestral population, or whether sympatry could have resulted from multiple colonisations of the North Pacific and secondary contact between ecotypes. Here, we infer multilocus coalescent trees from >1000 nuclear single-nucleotide polymorphisms (SNPs) and find evidence of incomplete lineage sorting so that the genealogies of SNPs do not all conform to a single topology. To disentangle whether uncertainty in the phylogenetic inference of the relationships among ecotypes could also result from ancestral admixture events we reconstructed the relationship among the ecotypes as an admixture graph and estimated f4-statistics using TreeMix. The results were consistent with episodes of admixture between two of the North Pacific ecotypes and the two outgroups (populations from the Southern Ocean and the North Atlantic). Gene flow may have occurred via unsampled ‘ghost' populations rather than directly between the populations sampled here. Our results indicate that because of ancestral admixture events and incomplete lineage sorting, a single bifurcating tree does not fully describe the relationship among these populations. The data are therefore most consistent with the genomic variation among North Pacific killer whale ecotypes resulting from multiple colonisation events, and secondary contact may have facilitated evolutionary divergence. Thus, the present-day populations of North Pacific killer whale ecotypes have a complex ancestry, confounding the tree-based inference of ancestral geography. PMID:27485668
Genomic prediction for winter survival in lowland switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a North American native perennial warm season grass and a promising cellulosic bioenergy feedstock. It has two ecotypes – lowland and upland. The lowland ecotype has generated considerable interest because of its higher biomass compared to the upland ecotype. How...
Tao, Qi; Jupa, Radek; Luo, Jipeng; Lux, Alexander; Kováč, Ján; Wen, Yue; Zhou, Yimei; Jan, Japenga; Liang, Yongchao
2017-01-01
Abstract Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitranspirants to investigate and quantify the impact of the ABs on translocation of Cd to the xylem in roots of a hyperaccumulating (H) ecotype and a non-hyperaccumulating (NH) ecotype of Sedum alfredii. In the H ecotype, the Cd content in the xylem sap was proportional to hydrostatic pressure, which was attributed to pressure-driven flow via the ABs. The contribution of the ABs to Cd transportation to the xylem was dependent on the Cd concentration applied to the H ecotype (up to 37% at the highest concentration used). Cd-treated H ecotype roots showed significantly higher hydraulic conductance compared with the NH ecotype (76 vs 52 × 10–8 m s–1MPa–1), which is in accordance with less extensive suberization due to reduced expression of suberin-related genes. The main entry sites of apoplasmically transported Cd were localized in the root apexes and lateral roots of the H ecotype, where suberin lamellae were not well developed. These findings highlight the significance of the apoplasmic bypass in Cd hyperaccumulation in hyperaccumulating ecotypes of S. alfredii. PMID:28204505
Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R
2016-04-01
The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.
2016-01-01
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751
Khan, Mohammad Ashik Iqbal; Latif, Mohammad Abdul; Khalequzzaman, Mohammad; Tomita, Asami; Ali, Mohammad Ansar; Fukuta, Yoshimichi
2017-01-01
Genetic variation in blast resistance was clarified in 334 Bangladesh rice accessions from 4 major ecotypes (Aus, Aman, Boro and Jhum). Cluster analysis of polymorphism data of 74 SSR markers separated these accessions into cluster I (corresponding to the Japonica Group) and cluster II (corresponding to the Indica Group). Cluster II accessions were represented with high frequency in all ecotypes. Cluster II was further subdivided into subclusters IIa and IIb. Subcluster IIa accessions were represented with high frequency in only Aus and Jhum ecotypes. Cluster I accessions were more frequent in the Aman ecotype than in other ecotypes. Distinct variations in resistance were found, and accessions were classified into 4 groups (A1, A2, B1 and B2) based on their reactions to standard differential blast isolates. The most susceptible group was A2 (which included susceptible variety Lijiangxintuanheigu, most of the differential varieties, and a few Bangladesh accessions), followed in order by A1, B2 and B1 (the most resistant). Accessions from 4 ecotypes fell with different frequencies into each of these resistance groups. These results demonstrated that Japonica Group accessions were found mainly in Aman, and Indica Group accessions were distributed across all ecotypes. Susceptible accessions were limited in Aus and Aman. PMID:29398943
Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean
Zinser, E.R.; Johnson, Z.I.; Coe, A.; Karaca, E.; Veneziano, D.; Chisholm, S.W.
2007-01-01
In a focused analysis of Prochlorococcus population structure in the western North Atlantic, we found that the relative abundances of ecotypes varied significantly with depth and, at seasonally stratified locations, with degree of vertical mixing. More limited regional variation was observed (e.g., Sargasso Sea, Gulf Stream, continental slope, and equatorial current), and local patchiness was minimal. Modeling of a combined North and South Atlantic data set revealed significant, independent effects of light and temperature on ecotype abundances, suggesting that they are key ecological determinants that establish the different habitat ranges of the physiologically and genetically distinct ecotypes. This was in sharp contrast with the genus Synechococcus, whose total abundance was related to light but did not vary in a predictable way with temperature. Comparisons of field abundances with growth characteristics of cultured isolates of Prochlorococcus suggested the presence of ecotype-specific thermal and light adaptations that could be responsible for the distinct distribution patterns of the four dominant ecotypes. Significantly, we discovered that one "low-light-adapted" ecotype, eNATL2A, can thrive in deeply mixed surface layers, whereas another, eMIT9313, cannot, even though they have the same growth optimum for (low) light. ?? 2007, by the American Society of Limnology and Oceanography, Inc.
Petropoulos, Spyridon A; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel Cfr
2018-01-01
Wild greens are considered a rich source of phenolic compounds and antioxidants and an essential part of the so-called Mediterranean diet. In the present study, Cichorium spinosum L. ecotypes, cultivated or collected in situ from wild plants from the eastern Mediterranean, were evaluated regarding their phenolic composition and antioxidant activity. Significant differences were observed among the various studied ecotypes regarding their phenolic compound content and profile, especially between wild and cultivated ecotypes, as well as the phenolic acid content between commercial products and cultivated plants. The antioxidant activity also varied among the various studied ecotypes and growing conditions, with commercial products having the highest antioxidant activity, whereas wild ecotypes showed lower antioxidant activity. Cichorium spinosum leaves are a rich source of chicoric and 5-O-caffeoylquinic acid, while significant differences in total phenolic acids, flavonoids and phenolic compound content and in antioxidant activity were observed among the studied ecotypes, as well as between the tested growing conditions. According to the results of the present study, further valorization of C. spinosum species has great potential, since it could be used as a new alternative species in the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Kurepin, Leonid V; Pharis, Richard P; Neil Emery, R J; Reid, David M; Chinnappa, C C
2015-09-01
Stellaria longipes plant communities (ecotypes) occur in several environmentally distinct habitats along the eastern slopes of southern Alberta's Rocky Mountains. One ecotype occurs in a prairie habitat at ∼1000 m elevation where Stellaria plants grow in an environment in which the light is filtered by taller neighbouring vegetation, i.e. sunlight with a low red to far-red (R/FR) ratio. This ecotype exhibits a high degree of phenotypic plasticity by increasing stem elongation in response to the low R/FR ratio light signal. Another Stellaria ecotype occurs nearby at ∼2400 m elevation in a much cooler alpine habitat, one where plants rarely experience low R/FR ratio shade light. Stem elongation of plants is largely regulated by gibberellins (GAs) and auxin, indole-3-acetic acid (IAA). Shoots of the prairie ecotype plants show increased IAA levels under low R/FR ratio light and they also increase their stem growth in response to applied IAA. The alpine ecotype plants show neither response. Plants from both ecotypes produce high levels of growth-active GA1 under low R/FR ratio light, though they differ appreciably in their catabolism of GA1. The alpine ecotype plants exhibit very high levels of GA8, the inactive product of GA1 metabolism, under both normal and low R/FR ratio light. Alpine origin plants may de-activate GA1 by conversion to GA8 via a constitutively high level of expression of the GA2ox gene, thereby maintaining their dwarf phenotype and exhibiting a reduced phenotypic plasticity in terms of shoot elongation. In contrast, prairie plants exhibit a high degree of phenotypic plasticity, using low R/FR ratio light-mediated changes in GA and IAA concentrations to increase shoot elongation, thereby accessing direct sunlight to optimize photosynthesis. There thus appear to be complex adaptation strategies for the two ecotypes, ones which involve modifications in the homeostasis of endogenous hormones. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Variation in plastic responses of a globally distributed picoplankton species to ocean acidification
NASA Astrophysics Data System (ADS)
Schaum, Elisa; Rost, Björn; Millar, Andrew J.; Collins, Sinéad
2013-03-01
Phytoplankton are the basis of marine food webs, and affect biogeochemical cycles. As CO2 levels increase, shifts in the frequencies and physiology of ecotypes within phytoplankton groups will affect their nutritional value and biogeochemical function. However, studies so far are based on a few representative genotypes from key species. Here, we measure changes in cellular function and growth rate at atmospheric CO2 concentrations predicted for the year 2100 in 16 ecotypes of the marine picoplankton Ostreococcus. We find that variation in plastic responses among ecotypes is on par with published between-genera variation, so the responses of one or a few ecotypes cannot estimate changes to the physiology or composition of a species under CO2 enrichment. We show that ecotypes best at taking advantage of CO2 enrichment by changing their photosynthesis rates most should increase in relative fitness, and so in frequency in a high-CO2 environment. Finally, information on sampling location, and not phylogenetic relatedness, is a good predictor of ecotypes likely to increase in frequency in this system.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
2016-09-09
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
Ekvall, Lars; Greger, Maria
2003-01-01
A factorial design was used to study direct effects of external biomass-producing factors such as light, temperature and photoperiod on cadmium (Cd) uptake and indirect effects, via change in biomass production in two ecotypes of Scots pine (Pinus silvestris). The aim was to find out if the external factors affect the Cd uptake directly or via change in biomass production, and if the effect differs between ecotypes. Seedlings were grown under 10 combinations of external factors, i.e. temperature (15 and 20 degrees C), light intensity (50 and 200 micromol photons m(-2) S(-1)), photoperiod (18 h light/8 h darkness and continuous light) and external Cd concentration (totally 1.88 and 7.50 micromol). The treatment lasted for 18 days and Cd concentrations in roots and shoots were determined by AAS. The results showed that an increased biomass production increased the total Cd uptake but had a dilution effect on the Cd concentration, especially in the root tissues. The external factors tested did not have any direct effects on the Cd untake, only in the case of Cd translocation to the shoot did the higher temperature show a direct increase, but only in the southern ecotype. The two ecotypes reacted differently in Cd uptake and translocation to the external factors studied. The relative Cd uptake creased with increasing photoperiod in the northern but not in the southern ecotype. The southern ecotype decreased the Cd concentration in the shoot with increased light intensity caused by a dilution effect due to extensive shoot growth of this ecotype. The conclusion is that the uptake in pine seedlings is mainly regulated via biomass production, and not directly by light and temperature and that resulting plant Cd contents to a certain extent depend on plant origin.
Limborg, Morten T.; Larson, Wesley; Shedd, Kyle; Seeb, Lisa W.; Seeb, James E.
2017-01-01
Preservation of heritable ecological diversity within species and populations is a key challenge for managing natural resources and wild populations. Salmonid fish are iconic and socio-economically important species for commercial, aquaculture, and recreational fisheries across the globe. Many salmonids are known to exhibit ecological divergence within species, including distinct feeding ecotypes within the same lakes. Here we used 5559 SNPs, derived from RAD sequencing, to perform population genetic comparisons between two dietary ecotypes of sockeye salmon (Oncorhynchus nerka) in Jo-Jo Lake, Alaska (USA). We tested the standing hypothesis that these two ecotypes are currently diverging as a result of adaptation to distinct dietary niches; results support earlier conclusions of a single panmictic population. The RAD sequence data revealed 40 new SNPs not previously detected in the species, and our sequence data can be used in future studies of ecotypic diversity in salmonid species.
Ofir, Micha; Kigel, Jaime
2010-01-01
Background and Aims Summer dormancy is an adaptive trait in geophytes inhabiting regions with a Mediterranean climate, allowing their survival through the hot and dry summers. Summer dormancy in Poa bulbosa is induced by increasing day-length and temperature and decreasing water availability during spring. Populations from arid habitats became dormant earlier than those from mesic habitats. Relaxation of dormancy was promoted by the hot, dry summer conditions. Here we test the hypothesis that dormancy relaxation is also delayed in ecotypes of P. bulbosa inhabiting arid regions, as a cautious strategy related to the greater unpredictability of autumn rains associated with decreasing precipitation. Methods Ecotypes collected across a precipitation gradient (100–1200 mm year−1) in the Mediterranean climate region were grown under similar conditions in a net-house in Israel. Differences among ecotypes in dormancy induction and dormancy relaxation were determined by measuring time to dormancy onset in spring, and time to sprouting after the first effective rain in autumn. Seasonal and ecotype variation in dormancy relaxation were assessed by measuring time to sprouting initiation, rate of sprouting and maximal sprouting of resting dry bulbs sampled in the net-house during late spring, and mid- and late summer, and planted in a wet substrate at temperatures promoting (10 °C) or limiting (20 °C) sprouting. Key Results Earlier dormancy in the spring and delayed sprouting in autumn were correlated with decreasing mean annual rainfall at the site of ecotype origin. Seasonal and ecotype differences in dormancy relaxation were expressed in bulbs planted at 20 °C. During the summer, time to sprouting decreased while rate of sprouting and maximal sprouting increased, indicating dormancy relaxation. Ecotypes from more arid sites across the rainfall gradient showed delayed onset of sprouting and lower maximal sprouting, but did not differ in rate of sprouting. Planting at 10 °C promoted sprouting and cancelled differences among ecotypes in dormancy relaxation. Conclusions Both the induction and the relaxation of summer dormancy in P. bulbosa are correlated with mean annual precipitation at the site of population origin. Ecotypes from arid habitats have earlier dormancy induction and delayed dormancy relaxation, compared with those from mesic habitats. PMID:20156924
Gibbons, Taylor C; Metzger, David C H; Healy, Timothy M; Schulte, Patricia M
2017-05-01
Phenotypic plasticity is thought to facilitate the colonization of novel environments and shape the direction of evolution in colonizing populations. However, the relative prevalence of various predicted patterns of changes in phenotypic plasticity following colonization remains unclear. Here, we use a whole-transcriptome approach to characterize patterns of gene expression plasticity in the gills of a freshwater-adapted and a saltwater-adapted ecotype of threespine stickleback (Gasterosteus aculeatus) exposed to a range of salinities. The response of the gill transcriptome to environmental salinity had a large shared component common to both ecotypes (2159 genes) with significant enrichment of genes involved in transmembrane ion transport and the restructuring of the gill epithelium. This transcriptional response to freshwater acclimation is induced at salinities below two parts per thousand. There was also differentiation in gene expression patterns between ecotypes (2515 genes), particularly in processes important for changes in the gill structure and permeability. Only 508 genes that differed between ecotypes also responded to salinity and no specific processes were enriched among this gene set, and an even smaller number (87 genes) showed evidence of changes in the extent of the response to salinity acclimation between ecotypes. No pattern of relative expression dominated among these genes, suggesting that neither gains nor losses of plasticity dominated the changes in expression patterns between the ecotypes. These data demonstrate that multiple patterns of changes in gene expression plasticity can occur following colonization of novel habitats. © 2017 John Wiley & Sons Ltd.
Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes
2013-01-01
Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might be crucial for their local geographic adaptation to cold temperature. Additionally, since the approach presented here is general, it could be adapted to study networks regulating biological process in any biological systems. PMID:24148294
Kitano, J.; Mori, S.; Peichel, C. L.
2013-01-01
Sexual dimorphism in geometric body shape and external morphology was compared between marine and stream-resident forms of three-spined stickleback Gasterosteus aculeatus collected from North America and Japan. Some aspects of sexual dimorphism were shared between ecotypes: males had larger heads than females with no significant effect of ecotype on the magnitude of sexual dimorphism. By contrast, a significant sex-by-ecotype interaction was found for body depth. Males tended to have deeper bodies than females in both forms, but the magnitude of sexual dimorphism was reduced in stream-resident forms. Although females were generally larger in standard length and had larger pelvic girdles, significant sexual dimorphism in these traits was not consistently found across populations or ecotypes. These results suggest that some aspects of sexual dimorphism were shared between ecotypes, while others were unique to each population. The results further suggest that ecology may influence the evolution of sexual dimorphism in some external morphological traits, such as body depth. PMID:22220894
The contribution of post-copulatory mechanisms to incipient ecological speciation in sticklebacks.
Kaufmann, Joshka; Eizaguirre, Christophe; Milinski, Manfred; Lenz, Tobias L
2015-01-01
Ecology can play a major role in species diversification. As individuals are adapting to contrasting habitats, reproductive barriers may evolve at multiple levels. While pre-mating barriers have been extensively studied, the evolution of post-mating reproductive isolation during early stages of ecological speciation remains poorly understood. In diverging three-spined stickleback ecotypes from two lakes and two rivers, we observed differences in sperm traits between lake and river males. Interestingly, these differences did not translate into ecotype-specific gamete precedence for sympatric males in competitive in vitro fertilization experiments, potentially owing to antagonistic compensatory effects. However, we observed indirect evidence for impeded development of inter-ecotype zygotes, possibly suggesting an early stage of genetic incompatibility between ecotypes. Our results show that pre-zygotic post-copulatory mechanisms play a minor role during this first stage of ecotype divergence, but suggest that genetic incompatibilities may arise at early stages of ecological speciation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Insights on the drivers of genetic divergence in the European anchovy.
Catanese, Gaetano; Watteaux, Romain; Montes, Iratxe; Barra, Marco; Rumolo, Paola; Borme, Diego; Buongiorno Nardelli, Bruno; Botte, Vincenzo; Mazzocchi, Maria Grazia; Genovese, Simona; Di Capua, Iole; Iriondo, Mikel; Estonba, Andone; Ruggeri, Paolo; Tirelli, Valentina; Caputo-Barucchi, Vincenzo; Basilone, Gualtiero; Bonanno, Angelo; Iudicone, Daniele; Procaccini, Gabriele
2017-06-23
Anchovies represent the largest world's marine fish catches and the current threats on their populations impose a sustainable exploitment based on sound scientific information. In the European anchovy (Engraulis encrasicolus), the existence of several populations has been proposed but a global view is missing. Using a multidisciplinary approach, here we assessed the divergence among different ecotypes and its possible causes. SNPs have revealed two functionally distinct ecotypes overlapping in the Central Mediterranean, with one ecotype confined near the river estuaries. The same SNPs outliers also segregated two distinct populations in the near Atlantic, despite their large spatial distance. In addition, while most studies suggested that adaptation to low salinity is key to divergence, here we show that the offshore ecotype has higher environmental tolerance and an opportunistic feeding behaviour, as assessed by the study of environmental conditions, anchovy diet and trophic levels, and passive egg dispersal. These results provide insights into the anchovy evolutionary history, stressing the importance of behaviour in shaping ecotypes.
Sparkman, Amanda Marie; Palacios, Maria Gabriela
2009-11-01
1. Life-history theorists have long observed that fast growth and high reproduction tend to be associated with short life span, suggesting that greater investment in such traits may trade off with self-maintenance. The immune system plays an integral role in self-maintenance and has been proposed as a mediator of life-history trade-offs. 2. Ecoimmunologists have predicted that fast-living organisms should rely more heavily on constitutive innate immunity than slow-living organisms, as constitutive innate defences are thought to be relatively inexpensive to develop and can provide a rapid, general response to pathogens. 3. We present the first study to examine this hypothesis in an ectothermic vertebrate, by testing for differences in three aspects of constitutive innate immunity in replicate populations of two life-history ecotypes of the garter snake Thamnophis elegans, one fast-living and one slow-living. 4. As predicted, free-ranging snakes from the fast-living ecotype had higher levels of all three measures of constitutive innate immunity than the slow-living ecotype. These differences in immunity were not explained by parasite loads measured. Furthermore, both ecotypes exhibited a positive relationship between innate immunity and body size/age, which we discuss in the context of ectotherm physiology and ecotype differences in developmental rates.
Larkin, Alyse A; Blinebry, Sara K; Howes, Caroline; Lin, Yajuan; Loftus, Sarah E; Schmaus, Carrie A; Zinser, Erik R; Johnson, Zackary I
2016-01-01
The distribution of major clades of Prochlorococcus tracks light, temperature and other environmental variables; yet, the drivers of genomic diversity within these ecotypes and the net effect on biodiversity of the larger community are poorly understood. We examined high light (HL) adapted Prochlorococcus communities across spatial and temporal environmental gradients in the Pacific Ocean to determine the ecological drivers of population structure and diversity across taxonomic ranks. We show that the Prochlorococcus community has the highest diversity at low latitudes, but seasonality driven by temperature, day length and nutrients adds complexity. At finer taxonomic resolution, some ‘sub-ecotype' clades have unique, cohesive responses to environmental variables and distinct biogeographies, suggesting that presently defined ecotypes can be further partitioned into ecologically meaningful units. Intriguingly, biogeographies of the HL-I sub-ecotypes are driven by unique combinations of environmental traits, rather than through trait hierarchy, while the HL-II sub-ecotypes appear ecologically similar, thus demonstrating differences among these dominant HL ecotypes. Examining biodiversity across taxonomic ranks reveals high-resolution dynamics of Prochlorococcus evolution and ecology that are masked at phylogenetically coarse resolution. Spatial and seasonal trends of Prochlorococcus communities suggest that the future ocean may be comprised of different populations, with implications for ecosystem structure and function. PMID:26800235
Gray, Miranda M; St Amand, Paul; Bello, Nora M; Galliart, Matthew B; Knapp, Mary; Garrett, Karen A; Morgan, Theodore J; Baer, Sara G; Maricle, Brian R; Akhunov, Eduard D; Johnson, Loretta C
2014-12-01
Big bluestem (Andropogon gerardii) is an ecologically dominant grass with wide distribution across the environmental gradient of U.S. Midwest grasslands. This system offers an ideal natural laboratory to study population divergence and adaptation in spatially varying climates. Objectives were to: (i) characterize neutral genetic diversity and structure within and among three regional ecotypes derived from 11 prairies across the U.S. Midwest environmental gradient, (ii) distinguish between the relative roles of isolation by distance (IBD) vs. isolation by environment (IBE) on ecotype divergence, (iii) identify outlier loci under selection and (iv) assess the association between outlier loci and climate. Using two primer sets, we genotyped 378 plants at 384 polymorphic AFLP loci across regional ecotypes from central and eastern Kansas and Illinois. Neighbour-joining tree and PCoA revealed strong genetic differentiation between Kansas and Illinois ecotypes, which was better explained by IBE than IBD. We found high genetic variability within prairies (80%) and even fragmented Illinois prairies, surprisingly, contained high within-prairie genetic diversity (92%). Using Bayenv2, 14 top-ranked outlier loci among ecotypes were associated with temperature and precipitation variables. Six of seven BayeScanFST outliers were in common with Bayenv2 outliers. High genetic diversity may enable big bluestem populations to better withstand changing climates; however, population divergence supports the use of local ecotypes in grassland restoration. Knowledge of genetic variation in this ecological dominant and other grassland species will be critical to understanding grassland response and restoration challenges in the face of a changing climate. © 2014 John Wiley & Sons Ltd.
Bocharova, Natalia; Treu, Gabriele; Czirják, Gábor Árpád; Krone, Oliver; Stefanski, Volker; Wibbelt, Gudrun; Unnsteinsdóttir, Ester Rut; Hersteinsson, Páll; Schares, Gereon; Doronina, Lilia; Goltsman, Mikhail; Greenwood, Alex D
2013-01-01
Changes in concentration of pollutants and pathogen distribution can vary among ecotypes (e.g. marine versus terrestrial food resources). This may have important implications for the animals that reside within them. We examined 1) canid pathogen presence in an endangered arctic fox (Vulpes lagopus) population and 2) relative total mercury (THg) level as a function of ecotype ('coastal' or 'inland') for arctic foxes to test whether the presence of pathogens or heavy metal concentration correlate with population health. The Bering Sea populations on Bering and Mednyi Islands were compared to Icelandic arctic fox populations with respect to inland and coastal ecotypes. Serological and DNA based pathogen screening techniques were used to examine arctic foxes for pathogens. THg was measured by atomic absorption spectrometry from hair samples of historical and modern collected arctic foxes and samples from their prey species (hair and internal organs). Presence of pathogens did not correlate with population decline from Mednyi Island. However, THg concentration correlated strongly with ecotype and was reflected in the THg concentrations detected in available food sources in each ecotype. The highest concentration of THg was found in ecotypes where foxes depended on marine vertebrates for food. Exclusively inland ecotypes had low THg concentrations. The results suggest that absolute exposure to heavy metals may be less important than the feeding ecology and feeding opportunities of top predators such as arctic foxes which may in turn influence population health and stability. A higher risk to wildlife of heavy metal exposure correlates with feeding strategies that rely primarily on a marine based diet.
Krone, Oliver; Stefanski, Volker; Wibbelt, Gudrun; Unnsteinsdóttir, Ester Rut; Hersteinsson, Páll; Schares, Gereon; Doronina, Lilia; Goltsman, Mikhail; Greenwood, Alex D.
2013-01-01
Changes in concentration of pollutants and pathogen distribution can vary among ecotypes (e.g. marine versus terrestrial food resources). This may have important implications for the animals that reside within them. We examined 1) canid pathogen presence in an endangered arctic fox (Vulpes lagopus) population and 2) relative total mercury (THg) level as a function of ecotype (‘coastal’ or ‘inland’) for arctic foxes to test whether the presence of pathogens or heavy metal concentration correlate with population health. The Bering Sea populations on Bering and Mednyi Islands were compared to Icelandic arctic fox populations with respect to inland and coastal ecotypes. Serological and DNA based pathogen screening techniques were used to examine arctic foxes for pathogens. THg was measured by atomic absorption spectrometry from hair samples of historical and modern collected arctic foxes and samples from their prey species (hair and internal organs). Presence of pathogens did not correlate with population decline from Mednyi Island. However, THg concentration correlated strongly with ecotype and was reflected in the THg concentrations detected in available food sources in each ecotype. The highest concentration of THg was found in ecotypes where foxes depended on marine vertebrates for food. Exclusively inland ecotypes had low THg concentrations. The results suggest that absolute exposure to heavy metals may be less important than the feeding ecology and feeding opportunities of top predators such as arctic foxes which may in turn influence population health and stability. A higher risk to wildlife of heavy metal exposure correlates with feeding strategies that rely primarily on a marine based diet. PMID:23671561
Swift, H F; Gómez Daglio, L; Dawson, M N
2016-06-01
Evolutionary inference can be complicated by morphological crypsis, particularly in open marine systems that may rapidly dissipate signals of evolutionary processes. These complications may be alleviated by studying systems with simpler histories and clearer boundaries, such as marine lakes-small bodies of seawater entirely surrounded by land. As an example, we consider the jellyfish Mastigias spp. which occurs in two ecotypes, one in marine lakes and one in coastal oceanic habitats, throughout the Indo-West Pacific (IWP). We tested three evolutionary hypotheses to explain the current distribution of the ecotypes: (H1) the ecotypes originated from an ancient divergence; (H2) the lake ecotype was derived recently from the ocean ecotype during a single divergence event; and (H3) the lake ecotype was derived from multiple, recent, independent, divergences. We collected specimens from 21 locations throughout the IWP, reconstructed multilocus phylogenetic and intraspecific relationships, and measured variation in up to 40 morphological characters. The species tree reveals three reciprocally monophyletic regional clades, two of which contain ocean and lake ecotypes, suggesting repeated, independent evolution of coastal ancestors into marine lake ecotypes, consistent with H3; hypothesis testing and an intraspecific haplotype network analysis of samples from Palau reaffirms this result. Phylogenetic character mapping strongly correlates morphology to environment rather than lineage (r=0.7512, p<0.00001). Considering also the deeper relationships among regional clades, morphological similarity in Mastigias spp. clearly results from three separate patterns of evolution: morphological stasis in ocean medusae, convergence of lake morphology across distinct species and parallelism between lake morphologies within species. That three evolutionary routes each result in crypsis illustrates the challenges of interpreting evolutionary processes from patterns of biogeography and diversity in the seas. Identifying cryptic species is only the first step in understanding these processes; an equally important second step is exploring and understanding the processes and patterns that create crypsis. Copyright © 2016 Elsevier Inc. All rights reserved.
Bai, Bing; Sikron, Noga; Gendler, Tanya; Kazachkova, Yana; Barak, Simon; Grafi, Gideon; Khozin-Goldberg, Inna; Fait, Aaron
2012-01-01
Seeds in the seed bank experience diurnal cycles of imbibition followed by complete dehydration. These conditions pose a challenge to the regulation of germination. The effect of recurring hydration-dehydration (Hy-Dh) cycles were tested on seeds from four Arabidopsis thaliana accessions [Col-0, Cvi, C24 and Ler]. Diurnal Hy-Dh cycles had a detrimental effect on the germination rate and on the final percentage of germination in Col-0, Cvi and C24 ecotypes, but not in the Ler ecotype, which showed improved vigor following the treatments. Membrane permeability measured by ion conductivity was generally increased following each Hy-Dh cycle and was correlated with changes in the redox status represented by the GSSG/GSH (oxidized/reduced glutathione) ratio. Among the ecotypes, Col-0 seeds displayed the highest membrane permeability, whilst Ler was characterized by the greatest increase in electrical conductivity following Hy-Dh cycles. Following Dh 2 and Dh 3, the respiratory activity of Ler seeds significantly increased, in contrast to the other ecotypes, indicative of a dramatic shift in metabolism. These differences were associated with accession-specific content and patterns of change of (i) cell wall-related laminaribiose and mannose; (ii) fatty acid composition, specifically of the unsaturated oleic acid and α-linoleic acid; and (iii) asparagine, ornithine and the related polyamine putrescine. Furthermore, in the Ler ecotype the content of the tricarboxylic acid (TCA) cycle intermediates fumarate, succinate and malate increased in response to dehydration, in contrast to a decrease in the other three ecotypes. These findings provide a link between seed respiration, energy metabolism, fatty acid β-oxidation, nitrogen mobilization and membrane permeability and the improved germination of Ler seeds following Hy-Dh cycles.
Oguchi, Riichi; Ozaki, Hiroshi; Hanada, Kousuke; Hikosaka, Kouki
2016-03-01
Elevated atmospheric carbon dioxide (CO2) concentration ([CO2]) enhances plant growth, but this enhancement varies considerably. It is still uncertain which plant traits are quantitatively related to the variation in plant growth. To identify the traits responsible, we developed a growth analysis model that included primary parameters associated with morphology, nitrogen (N) use, and leaf and root activities. We analysed the vegetative growth of 44 ecotypes of Arabidopsis thaliana L. grown at ambient and elevated [CO2] (800 μmol mol(-1)). The 44 ecotypes were selected such that they were derived from various altitudes and latitudes. Relative growth rate (RGR; growth rate per unit plant mass) and its response to [CO2] varied by 1.5- and 1.7-fold among ecotypes, respectively. The variation in RGR at both [CO2]s was mainly explained by the variation in leaf N productivity (LNP; growth rate per leaf N),which was strongly related to photosynthetic N use efficiency (PNUE). The variation in the response of RGR to [CO2] was also explained by the variation in the response of LNP to [CO2]. Genomic analyses indicated that there was no phylogenetic constraint on inter-ecotype variation in the CO2 response of RGR or LNP. We conclude that the significant variation in plant growth and its response to [CO2] among ecotypes reflects the variation in N use for photosynthesis among ecotypes, and that the response of PNUE to CO2 is an important target for predicting and/or breeding plants that have high growth rates at elevated [CO2].
Lei, Shutong; Zeng, Bo; Yuan, Zhi; Su, Xiaolei
2014-01-01
The Three Gorges project has caused many ecosystem problems. Ecological restoration using readily-available plants is an effective way of mitigating environmental impacts. Two perennial submergence-tolerant ecotypes of Calamagrostis arundinacea were planted in an experimental field in the drawdown zone. Responses of the two plant ecotypes to flooding stress in the drawdown zone were unknown. Carbohydrate content and membrane stability, two key factors for survival of plants under flooding stress, of two ecotypes (designated "dwarf" and "green") of C. arundinacea growing at different elevations of the drawdown zone were investigated. Live stems (LS) and dead stems (DS) of the two plant ecotypes at eight elevations (175, 170, 162, 160, 158, 155, 152 m and 149 m) were sampled. Contents of soluble sugar, starch and malondialdehyde (MDA), as well as plasma membrane permeability of live stems were measured. The lowest elevations for survival of dwarf and green C. arundinacea were 160 m and 158 m, respectively. Soluble sugar content of live stems of both ecotypes decreased with elevation, with amounts from an elevation of 170 m being lower than from an elevation of 175 m. MDA content and plasma membrane permeability in live stems of green C. arundinacea did not increase with the decrease in elevation, while these measures in dwarf C. arundinacea from an elevation of 162 m were significantly higher than from an elevation of 175 m. Carbohydrate content, especially soluble sugar content, in both ecotypes was more sensitive to flooding stress than membrane stability. Green C. arundinacea had a higher tolerance to submergence than dwarf C. arundinacea, and thus green C. arundinacea can be planted at lower elevations than dwarf C. arundinacea.
Fuentes, Rolly G; Baltazar, Aurora M; Merca, Florinia E; Ismail, Abdelbagi M; Johnson, David E
2010-01-01
Purple nutsedge (Cyperus rotundus L.) is a major weed of upland crops and vegetables. Recently, a flood-tolerant ecotype evolved as a serious weed in lowland rice. This study attempted to establish the putative growth and physiological features that led to this shift in adaptation. Tubers of upland C. rotundus (ULCR) and lowland C. rotundus (LLCR) ecotypes were collected from their native habitats and maintained under the respective growth conditions in a greenhouse. Five experiments were conducted to assess the variation between the two ecotypes in germination, growth and tuber morphology when grown in their native or 'switched' conditions. Carbohydrate storage and mobilization, and variation in anaerobic respiration under hypoxia were compared. Tubers of LLCR were larger than those of ULCR, with higher carbohydrate content, and larger tubers developed with increasing floodwater depth. Stems of LLCR had larger diameter and proportionally larger air spaces than those of ULCR: a method of aerating submerged plant parts. The LLCR ecotype can also mobilize and use carbohydrate reserves under hypoxia, and it maintained relatively lower and steadier activity of alcohol dehydrogenase (ADH) as a measure of sustained anaerobic respiration. In contrast, ADH activity in ULCR increased faster upon a shift to hypoxia and then sharply decreased, suggesting depletion of available soluble sugar substrates. The LLCR ecotype also maintained lower lactate dehydrogenase activity under flooded conditions, which could reduce chances of cellular acidosis. These adaptive traits in the LLCR ecotype were expressed constitutively, but some of them, such as tuber growth and aerenchyma development, are enhanced with stress severity. The LLCR ecotype attained numerous adaptive traits that could have evolved as a consequence of natural evolution or repeated management practices, and alternative strategies are necessary because flooding is no longer a feasible management option.
Barah, Pankaj; Jayavelu, Naresh D.; Mundy, John; Bones, Atle M.
2013-01-01
In the scenario of global warming and climate change, heat stress is a serious threat to crop production worldwide. Being sessile, plants cannot escape from heat. Plants have developed various adaptive mechanisms to survive heat stress. Several studies have focused on diversity of heat tolerance levels in divergent Arabidopsis thaliana (A. thaliana) ecotypes, but comprehensive genome scale understanding of heat stress response in plants is still lacking. Here we report the genome scale transcript responses to heat stress of 10 A. thaliana ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri, and Kond) originated from different geographical locations. During the experiment, A. thaliana plants were subjected to heat stress (38°C) and transcript responses were monitored using Arabidopsis NimbleGen ATH6 microarrays. The responses of A. thaliana ecotypes exhibited considerable variation in the transcript abundance levels. In total, 3644 transcripts were significantly heat regulated (p < 0.01) in the 10 ecotypes, including 244 transcription factors and 203 transposable elements. By employing a systems genetics approach- Network Component Analysis (NCA), we have constructed an in silico transcript regulatory network model for 35 heat responsive transcription factors during cellular responses to heat stress in A. thaliana. The computed activities of the 35 transcription factors showed ecotype specific responses to the heat treatment. PMID:24409190
Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress
Wang, Yanping; Yang, Li; Zheng, Zhimin; Grumet, Rebecca; Loescher, Wayne; Zhu, Jian-Kang; Yang, Pingfang; Hu, Yuanlei; Chan, Zhulong
2013-01-01
Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results also provide insight into the complexity of salt stress tolerance mechanisms. PMID:23894403
Rivera-Contreras, Irma Karla; Zamora-Hernández, Teresa; Huerta-Heredia, Ariana Arlene; Capataz-Tafur, Jacqueline; Barrera-Figueroa, Blanca Estela; Juntawong, Piyada; Peña-Castro, Julián Mario
2016-01-01
When excessive amounts of water accumulate around roots and aerial parts of plants, submergence stress occurs. To find the integrated mechanisms of tolerance, we used ecotypes of the monocot model plant Brachypodium distachyon to screen for genetic material with contrasting submergence tolerance. For this purpose, we used a set of previously studied drought sensitive/tolerant ecotypes and the knowledge that drought tolerance is positively associated with submergence stress. We decided to contrast aerial tissue transcriptomes of the ecotype Bd21 14-day-old plants as sensitive and ecotype Bd2-3 as tolerant after 2 days of stress under a long-day photoperiod. Gene ontology and the grouping of transcripts indicated that tolerant Bd2-3 differentially down-regulated NITRATE REDUCTASE and ALTERNATIVE OXIDASE under stress and constitutively up-regulated HAEMOGLOBIN, when compared with the sensitive ecotype, Bd21. These results suggested the removal of nitric oxide, a gaseous phytohormone and concomitant reactive oxygen species as a relevant tolerance determinant. Other mechanisms more active in tolerant Bd2-3 were the pathogen response, glyoxylate and tricarboxylic acid cycle integration, and acetate metabolism. This data set could be employed to design further studies on the basic science of plant tolerance to submergence stress and its biotechnological application in the development of submergence-tolerant crops. PMID:27282694
Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.
Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M
2002-12-01
AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.
Sparkman, Amanda M; Arnold, Stevan J; Bronikowski, Anne M
2007-04-07
Evolutionary theory predicts that differential reproductive effort and rate of reproductive senescence will evolve under different rates of external mortality. We examine the evolutionary divergence of age-specific reproduction in two life-history ecotypes of the western terrestrial garter snake, Thamnophis elegans. We test for the signature of reproductive senescence (decreasing fecundity with age) and increasing reproductive effort with age (increasing reproductive productivity per gram female) in replicate populations of two life-history ecotypes: snakes that grow fast, mature young and have shorter lifespans, and snakes that grow slow, mature late and have long lives. The difference between life-history ecotypes is due to genetic divergence in growth rate. We find (i) reproductive success (live litter mass) increases with age in both ecotypes, but does so more rapidly in the fast-growth ecotype, (ii) reproductive failure increases with age in both ecotypes, but the proportion of reproductive failure to total reproductive output remains invariant, and (iii) reproductive effort remains constant in fast-growth individuals with age, but declines in slow-growth individuals. This illustration of increasing fecundity with age, even at the latest ages, deviates from standard expectations for reproductive senescence, as does the lack of increases in reproductive effort. We discuss our findings in light of recent theories regarding the phenomenon of increased reproduction throughout life in organisms with indeterminate growth and its potential to offset theoretical expectations for the ubiquity of senescence.
Sparkman, Amanda M; Arnold, Stevan J; Bronikowski, Anne M
2007-01-01
Evolutionary theory predicts that differential reproductive effort and rate of reproductive senescence will evolve under different rates of external mortality. We examine the evolutionary divergence of age-specific reproduction in two life-history ecotypes of the western terrestrial garter snake, Thamnophis elegans. We test for the signature of reproductive senescence (decreasing fecundity with age) and increasing reproductive effort with age (increasing reproductive productivity per gram female) in replicate populations of two life-history ecotypes: snakes that grow fast, mature young and have shorter lifespans, and snakes that grow slow, mature late and have long lives. The difference between life-history ecotypes is due to genetic divergence in growth rate. We find (i) reproductive success (live litter mass) increases with age in both ecotypes, but does so more rapidly in the fast-growth ecotype, (ii) reproductive failure increases with age in both ecotypes, but the proportion of reproductive failure to total reproductive output remains invariant, and (iii) reproductive effort remains constant in fast-growth individuals with age, but declines in slow-growth individuals. This illustration of increasing fecundity with age, even at the latest ages, deviates from standard expectations for reproductive senescence, as does the lack of increases in reproductive effort. We discuss our findings in light of recent theories regarding the phenomenon of increased reproduction throughout life in organisms with indeterminate growth and its potential to offset theoretical expectations for the ubiquity of senescence. PMID:17251099
Seasonal effects on the population structure of Prochlorococcus in the North Pacific Ocean
NASA Astrophysics Data System (ADS)
Calfee, B. C.; Johnson, Z. I.; Wilhelm, S.; Zinser, E. R.
2016-02-01
Prochlorococcus is one of the most abundant marine phytoplankton and is responsible for a large portion of oceanic primary production. Basin-scale meridional transects and time series studies at fixed stations have established that the Prochlorococcus population in the surface mixed layer is partitioned with respect to temperature, with the eMIT9312 ecotype dominating the warmer, lower latitudes, and eMED4 dominating the colder, higher latitudes. Spatial and temporal resolution of this relationship is however not well characterized particularly in the higher latitudes where the transitions of ecotypic dominance occur. To improve our understanding of Prochlorococcus dynamics in these high latitudes, we performed a pair of research expeditions spanning the Prochlorococcus habitat range north of Hawaii. Winter and summer cruises along a similar transect allowed for assessment of seasonal succession in this region. For the winter transect, trends in ecotype abundances as a function of latitude were consistent with those found in prior studies. Surprisingly, ecotype abundances of the summer transect deviated from these trends, and indicate that seasonal progression in these high latitude waters is not simply a function of temperature dictating relative ecotype abundances. Potential reasons for this observation will be discussed.
Mastan, Shaik G; Rathore, Mangal S; Bhatt, Vacha D; Chikara, J; Ghosh, A
2014-12-01
We investigated DNA methylation and polymorphism in the methylated DNA using AFLP based methylation-sensitive amplification polymorphism (MS-AFLP) markers in ecotypes of Jatropha curcas L. growing in similar and different geo-ecological conditions. Three ecotypes growing in different geo-ecological conditions with environmental heterogeneity (Group-1) and five ecotypes growing in similar environmental conditions (Group-2) were assessed. In ecotypes growing in group-1, 44.32 % DNA was methylated and of which 93.59 % DNA was polymorphic. While in group-2, 32.27 % DNA was methylated, of which 51.64 % DNA was polymorphic. In site 1 and site 2 of group-1, overall methylation was 18.94 and 22.44 % respectively with difference of 3.5 %, while overall polymorphism was 41.14 and 39.23 % with a difference of 1.91 %. In site 1 and site 2 of group-2, overall methylation was 24.68 and 24.18 % respectively with difference of 0.5 %, while overall polymorphism was 12.19 and 12.65 % with a difference of 0.46 %. The difference of methylation percentage and percentage of methylation polymorphism throughout the genome of J. curcas at site 1 and 2 of group-1 is higher than that of J. curcas at site 1 and 2 of group-2. These results correlated the physico-chemical properties of soil at these sites. The variations of physico-chemical properties of soil at Chorwadla (site 1 in group-1 and site 2 in group-2) compared to the soil at Brahmapur (site 2 in group-1) is higher than that of soil at Neswad (site 1 in group-2). The study suggests that these homologous nucleotide sequences probably play important role in ecotype adaptation to environmental heterogeneity by creating epiallelic variations hence in evolution of ecotypes/clines or forms of species showing phenotypic/genotypic differences in different geographical areas.
2010-01-01
Background In the past 40 years, there has been increasing acceptance that variation in levels of gene expression represents a major source of evolutionary novelty. Gene expression divergence is therefore likely to be involved in the emergence of incipient species, namely, in a context of adaptive radiation. In this study, a genome-wide expression profiling approach (cDNA-AFLP), validated by quantitative real-time polymerase chain reaction (qPCR) were used to get insights into the role of differential gene expression on the ecological adaptation of the marine snail Littorina saxatilis. This gastropod displays two sympatric ecotypes (RB and SU) which are becoming one of the best studied systems for ecological speciation. Results Among the 99 transcripts shared between ecotypes, 12.12% showed significant differential expression. At least 4% of these transcripts still displayed significant differences after correction for multiple tests, highlighting that gene expression can differ considerably between subpopulations adapted to alternative habitats in the face of gene flow. One of the transcripts identified was Cytochrome c Oxidase subunit I (COI). In addition, 6 possible reference genes were validated to normalize and confirm this result using qPCR. α-Tubulin and histone H3.3 showed the more stable expression levels, being therefore chosen as the best option for normalization. The qPCR analysis confirmed a higher COI expression in SU individuals. Conclusions At least 4% of the transcriptome studied is being differentially expressed between ecotypes living in alternative habitats, even when gene flow is still substantial between ecotypes. We could identify a candidate transcript of such ecotype differentiation: Cytochrome c Oxidase Subunit I (COI), a mitochondrial gene involved in energy metabolism. Quantitative PCR was used to confirm the differences found in COI and its over-expression in the SU ecotype. Interestingly, COI is involved in the oxidative phosphorylation, suggesting an enhanced mitochondrial gene expression (or increased number of mitochondria) to improve energy supply in the ecotype subjected to the strongest wave action. PMID:21087461
Chiba, Satoshi
2004-01-01
The land snail genus Mandarina has undergone extensive radiation within the Bonin Islands in the west Pacific. The preferred above-ground vegetation heights of sympatric species were clearly different. They separated into arboreal, semi-arboreal, exposed ground and sheltered ground ecotypes. Shells of species with different ecotypes differ markedly, but shells of species with the same ecotype are very similar to each other. Shell morphologies of some phylogenetically distantly related species with the same ecotype were indistinguishable. Character evolution estimated parsimoniously using a phylogenetic tree suggests that the speciation among sympatric species is accompanied by ecological and morphological diversification. In addition, species coexistence of Mandarina is related to niche differentiation. The above findings suggest that ecological interactions among species contribute to the ecological and morphological diversification and radiation of these land snails in this depauperate environment.
Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L.
Wan, Xiao-ming; Lei, Mei; Chen, Tong-bin; Yang, Jun-xing; Liu, Hong-tao; Chen, Yang
2015-11-01
Mechanisms of Pteris vittata L. to hyperaccumulate arsenic (As), especially the efficient translocation of As from rhizoids to fronds, are not clear yet. The present study aims to investigate the role of transpiration in the accumulation of As from the aspects of transpiration regulation and ecotypic difference. Results showed that As accumulation of P. vittata increased proportionally with an increase in the As exposure concentration. Lowering the transpiration rate by 28∼67% decreased the shoot As concentration by 19∼56%. Comparison of As distribution under normal treatment and shade treatment indicated that transpiration determines the distribution pattern of As in pinnae. In terms of the ecotypic difference, the P. vittata ecotype from moister and warmer habitat had 40% higher transpiration and correspondingly 40% higher shoot As concentration than the ecotype from drier and cooler habitat. Results disclosed that transpiration is the main driver for P. vittata to accumulate and re-distribute As in pinnae.
Partial migration in introduced wild chinook salmon (Oncorhynchus tshawytscha) of southern Chile
NASA Astrophysics Data System (ADS)
Araya, Miguel; Niklitschek, Edwin J.; Secor, Dave H.; Piccoli, Philip M.
2014-08-01
Partial migration, the incidence of opposing migration behaviors within the same population, has been a key factor in the invasive ecology of Pacific salmon within South America. Here, we examined such life-cycle variation in of an introduced chinook salmon population in the Aysén watershed, one of the largest fjord systems in NW Patagonia. The chinook salmon is the most successful invasive salmonid species in Patagonia and has recently colonized numerous Patagonian watersheds of the Pacific and Atlantic Oceans. Using analyses of fish scales and otolith strontium:calcium ratios, our results suggest the presence of two distinct ecotypes in the chinook population, an ocean type and a stream type, in a 3:2 ratio. The distribution of back-calculated length at the time of emigration from river to marine habitats showed a mode of 14 cm for the ocean ecotype and 30 cm for the stream ecotype. River residence time for the ocean ecotype ranged from 1 to 10 months, while that of the stream ecotype varied between 14 and 20 months. Returning adults reproduced in riverine habitats between August and March, but reproduction by the stream ecotype was limited to the period between October and February. Our results show that exotic chinook salmon populations established in NW Patagonia present a diversity of life-history strategies, which seems to be as large as the ones exhibited by the species in its native distribution range and in other invaded ecosystems. Chinook salmon have successfully invaded most major rivers in Patagonia, placing priority on science and conservation related to their ecological impact.
Stein, Ricardo J.; Waters, Brian M.
2012-01-01
Iron (Fe) is an essential mineral micronutrient for plants and animals. Plants respond to Fe deficiency by increasing root uptake capacity. Identification of gene networks for Fe uptake and homeostasis could result in improved crop growth and nutritional value. Previous studies have used microarrays to identify a large number of genes regulated by Fe deficiency in roots of three Arabidopsis ecotypes. However, a large proportion of these genes may be involved in secondary or genotype-influenced responses rather than in a universal role in Fe uptake or homeostasis. Here we show that a small percentage of the Fe deficiency transcriptome of two contrasting ecotypes, Kas-1 and Tsu-1, was shared with other ecotypes. Kas-1 and Tsu-1 had different timing and magnitude of ferric reductase activity upon Fe withdrawal, and different categories of overrepresented Fe-regulated genes. To gain insights into universal responses of Arabidopsis to Fe deficiency, the Kas-1 and Tsu-1 transcriptomes were compared with those of Col-0, Ler, and C24. In early Fe deficiency (24–48 h), no Fe-downregulated genes and only 10 upregulated genes were found in all ecotypes, and only 20 Fe-downregulated and 58 upregulated genes were found in at least three of the five ecotypes. Supernode gene networks were constructed to visualize conserved Fe homeostasis responses. Contrasting gene expression highlighted different responses to Fe deficiency between ecotypes. This study demonstrates the use of natural variation to identify central Fe-deficiency-regulated genes in plants, and identified genes with potential new roles in signalling during Fe deficiency. PMID:22039296
Problems with the claim of ecotype and taxon status of the wolf in the Great Lakes region
Cronin, Matthew A.; Mech, L. David
2009-01-01
Koblmuller et al. (2009) analysed molecular genetic data of the wolf in the Great Lakes (GL) region of the USA and concluded that the animal was a unique ecotype of grey wolf and that genetic data supported the population as a discrete wolf taxon. However, some of the literature that the researchers used to support their position actually did not, and additional confusion arises from indefinite use of terminology. Herein, we discuss the problems with designation of a wolf population as a taxon or ecotype without proper definition and assessment of criteria.
Rehn, Nicola; Filatova, Olga A; Durban, John W; Foote, Andrew D
2011-01-01
Facial and vocal expressions of emotion have been found in a number of social mammal species and are thought to have evolved to aid social communication. There has been much debate about whether such signals are culturally inherited or are truly biologically innate. Evidence for the innateness of such signals can come from cross-cultural studies. Previous studies have identified a vocalisation (the V4 or 'excitement' call) associated with high arousal behaviours in a population of killer whales in British Columbia, Canada. In this study, we compared recordings from three different socially and reproductively isolated ecotypes of killer whales, including five vocal clans of one ecotype, each clan having discrete culturally transmitted vocal traditions. The V4 call was found in recordings of each ecotype and each vocal clan. Nine independent observers reproduced our classification of the V4 call from each population with high inter-observer agreement. Our results suggest the V4 call may be universal in Pacific killer whale populations and that transmission of this call is independent of cultural tradition or ecotype. We argue that such universality is more consistent with an innate vocalisation than one acquired through social learning and may be linked to its apparent function of motivational expression.
Willacker, James J.; Von Hippel, Frank A.; Ackerly, Kerri L.; O’Hara, Todd M.
2013-01-01
Mercury (Hg) is a widespread environmental contaminant known for the neurotoxicity of its methylated forms, especially monomethylmercury, which bioaccumulates and biomagnifies in aquatic food webs. Mercury bioaccumulation and biomagnification rates are known to vary among species utilizing different food webs (benthic vs limnetic) within and between systems. The authors assessed whether carbon and nitrogen stable isotope values and total Hg (THg) concentrations differed between sympatric benthic and limnetic ecotypes and sexes of threespine stickleback fish (Gasterosteus aculeatus) from Benka Lake, Alaska, USA. The mean THg concentration in the limnetic ecotype was significantly higher (26 mg/kg dry wt, 16.1%) than that of the benthic ecotype. Trophic position and benthic carbon percentage utilized were both important determinants of THg concentration; however, the 2 variables were of approximately equal importance in females, whereas trophic position clearly explained more of the variance than benthic carbon percentage in males. Additionally, strong sex effects (45 mg/kg dry wt, 29.4%) were observed in both ecotypes, with female fish having lower THg concentrations than males. These results indicate that trophic ecology and sex are both important determinants of Hg contamination even within a single species and lake and likely play a role in governing Hg concentrations in higher trophic levels. PMID:23456641
NASA Astrophysics Data System (ADS)
Rehn, Nicola; Filatova, Olga A.; Durban, John W.; Foote, Andrew D.
2011-01-01
Facial and vocal expressions of emotion have been found in a number of social mammal species and are thought to have evolved to aid social communication. There has been much debate about whether such signals are culturally inherited or are truly biologically innate. Evidence for the innateness of such signals can come from cross-cultural studies. Previous studies have identified a vocalisation (the V4 or `excitement' call) associated with high arousal behaviours in a population of killer whales in British Columbia, Canada. In this study, we compared recordings from three different socially and reproductively isolated ecotypes of killer whales, including five vocal clans of one ecotype, each clan having discrete culturally transmitted vocal traditions. The V4 call was found in recordings of each ecotype and each vocal clan. Nine independent observers reproduced our classification of the V4 call from each population with high inter-observer agreement. Our results suggest the V4 call may be universal in Pacific killer whale populations and that transmission of this call is independent of cultural tradition or ecotype. We argue that such universality is more consistent with an innate vocalisation than one acquired through social learning and may be linked to its apparent function of motivational expression.
Lalić, Jasna; Agudelo-Romero, Patricia; Carrasco, Purificación; Elena, Santiago F.
2010-01-01
Viral pathogens continue to emerge among humans, domesticated animals and cultivated crops. The existence of genetic variance for resistance in the host population is crucial to the spread of an emerging virus. Models predict that rapid spread decreases with the frequency and diversity of resistance alleles in the host population. However, empirical tests of this hypothesis are scarce. Arabiodpsis thaliana—tobacco etch potyvirus (TEV) provides an experimentally suitable pathosystem to explore the interplay between genetic variation in host's susceptibility and virus diversity. Systemic infection of A. thaliana with TEV is controlled by three dominant loci, with different ecotypes varying in susceptibility depending on the genetic constitution at these three loci. Here, we show that the TEV adaptation to a susceptible ecotype allowed the virus to successfully infect, replicate and induce symptoms in ecotypes that were fully resistant to the ancestral virus. The value of these results is twofold. First, we showed that the existence of partially susceptible individuals allows for the emerging virus to bypass resistance alleles that the virus has never encountered. Second, the concept of resistance genes may only be valid for a well-defined viral genotype but not for polymorphic viral populations. PMID:20478894
"Towards practical cadmium phytoextraction with Thlaspi caerulescens"
USDA-ARS?s Scientific Manuscript database
During 2005-2007, a series of field trials were conducted to investigate the potential of Thlapsi caerulescens ecotypes derived from southern France to phytoextract localized Cd/Zn contamination in Thailand. Soil treatments included pH variation and fertilization level. T. caerulescens ecotypes w...
Asymmetric impacts of two herbivore ecotypes on similar host plants
USDA-ARS?s Scientific Manuscript database
Ecotypes may arise following allopatric separation from source populations. The simultaneous transfer of an exotic plant to a novel environment, along with its stenophagous herbivore, may complicate more traditional patterns of divergence from the plant and insect source populations. We evaluated ...
Mitochondrial divergence between slow- and fast-aging garter snakes.
Schwartz, Tonia S; Arendsee, Zebulun W; Bronikowski, Anne M
2015-11-01
Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences). Copyright © 2015 Elsevier Inc. All rights reserved.
Jorgenson, Torre; Ely, Craig R.
2001-01-01
We measured surface elevations, stage of annual peak flooding, and sedimentation along 10 toposequences across coastal ecosystems on the Yukon-Kuskokwim (Y-K) Delta in western Alaska during 1994-1998 to assess some of the physical processes affecting ecosystem distribution. An ecotype was assigned to each of 566 points, and differences in elevations among 24 ecotypes were analyzed within individual toposequences and across the 40 x 40-km study area. Elevations of vegetated ecotypes along the longest toposequence rose only ~1 m over a distance of 7.5 km, and mean elevations of most ecotype across the study area were within 0.5 m of mean higher-high water (1.47 m). During 1994 to 1998, monitoring of annual peak stage using crest gauges revealed flooding from the highest fall storm surge reached 2.58 m (1.11 m above mean higher-high tide). In each year, only the highest surface was unaffected by flooding. Mean annual sedimentation rates for the various ecotypes were 8.0 ram/y on tidal flats, 1.4 to 3.8 mm/y on the active floodplain, 0.1-0.2 mm/y on the inactive floodplain, and 0 mm/ on the abandoned floodplain. If sea levels in the Bering Sea rise ~0.5 m by 2100, as predicted by some on a global basis, large portions of the coastal margin of the delta could be regularly inundated by water during high tides, and even the highest ecotypes could be affected by storm surges. Predicting the extent of future inundation is difficult, however, because of the changes in the ground-surface elevation through sedimentation, organic matter accumulation, and permafrost development.
Becraft, Eric D.; Wood, Jason M.; Rusch, Douglas B.; Kühl, Michael; Jensen, Sheila I.; Bryant, Donald A.; Roberts, David W.; Cohan, Frederick M.; Ward, David M.
2015-01-01
Based on the Stable Ecotype Model, evolution leads to the divergence of ecologically distinct populations (e.g., with different niches and/or behaviors) of ecologically interchangeable membership. In this study, pyrosequencing was used to provide deep sequence coverage of Synechococcus psaA genes and transcripts over a large number of habitat types in the Mushroom Spring microbial mat. Putative ecological species [putative ecotypes (PEs)], which were predicted by an evolutionary simulation based on the Stable Ecotype Model (Ecotype Simulation), exhibited distinct distributions relative to temperature-defined positions in the effluent channel and vertical position in the upper 1 mm-thick mat layer. Importantly, in most cases variants predicted to belong to the same PE formed unique clusters relative to temperature and depth in the mat in canonical correspondence analysis, supporting the hypothesis that while the PEs are ecologically distinct, the members of each ecotype are ecologically homogeneous. PEs responded differently to experimental perturbations of temperature and light, but the genetic variation within each PE was maintained as the relative abundances of PEs changed, further indicating that each population responded as a set of ecologically interchangeable individuals. Compared to PEs that predominate deeper within the mat photic zone, the timing of transcript abundances for selected genes differed for PEs that predominate in microenvironments closer to upper surface of the mat with spatiotemporal differences in light and O2 concentration. All of these findings are consistent with the hypotheses that Synechococcus species in hot spring mats are sets of ecologically interchangeable individuals that are differently adapted, that these adaptations control their distributions, and that the resulting distributions constrain the activities of the species in space and time. PMID:26157420
Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M
2016-07-01
The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs. Copyright © 2016 Elsevier Inc. All rights reserved.
Evans, Joseph; Crisovan, Emily; Barry, Kerrie; ...
2015-10-01
Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between themore » populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Joseph; Crisovan, Emily; Barry, Kerrie
Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between themore » populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.« less
Comparing persistence and fecundity of Florida-ecotype and non-Florida-ecotype wildflowers
DOT National Transportation Integrated Search
2017-04-01
Wildflower plantings by Florida DOT have long shown inconsistency in establishment from one site to the next. One theory for this was that the wildflower seed was predominantly purchased from the western plains states, thus not well adapted to the su...
Förster, Nadja; Ulrichs, Christian; Schreiner, Monika; Arndt, Nick; Schmidt, Reinhard; Mewis, Inga
2015-03-25
Moringa oleifera is widely cultivated in plantations in the tropics and subtropics. Previous cultivation studies with M. oleifera focused primarily only on leaf yield. In the present study, the content of potentially health-promoting secondary metabolites (glucosinolates, phenolic acids, and flavonoids) were also investigated. Six different ecotypes were grown under similar environmental conditions to identify phenotypic differences that can be traced back to the genotype. The ecotypes TOT4880 (origin USA) and TOT7267 (origin India) were identified as having the best growth performance and highest secondary metabolite production, making them an ideal health-promoting food crop. Furthermore, optimal cultivation conditions-exemplarily on sulfur fertilization and water availability-for achieving high leaf and secondary metabolite yields were investigated for M. oleifera. In general, plant biomass and height decreased under water deficiency compared to normal cultivation conditions, whereas the glucosinolate content increased. The effects depended to a great extent on the ecotype.
Switchgrass ecotypes alter microbial contribution to deep-soil C
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4, perennial grass that is being developed as a bioenergy crop for the United States. While aboveground biomass production is well documented for switchgrass ecotypes (lowland, upland), little is known about the impact of plant belowground productivity on mic...
Distributed Permafrost Observation Network in Western Alaska: the First Results
NASA Astrophysics Data System (ADS)
Romanovsky, V. E.; Cable, W.; Marchenko, S. S.; Panda, S. K.
2014-12-01
The area of Western Alaska including the Selawik National Wildlife Refuge (SNWR) is generally underrepresented in terms of permafrost thermal monitoring. Thus, the main objective of this study was to establish a permafrost monitoring network in Western Alaska in order to understand the spatial variability in permafrost thermal regime in the area and to have a baseline in order to detect future change. Present and future thawing of permafrost in the region will have a dramatic effect on the ecosystems and infrastructure because the permafrost here generally has a high ice content, as a result of preservation of old ground ice in these relatively cold regions even during the warmer time intervals of the Holocene. Over the summers of 2011 and 2012 a total of 26 automated monitoring stations were established to collect temperature data from the active layer and near-surface permafrost. While most of these stations were basic and only measured the temperature down to 1.5 m at 4 depths, three of the stations had higher vertical temperature resolution down to 3 m. The sites were selected using an ecotype (basic vegetation groups) map of very high resolution (30 m) that had been created for the area in 2009. We found the Upland Dwarf Birch-Tussock Shrub ecotype to be the coldest with a mean annual ground temperature at 1 meter (MAGT1.0) of -3.9 °C during the August 1st, 2012 to July 31st, 2013 measurement period. This is also the most widespread ecotype in the SNWR, covering approximately 28.4% by area. The next widespread ecotype in the SNWR is the Lowland and Upland Birch-Ericaceous Low Shrub. This ecotype had higher ground temperatures with an average MAGT1.0 of -2.4 °C during the same measurement period. We also found that within some ecotypes (White Spruce and Alder-Willow Shrub) the presence or absence of moss on the surface seems to indicate the presence or absence of near surface permafrost. In general, we found good agreement between ecotype classes and permafrost characteristics such as temperature, active layer thickness, and freeze back duration. Thus, we believe it might be possible to translate the ecotype map into a very high spatial resolution (30 m) permafrost map using our measurements. Such a map would be useful in decision making with respect to land use and understanding how the landscape might change under future climate scenarios.
USDA-ARS?s Scientific Manuscript database
Stocking intensities can affect persistence of bermudagrass pastures. The objectives of this study were to compare phenotype traits of bermudagrass [Cynodon dactylon (L) Pers] (BG) ecotypes (ECOT) selected from both ‘Coastal’ (COS) and common (COM) BG pastures stocked at different, controlled intens...
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuels feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype composed of tetraploid and octoploid accessions, and a so...
Engelmoer, Daniel J P; Rozen, Daniel E
2009-11-01
Disturbance is thought to be a major factor influencing patterns of biodiversity. In addition, disturbance can modify community composition if there are species specific trade-offs between fitness and disturbance tolerance. Here, we examine the role of disturbance on the evolution of coexisting biofilm-forming morphotypes of Pseudomonas fluorescens maintained in spatially structured laboratory microcosms. We identified four heritably stable ecotypes that varied significantly in their competitiveness under different disturbance treatments. Furthermore, we identified significant trade-offs in competitiveness across disturbance treatments for three of four of these ecotypes. These trade-offs modified dominance relationships between strains and thus altered community composition, with a peak of ecotype diversity occurring at intermediate disturbance frequencies.
Drought tolerance of sugar maple ecotypes
Richard J. Hauer; Jeffery O. Dawson
1995-01-01
Sugar maple declines periodically occur in rural and urban areas. These declines usually follow periods of below-average precipitation leading to the speculation that moisture deficiency is a primary cause of the decline. Sugar maple ecotypes with greater tolerance to drought should have greater longevity and vitality as a result of this tolerance. Sugar maple and...
Varied growth response of cogongrass ecotypes to elevated CO2
USDA-ARS?s Scientific Manuscript database
Cogongrass [Imperata cylindrica (L.) P. Beauv] is an invasive C4 perennial grass which is listed as one of the top ten worst weeds in the world and is a major problem in the Southeast US. Five cogongrass ecotypes (Florida, Hybrid, Louisiana, Mobile, and North Alabama) collected across the Southeast ...
Anaya-Rojas, Jaime M; Brunner, Franziska S; Sommer, Nina; Seehausen, Ole; Eizaguirre, Christophe; Matthews, Blake
2016-11-01
Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human-mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three-spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition and diet. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Liu, Dan; Islam, Ejazul; Li, Tingqiang; Yang, Xiaoe; Jin, Xiaofen; Mahmood, Qaisar
2008-05-01
Lab scale and pot experiments were conducted to compare the effects of synthetic chelators and low molecular weight organic acids (LMWOA) on the phytoextraction of multi-contaminated soils by two ecotypes of Sedum alfredii Hance. Through lab scale experiments, the treatment dosage of 5 and 10 mM for synthetic chelators and LMWOA, respectively, and the treatment time of 10 days were selected for pot experiment. In pot experiment, the hyperaccumulating ecotype (HE) was found more tolerant to the metal toxicity compared with the non-hyperaccumulating ecotype (NHE). EDTA for Pb, EDDS for Cu, and DTPA for Cu and Cd were found more effective to enhance heavy metal accumulation in the shoots of S. alfredii Hance. Compared with synthetic chelators, the phytoextraction ability of LMWOA was lesser. Considering the strong post-harvest effects of synthetic chelators, it is suggested that higher dosage of LMWOA could be practiced during phytoextraction, and some additional measures could also be taken to lower the potential environmental risks of synthetic chelators in the future studies.
Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus
2014-11-01
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. © 2014 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Choudhury, Baharul I; Khan, Mohammed L; Dayanandan, Selvadurai
2014-12-29
Indigenous rice varieties in the Eastern Himalayan region of Northeast India are traditionally classified into sali, boro and jum ecotypes based on geographical locality and the season of cultivation. In this study, we used DNA sequence data from the Waxy (Wx) gene to infer the genetic relatedness among indigenous rice varieties in Northeast India and to assess the genetic distinctiveness of ecotypes. The results of all three analyses (Bayesian, Maximum Parsimony and Neighbor Joining) were congruent and revealed two genetically distinct clusters of rice varieties in the region. The large group comprised several varieties of sali and boro ecotypes, and all agronomically improved varieties. The small group consisted of only traditionally cultivated indigenous rice varieties, which included one boro, few sali and all jum varieties. The fixation index analysis revealed a very low level of differentiation between sali and boro (F(ST) = 0.005), moderate differentiation between sali and jum (F(ST) = 0.108) and high differentiation between jum and boro (F(ST) = 0.230) ecotypes. The genetic relatedness analyses revealed that sali, boro and jum ecotypes are genetically heterogeneous, and the current classification based on cultivation type is not congruent with the genetic background of rice varieties. Indigenous rice varieties chosen from genetically distinct clusters could be used in breeding programs to improve genetic gain through heterosis, while maintaining high genetic diversity.
Moura, Andre E; Kenny, John G; Chaudhuri, Roy; Hughes, Margaret A; J Welch, Andreanna; Reisinger, Ryan R; de Bruyn, P J Nico; Dahlheim, Marilyn E; Hall, Neil; Hoelzel, A Rus
2014-01-01
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift. PMID:25244680
Chatzigianni, Martina; Alkhaled, Bara'a; Livieratos, Ioannis; Stamatakis, Aristidis; Ntatsi, Georgia; Savvas, Dimitrios
2018-03-01
In the present study, two contrasting stamnagathi (Cichorium spinosum L.) ecotypes originating either from a mountainous or from a seaside habitat were grown hydroponically and supplied with a nutrient solution differing in the total-N level (4 or 16 mmol L -1 ) and the N source (NH 4 + -N/total-N: 0.05, 0.25 or 0.50). The aim was to search for genotypic differences in nitrogen nutrition. At commercial maturity, the dry weight of mountainous plants was higher than that of seaside plants. The shoot mineral concentrations were higher in seaside plants than in mountainous plants in both harvests. The leaf nitrate concentration was influenced by the levels of both total-N and NH 4 + -N/total-N at both harvests, whereas plants with a seaside origin exhibited higher nitrate concentrations than those originating from a mountainous site in all total-N and NH 4 + -N/total-N treatments. The two stamnagathi ecotypes differed considerably in their responses to nitrogen nutrition and tissue nitrate content. The mountainous ecotype was superior in terms of growth, tissue nitrate concentration and antioxidant capacity, whereas the seaside ecotype accumulated more nutrient microcations in leaves. A low total-N concentration (up to 4 mmol L -1 ) combined with a high NH 4 + -N/total-N ratio (up to 0.05) could minimize tissue NO 3 - concentrations without compromising yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Genomic analysis of two emergent Vibrio parahaemolyticus ecotypes
NASA Astrophysics Data System (ADS)
Moreno, E.; Parks, M. C.; Pinnell, L. J.; Turner, J.
2016-02-01
Vibrio parahaemolyticus [Vp] is a Gram-negative bacterium indigenous to marine coastal waters. Vp is also the causative agent of a mild to severe gastroenteritis associated with the consumption of raw or undercooked seafood. The majority of infections are caused by a genetically distinct ecotype commonly referred to as the pandemic clonal complex. However, localized outbreaks associated with non-pandemic ecotypes are frequently reported. In the East Pacific, two such ecotypes, identified as ST65 and ST417 by multilocus sequence typing, have been associated with outbreaks in Peru, Chile and the United States. In this study, we sequenced and assembled draft genomes from 4 clinical isolates (ST65: 3328, 3355; ST417: 3646, 3631) that were positive for both the thermostable direct hemolysin (tdh) and thermostable direct-related hemolysin (trh). When compared with the pandemic type strain (V. parahaemolyticus RIMD2210633), each of these isolates harbored more than 400 Kb of novel genetic material. Proteins encoded by this novel genetic material include CcdA-CcdB toxin-antitoxin systems, an efflux pump belonging to the multidrug and toxic efflux (MATE) family, and a repeats-in-toxin (RTX) gene cluster. These features share significant homology and synteny with virulence-associated features found in clinical V. vulnificus and Escherichia coli strains. We hypothesize that these features contribute to a pathogenic phenotype. The identification and characterization of multiple clinical ecotypes could improve efforts aimed at preventing V. parahaemolyticus infections. Further, a greater understanding of the species' biogeography may lead to a more effective public health response.
Adaptive responses reveal contemporary and future ecotypes in a desert shrub
Richardson, Bryce A.; Kitchen, Stanley G.; Pendleton, Rosemary L.; Pendleton, Burton K.; Germino, Matthew J.; Rehfeldt, Gerald E.; Meyer, Susan E.
2014-01-01
Interacting threats to ecosystem function, including climate change, wildfire, and invasive species necessitate native plant restoration in desert ecosystems. However, native plant restoration efforts often remain unguided by ecological genetic information. Given that many ecosystems are in flux from climate change, restoration plans need to account for both contemporary and future climates when choosing seed sources. In this study we analyze vegetative responses, including mortality, growth, and carbon isotope ratios in two blackbrush (Coleogyne ramosissima) common gardens that included 26 populations from a range-wide collection. This shrub occupies ecotones between the warm and cold deserts of Mojave and Colorado Plateau ecoregions in western North America. The variation observed in the vegetative responses of blackbrush populations was principally explained by grouping populations by ecoregions and by regression with site-specific climate variables. Aridity weighted by winter minimum temperatures best explained vegetative responses; Colorado Plateau sites were usually colder and drier than Mojave sites. The relationship between climate and vegetative response was mapped within the boundaries of the species–climate space projected for the contemporary climate and for the decade surrounding 2060. The mapped ecological genetic pattern showed that genetic variation could be classified into cool-adapted and warm-adapted ecotypes, with populations often separated by steep clines. These transitions are predicted to occur in both the Mojave Desert and Colorado Plateau ecoregions. While under contemporary conditions the warm-adapted ecotype occupies the majority of climate space, climate projections predict that the cool-adapted ecotype could prevail as the dominant ecotype as the climate space of blackbrush expands into higher elevations and latitudes. This study provides the framework for delineating climate change-responsive seed transfer guidelines, which are needed to inform restoration and management planning. We propose four transfer zones in blackbrush that correspond to areas currently dominated by cool-adapted and warm-adapted ecotypes in each of the two ecoregions.
Park, Ju-Young; Jin, Jianming; Lee, Yin-Won; Kang, Seogchan; Lee, Yong-Hwan
2009-01-01
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying pathogenesis and host defense in two well-studied model plants. PMID:18987215
Adaptive responses reveal contemporary and future ecotypes in a desert shrub.
Richardson, Bryce A; Kitchen, Stanley G; Pendleton, Rosemary L; Pendleton, Burton K; Germino, Matthew J; Rehfeldt, Gerald E; Meyer, Susan E
2014-03-01
Interacting threats to ecosystem function, including climate change, wildfire, and invasive species necessitate native plant restoration in desert ecosystems. However, native plant restoration efforts often remain unguided by ecological genetic information. Given that many ecosystems are in flux from climate change, restoration plans need to account for both contemporary and future climates when choosing seed sources. In this study we analyze vegetative responses, including mortality, growth, and carbon isotope ratios in two blackbrush (Coleogyne ramosissima) common gardens that included 26 populations from a range-wide collection. This shrub occupies ecotones between the warm and cold deserts of Mojave and Colorado Plateau ecoregions in western North America. The variation observed in the vegetative responses of blackbrush populations was principally explained by grouping populations by ecoregions and by regression with site-specific climate variables. Aridity weighted by winter minimum temperatures best explained vegetative responses; Colorado Plateau sites were usually colder and drier than Mojave sites. The relationship between climate and vegetative response was mapped within the boundaries of the species-climate space projected for the contemporary climate and for the decade surrounding 2060. The mapped ecological genetic pattern showed that genetic variation could be classified into cool-adapted and warm-adapted ecotypes, with populations often separated by steep dines. These transitions are predicted to occur in both the Mojave Desert and Colorado Plateau ecoregions. While under contemporary conditions the warm-adapted ecotype occupies the majority of climate space, climate projections predict that the cool-adapted ecotype could prevail as the dominant ecotype as the climate space of blackbrush expands into higher elevations and latitudes. This study provides the framework for delineating climate change-responsive seed transfer guidelines, which are needed to inform restoration and management planning. We propose four transfer zones in blackbrush that correspond to areas currently dominated by cool-adapted and warm-adapted ecotypes in each of the two ecoregions.
Specialization of Bacillus in the Geochemically Challenged Environment of Death Valley
NASA Astrophysics Data System (ADS)
Kopac, S.
2014-04-01
Death Valley is the hottest, driest place in North America, a desert with soils containing toxic elements such as boron and lead. While most organisms are unable to survive under these conditions, a diverse community of bacteria survives here. What has enabled bacteria to adapt and thrive in a plethora of extreme and stressful environments where other organisms are unable to grow? The unique environmental adaptations that distinguish ecologically distinct bacterial groups (ecotypes) remain a mystery, in contrast to many animal species (perhaps most notably Darwin's ecologically distinct finch species). We resolve the ecological factors associated with recently diverged ecotypes of the soil bacteria Bacillus subtilis and Bacillus licheniformis, isolated from the dry, geochemically challenging soils of Death Valley, CA. To investigate speciation associated with challenging environmental parameters, we sampled soil transects along a 400m stretch that parallels a decrease in salinity adjacent to a salt flat; transects also encompass gradients in soil B, Cu, Fe, NO3, and P, all of which were quantified in our soil samples. We demarcated strains using Ecotype Simulation, a sequence-based algorithm. Each ecotype's habitat associations were determined with respect to salinity, B, Cu, Fe, NO3, and P. In addition, our sample strains were tested for tolerance of copper, boron and salinity (all known to inhibit growth at high concentrations) by comparing their growth over a 20 hour period. Ecotypes differed in their habitat associations with salinity, boron, copper, iron, and other ecological factors; these environmental dimensions are likely causing speciation of B. subtilis-licheniformis ecotypes at our sample site. Strains also differed in tolerance of boron and copper, providing evidence that our sequence-based demarcations reflect real differences in metabolism. By better understanding the relationship between bacterial speciation and the environment, we can begin to predict the habitability of unexplored extreme and extra-Earth environments.
Boreal Forest Permafrost Sensitivity Ecotypes to changes in Snow Depth and Soil Moisture
NASA Astrophysics Data System (ADS)
Dabbs, A.; Romanovsky, V. E.; Kholodov, A. L.
2017-12-01
Changes in the global climate, pronounced especially in polar regions due to their accelerated warming, are expected by many global climate models to have large impacts on the moisture budget throughout the world. Permafrost extent and the soil temperature regime are both strongly dependent on soil moisture and snow depth because of their immense effects on the thermal properties of the soil column and surface energy balance respectively. To assess how the ground thermal regime at various ecotypes may react to a change in the moisture budget, we performed a sensitivity analysis using the Geophysical Institute Permafrost Laboratory model, which simulates subsurface temperature dynamics by solving a one-dimensional nonlinear heat equation with phase change. We used snow depth and air temperature data from the Fairbanks International Airport meteorological station as forcing for this sensitivity analysis. We looked at five different ecotypes within the boreal forest region of Alaska: mixed, deciduous and black forests, willow shrubs and tundra. As a result of this analysis, we found that ecotypes with higher soil moisture contents, such as willow shrubs, are most sensitive to changes in snow depth due to the larger amount of latent heat trapped underneath the snow during the freeze up of active layer. In addition, soil within these ecotypes has higher thermal conductivity due to high saturation degree allowing for deeper seasonal freezing. Also, we found that permafrost temperatures were most sensitive to changes in soil moisture in ecotypes that were not completely saturated such as boreal forest. These ecotypes lacked complete saturation because of thick organic layers that have very high porosities or partially drained mineral soils. Contrarily, tundra had very little response to changes in soil moisture due to its thin organic layer and almost completely saturated soil column. This difference arises due to the disparity between the frozen and unfrozen thermal conductivities of the soil. In highly saturated soils, the frozen thermal conductivity of the soil can be more than double that of the unfrozen thermal conductivity while in dryer soils that ratio reduces down to less than 1.5. This difference allows the seasonal freezing to penetrate quicker and deeper causing even more latent heat to be released and trapped.
Malaria ecotypes and stratification.
Schapira, Allan; Boutsika, Konstantina
2012-01-01
To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna malaria; larval control may be considered though its role is not so far well established. In contrast, urban malaria in the Indian subcontinent is associated with higher risks than most adjacent rural areas, and larval control has a definite, though not exclusive, role. Simulation modelling of cost-effectiveness of malaria control strategies in different scenarios should prioritize ecotypes where malaria control encounters serious technical problems. Further field research on malaria and ecology should be interdisciplinary, especially with geography, and pay more attention to juxtapositions and to anthropic elements, especially migration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hybrid Sterility over Tens of Meters Between Ecotypes Adapted to Serpentine and Non-Serpentine Soils
Leonie Moyle; Levine Mia; Stanton Maureen; Jessica Wright
2012-01-01
The development of hybrid sterility is an important step in the process of speciation, however the role of adaptive evolution in triggering these postzygotic barriers is poorly understood. We show that, in the California endemic plant Collinsia sparsiflora ecotypic adaptation to two distinct soil types is associated with the expression of...
Inferring ancestral distribution area and survival vegetation of Caragana (Fabaceae) in Tertiary
Mingli Zhang; Juanjuan Xue; Qiang Zhang; Stewart C. Sanderson
2015-01-01
Caragana, a leguminous genus mainly restricted to temperate Central and East Asia, occurs in arid, semiarid, and humid belts, and has forest, grassland, and desert ecotypes. Based on the previous molecular phylogenetic tree and dating, biogeographical analyses of extant species area and ecotype were conducted by means of four ancestral optimization approaches: S-DIVA,...
USDA-ARS?s Scientific Manuscript database
The impact of water deficit stress on leaf cuticular waxes and cutin monomers, and traits associated with cuticle permeability, were examined in Shandong and Yukon ecotypes of Eutrema salsugineum (syn. Thellungiella salsuginea). Although Shandong exhibits glaucous leaves, and Yukon is non-glaucous, ...
Ecotypic variation in population dynamics of reintroduced bighorn sheep
Bleich, Vernon C.; Sargeant, Glen A.; Wiedmann, Brett P.
2018-01-01
Selection of bighorn sheep (Ovis canadensis) for translocation historically has been motivated by preservation of subspecific purity rather than by adaptation of source stocks to similar environments. Our objective was to estimate cause‐specific, annual, and age‐specific mortality of introduced bighorn sheep that originated at low elevations in southern British Columbia, Canada (BC ecotype), or in the Missouri River Breaks region of central Montana, USA (MT ecotype). In North Dakota, USA, mortality was similar and typically low for adult female bighorn sheep from Montana (0.09 ± 0.029 [SE]) and British Columbia (0.08 ± 0.017) during 2000–2016. Median life expectancy was 11 years for females that reached adulthood (2 yrs old); however, mortality accelerated with age and reached 86% by age 16. Mortalities resulted primarily from low rates of predation, disease, accidents, and unknown natural causes (<0.04 [upper 90% CI]). Similar survival rates of female bighorn sheep from female bighorn sheep from British Columbia and Montana, coupled with greater recruitment of bighorn sheep from Montana, resulted in a greater projected rate of increase for the MT ecotype (λ = 1.21) than for the BC ecotype (1.02), and a more youthful age structure. These results support translocation of bighorn sheep from areas that are environmentally similar to areas that will be stocked. Potential benefits include more rapid population growth, greater resilience to and more rapid recovery from density‐independent losses, an increased possibility that rapidly growing populations will expand into adjacent habitat, increased hunter opportunity, increased connectivity among herds, and a more complete restoration of ecosystem processes.
Gonzales, Carla; Rubio, Julio; Gasco, Manuel; Nieto, Jessica; Yucra, Sandra; Gonzales, Gustavo F
2006-02-20
Lepidium meyenii (Brassicaceae), known as Maca, is a Peruvian hypocotyl that grows exclusively between 4000 and 4500 m above sea level in the central Andes. Maca is traditionally employed in the Andean region for its supposed fertility-enhancing properties. The study aimed to test the hypothesis that different ecotypes of Maca (Red, Yellow and Black) after short-term (7 days) and long-term (42 days) treatment affects differentially spermatogenesis adult rats. After 7 days of treatment with Yellow and Red Maca, the length of stage VIII was increased (P<0.05), whereas with Black Maca stages II-VI and VIII were increased (P<0.05). Daily sperm production (DSP) was increased in the group treated with Black Maca compared with control values (P<0.05). Red or Yellow Maca did not alter DSP and epididymal sperm motility was not affected by treatment with any ecotype of Maca. After 42 days of treatment, Black Maca was the only ecotype that enhanced DSP (P<0.05). Moreover, Black Maca was the only that increased epididymal sperm motility (P<0.05). In relation to the control group, Red Maca did not affect testicular and epididymal weight nor epididymal sperm motility and sperm count; however, prostate weight was reduced (P<0.05). Black or Yellow Maca did not affect prostate weight. In conclusion, there were differences in the biological response of the three ecotypes of Maca (Yellow, Red and Black). Black Maca appeared to have more beneficial effect on sperm counts and epididymal sperm motility.
Ned Fetcher; Roberto A. Cordero; Janice Voltzow
2000-01-01
How important is ecotypic differentiation along elevational gradients in the tropics? Reciprocal transplants of two shrubs, Clibadium erosum (Asteraceae) and Psychotria berteriana (Rubiaceae), and a palm, Prestoea acuminata var. montana (Palmaceae), were used to test for the effect of environment and population origin on growth and physiology in the Luquillo...
Development of a New Marker System for Identification of Spirodela polyrhiza and Landoltia punctata
Feng, Bo; Fang, Yang; Xu, Zhibin; Xiang, Chao; Zhou, Chunhong; Jiang, Fei; Wang, Tao
2017-01-01
Lemnaceae (commonly called duckweed) is an aquatic plant ideal for quantitative analysis in plant sciences. Several species of this family represent the smallest and fastest growing flowering plants. Different ecotypes of the same species vary in their biochemical and physiological properties. Thus, selecting of desirable ecotypes of a species is very important. Here, we developed a simple and rapid molecular identification system for Spirodela polyrhiza and Landoltia punctata based on the sequence polymorphism. First, several pairs of primers were designed and three markers were selected as good for identification. After PCR amplification, DNA fragments (the combination of three PCR products) in different duckweeds were detected using capillary electrophoresis. The high-resolution capillary electrophoresis displayed high identity to the sequencing results. The combination of the PCR products containing several DNA fragments highly improved the identification frequency. These results indicate that this method is not only good for interspecies identification but also ideal for intraspecies distinguishing. Meanwhile, 11 haplotypes were found in both the S. polyrhiza and L. punctata ecotypes. The results suggest that this marker system is useful for large-scale identification of duckweed and for the screening of desirable ecotypes to improve the diverse usage in duckweed utilization. PMID:28168191
Male Choice in the Stream-Anadromous Stickleback Complex
McKinnon, Jeffrey S.; Hamele, Nick; Frey, Nicole; Chou, Jennifer; McAleavey, Leia; Greene, Jess; Paulson, Windi
2012-01-01
Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small) stream-resident males and the reverse pattern for (relatively large) anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size. PMID:22701589
Piergiovanni, Angela R; Sparvoli, Francesca; Zaccardelli, Massimo
2012-08-30
An ecotype of the lima bean, named 'fagiolo a Formella', which, to the best of our knowledge, is the only example of an Italian lima bean (Phaseolus lunatus L.) ecotype, is cultivated in the Campania region of southern Italy. Physical, nutritional and processing traits of dry seeds were evaluated for two consecutive growing seasons (2009 and 2010). The canning quality was also investigated, but only for the harvest of 2010. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total seed proteins allowed the attribution of 'fagiolo a Formella' to the Mesoamerican gene pool and Sieva morphotype. Seeds have a trapezoid shape, white coat and 100-seed weight greater than 42 g. Yield, protein, trypsin inhibitor and phytic acid values were found comparable with those reported for lima bean varieties cultivated in sub-tropical areas. Moreover, we found that this ecotype is devoid of lectin. The good adaptation to growing environment is indicated by the fact that 'fagiolo a Formella' seed quality is comparable to that of lima beans grown in America. Overall the canning quality was found satisfactory and canning significantly destroys the main anti-nutritional compounds present in dry seeds. Copyright © 2012 Society of Chemical Industry.
Development and growth of several strains of Arabidopsis seedlings in microgravity
NASA Technical Reports Server (NTRS)
Kiss, J. Z.; Brinckmann, E.; Brillouet, C.
2000-01-01
Growth and development of dark-grown Arabidopsis thaliana seedlings were studied in microgravity during space shuttle mission STS-84. The major purpose of this project was to determine if there were developmental differences among the four ecotypes studied--Wassilewskija (Ws), Columbia (Col), Landsberg erecta (Ler), and C24--and to evaluate whether particular ecotypes are better suited for spaceflight experimentation compared with others. A secondary goal was to study the growth of three starch-deficient strains of Arabidopsis by extending the observations made in a previously published report. For all strains, seed germination was not affected by microgravity, but seedlings were smaller in the spaceflight samples compared with the ground controls. The starch-deficient strains continued to exhibit vigorous growth until the termination of the experiment at 121 h after imbibition of seeds. However, ethylene effects, i.e., reduced growth and exaggerated hypocotyl hooks, were observed in all strains studied. Nevertheless, the Ler and C24 ecotypes seem to be more suitable for spaceflight research, compared with the other two ecotypes, based on measurements of their relative and absolute growth. This type of information should aid in the design of plant experiments for the International Space Station.
Ito, Hidetaka; Miura, Asuka; Takashima, Kazuya; Kakutani, Tetsuji
2007-01-01
Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster.
Local plant adaptation across a subarctic elevational gradient
Kardol, Paul; De Long, Jonathan R.; Wardle, David A.
2014-01-01
Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3°C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature. PMID:26064553
Distribution and diversity of Prochlorococcus ecotypes in the Red Sea.
Shibl, Ahmed A; Thompson, Luke R; Ngugi, David K; Stingl, Ulrich
2014-07-01
Photosynthetic prokaryotes of the genus Prochlorococcus play a major role in global primary production in the world's oligotrophic oceans. A recent study on pelagic bacterioplankton communities in the northern and central Red Sea indicated that the predominant cyanobacterial 16S rRNA gene sequence types were from Prochlorococcus cells belonging to a high-light-adapted ecotype (HL II). In this study, we analyzed microdiversity of Prochlorococcus sp. at multiple depths within and below the euphotic zone in the northern, central, and southern regions of the Red Sea, as well as in surface waters in the same locations, but in a different season. Prochlorococcus dominated the communities in clone libraries of the amplified 16S-23S rRNA internal transcribed spacer (ITS) region. Almost no differences were found between samples from coastal or open-water sites, but a high diversity of Prochlorococcus ecotypes was detected at 100-meter depth in the water column. In addition, an unusual dominance of HL II-related sequences was observed in deeper waters. Our results indicate that the Red Sea harbors diverse Prochlorococcus lineages, but no novel ecotypes, despite its unusual physicochemical properties. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Evaluating Ecotypes as a means of Scaling-up Permafrost Thermal Measurements in Western Alaska.
NASA Astrophysics Data System (ADS)
Cable, William; Romanovsky, Vladimir
2015-04-01
In many regions, permafrost temperatures are increasing due to climate change and in some cases permafrost is thawing and degrading. In areas where degradation has already occurred the effects can be dramatic, resulting in changing ecosystems, carbon release, and damage to infrastructure. Yet in many areas we lack baseline data, such as subsurface temperatures, needed to assess future changes and potential risk areas. Besides climate, the physical properties of the vegetation cover and subsurface material have a major influence on the thermal state of permafrost. These properties are often directly related to the type of ecosystem overlaying permafrost. Thus, classifying the landscape into general ecotypes might be an effective way to scale up permafrost thermal data. To evaluate using ecotypes as a way of scaling-up permafrost thermal data within a region we selected an area in Western Alaska, the Selawik National Wildlife Refuge, which is on the boundary between continuous and discontinuous permafrost. This region was selected because previously an ecological land classification had been conducted and a very high-resolution ecotype map was generated. Using this information we selected 18 spatially distributed sites covering the most abundant ecotypes, where we are collecting low vertical resolution soil temperature data to a depth of 1.5 meters at most sites. At three additional core sites, we are collecting air temperature, snow depth, and high vertical resolution soil temperature to a depth of 3 meters. The sites were installed in the summers of 2011 and 2012; consequently, we have at least two years of data from all sites. Mean monthly and mean annual air temperature and snow depth for all three core sites are similar within the 2012-2014 period. Additionally, the average air temperature and snow depth from our three cores sites compares well with that of a nearby meteorological station for which long-term data is available. During the study period snow depth was anomalously low during both winters, while mean monthly and annual air temperature was similar to the long-term average the first year and considerably warmer (warm winter) the second year. Our results indicate that it is possible to extract information about subsurface temperature, active layer thickness, and other permafrost characteristics based on these ecotype classifications. Additionally, we find that within some ecotypes the absence of a moss layer is indicative of the absence of near surface permafrost. As a proof of concept, we used this information to translate the ecotype landcover map into a map of mean annual ground temperature ranges at 1 m depth. While this map is preliminary and would benefit from additional data and modeling exercises (both ongoing), we believe it provides useful information for decision making with respect to land use and understanding how the landscape might change under future climate scenarios.
Robert R. Blank; Robert H. White; Lewis H. Ziska
2006-01-01
We grew from seed the exotic invasive annual grass Bromus tectorum L., collected from three elevation ecotypes in northern Nevada, USA. Plants were exposed to four CO2 atmosphere concentrations: 270, 320, 370, and 420 [mu]mol mol−1. After harvest on day 87, above-ground tissue was milled, conditioned to 30% relative humidity, and combustion properties were...
Mahammi, F Z; Gaouar, S B S; Laloë, D; Faugeras, R; Tabet-Aoul, N; Rognon, X; Tixier-Boichard, M; Saidi-Mehtar, N
2016-02-01
The objectives of this study were to characterize the genetic variability of village chickens from three agro-ecological regions of western Algeria: coastal (CT), inland plains (IP) and highlands (HL), to reveal any underlying population structure, and to evaluate potential genetic introgression from commercial lines into local populations. A set of 233 chickens was genotyped with a panel of 23 microsatellite markers. Geographical coordinates were individually recorded. Eight reference populations were included in the study to investigate potential gene flow: four highly selected commercial pure lines and four lines of French slow-growing chickens. Two populations of wild red jungle fowls were also genotyped to compare the range of diversity between domestic and wild fowls. A genetic diversity analysis was conducted both within and between populations. Multivariate redundancy analyses were performed to assess the relative influence of geographical location among Algerian ecotypes. The results showed a high genetic variability within the Algerian population, with 184 alleles and a mean number of 8.09 alleles per locus. The values of heterozygosity (He and Ho) ranged from 0.55 to 0.62 in Algerian ecotypes and were smaller than values found in Jungle fowl populations and higher than values found in commercial populations. Although the structuring analysis of genotypes did not reveal clear subpopulations within Algerian ecotypes, the supervised approach using geographical data showed a significant (p < 0.01) differentiation between the three ecotypes which was mainly due to altitude. Thus, the genetic diversity of Algerian ecotypes may be under the influence of two factors with contradictory effects: the geographical location and climatic conditions may induce some differentiation, whereas the high level of exchanges and gene flow may suppress it. Evidence of gene flow between commercial and Algerian local populations was observed, which may be due to unrecorded crossing with commercial chickens. Chicken ecotypes from western Algeria are characterized by a high genetic diversity and must be safeguarded as an important reservoir of genetic diversity. © 2015 Blackwell Verlag GmbH.
Tedesco, Idolo; Carbone, Virginia; Spagnuolo, Carmela; Minasi, Paola; Russo, Gian Luigi
2015-06-03
Onions (Allium cepa) are consumed worldwide and represent an important source of dietary phytochemicals with proven antioxidant properties, such as phenolic acids, flavonoids, thiosulfinates, and anthocyanins. Epidemiological and experimental data suggest that regular consumption of onions is associated with a reduced risk of degenerative disorders. Therefore, it is of interest to investigate the biological properties of different varieties of onions. Here, we characterized for the first time a variety of onion, called Ramata di Montoro (coppery onion from Montoro), grown in a niche area in southern Italy, and compared its phenolic profile and antioxidant properties to a commercial ecotype of red onion, Tropea, also present in southern Italy. An analytical method based on high-performance liquid chromatography coupled with UV detection and mass spectrometry was used to separate and characterize the phenolic fraction (anthocyanins and flavonols) extracted from both coppery and red types. The main compounds detected in the two ecotypes were quercetin and quercetin glucosides, isorhamnetin glucosides, kaempferol glucoside, and, among anthocyanins, cyanidin glucosides. Tropea ecotype onion showed a higher content of flavonols (632.82 mg/kg fresh weight) than Montoro type onion (252.91 mg/kg fresh weight). Accordingly, the antioxidant activity of the former was 2.8-fold higher compared to the latter. More pronounced were the differences existing between the four anthocyanins detected in the two ecotypes, with those in the Tropea ecotype onion present at concentrations 20-230-fold higher than in the Montoro type onion. Both extracts reduced LDL oxidation about 6-fold and protected human erythrocytes from oxidative damage induced by HClO by about 40%. In addition, as a consequence of HClO treatment, glutathione concentration in erythrocytes was reduced about 50% and pretreatment with onion extracts induced a recovery of glutathione level by about 15-22%. Qualitative differences highlighted in the chemical composition of the two phenolic extracts, especially the total content of anthocyanins, which was 30-fold higher in Montoro type onion compared to Tropea ecotype, can be associated with the protective effects measured against oxidative damage induced in human erythrocytes.
Killer whale ecotypes: is there a global model?
de Bruyn, P J N; Tosh, Cheryl A; Terauds, Aleks
2013-02-01
Killer whales, Orcinus orca, are top predators occupying key ecological roles in a variety of ecosystems and are one of the most widely distributed mammals on the planet. In consequence, there has been significant interest in understanding their basic biology and ecology. Long-term studies of Northern Hemisphere killer whales, particularly in the eastern North Pacific (ENP), have identified three ecologically distinct communities or ecotypes in that region. The success of these prominent ENP studies has led to similar efforts at clarifying the role of killer whale ecology in other regions, including Antarctica. In the Southern Hemisphere, killer whales present a range of behavioural, social and morphological characteristics to biologists, who often interpret this as evidence to categorize individuals or groups, and draw general ecological conclusions about these super-predators. Morphologically distinct forms (Type A, B, C, and D) occur in the Southern Ocean and studies of these different forms are often presented in conjunction with evidence for specialised ecology and behaviours. Here we review current knowledge of killer whale ecology and ecotyping globally and present a synthesis of existing knowledge. In particular, we highlight the complexity of killer whale ecology in the Southern Hemisphere and examine this in the context of comparatively well-studied Northern Hemisphere populations. We suggest that assigning erroneous or prefatory ecotypic status in the Southern Hemisphere could be detrimental to subsequent killer whale studies, because unsubstantiated characteristics may be assumed as a result of such classification. On this basis, we also recommend that ecotypic status classification for Southern Ocean killer whale morphotypes be reserved until more evidence-based ecological and taxonomic data are obtained. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Sullam, Karen E; Rubin, Benjamin E R; Dalton, Christopher M; Kilham, Susan S; Flecker, Alexander S; Russell, Jacob A
2015-07-01
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.
Sullam, Karen E; Rubin, Benjamin ER; Dalton, Christopher M; Kilham, Susan S; Flecker, Alexander S; Russell, Jacob A
2015-01-01
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation. PMID:25575311
Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii
Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Wang, Xiao-chang; Brown, Patrick; Li, Ting-qiang; He, Zhen-li
2008-01-01
Sedum alfredii (Crasulaceae) is the only known Cd-hyperaccumulating species that are not in the Brassica family; the mechanism of Cd hyperaccumulation in this plant is, however, little understood. Here, a combination of radioactive techniques, metabolic inhibitors, and fluorescence imaging was used to contrast Cd uptake and translocation between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of S. alfredii. The Km of 109Cd influx into roots was similar in both ecotypes, while the Vmax was 2-fold higher in the HE. Significant inhibition of Cd uptake by low temperature or metabolic inhibitors was observed in the HE, whereas the effect was less pronounced in the NHE. 109Cd influx into roots was also significantly decreased by high Ca in both ecotypes. The rate of root-to-shoot translocation of 109Cd in the HE was >10 times higher when compared with the NHE, and shoots of the HE accumulated dramatically higher 109Cd concentrations those of the NHE. The addition of the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) resulted in a significant reduction in Cd contents in the shoots of the HE, and in the roots of the NHE. Cd was distributed preferentially to the root cylinder of the HE but not the NHE, and there was a 3–5 times higher Cd concentration in xylem sap of the HE in contrast to the NHE. These results illustrate that a greatly enhanced rate of root-to-shoot translocation, possibly as a result of enhanced xylem loading, rather than differences in the rate of root uptake, was the pivotal process expressed in the Cd hyperaccumulator HE S. alfredii. PMID:18603654
Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii.
Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Wang, Xiao-chang; Brown, Patrick; Li, Ting-qiang; He, Zhen-li
2008-01-01
Sedum alfredii (Crasulaceae) is the only known Cd-hyperaccumulating species that are not in the Brassica family; the mechanism of Cd hyperaccumulation in this plant is, however, little understood. Here, a combination of radioactive techniques, metabolic inhibitors, and fluorescence imaging was used to contrast Cd uptake and translocation between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of S. alfredii. The K(m) of (109)Cd influx into roots was similar in both ecotypes, while the V(max) was 2-fold higher in the HE. Significant inhibition of Cd uptake by low temperature or metabolic inhibitors was observed in the HE, whereas the effect was less pronounced in the NHE. (109)Cd influx into roots was also significantly decreased by high Ca in both ecotypes. The rate of root-to-shoot translocation of (109)Cd in the HE was >10 times higher when compared with the NHE, and shoots of the HE accumulated dramatically higher (109)Cd concentrations those of the NHE. The addition of the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) resulted in a significant reduction in Cd contents in the shoots of the HE, and in the roots of the NHE. Cd was distributed preferentially to the root cylinder of the HE but not the NHE, and there was a 3-5 times higher Cd concentration in xylem sap of the HE in contrast to the NHE. These results illustrate that a greatly enhanced rate of root-to-shoot translocation, possibly as a result of enhanced xylem loading, rather than differences in the rate of root uptake, was the pivotal process expressed in the Cd hyperaccumulator HE S. alfredii.
NASA Astrophysics Data System (ADS)
Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep
2018-04-01
The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by convective mixing and advection, which in turn influence ecosystem functioning and trophodynamics of the southern northeastern Arabian Sea.
Fruet, Pedro F; Secchi, Eduardo R; Di Tullio, Juliana C; Simões-Lopes, Paulo César; Daura-Jorge, Fábio; Costa, Ana P B; Vermeulen, Els; Flores, Paulo A C; Genoves, Rodrigo Cezar; Laporta, Paula; Beheregaray, Luciano B; Möller, Luciana M
2017-11-01
Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal-offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal ( n = 127) and offshore ( n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites F ST = 0.385, p < .001; mtDNA F ST = 0.183, p < .001; Φ ST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential "contact zones", we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed.
Bronikowski, Anne; Vleck, David
2010-11-01
We present a case study of metabolism, life history and aging in the western terrestrial garter snake (Thamnophis elegans). Early research in the field supported the rate-of-living hypothesis as an explanation of aging, which was based on an apparent negative relationship between mass-specific metabolic rate and lifespan in endotherms. This hypothesis in its original form has not withstood additional tests and comparisons between the two main lineages of endotherms-birds and mammals, but there is still much to be discovered of the causative links among rate of oxygen consumption, physiology and life history, particularly in ectothermic reptiles. We present data that show adult short-lived snakes, from naturally occurring ecotypes of garter snakes, have higher mass-specific resting metabolic rates at any given body mass (metabolic intensity) across a series of normal activity temperatures (15-32°C). The short-lived ecotype in this geographic region reaches a larger body size, and has life-history traits that place it at the fast end of a pace-of-life continuum (fast growth, early maturation, high reproductive output) relative to individuals of the small-bodied long-lived ecotype. The difference between ecotypes in metabolic intensity, even after acclimation to identical conditions, may reflect evolutionary divergence and genetic differences between ecotypes. The difference in metabolic intensity is not, however, present at birth, so an alternative is that developmental environment may permanently influence metabolic rate and life history. Such developmental canalization could lead to altered gene expression via environmental influences on the epigenome and result in altered metabolic trajectories in the snakes' natural habitats.
Kang, Si-Yong; Lee, Geung-Joo; Lim, Ki Byung; Lee, Hye Jung; Park, In Sook; Chung, Sung Jin; Kim, Jin-Baek; Kim, Dong Sub; Rhee, Hye Kyung
2008-04-30
The genus Cynodon comprises ten species. The objective of this study was to evaluate the genetic diversity of Korean bermudagrasses at the morphological, cytological and molecular levels. Morphological parameters, the nuclear DNA content and ploidy levels were observed in 43 bermudagrass ecotypes. AFLP markers were evaluated to define the genetic diversity, and chromosome counts were made to confirm the inferred cytotypes. Nuclear DNA contents were in the ranges 1.42-1.56, 1.94-2.19, 2.54, and 2.77-2.85 pg/2C for the triploid, tetraploid, pentaploid, and hexaploid accessions, respectively. The inferred cytotypes were triploid (2n = 3x = 27), tetraploid (2n = 4x = 36), pentaploid (2n = 5x = 45), and hexaploid (2n = 6x = 54), but the majority of the collections were tetraploid (81%). Mitotic chromosome counts verified the corresponding ploidy levels. The fast growing fine-textured ecotypes had lower ploidy levels, while the pentaploids and hexaploids were coarse types. The genetic similarity ranged from 0.42 to 0.94 with an average of 0.64. UPGMA cluster analysis and principle coordinate analysis separated the ecotypes into 6 distinct groups. The genetic similarity suggests natural hybridization between the different cytotypes, which could be useful resources for future breeding and genetic studies.
Veale, Andrew J.
2017-01-01
Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. PMID:29045601
Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology.
Prieto, Ivan; Litrico, Isabelle; Violle, Cyrille; Barre, Philippe
2017-01-01
Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection. © 2017 Botanical Society of America.
Martín-Forés, Irene; Avilés, Marta; Acosta-Gallo, Belén; Breed, Martin F; Del Pozo, Alejandro; de Miguel, José M; Sánchez-Jardón, Laura; Castro, Isabel; Ovalle, Carlos; Casado, Miguel A
2017-05-08
Dispersal and reproductive traits of successful plant invaders are expected to undergo strong selection during biological invasions. Numerous Asteraceae are invasive and display dimorphic fruits within a single flower head, resulting in differential dispersal pathways - wind-dispersed fruits vs. non-dispersing fruits. We explored ecotypic differentiation and phenotypic plasticity of seed output and fruit dimorphisms in exotic Chilean and native Spanish populations of Leontodon saxatilis subsp. rothii. We collected flower heads from populations in Spain and Chile along a rainfall gradient. Seeds from all populations were planted in reciprocal transplant trials in Spain and Chile to explore their performance in the native and invasive range. We scored plant biomass, reproductive investment and fruit dimorphism. We observed strong plasticity, where plants grown in the invasive range had much greater biomass, flower head size and seed output, with a higher proportion of wind-dispersed fruits, than those grown in the native range. We also observed a significant ecotype effect, where the exotic populations displayed higher proportions of wind-dispersed fruits than native populations. Together, these patterns reflect a combination of phenotypic plasticity and ecotypic differentiation, indicating that Leontodon saxatilis has probably increased propagule pressure and dispersal distances in its invasive range to enhance its invasiveness.
Piergiovanni, Angela R; Lupo, Francesco; Zaccardelli, Massimo
2011-01-15
Grass pea seeds are a good source of vegetable proteins, but the presence of toxic and antinutritional compounds represents a barrier to their large-scale use as food or animal feed. How much growing location and/or seasonal climate might affect the storage of these factors has been little investigated. Fourteen Italian ecotypes of grass pea were cultivated in two locations in southern Italy characterised by different climatic conditions. The seven ecotypes with the best yields and/or seed quality were investigated for a further two growing seasons. From a statistical point of view the physicochemical and nutritional traits among ecotypes were not the same from one year to the next. Moreover, a significant positive correlation was found between β-oxalyl-diamino-propionic acid and trypsin inhibitor contents. The lowest levels of both these compounds were associated with the highest amount of rainfall during the plant vegetative cycle. Principal component analysis of the data showed that the overall seed composition was affected by the growing location. Consequently, each grass pea genotype should also be carefully investigated in relation to different environments before being considered for release as safe for widespread human or animal consumption. Copyright © 2010 Society of Chemical Industry.
Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia
2017-01-01
After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these 'bound' proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites . The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions.
Genome-culture coevolution promotes rapid divergence of killer whale ecotypes.
Foote, Andrew D; Vijay, Nagarjun; Ávila-Arcos, María C; Baird, Robin W; Durban, John W; Fumagalli, Matteo; Gibbs, Richard A; Hanson, M Bradley; Korneliussen, Thorfinn S; Martin, Michael D; Robertson, Kelly M; Sousa, Vitor C; Vieira, Filipe G; Vinař, Tomáš; Wade, Paul; Worley, Kim C; Excoffier, Laurent; Morin, Phillip A; Gilbert, M Thomas P; Wolf, Jochen B W
2016-05-31
Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.
Genome-culture coevolution promotes rapid divergence of killer whale ecotypes
Foote, Andrew D.; Vijay, Nagarjun; Ávila-Arcos, María C.; Baird, Robin W.; Durban, John W.; Fumagalli, Matteo; Gibbs, Richard A.; Hanson, M. Bradley; Korneliussen, Thorfinn S.; Martin, Michael D.; Robertson, Kelly M.; Sousa, Vitor C.; Vieira, Filipe G.; Vinař, Tomáš; Wade, Paul; Worley, Kim C.; Excoffier, Laurent; Morin, Phillip A.; Gilbert, M. Thomas P.; Wolf, Jochen B.W.
2016-01-01
Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level. PMID:27243207
Miller, David A.; Clark, W.R.; Arnold, S.J.; Bronikowski, A.M.
2011-01-01
Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (??s) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on ?? s. The magnitude of variation in the proportion of gravid females and its effect on ??s was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on ??s was 4- 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution. ?? 2011 by the Ecological Society of America.
Miller, David A; Clark, William R; Arnold, Stevan J; Bronikowski, Anne M
2011-08-01
Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution.
Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach
Cable, William L.; Romanovsky, Vladimir E.; Jorgenson, M. Torre
2016-10-25
Permafrost temperatures are increasing in Alaska due to climate change and in some cases permafrost is thawing and degrading. In areas where degradation has already occurred the effects can be dramatic, resulting in changing ecosystems, carbon release, and damage to infrastructure. However, in many areas we lack baseline data, such as subsurface temperatures, needed to assess future changes and potential risk areas. Besides climate, the physical properties of the vegetation cover and subsurface material have a major influence on the thermal state of permafrost. These properties are often directly related to the type of ecosystem overlaying permafrost. In this papermore » we demonstrate that classifying the landscape into general ecotypes is an effective way to scale up permafrost thermal data collected from field monitoring sites. Additionally, we find that within some ecotypes the absence of a moss layer is indicative of the absence of near-surface permafrost. As a proof of concept, we used the ground temperature data collected from the field sites to recode an ecotype land cover map into a map of mean annual ground temperature ranges at 1 m depth based on analysis and clustering of observed thermal regimes. In conclusion, the map should be useful for decision making with respect to land use and understanding how the landscape might change under future climate scenarios.« less
Genetic Analysis of Growth-Regulator-Induced Parthenocarpy in Arabidopsis1
Vivian-Smith, Adam; Koltunow, Anna M.
1999-01-01
In Arabidopsis, seedless silique development or parthenocarpy can be induced by the application of various plant growth regulators (PGRs) to unfertilized pistils. Ecotype-specific responses were observed in the Arabidopsis ecotypes Columbia and Landsberg relative to the type of PGR and level applied. The parthenocarpic response was greatest in ecotype Landsberg, and comparisons of fruit growth and morphology were studied primarily in this ecotype. Gibberellic acid application (10 μmol pistil−1) caused development similar to that in pollinated pistils, while benzyladenine (1 μmol pistil−1) and naphthylacetic acid (10 μmol pistil−1) treatment produced shorter siliques. Naphthylacetic acid primarily modified mesocarp cell expansion. Arabidopsis mutants were employed to examine potential dependencies on gibberellin biosynthesis (ga1-3, ga4-1, and ga5-1) and perception (spy-4 and gai) during parthenocarpic silique development. Emasculated spy-4 pistils were neither obviously parthenocarpic nor deficient in PGR perception. By contrast, emasculated gai mutants did not produce parthenocarpic siliques following gibberellic acid application, but silique development occurred following pollination or application of auxin and cytokinin. Pollinated gai siliques had decreased cell numbers and morphologically resembled auxin-induced parthenocarpic siliques. This shows that a number of independent and possibly redundant pathways can direct hormone-induced parthenocarpy, and that endogenous gibberellins play a role in regulating cell expansion and promoting cell division in carpels. PMID:10517835
Veale, Andrew J; Russello, Michael A
2017-10-01
Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Distant sequences determine 5′ end formation of cox3 transcripts in Arabidopsis thaliana ecotype C24
Forner, Joachim; Weber, Bärbel; Wiethölter, Caterina; Meyer, Rhonda C.; Binder, Stefan
2005-01-01
The genomic environments and the transcripts of the mitochondrial cox3 gene are investigated in three Arabidopsis thaliana ecotypes. While the proximate 5′ sequences up to nucleotide position −584, the coding regions and the 3′ flanking regions are identical in Columbia (Col), C24 and Landsberg erecta (Ler), genomic variation is detected in regions further upstream. In the mitochondrial DNA of Col, a 1790 bp fragment flanked by a nonanucleotide direct repeat is present beyond position −584 with respect to the ATG. While in Ler only part of this insertion is conserved, this sequence is completely absent in C24, except for a single copy of the nonanucleotide direct repeat. Northern hybridization reveals identical major transcripts in the three ecotypes, but identifies an additional abundant 60 nt larger mRNA species in C24. The extremities of the most abundant mRNA species are identical in the three ecotypes. In C24, an extra major 5′ end is abundant. This terminus and the other major 5′ ends are located in identical sequence regions. Inspection of Atcox3 transcripts in C24/Col hybrids revealed a female inheritance of the mRNA species with the extra 5′ terminus. Thus, a mitochondrially encoded factor determines the generation of an extra 5′ mRNA end. PMID:16107557
Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia
2017-01-01
After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these ‘bound’ proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites. The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions. PMID:28450873
Huang, Ziyue; Footitt, Steven; Finch-Savage, William E.
2014-01-01
Background and Aims Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively. Methods Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio. Key Results Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield. Conclusions High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species. PMID:24573642
NASA Astrophysics Data System (ADS)
Abdelhady, Ahmed Awad
2016-03-01
The negative impacts of degradation in the coastal zone of the Red Sea are becoming well known in upper portions of the trophic web (e.g., humans and fish), but are less well known among the benthic primary consumers. In addition, the degree to which heavy metals are entering the trophic web can be better-quantified using macrobenthos. Two-gastropod genera encompassing Echinolittorina subnodosa and Planaxis sulcatus from three different localities on the Egyptian coast of the Red Sea were examined in order to deduce the impact of environmental deterioration on the morphology of shells. The examined sites include clean pristine, slightly polluted, and markedly polluted rocky shores. Phosphate/lead industry is the main source of pollution in this zone. Because landmarks on the rugose Echinolittorina are difficult to define and to ensure finer resolution of the analyses, a newly 'grid-based' landmarks was implemented. Both Canonical Variate Analysis (CVA) and Thin Plate Spline (TPS) were particularly capable to capture and terrace the minor morphological variations accurately. Two phenotypes portioned among the environmentally different populations were recognized and interpreted as ecotypes with many intermediate forms. The first ecotype has a higher spire and smaller aperture and dominating the pristine site North of Marsa Alam, whereas the second ecotype has a globular shell shape with big aperture and dominating the markedly polluted site. The intermediate forms dominating the slightly polluted site. The shape differences are interpreted as an adaptive differentiation to different metal concentrations. As the morphological variation between the two-ecotypes of both taxa is still minors, and both ecotypes occur together with many intermediate forms, the phenotypic divergence stage has not yet accomplished. The gradational shape change among the investigated populations was positively correlated with index of Pollution (IP). As the human activities were the main driver of the phenotypic changes, hence anthropogenic impact may shift the evolution and/or the extinction rates.
NASA Astrophysics Data System (ADS)
Amorim, Ana L.; León, Pablo; Mercado, Jesús M.; Cortés, Dolores; Gómez, Francisco; Putzeys, Sebastien; Salles, Soluna; Yebra, Lidia
2016-06-01
The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL- 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate the presence of at least two ecotypes of Synechococcus: a summer ecotype widely distributed in the whole Alboran Sea and a winter ecotype adapted to lower temperature and higher nutrient concentration whose growth is favoured in the eastern sector.
Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush
Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul
2016-01-01
BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.
NASA Astrophysics Data System (ADS)
Martiny, A.; Kent, A. G.; Mouginot, C.; Baer, S. E.; Lomas, M. W.
2016-02-01
Extensive genetic diversity has been observed within Synechococcus including the presence of multiple major clades. However, the biogeography and underlying environmental drivers of these clades remain elusive. Here, we developed a new high-throughput sequencing assay using rpoC1 as marker combined with Illumina sequencing. Using this, we identified the genetic diversity of Synechococcus from 200 samples in an eastern Pacific Ocean transect between 19˚N and 3˚S. We used a placement method to identify the phylogenetic affiliation of each sequence and detected extensive diversity including multiple previously undescribed clades. We observed clear biogeographical domains, with Clade 2 dominant in the northern part of the transect, Clade CRD peaking at the equator, and Clade 1 dominant deeper in the water column throughout the transect. This biogeography, along with physical and nutrient data, suggests that Clade 2 represents a high temperature, low macronutrient ecotype, CRD a high temperature but low iron ecotype, and at least part of Clade 1 a low-light ecotype. The shift between Clade 2 and CRD occurred at 7˚N, whereas the concentration of macronutrients was low down to 4˚N, before increasing. This biogeography indicates that Synechococcus cells experience iron stress up to 7˚N despite low concentrations of phosphate and nitrate. The overall biogeography closely matched the distribution of Prochlorococcus diversity in this region, suggesting a parallel evolution of ecotypes in these two major lineages of marine Cyanobacteria.
Whalen, M C; Innes, R W; Bent, A F; Staskawicz, B J
1991-01-01
To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.
Gene-culture coevolution in whales and dolphins.
Whitehead, Hal
2017-07-24
Whales and dolphins (Cetacea) have excellent social learning skills as well as a long and strong mother-calf bond. These features produce stable cultures, and, in some species, sympatric groups with different cultures. There is evidence and speculation that this cultural transmission of behavior has affected gene distributions. Culture seems to have driven killer whales into distinct ecotypes, which may be incipient species or subspecies. There are ecotype-specific signals of selection in functional genes that correspond to cultural foraging behavior and habitat use by the different ecotypes. The five species of whale with matrilineal social systems have remarkably low diversity of mtDNA. Cultural hitchhiking, the transmission of functionally neutral genes in parallel with selective cultural traits, is a plausible hypothesis for this low diversity, especially in sperm whales. In killer whales the ecotype divisions, together with founding bottlenecks, selection, and cultural hitchhiking, likely explain the low mtDNA diversity. Several cetacean species show habitat-specific distributions of mtDNA haplotypes, probably the result of mother-offspring cultural transmission of migration routes or destinations. In bottlenose dolphins, remarkable small-scale differences in haplotype distribution result from maternal cultural transmission of foraging methods, and large-scale redistributions of sperm whale cultural clans in the Pacific have likely changed mitochondrial genetic geography. With the acceleration of genomics new results should come fast, but understanding gene-culture coevolution will be hampered by the measured pace of research on the socio-cultural side of cetacean biology.
Gene–culture coevolution in whales and dolphins
Whitehead, Hal
2017-01-01
Whales and dolphins (Cetacea) have excellent social learning skills as well as a long and strong mother–calf bond. These features produce stable cultures, and, in some species, sympatric groups with different cultures. There is evidence and speculation that this cultural transmission of behavior has affected gene distributions. Culture seems to have driven killer whales into distinct ecotypes, which may be incipient species or subspecies. There are ecotype-specific signals of selection in functional genes that correspond to cultural foraging behavior and habitat use by the different ecotypes. The five species of whale with matrilineal social systems have remarkably low diversity of mtDNA. Cultural hitchhiking, the transmission of functionally neutral genes in parallel with selective cultural traits, is a plausible hypothesis for this low diversity, especially in sperm whales. In killer whales the ecotype divisions, together with founding bottlenecks, selection, and cultural hitchhiking, likely explain the low mtDNA diversity. Several cetacean species show habitat-specific distributions of mtDNA haplotypes, probably the result of mother–offspring cultural transmission of migration routes or destinations. In bottlenose dolphins, remarkable small-scale differences in haplotype distribution result from maternal cultural transmission of foraging methods, and large-scale redistributions of sperm whale cultural clans in the Pacific have likely changed mitochondrial genetic geography. With the acceleration of genomics new results should come fast, but understanding gene–culture coevolution will be hampered by the measured pace of research on the socio-cultural side of cetacean biology. PMID:28739936
Classification and conservation priority of five Deccani sheep ecotypes of Maharashtra, India
Arora, Reena; Jain, Anand
2017-01-01
Characterization of Indian livestock breeds has mostly been limited to single breed/population focused on either physical description of traditionally recognized breeds/populations or to their genetic description. Usually, morphological and genetic characterization has taken place in isolation. A parallel morphological characterization of genetically identified breeds or genetic characterization of morphologically described breeds is mostly missing, and their conservation priorities have largely been based on solely considering degree of endangerment. This study uses parallel approach based on morphometric and genetic differentiation for classification of five sheep ecotypes of Maharashtra state, and sets their conservation priority using threat parameters, current utilities/merits and contribution to genetic diversity. A total of 1101 animals were described for 7 body measurements for morphometric characterization. From this sample set, 456 animals were genotyped for 25 microsatellite markers for genetic characterization. Conservation priorities were assessed combining genetic and non-genetic factors. All studied traits varied significantly among ecotypes (p<0.05). All morphometric traits exhibited substantial sexual dimorphism except ear length. Males were 42% heavier than females. Madgyal sheep were the largest amongst the five ecotypes. In the stepwise discriminant analysis, all measured traits were significant and were found to have potential discriminatory power. Tail length was the most discriminatory trait. The Mahalanobis distance of the morphological traits between Kolhapuri and Madgyal was maximum (12.07) while the least differentiation was observed between Madgyal and Solapuri (1.50). Discriminant analysis showed that 68.12% sheep were classified into their source population. The Sangamneri sheep showed least assignment error (22%) whilst Solapuri exhibited maximum error level (41%). A total of 407 alleles were observed, with an average of 16.28 alleles per locus. Sufficient levels of genetic diversity were observed in all the ecotypes with observed heterozygosity values exceeding 0.47 and gene diversity values exceeding 0.76. About 6% of the total genetic variation was explained by population differences (FST = 0.059). Pairwise FST values indicated least differentiation between Solapuri and Madgyal (0.025). In terms of genetic distances, Kolhapuri and Lonand were most closely related (Ds = 0.177). The most probable structure clustering of the five studied populations was at K = 5. The study showed a fair congruence between the dendrogram constructed on the basis of Mahalanobis distances and Nei’s as well as Reynolds genetic distances. The findings gave highest conservation priority to Lonand and least to Solapuri ecotype. PMID:28910329
Trade-offs drive resource specialization and the gradual establishment of ecotypes
2014-01-01
Background Speciation is driven by many different factors. Among those are trade-offs between different ways an organism utilizes resources, and these trade-offs can constrain the manner in which selection can optimize traits. Limited migration among allopatric populations and species interactions can also drive speciation, but here we ask if trade-offs alone are sufficient to drive speciation in the absence of other factors. Results We present a model to study the effects of trade-offs on specialization and adaptive radiation in asexual organisms based solely on competition for limiting resources, where trade-offs are stronger the greater an organism’s ability to utilize resources. In this model resources are perfectly substitutable, and fitness is derived from the consumption of these resources. The model contains no spatial parameters, and is therefore strictly sympatric. We quantify the degree of specialization by the number of ecotypes evolved and the niche breadth of the population, and observe that these are sensitive to resource influx and trade-offs. Resource influx has a strong effect on the degree of specialization, with a clear transition between minimal diversification at high influx and multiple species evolving at low resource influx. At low resource influx the degree of specialization further depends on the strength of the trade-offs, with more ecotypes evolving the stronger trade-offs are. The specialized organisms persist through negative frequency-dependent selection. In addition, by analyzing one of the evolutionary radiations in greater detail we demonstrate that a single mutation alone is not enough to establish a new ecotype, even though phylogenetic reconstruction identifies that mutation as the branching point. Instead, it takes a series of additional mutations to ensure the stable coexistence of the new ecotype in the background of the existing ones. Conclusions Trade-offs are sufficient to drive the evolution of specialization in sympatric asexual populations. Without trade-offs to restrain traits, generalists evolve and diversity decreases. The observation that several mutations are required to complete speciation, even when a single mutation creates the new species, highlights the gradual nature of speciation and the importance of phyletic evolution. PMID:24885598
Borer, Matthias; van Noort, Tom; Arrigo, Nils; Buerki, Sven; Alvarez, Nadir
2011-10-20
Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes and their economic importance as common agricultural pest organisms make this family particularly interesting for studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis. By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle. While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an ecological speciation framework. The question of whether this case of ecological differentiation occurred in sympatry or allopatry remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is likely driven by a recent shift in host plant use.
Young, Ellen; Carey, Manus; Meharg, Andrew A; Meharg, Caroline
2018-03-20
Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.
NASA Astrophysics Data System (ADS)
Orio, Alessandro; Bergström, Ulf; Casini, Michele; Erlandsson, Mårten; Eschbaum, Redik; Hüssy, Karin; Lehmann, Andreas; Ložys, Linas; Ustups, Didzis; Florin, Ann-Britt
2017-08-01
Identification of essential fish habitats (EFH), such as spawning habitats, is important for nature conservation, sustainable fisheries management and marine spatial planning. Two sympatric flounder (Platichthys flesus) ecotypes are present in the Baltic Sea, pelagic and demersal spawning flounder, both displaying ecological and physiological adaptations to the low-salinity environment of this young inland sea. In this study we have addressed three main research questions: 1) What environmental conditions characterize the spatial distribution and abundance of adult flounder during the spawning season? 2) What are the main factors defining the habitats of the two flounder ecotypes during the spawning season? 3) Where are the potential spawning areas of flounder? We modelled catch per unit of effort (CPUE) of flounder from gillnet surveys conducted over the southern and central Baltic Sea in the spring of 2014 and 2015 using generalized additive models. A general model included all the stations fished during the survey while two other models, one for the demersal and one for the pelagic spawning flounder, included only the stations where each flounder ecotype should dominate. The general model captured distinct ecotype-specific signals as it identified dual salinity and water depth responses. The model for the demersal spawning flounder revealed a negative relation with the abundance of round goby (Neogobius melanostomus) and a positive relation with Secchi depth and cod abundance. Vegetation and substrate did not play an important role in the choice of habitat for the demersal ecotype. The model for the pelagic spawning flounder showed a negative relation with temperature and bottom current and a positive relation with salinity. Spatial predictions of potential spawning areas of flounder showed a decrease in habitat availability for the pelagic spawning flounder over the last 20 years in the central part of the Baltic Sea, which may explain part of the observed changes in populations' biomass. We conclude that spatiotemporal modelling of habitat availability can improve our understanding of fish stock dynamics and may provide necessary biological knowledge for the development of marine spatial plans.
Rocco, Rubén; Bordenave, Cesar D.; Escaray, Francisco J.; Antonelli, Cristian; Calzadilla, Pablo; Gárriz, Andrés; Serna, Eva; Carrasco, Pedro; Menendez, Ana B.
2014-01-01
The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of plants subjected to 10 mM NaHCO3 during 21 days, by using the Affymetrix Lotus japonicus GeneChip®. Plant growth assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407 and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis, gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus ecotypes could constitute a useful model to search for common and distinct tolerance mechanisms to long-term alkaline stress response in plants. PMID:24835559
Knibbe, Carole; Schneider, Dominique; Beslon, Guillaume
2017-01-01
Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character displacement, at the level of the metabolic network but also of the genome structure. This difference of genome structure between both ecotypes impacts the stability of the cross-feeding interaction, when the population is propagated in chemostat conditions. This study shows the crucial role played by seasonality in temporal niche partitioning and in promoting cross-feeding subgroups into stable ecotypes, a premise to sympatric speciation. PMID:28358919
Intrasexual competition enhances reproductive isolation between locally adapted populations
Arias-Rodriguez, Lenin; Plath, Martin
2018-01-01
Abstract During adaptation to different habitat types, both morphological and behavioral traits can undergo divergent selection. Males often fight for status in dominance hierarchies and rank positions predict reproductive success. Ecotypes with reduced fighting abilities should have low reproductive success when migrating into habitats that harbor ecotypes with superior fighting abilities. Livebearing fishes in the Poecilia mexicana-species complex inhabit not only regular freshwater environments, but also independently colonized sulfidic (H2S-containing) habitats in three river drainages. In the current study, we found fighting intensities in staged contests to be considerably lower in some but not all sulfidic surface ecotypes and the sulfidic cave ecotype compared with populations from non-sulfidic surface sites. This is perhaps due to selection imposed by H2S, which hampers oxygen uptake and transport, as well as cellular respiration. Furthermore, migrants from sulfidic habitats may lose fights even if they do not show overall reduced aggressiveness, as physiological performance is likely to be challenged in the non-sulfidic environment to which they are not adapted. To test this hypothesis, we simulated migration of H2S-adapted males into H2S-free waters, as well as H2S-adapted cave-dwelling males into sulfidic surface waters. We found that intruders established dominance less often than resident males, independent of whether or not they showed reduced aggressiveness overall. Our study shows that divergent evolution of male aggressive behavior may also contribute to the maintenance of genetic differentiation in this system and we call for more careful evaluation of male fighting abilities in studies on ecological speciation. PMID:29492045
Gunasekaran, K.; Krishnamoorthy, N.; Vanamail, P.; Mathivanan, A; Manonmani, A.; Jambulingam, P.
2017-01-01
Abstract The southern districts of Odisha State in east-central India have been highly endemic for falciparum malaria for many decades. However, there is no adequate information on the abundance of the vector species or their bionomics in relation to space and time in these districts. Therefore, a study was carried out on the entomological aspects of malaria transmission to generate such information. Collections of mosquitoes were made once during each of the three seasons in 128 villages selected from eight districts. Villages within the foot-hill ecotype had a significantly greater abundance of Anopheles fluviatilis James s. l., whereas the abundance of Anopheles culicifacies Giles s. l. was significantly greater in the plain ecotype. The abundance of An. fluviatilis was maximum during the cold season, whereas An. culicifacies abundance was highest during summer and rainy seasons. The maximum likelihood estimation of the malaria infection rate in An. fluviatilis was 1.78%, 6.05%, and 2.6% in Ganjam, Kalahandi, and Rayagada districts, respectively. The infection rate of An. culicifacies was 1.39% only in Kandhamal district; infected females were not detected elsewhere. Concurrently, the annual malaria parasite incidence (MPI) was significantly higher in hill-top (17.6) and foot-hill (14.4) villages compared to plain villages (4.1). The districts with more villages in hill-top and foot-hill ecotypes also had a greater abundance of An. fluviatilis, the major malaria vector, and exhibited a higher incidence of malaria than villages within the plain ecotype, where An. culicifacies was the most abundant vector. PMID:28399290
Wang, Meng; Yuan, Wei; Ren, Yan; Li, Ying; Zhang, Na; Kronzucker, Herbert J.
2018-01-01
Plant roots respond to soil moisture gradients and remodel their growth orientation toward water through hydrotropism, a process vital for acclimation to a changing soil environment. Mechanisms underlying the root hydrotropic response, however, remain poorly understood. Here, we examined hydrotropism in 31 Arabidopsis (Arabidopsis thaliana) ecotypes collected from different parts of the world and grown along moisture gradients in a specially designed soil-simulation system. Comparative transcriptome profiling and physiological analyses were carried out on three selected ecotypes, Wassilewskija (Ws), Columbia (Col-0) (strongly hydrotropic), Col-0 (moderately hydrotropic), and C24 (weakly hydrotropic), and in mutant lines with altered root hydrotropic responses. We show that H+ efflux, Ca2+ influx, redox homeostasis, epigenetic regulation, and phytohormone signaling may contribute to root hydrotropism. Among phytohormones, the role of brassinosteroids (BRs) was examined further. In the presence of an inhibitor of BR biosynthesis, the strong hydrotropic response observed in Ws was reduced. The root H+ efflux and primary root elongation also were inhibited when compared with C24, an ecotype that showed a weak hydrotropic response. The BR-insensitive mutant bri1-5 displayed higher rates of root growth inhibition and root curvature on moisture gradients in vertical or oblique orientation when compared with wild-type Ws. We also demonstrate that BRI1 (a BR receptor) interacts with AHA2 (a plasma membrane H+-ATPase) and that their expression patterns are highly coordinated. This synergistic action may contribute to the strong hydrotropism observed in Ws. Our results suggest that BR-associated H+ efflux is critical in the hydrotropic response of Arabidopsis roots. PMID:29439211
Rossi, Sergio
2015-07-01
Species with transcontinental distribution or spread over wide geographical regions develop populations with growth traits genetically adapted to the local climate. The aim of this study was to investigate the ecotypic sensitivity of bud break, a strong adaptive trait, to a changing environment. Six phenological phases of bud break were monitored daily on black spruce [Picea mariana (Mill.) BSP] seedlings submitted to different temperatures (12, 16 and 20 °C) and photoperiods (14, 18 and 22 h). Six provenances were tested in growth chambers, produced from seeds collected along the whole latitudinal range of the closed boreal forest in Quebec, Canada. Bud break lasted 13.3 days on average and occurred earlier in seedlings from colder sites. The annual temperature of the sites suitably tracked the clinal variation among ecotypes, providing a clear biological explanation for the environmental signal driving the adaptive divergence of populations to the local climate. Increasing temperature induced an earlier bud break according to a non-linear pattern with greater advancements observed between 12 and 16 °C. Photoperiod was significant, but sensitivity analysis indicated that its effect on bud break was marginal with respect to temperature. No interaction of provenance × treatment was observed, demonstrating an ecotypic convergence of the responses to both factors. Changes in the growing conditions could substantially modify the synchronization between bud phenology and climate, thus exposing the developing meristems of black spruce to frost damage. However, similar advancements of bud break could be expected in the different ecotypes subjected to warmer temperatures or longer day lengths.
Hiss, Manuel; Meyberg, Rabea; Westermann, Jens; Haas, Fabian B; Schneider, Lucas; Schallenberg-Rüdinger, Mareike; Ullrich, Kristian K; Rensing, Stefan A
2017-05-01
Rich ecotype collections are used for several plant models to unravel the molecular causes of phenotypic differences, and to investigate the effects of environmental adaption and acclimation. For the model moss Physcomitrella patens collections of accessions are available, and have been used for phylogenetic and taxonomic studies, for example, but few have been investigated further for phenotypic differences. Here, we focus on the Reute accession and provide expression profiling and comparative developmental data for several stages of sporophyte development, as well as information on genetic variation via genomic sequencing. We analysed cross-technology and cross-laboratory data to define a confident set of 15 mature sporophyte-specific genes. We find that the standard laboratory strain Gransden produces fewer sporophytes than Reute or Villersexel, although gametangia develop with the same time course and do not show evident morphological differences. Reute exhibits less genetic variation relative to Gransden than Villersexel, yet we found variation between Gransden and Reute in the expression profiles of several genes, as well as variation hot spots and genes that appear to evolve under positive Darwinian selection. We analyzed expression differences between the ecotypes for selected candidate genes in the GRAS transcription factor family, the chalcone synthase family and in genes involved in cell wall modification that are potentially related to phenotypic differences. We confirm that Reute is a P. patens ecotype, and suggest its use for reverse-genetics studies that involve progression through the life cycle and multiple generations. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Uzonur, Irem; Akdeniz, Gamze; Katmer, Zeynep; Ersoy, Seyda Karaman
2013-01-01
Urtica dioica is an ethnobotanically and medicinally important Complementary and Alternative Medicine (CAM) plant worldwide and in Turkey; 90 % of herbal CAM applications depend on it in Turkey. It has a wide range of habitats in nearly all continents. It is found in all three phytogeographical regions in Turkey (Euro-Siberian, Irano-Turanian, Mediterranean) with high adaptivity to heterogeneous geographies such as climate, soil types and altitudes. This fact in relation to the assessment of chemical constituents of the plant and combining with further genetic and morphological variation data can assist and enhance the works for the utility and reliability of CAM applications in effect and activity of this plant species. In this work we have made some preliminary experiments with novel approaches to reveal the ecotypes and genetic variation of mighty ecotypes of Urtica dioica from different phytogeographical regions of Turkey (Euro-Siberian and Mediterranean). The ecotypes have heterogeneity in both its parts (leaf, stem, root) as revealed by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) using random primers and High-resolution Melt (HRM) analysis using Urtica dioica specific primers and universal chloroplast DNA (cpDNA) primers and morphological traits such as phenolic contents and antioxidant capacities of plants' leaf infusions as used in medicinal applications in Turkey. This work will contribute a lot for the development of molecular markers to detect the genetic variation and heterogeneity of Urtica dioica to further relate with expected phenotypes that are most useful and relevant in CAM applications.
Morin, Phillip A; Archer, Frederick I; Foote, Andrew D; Vilstrup, Julia; Allen, Eric E; Wade, Paul; Durban, John; Parsons, Kim; Pitman, Robert; Li, Lewyn; Bouffard, Pascal; Abel Nielsen, Sandra C; Rasmussen, Morten; Willerslev, Eske; Gilbert, M Thomas P; Harkins, Timothy
2010-07-01
Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric "ecotypes" with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from approximately 150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times.
Rueda-Puente, Edgar Omar; Murillo-Amador, Bernardo; Castellanos-Cervantes, T; García-Hernández, José Luís; Tarazòn-Herrera, Mario Antonio; Moreno Medina, Salomòn; Gerlach Barrera, Luis Ernesto
2010-08-01
Capsicum annuum var. aviculare to Tarahumara and Papago Indians and farmers of Sonora desert is a promising biological and commercial value as a natural resource from arid and semiarid coastal zones. Traditionally, apply synthetic fertilizers to compensate for soil nitrogen deficiency. However, indiscriminate use of these fertilizers might increase salinity. The inoculation by plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) represents an alternative as potential bio fertilizer resources for salty areas. Seeds ecotypes from four areas of Sonora desert (Mazocahui, Baviacora, Arizpe, La Tortuga), in order to inoculate them with one species of PGPB and AMF. Two germination tests were carried out to study the effect of salinity, temperature regime (night/day) and inoculation with PGPB and AMF growth factors measured on germination (percentage and rate), plant height, root length, and produced biomass (fresh and dry matter). The results indicated that from four studied ecotypes, Mazocahui was the most outstanding of all, showing the highest germination under saline and non-saline conditions. However, the PGPB and AMF influenced the others variables evaluated. This study is the first step to obtain an ideal ecotype of C. a. var. aviculare, which grows in the northwest of México and promoting this type of microorganisms as an efficient and reliable biological product. Studies of the association of PGPB and AMF with the C. a. var. aviculare-Mazocahui ecotype are recommended to determine the extent to which these observations can be reproduced under field conditions. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Sparkman, Amanda M; Vleck, Carol M; Bronikowski, Anne M
2009-03-01
The endocrine system plays an integral role in the regulation of key life-history traits. Insulin-like growth factor-1 (IGF-1) is a hormone that promotes growth and reproduction, and it has been implicated in the reduction of lifespan. IGF-1 is also capable of responding plastically to environmental stimuli such as resource availability and temperature. Thus pleiotropic control of life-history traits by IGF-1 could provide a mechanism for the evolution of correlated life-history traits in a new or changing environment. An ideal system in which to investigate the role of IGF-1 in life-history evolution exists in two ecotypes of the garter snake Thamnophis elegans, which derive from a single recent ancestral source but have evolved genetically divergent life-history characteristics. Snakes from meadow populations near Eagle Lake, California (USA) exhibit slower growth rates, lower annual reproductive output, and longer median adult lifespans relative to populations along the lakeshore. We hypothesized that the IGF-1 system has differentiated between these ecotypes and can account for increased growth and reproduction and reduced survival in lakeshore vs. meadow snakes. We tested for a difference in plasma IGF-1 levels in free-ranging snakes from replicate populations of each ecotype over three years. IGF-1 levels were significantly associated with adult body size, reproductive output, and season in a manner that reflects established differences in prey ecology and age/size-specific reproduction between the ecotypes. These findings are discussed in the context of theoretical expectations for a tradeoff between reproduction and lifespan that is mediated by pleiotropic endocrine mechanisms.
Laporte, Martin; Dalziel, Anne C; Martin, Nicolas; Bernatchez, Louis
2016-08-11
Improved performance in a given ecological niche can occur through local adaptation, phenotypic plasticity, or a combination of these mechanisms. Evaluating the relative importance of these two mechanisms is needed to better understand the cause of intra specific polymorphism. In this study, we reared populations of Lake Whitefish (Coregonus clupeaformis) representing the'normal' (benthic form) and the 'dwarf' (derived limnetic form) ecotypes in two different conditions (control and swim-training) to test the relative importance of adaptation and acclimation in the differentiation of traits related to swimming capacity. The dwarf whitefish is a more active swimmer than the normal ecotype, and also has a higher capacity for aerobic energy production in the swimming musculature. We hypothesized that dwarf fish would show changes in morphological and physiological traits consistent with reductions in the energetic costs of swimming and maintenance metabolism. We found differences in traits predicted to decrease the costs of prolonged swimming and standard metabolic rate and allow for a more active lifestyle in dwarf whitefish. Dwarf whitefish evolved a more streamlined body shape, predicted to lead to a decreased drag, and a smaller brain, which may decrease their standard metabolic rate. Contrary to predictions, we also found evidence of acclimation in liver size and metabolic enzyme activities. Results support the view that local adaptation has contributed to the genetically-based divergence of traits associated with swimming activity. Presence of post-zygotic barriers limiting gene flow between these ecotype pairs may have favoured repeated local adaptation to the limnetic niches.
Whitlock, Steven L.; Campbell, Matthew R.; Quist, Michael C.; Dux, Andrew M.
2018-01-01
Genetic and phenotypic traits of spatially and temporally segregated kokanee Oncorhynchus nerka spawning groups in Lake Pend Oreille, Idaho, were compared to test for evidence of divergence on the basis of ecotype (stream spawners versus shoreline spawners) and spawn timing and to describe morphological, life history, and reproductive variation within and among groups. Early and late spawning runs were found to be reproductively isolated; however, there was no clear evidence of genetic differentiation between ecotypes. Spawning groups within the same ecotype differed in length, age distribution, mean length at age, fecundity, and egg size. Variation in reproductive attributes was due primarily to differences in length distributions. Larger‐bodied shore‐spawning kokanee were located in areas where egg survival is known to be enhanced by downwelling, suggesting that the distribution of shore‐spawning kokanee may be partly structured by competition for spawning habitats with groundwater influence. This study contributes to other research indicating that introduced kokanee populations are unlikely to undergo adaptive divergence if they have a history of population fluctuations and are supplemented regularly.
Ecological plasticity of Trichoderma fungi in leached chernozem
NASA Astrophysics Data System (ADS)
Svistova, I. D.; Senchakova, T. Yu.
2010-03-01
The autecological properties of Trichoderma fungi ecotypes isolated from the leached chernozem of the forest-steppe zone of the European part of Russia have been studied. We were the first who carried out the complex study of the synecological relations of micromycetes of such kinds in a system including the soil, microbial community, and plants, i.e., their relations with soil saprotrophic fungi, bacteria, actinomycetes, plants, and pathogenic fungi. It was shown that the ecological plasticity of the Trichoderma genus in the soil of this zone is determined by its growth rate, the optimum pH and temperature, the biosynthesis of extracellular hydrolytic enzymes, the biological action of mycotoxins, and the ability for parasitism. The efficiency of the introduction of Trichoderma species typical and atypical for the leached chernozem into this soil and their influence on the structure of the microbial community were evaluated. The T. pseudokoningii ecotype, which produces cellulolytic enzymes, is very promising for industrial biotechnology, and the T. harzianum ecotype can be used in soil biotechnology for the biocontrol of chernozem. The addition of a commercial trichodermin preparation into the chernozem damages the structure of its microbial community.
Van Dyck, Hans; Holveck, Marie-Jeanne
2016-11-15
Life histories of organisms may vary with latitude as they experience different thermal constraints and challenges. This geographic, intraspecific variation could be of significance for range dynamics under climate change beyond edge-core comparisons. In this study, we did a reciprocal transplant experiment between the temperature-regimes of two latitudes with an ectotherm insect, examining the effects on energy metabolism and flight performance. Pararge aegeria expanded its ecological niche from cool woodland (ancestral) to warmer habitat in agricultural landscape (novel ecotype). Northern males had higher standard metabolic rates than southern males, but in females these rates depended on their ecotype. Southern males flew for longer than northern ones. In females, body mass-corrected flight performance depended on latitude and thermal treatment during larval development and in case of the southern females, their interaction. Our experimental study provides evidence for the role of ecological differentiation at the core of the range to modulate ecophysiology and flight performance at different latitudes, which in turn may affect the climatic responsiveness of the species.
Abid, Mouna; Yaich, Héla; Cheikhrouhou, Salma; Khemakhem, Ibtihel; Bouaziz, Mohamed; Attia, Hamadi; Ayadi, M A
2017-08-01
Antioxidant contents and activities of different extracts from four Tunisian pomegranate peels, locally called "Acide", "Gabsi", "Nebli" and "Tounsi", were studied. Peels samples were extracted with three solvents (water, ethanol and acetone). For each extract, the total phenol contents and antioxidant activity were evaluated. The highest values of polyphenol, tannins, flavonoids and anthocyanins were recorded in the acetone extract of Acide ecotype with 304.6 mg gallic acid equivalent/g; 292.23 mg gallic acid equivalent/g; 15.46 mg Quercetin/g and 54.51 mg cy-3-glu/100 g, respectively. The acetone extract of Acide ecotype also showed the highest free radical-scavenging and reducing power activity compared to other extracts. Besides, the phytochemical analysis by LC-MS/MS revealed a high content of ellagitannins with punicalagin and punicalagin derivatives as the major compounds that might be responsible for promising antioxidant activity of pomegranate peel extracts. Two compounds (Castalagin derivative and Galloyl-bis-HHDP-hex derivative) were detected only in "Acide" ecotype in important contents.
Van Dyck, Hans; Holveck, Marie-Jeanne
2016-01-01
Life histories of organisms may vary with latitude as they experience different thermal constraints and challenges. This geographic, intraspecific variation could be of significance for range dynamics under climate change beyond edge-core comparisons. In this study, we did a reciprocal transplant experiment between the temperature-regimes of two latitudes with an ectotherm insect, examining the effects on energy metabolism and flight performance. Pararge aegeria expanded its ecological niche from cool woodland (ancestral) to warmer habitat in agricultural landscape (novel ecotype). Northern males had higher standard metabolic rates than southern males, but in females these rates depended on their ecotype. Southern males flew for longer than northern ones. In females, body mass-corrected flight performance depended on latitude and thermal treatment during larval development and in case of the southern females, their interaction. Our experimental study provides evidence for the role of ecological differentiation at the core of the range to modulate ecophysiology and flight performance at different latitudes, which in turn may affect the climatic responsiveness of the species. PMID:27845372
Terrisse, Fanny; Cravo-Laureau, Cristiana; Noël, Cyril; Cagnon, Christine; Dumbrell, Alex J.; McGenity, Terry J.; Duran, Robert
2017-01-01
Deciphering the ecology of marine obligate hydrocarbonoclastic bacteria (MOHCB) is of crucial importance for understanding their success in occupying distinct niches in hydrocarbon-contaminated marine environments after oil spills. In marine coastal sediments, MOHCB are particularly subjected to extreme fluctuating conditions due to redox oscillations several times a day as a result of mechanical (tide, waves and currents) and biological (bioturbation) reworking of the sediment. The adaptation of MOHCB to the redox oscillations was investigated by an experimental ecology approach, subjecting a hydrocarbon-degrading microbial community to contrasting oxygenation regimes including permanent anoxic conditions, anoxic/oxic oscillations and permanent oxic conditions. The most ubiquitous MOHCB, Alcanivorax and Cycloclasticus, showed different behaviors, especially under anoxic/oxic oscillation conditions, which were more favorable for Alcanivorax than for Cycloclasticus. The micro-diversity of 16S rRNA gene transcripts from these genera revealed specific ecotypes for different oxygenation conditions and their dynamics. It is likely that such ecotypes allow the colonization of distinct ecological niches that may explain the success of Alcanivorax and Cycloclasticus in hydrocarbon-contaminated coastal sediments during oil-spills. PMID:28861063
Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I
2016-01-01
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Kevin; Buell, Robin; Zhao, Bingyu
Switchgrass (Panicum virgatum) is a warm-season C4 grass that is a target lignocellulosic biofuel species for use in the United States due to its local adaption capabilities and high biomass accumulation. Two ecotypes of switchgrass have been described. Members of the lowland ecotype are taller, have narrower leaf blades and generate more biomass compared to individuals from the upland ecotype. Additionally, lowland plants are generally found in the southern United States while upland switchgrass is more typically present in the northern United States. These differences are important as it is envisioned that switchgrass for biofuel production will typically be grownmore » on marginal lands in the northern United States to supplement and diversify farmers' traditional crop incomes. While lowland switchgrass is more productive, it has poor winter survivability in northern latitudes where upland switchgrass is expected to be grown for biofuel use. Abiotic stresses likely to be encountered by switchgrass include drought and salinity. Despite initially being described as preferring wetter environments, members of the lowland ecotype have been characterized as being more drought tolerant than plants of the upland ecotype. Nonetheless, direct trials have indicated that variation for drought tolerance exists in both ecotypes, but prior to this project, only a relatively small number of switchgrass lines had been tested for drought responses. Similarly, switchgrass cultivars have not been widely tested for salt tolerance, but a few studies have shown that even mild salt stress can inhibit growth. The effects of drought and salt stress on plant growth are complex. Both drought and salinity affect the osmotic potential of plant cells and negatively affect plant growth due to reduced water potential and reduced photosynthesis that results from lower stomatal conductance of CO 2. Plants respond to drought and salt stress by activating genes that directly attempt to reduce the stress (e.g., transmembrane pumps that partition Na +) and mitigate the effects of the stress (e.g., synthesis of osmoprotectant metabolites and stress-related signaling compounds). Prior to the start of this project, no gene expression analysis had been performed on switchgrass under conditions of drought or salt stress, and therefore, relevant gene networks responding to drought and salt stress were unknown in switchgrass. In this project, we performed drought, salt and alkali-salt screens on 49 switchgrass cultivars (Liu et al 2014; Liu et al 2015; Hu et al 2015; Kim et al 2016). These experiments demonstrated that a wide range of variation exists within switchgrass for drought, salt and alkali-salt tolerance and that, while the lowland ecotype of switchgrass is often considered more tolerant of abiotic stresses, there are some upland switchgrass lines that are also very tolerant of drought, salt and alkali-salt stress. We also conducted drought and salt time course experiments with Alamo and Dacotah. We have identified modules of coexpressed genes that differentiate Alamo and Dacotah drought responses. We are continuing to analyze these results and plan to submit manuscripts describing this work in early 2017. In an effort to show how drought- and salt-related gene modules could be dissected, we generated transgenic switchgrass overexpressing either PvGTγ-1 or ZmDREB2. Increased expression of PvGTγ-1 does confer increased salt tolerance, and we were able to identify genes that are induced and suppressed by PvGTγ-1. Overexpression of ZmDREB2 increases drought tolerance in switchgrass. Analysis of the PvGTγ-1 and ZmDREB2 overexpression work is ongoing, and we plan to prepare manuscripts about these experiments for submission in early 2017.« less
DeGange, Anthony R.; Marcot, Bruce G.; Lawler, James; Jorgenson, Torre; Winfree, Robert
2014-01-01
We used a modeling framework and a recent ecological land classification and land cover map to predict how ecosystems and wildlife habitat in northwest Alaska might change in response to increasing temperature. Our results suggest modest increases in forest and tall shrub ecotypes in Northwest Alaska by the end of this century thereby increasing habitat for forest-dwelling and shrub-using birds and mammals. Conversely, we predict declines in several more open low shrub, tussock, and meadow ecotypes favored by many waterbird, shorebird, and small mammal species.
Ultrasonic whistles of killer whales (Orcinus orca) recorded in the North Pacific (L).
Filatova, Olga A; Ford, John K B; Matkin, Craig O; Barrett-Lennard, Lance G; Burdin, Alexander M; Hoyt, Erich
2012-12-01
Ultrasonic whistles were previously found in North Atlantic killer whales and were suggested to occur in eastern North Pacific killer whales based on the data from autonomous recorders. In this study ultrasonic whistles were found in the recordings from two encounters with the eastern North Pacific offshore ecotype killer whales and one encounter with the western North Pacific killer whales of unknown ecotype. All ultrasonic whistles were highly stereotyped and all but two had downsweep contours. These results demonstrate that specific sound categories can be shared by killer whales from different ocean basins.
Variable response of three Trifolium repens ecotypes to soil flooding by seawater.
White, Anissia C; Colmer, Timothy D; Cawthray, Greg R; Hanley, Mick E
2014-08-01
Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts. Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering. There was substantial Cl(-) and Na(+) accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil. The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sahu, S S; Gunasekaran, K; Krishnamoorthy, N; Vanamail, P; Mathivanan, A; Manonmani, A; Jambulingam, P
2017-07-01
The southern districts of Odisha State in east-central India have been highly endemic for falciparum malaria for many decades. However, there is no adequate information on the abundance of the vector species or their bionomics in relation to space and time in these districts. Therefore, a study was carried out on the entomological aspects of malaria transmission to generate such information. Collections of mosquitoes were made once during each of the three seasons in 128 villages selected from eight districts. Villages within the foot-hill ecotype had a significantly greater abundance of Anopheles fluviatilis James s. l., whereas the abundance of Anopheles culicifacies Giles s. l. was significantly greater in the plain ecotype. The abundance of An. fluviatilis was maximum during the cold season, whereas An. culicifacies abundance was highest during summer and rainy seasons. The maximum likelihood estimation of the malaria infection rate in An. fluviatilis was 1.78%, 6.05%, and 2.6% in Ganjam, Kalahandi, and Rayagada districts, respectively. The infection rate of An. culicifacies was 1.39% only in Kandhamal district; infected females were not detected elsewhere. Concurrently, the annual malaria parasite incidence (MPI) was significantly higher in hill-top (17.6) and foot-hill (14.4) villages compared to plain villages (4.1). The districts with more villages in hill-top and foot-hill ecotypes also had a greater abundance of An. fluviatilis, the major malaria vector, and exhibited a higher incidence of malaria than villages within the plain ecotype, where An. culicifacies was the most abundant vector. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Hendricks, Sarah A; Schweizer, Rena M; Harrigan, Ryan J; Pollinger, John P; Paquet, Paul C; Darimont, Chris T; Adams, Jennifer R; Waits, Lisette P; vonHoldt, Bridgett M; Hohenlohe, Paul A; Wayne, Robert K
2018-06-07
Admixture resulting from natural dispersal processes can potentially generate novel phenotypic variation that may facilitate persistence in changing environments or result in the loss of population-specific adaptations. Yet, under the US Endangered Species Act, policy is limited for management of individuals whose ancestry includes a protected taxon; therefore, they are generally not protected under the Act. This issue is exemplified by the recently re-established grey wolves of the Pacific Northwest states of Washington and Oregon, USA. This population was likely founded by two phenotypically and genetically distinct wolf ecotypes: Northern Rocky Mountain (NRM) forest and coastal rainforest. The latter is considered potentially threatened in southeast Alaska and thus the source of migrants may affect plans for their protection. To assess the genetic source of the re-established population, we sequenced a ~ 300 bp portion of the mitochondrial control region and ~ 5 Mbp of the nuclear genome. Genetic analysis revealed that the Washington wolves share ancestry with both wolf ecotypes, whereas the Oregon population shares ancestry with NRM forest wolves only. Using ecological niche modelling, we found that the Pacific Northwest states contain environments suitable for each ecotype, with wolf packs established in both environmental types. Continued migration from coastal rainforest and NRM forest source populations may increase the genetic diversity of the Pacific Northwest population. However, this admixed population challenges traditional management regimes given that admixture occurs between an adaptively distinct ecotype and a more abundant reintroduced interior form. Our results emphasize the need for a more precise US policy to address the general problem of admixture in the management of endangered species, subspecies, and distinct population segments.
Parker, Thomas C; Tang, Jianwu; Clark, Mahalia B; Moody, Michael M; Fetcher, Ned
2017-11-01
Eriophorum vaginatum is a tussock-forming sedge that contributes significantly to the structure and primary productivity of moist acidic tussock tundra. Locally adapted populations (ecotypes) have been identified across the geographical distribution of E. vaginatum ; however, little is known about how their growth and phenology differ over the course of a growing season. The growing season is short in the Arctic and therefore exerts a strong selection pressure on tundra species. This raises the hypothesis that the phenology of arctic species may be poorly adapted if the timing and length of the growing season change. Mature E. vaginatum tussocks from across a latitudinal gradient (65-70°N) were transplanted into a common garden at a central location (Toolik Lake, 68°38'N, 149°36'W) where half were warmed using open-top chambers. Over two growing seasons (2015 and 2016), leaf length was measured weekly to track growth rates, timing of senescence, and biomass accumulation. Growth rates were similar across ecotypes and between years and were not affected by warming. However, southern populations accumulated significantly more biomass, largely because they started to senesce later. In 2016, peak biomass and senescence of most populations occurred later than in 2015, probably induced by colder weather at the beginning of the growing season in 2016, which caused a delayed start to growth. The finish was delayed as well. Differences in phenology between populations were largely retained between years, suggesting that the amount of time that these ecotypes grow has been selected by the length of the growing seasons at their respective home sites. As potential growing seasons lengthen, E. vaginatum may be unable to respond appropriately as a result of genetic control and may have reduced fitness in the rapidly warming Arctic tundra.
Rath, Animesha; Prusty, Manas R; Barik, Sushanta K; Das, Mumani; Tripathy, Hare K; Mahapatra, Namita; Hazra, Rupenangshu K
2017-01-01
Knowledge on prevalence of malaria vector species of a certain area provides important information for implementation of appropriate control strategies. The present study describes a rapid method for screening of major Anopheline vector species and at the same time detection of Plasmodium falciparum sporozoite infection and blood meal preferences/trophic preferences. The study was carried from February 2012 to March 2013 in three seasons, i.e. rainy, winter and summer in Jhumpura PHC of Keonjhar district, Odisha, India. Processing of mosquitoes was carried out in two different methods, viz. mosquito pool (P1) and mosquito DNA pool (P2). Pool size for both the methods was standardized for DNA isolation and multiplex PCR assay. This PCR based assay was employed to screen the major vector com- position in three different seasons of four different ecotypes of Keonjhar district. Pearson's correlation coefficient was determined for a comparative analysis of the morphological identification with the pool prevalence assay for each ecotype. A pool size of 10 was standardized for DNA isolation as well as PCR. PCR assay revealed that the average pool prevalence for all ecotypes was highest for An. annularis in winter and summer whereas for An. culicifacies it was rainy season. Foothill and plain ecotypes contributed to highest and lowest vectorial abundance respectively. The results of the prevalence of vector species in pool from PCR based assay were found to be highly correlated with that of the results of morphological identification. Screening by pool based PCR assay is relatively rapid as compared to conventional identification and can be employed as an important tool in malaria control programmes.
Streisfeld, Matthew A.; Young, Wambui N.; Sobel, James M.
2013-01-01
Identifying the molecular genetic basis of traits contributing to speciation is of crucial importance for understanding the ecological and evolutionary mechanisms that generate biodiversity. Despite several examples describing putative “speciation genes,” it is often uncertain to what extent these genetic changes have contributed to gene flow reductions in nature. Therefore, considerable interest lies in characterizing the molecular basis of traits that actively confer reproductive isolation during the early stages of speciation, as these loci can be attributed directly to the process of divergence. In Southern California, two ecotypes of Mimulus aurantiacus are parapatric and differ primarily in flower color, with an anthocyanic, red-flowered morph in the west and an anthocyanin-lacking, yellow-flowered morph in the east. Evidence suggests that the genetic changes responsible for this shift in flower color have been essential for divergence and have become fixed in natural populations of each ecotype due to almost complete differences in pollinator preference. In this study, we demonstrate that a cis-regulatory mutation in an R2R3-MYB transcription factor results in differential regulation of enzymes in the anthocyanin biosynthetic pathway and is the major contributor to differences in floral pigmentation. In addition, molecular population genetic data show that, despite gene flow at neutral loci, divergent selection has driven the fixation of alternate alleles at this gene between ecotypes. Therefore, by identifying the genetic basis underlying ecologically based divergent selection in flower color between these ecotypes, we have revealed the ecological and functional mechanisms involved in the evolution of pre-mating isolation at the early stages of incipient speciation. PMID:23555295
Modeling soil temperature change in Seward Peninsula, Alaska
NASA Astrophysics Data System (ADS)
Debolskiy, M. V.; Nicolsky, D.; Romanovsky, V. E.; Muskett, R. R.; Panda, S. K.
2017-12-01
Increasing demand for assessment of climate change-induced permafrost degradation and its consequences promotes creation of high-resolution modeling products of soil temperature changes. This is especially relevant for areas with highly vulnerable warm discontinuous permafrost in the Western Alaska. In this study, we apply ecotype-based modeling approach to simulate high-resolution permafrost distribution and its temporal dynamics in Seward Peninsula, Alaska. To model soil temperature dynamics, we use a transient soil heat transfer model developed at the Geophysical Institute Permafrost Laboratory (GIPL-2). The model solves one dimensional nonlinear heat equation with phase change. The developed model is forced with combination of historical climate and different future scenarios for 1900-2100 with 2x2 km resolution prepared by Scenarios Network for Alaska and Arctic Planning (2017). Vegetation, snow and soil properties are calibrated by ecotype and up-scaled by using Alaska Existing Vegetation Type map for Western Alaska (Flemming, 2015) with 30x30 m resolution provided by Geographic Information Network of Alaska (UAF). The calibrated ecotypes cover over 75% of the study area. We calibrate the model using a data assimilation technique utilizing available observations of air, surface and sub-surface temperatures and snow cover collected by various agencies and research groups (USGS, Geophysical Institute, USDA). The calibration approach takes into account a natural variability between stations in the same ecotype and finds an optimal set of model parameters (snow and soil properties) within the study area. This approach allows reduction in microscale heterogeneity and aggregated soil temperature data from shallow boreholes which is highly dependent on local conditions. As a result of this study we present a series of preliminary high resolution maps for the Seward Peninsula showing changes in the active layer depth and ground temperatures for the current climate and future climate change scenarios.
Robert, Kylie A; Vleck, Carol; Bronikowski, Anne M
2009-01-01
During embryonic development, viviparous offspring are exposed to maternally circulating hormones. Maternal stress increases offspring exposure to corticosterone and this hormonal exposure has the potential to influence developmental, morphological and behavioral traits of the resulting offspring. We treated pregnant female garter snakes (Thamnophis elegans) with low levels of corticosterone after determining both natural corticosterone levels in the field and pre-treatment levels upon arrival in the lab. Additional measurements of plasma corticosterone were taken at days 1, 5, and 10 during the 10-day exposure, which occurred during the last third of gestation (of 4-month gestation). These pregnant snakes were from replicate populations of fast- and slow-growth ecotypes occurring in Northern California, with concomitant short and long lifespans. Field corticosterone levels of pregnant females of the slow-growth ecotype were an order of magnitude higher than fast-growth dams. In the laboratory, corticosterone levels increased over the 10 days of corticosterone manipulation for animals of both ecotypes, and reached similar plateaus for both control and treated dams. Despite similar plasma corticosterone levels in treated and control mothers, corticosterone-treated dams produced more stillborn offspring and exhibited higher total reproductive failure than control dams. At one month of age, offspring from fast-growth females had higher plasma corticosterone levels than offspring from slow-growth females, which is opposite the maternal pattern. Offspring from corticosterone-treated mothers, although unaffected in their slither speed, exhibited changes in escape behaviors and morphology that were dependent upon maternal ecotype. Offspring from corticosterone-treated fast-growth females exhibited less anti-predator reversal behavior; offspring from corticosterone-treated slow-growth females exhibited less anti-predator tail lashing behavior.
Duruflé, Harold; Hervé, Vincent; Ranocha, Philippe; Balliau, Thierry; Zivy, Michel; Chourré, Josiane; San Clemente, Hélène; Burlat, Vincent; Albenne, Cécile; Déjean, Sébastien; Jamet, Elisabeth; Dunand, Christophe
2017-10-01
With the global temperature change, plant adaptations are predicted, but little is known about the molecular mechanisms underlying them. Arabidopsis thaliana is a model plant adapted to various environmental conditions, in particular able to develop along an altitudinal gradient. Two ecotypes, Columbia (Col) growing at low altitude, and Shahdara (Sha) growing at 3400m, have been studied at optimal and sub-optimal growth temperature (22°C vs 15°C). Macro- and micro-phenotyping, cell wall monosaccharides analyses, cell wall proteomics, and transcriptomics have been performed in order to accomplish an integrative analysis. The analysis has been focused on cell walls (CWs) which are assumed to play roles in response to environmental changes. At 15°C, both ecotypes presented characteristic morphological traits of low temperature growth acclimation such as reduced rosette diameter, increased number of leaves, modifications of their CW composition and cuticle reinforcement. Altogether, the integrative analysis has allowed identifying several candidate genes/proteins possibly involved in the cell wall modifications observed during the temperature acclimation response. Copyright © 2017 Elsevier B.V. All rights reserved.
AN ADAPTIVE RADIATION OF FROGS IN A SOUTHEAST ASIAN ISLAND ARCHIPELAGO
Blackburn, David C; Siler, Cameron D; Diesmos, Arvin C; McGuire, Jimmy A; Cannatella, David C; Brown, Rafe M
2013-01-01
Living amphibians exhibit a diversity of ecologies, life histories, and species-rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species-level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well-supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations. PMID:24033172
Rabouille, Sophie; Edwards, Christopher A; Zehr, Jonathan P
2007-10-01
A simple model was developed to examine the vertical distribution of Prochlorococcus and Synechococcus ecotypes in the water column, based on their adaptation to light intensity. Model simulations were compared with a 14-year time series of Prochlorococcus and Synechococcus cell abundances at Station ALOHA in the North Pacific Subtropical Gyre. Data were analysed to examine spatial and temporal patterns in abundances and their ranges of variability in the euphotic zone, the surface mixed layer and the layer in the euphotic zone but below the base of the mixed layer. Model simulations show that the apparent occupation of the whole euphotic zone by a genus can be the result of a co-occurrence of different ecotypes that segregate vertically. The segregation of ecotypes can result simply from differences in light response. A sensitivity analysis of the model, performed on the parameter alpha (initial slope of the light-response curve) and the DIN concentration in the upper water column, demonstrates that the model successfully reproduces the observed range of vertical distributions. Results support the idea that intermittent mixing events may have important ecological and geochemical impacts on the phytoplankton community at Station ALOHA.
Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots.
Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana
2018-01-01
The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10 cells starting from the sixth cell above the cortical cell closest to the epidermal cell with the first root-hair bulge. We validated this proposal in the three ecotypes analyzed and consider that this proposal may aid at having a more objective way to characterize root phenotypes and compare among them.
Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots
Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R.; Garay-Arroyo, Adriana
2018-01-01
ABSTRACT The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10 cells starting from the sixth cell above the cortical cell closest to the epidermal cell with the first root-hair bulge. We validated this proposal in the three ecotypes analyzed and consider that this proposal may aid at having a more objective way to characterize root phenotypes and compare among them. PMID:29497470
Effect of Zinc and Copper Nanoparticles on Drought Resistance of Wheat Seedlings
NASA Astrophysics Data System (ADS)
Taran, Nataliya; Storozhenko, Volodymyr; Svietlova, Nataliia; Batsmanova, Ludmila; Shvartau, Viktor; Kovalenko, Mariia
2017-01-01
The effect of a colloidal solution of Cu,Zn-nanoparticles on pro-oxidative/antioxidative balance and content of photosynthetic pigments and leaf area of winter wheat plants of steppe (Acveduc) and forest-steppe (Stolichna) ecotypes was investigated in drought conditions. It has been shown that Cu,Zn-nanoparticles decreased the negative effect of drought action upon plants of steppe ecotype Acveduc. In particular, increased activity of antioxidative enzymes reduced the level of accumulation of thiobarbituric acid reactive substances (TBARS) and stabilized the content of photosynthetic pigments and increased relative water content in leaves. Colloidal solution of Cu,Zn-nanoparticles had less significant influence on these indexes in seedlings of the Stolichna variety under drought.
Johanson, U; West, J; Lister, C; Michaels, S; Amasino, R; Dean, C
2000-10-13
Vernalization, the acceleration of flowering by a long period of cold temperature, ensures that many plants overwinter vegetatively and flower in spring. In Arabidopsis, allelic variation at the FRIGIDA (FRI) locus is a major determinant of natural variation in flowering time. Dominant alleles of FRI confer late flowering, which is reversed to earliness by vernalization. We cloned FRI and analyzed the molecular basis of the allelic variation. Most of the early-flowering ecotypes analyzed carry FRI alleles containing one of two different deletions that disrupt the open reading frame. Loss-of-function mutations at FRI have thus provided the basis for the evolution of many early-flowering ecotypes.
A dual resistance gene system prevents infection by three distinct pathogens.
Narusaka, Mari; Kubo, Yasuyuki; Shiraishi, Tomonori; Iwabuchi, Masaki; Narusaka, Yoshihiro
2009-10-01
Colletotrichum higginsianum causes typical anthracnose lesions on the leaves, petioles, and stems of cruciferous plants. Inoculation of Arabidopsis thaliana ecotype Columbia leaves with C. higginsianum results in fungal growth and disease symptoms reminiscent of those induced in other cruciferous plants. We performed map-based cloning and natural variation analysis of 19 A. thaliana ecotypes to identify a dominant resistance locus against C. higginsianum. We found that the A. thaliana RCH2 (for recognition of C. higginsianum) locus encodes two NB-LRR proteins, both of which are required for resistance to C. higginsianum in the A. thaliana ecotype Ws-0. Both proteins are well-characterized R proteins involved in resistance against bacterial pathogens; RRS1 (resistance to Ralstonia solanacearum 1) confers resistance to strain Rs1000 of R. solanacearum and RPS4 to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). Furthermore, we found that both RRS1-Ws and RPS4-Ws genes are required for resistance to Pst-avrRps4 and to Rs1002 R. solanacearum. We therefore demonstrate that a pair of neighboring genes, RRS1-Ws and RPS4-Ws, function cooperatively as a dual R-gene system against at least three distinct pathogens.
Berg, Paul R; Star, Bastiaan; Pampoulie, Christophe; Sodeland, Marte; Barth, Julia M I; Knutsen, Halvor; Jakobsen, Kjetill S; Jentoft, Sissel
2016-03-17
Identification of genome-wide patterns of divergence provides insight on how genomes are influenced by selection and can reveal the potential for local adaptation in spatially structured populations. In Atlantic cod - historically a major marine resource - Northeast-Arctic- and Norwegian coastal cod are recognized by fundamental differences in migratory and non-migratory behavior, respectively. However, the genomic architecture underlying such behavioral ecotypes is unclear. Here, we have analyzed more than 8.000 polymorphic SNPs distributed throughout all 23 linkage groups and show that loci putatively under selection are localized within three distinct genomic regions, each of several megabases long, covering approximately 4% of the Atlantic cod genome. These regions likely represent genomic inversions. The frequency of these distinct regions differ markedly between the ecotypes, spawning in the vicinity of each other, which contrasts with the low level of divergence in the rest of the genome. The observed patterns strongly suggest that these chromosomal rearrangements are instrumental in local adaptation and separation of Atlantic cod populations, leaving footprints of large genomic regions under selection. Our findings demonstrate the power of using genomic information in further understanding the population dynamics and defining management units in one of the world's most economically important marine resources.
2015-01-01
Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation. PMID:25526519
Evolution of population structure in a highly social top predator, the killer whale.
Hoelzel, A Rus; Hey, Jody; Dahlheim, Marilyn E; Nicholson, Colin; Burkanov, Vladimir; Black, Nancy
2007-06-01
Intraspecific resource partitioning and social affiliations both have the potential to structure populations, though it is rarely possible to directly assess the impact of these mechanisms on genetic diversity and population divergence. Here, we address this for killer whales (Orcinus orca), which specialize on prey species and hunting strategy and have long-term social affiliations involving both males and females. We used genetic markers to assess the structure and demographic history of regional populations and test the hypothesis that known foraging specializations and matrifocal sociality contributed significantly to the evolution of population structure. We find genetic structure in sympatry between populations of foraging specialists (ecotypes) and evidence for isolation by distance within an ecotype. Fitting of an isolation with migration model suggested ongoing, low-level migration between regional populations (within and between ecotypes) and small effective sizes for extant local populations. The founding of local populations by matrifocal social groups was indicated by the pattern of fixed mtDNA haplotypes in regional populations. Simulations indicate that this occurred within the last 20,000 years (after the last glacial maximum). Our data indicate a key role for social and foraging behavior in the evolution of genetic structure among conspecific populations of the killer whale.
Matching habitat choice in nomadic crossbills appears most pronounced when food is most limiting.
Benkman, Craig W
2017-03-01
Of the various forms of nonrandom dispersal, matching habitat choice, whereby individuals preferentially reside in habitats where they are best adapted, has relatively little empirical support. Here, I use mark-recapture data to test for matching habitat choice in two nomadic ecotypes of North American Red Crossbills (Loxia curvirostra complex) that exist in the lodgepole pine (Pinus contorta) forests in the South Hills, Idaho, every summer. Crossbills are adapted for foraging on seeds in conifer cones, and in the South Hills the cones are distinctive, favoring a relatively large bill. During a period when seed was most limiting, only the largest individuals approximating the average size of the locally adapted ecotype remained for a year or more. During a period when seed was less limiting, proportionately more individuals remained and the trend for larger individuals to remain was weaker. Although matching habitat choice is difficult to demonstrate, it likely contributed to the observed patterns. Otherwise, nearly unprecedented intensities of natural selection would be needed. Given the nomadic behavior of most crossbill ecotypes and the heterogeneous nature of conifer seed crops, matching habitat choice should be favored and likely contributes to their adaptation to alternative conifers and rapid diversification. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
An adaptive radiation of frogs in a southeast Asian island archipelago.
Blackburn, David C; Siler, Cameron D; Diesmos, Arvin C; McGuire, Jimmy A; Cannatella, David C; Brown, Rafe M
2013-09-01
Living amphibians exhibit a diversity of ecologies, life histories, and species-rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species-level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well-supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Sikorski, Johannes; Pukall, Rüdiger; Stackebrandt, Erko
2008-10-01
The 'Evolution Canyons' I and II in Israel are model habitats to study adaptation and speciation of bacteria in the environment. These canyons represent similar ecological replicates, separated by 40 km, with a strongly sun-exposed and hot 'African' south-facing slope (SFS) vs. a cooler and mesic-lush 'European' north-facing slope (NFS). Previously, among 131 Bacillus simplex isolates, distinct genetic lineages (ecotypes), each specific for either SFS or NFS, were identified, suggesting a temperature-driven slope-specific adaptation. Here, we asked whether the ecological heterogeneity of SFS vs. NFS also affected carbon utilization abilities, as determined using the Biolog assay. Contrary to expectation, a correlation between substrate utilization patterns and the ecological origin of strains was not found. Rather, the patterns split according to the two major phylogenetic lineages each of which contain SFS and NFS ecotypes. We conclude that traits related to the general energy metabolism, as far as assessed here, are neither shaped by the major abiotic features of 'Evolution Canyon', namely solar radiation, temperature, and drought, nor by the soil characteristics. We further conclude that some traits diverge rather neutrally from each other, whereas other, more environmentally related traits are shaped by natural selection and show evolutionary convergence.
Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua
2006-06-01
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.
Anaplasma phagocytophilum in sheep and goats in central and southeastern China.
Yang, Jifei; Liu, Zhijie; Niu, Qingli; Liu, Junlong; Han, Rong; Guan, Guiquan; Li, Youquan; Liu, Guangyuan; Luo, Jianxun; Yin, Hong
2016-11-21
Anaplasma phagocytophilum is wide spread throughout the world and impacts both human and animal health. Several distinct ecological clusters and ecotypes of the agent have been established on the basis of various genetic loci. However, information on the genetic variability of A. phagocytophilum isolates in China represents a gap in knowledge. The objective of this study was to determine the prevalence and genetic characterization of A. phagocytophilum in small ruminants in central and southeastern China. The presence of A. phagocytophilum was determined in 421 blood samples collected from small ruminants by PCR. Positive samples were genetically characterized based on 16S rRNA and groEL genes. Statistical analyses were conducted to identify ecotypes of A. phagocytophilum strains, to assess their host range and zoonotic potential. Out of 421 sampled small ruminants, 106 (25.2%) were positive for A. phagocytophilum. The positive rate was higher in sheep (35.1%, 40/114) than in goats (26.4%, 66/307) (P < 0.05). Sequence analyses revealed that the isolates identified in this study were placed on two separate clades, indicating that two 16S rRNA variants of A. phagocytophilum were circulating in small ruminants in China. However, analysis using obtained groEL sequences in this study formed one cluster, which was separate from other known ecotypes reported in Europe. In addition, a novel Anaplasma sp. was identified and closely related to an isolate previously reported in Hyalomma asiaticum, which clustered independently from all recognized Anaplasma species. A molecular survey of A. phagocytophilum was conducted in sheep and goats from ten provinces in central and southeastern China. Two 16S rRNA variants and a new ecotype of A. phagocytophilum were identified in small ruminants in China. Moreover, a potential novel Anaplasma species was reported in goats. Our findings provide additional information on the complexity of A. phagocytophilum in terms of genetic diversity in China.
Garcia, Christina B.; Grusak, Michael A.
2015-01-01
Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16) of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues. PMID:26322063
Van der Niet, Timotheüs; Pirie, Michael D.; Shuttleworth, Adam; Johnson, Steven D.; Midgley, Jeremy J.
2014-01-01
Background and Aims According to the Grant–Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Grant–Stebbins model. Methods and Key Results Pollinator observations showed that the most common form of E. plukenetii with intermediate corolla length is pollinated by short-billed Orange-breasted sunbirds. Populations at the northern fringe of the distribution are characterized by long corollas, and are mainly pollinated by long-billed Malachite sunbirds. A population with short corollas in the centre of the range was mainly pollinated by insects, particularly short-tongued noctuid moths. Bird exclusion in this population did not have an effect on fruit set, while insect exclusion reduced fruit set. An analysis of floral scent across the range, using coupled gas chromatography–mass spectrometry, showed that the scent bouquets of flowers from moth-pollinated populations are characterized by a larger number of scent compounds and higher emission rates than those in bird-pollinated populations. This was also reflected in clear separation of moth- and bird-pollinated populations in a two-dimensional phenotype space based on non-metric multidimensional scaling analysis of scent data. Phylogenetic analyses of chloroplast and nuclear DNA sequences strongly supported monophyly of E. plukenetii, but not of all the subspecies. Reconstruction of ancestral character states suggests two shifts from traits associated with short-billed Orange-breasted sunbird pollination: one towards traits associated with moth pollination, and one towards traits associated with pollination by long-billed Malachite sunbirds. The latter shift coincided with the colonization of Namaqualand in which Orange-breasted sunbirds are absent. Conclusions Erica plukenetii is characterized by three pollination ecotypes, but only the evolutionary transition from short- to long-billed sunbird pollination can be clearly explained by the Grant–Stebbins model. Corolla length is a key character for both ecotype transitions, while floral scent emission was important for the transition from bird to moth pollination. PMID:24071499
Foote, Andrew D; Morin, Phillip A; Durban, John W; Willerslev, Eske; Orlando, Ludovic; Gilbert, M Thomas P
2011-01-01
Killer whales (Orcinus orca) are the most widely distributed marine mammals and have radiated to occupy a range of ecological niches. Disparate sympatric types are found in the North Atlantic, Antarctic and North Pacific oceans, however, little is known about the underlying mechanisms driving divergence. Previous phylogeographic analysis using complete mitogenomes yielded a bifurcating tree of clades corresponding to described ecotypes. However, there was low support at two nodes at which two Pacific and two Atlantic clades diverged. Here we apply further phylogenetic and coalescent analyses to partitioned mitochondrial genome sequences to better resolve the pattern of past radiations in this species. Our phylogenetic reconstructions indicate that in the North Pacific, sympatry between the maternal lineages that make up each ecotype arises from secondary contact. Both the phylogenetic reconstructions and a clinal decrease in diversity suggest a North Pacific to North Atlantic founding event, and the later return of killer whales to the North Pacific. Therefore, ecological divergence could have occurred during the allopatric phase through drift or selection and/or may have either commenced or have been consolidated upon secondary contact due to resource competition. The estimated timing of bidirectional migration between the North Pacific and North Atlantic coincided with the previous inter-glacial when the leakage of fauna from the Indo-Pacific into the Atlantic via the Agulhas current was particularly vigorous.
Zhu, Chunmao; Kobayashi, Hideki; Kanaya, Yugo; Saito, Masahiko
2017-07-05
Pollutants emitted from wildfires in boreal Eurasia can be transported to the Arctic, and their subsequent deposition could accelerate global warming. The Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned area product is the basis of fire emission products. However, uncertainties due to the "moderate resolution" (500 m) characteristic of the MODIS sensor could be introduced. Here, we present a size-dependent validation of MCD64A1 with reference to higher resolution (better than 30 m) satellite products (Landsat 7 ETM+, RapidEye, WorldView-2, and GeoEye-1) for six ecotypes over 12 regions of boreal Eurasia. We considered the 2012 boreal Eurasia burning season when severe wildfires occurred and when Arctic sea ice extent was historically low. Among the six ecotypes, we found MCD64A1 burned areas comprised only 13% of the reference products in croplands because of inadequate detection of small fires (<100 ha). Our results indicate that over all ecotypes, the actual burned area in boreal Eurasia (15,256 km 2 ) could have been ~16% greater than suggested by MCD64A1 (13,187 km 2 ) when applying the correction factors proposed in this study. This implies the effects of wildfire emissions in boreal Eurasia on Arctic warming could be greater than currently estimated.
Sohm, Jill A; Ahlgren, Nathan A; Thomson, Zachary J; Williams, Cheryl; Moffett, James W; Saito, Mak A; Webb, Eric A; Rocap, Gabrielle
2016-02-01
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.
Sohm, Jill A; Ahlgren, Nathan A; Thomson, Zachary J; Williams, Cheryl; Moffett, James W; Saito, Mak A; Webb, Eric A; Rocap, Gabrielle
2016-01-01
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency. PMID:26208139
Peguero-Pina, José Javier; Sancho-Knapik, Domingo; Barrón, Eduardo; Camarero, Julio Jesús; Vilagrosa, Alberto; Gil-Pelegrín, Eustaquio
2014-01-01
Background and Aims Several studies show apparently contradictory findings about the functional convergence within the Mediterranean woody flora. In this context, this study evaluates the variability of functional traits within holm oak (Quercus ilex) to elucidate whether provenances corresponding to different morphotypes represent different ecotypes locally adapted to the prevaling stress levels. Methods Several morphological and physiological traits were measured at leaf and shoot levels in 9-year-old seedlings of seven Q. ilex provenances including all recognized morphotypes. Plants were grown in a common garden for 9 years under the same environmental conditions to avoid possible biases due to site-specific characteristics. Key Results Leaf morphometry clearly separates holm oak provenances into ‘ilex’ (more elongated leaves with low vein density) and ‘rotundifolia’ (short and rounded leaves with high vein density) morphotypes. Moreover, these morphotypes represent two consistent and very contrasting functional types in response to dry climates, mainly in terms of leaf area, major vein density, leaf specific conductivity, resistance to drought-induced cavitation and turgor loss point. Conclusions The ‘ilex’ and ‘rotundifolia’ morphotypes correspond to different ecotypes as inferred from their contrasting functional traits. To the best of our knowledge, this is the first time that the combined use of morphological and physiological traits has provided support for the concept of these two holm oak morphotypes being regarded as two different species. PMID:24941998
Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe
2018-01-01
Abstract Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization. PMID:29518237
Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe; Probst, Aline V
2018-04-06
Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.
Fu, Lili; Han, Bingying; Tan, Deguan; Wang, Meng; Ding, Mei; Zhang, Jiaming
2016-02-22
Myrosinases are β-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes.
Corticosterone and pace of life in two life-history ecotypes of the garter snake Thamnophis elegans.
Palacios, Maria G; Sparkman, Amanda M; Bronikowski, Anne M
2012-02-01
Glucocorticoids are main candidates for mediating life-history trade-offs by regulating the balance between current reproduction and survival. It has been proposed that slow-living organisms should show higher stress-induced glucocorticoid levels that favor self-maintenance rather than current reproduction when compared to fast-living organisms. We tested this hypothesis in replicate populations of two ecotypes of the garter snake (Thamnophis elegans) that exhibit slow and fast pace of life strategies. We subjected free-ranging snakes to a capture-restraint protocol and compared the stress-induced corticosterone levels between slow- and fast-living snakes. We also used a five-year dataset to assess whether baseline corticosterone levels followed the same pattern as stress-induced levels in relation to pace of life. In accordance with the hypothesis, slow-living snakes showed higher stress-induced corticosterone levels than fast-living snakes. Baseline corticosterone levels showed a similar pattern with ecotype, although differences depended on the year of study. Overall, however, levels of glucocorticoids are higher in slow-living than fast-living snakes, which should favor self-maintenance and survival at the expense of current reproduction. The results of the present study are the first to relate glucocorticoid levels and pace of life in a reptilian system and contribute to our understanding of the physiological mechanisms involved in life-history evolution. Copyright © 2011 Elsevier Inc. All rights reserved.
Metzger, David C H; Healy, Timothy M; Schulte, Patricia M
2016-10-01
In natural environments, organisms must cope with complex combinations of abiotic stressors. Here, we use threespine stickleback (Gasterosteus aculeatus) to examine how changes in salinity affect tolerance of high temperatures. Threespine stickleback inhabit a range of environments that vary in both salinity and thermal stability making this species an excellent system for investigating interacting stressors. We examined the effects of environmental salinity on maximum thermal tolerance (CTMax) and 70 kDa heat shock protein (hsp70) gene expression using divergent stickleback ecotypes from marine and freshwater habitats. In both ecotypes, the CTMax of fish acclimated to 20 ppt was significantly higher compared to fish acclimated to 2 ppt. The effect of salinity acclimation on the expression of hsp70-1 and hsp70-2 was similar in both the marine and freshwater stickleback ecotype. There were differences in the expression profiles of hsp70-1 and hsp70-2 during heat shock, with hsp70-2 being induced earlier and to a higher level compared to hsp70-1. These data suggest that the two hsp70 isoforms may have functionally different roles in the heat shock response. Lastly, acute salinity challenge coupled with heat shock revealed that the osmoregulatory demands experienced during the heat shock response have a larger effect on the hsp70 expression profile than does the acclimation salinity.
Xun, Zhe; Zhang, Qian; Xu, Tao; Chen, Ning; Chen, Feng
2018-01-01
Inflammatory bowel diseases (IBDs) are chronic, idiopathic, relapsing disorders of unclear etiology affecting millions of people worldwide. Aberrant interactions between the human microbiota and immune system in genetically susceptible populations underlie IBD pathogenesis. Despite extensive studies examining the involvement of the gut microbiota in IBD using culture-independent techniques, information is lacking regarding other human microbiome components relevant to IBD. Since accumulated knowledge has underscored the role of the oral microbiota in various systemic diseases, we hypothesized that dissonant oral microbial structure, composition, and function, and different community ecotypes are associated with IBD; and we explored potentially available oral indicators for predicting diseases. We examined the 16S rRNA V3–V4 region of salivary bacterial DNA from 54 ulcerative colitis (UC), 13 Crohn’s disease (CD), and 25 healthy individuals using Illumina sequencing. Distinctive sample clusters were driven by disease or health based on principal coordinate analysis (PCoA) of both the Operational Taxonomic Unit profile and Kyoto Encyclopedia of Genes and Genomes pathways. Comparisons of taxa abundances revealed enrichment of Streptococcaceae (Streptococcus) and Enterobacteriaceae in UC and Veillonellaceae (Veillonella) in CD, accompanied by depletion of Lachnospiraceae and [Prevotella] in UC and Neisseriaceae (Neisseria) and Haemophilus in CD, most of which have been demonstrated to exhibit the same variation tendencies in the gut of IBD patients. IBD-related oral microorganisms were associated with white blood cells, reduced basic metabolic processes, and increased biosynthesis and transport of substances facilitating oxidative stress and virulence. Furthermore, UC and CD communities showed robust sub-ecotypes that were not demographic or severity-specific, suggesting their value for future applications in precision medicine. Additionally, indicator species analysis revealed several genera indicative of UC and CD, which were confirmed in a longitudinal cohort. Collectively, this study demonstrates evident salivary dysbiosis and different ecotypes in IBD communities and provides an option for identifying at-risk populations, not only enhancing our understanding of the IBD microbiome apart from the gut but also offering a clinically useful strategy to track IBD as saliva can be sampled conveniently and non-invasively. PMID:29899737
Simmons, Melinda P.; Sudek, Sebastian; Monier, Adam; Limardo, Alexander J.; Jimenez, Valeria; Perle, Christopher R.; Elrod, Virginia A.; Pennington, J. Timothy
2016-01-01
Eukaryotic algae within the picoplankton size class (≤2 μm in diameter) are important marine primary producers, but their spatial and ecological distributions are not well characterized. Here, we studied three picoeukaryotic prasinophyte genera and their cyanobacterial counterparts, Prochlorococcus and Synechococcus, during two cruises along a North Pacific transect characterized by different ecological regimes. Picoeukaryotes and Synechococcus reached maximum abundances of 1.44 × 105 and 3.37 × 105 cells · ml−1, respectively, in mesotrophic waters, while Prochlorococcus reached 1.95 × 105 cells · ml−1 in the oligotrophic ocean. Of the picoeukaryotes, Bathycoccus was present at all stations in both cruises, reaching 21,368 ± 327 18S rRNA gene copies · ml−1. Micromonas and Ostreococcus clade OI were detected only in mesotrophic and coastal waters and Ostreococcus clade OII only in the oligotrophic ocean. To resolve proposed Bathycoccus ecotypes, we established genetic distances for 1,104 marker genes using targeted metagenomes and the Bathycoccus prasinos genome. The analysis was anchored in comparative genome analysis of three Ostreococcus species for which physiological and environmental data are available to facilitate data interpretation. We established that two Bathycoccus ecotypes exist, named here BI (represented by coastal isolate Bathycoccus prasinos) and BII. These share 82% ± 6% nucleotide identity across homologs, while the Ostreococcus spp. share 75% ± 8%. We developed and applied an analysis of ecomarkers to metatranscriptomes sequenced here and published -omics data from the same region. The results indicated that the Bathycoccus ecotypes cooccur more often than Ostreococcus clades OI and OII do. Exploratory analyses of relative transcript abundances suggest that Bathycoccus NRT2.1 and AMT2.2 are high-affinity NO3− and low-affinity NH4+ transporters, respectively, with close homologs in multiple picoprasinophytes. Additionally, in the open ocean, where dissolved iron concentrations were low (0.08 nM), there appeared to be a shift to the use of nickel superoxide dismutases (SODs) from Mn/Fe/Cu SODs closer inshore. Our study documents the distribution of picophytoplankton along a North Pacific ecological gradient and offers new concepts and techniques for investigating their biogeography. PMID:26729718
Genetic differentiation among populations of marine algae
NASA Astrophysics Data System (ADS)
Innes, D. J.
1984-09-01
Most of the information for genetic differentiation among populations of marine algae is from studies on ecotypic variation. Physiological ecotypes have been described for individuals showing different responses to temperature and salinity conditions. Morphological ecotypes have also been found associated with areas differing in wave exposure or different intertidal positions. Little is known on how genetic variation is organized within and between populations of marine algae. The occurrence of ecotypic variation in some species is evidence for genetic differentiation among populations resulting from selection by the local environment. The rate of dispersal and subsequent gene flow will also affect the level of differentiation among populations. In species with low dispersal, differentiation can arise through chance founder events or random genetic drift. The few studies available have shown that species of algae exhibit a range of dispersal capabilities. This information can be useful for predicting the potential level of genetic differentiation among populations of these species. Crossing experiments with several species of algae have shown that populations separated by a considerable distance can be interfertile. In some cases individuals from these populations have been found to be morphologically distinct. Crosses have been used to study the genetic basis of this variation and are evidence for genetic differentiation among the populations sampled. Genetic variation of enzyme proteins detected by electrophoresis provides an additional method for measuring genetic variation within and between populations of marine algae. Electrophoretic methods have previously been used to study systematic problems in algae. However, there have been few attempts to use electrophoretic variation to study the genetic structure of populations of marine algae. This approach is outlined and includes some of the potential problems associated with interpreting electrophoretic data. Studies of electrophoretic variation in natural populations of Enteromorpha linza from Long island Sound are used as an example. This species was found to reproduce only asexually. Despite a dispersing spore stage, genetic differentiation was found on a microgeographic scale and was correlated with differences in the local environment of some of the populations. Similar studies on other species, and especially sexually reproducing species, will add to a growing understanding of the evolutionary genetics of marine algae.
NASA Astrophysics Data System (ADS)
Mitbavkar, Smita; Anil, Arga Chandrashekar
2018-07-01
We investigated the responses of the picophytoplankton (< 3 μm) community to a temperature filament and front through high resolution spatial ( 1 NM) sampling (November-23 to December-11, 2012) in the northeastern Arabian Sea (69°E, 18.85°N to 20.25°N). Samples were collected at discrete depths within the 100 m water column. Synechococcus dominated the picophytoplankton community numerically and in terms of biomass along the entire transect. To investigate the patterns of variability in picophytoplankton distribution, depending on the water mass characteristics, the entire transect was divided into four zones (1) south of filament (SFIL) with warm oligotrophic waters, (2) filament (FIL) with cooler and low saline waters, (3) north of filament (NFIL) with relatively cooler waters than the SFIL and (4) front (FRO) with relatively cooler and less saline waters than the FIL. Depth-integrated abundance and biomass of Synechococcus were relatively higher within the FIL and FRO whereas Prochlorococcus and picoeukaryotes were abundant in SFIL and NFIL. Redundancy analysis of environmental variables and picophytoplankton abundance showed that lower saline water mass within the mesoscale features harbored relatively higher Synechococcus abundance and biomass. Two Synechococcus ecotypes were distinguished based on the fluorescence intensity of the accessory pigment, phycoerythrin; the one with higher intensity (open ocean ecotype) dominating in the FIL and the other with lower intensity in the FRO (coastal ecotype). The relatively lower saline surface water mass at the FRO, probably a result of coastal advection, could have introduced the latter ecotype. Vertically, a positive correlation of Prochlorococcus with nutrients and Synechococcus with temperature corroborates their higher and lower abundance and biomass, respectively in the deeper waters. The positive correlation of Synechococcus with the total chlorophyll biomass indicates a similar response to environmental variables within the mesoscale features. This study shows that picophytoplankton contribution (16-24%) to the total phytoplankton carbon biomass in tropical mesoscale features is likely to have important consequences on the planktonic food web function.
Wacquant, J P; Picard, J Baus
1992-10-01
Dittrichia (ex Inula) viscosa is a ruderal species that has recently become an invading plant in the northwest Mediterranean basin. A previous study failed to demonstrate the occurrence of morphologically differentiated ecotypes among populations of the species but suggested the existence of nutritional ecotypes. This latter possibility is examined here by comparing the ability of plants from contrasting habitats to control cation accumulation balance. Dittrichia viscosa plants, from eight siliceous habitats and nine calcareous habitats of southern France and neighbouring Spain and Italy, were cloned and grown together hydroponically with a solution simulating an acid soil with an aluminium constraint. Two independent hydroponic units containing solution supplemented with two levels of Al were used (2 Al levels x17 populations x3 genotypes x3 replicates). The growth and cation content (K, Ca, Mg and Na) of plant shoots and the chemical composition of the soil of each habitat were analysed. At the high Al level (1.1MM), populations differed in K, Ca and Mg plant proportions. Two groups could be distinguished: one containing all but one siliceous populations and the other containing all but one calcareous populations. Plants of the siliceous group accumulated proportionally more K and less Ca, and had better growth, than plants of the calcareous group, in the same way as calcifuge and calcicole species when grown on acid soil. At the lowest Al level (0.37MM), differences between siliceous and calcareous populations were less marked. The results suggest that differences in the ability of plants to control K and Ca balance, which appear to be of adaptive significance, could have arisen through selection, and that Dittrichia viscosa has evolved calcifuge and calcicole nutritional ecotypes in siliceous and calcareous habitats respectively. Various degrees of calcifugy, and to a lesser extent of calcicoly, can thus be suggested to occur among the studied populations, some in relation to the intensity of mineral stress in the natural habitats. So far, only functional traits have provided evidence of ecotypic differentiations within Dittrichia viscosa.
Farmers' breeding practices and traits of economic importance for indigenous chicken in RWANDA.
Mahoro, J; Muasya, T K; Mbuza, F; Mbuthia, J; Kahi, A K
2018-01-01
Data on breeding practices and traits of economic importance for the indigenous chicken (IC) were collected through personal interviews using structured questionnaires and direct observations of chicken management practices. The study was conducted from November 2015 to January 2016 in Rwamagana, Rulindo, Ruhango, Kicukiro and Muhanga districts of Rwanda. Data were collected and analysed through computation of indices, which represented a weighted average of all rankings of a specific trait. Spearman's non-parametric rank correlation was calculated for ranking of traits of economic importance to indicate the directional effects. The results on chicken ecotypes and their attributes showed that prolificacy, mature weight, disease tolerance, egg number and heat tolerance were highly preferred. The dwarf ecotype was most abundantly reared (38.84%) and considered to be significantly smaller and to have poorer growth rate, but to have better prolificacy than other indigenous chicken ecotypes. Selection of breeding cock and hen was based on disease tolerance, body weight at sexual maturity, body size and growth rate. In addition, for hen, mothering ability and egg fertility (Fer) were considered. Indices for the traits perceived by farmers as of primary economic importance were egg yield (0.093), disease tolerance (0.091), high growth rate (0.089), prolificacy (0.088), high body weight (0.087) and egg fertility (0.083). The most important traits considered by the marketers were body weight (BW), disease tolerance (Dtol), plumage colour (Pcol), egg yolk colour (EYC), meat quality (MQ), growth rate (GR) and egg yield (EY) whereas for consumers, meat quality, egg yolk colour, egg yield, body weight and growth rate were considered. Among traits perceived as important by farmers, a positive and significant correlation was found between BW and GR and Fer. Correlation was moderate for BW and prolificacy, drought tolerance (Drtol), Dtol and EYC. BW was negatively correlated with temperament (Temp), heat tolerance, Pcol and egg shell colour (ESC). Regarding marketers and consumers' preference rank correlation, positive and significant correlation was between BW and GR and MQ. As such, appropriate ecotypes (indigenous chicken) which have these characteristics need to be identified and utilised more based on their performance and adaption to the environment conditions to ensure efficient IC production.
Chao, Jian-Ying; Gao, Guang; Tang, Xiang-Ming; Shen, Yan; Zhu, Li-Ping
2009-11-01
The abundance, organic matter content and chemical composition of organic aggregation (OA) were monitored in Lake Taihu in different ecotype sites from January to December in 2007, and other water physical and chemical parameters were concomitantly monitored. The OA abundance was increasing along regional and P-enrichment gradients, and there were significant differences in OA characteristic in different ecotypes. Moreover, wind is one important factor that contributes to OA characteristic in Lake Taihu. OA maybe one potential important nutrient source in lake water for its high enrichment factors of nutrition: the concentrations of P and N in the OA were much higher than that of in the water; more than one third (43.3%) of TP could be attributed to the OA-P, and that number of OA-N is 16.5%.
The ecohealth assessment and ecological restoration division of urban water system in Beijing
Liu, J.; Ma, M.; Zhang, F.; Yang, Z.; Domagalski, Joseph L.
2009-01-01
Evaluating six main rivers and six lakes in Beihuan water system (BWS) and diagnosing the limiting factors of eco-health were conducted for the ecohealth assessment and ecological restoration division of urban water system (UWS) for Beijing. The results indicated that Jingmi River and Nanchang River were in a healthy state, the degree of membership to unhealthy were 0.358, 0.392, respectively; while Yongding River, Beihucheng River, Liangma River, Tongzi River and six lakes were in an unhealthy state, their degree of membership to unhealthy were between 0.459 and 0.927. The order of that was Liangma > Beihucheng > Tongzi > Yongding > six lakes > Jingmi > Nanchang, in which Liangma Rivers of that was over 0.8. The problems of Rivers and lakes in BWS are different. Jingmi River and Nanchang River were ecotype limiting; Yongding River, Tongzi River and six lakes were water quality and ecotype limiting. Beihucheng River and Liangma River were water quantity, water quality and ecotype limiting. BWS could be divided into 3 restoration divisions, pollution control division including Yongding River, Tongzi River and six lakes; Jingmi River and Nanchang River were ecological restoration zone, while Beihucheng River and Liangma River were in comprehensive improvement zone. Restoration potentiality of Jingmi River and Nanchang River were higher, and Liangma River was hardest to restore. The results suggest a new idea to evaluate the impact of human and environmental factors on UWS. ?? Springer Science+Business Media, LLC 2009.
Isolation and characterization of new strains of methanogens from cold terrestrial habitats.
Simankova, Maria V; Kotsyurbenko, Oleg R; Lueders, Tillmann; Nozhevnikova, Alla N; Wagner, Bianca; Conrad, Ralf; Friedrich, Michael W
2003-06-01
Five strains of methanogenic archaea (MT, MS, MM, MSP, ZB) were isolated from permanently and periodically cold terrestrial habitats. Physiological and morphological studies, as well as phylogenetic analyses of the new isolates were performed. Based on sequences of the 16S rRNA and methyl-coenzyme M reductase a-subunit (mcrA) genes all new isolates are closely related to known mesophilic and psychrotolerant methanogens. Both, phylogenetic analyses and phenotypic properties allow to classify strains MT, MS, and MM as members of the genus Methanosarcina. Strain MT is a new ecotype of Methanosarcina mazei, whereas strains MM and MS are very similar to each other and can be assigned to the recently described psychrotolerant species Methanosarcina lacustris. The hydrogenotrophic strain MSP is a new ecotype of the genus Methanocorpusculum. The obligately methylotrophic strain ZB is closely related to Methanomethylovorans hollandica and can be classified as new ecotype of this species. All new isolates, including the strains from permanently cold environments, are not true psychrophiles according to their growth temperature characteristics. In spite of the ability of all isolates to grow at temperatures as low as 1-5 degrees C, all of them have their growth optima in the range of moderate temperatures (25-35 degrees C). Thus, they can be regarded as psychrotolerant organisms. Psychrotolerant methanogens are thought to play an important role in methane production in both, habitats under seasonal temperature variations or from permanently cold areas.
A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae
Manoukis, Nicholas C.; Powell, Jeffrey R.; Touré, Mahamoudou B.; Sacko, Adama; Edillo, Frances E.; Coulibaly, Mamadou B.; Traoré, Sekou F.; Taylor, Charles E.; Besansky, Nora J.
2008-01-01
The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via “ecotypification,” a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species. PMID:18287019
Karvonen, Anssi; Lucek, Kay; Marques, David A.; Seehausen, Ole
2015-01-01
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated. PMID:26086778
Karvonen, Anssi; Lucek, Kay; Marques, David A; Seehausen, Ole
2015-01-01
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.
ACID/HEAVY METAL TOLERANT PLANTS
This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 30. The objective of Project 30 was to select populations (i.e., ecotypes) from native, indigenous plant species that demonstrate superior growth characteristics and sustainability on...
76 FR 30919 - Marine Mammals; File No. 15844
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... minke whales, (2) continue one of the longest and most complete time- series data set on humpback whale... ecotypes could be harassed up to 50 times each, to acquire 30 successful biopsy samples, per year. See the...
Phylogenomics of the killer whale indicates ecotype divergence in sympatry.
Moura, A E; Kenny, J G; Chaudhuri, R R; Hughes, M A; Reisinger, R R; de Bruyn, P J N; Dahlheim, M E; Hall, N; Hoelzel, A R
2015-01-01
For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the 'marine speciation paradox'. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists.
Javanmard, Milad; Asadi-Gharneh, Hossein Ali; Nikneshan, Pejman
2018-07-01
Dog rose (Rosa canina L.) is a wild native species in Iran, with a significant genetic diversity. This plant serves as a rich source of vitamin C, anthocyanins, phenolic contents and carotenoids. Rose hips have been used in several food products, as well as perfumery and cosmetics industries. In this research, we investigate biochemical characteristics of five dog rose ecotypes (Kopehjamshid, Zarneh, Miyankish, Aghcheh and Sadeghiyeh), that were collected from the central part of Iran (Isfahan province). Amounts of vitamin C, total carotenoids, total phenolic contents, total anthocyanins, macro and micro minerals were measured. Seed oil are extracted by soxhlet method and analysed by gas chromatography. The macro and micro minerals levels in the fruit vary significantly among these regions. The results of this study demonstrate that dog rose have great diversity and can be used in breeding programmes in order to increase nutrient values as a food resource additive.
A niche for cyanobacteria producing chlorophyll f within a microbial mat.
Ohkubo, Satoshi; Miyashita, Hideaki
2017-10-01
Acquisition of additional photosynthetic pigments enables photosynthetic organisms to survive in particular niches. To reveal the ecological significance of chlorophyll (Chl) f, we investigated the distribution of Chl and cyanobacteria within two microbial mats. In a 7-mm-thick microbial mat beneath the running water of the Nakabusa hot spring, Japan, Chl f was only distributed 4.0-6.5 mm below the surface, where the intensity of far-red light (FR) was higher than that of photosynthetically active radiation (PAR). In the same mat, two ecotypes of Synechococcus and two ecotypes of Chl f-producing Leptolyngbya were detected in the upper and deeper layers, respectively. Only the Leptolyngbya strains could grow when FR was the sole light source. These results suggest that the deeper layer of the microbial mat was a habitat for Chl f-producing cyanobacteria, and Chl f enabled them to survive in a habitat with little PAR.
Evaluation of hyperaccumulator plant species grown in metalliferous sites in Albania
NASA Astrophysics Data System (ADS)
Babani, F.; Civici, N.; Mullaj, A.; Kongjika, E.; Ylli, A.
2007-04-01
Heavy metal contamination of soils causes serious problems to our society. A small number of interesting plant species have been identified that can grow in soils containing high levels of heavy metals, and can also accumulate these metals to high concentrations in the shoot. The heavy metal contents in root, shoot, leaves and flowers of spontaneous plants grown in metalliferous sites in Albania together with the elemental composition of the native soils were determined by X-ray fluorescence spectrometry. Efficiency of photosynthetic apparatus of analyzed ecotypes was evaluated via chlorophyll fluorescence imaging during induction kinetics. Response of plant root system to the presence of metals, the available pools of metals to plants, effect of plant biomass to phytoextraction, photosynthetic pigment metabolism and chlorophyll fluorescence signature of leaves allowed to characterize hyperaccumulator properties and to detect the variation between selected ecotypes to heavy metal accumulation.
Phylogenomics of the killer whale indicates ecotype divergence in sympatry
Moura, A E; Kenny, J G; Chaudhuri, R R; Hughes, M A; Reisinger, R R; de Bruyn, P J N; Dahlheim, M E; Hall, N; Hoelzel, A R
2015-01-01
For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the ‘marine speciation paradox'. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists. PMID:25052415
NASA Astrophysics Data System (ADS)
Zhu, C.; Kobayashi, H.; Kanaya, Y.; Saito, M.
2017-12-01
Pollutants emitted from wildfires in boreal Eurasia can be transported to the Arctic, and their subsequent deposition could accelerate global warming. The Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned area product is used widely for global mapping of burned areas in conjunction with products such as the Global Fire Emission Database version 4, which can estimate pollutant emissions. However, uncertainties due to the "moderate resolution" (500 m) characteristic of the MODIS sensor could be introduced. Here, we present a size-dependent validation of MCD64A1 with reference to higher resolution (better than 30 m) satellite products (Landsat 7 ETM+, RapidEye, WorldView-2, and GeoEye-1) for six ecotypes over 12 regions of boreal Eurasia. We considered the 2012 boreal Eurasia burning season when severe wildfires occurred and when Arctic sea ice extent was historically low. Among the six ecotypes, we found MCD64A1 burned areas comprised only 13% of the reference products in croplands because of inadequate detection of small fires (<100 ha). Our results indicate that over all ecotypes, the actual burned area in boreal Eurasia (15,256 km2) could have been 16% greater than suggested by MCD64A1 (13,187 km2). We suggest applying correction factors of 0.5-8.2 when using emission rates based on MCD64A1 burned areas in chemistry and climate models of the studied regions. This implies the effects of wildfire emissions in boreal Eurasia on Arctic warming could be greater than currently estimated.
Brachypodium distachyon. A New Model System for Functional Genomics in Grasses1
Draper, John; Mur, Luis A.J.; Jenkins, Glyn; Ghosh-Biswas, Gadab C.; Bablak, Pauline; Hasterok, Robert; Routledge, Andrew P.M.
2001-01-01
A new model for grass functional genomics is described based on Brachypodium distachyon, which in the evolution of the Pooideae diverged just prior to the clade of “core pooid” genera that contain the majority of important temperate cereals and forage grasses. Diploid ecotypes of B. distachyon (2n = 10) have five easily distinguishable chromosomes that display high levels of chiasma formation at meiosis. The B. distachyon nuclear genome was indistinguishable in size from that of Arabidopsis, making it the simplest genome described in grasses to date. B. distachyon is a self-fertile, inbreeding annual with a life cycle of less than 4 months. These features, coupled with its small size (approximately 20 cm at maturity), lack of seed-head shatter, and undemanding growth requirements should make it amenable to high-throughput genetics and mutant screens. Immature embryos exhibited a high capacity for plant regeneration via somatic embryogenesis. Regenerated plants display very low levels of albinism and have normal fertility. A simple transformation system has been developed based on microprojectile bombardment of embryogenic callus and hygromycin selection. Selected B. distachyon ecotypes were resistant to all tested cereal-adapted Blumeria graminis species and cereal brown rusts (Puccinia reconditia). In contrast, different ecotypes displayed resistance or disease symptoms following challenge with the rice blast pathogen (Magnaporthe grisea) and wheat/barley yellow stripe rusts (Puccinia striformis). Despite its small stature, B. distachyon has large seeds that should prove useful for studies on grain filling. Such biological characteristics represent important traits for study in temperate cereals. PMID:11743099
Genetic subdivision and candidate genes under selection in North American grey wolves.
Schweizer, Rena M; vonHoldt, Bridgett M; Harrigan, Ryan; Knowles, James C; Musiani, Marco; Coltman, David; Novembre, John; Wayne, Robert K
2016-01-01
Previous genetic studies of the highly mobile grey wolf (Canis lupus) found population structure that coincides with habitat and phenotype differences. We hypothesized that these ecologically distinct populations (ecotypes) should exhibit signatures of selection in genes related to morphology, coat colour and metabolism. To test these predictions, we quantified population structure related to habitat using a genotyping array to assess variation in 42 036 single-nucleotide polymorphisms (SNPs) in 111 North American grey wolves. Using these SNP data and individual-level measurements of 12 environmental variables, we identified six ecotypes: West Forest, Boreal Forest, Arctic, High Arctic, British Columbia and Atlantic Forest. Next, we explored signals of selection across these wolf ecotypes through the use of three complementary methods to detect selection: FST /haplotype homozygosity bivariate percentilae, bayescan, and environmentally correlated directional selection with bayenv. Across all methods, we found consistent signals of selection on genes related to morphology, coat coloration, metabolism, as predicted, as well as vision and hearing. In several high-ranking candidate genes, including LEPR, TYR and SLC14A2, we found variation in allele frequencies that follow environmental changes in temperature and precipitation, a result that is consistent with local adaptation rather than genetic drift. Our findings show that local adaptation can occur despite gene flow in a highly mobile species and can be detected through a moderately dense genomic scan. These patterns of local adaptation revealed by SNP genotyping likely reflect high fidelity to natal habitats of dispersing wolves, strong ecological divergence among habitats, and moderate levels of linkage in the wolf genome. © 2015 John Wiley & Sons Ltd.
Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume.
Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B
2016-02-01
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4-V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1-C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations.
Genetically informed ecological niche models improve climate change predictions.
Ikeda, Dana H; Max, Tamara L; Allan, Gerard J; Lau, Matthew K; Shuster, Stephen M; Whitham, Thomas G
2017-01-01
We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species' ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species' niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12-fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change. © 2016 John Wiley & Sons Ltd.
Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600 k genotyping array.
Fleming, D S; Koltes, J E; Markey, A D; Schmidt, C J; Ashwell, C M; Rothschild, M F; Persia, M E; Reecy, J M; Lamont, S J
2016-05-26
Indigenous populations of animals have developed unique adaptations to their local environments, which may include factors such as response to thermal stress, drought, pathogens and suboptimal nutrition. The survival and subsequent evolution within these local environments can be the result of both natural and artificial selection driving the acquisition of favorable traits, which over time leave genomic signatures in a population. This study's goals are to characterize genomic diversity and identify selection signatures in chickens from equatorial Africa to identify genomic regions that may confer adaptive advantages of these ecotypes to their environments. Indigenous chickens from Uganda (n = 72) and Rwanda (n = 100), plus Kuroilers (n = 24, an Indian breed imported to Africa), were genotyped using the Axiom® 600 k Chicken Genotyping Array. Indigenous ecotypes were defined based upon location of sampling within Africa. The results revealed the presence of admixture among the Ugandan, Rwandan, and Kuroiler populations. Genes within runs of homozygosity consensus regions are linked to gene ontology (GO) terms related to lipid metabolism, immune functions and stress-mediated responses (FDR < 0.15). The genes within regions of signatures of selection are enriched for GO terms related to health and oxidative stress processes. Key genes in these regions had anti-oxidant, apoptosis, and inflammation functions. The study suggests that these populations have alleles under selective pressure from their environment, which may aid in adaptation to harsh environments. The correspondence in gene ontology terms connected to stress-mediated processes across the populations could be related to the similarity of environments or an artifact of the detected admixture.
Morin, Phillip A.; Archer, Frederick I.; Foote, Andrew D.; Vilstrup, Julia; Allen, Eric E.; Wade, Paul; Durban, John; Parsons, Kim; Pitman, Robert; Li, Lewyn; Bouffard, Pascal; Abel Nielsen, Sandra C.; Rasmussen, Morten; Willerslev, Eske; Gilbert, M. Thomas P.; Harkins, Timothy
2010-01-01
Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric “ecotypes” with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from ∼150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times. PMID:20413674
Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass.
Ayyappan, Vasudevan; Saha, Malay C; Thimmapuram, Jyothi; Sripathi, Venkateswara R; Bhide, Ketaki P; Fiedler, Elizabeth; Hayford, Rita K; Kalavacharla, Venu Kal
2017-01-01
Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.
Rowland, S M; Prescott, C E; Grayston, S J; Quideau, S A; Bradfield, G E
2009-01-01
During oil-sands mining all vegetation, soil, overburden, and oil sand is removed, leaving pits several kilometers wide and up to 100 m deep. These pits are reclaimed through a variety of treatments using subsoil or a mixed peat-mineral soil cap. Using nonmetric multidimensional scaling and cluster analysis of measurements of ecosystem function, reclamation treatments of several age classes were compared with a range of natural forest ecotypes to discover which treatments had created ecosystems similar to natural forest ecotypes and at what age this occurred. Ecosystem function was estimated from bioavailable nutrients, plant community composition, litter decomposition rate, and development of a surface organic layer. On the reclamation treatments, availability of nitrate, calcium, magnesium, and sulfur were generally higher than in the natural forest ecotypes, while ammonium, P, K, and Mn were generally lower. Reclamation treatments tended to have more bare ground, grasses, and forbs but less moss, lichen, shrubs, trees, or woody debris than natural forests. Rates of litter decomposition were lower on all reclamation treatments. Development of an organic layer appeared to be facilitated by the presence of shrubs. With repeated applications of fertilizers, measured variables for the peat-mineral amendments fell within the range of natural variability at about 20 yr. An intermediate subsoil layer reduced the need for fertilizer and conditions resembling natural forests were reached about 15 yr after a single fertilizer application. Treatments over tailings sand receiving only one application of fertilizer appeared to be on a different trajectory to a novel ecosystem.
The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae).
Derome, N; Bernatchez, L
2006-12-01
Species living in comparable habitats often display strikingly similar patterns of specialization, suggesting that natural selection can lead to predictable evolutionary changes. Elucidating the genomic basis underlying such adaptive phenotypic changes is a major goal in evolutionary biology. Increasing evidence indicates that natural selection would first modulate gene regulation during the process of population divergence. Previously, we showed that parallel phenotypic adaptations of the dwarf whitefish (Coregonus clupeaformis) ecotype to the limnetic trophic niche involved parallel transcriptional changes at the same genes involved in muscle contraction and energetic metabolism relative to the sympatric normal ecotype. Here, we tested whether the same genes are also implicated in a limnetic specialist species, the cisco (Coregonus artedi), which is the most likely competitor of dwarf whitefish. Significant upregulation was detected in cisco at the same 6 candidate genes functionally involved in modulating swimming activity, namely 5 variants of a major protein of fast muscle and 1 putative catalytic crystallin enzyme. Moreover, 3 of 5 variants and the same putative catalytic crystallin enzyme were upregulated in cisco relative to the dwarf ecotype, indicating a greater physiological potential of the former for exploiting the limnetic trophic niche. This study provides the first empirical evidence that recent, parallel phenotypic evolution toward the use of the same ecological niche occupied by a specialist competitor involved similar adaptive changes in expression at the same genes. As such, this study provides strong support to the general hypothesis that directional selection acting on gene regulation may promote rapid phenotypic divergence and ultimately speciation.
Incipient speciation driven by hypertrophied lips in Midas cichlid fishes?
Machado-Schiaffino, Gonzalo; Kautt, Andreas F; Torres-Dowdall, Julian; Baumgarten, Lukas; Henning, Frederico; Meyer, Axel
2017-04-01
Sympatric speciation has been debated in evolutionary biology for decades. Although it has gained in acceptance recently, still only a handful of empirical examples are seen as valid (e.g. crater lake cichlids). In this study, we disentangle the role of hypertrophied lips in the repeated adaptive radiations of Nicaraguan crater lake cichlid fish. We assessed the role of disruptive selection and assortative mating during the early stages of divergence and found a functional trade-off in feeding behaviour between thick- and thin-lipped ecotypes, suggesting that this trait is a target of disruptive selection. Thick-lipped fish perform better on nonevasive prey at the cost of a poorer performance on evasive prey. Using enclosures in the wild, we found that thick-lipped fish perform significantly better in rocky than in sandy habitats. We found almost no mixed pairs during two breeding seasons and hence significant assortative mating. Genetic differentiation between ecotypes seems to be related to the time since colonization, being subtle in L. Masaya (1600 generations ago) and absent in the younger L. Apoyeque (<600 generations ago). Genome-wide differentiation between ecotypes was higher in the old source lakes than in the young crater lakes. Our results suggest that hypertrophied lips might be promoting incipient sympatric speciation through divergent selection (ecological divergence in feeding performance) and nonrandom mating (assortative mating) in the young Nicaraguan crater lakes. Nonetheless, further manipulative experiments are needed in order to confirm the role of hypertrophied lips as the main cue for assortative mating. © 2017 John Wiley & Sons Ltd.
Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A
2014-01-01
The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity—ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts—varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification. PMID:24553472
Gustine, David D.; Barboza, Perry S.; Lawler, James P.; Adams, Layne G.; Parker, Kathy L.; Arthur, Steve M.; Shults, Brad S.
2012-01-01
Nutritional condition is an important determinant of productivity and survival in caribou (Rangifer tarandus). We used samples of excreta (n = 1,150) to estimate diet composition from microhistology and 2 isotopic proxies of protein status for 2 ecotypes of caribou in 4 herds in late winter (2006–2008). Isotopes of nitrogen (δ15N in parts per thousand [‰]) from excreta samples (urea, diet, and body N) were used to estimate indexes of protein status: the proportion of urea N derived from body N (p-UN) and the difference between the δ15N of the body and urinary urea (Δbody-urea). We examined dietary and terrain characteristics, δ15N, p-UN, and Δbody-urea by ecotype, herd, year, and foraging site. Multiple regression and an information-theoretic approach were used to evaluate correlates of protein status at each foraging site. The dietary and terrain characteristics of foraging sites did not vary by ecotype or herd (P > 0.108); diets were dominated by lichens (68% ± 14.1% SD). The δ15N of urea, diet, body N, p-UN, and Δbody-urea varied among foraging sites within each herd (P 15N of urinary urea was typically low (−4.68‰ ± 2.67‰ SD). Dietary N also had low δ15N (−4.18‰ ± 0.92‰ SD), whereas body N was generally heavier in 15N (2.20‰ ± 1.56‰ SD) than urinary urea or the diet. Both measures of protein status were similarly diverse between ecotypes and among herds, which limited their applicability to monitor protein status at the population level. Although we observed limitations to interpreting estimates of p-UN from highly vagile ungulates, the Δbody-urea may prove to be a useful index of protein status at smaller spatial and temporal scales. Indeed, a portion of the observed variance (r2 = 0.26) in Δbody-urea at each foraging site was explained by the proportion of shrubs in the winter diet. There remains potential in using δ15N in excreta as a noninvasive tool for evaluating protein status in northern ungulates; however, considerable analytical and sampling challenges remain for applying these isotopic approaches at large scales.
Simmons, Melinda P; Sudek, Sebastian; Monier, Adam; Limardo, Alexander J; Jimenez, Valeria; Perle, Christopher R; Elrod, Virginia A; Pennington, J Timothy; Worden, Alexandra Z
2016-01-04
Eukaryotic algae within the picoplankton size class (≤2 μm in diameter) are important marine primary producers, but their spatial and ecological distributions are not well characterized. Here, we studied three picoeukaryotic prasinophyte genera and their cyanobacterial counterparts, Prochlorococcus and Synechococcus, during two cruises along a North Pacific transect characterized by different ecological regimes. Picoeukaryotes and Synechococcus reached maximum abundances of 1.44 × 10(5) and 3.37 × 10(5) cells · ml(-1), respectively, in mesotrophic waters, while Prochlorococcus reached 1.95 × 10(5) cells · ml(-1) in the oligotrophic ocean. Of the picoeukaryotes, Bathycoccus was present at all stations in both cruises, reaching 21,368 ± 327 18S rRNA gene copies · ml(-1). Micromonas and Ostreococcus clade OI were detected only in mesotrophic and coastal waters and Ostreococcus clade OII only in the oligotrophic ocean. To resolve proposed Bathycoccus ecotypes, we established genetic distances for 1,104 marker genes using targeted metagenomes and the Bathycoccus prasinos genome. The analysis was anchored in comparative genome analysis of three Ostreococcus species for which physiological and environmental data are available to facilitate data interpretation. We established that two Bathycoccus ecotypes exist, named here BI (represented by coastal isolate Bathycoccus prasinos) and BII. These share 82% ± 6% nucleotide identity across homologs, while the Ostreococcus spp. share 75% ± 8%. We developed and applied an analysis of ecomarkers to metatranscriptomes sequenced here and published -omics data from the same region. The results indicated that the Bathycoccus ecotypes cooccur more often than Ostreococcus clades OI and OII do. Exploratory analyses of relative transcript abundances suggest that Bathycoccus NRT2.1 and AMT2.2 are high-affinity NO3 (-) and low-affinity NH4 (+) transporters, respectively, with close homologs in multiple picoprasinophytes. Additionally, in the open ocean, where dissolved iron concentrations were low (0.08 nM), there appeared to be a shift to the use of nickel superoxide dismutases (SODs) from Mn/Fe/Cu SODs closer inshore. Our study documents the distribution of picophytoplankton along a North Pacific ecological gradient and offers new concepts and techniques for investigating their biogeography. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Three Mississippi ecotypes of wetland plants
Janet M. Grabowski
2000-01-01
In 1996, the USDA-Natural Resources Conservation Service (NRCS) Jamie L. Whitten Plant Materials Center (PMC) released three locally collected, source-identified wetland plants. Indian Bayou source powdery thalia (Thalia dealbata Fraser ex Roscoe) and Leflore source creeping burhead [Echinodorus cordifolius (L.) Griseb.] were...
A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades.
Brown, Mark V; Ostrowski, Martin; Grzymski, Joseph J; Lauro, Federico M
2014-06-01
Marine microbial communities provide much of the energy upon which all higher trophic levels depend, particularly in open-ocean and oligotrophic systems, and play a pivotal role in biogeochemical cycling. How and why species are distributed in the global oceans, and whether net ecosystem function can be accurately predicted from community composition are fundamental questions for marine scientists. Many of the most abundant clades of marine bacteria, including the Prochlorococcus, Synechococcus, SAR11, SAR86 and Roseobacter, have a very broad, if not a cosmopolitan distribution. However this is not reflected in an underlying genetic identity. Rather, widespread distribution in these organisms is achieved by the existence of closely related but discrete ecotypes that display niche adaptations. Closely related ecotypes display specific nutritional or energy generating mechanisms and are adapted to different physical parameters including temperature, salinity, and hydrostatic pressure. Furthermore, biotic phenomena such as selective grazing and viral loss contribute to the success or failure of ecotypes allowing some to compete effectively in particular marine provinces but not in others. An additional layer of complexity is added by ocean currents and hydrodynamic specificity of water body masses that bound microbial dispersal and immigration. These vary in space and time with respect to intensity and direction, making the definition of large biogeographic provinces problematic. A deterministic theory aimed at understanding how all these factors shape microbial life in the oceans can only proceed through analysis of microbial traits, rather than pure phylogenetic assessments. Trait based approaches seek mechanistic explanations for the observed temporal and spatial patterns. This review will present successful recent advances in phylogenetic and trait based biogeographic analyses in some of the most abundant marine taxa. Copyright © 2014. Published by Elsevier B.V.
Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume
Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B
2016-01-01
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4–V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1–C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations. PMID:26230048
Diretto, Gianfranco; Rubio-Moraga, Angela; Argandoña, Javier; Castillo, Purificación; Gómez-Gómez, Lourdes; Ahrazem, Oussama
2017-08-20
This study set out to determine the distribution of sulfur compounds and saponin metabolites in different parts of garlic cloves. Three fractions from purple and white garlic ecotypes were obtained: the tunic (SS), internal (IS) and external (ES) parts of the clove. Liquid Chromatography coupled to High Resolution Mass spectrometry (LC-HRMS), together with bioinformatics including Principal Component Analysis (PCA), Hierarchical Clustering (HCL) and correlation network analyses were carried out. Results showed that the distribution of these metabolites in the different parts of garlic bulbs was different for the purple and the white ecotypes, with the main difference being a slightly higher number of sulfur compounds in purple garlic. The SS fraction in purple garlic had a higher content of sulfur metabolites, while the ES in white garlic was more enriched by these compounds. The correlation network indicated that diallyl disulfide was the most relevant metabolite with regards to sulfur compound metabolism in garlic. The total number of saponins was almost 40-fold higher in purple garlic than in the white variety, with ES having the highest content. Interestingly, five saponins including desgalactotigonin-rhamnose, proto-desgalactotigonin, proto-desgalactotigonin-rhamnose, voghieroside D1, sativoside B1-rhamnose and sativoside R1 were exclusive to the purple variety. Data obtained from saponin analyses revealed a very different network between white and purple garlic, thus suggesting a very robust and tight coregulation of saponin metabolism in garlic. Findings in this study point to the possibility of using tunics from purple garlic in the food and medical industries, since it contains many functional compounds which can be exploited as ingredients.
NASA Astrophysics Data System (ADS)
Arfin Khan, Mohammed A. S.; Kreyling, Juergen; Beierkuhnlein, Carl; Jentsch, Anke
2016-11-01
Drought stress and associated low soil moisture can decrease N status of forage plants by reducing nitrogen (N) uptake. Conversely, rainfall and associated favorable soil moisture can improve plant N status. Yet, it is unclear to which degree drought combined with rewetting can buffer negative effects of drought on N status of forage plants and their populations. Here, we compared shoot N status (N concentration, total N uptake and C/N ratio) of four temperate grass species. Particularly, we investigated ecotypes (populations) grown from seeds from four to six European provenances/species after a drought treatment combined with rewetting (10 day harvest delay) versus continuously watered conditions for control. The experimental combination of drought and rewetting significantly increased shoot N concentration (+96%), N uptake (+31%); and decreased C/N ratio (-46%), biomass production (-29%) and C concentration (-1.4%) compared to control. Shoot N status was found to be different between target grass species and also within their populations under drought combined with rewetting treatment. Presumably drought-adapted populations did not perform better than populations from moist sites indicating no evidence of local adaptation. The drought combined with rewetting event could buffer the negative effects of drought. Shoot N status of grasses after drought and rewetting even exceeded control plants. This surprising finding can potentially be explained by higher N uptake, lack of growth dilution effects or delayed plant maturation. Furthermore, within-species shoot N status responses to drought combined with rewetting event were ecotype-specific, hinting at diverse responses of different population. For rangeland management, we recommend that if a drought event occurs during the growing season, harvesting should be delayed beyond a following rain event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melendrez, Melanie C.; Becraft, Eric D.; Wood, Jason M.
Recent studies of bacterial speciation have claimed to support the biological species concept—that reduced recombination is required for bacterial populations to diverge into species. This conclusion has been reached from the discovery that ecologically distinct clades show lower rates of recombination than that which occurs among closest relatives. However, these previous studies did not attempt to determine whether the more-rapidly recombining close relatives within the clades studied may also have diversified ecologically, without benefit of sexual isolation. Here we have measured the impact of recombination on ecological diversification within and between two ecologically distinct clades (A and B’) of Synechococcusmore » in a hot spring microbial mat in Yellowstone National Park, using a cultivation-free, multi-locus approach. Bacterial artificial chromosome (BAC) libraries were constructed from mat samples collected at 60°C and 65°C. Analysis of multiple linked loci near Synechococcus 16S rRNA genes showed little evidence of recombination between the A and B’ lineages, but a record of recombination was apparent within each lineage. Recombination and mutation rates within each lineage were of similar magnitude, but recombination had a somewhat greater impact on sequence diversity than mutation, as also seen in many other bacteria and archaea. Despite recombination within the A and B’ lineages, there was evidence of ecological diversification within each lineage. The algorithm Ecotype Simulation identified sequence clusters consistent with ecologically distinct populations (ecotypes), and several hypothesized ecotypes were distinct in their habitat associations and in their adaptations to different microenvironments. We conclude that sexual isolation is more likely to follow ecological divergence than to precede it. Thus, an ecology-based model of speciation appears more appropriate than the biological species concept for bacterial and archaeal diversification.« less
Footitt, Steven; Huang, Ziyue; Clay, Heather A; Mead, Andrew; Finch-Savage, William E
2013-06-01
Seeds use environmental cues to sense the seasons and their surroundings to initiate the life cycle of the plant. The dormancy cycling underlying this process is extensively described, but the molecular mechanism is largely unknown. To address this we selected a range of representative genes from published array experiments in the laboratory, and investigated their expression patterns in seeds of Arabidopsis ecotypes with contrasting life cycles over an annual dormancy cycle in the field. We show how mechanisms identified in the laboratory are coordinated in response to the soil environment to determine the dormancy cycles that result in winter and summer annual phenotypes. Our results are consistent with a seed-specific response to seasonal temperature patterns (temporal sensing) involving the gene DELAY OF GERMINATION 1 (DOG1) that indicates the correct season, and concurrent temporally driven co-opted mechanisms that sense spatial signals, i.e. nitrate, via CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) phosphorylation of the NITRATE TRANSPORTER 1 (NRT1.1), and light, via PHYTOCHROME A (PHYA). In both ecotypes studied, when all three genes have low expression there is enhanced GIBBERELLIN 3 BETA-HYDROXYLASE 1 (GA3ox1) expression, exhumed seeds have the potential to germinate in the laboratory, and the initiation of seedling emergence occurs following soil disturbance (exposure to light) in the field. Unlike DOG1, the expression of MOTHER of FLOWERING TIME (MFT) has an opposite thermal response in seeds of the two ecotypes, indicating a role in determining their different dormancy cycling phenotypes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Kapp, Nikki; Barnes, William J; Richard, Tom L; Anderson, Charles T
2015-07-01
Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Kapp, Nikki; Barnes, William J.; Richard, Tom L.; Anderson, Charles T.
2015-01-01
Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. PMID:25922482
Álvarez-Lafuente, Amaya; Benito-Matías, Luis F; Peñuelas-Rubira, Juan L; Suz, Laura M
2018-01-01
The plantation and management of sweet chestnut (Castanea sativa Mill.) orchards is a common and traditional land use system in many areas of Europe that offers the advantage of simultaneous production of nuts and timber. During the last decades, sweet chestnut has declined dramatically in many regions because of the profound social changes in rural areas coupled with pathogen attacks. Truffles, the hypogeous ascocarps of the ectomycorrhizal genus Tuber, are currently cultivated using host trees inoculated with these fungi for improving production in truffle orchards. The production of good forestry quality chestnut seedlings inoculated with European truffles in nurseries is essential for multi-cropping plantation establishment, but so far, it has not been implemented in agroforestry practices. Moreover, it is necessary to assess the physiological condition of the seedlings due to the high calcium amendment needed for the growth of Tuber spp. mycelium that can become toxic for the host plants. In this study, seedlings of C. sativa were inoculated with Tuber aestivum and its ecotypes T. uncinatum, T. brumale, and T. macrosporum and were grown in a greenhouse using culture conditions favorable for the production of high-quality plants for forestry purposes. At the end of the assay, levels of root colonization and morphological and physiological parameters of the seedlings were measured. The colonization of C. sativa with T. aestivum, its ecotype T. uncinatum, and T. brumale was successful, and the seedlings showed normal growth. Inoculation protocols with T. macrosporum need to be improved. Tuber species formed well-developed ectomycorrhizae on C. sativa in nursery conditions.
Melendrez, Melanie C.; Becraft, Eric D.; Wood, Jason M.; ...
2016-01-14
Recent studies of bacterial speciation have claimed to support the biological species concept—that reduced recombination is required for bacterial populations to diverge into species. This conclusion has been reached from the discovery that ecologically distinct clades show lower rates of recombination than that which occurs among closest relatives. However, these previous studies did not attempt to determine whether the more-rapidly recombining close relatives within the clades studied may also have diversified ecologically, without benefit of sexual isolation. Here we have measured the impact of recombination on ecological diversification within and between two ecologically distinct clades (A and B’) of Synechococcusmore » in a hot spring microbial mat in Yellowstone National Park, using a cultivation-free, multi-locus approach. Bacterial artificial chromosome (BAC) libraries were constructed from mat samples collected at 60°C and 65°C. Analysis of multiple linked loci near Synechococcus 16S rRNA genes showed little evidence of recombination between the A and B’ lineages, but a record of recombination was apparent within each lineage. Recombination and mutation rates within each lineage were of similar magnitude, but recombination had a somewhat greater impact on sequence diversity than mutation, as also seen in many other bacteria and archaea. Despite recombination within the A and B’ lineages, there was evidence of ecological diversification within each lineage. The algorithm Ecotype Simulation identified sequence clusters consistent with ecologically distinct populations (ecotypes), and several hypothesized ecotypes were distinct in their habitat associations and in their adaptations to different microenvironments. We conclude that sexual isolation is more likely to follow ecological divergence than to precede it. Thus, an ecology-based model of speciation appears more appropriate than the biological species concept for bacterial and archaeal diversification.« less
Robert, Kylie A; Bronikowski, Anne M
2010-02-01
Evolutionary theories of aging are linked to life-history theory in that age-specific schedules of reproduction and survival determine the trajectory of age-specific mutation/selection balances across the life span and thus the rate of senescence. This is predicted to manifest at the organismal level in the evolution of energy allocation strategies of investing in somatic maintenance and robust stress responses in less hazardous environments in exchange for energy spent on growth and reproduction. Here we report experiments from long-studied populations of western terrestrial garter snakes (Thamnophis elegans) that reside in low and high extrinsic mortality environments, with evolved long and short life spans, respectively. Laboratory common-environment colonies of these two ecotypes were tested for a suite of physiological traits after control and stressed gestations. In offspring derived from control and corticosterone-treated dams, we measured resting metabolism; mitochondrial oxygen consumption, ATP and free radical production rates; and erythrocyte DNA damage and repair ability. We evaluated whether these aging biomarkers mirrored the evolution of life span and whether they were sensitive to stress. Neonates from the long-lived ecotype (1) were smaller, (2) consumed equal amounts of oxygen when corrected for body mass, (3) had DNA that damaged more readily but repaired more efficiently, and (4) had more efficient mitochondria and more efficient cellular antioxidant defenses than short-lived snakes. Many ecotype differences were enhanced in offspring derived from stress-treated dams, which supports the conclusion that nongenetic maternal effects may further impact the cellular stress defenses of offspring. Our findings reveal that physiological evolution underpins reptilian life histories and sheds light on the connectedness between stress response and aging pathways in wild-dwelling organisms.
Steinbacher, Peter; Wanzenböck, Josef; Brandauer, Magdalena; Holper, Raphael; Landertshammer, Jasmin; Mayr, Magdalena; Platzl, Christian; Stoiber, Walter
2017-01-01
Ecotype pairs provide well-suited model systems for study of intraspecific phenotypical diversification of animals. However, little is still known about the processes that account for the development of different forms and sizes within a species, particularly in teleosts. Here, embryos of a normal-growing 'large' form and a dwarf form of whitefish Coregonus lavaretus were incubated at two temperatures that are usually experienced at their own spawning sites (2°C for the normal and 6°C for the dwarf form). All fish were subjected to similar thermal treatment after hatching. The present data demonstrate for the first time that different thermal experience in embryonic life has lasting effects on body and muscle growth of this ecotype pair and contributes to the development of the dwarf form. Thus, juvenile fish of the regular form are much smaller and have less muscle mass when pre-hatching thermal conditions were similar to those typical for the spawning sites of the dwarf form (6°C) than when subjected to conditions of their own spawning sites (2°C). Surprisingly, fish of the dwarf form exhibit a similar pattern of response to thermal history (2°-fish much larger than 6°-fish), indicating that in their case, normal spawning site temperature (6°C) is indeed likely to act as a growth limiting factor. Results also demonstrate that the hypertrophic and hyperplastic muscle growth modes are similarly affected by thermal history. Immunolabelling experiments for Pax7, H3P and Mef2 provide evidence that the cellular mechanisms behind the increased growth rates after cold incubation in both ecotypes are increased proliferation and reduced differentiation rates of muscle precursor cells. This is of major significance to aspects of ecological and developmental biology and from the evolutionary perspective.
Switchgrass Genetics: Status, Future Directions, and Implications for Simulations
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4 polymorphic species with two ploidy levels, two major and numerous minor ecotypes adapted to different plant hardiness zones and ecoregions in its range. Switchgrasses are determinate, photoperiod sensitive, and require short days to induce flowering. Photo...
Environmental chemical mixtures: Assessing ecological exposure and effects in streams
This product is a USGS fact sheet that describes a collaborative effort between USGS and US EPA to characterize exposures to chemical mixtures and associated biological effects for a diverse range of US streams representing varying watershed size, land-use patterns, and ecotypes.
Adaptations between ecotypes and along environmental gradients in Panicum virgatum
USDA-ARS?s Scientific Manuscript database
Determining the patterns and mechanisms of adaptation to different habitats across the natural landscape is of fundamental importance to understanding the differentiation of populations and the evolution of new species. Most recent studies of habitat-mediated natural selection in the wild have focus...
Holeski, Liza M; Monnahan, Patrick; Koseva, Boryana; McCool, Nick; Lindroth, Richard L; Kelly, John K
2014-03-13
Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes. Copyright © 2014 Holeski et al.
Kristensen, Nadiah Pardede; Johansson, Jacob; Chisholm, Ryan A; Smith, Henrik G; Kokko, Hanna
2018-06-25
Local adaptation to rare habitats is difficult due to gene flow, but can occur if the habitat has higher productivity. Differences in offspring phenotypes have attracted little attention in this context. We model a scenario where the rarer habitat improves offspring's later competitive ability - a carryover effect that operates on top of local adaptation to one or the other habitat type. Assuming localised dispersal, so the offspring tend to settle in similar habitat to the natal type, the superior competitive ability of offspring remaining in the rarer habitat hampers immigration from the majority habitat. This initiates a positive feedback between local adaptation and trait divergence, which can thereafter be reinforced by coevolution with dispersal traits that match ecotype to habitat type. Rarity strengthens selection on dispersal traits and promotes linkage disequilibrium between locally adapted traits and ecotype-habitat matching dispersal. We propose that carryover effects may initiate isolation by ecology. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Pilot, M; Dahlheim, M E; Hoelzel, A R
2010-01-01
In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.
Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice.
Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru
2011-07-01
We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity.
Suppression of a NAC-Like Transcription Factor Gene Improves Boron-Toxicity Tolerance in Rice1
Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru
2011-01-01
We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity. PMID:21543724
Pascale, Raffaella; Bianco, Giuliana; Cataldi, Tommaso R I; Kopplin, Philippe-Schmitt; Bosco, Federica; Vignola, Lisiana; Uhl, Jenny; Lucio, Marianna; Milella, Luigi
2018-03-01
The present study deals with the evaluation of antidiabetic activities of Fagioli di Sarconi beans (Phaseolus vulgaris), including 21 ecotypes protected by the European Union with the mark PGI (i.e., Protected Geographical Indication), and cultivated in Basilicata (southern Italy). For this purpose, α-glucosidase and α-amylase assays were assessed; among all bean ecotypes, the tight green seed colour of Verdolino extracts exhibited the highest α-glucosidase and α-amylase inhibitory activity with IC 50 =1.1±0.1μg/ml and IC 50 =19.3±1.1μg/ml, respectively. Phytochemical compound screening of all Fagioli di Sarconi beans performed by flow injection-electrospray ionization-ultrahigh resolution mass spectrometry (uHRMS) and based on the calculation of elemental formulas from accurate m/z values, was helpful to annotate specific compounds, such as alkaloids, saponins, flavonoids, and terpenoids, which are most likely responsible for their biological activity. Copyright © 2017. Published by Elsevier Ltd.
Garris, Amanda J; McCouch, Susan R; Kresovich, Stephen
2003-01-01
To assess the usefulness of linkage disequilibrium mapping in an autogamous, domesticated species, we have characterized linkage disequilibrium in the candidate region for xa5, a recessive gene conferring race-specific resistance to bacterial blight in rice. This trait and locus have good mapping information, a tractable phenotype, and available sequence data, but no cloned gene. We sampled 13 short segments from the 70-kb candidate region in 114 accessions of Oryza sativa. Five additional segments were sequenced from the adjacent 45-kb region in resistant accessions to estimate the distance at which linkage disequilibrium decays. The data show significant linkage disequilibrium between sites 100 kb apart. The presence of the xa5 resistant reaction in two ecotypes and in accessions with different haplotypes in the candidate region may indicate multiple origins or genetic heterogeneity for resistance. In addition, genetic differentiation between ecotypes emphasizes the need for controlling for population structure in the design of linkage disequilibrium studies in rice. PMID:14573486
NASA Astrophysics Data System (ADS)
Luo, Qing; Wang, Shiyu; Sun, Li-Na; Wang, Hui
2017-01-01
Phytoremediation is an effective method to remediate Pb-contaminated soils and root exudates play an important role in this process. Based on gas chromatography-mass spectrometry (GC-MS) and metabolomics method, this study focuses on the comparative metabolic profiling analysis of root exudates from the Pb-accumulating and non-accumulating ecotypes of Sedum alfredii treated with 0 and 50 μmol/L Pb. The results obtained show that plant type and Pb stress can significantly change the concentrations and species of root exudates, and fifteen compounds were identified and assumed to be potential biomarkers. Leaching experiments showed that l-alanine, l-proline and oxalic acid have a good effect to activate Pb in soil, glyceric acid and 2-hydroxyacetic acid have a general effect to activate Pb in soil. 4-Methylphenol and 2-methoxyphenol might be able to activate Pb in soil, glycerol and diethyleneglycol might be able to stabilize Pb in soil, but these activation effect and stabilization effect were all not obvious.
Arrieta-Montiel, Maria P; Shedge, Vikas; Davila, Jaime; Christensen, Alan C; Mackenzie, Sally A
2009-12-01
The plant mitochondrial genome is recombinogenic, with DNA exchange activity controlled to a large extent by nuclear gene products. One nuclear gene, MSH1, appears to participate in suppressing recombination in Arabidopsis at every repeated sequence ranging in size from 108 to 556 bp. Present in a wide range of plant species, these mitochondrial repeats display evidence of successful asymmetric DNA exchange in Arabidopsis when MSH1 is disrupted. Recombination frequency appears to be influenced by repeat sequence homology and size, with larger size repeats corresponding to increased DNA exchange activity. The extensive mitochondrial genomic reorganization of the msh1 mutant produced altered mitochondrial transcription patterns. Comparison of mitochondrial genomes from the Arabidopsis ecotypes C24, Col-0, and Ler suggests that MSH1 activity accounts for most or all of the polymorphisms distinguishing these genomes, producing ecotype-specific stoichiometric changes in each line. Our observations suggest that MSH1 participates in mitochondrial genome evolution by influencing the lineage-specific pattern of mitochondrial genetic variation in higher plants.
Lignification induced by pseudomonads harboring avirulent genes on Arabidopsis.
Lee, S; Sharm, Y; Lee, T K; Chang, M; Davis, K R
2001-08-31
The responses of Arabidopsis thaliana ecotypes to the bacterial pathogen Pseudomonas syringae pv. maculicola 4326 (Psm4326) harboring cloned avirulence genes avrB and avrRpt2 from P. syringae pv. glycinea were examined. Psm4326 containing avirulent genes, avrB and avrRpt2 induced lignification and peroxidase activities in the bacteria infiltrated leaves of Col-O only and not in Mt-O, Bla-2 and Po-1. However, Arabidopsis ecotypes infiltrated with Psm4326 harboring with and without avirulent genes all showed differential induction of mRNA for peroxidase gene and lignin accumulation up to 24 h after infiltration. Only avrB gene in Col-O showed strong corelationship between peroxidase mRNA expression as well as lignification gradually up to 36 h after infiltration. These results extend previous observations that avirulence genes from pathogens of one host plant can be recognized by non-host plants and provide the genetic framework for analysis of the plant-specific response to the bacterial avirulent gene products in A. thaliana.
The origin and distribution of human lice in the world.
Boutellis, Amina; Abi-Rached, Laurent; Raoult, Didier
2014-04-01
Two genera of lice parasitize humans: Pthirus and Pediculus. The latter is of significant public health importance and comprises two ecotypes: the body louse and the head louse. These ecotypes are morphologically and genetically notably similar; the body louse is responsible for three infectious diseases: Louse-borne epidemic typhus, relapsing fever, and trench fever. Mitochondrial DNA studies have shown that there are three obviously divergent clades of head lice (A, B and C), and only one clade of body lice is shared with head lice (clade A). Each clade has a unique geographic distribution. Lice have been parasitizing humans for millions of years and likely dispersed throughout the World with the human migrations out of Africa, so they can be good markers for studying human evolution. Here, we present an overview of the origin of human lice and their role in vector pathogenic bacteria that caused epidemics, and we review the association between lice clades and human migrations. Copyright © 2014 Elsevier B.V. All rights reserved.
Cultural Hitchhiking in the Matrilineal Whales.
Whitehead, Hal; Vachon, Felicia; Frasier, Timothy R
2017-05-01
Five species of whale with matrilineal social systems (daughters remain with mothers) have remarkably low levels of mitochondrial DNA diversity. Non-heritable matriline-level demography could reduce genetic diversity but the required conditions are not consistent with the natural histories of the matrilineal whales. The diversity of nuclear microsatellites is little reduced in the matrilineal whales arguing against bottlenecks. Selective sweeps of the mitochondrial genome are feasible causes but it is not clear why these only occurred in the matrilineal species. Cultural hitchhiking (cultural selection reducing diversity at neutral genetic loci transmitted in parallel to the culture) is supported in sperm whales which possess suitable matrilineal socio-cultural groups (coda clans). Killer whales are delineated into ecotypes which likely originated culturally. Culture, bottlenecks and selection, as well as their interactions, operating between- or within-ecotypes, may have reduced their mitochondrial diversity. The societies, cultures and genetics of false killer and two pilot whale species are insufficiently known to assess drivers of low mitochondrial diversity.
NASA Astrophysics Data System (ADS)
Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.
2009-09-01
Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.
Phenotyping M.sieversii collections from Kazakhstan for leaf traits and tree architecture
USDA-ARS?s Scientific Manuscript database
Ecotypes are useful sources of rapid adaptation to new environments. Recent collections of the wild apple (M. sieversii) from Kazakhstan maintained in Geneva, New York, have made available populations from twelve sites in Kazakhstan representing radically different environments. SSR analysis of su...
Natural hybrids and gene flow between upland and lowland switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a perennial grass native to the North American tallgrass prairie and savanna habitats and is broadly adapted to the central and eastern USA. Upland and lowland ecotypes represent the two major taxa within switchgrass, which have distinct, but overlapping distribu...
PHYSIOLOGY OF ECOTYPIC PLANT RESPONSE TO SULFUR DIOXIDE IN 'GERANIUM CAROLINIANUM' L
Populations of Geranium carolinianum, winter annual plant common in disturbed habitats vary in their folair response to sulfur dioxide and pollution resistance is characteristic of populations sampled from areas in which SO2 has been a prominent stress. The physiological basis of...
USDA-ARS?s Scientific Manuscript database
Bottlebrush squirreltail (Elymus elymoides) is a highly ecotypic cool-season grass species that is prized for restoration applications in the Intermountain Region of the western U.S. Three major subspecies (elymoides, californicus, and brevifolius) have traditionally been recognized in this species...
The effect of elevated CO2 on arsenic accumulation in diverse ecotypes of Arabidopsis thaliana
USDA-ARS?s Scientific Manuscript database
Phytoremediation is the ability of photosynthesizing plants to extract soil contaminates and concentrates them into above ground tissue for easy removal. Ostensibly, rising concentrations of atmospheric carbon dioxide, [CO2], should stimulate photosynthesis and biomass; and could, potentially, incre...
Lenoir, A; Pélissier, T; Bousquet-Antonelli, C; Deragon, J M
2005-01-01
Brassica oleracea and Arabidopsis thaliana belong to the Brassicaceae(Cruciferae) family and diverged 16 to 19 million years ago. Although the genome size of B. oleracea (approximately 600 million base pairs) is more than four times that of A. thaliana (approximately 130 million base pairs), their gene content is believed to be very similar with more than 85% sequence identity in the coding region. Therefore, this important difference in genome size is likely to reflect a different rate of non-coding DNA accumulation. Transposable elements (TEs) constitute a major fraction of non-coding DNA in plant species. A different rate in TE accumulation between two closely related species can result in significant genome size variations in a short evolutionary period. Short interspersed elements (SINEs) are non-autonomous retroposons that have invaded the genome of most eukaryote species. Several SINE families are present in B. oleracea and A. thaliana and we found that two of them (called RathE1 and RathE2) are present in both species. In this study, the tempo of evolution of RathE1 and RathE2 SINE families in both species was compared. We observed that most B. oleracea RathE2 SINEs are "young" (close to the consensus sequence) and abundant while elements from this family are more degenerated and much less abundant in A. thaliana. However, the situation is different for the RathE1 SINE family for which the youngest elements are found in A. thaliana. Surprisingly, no SINE was found to occupy the same (orthologous) genomic locus in both species suggesting that either these SINE families were not amplified at a significant rate in the common ancestor of the two species or that older elements were lost and only the recent (lineage-specific) insertions remain. To test this latter hypothesis, loci containing a recently inserted SINE in the A. thaliana col-0 ecotype were selected and characterized in several other A. thaliana ecotypes. In addition to the expected SINE containing allele and the pre-integrative allele (i.e. the "empty" allele), we observed in the different ecotypes, alleles with truncated portions of the SINE (up to the complete loss of the element) and of the immediate genomic flanking sequences. The absence of SINEs in orthologous positions between B. oleracea and A. thaliana and the presence in recently diverged A. thaliana ecotypes of alleles containing severely truncated SINEs suggest a very high rate of SINE loss in these species.
USDA-ARS?s Scientific Manuscript database
The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition...
Adaptive responses reveal contemporary and future ecotypes in a desert shrub
Bryce A. Richardson; Stanley G. Kitchen; Rosemary L. Pendleton; Burton K. Pendleton; Matthew J. Germino; Gerald E. Rehfeldt; Susan E. Meyer
2014-01-01
Interacting threats to ecosystem function, including climate change, wildfire, and invasive species necessitate native plant restoration in desert ecosystems. However, native plant restoration efforts often remain unguided by ecological genetic information. Given that many ecosystems are in flux from climate change, restoration plans need to account for both...
Herbivores and edaphic factors constrain the realized niche of a native plant
J.A. Lau; A McCall; K Davies; J McKay; J Wright
2008-01-01
Biotic interactions, such as competition and herbivory, can limit plant species ranges to a subset of edaphically suitable habitats, termed the realized niche. Here we explored the role that herbivores play in restricting the niche of serpentine ecotypes of the native California annual Collinsia sparsiflora...
USDA-ARS?s Scientific Manuscript database
Cogongrass (Imperata cylindrica) is a highly invasive perennial grass in the southeastern United States and is found on all continents except Antartica. It has been reported from a wide array of habitats; however, soils from cogongrass populations have never been characterized. Live cogongrass pla...
Switchgrass cultivars alter microbial contribution to deep soil C in Nebraska
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4, perennial grass that is being developed as a bioenergy crop for the United States. While aboveground biomass production is well documented for switchgrass ecotypes (lowland, upland) and cultivars, there has been little focus on the impact of plant belowgro...
Arabidopsis Ecotypes: A Model for Course Projects in Organismal Plant Biology & Evolution
ERIC Educational Resources Information Center
Wyatt, Sarah; Ballard, Harvey E.
2007-01-01
We present an inquiry-based project using readily-available seed stocks of Arabidopsis. Seedlings are grown under simulated "common garden" conditions to test evolutionary and organismal principles. Students learn scientific method by developing hypotheses and selecting appropriate data and analyses for their experiments. Experiments can be…
QTL analysis of ferric reductase activity in the model legume lotus japonicus
USDA-ARS?s Scientific Manuscript database
Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...
Comparative study of switchgrass cultivars using RNA sequencing technology
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a C4 perennial grass, identified as a promising bioenergy crop. Switchgrass exists in two ecotypes, upland and lowland, which are heterotic, or genetically complementary to each other. The objectives of this study are to assess the potential of SNP markers as a b...
Cuticular features as indicators of environmental pollution
G. K. Sharma
1976-01-01
Several leaf cuticular features such as stomatal frequency, stomatal size, trichome length, type, and frequency, and subsidiary cell complex respond to environmental pollution in different ways and hence can be used as indicators of environmental pollution in an area. Several modifications in cuticular features under polluted environments seem to indicate ecotypic or...
USDA-ARS?s Scientific Manuscript database
Pierce’s disease of grapes and almond leaf scorch are devastating diseases caused by the bacterium Xylella fastidiosa (Xf). To date, progress in determining the mechanisms of host plant susceptibility, tolerance or resistance has been slow, due in large part to the long generation time and limited a...
USDA-ARS?s Scientific Manuscript database
Two-week-old Arabidopsis thaliana ecotype Col-0 seedlings were transferred into an autoclaved sand-soil mixture amended with 10% or 20% (weight/weight) soil that is suppressive to either take-all or Rhizoctonia root rot of wheat from fields in Washington State USA. These soils contain population siz...
Wetland harvesting systems -- developing alternatives for sustainable operation
Robert B. Rummer; Bryce J. Stokes; Alvin Schilling
1997-01-01
Wetland forests represent some of the most productive forest lands in the Southeast. They are also an environmentally sensitive ecotype which presents unique problems for forest operations. Sustaining active management in these areas will require systems which can operate on weak soil conditions without adversely affecting soil properties or stand regeneration. The...
Habitat-specific divergence of phenolic defenses in Protium subserratum (Burseraceae)
USDA-ARS?s Scientific Manuscript database
The procyanidin (PC) content of leaves from several populations of clay, brown-sand and white-sand ecotypes of P. subserratum at several sites across more than 100 km of Amazonian Peru was examined. Leaves from P. subserratum trees growing in brown-sand (BS), clay soil (CS) and white-sand (WS) habit...
USDA-ARS?s Scientific Manuscript database
Iris series Hexagonae is a small, monophyletic complex of 5 species and associated hybrid populations, popularly known as the “Louisiana irises.” The Hexagonae alliance of Iris have been recognized as a textbook case of introgressive hybridization based on numerous studies in Louisiana. We previou...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-30
... ecotypes of woodland caribou: Mountain (alpine; arboreal lichen winter feeding group), northern (lives in... in that estimate due to poor weather conditions that limited aerial surveys (Wakkinen 2011, pers... forests (generally more than 100-150 years old), which support abundant arboreal lichens (the key winter...
Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass
USDA-ARS?s Scientific Manuscript database
A cytogenetic study was conducted on a dihaploid individual (2n'='2X'='18) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci...
USDA-ARS?s Scientific Manuscript database
Enhancing the nutritional quality of crops is of international importance, and multiple methods have been utilized to increase the nutrient content of legume seeds. Because nutrients mobilized from source leaves to growing reproductive sink tissues greatly contribute to the final composition of the ...
Evaluation of Arabidopsis thaliana as a model host for Xylella fastidiosa.
Rogers, Elizabeth E
2012-06-01
The bacterium Xylella fastidiosa causes a number of plant diseases of significant economic impact. To date, progress determining mechanisms of host-plant susceptibility, tolerance, or resistance has been slow, due in large part to the long generation time and limited available genetic resources for grape, almond, and other known hosts of X. fastidiosa. To overcome many of these limitations, Arabidopsis thaliana has been evaluated as a host for X. fastidiosa. A pin-prick inoculation method has been developed to infect Arabidopsis with X. fastidiosa. Following infection, X. fastidiosa multiplies and can be detected by microscopy, polymerase chain reaction, and isolation. The ecotypes Van-0, LL-0, and Tsu-1 all allow more growth of strain X. fastidiosa Temecula than the reference ecotype Col-0. Affymetrix ATH1 microarray analysis of inoculated vs. noninoculated Tsu-1 reveals gene expression changes that differ greatly from changes seen after infection with apoplast-colonizing bacteria such as Psuedomonas syringae pvs. tomato or syringae. Many genes responsive to oxidative stress are differentially regulated, while classic pathogenesis-related genes are not induced by X. fastidiosa infection.
Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation
Riesch, Rüdiger; Plath, Martin; Schlupp, Ingo
2011-01-01
Divergent selection through biotic factors like predation or parasitism can promote reproductive isolation even in the absence of geographical barriers. On the other hand, evidence for a role of adaptation to abiotic factors during ecological speciation in animals is scant. In particular, the role played by perpetual darkness in establishing reproductive isolation in cave animals (troglobites) remains elusive. We focused on two reproductively isolated ecotypes (surface- and cave-dwelling) of the widespread livebearer Poecilia mexicana, and raised offspring of wild-caught females to sexual maturity in a 12-month common-garden experiment. Fish were reared in light or darkness combined with high- or low-food conditions. Females, but not males, of the surface ecotype suffered from almost complete reproductive failure in darkness, especially in the low-food treatment. Furthermore, surface fish suffered from a significantly higher rate of spontaneous, stress-related infection with bacterial columnaris disease. This experimental evidence for strong selection by permanent darkness on non-adapted surface-dwelling animals adds depth to our understanding of the selective forces establishing and maintaining reproductive isolation in cave faunas. PMID:21561964
Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability
Tolonen, Andrew C; Aach, John; Lindell, Debbie; Johnson, Zackary I; Rector, Trent; Steen, Robert; Church, George M; Chisholm, Sallie W
2006-01-01
Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to changes in ambient nitrogen is thus central to understanding its ecology. We quantified changes in MED4 and MIT9313 global mRNA expression, chlorophyll fluorescence, and photosystem II photochemical efficiency (Fv/Fm) along a time series of increasing N starvation. In addition, the global expression of both strains growing in ammonium-replete medium was compared to expression during growth on alternative N sources. There were interstrain similarities in N regulation such as the activation of a putative NtcA regulon during N stress. There were also important differences between the strains such as in the expression patterns of carbon metabolism genes, suggesting that the two strains integrate N and C metabolism in fundamentally different ways. PMID:17016519
Silva, D C G; Carvalho, M C C G; Ruas, P M; Ruas, C F; Medri, M E
2010-05-04
The tree species Parapiptadenia rigida, native to southern South America, is frequently used in reforestation of riverbanks in Brazil. This tree is also a source of gums, tannins and essential oils, and it has some medicinal uses. We investigated flooding tolerance and genetic diversity in two populations of P. rigida; one of them was naturally exposed to flooding. Plants derived from seeds collected from each population were submitted to variable periods of experimental waterlogging and submergence. Waterlogging promoted a decrease in biomass and structural adjustments, such as superficial roots with aerenchyma and hypertrophied lenticels, that contribute to increase atmospheric oxygen intake. Plants that were submerged had an even greater reduction in biomass and a high mortality rate (40%). The two populations varied significantly in their RAPD marker profiles, in their ability to produce aerenchyma when waterlogged and to survive when submerged, suggesting ecotypic differentiation between them. Hence, the seasonal flooding that has been challenging the tropical riparian forest appears to be genetically modifying the P. rigida populations exposed to it by selecting individuals with increased ability to live under this condition.
Liu, Huan; Zhao, Haixia; Wu, Longhua; Xu, Wenzhong
2017-01-01
The present study demonstrates the development of an Agrobacterium-mediated genetic transformation method for species of the Sedum genus, which includes the Cd/Zn hyperaccumulator Sedum plumbizincicola and the non-hyperaccumulating ecotype of S. alfredii. Multiple shoots were induced from stem nodes of two Sedum plants using Murashige and Skoog (MS) medium containing 0.1 mg/L cytokinin 6-benzyladenine (6-BA) and 1.0 mg/L auxin 1-naphthaleneacetic acid (NAA). The shoot primordia were used as direct targets for Agrobacterium infection. Selection on hygromycin was highly effective in generating Agrobacterium-transformed explants. This callus-free procedure allowed us to obtain transgenic plantlets after rooting hygromycin-resistant shoots on phytohormone-free MS medium containing the antibiotic. The presence and expression of the reporter genes gusA and GFP in transgenic plants were confirmed by a real-time polymerase chain reaction, histochemical GUS assays, and confocal microscopy. This reliable method for genetic transformation of Sedum plants will help us to understand gene functions and the molecular mechanisms underlying Cd hypertolerance and hyperaccumulation in these species. PMID:28670322
Leonard, Jill B.K.; Stott, Wendylee; Loope, Delora M.; Kusnierz, Paul C.; Sreenivasan, Ashwin
2013-01-01
The coaster Brook Trout Salvelinus fontinalis is a Lake Superior ecotype representing intraspecific variation that has been impacted by habitat loss and overfishing. Hatchery strains of Brook Trout derived from populations in Lake Superior were stocked into streams within Pictured Rocks National Lakeshore, Michigan, as part of an effort to rehabilitate adfluvial coaster Brook Trout. Wild and hatchery Brook Trout from three streams (Mosquito River, Hurricane River, and Sevenmile Creek) were examined for movement behavior, size, physiology, and reproductive success. Behavior and size of the stocked fish were similar to those of wild fish, and less than 15% of the stocked, tagged Brook Trout emigrated from the river into which they were stocked. There was little evidence of successful reproduction by stocked Brook Trout. Similar to the results of other studies, our findings suggest that the stocking of nonlocal Brook Trout strains where a local population already exists results in limited natural reproduction and should be avoided, particularly if the mechanisms governing the ecotype of interest are poorly understood.
Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion
Twyford, Alex D.; Friedman, Jannice
2015-01-01
Organisms exhibit an incredible diversity of life history strategies as adaptive responses to environmental variation. The establishment of novel life history strategies involves multilocus polymorphisms, which will be challenging to establish in the face of gene flow and recombination. Theory predicts that adaptive allelic combinations may be maintained and spread if they occur in genomic regions of reduced recombination, such as chromosomal inversion polymorphisms, yet empirical support for this prediction is lacking. Here, we use genomic data to investigate the evolution of divergent adaptive ecotypes of the yellow monkey flower Mimulus guttatus. We show that a large chromosomal inversion polymorphism is the major region of divergence between geographically widespread annual and perennial ecotypes. In contrast, ∼40,000 single nucleotide polymorphisms in collinear regions of the genome show no signal of life history, revealing genomic patterns of diversity have been shaped by localized homogenizing gene flow and large‐scale Pleistocene range expansion. Our results provide evidence for an inversion capturing and protecting loci involved in local adaptation, while also explaining how adaptive divergence can occur with gene flow. PMID:25879251
Modeling selective pressures on phytoplankton in the global ocean.
Bragg, Jason G; Dutkiewicz, Stephanie; Jahn, Oliver; Follows, Michael J; Chisholm, Sallie W
2010-03-10
Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and selective pressures that may be difficult or impossible to study by other means. More generally, and perhaps more importantly, this study introduces an approach for testing hypotheses about the processes that underlie genetic variation among marine microbes, embedded in the dynamic physical, chemical, and biological forces that generate and shape this diversity.
Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.
2009-01-01
Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic ??13C and ??15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes-resident and transient - collected across ???25?? of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in ??15N values of ???2.5% through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable ??15N and ??13C values throughout the remainder of their lives, whereas ??15N values of most (n = 11) increased by ???1.5%, suggestive of an ontogenetic increase in trophic level. Significant differences in mean ??13C and ??15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean. ?? Inter-Research 2009.
Red maca (Lepidium meyenii) reduced prostate size in rats
Gonzales, Gustavo F; Miranda, Sara; Nieto, Jessica; Fernández, Gilma; Yucra, Sandra; Rubio, Julio; Yi, Pedro; Gasco, Manuel
2005-01-01
Background Epidemiological studies have found that consumption of cruciferous vegetables is associated with a reduced risk of prostate cancer. This effect seems to be due to aromatic glucosinolate content. Glucosinolates are known for have both antiproliferative and proapoptotic actions. Maca is a cruciferous cultivated in the highlands of Peru. The absolute content of glucosinolates in Maca hypocotyls is relatively higher than that reported in other cruciferous crops. Therefore, Maca may have proapoptotic and anti-proliferative effects in the prostate. Methods Male rats treated with or without aqueous extracts of three ecotypes of Maca (Yellow, Black and Red) were analyzed to determine the effect on ventral prostate weight, epithelial height and duct luminal area. Effects on serum testosterone (T) and estradiol (E2) levels were also assessed. Besides, the effect of Red Maca on prostate was analyzed in rats treated with testosterone enanthate (TE). Results Red Maca but neither Yellow nor Black Maca reduced significantly ventral prostate size in rats. Serum T or E2 levels were not affected by any of the ecotypes of Maca assessed. Red Maca also prevented the prostate weight increase induced by TE treatment. Red Maca administered for 42 days reduced ventral prostatic epithelial height. TE increased ventral prostatic epithelial height and duct luminal area. These increases by TE were reduced after treatment with Red Maca for 42 days. Histology pictures in rats treated with Red Maca plus TE were similar to controls. Phytochemical screening showed that aqueous extract of Red Maca has alkaloids, steroids, tannins, saponins, and cardiotonic glycosides. The IR spectra of the three ecotypes of Maca in 3800-650 cm (-1) region had 7 peaks representing 7 functional chemical groups. Highest peak values were observed for Red Maca, intermediate values for Yellow Maca and low values for Black Maca. These functional groups correspond among others to benzyl glucosinolate. Conclusions Red Maca, a cruciferous plant from the highland of Peru, reduced ventral prostate size in normal and TE treated rats. PMID:15661081
Ylitalo, G M; Matkin, C O; Buzitis, J; Krahn, M M; Jones, L L; Rowles, T; Stein, J E
2001-12-17
Certain populations of killer whales (Orcinus orca) have been extensively studied over the past 30 years, including populations that use Puget Sound, WA, the inside waters of British Columbia, Southeastern Alaska and Kenai Fjords/Prince William Sound, Alaska. Two eco-types of killer whales, 'transient' and 'resident', occur in all of these regions. These eco-types are genetically distinct and differ in various aspects of morphology, vocalization patterns, diet and habitat use. Various genetic and photo-identification studies of eastern North Pacific killer whales have provided information on the male-female composition of most of these resident pods and transient groups, as well as the approximate ages, reproductive status and putative recruitment order (birth order) of the individual whales. Biopsy blubber samples of free-ranging resident and transient killer whales from the Kenai Fjords/Prince William Sound, AK region were acquired during the 1994-1999 field seasons and analyzed for selected organochlorines (OCs), including dioxin-like CB congeners and DDTs. Concentrations of OCs in transient killer whales (marine mammal-eating) were much higher than those found in resident animals (fish-eating) apparently due to differences in diets of these two killer whale eco-types. Certain life-history parameters such as sex, age and reproductive status also influenced the concentrations of OCs in the Alaskan killer whales. Reproductive female whales contained much lower levels of OCs than sexually immature whales or mature male animals in the same age class likely due to transfer of OCs from the female to her offspring during gestation and lactation. Recruitment order also influenced the concentrations of OCs in the Alaskan killer whales. In adult male residents, first-recruited whales contained much higher OC concentrations than those measured in non-first-recruited (e.g. second recruited, third recruited) resident animals in the same age group. This study provides baseline OC data for free ranging Alaskan killer whales for which there is little contaminant information.
Seeding big sagebrush successfully on Intermountain rangelands
Susan E. Meyer; Thomas W. Warren
2015-01-01
Big sagebrush can be seeded successfully on climatically suitable sites in the Great Basin using the proper seeding guidelines. These guidelines include using sufficient quantities of high-quality seed of the correct subspecies and ecotype, seeding in late fall to mid-winter, making sure that the seed is not planted too deeply, and seeding into an environment...
USDA-ARS?s Scientific Manuscript database
Fungi can adapt to environmental conditions and produce different physiological responses. The aim of this study was to verify the existence of Sclerotinia sclerotiorum temperature ecotypes in isolates from Brazil and the USA. Ten S. sclerotiorum isolates from tropical and subtropical regions of Bra...
USDA-ARS?s Scientific Manuscript database
The Zn/Cd hyperaccumulator, Noccaea caerulescens, has been studied extensively for its ability to accumulate Zn and Cd in its leaves to extremely high levels. Previous studies have indicated that the Zn and Cd hyperaccumulation trait exhibited by this species involves different transport and toleran...
USDA-ARS?s Scientific Manuscript database
The sex determination system of Lepidoptera is comprised of heterogametic females (ZW) and homogametic males (ZZ), where voltinism (Volt) and the male pheromone response traits (Resp) are controlled by genes housed on the Z-chromosome. Volt and Resp determine traits that lead to ecotype differentia...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... protections from the Act and can be considered discrete and significant to the woodland subspecies. (3... mountain ecotype) is in need of protections under the Act, and can be considered discrete and significant... or endangered. A population segment of a vertebrate species may be considered discrete if it...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colleen Iversen; Amy Breen; Verity Salmon
Data includes GPS waypoints for intensive plots, reference points, vegetation plots, and soil temperature/moisture monitoring stations that were established in July 2016 at the Kougarok hill slope located at Kougarok Road, Mile Marker 64. Photographs of all intensive plots and reference points are also included.
Geographic Variation of Eastern White Pine in the Northeast
Peter W. Garrett; Ernst J. Schreiner; Harry Kettlewood
1973-01-01
Eastern white pine is the most valuable conifer in the Northeast, and its large botanical range has provided ample opportunity for the development of ecotypes. Provenance plantings in nine states provided information on variability within the species and recommendations for moving seed from one region to another. Good growth was obtained on southern Appalachian sources...
Eco-physiology of Acer saccharum trees on glade-like sites in central Missouri
Eric J. Rhodenbaugh; Stephen G. Pallardy
1993-01-01
Although sugar maple (Acer saccharum Marsh.) is not considered drought tolerant, it is common on xeric limestone glade-like sites in central Missouri. Acer saccharum on such sites may be a drought-tolerant ecotype or may have access to deep water supply through bedrock cracks. We investigated these possibilities during the 1990...
USDA-ARS?s Scientific Manuscript database
More than 50% of the world’s soil C stocks reside below 30 cm, but relatively little is known about the importance of rhizodeposit C and associated microbial communities in deep soil processes. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation,...
USDA-ARS?s Scientific Manuscript database
Plutella xylostella (L.), diamondback moth (DBM) is a destructive pest of the Brassicaceae including Arabidopsis thaliana (L.) Heynhold. Ecotypes of Arabidopsis vary in the amounts of leaf area consumed when fed on by DBM, which has been used as a measure of resistance to DBM. Recombinant inbred lin...
A comparison of season of cambial growth in different geographic races of Pinus ponderosa
R. F. Daubenmire
1950-01-01
Ecotypic specialization in different parts of the ranges of widely distributed species is a phenomenon that has commanded the attention of botanists for several decades. Experience has usually shown that when plants are moved from their native habitat into a different environment they become subject to injuries from factors associated with the new environment, although...
USDA-ARS?s Scientific Manuscript database
Food production systems in Africa depend heavily on the use of locally adapted animals such as goats which are critical to small-scale farmers as they are easier to acquire, maintain, and act as scavengers in sparse pasture and marginal crop regions. Indigenous goat ecotypes have undergone generatio...
Current and potential use of broadleaf herbs for reestablishing native communities
Scott C. Walker; Nancy L. Shaw
2005-01-01
Use of forbs for revegetation in the Intermountain West has been problematic due to the large number of species and lack of research data. Some forbs are found in numerous plant communities and distributed over wide geographic ranges while others are more narrowly adapted. Seed sources for revegetation use may be selected from species and ecotypes indigenous to the...
USDA-ARS?s Scientific Manuscript database
1. Seasonal adaptations to day length often limit the effective range of biocontrol insects. The leaf beetle Diorhabda carinulata was introduced into North America from Fukang, China (latitude 44°N) for the biocontrol of saltcedars (Tamarix spp.), but failed to establish below 38° latitude because o...
Mark Torre Jorgenson; Bruce G. Marcot; David K. Swanson; Janet C. Jorgenson; Anthony R. DeGange
2015-01-01
Climate warming affects arctic and boreal ecosystems by interacting with numerous biophysical factors across heterogeneous landscapes. To assess potential effects of warming on diverse local-scale ecosystems (ecotypes) across northwest Alaska, we compiled data on historical areal changes over the last 25â50 years. Based on historical rates of change relative to time...
Character displacement and the evolution of niche complementarity in a model biofilm community
Ellis, Crystal N; Traverse, Charles C; Mayo-Smith, Leslie; Buskirk, Sean W; Cooper, Vaughn S
2015-01-01
Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia. PMID:25494960
Wang, G M; Coleman, D C; Freckman, D W; Dyer, M I; McNAUGHTON, S J; Agra, M A; Goeschl, J D
1989-08-01
Gas exchange and carbon allocation patterns were studied in two populations of Panicum coloratum, an Africa C-4 grass. The plants were grown in split-root pots, containing partially sterilized soil, with one side either inoculated (I) or not inoculated (NI) with a vesicular arbuscular (VA) mycorrhizal Fungus, Gigaspora margarita. Net carbon exchange rates (CER) and stomatal conductances were measured with conventional gas exchange apparatus, and carbon assimilation, translocation, and allocation were measured using photosynthetically-fixed 11 CO 2 . Mycorrhizal infection on one half of the split-root system caused a 20%, increase in CER. The effect on CER was less in tillers on the opposite side of the plants from the infected half of the roots. The rate at which photosynthates were stored in the leaves was 45% higher. Sink activity (concentration of labelled photosynthates in stem phloem tissue) more than doubled in 1 versus NI plants. CER and stomatal conductances, along with most of the carbon allocation patterns, were nearly identical between the NI (control) high grazing and low grazing ecotypes. However, VA mycorrhizal fungi caused a greater storage of photosynthates in the low grazing ecotype.
Size and age structure of anadromous and landlocked populations of Rainbow Smelt
O'Malley, Andrew; Enterline, Claire; Zydlewski, Joseph D.
2017-01-01
Rainbow Smelt Osmerus mordax are widely distributed in both anadromous and landlocked populations throughout northeastern North America; abundance, size at age, and maximum size vary widely among populations and life histories. In the present study, size at age, von Bertalanffy growth parameters, population age distributions, and precision and bias in age assessment based on scales and sectioned otoliths were compared between ecotypes and among populations of Rainbow Smelt. To compare the ecotypes, we collected spawning adults from four anadromous and three landlocked populations in Maine during spring 2014. A significant bias was identified in only one of four scale comparisons but in four of seven otolith comparisons; however, a comparable level of precision was indicated. Anadromous populations had larger and more variable size at age and von Bertalanffy growth parameters than landlocked fish. Populations were composed of ages 1–4; six populations were dominated by age-2 or age-3 individuals, and one population was dominated by age-1 fish. These data suggest the presence of considerable plasticity among populations. A latitudinal gradient was observed in the anadromous Rainbow Smelt, which may show signs of population stress at the southern extent of their distribution.
Jansen, Marcel A.K.; van den Noort, Ria E.; Tan, M.Y. Adillah; Prinsen, Els; Lagrimini, L. Mark; Thorneley, Roger N.F.
2001-01-01
We have studied the mechanism of UV protection in two duckweed species (Lemnaceae) by exploiting the UV sensitivity of photosystem II as an in situ sensor for radiation stress. A UV-tolerant Spirodela punctata G.F.W. Meyer ecotype had significantly higher indole-3-acetic acid (IAA) levels than a UV-sensitive ecotype. Parallel work on Lemna gibba mutants suggested that UV tolerance is linked to IAA degradation rather than to levels of free or conjugated IAA. This linkage is consistent with a role for class III phenolic peroxidases, which have been implicated both in the degradation of IAA and the cross-linking of various UV-absorbing phenolics. Biochemical analysis revealed increased activity of a specific peroxidase isozyme in both UV-tolerant duckweed lines. The hypothesis that peroxidases play a role in UV protection was tested in a direct manner using genetically modified tobacco (Nicotiana sylvestris). It was found that increased activity of the anionic peroxidase correlated with increased tolerance to UV radiation as well as decreased levels of free auxin. We conclude that phenol-oxidizing peroxidases concurrently contribute to UV protection as well as the control of leaf and plant architecture. PMID:11457952
Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.
Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J
2005-08-01
Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.
Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei
2013-01-01
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515
Marín-Guirao, Lazaro; Ruiz, Juan M; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele
2016-06-27
The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species' ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.
NASA Astrophysics Data System (ADS)
Marín-Guirao, Lazaro; Ruiz, Juan M.; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele
2016-06-01
The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species’ ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.
The evolution of the New Jersey Pine Plains.
Ledig, F Thomas; Hom, John L; Smouse, Peter E
2013-04-01
Fire in the New Jersey Pine Plains has selectively maintained a dwarf growth form of pitch pine (Pinus rigida), which is distinct from the surrounding tall forest of the Pine Barrens and has several other inherited adaptations that enable it to survive in an environment dominated by fire. Pitch pine progeny from two Pine Plains sites, the West and East Pine Plains, were grown in common garden environments with progeny from two Pine Barrens stands, Batsto and Great Egg Harbor River. The tests were replicated in five locations: in New Jersey, Connecticut, two sites in Massachusetts, and Korea. One of the tests was monitored for up to 36 yr. Progeny of Pine Plains origin were, in general, shorter, more crooked, precocious, bore more cones, had a higher frequency of serotinous cones, and had a higher frequency of stem cones than did Pine Barrens progeny, wherever they were grown. The Pine Plains is an ecotype that has evolved in response to disturbance. The several characters that distinguish it from the surrounding tall forest of the Pine Barrens are inherited. The dwarf stature and crooked form not only enable the ecotype to persist in an environment of frequent fires but also increase its flammability.
Characterization of Urtica dioica agglutinin isolectins and the encoding gene family.
Does, M P; Ng, D K; Dekker, H L; Peumans, W J; Houterman, P M; Van Damme, E J; Cornelissen, B J
1999-01-01
Urtica dioica agglutinin (UDA) has previously been found in roots and rhizomes of stinging nettles as a mixture of UDA-isolectins. Protein and cDNA sequencing have shown that mature UDA is composed of two hevein domains and is processed from a precursor protein. The precursor contains a signal peptide, two in-tandem hevein domains, a hinge region and a carboxyl-terminal chitinase domain. Genomic fragments encoding precursors for UDA-isolectins have been amplified by five independent polymerase chain reactions on genomic DNA from stinging nettle ecotype Weerselo. One amplified gene was completely sequenced. As compared to the published cDNA sequence, the genomic sequence contains, besides two basepair substitutions, two introns located at the same positions as in other plant chitinases. By partial sequence analysis of 40 amplified genes, 16 different genes were identified which encode seven putative UDA-isolectins. The deduced amino acid sequences share 78.9-98.9% identity. In extracts of roots and rhizomes of stinging nettle ecotype Weerselo six out of these seven isolectins were detected by mass spectrometry. One of them is an acidic form, which has not been identified before. Our results demonstrate that UDA is encoded by a large gene family.
The unusual reproductive system of head and body lice (Pediculus humanus)
ANDREWES, S.; CLARK, J. M.; ROSS, L.
2017-01-01
Abstract Insect reproduction is extremely variable, but the implications of alternative genetic systems are often overlooked in studies on the evolution of insecticide resistance. Both ecotypes of Pediculus humanus (Phthiraptera: Pediculidae), the human head and body lice, are human ectoparasites, the control of which is challenged by the recent spread of resistance alleles. The present study conclusively establishes for the first time that both head and body lice reproduce through paternal genome elimination (PGE), an unusual genetic system in which males transmit only their maternally derived chromosomes. Here, we investigate inheritance patterns of parental genomes using a genotyping approach across families of both ecotypes and show that heterozygous males exclusively or preferentially pass on one allele only, whereas females transmit both in a Mendelian fashion. We do however observe occasional transmission of paternal chromosomes through males, representing the first known case of PGE in which whole‐genome meiotic drive is incomplete. Finally, we discuss the potential implications of this finding for the evolution of resistance and invite the development of new theoretical models of how this knowledge might contribute to increasing the success of pediculicide‐based management schemes. PMID:29266297
Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion.
Twyford, Alex D; Friedman, Jannice
2015-06-01
Organisms exhibit an incredible diversity of life history strategies as adaptive responses to environmental variation. The establishment of novel life history strategies involves multilocus polymorphisms, which will be challenging to establish in the face of gene flow and recombination. Theory predicts that adaptive allelic combinations may be maintained and spread if they occur in genomic regions of reduced recombination, such as chromosomal inversion polymorphisms, yet empirical support for this prediction is lacking. Here, we use genomic data to investigate the evolution of divergent adaptive ecotypes of the yellow monkey flower Mimulus guttatus. We show that a large chromosomal inversion polymorphism is the major region of divergence between geographically widespread annual and perennial ecotypes. In contrast, ∼40,000 single nucleotide polymorphisms in collinear regions of the genome show no signal of life history, revealing genomic patterns of diversity have been shaped by localized homogenizing gene flow and large-scale Pleistocene range expansion. Our results provide evidence for an inversion capturing and protecting loci involved in local adaptation, while also explaining how adaptive divergence can occur with gene flow. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
James Legilisho-Kiyiapi
2000-01-01
Through combined use of satellite imagery, aerial photographs, and ground truthing, a multilevel assessment was conducted in a forest block that forms a unique dispersal zone to the Maasai Mara National Reserve ecosystem. Results of the survey revealed considerable ecological diversity on an area-scale basis - in terms of ecotypes. Forest types ranged from Afro-montane...
Role of the USDA Forest Service experimental forest: an extension point of view
Eric L. Taylor; C. Darwin Foster; Diomy Zamora
2013-01-01
The expansive network of experimental forests (EF) facilitated by the U.S. Forest Service (Forest Service) encompasses a fairly complete representation of the forest ecotypes in the nation. The network, 101 years old this year (2009), has provided researchers with a wealth of long-term data on silviculture, watershed protection, and restoration. However, our nationâs...
Kochia prostrata germplasm collection expedition to Kazakhstan
Blair L. Waldron; R. Deane Harrison; Nicolai I. Dzyubenko; Auskhan Khusainov; Sergey Shuvalov; Sergey Alexanian
2001-01-01
The low stature of âImmigrantâ forage kochia (Kochia prostrata) limits its use as winter forage and habitat for livestock and wildlife. In October 1999, a germplasm collection trip was undertaken to obtain forage kochia ecotypes that have potential to improve fall and winter forage. The collection area was north of the Aral Sea in the Clay and Sand Desert Steppes of...
Marine Mammal Demographics of the Outer Washington Coast During 2008-2009
2011-08-01
belonged to clan G, while Southern Residents were from clans K, J, and L. Both the California and British Columbia transient killer whale dialects...on the northbound migration, presumably trying to avoid detection by killer whales . Higher call rates in the summer likely represent the resident ...location through the year. Killer Whales Three distinct killer whale ecotypes were detected acoustically, including Northern and Southern
M. F. Livingston; S. D. Schemnitz
1996-01-01
The middle Pecos River lies in the short-grass prairie ecotype and lacked a substantial woodland community prior to tamarisk (Tamarisk chinensis) invasion. Tamarisk control is a concern for land managers on the Pecos River and other Southwestern riparian systems. Our research is part of a long term study investigating hydrological and wildlife response to tamarisk...
Strategies for Conserving Clinal, Ecotypic, and Disjunct Population Diversiv in Widespread Species
Constance I. Millar; William J. Libby
1991-01-01
Why is a chapter on widespread species appearing in a volume on rare species? One answer to that is another question: Why focus on species in the first place? Granted, species do have a unique status. They are more or less closed units genetically, and species extinction signals the end of an evolutionary lineage that may have begun millions of years ago. By contrast....
Anthony R. DeGange; Bruce G. Marcot; James Lawler; Torre Jorgenson; Robert Winfree
2013-01-01
We used a modeling framework and a recent ecological land classification and land cover map to predict how ecosystems and wildlife habitat in northwest Alaska might change in response to increasing temperature. Our results suggest modest increases in forest and tall shrub ecotypes in Northwest Alaska by the end of this century thereby increasing habitat for forest-...
Michalak, Katarzyna; Czesny, Sergiusz J.; Epifanio, John; Snyder, Randal J.; Schultz, Eric T.; Velotta, Jonathan P.; McCormick, Stephen D.; Brown, Bonnie L.; Santopietro, Graciela; Michalak, Pawel
2014-01-01
Predicting the success of a species’ colonization into a novel environment is routinely considered to be predicated on niche-space similarity and vacancy, as well as propagule pressure. The role genomic variation plays in colonization success (and the interaction with environment) may be suggested, but has not rigorously been documented. To test an hypothesis that previously observed ecotype-specific polymorphisms between anadromous and landlocked alewife (Alosa pseudoharengus) populations are an adaptive response to osmoregulatory challenges rather than a result of allele sampling at founding, we examined multiple anadromous and landlocked (colonized) populations for their allelic profiles at a conserved region (3’-UTR end) of a β-thymosin gene whose protein product plays a central role in the organization of cytoskeleton. The putatively ancestral β-thymosin allele was prevalent in anadromous populations, whereas a newly derived allele was overrepresented in landlocked populations; a third allele was exclusive to the anadromous populations. We also conducted a complementary set of salinity exposure experiments to test osmoregulatory performance of the alewife ecotypes in contrasting saline environments. The pattern of variation and results from these challenges indicate a strong association of β-thymosin with colonization success and a transition for species with an anadromous life-history to one with only a freshwater component.
Delêtre, Marc; Soengas, Beatriz; Vidaurre, Prem Jai; Meneses, Rosa Isela; Delgado Vásquez, Octavio; Oré Balbín, Isabel; Santayana, Monica; Heider, Bettina; Sørensen, Marten
2017-06-01
Understanding the distribution of crop genetic diversity in relation to environmental factors can give insights into the eco-evolutionary processes involved in plant domestication. Yam beans ( Pachyrhizus Rich. ex DC.) are leguminous crops native to South and Central America that are grown for their tuberous roots but are seed-propagated. Using a landscape genetic approach, we examined correlations between environmental factors and phylogeographic patterns of genetic diversity in Pachyrhizus landrace populations. Molecular analyses based on chloroplast DNA sequencing and a new set of nuclear microsatellite markers revealed two distinct lineages, with strong genetic differentiation between Andean landraces (lineage A) and Amazonian landraces (lineage B). The comparison of different evolutionary scenarios for the diversification history of yam beans in the Andes using approximate Bayesian computation suggests that Pachyrhizus ahipa and Pachyrhizus tuberosus share a progenitor-derivative relationship, with environmental factors playing an important role in driving selection for divergent ecotypes. The new molecular data call for a revision of the taxonomy of Pachyrhizus but are congruent with paleoclimatic and archeological evidence, and suggest that selection for determinate growth was part of ecophysiological adaptations associated with the diversification of the P. tuberosus - P. ahipa complex during the Mid-Holocene.
Riesch, Rüdiger; Reznick, David N; Plath, Martin; Schlupp, Ingo
2016-03-10
Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation.
Lara, José; Escudero González, Lorena; Ferrero, Marcela; Chong Díaz, Guillermo; Pedrós-Alió, Carlos; Demergasso, Cecilia
2012-05-01
Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.
Riesch, Rüdiger; Reznick, David N.; Plath, Martin; Schlupp, Ingo
2016-01-01
Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation. PMID:26960566
Reddy, Umesh K.; Abburi, Lavanya; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Cantrell, Robert; Vajja, Venkata Gopinath; Reddy, Rishi; Tomason, Yan R.; Levi, Amnon; Wehner, Todd C.; Nimmakayala, Padma
2015-01-01
Our genetic diversity study uses microsatellites of known map position to estimate genome level population structure and linkage disequilibrium, and to identify genomic regions that have undergone selection during watermelon domestication and improvement. Thirty regions that showed evidence of selective sweep were scanned for the presence of candidate genes using the watermelon genome browser (www.icugi.org). We localized selective sweeps in intergenic regions, close to the promoters, and within the exons and introns of various genes. This study provided an evidence of convergent evolution for the presence of diverse ecotypes with special reference to American and European ecotypes. Our search for location of linked markers in the whole-genome draft sequence revealed that BVWS00358, a GA repeat microsatellite, is the GAGA type transcription factor located in the 5′ untranslated regions of a structure and insertion element that expresses a Cys2His2 Zinc finger motif, with presumed biological processes related to chitin response and transcriptional regulation. In addition, BVWS01708, an ATT repeat microsatellite, located in the promoter of a DTW domain-containing protein (Cla002761); and 2 other simple sequence repeats that association mapping link to fruit length and rind thickness. PMID:25425675
Ombra, Maria Neve; d'Acierno, Antonio; Nazzaro, Filomena; Riccardi, Riccardo; Spigno, Patrizia; Zaccardelli, Massimo; Pane, Catello; Maione, Mena; Fratianni, Florinda
2016-01-01
Beans are important dietary components with versatile health benefits. We analysed the extracts of twelve ecotypes of Phaseolus vulgaris in order to determine their phenolic profiles, antioxidant activity, and the in vitro antiproliferative activity. Ultra-performance liquid chromatography with diode array detector (UPLC-DAD) admitted us to detect and quantify some known polyphenols, such as gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol. The antioxidant activity (AA) ranged from 1.568 ± 0.041 to 66.572 ± 3.197 mg necessary to inhibit the activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by 50% (EC 50 ). The extracts, except those obtained from the nonpigmented samples, were capable of inhibiting the proliferation of the human epithelial colorectal adenocarcinoma (Caco-2) cells, human breast cancer cells MCF-7, and A549 NSCLC cell line. Cultivars differed in composition and concentration of polyphenols including anthocyanins; cooking affected the antioxidant activity only marginally. Qualitative and quantitative differences in phenolic composition between the groups of beans influenced the biological activities; on the other hand, we did not find significant differences on the biological activities within the same variety, before and after cooking.
On the ecosystemic network of saliva in healthy young adults
Zaura, Egija; Brandt, Bernd W; Prodan, Andrei; Teixeira de Mattos, Maarten Joost; Imangaliyev, Sultan; Kool, Jolanda; Buijs, Mark J; Jagers, Ferry LPW; Hennequin-Hoenderdos, Nienke L; Slot, Dagmar E; Nicu, Elena A; Lagerweij, Maxim D; Janus, Marleen M; Fernandez-Gutierrez, Marcela M; Levin, Evgeni; Krom, Bastiaan P; Brand, Henk S; Veerman, Enno CI; Kleerebezem, Michiel; Loos, Bruno G; van der Weijden, G A; Crielaard, Wim; Keijser, Bart JF
2017-01-01
A dysbiotic state is believed to be a key factor in the onset of oral disease. Although oral diseases have been studied for decades, our understanding of oral health, the boundaries of a healthy oral ecosystem and ecological shift toward dysbiosis is still limited. Here, we present the ecobiological heterogeneity of the salivary ecosystem and relations between the salivary microbiome, salivary metabolome and host-related biochemical salivary parameters in 268 healthy adults after overnight fasting. Gender-specific differences in the microbiome and metabolome were observed and were associated with salivary pH and dietary protein intake. Our analysis grouped the individuals into five microbiome and four metabolome-based clusters that significantly related to biochemical parameters of saliva. Low salivary pH and high lysozyme activity were associated with high proportions of streptococcal phylotypes and increased membrane-lipid degradation products. Samples with high salivary pH displayed increased chitinase activity, higher abundance of Veillonella and Prevotella species and higher levels of amino acid fermentation products, suggesting proteolytic adaptation. An over-specialization toward either a proteolytic or a saccharolytic ecotype may indicate a shift toward a dysbiotic state. Their prognostic value and the degree to which these ecotypes are related to increased disease risk remains to be determined. PMID:28072421
Behr, Jürgen; Geissler, Andreas J; Preissler, Patrick; Ehrenreich, Armin; Angelov, Angel; Vogel, Rudi F
2015-10-01
The tolerance to hop compounds, which is mainly associated with inhibition of bacterial growth in beer, is a multi-factorial trait. Any approaches to predict the physiological differences between beer-spoiling and non-spoiling strains on the basis of a single marker gene are limited. We identified ecotype-specific genes related to the ability to grow in Pilsner beer via comparative genome sequencing. The genome sequences of four different strains of Lactobacillus brevis were compared, including newly established genomes of two highly hop tolerant beer isolates, one strain isolated from faeces and one published genome of a silage isolate. Gene fragments exclusively occurring in beer-spoiling strains as well as sequences only occurring in non-spoiling strains were identified. Comparative genomic arrays were established and hybridized with a set of L. brevis strains, which are characterized by their ability to spoil beer. As result, a set of 33 and 4 oligonucleotide probes could be established specifically detecting beer-spoilers and non-spoilers, respectively. The detection of more than one of these marker sequences according to a genetic barcode enables scoring of L. brevis for their beer-spoiling potential and can thus assist in risk evaluation in brewing industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lata, J C; Guillaume, K; Degrange, V; Abbadie, L; Lensi, R
2000-01-01
Previous studies have shown that Lamto savannah exhibits two different types of nitrogen cycle with high and low nitrification sites and suggested that the perennial grass Hyparrhenia diplandra is responsible for this duality at a subpopulation level, with one ecotype being thought to be able to inhibit nitrification. The present work aimed to investigate the relationships between nitrification and the roots of H. diplandra at two scales. (i) Site-scale experiments gave new insight into the hypothesized control of nitrification by H. diplandra tussocks: the two ecotypes exhibited opposite influences, inhibition in a low nitrification site (A) and stimulation in a high nitrification site (B). (ii) Decimetric-scale experiments demonstrated close negative or positive relationships (in sites A or B, respectively) between the roots and nitrification (in the 0-10 cm soil layer), showing an unexpectedly high sensitivity of the nitrification process to root density. In both soils, the correlation between the roots and nitrification decreased with depth and practically disappeared in the 20-30 cm soil layer (where the nitrification potential was found to be very low). Therefore, the impact of H. diplandra on nitrification may be viewed as an inhibition-stimulation balance. PMID:10787164
Maternal vernalization and vernalization-pathway genes influence progeny seed germination.
Auge, Gabriela A; Blair, Logan K; Neville, Hannah; Donohue, Kathleen
2017-10-01
Different life stages frequently respond to the same environmental cue to regulate development so that each life stage is matched to its appropriate season. We investigated how independently each life stage can respond to shared environmental cues, focusing on vernalization, in Arabidopsis thaliana plants. We first tested whether effects of rosette vernalization persisted to influence seed germination. To test whether genes in the vernalization flowering pathway also influence germination, we assessed germination of functional and nonfunctional alleles of these genes and measured their level of expression at different life stages in response to rosette vernalization. Rosette vernalization increased seed germination in diverse ecotypes. Genes in the vernalization flowering pathway also influenced seed germination. In the Columbia accession, functional alleles of most of these genes opposed the germination response observed in the ecotypes. Some genes influenced germination in a manner consistent with their known effects on FLOWERING LOCUS C gene regulation during the transition to flowering. Others did not, suggesting functional divergence across life stages. Despite persistent effects of environmental conditions across life stages, and despite pleiotropy of genes that affect both flowering and germination, the function of these genes can differ across life stages, potentially mitigating pleiotropic constraints and enabling independent environmental regulation of different life stages. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Shengke; Xie, Ruohan; Wang, Haixin
Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cdmore » sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.« less
Moen, Daniel S; Irschick, Duncan J; Wiens, John J
2013-12-22
Many clades contain ecologically and phenotypically similar species across continents, yet the processes generating this similarity are largely unstudied, leaving fundamental questions unanswered. Is similarity in morphology and performance across assemblages caused by evolutionary convergence or by biogeographic dispersal of evolutionarily conserved ecotypes? Does convergence to new ecological conditions erase evidence of past adaptation? Here, we analyse ecology, morphology and performance in frog assemblages from three continents (Asia, Australia and South America), assessing the importance of dispersal and convergent evolution in explaining similarity across regions. We find three striking results. First, species using the same microhabitat type are highly similar in morphology and performance across both clades and continents. Second, some species on different continents owe their similarity to dispersal and evolutionary conservatism (rather than evolutionary convergence), even over vast temporal and spatial scales. Third, in one case, an ecologically specialized ancestor radiated into diverse ecotypes that have converged with those on other continents, largely erasing traces of past adaptation to their ancestral ecology. Overall, our study highlights the roles of both evolutionary conservatism and convergence in explaining similarity in species traits over large spatial and temporal scales and demonstrates a statistical framework for addressing these questions in other systems.
Beauchamp, Vanessa B.; Walz, C.; Shafroth, P.B.
2009-01-01
Restoration of salt-affected soils is a global concern. In the western United States, restoration of salinized land, particularly in river valleys, often involves control of Tamarix, an introduced species with high salinity tolerance. Revegetation of hydrologically disconnected floodplains and terraces after Tamarix removal is often difficult because of limited knowledge regarding the salinity tolerance of candidate native species for revegetation. Additionally, Tamarix appears to be non-mycorrhizal. Extended occupation of Tamarix may deplete arbuscular mycorrhizal fungi in the soil, further decreasing the success of revegetation efforts. To address these issues, we screened 42 species, races, or ecotypes native to southwestern U.S. for salinity tolerance and mycorrhizal responsiveness. As expected, the taxa tested showed a wide range of responses to salinity and mycorrhizal fungi. This variation also occurred between ecotypes or races of the same species, indicating that seed collected from high-salinity reference systems is likely better adapted to harsh conditions than seed originating from less saline environments. All species tested had a positive or neutral response to mycorrhizal inoculation. We found no clear evidence that mycorrhizae increased salinity tolerance, but some species were so dependent on mycorrhizal fungi that they grew poorly at all salinity levels in pasteurized soil. ?? 2009 Elsevier B.V.
Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils.
VanInsberghe, David; Maas, Kendra R; Cardenas, Erick; Strachan, Cameron R; Hallam, Steven J; Mohn, William W
2015-11-01
The genus Bradyrhizobium has served as a model system for studying host-microbe symbiotic interactions and nitrogen fixation due to its importance in agricultural productivity and global nitrogen cycling. In this study, we identify a bacterial group affiliated with this genus that dominates the microbial communities of coniferous forest soils from six distinct ecozones across North America. Representative isolates from this group were obtained and characterized. Using quantitative population genomics, we show that forest soil populations of Bradyrhizobium represent ecotypes incapable of nodulating legume root hairs or fixing atmospheric nitrogen. Instead, these populations appear to be free living and have a greater potential for metabolizing aromatic carbon sources than their close symbiotic relatives. In addition, we identify fine-scaled differentiation between populations inhabiting neighboring soil layers that illustrate how diversity within Bradyrhizobium is structured by habitat similarity. These findings reconcile incongruent observations about this widely studied and important group of bacteria and highlight the value of ecological context to interpretations of microbial diversity and taxonomy. These results further suggest that the influence of this genus likely extends well beyond facilitating agriculture, especially as forest ecosystems are large and integral components of the biosphere. In addition, this study demonstrates how focusing research on economically important microorganisms can bias our understanding of the natural world.
Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils
VanInsberghe, David; Maas, Kendra R; Cardenas, Erick; Strachan, Cameron R; Hallam, Steven J; Mohn, William W
2015-01-01
The genus Bradyrhizobium has served as a model system for studying host–microbe symbiotic interactions and nitrogen fixation due to its importance in agricultural productivity and global nitrogen cycling. In this study, we identify a bacterial group affiliated with this genus that dominates the microbial communities of coniferous forest soils from six distinct ecozones across North America. Representative isolates from this group were obtained and characterized. Using quantitative population genomics, we show that forest soil populations of Bradyrhizobium represent ecotypes incapable of nodulating legume root hairs or fixing atmospheric nitrogen. Instead, these populations appear to be free living and have a greater potential for metabolizing aromatic carbon sources than their close symbiotic relatives. In addition, we identify fine-scaled differentiation between populations inhabiting neighboring soil layers that illustrate how diversity within Bradyrhizobium is structured by habitat similarity. These findings reconcile incongruent observations about this widely studied and important group of bacteria and highlight the value of ecological context to interpretations of microbial diversity and taxonomy. These results further suggest that the influence of this genus likely extends well beyond facilitating agriculture, especially as forest ecosystems are large and integral components of the biosphere. In addition, this study demonstrates how focusing research on economically important microorganisms can bias our understanding of the natural world. PMID:25909973
Wang, Dong-Wei; Peng, Xiao-Fang; Xie, Hui; Xu, Chun-Ling; Cheng, De-Qiang; Li, Jun-Yi; Wu, Wen-Jia; Wang, Ke
2016-12-02
The rice white tip nematode (RWTN), Aphelenchoides besseyi and the chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi are migratory plant parasitic nematodes that infect the aboveground parts of plants. In this research, Arabidopsis thaliana was infected by RWTN and CFN under indoor aseptic cultivation, and the nematodes caused recognizable symptoms in the leaves. Furthermore, RWTN and CFN completed their life cycles and proliferated. Therefore, A. thaliana was identified as a new host of RWTN and CFN. The optimum inoculum concentration for RWTN and CFN was 100 nematodes/plantlet, and the optimum inoculum times were 21 and 24 days, respectively. For different RWTN populations, the pathogenicity and reproduction rates were different in the A. thaliana Col-0 ecotype and were positively correlated. The optimum A. thaliana ecotypes were Col-0 and WS, which were the most susceptible to RWTN and CFN, respectively. Additionally, RWTN was ectoparasitic and CFN was ecto- and endoparasitic in A. thaliana. The RWTN and CFN migrated from inoculated leaves to the entire plantlet, and the number of nematodes in different parts of A. thaliana was not correlated with distance from the inoculum point. This is a detailed study of the behavior and infection process of foliar nematodes on A. thaliana.
Moen, Daniel S.; Irschick, Duncan J.; Wiens, John J.
2013-01-01
Many clades contain ecologically and phenotypically similar species across continents, yet the processes generating this similarity are largely unstudied, leaving fundamental questions unanswered. Is similarity in morphology and performance across assemblages caused by evolutionary convergence or by biogeographic dispersal of evolutionarily conserved ecotypes? Does convergence to new ecological conditions erase evidence of past adaptation? Here, we analyse ecology, morphology and performance in frog assemblages from three continents (Asia, Australia and South America), assessing the importance of dispersal and convergent evolution in explaining similarity across regions. We find three striking results. First, species using the same microhabitat type are highly similar in morphology and performance across both clades and continents. Second, some species on different continents owe their similarity to dispersal and evolutionary conservatism (rather than evolutionary convergence), even over vast temporal and spatial scales. Third, in one case, an ecologically specialized ancestor radiated into diverse ecotypes that have converged with those on other continents, largely erasing traces of past adaptation to their ancestral ecology. Overall, our study highlights the roles of both evolutionary conservatism and convergence in explaining similarity in species traits over large spatial and temporal scales and demonstrates a statistical framework for addressing these questions in other systems. PMID:24174109
The unusual reproductive system of head and body lice (Pediculus humanus).
DE LA Filia, A G; Andrewes, S; Clark, J M; Ross, L
2018-06-01
Insect reproduction is extremely variable, but the implications of alternative genetic systems are often overlooked in studies on the evolution of insecticide resistance. Both ecotypes of Pediculus humanus (Phthiraptera: Pediculidae), the human head and body lice, are human ectoparasites, the control of which is challenged by the recent spread of resistance alleles. The present study conclusively establishes for the first time that both head and body lice reproduce through paternal genome elimination (PGE), an unusual genetic system in which males transmit only their maternally derived chromosomes. Here, we investigate inheritance patterns of parental genomes using a genotyping approach across families of both ecotypes and show that heterozygous males exclusively or preferentially pass on one allele only, whereas females transmit both in a Mendelian fashion. We do however observe occasional transmission of paternal chromosomes through males, representing the first known case of PGE in which whole-genome meiotic drive is incomplete. Finally, we discuss the potential implications of this finding for the evolution of resistance and invite the development of new theoretical models of how this knowledge might contribute to increasing the success of pediculicide-based management schemes. © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.
Sparkman, Amanda M; Bronikowski, Anne M; Williams, Shelby; Parsai, Shikha; Manhart, Whitney; Palacios, Maria G
2014-08-01
Glucocorticoids and leukocyte ratios have become the most widespread variables employed to test hypotheses regarding physiological stress in wild and captive vertebrates. Little is known, however, regarding how these two indices of stress covary in response to stressors, their repeatability within individuals, and differences in response time upon capture. Furthermore, few studies compare stress indices between captive and wild populations, to assess potential alteration of stress physiology in captivity. To address these issues, we examined corticosterone (CORT) and heterophil to lymphocyte (H:L) ratios in two ecotypes of the garter snake Thamnophis elegans. We found that CORT and H:L ratios were not correlated within individuals, and both variables showed little or no repeatability over a period of months. CORT levels, but not H:L ratios, were higher for individuals sampled after 10min from the time of capture. However, both variables showed similar patterns of ecotypic variation, and both increased over time in gravid females maintained in captivity for four months. We suggest that CORT and H:L ratios are both useful, but disparate indices of stress in this species, and may show complex relationships to each other and to ecological and anthropogenic variables. Copyright © 2014 Elsevier Inc. All rights reserved.
Cissoko, Mamadou; Boisnard, Arnaud; Rodenburg, Jonne; Press, Malcolm C; Scholes, Julie D
2011-12-01
Striga hermonthica and S. asiatica are root parasitic weeds that infect the major cereal crops of sub-Saharan Africa causing severe losses in yield. The interspecific upland NEw RICe for Africa (NERICA) cultivars are popular amongst subsistence farmers, but little is known about their post-attachment resistance against Striga. Here, we evaluate the post-attachment resistance levels of the NERICA cultivars and their parents against ecotypes of S. hermonthica and S.asiatica, characterize the phenotype of the resistance mechanisms and determine the effect of Striga on host biomass. Some NERICA cultivars showed good broad-spectrum resistance against several Striga ecotypes, whereas others showed intermediate resistance or were very susceptible. The phenotype of a resistant interaction was often characterized by an inability of the parasite to penetrate the endodermis. Moreover, some parasites formed only a few connections to the host xylem, grew slowly and remained small. The most resistant NERICA cultivars were least damaged by Striga, although even a small number of parasites caused a reduction in above-ground host biomass. The elucidation of the molecular genetic basis of the resistance mechanisms and tolerance would allow the development of cultivars with multiple, durable resistance for use in farmers' fields. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Kaufmann, J; Lenz, T L; Kalbe, M; Milinski, M; Eizaguirre, C
2017-05-01
Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three-spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Growing Season Definition and Use in Wetland Delineation: A Literature Review
2010-08-01
1999.) Location (Source) Species Date of First Flower Eastern Massachusetts ( Debbie Flanders, personal communication, 1998) Acer rubrum April 8–14...obvious stunting of growth but no mortality. The species order of most-to-least recovery of wetland bottomland trees is as follows: river birch (Betula...silver birch (Betula pendula) ecotypes. Physiologia Plantarum 117: 206–212. Lipson, D. A., and R. K. Monson. 1998. Plant-microbe competition for
Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P; Rai, Vandna; Singh, Ashok K; Singh, Nagendra K
2018-01-01
Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India's huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon , and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated 'Pro-Indica,' 'Pro-Aus,' and 'Mid-Gangetic,' which showed poor correspondence with the morpho - taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the 'Pro-Indica' and 'Pro-Aus' sub-populations across agro-climatic zones, indicating a more fundamental grouping based on the ancestry closely related to 'Indica' and 'Aus' groups of rice cultivars. The Pro-Indica population has substantial presence in the Eastern Himalayan Region and Lower Gangetic Plains, whereas 'Pro-Aus' sub-population was predominant in the Upper Gangetic Plains, Western Himalayan Region, Gujarat Plains and Hills, and Western Coastal Plains. In contrast 'Mid-Gangetic' population was largely concentrated in the Mid Gangetic Plains. The information presented here will be useful in the utilization of wild rice resources for varietal improvement.
Mdladla, K; Dzomba, E F; Huson, H J; Muchadeyi, F C
2016-08-01
The sustainability of goat farming in marginal areas of southern Africa depends on local breeds that are adapted to specific agro-ecological conditions. Unimproved non-descript goats are the main genetic resources used for the development of commercial meat-type breeds of South Africa. Little is known about genetic diversity and the genetics of adaptation of these indigenous goat populations. This study investigated the genetic diversity, population structure and breed relations, linkage disequilibrium, effective population size and persistence of gametic phase in goat populations of South Africa. Three locally developed meat-type breeds of the Boer (n = 33), Savanna (n = 31), Kalahari Red (n = 40), a feral breed of Tankwa (n = 25) and unimproved non-descript village ecotypes (n = 110) from four goat-producing provinces of the Eastern Cape, KwaZulu-Natal, Limpopo and North West were assessed using the Illumina Goat 50K SNP Bead Chip assay. The proportion of SNPs with minor allele frequencies >0.05 ranged from 84.22% in the Tankwa to 97.58% in the Xhosa ecotype, with a mean of 0.32 ± 0.13 across populations. Principal components analysis, admixture and pairwise FST identified Tankwa as a genetically distinct population and supported clustering of the populations according to their historical origins. Genome-wide FST identified 101 markers potentially under positive selection in the Tankwa. Average linkage disequilibrium was highest in the Tankwa (r(2) = 0.25 ± 0.26) and lowest in the village ecotypes (r(2) range = 0.09 ± 0.12 to 0.11 ± 0.14). We observed an effective population size of <150 for all populations 13 generations ago. The estimated correlations for all breed pairs were lower than 0.80 at marker distances >100 kb with the exception of those in Savanna and Tswana populations. This study highlights the high level of genetic diversity in South African indigenous goats as well as the utility of the genome-wide SNP marker panels in genetic studies of these populations. © 2016 Stichting International Foundation for Animal Genetics.
Jourand, Philippe; Ducousso, Marc; Reid, Robert; Majorel, Clarisse; Richert, Clément; Riss, Jennifer; Lebrun, Michel
2010-10-01
Ectomycorrhizal (ECM) Pisolithus albus (Cooke & Massee), belonging to the ultramafic ecotype isolated in nickel-rich serpentine soils from New Caledonia (a tropical hotspot of biodiversity) and showing in vitro adaptive nickel tolerance, were inoculated to Eucalyptus globulus Labill used as a Myrtaceae plant-host model to study ectomycorrhizal symbiosis. Plants were then exposed to a nickel (Ni) dose-response experiment with increased Ni treatments up to 60 mg kg( - )(1) soil as extractable Ni content in serpentine soils. Results showed that plants inoculated with ultramafic ECM P. albus were able to tolerate high and toxic concentrations of Ni (up to 60 μg g( - )(1)) while uninoculated controls were not. At the highest Ni concentration tested, root growth was more than 20-fold higher and shoot growth more than 30-fold higher in ECM plants compared with control plants. The improved growth in ECM plants was associated with a 2.4-fold reduction in root Ni concentration but a massive 60-fold reduction in transfer of Ni from root to shoots. In vitro, P. albus strains could withstand high Ni concentrations but accumulated very little Ni in its tissue. The lower Ni uptake by mycorrhizal plants could not be explained by increased release of metal-complexing chelates since these were 5- to 12-fold lower in mycorrhizal plants at high Ni concentrations. It is proposed that the fungal sheath covering the plant roots acts as an effective barrier to limit transfer of Ni from soil into the root tissue. The degree of tolerance conferred by the ultramafic P. albus isolates to growth of the host tree species is considerably greater than previously reported for other ECM. The primary mechanisms underlying this improved growth were identified as reduced Ni uptake into the roots and markedly reduced transfer from root to shoot in mycorrhizal plants. The fact that these positive responses were observed at Ni concentrations commonly observed in serpentinic soils suggests that ultramafic ecotypes of P. albus could play an important role in the adaptation of tree species to soils containing high concentrations of heavy metals and aid in strategies for ecological restoration.
A pollinator shift explains floral divergence in an orchid species complex in South Africa.
Peter, Craig I; Johnson, Steven D
2014-01-01
Floral diversification driven by shifts between pollinators has been one of the key explanations for the radiation of angiosperms. According to the Grant-Stebbins model of pollinator-driven speciation, these shifts result in morphologically distinct 'ecotypes' which may eventually become recognizable as species. The current circumscription of the food-deceptive southern African orchid Eulophia parviflora encompasses a highly variable monophyletic species complex. In this study, two forms were identified within this complex that differ in distribution, floral morphology, scent chemistry and phenology, and a test was made of whether these differences represent adaptations for different pollinators. Multivariate analysis of floral and vegetative traits revealed that there are at least two discrete morphological forms in the species complex. Field observations revealed that each form is pollinated by a different insect species, and thus represent distinct ecotypes. The early-flowering coastal form which has long spurs and floral scent dominated by sesquiterpene compounds is pollinated exclusively by the long-tongued bee Amegilla fallax (Apidae, Anthophorinae), while the late-flowering inland form with short spurs and floral scent dominated by benzenoid compounds is pollinated exclusively by the beetle Cyrtothyrea marginalis (Cetoniinae; Scarabaeidae). Choice experiments in a Y-maze olfactometer showed that beetles are preferentially attracted to the scent of the short-spurred form. A spur-shortening experiment showed that long spurs are required for effective pollination of the bee-pollinated form. Although it was initially thought likely that divergence occurred across a geographical pollinator gradient, plants of the long-spurred form were effectively pollinated when transplanted to an inland locality outside the natural coastal range of this form. Thus, the underlying geographical basis for the evolution of ecotypes in the E. parviflora complex remains uncertain, although early flowering in the long-spurred form to exploit the emergence of naïve bees may restrict this form to coastal areas where there is no frost that would damage flower buds. Later flowering of the short-spurred form coincides closely with the emergence of the pollinating beetles following winter frosts. This study identifies a shift between bee and beetle pollination as the main driver of floral divergence in an orchid species complex. Floral scent and spur length appear to be key traits in mediating this evolutionary transition.
Character displacement and the evolution of niche complementarity in a model biofilm community.
Ellis, Crystal N; Traverse, Charles C; Mayo-Smith, Leslie; Buskirk, Sean W; Cooper, Vaughn S
2015-02-01
Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Worbes, Martin; Blanchart, Sofie; Fichtler, Esther
2013-05-01
Drought tolerance is a key factor for the establishment and survival of tree species in tropical ecosystems. Specific mechanisms of drought resistance can be grouped into four functional ecotypes based on differences in leaf fall behavior: deciduous, brevi-deciduous, stem succulent and evergreen. To identify the key factors influencing phenology and cambial activity and thus drought tolerance, we tested the stomatal conductance, leaf water potential and stable carbon isotopes in the leaves and wood of 12 species from a tropical dry forest in Costa Rica. With wood anatomical techniques, we further studied seasonal cambial activity and a suite of wood traits related to water transport for each of the functional ecotypes. Using a principal component analysis, we identified two groups of variables that can be related to (i) hydraulic conductivity and (ii) control of transpiration and water loss. Hydraulic conductivity is controlled by vessel size as the limiting variable, water potential as the driving force and wood density as the stabilizing factor of the anatomical structure of an effective water transport system. Stomatal control plays a major role in terms of water loss or saving and is the dominant factor for differences in phenological behavior. Stem succulent species in particular developed a rarely identified but highly effective strategy against drought stress, which makes it a successful pioneer species in tropical dry forests.
Hou, Dandi; Wang, Kai; Liu, Ting; Wang, Haixin; Lin, Zhi; Qian, Jie; Lu, Lingli; Tian, Shengke
2017-05-16
Understanding the strategies that the roots of hyperaccumulating plants use to extract heavy metals from soils is important for optimizing phytoremediation. The rhizosphere characteristics of Sedum alfredii, a hyperaccumulator, were investigated 6 months after it had been planted in weathered field soils contaminated with 5.8 μg of Cd g -1 , 1985.1 μg of Zn g -1 , 667.5 μg of Pb g -1 , and 698.8 μg of Cu g -1 . In contrast with the non-hyperaccumulating ecotype (NHE), the hyperaccumulating ecotype (HE) of S. alfredii was more tolerant to the metals, and higher levels of Cd and Zn accumulated. The HE was characterized by a unique rhizosphere, including extensive root systems, a reduced soil pH, a higher metal bioavailability, and increased rhizomicrobial activity. The bioavailability of metals was significantly correlated with the HE's unique bacterial communities (P < 0.005). The HE harbored abundant Streptomyces (9.43%, family Streptomycetaceae), Kribbella (1.08%, family Nocardioidaceae), and an unclassified genus (1.09%, family Nocardioidaceae) in its rhizosphere, a composition that differed from that of the NHE. PICRUSt analysis predicted high relative abundances of imputed functional profiles in the HE rhizosphere related to membrane transport and amino acid metabolism. This study reveals the rhizosphere characteristics, particularly the unique bacterial rhizobiome of a hyperaccumulator, that might provide a new approach to facilitating heavy metal phytoextraction.
Liu, Hui-Liang; Zhang, Dao-Yuan; Duan, Shi-Min; Wang, Xi-Yong; Song, Ming-Fang
2014-01-01
Diaspore characteristics of 22 families, including 102 genera and 150 species (55 represented by seeds and 95 by fruits) from the Gurbantunggut Desert were analyzed for diaspore biological characteristics (mass, shape, color, and appendage type). The diaspore mass and shape were significantly different in phylogeny group (APG) and dispersal syndromes; vegetative periods significantly affected diaspore mass, but not diaspore shape; and ecotypes did not significantly affect diaspore mass and shape, but xerophyte species had larger diaspore mass than mesophyte species. Unique stepwise ANOVA results showed that variance in diaspore mass and shape among these 150 species was largely dependent upon phylogeny and dispersal syndromes. Therefore, it was suggested that phylogeny may constrain diaspore mass, and as dispersal syndromes may be related to phylogeny, they also constrained diaspore mass and shape. Diaspores of 85 species (56.67%) had appendages, including 26 with wings/bracts, 18 with pappus/hair, 14 with hooks/spines, 10 with awns, and 17 with other types of appendages. Different traits (mass, shape, color, appendage, and dispersal syndromes) of diaspore decided plants forming different adapted strategies in the desert. In summary, the diaspore characteristics were closely related with phylogeny, vegetative periods, dispersal syndromes, and ecotype, and these characteristics allowed the plants to adapt to extreme desert environments. PMID:24605054
Conlisk, Erin; Castanha, Cristina; Germino, Matthew; Veblen, Thomas T.; Smith, Jeremy M.; Moyes, Andrew B.; Kueppers, Lara M.
2018-01-01
Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had greater recruitment to their third year (by 323%) than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating reduced (by 49%) recruitment to the third year of both low- and high-elevation seed sources across the elevation gradient, while watering alleviated some of the negative effects of heating (108% increase in watered plots). Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid post-fire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change.
NASA Astrophysics Data System (ADS)
Novaczek, I.; Lubbers, G. W.; Breeman, A. M.
1990-09-01
Three species of Arctic to cold-temperate amphi-Atlantic algae, all occurring also in the North Pacific, were tested for growth and/or survival at temperatures of -20 to 30°C. When isolates from both western and eastern Atlantic shores were tested side-by-side, it was found that thermal ecotypes may occur in such Arctic algae. Chaetomorpha melagonium was the most eurythermal of the 3 species. Isolates of this alga were alike in temperature tolerance and growth rate but Icelandic plants were more sensitive to the lethal temperature of 25°C than were more southerly isolates from both east and west. With regard to Devaleraea ramentacea, one Canadian isolate grew extraordinarily well at -2 and 0°C, and all tolerated temperatures 2 3°C higher than the lethal limit (18 20°C) of isolates from Europe. Concerning Phycodrys rubens, both eastern and western isolates died at 20°C but European plants tolerated the lethal high temperature longer, were more sensitive to freezing, and attained more rapid growth at optimal temperatures. The intertidal species, C. melagonium and D. ramentacea, both survived freezing at -5 and -20°C, at least for short time periods. C. melagonium was more susceptible than D. ramentacea to desiccation. Patterns of thermal tolerance may provide insight into the evolutionary history of seaweed species.
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
Parrish, David J.; Wolf, Dale D.
2014-01-01
Switchgrass (Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November) and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended. PMID:25105170
Geographic patterns of genetic differentiation among killer whales in the northern North Pacific.
Parsons, Kim M; Durban, John W; Burdin, Alexander M; Burkanov, Vladimir N; Pitman, Robert L; Barlow, Jay; Barrett-Lennard, Lance G; LeDuc, Richard G; Robertson, Kelly M; Matkin, Craig O; Wade, Paul R
2013-01-01
The difficulties associated with detecting population boundaries have long constrained the conservation and management of highly mobile, wide-ranging marine species, such as killer whales (Orcinus orca). In this study, we use data from 26 nuclear microsatellite loci and mitochondrial DNA sequences (988bp) to test a priori hypotheses about population subdivisions generated from a decade of killer whale surveys across the northern North Pacific. A total of 462 remote skin biopsies were collected from wild killer whales primarily between 2001 and 2010 from the northern Gulf of Alaska to the Sea of Okhotsk, representing both the piscivorous "resident" and the mammal-eating "transient" (or Bigg's) killer whales. Divergence of the 2 ecotypes was supported by both mtDNA and microsatellites. Geographic patterns of genetic differentiation were supported by significant regions of genetic discontinuity, providing evidence of population structuring within both ecotypes and corroborating direct observations of restricted movements of individual whales. In the Aleutian Islands (Alaska), subpopulations, or groups with significantly different mtDNA and microsatellite allele frequencies, were largely delimited by major oceanographic boundaries for resident killer whales. Although Amchitka Pass represented a major subdivision for transient killer whales between the central and western Aleutian Islands, several smaller subpopulations were evident throughout the eastern Aleutians and Bering Sea. Support for seasonally sympatric transient subpopulations around Unimak Island suggests isolating mechanisms other than geographic distance within this highly mobile top predator.
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemus, Rocky; Parrish, David J.; Wolf, Dale D.
Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November)more » and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended.« less
Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA
Lemus, Rocky; Parrish, David J.; Wolf, Dale D.
2014-01-01
Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November)more » and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended.« less
Lenz, Tobias L; Eizaguirre, Christophe; Rotter, Björn; Kalbe, Martin; Milinski, Manfred
2013-02-01
Understanding the extent of local adaptation in natural populations and the mechanisms that allow individuals to adapt to their native environment is a major avenue in molecular ecology research. Evidence for the frequent occurrence of diverging ecotypes in species that inhabit multiple ecological habitats is accumulating, but experimental approaches to understanding the biological pathways as well as the underlying genetic mechanisms are still rare. Parasites are invoked as one of the major selective forces driving evolution and are themselves dependent on the ecological conditions in a given habitat. Immunological adaptation to local parasite communities is therefore expected to be a key component of local adaptation in natural populations. Here, we use next-generation sequencing technology to compare the transcriptome-wide response of experimentally infected three-spined sticklebacks from a lake and a river population, which are known to evolve under selection by distinct parasite communities. By comparing overall gene expression levels as well as the activation of functional pathways in response to parasite exposure, we identified potential differences between the two stickleback populations at several levels. Our results suggest locally adapted patterns of gene regulation in response to parasite exposure, which may reflect different local optima in the trade-off between the benefits and the disadvantages of mounting an immune response because of quantitative differences of the local parasite communities. © 2012 Blackwell Publishing Ltd.
Palacios, Maria G; Cunnick, Joan E; Bronikowski, Anne M
2013-01-01
The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.
2014-12-18
permissions.php Open Access Insect Physiology 2015:5 1–12 Open Access Insect Physiology Dovepress submit your manuscript | www.dovepress.com Dovepress 1 O r I...markers to identify ecotypes in different populations of plants,3,4 and animals, including insects and mosquitoes.5–13 The critical role of NADH in...article has been viewed This article was published in the following Dove Press journal: Open Access Insect Physiology 18 December 2014 Report
Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii.
Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick
2011-12-01
Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.
Schweizer, Rena M; Robinson, Jacqueline; Harrigan, Ryan; Silva, Pedro; Galverni, Marco; Musiani, Marco; Green, Richard E; Novembre, John; Wayne, Robert K
2016-01-01
In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.
Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. In this study, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had more than three-fold greater recruitment to their third year than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low- and high-elevation seed sourcesmore » across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. In conclusion, our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change.« less
Xiao, Xiyuan; Chen, Tongbin; An, Zhizhuang; Lei, Mei; Huang, Zechun; Liao, Xiaoyong; Liu, Yingru
2008-01-01
Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (< or = 20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.
Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives
Schlaeppi, Klaus; Dombrowski, Nina; Oter, Ruben Garrido; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul
2014-01-01
Plants host at the contact zone with soil a distinctive root-associated bacterial microbiota believed to function in plant nutrition and health. We investigated the diversity of the root microbiota within a phylogenetic framework of hosts: three Arabidopsis thaliana ecotypes along with its sister species Arabidopsis halleri and Arabidopsis lyrata, as well as Cardamine hirsuta, which diverged from the former ∼35 Mya. We surveyed their microbiota under controlled environmental conditions and of A. thaliana and C. hirsuta in two natural habitats. Deep 16S rRNA gene profiling of root and corresponding soil samples identified a total of 237 quantifiable bacterial ribotypes, of which an average of 73 community members were enriched in roots. The composition of this root microbiota depends more on interactions with the environment than with host species. Interhost species microbiota diversity is largely quantitative and is greater between the three Arabidopsis species than the three A. thaliana ecotypes. Host species-specific microbiota were identified at the levels of individual community members, taxonomic groups, and whole root communities. Most of these signatures were observed in the phylogenetically distant C. hirsuta. However, the branching order of host phylogeny is incongruent with interspecies root microbiota diversity, indicating that host phylogenetic distance alone cannot explain root microbiota diversification. Our work reveals within 35 My of host divergence a largely conserved and taxonomically narrow root microbiota, which comprises stable community members belonging to the Actinomycetales, Burkholderiales, and Flavobacteriales. PMID:24379374
Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii.
Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Li, Ting-qiang; He, Zhen-li
2009-04-01
Sedum alfredii is a well known cadmium (Cd) hyperaccumulator native to China; however, the mechanism behind its hyperaccumulation of Cd is not fully understood. Through several hydroponic experiments, characteristics of Cd uptake and translocation were investigated in the hyperaccumulating ecotype (HE) of S. alfredii in comparison with its non-hyperaccumulating ecotype (NHE). The results showed that at Cd level of 10 microM measured Cd uptake in HE was 3-4 times higher than the implied Cd uptake calculated from transpiration rate. Furthermore, inhibition of transpiration rate in the HE has no essential effect on Cd accumulation in shoots of the plants. Low temperature treatment (4 degrees C) significantly inhibited Cd uptake and reduced upward translocation of Cd to shoots for 9 times in HE plants, whereas no such effect was observed in NHE. Cadmium concentration was 3-4-fold higher in xylem sap of HE, as compared with that in external uptake solution, whereas opposite results were obtained for NHE. Cadmium concentration in xylem sap of HE was significantly reduced by the addition of metabolic inhibitors, carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), in the uptake solutions, whereas no such effect was noted in NHE. These results suggest that Cd uptake and translocation is an active process in plants of HE S. alfredii, symplastic pathway rather than apoplastic bypass contributes greatly to root uptake, xylem loading and translocation of Cd to the shoots of HE, in comparison with the NHE plants.
Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; ...
2017-07-26
Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. In this study, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had more than three-fold greater recruitment to their third year than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low- and high-elevation seed sourcesmore » across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. In conclusion, our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change.« less
McEwen, Jamie R; Vamosi, Jana C; Rogers, Sean M
2013-01-01
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.
The Potential of Cellulosic Ethanol Production from Grasses in Thailand
Wongwatanapaiboon, Jinaporn; Kangvansaichol, Kunn; Burapatana, Vorakan; Inochanon, Ratanavalee; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Chulalaksananukul, Warawut
2012-01-01
The grasses in Thailand were analyzed for the potentiality as the alternative energy crops for cellulosic ethanol production by biological process. The average percentage composition of cellulose, hemicellulose, and lignin in the samples of 18 types of grasses from various provinces was determined as 31.85–38.51, 31.13–42.61, and 3.10–5.64, respectively. The samples were initially pretreated with alkaline peroxide followed by enzymatic hydrolysis to investigate the enzymatic saccharification. The total reducing sugars in most grasses ranging from 500–600 mg/g grasses (70–80% yield) were obtained. Subsequently, 11 types of grasses were selected as feedstocks for the ethanol production by simultaneous saccharification and cofermentation (SSCF). The enzymes, cellulase and xylanase, were utilized for hydrolysis and the yeasts, Saccharomyces cerevisiae and Pichia stipitis, were applied for cofermentation at 35°C for 7 days. From the results, the highest yield of ethanol, 1.14 g/L or 0.14 g/g substrate equivalent to 32.72% of the theoretical values was obtained from Sri Lanka ecotype vetiver grass. When the yields of dry matter were included in the calculations, Sri Lanka ecotype vetiver grass gave the yield of ethanol at 1,091.84 L/ha/year, whereas the leaves of dwarf napier grass showed the maximum yield of 2,720.55 L/ha/year (0.98 g/L or 0.12 g/g substrate equivalent to 30.60% of the theoretical values). PMID:23097596
Frequency dependence limits divergent evolution by favouring rare immigrants over residents.
Bolnick, Daniel I; Stutz, William E
2017-06-08
Two distinct forms of natural selection promote adaptive biological diversity. Divergent selection occurs when different environments favour different phenotypes, leading to increased differences between populations. Negative frequency-dependent selection occurs when rare variants within a population are favoured over common ones, increasing diversity within populations. These two diversifying forces promote genetic variation at different spatial scales, and may act in opposition, but their relative effects remain unclear because they are rarely measured concurrently. Here we show that negative frequency-dependent selection within populations can favor rare immigrants over locally adapted residents. We reciprocally transplanted lake and stream ecotypes of threespine stickleback into lake and stream habitats, while manipulating the relative abundance of residents versus immigrants. We found negative frequency-dependence: survival was highest for the locally rare ecotype, rather than natives. Also, individuals with locally rare major histocompatibility complex (MHC) class IIb genotypes were infected by fewer parasites. This negative frequency-dependent selection will tend to favour rare immigrants over common residents, amplifying the effect of migration and undermining the efficacy of divergent natural selection to drive population differences. The only signal of divergent selection was a tendency for foreign fish to have higher parasite loads than residents, after controlling for MHC genotype rarity. Frequency-dependent ecological interactions have long been thought to promote speciation. Our results suggest a more nuanced view in which negative frequency dependence alters the fate of migrants to promote or constrain evolutionary divergence between populations.
Multigene analysis suggests ecological speciation in the fungal pathogen Claviceps purpurea
DOUHAN, G. W.; SMITH, M. E.; HUYRN, K. L.; WESTBROOK, A.; Beerli, P.; FISHER, A. J.
2008-01-01
Claviceps purpurea is an important pathogen of grasses and source of novel chemical compounds. Three groups within this species (G1, G2, and G3) have been recognized based on habitat association, sclerotia and conidia morphology, and alkaloid production. These groups have further been supported by RAPD and AFLP markers, suggesting this species may be more accurately described as a species complex. However, all divergent ecotypes can coexist in sympatric populations with no obvious physical barriers to prevent gene flow. In this study, we used both phylogenetic and population genetic analyses to test for speciation within C. purpurea using DNA sequences from ITS, a RAS-like locus, and a portion of beta-tubulin. The G1 types are significantly divergent from the G2/G3 types based on each of the three loci and the combined dataset, whereas the G2/G3 types are more integrated with one another. Although the G2 and G3 lineages have not diverged as much as the G1 lineage based on DNA sequence data, the use of three DNA loci does reliably separate the G2 and G3 lineages. However, the population genetic analyses strongly suggest little to no gene flow occurring between the different ecotypes and we argue that this process is driven by adaptations to ecological habitats; G1 isolates are associated with terrestrial grasses, G2 isolates are found in wet and shady environments, and G3 isolates are found in salt marsh habitats. PMID:18373531
Multiscale control of flooding and riparian-forest composition in Lower Michigan, USA.
Baker, Matthew E; Wiley, Michael J
2009-01-01
Despite general agreement that river-valley hydrology shapes riparian ecosystems, relevant processes are difficult to distinguish and often inadequately specified in riparian studies. We hypothesize that physical constraints imposed by broad-scale watershed characteristics and river valleys modify local site conditions in a predictable and probabilistic fashion. To test this hypothesis, we employ a series of structural equations that decompose occurrence of riparian ecotypes into regional temperature, catchment storm response, valley hydraulics, and local site wetness via a priori specification of factor structure and ask (1) Is there evidence for multiscale hydrologic control of riparian diversity across Lower Michigan? (2) Do representations of key constraints on flood dynamics distinguish regional patterns of riparian vegetation? (3) How important are these effects? Cross-correlation among geospatial predictors initially obscured much of the variation revealed through analysis of semipartial variance. Causal relationships implied by our model fit with observed variation in riparian conditions (chi-square P = 0.43) and accounted for between 84% and 99% of the occurrence probability of five riparian ecotypes at 94 locations. Results suggest strong variation in the effects of regional climate, and both the relative importance and spatial scale of hydrologic factors influencing riparian vegetation through explicit quantification of relative flood frequency, duration, intensity, and relative overall inundation. Although climate and hydrology are not the only determinants of riparian conditions, interactions of hydrologic sourcing and flood dynamics described by our spatial models drive a significant portion of the variation in riparian ecosystem character throughout Lower Michigan, USA.
Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass
Abeynayake, Shamila W.; Etzerodt, Thomas P.; Jonavičienė, Kristina; Byrne, Stephen; Asp, Torben; Boelt, Birte
2015-01-01
Perennial ryegrass (Lolium perenne L.) produces high levels of fructans as a mixture of oligosaccharides and polysaccharides with different degrees of polymerization (DP). The present study describes the analysis of the compositional changes in the full spectrum of fructans, fructan distribution between above ground biomass (top) and the roots, and the transcription of candidate genes involved in fructan metabolism during cold acclimation in perennial ryegrass variety “Veyo” and ecotype “Falster” from distinct geographical origins. We observed changes in fructan composition and induction of low-DP fructans, especially DP = 4, in both the top and the roots of “Veyo” and “Falster” in response to low-temperature stress. The accumulation of DP > 50 fructans was only apparent in the top tissues where the Lp1-FFT expression is higher compared to the roots in both “Veyo” and “Falster.” Our results also show the accumulation and depolymerization of fructans with different DP, together with the induction of genes encoding fructosyltransferases and fructan exohydrolases in both “Veyo” and “Falster” during cold acclimation, supporting the hypothesis that fructan synthesis and depolymerization occurring simultaneously. The ecotype “Falster,” adapted to cold climates, increased total fructan content and produced more DP > 7 fructans in the roots than the variety “Veyo,” adapted to warmer climates. This indicates that high-DP fructan accumulation in roots may be an adaptive trait for plant recovery after abiotic stresses. PMID:26029229
Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F
2012-01-01
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.
Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F.
2012-01-01
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations. PMID:22905171
Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P.; Rai, Vandna; Singh, Ashok K.; Singh, Nagendra K.
2018-01-01
Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India’s huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated ‘Pro-Indica,’ ‘Pro-Aus,’ and ‘Mid-Gangetic,’ which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the ‘Pro-Indica’ and ‘Pro-Aus’ sub-populations across agro-climatic zones, indicating a more fundamental grouping based on the ancestry closely related to ‘Indica’ and ‘Aus’ groups of rice cultivars. The Pro-Indica population has substantial presence in the Eastern Himalayan Region and Lower Gangetic Plains, whereas ‘Pro-Aus’ sub-population was predominant in the Upper Gangetic Plains, Western Himalayan Region, Gujarat Plains and Hills, and Western Coastal Plains. In contrast ‘Mid-Gangetic’ population was largely concentrated in the Mid Gangetic Plains. The information presented here will be useful in the utilization of wild rice resources for varietal improvement. PMID:29467785
NASA Technical Reports Server (NTRS)
Ridd, M. K.; Ramsey, R. D.; Douglass, G. E.; Merola, J. A.
1984-01-01
LANDSAT MSS digital data were utilized to identify vegetation types in an area of Battle Mountain SE in northern Nevada. Ways in which terrain data may improve spectral classification were investigated. The basic data set was a CCT of LANDSAT scene 82233617450, dated 15 June 1981. Seventeen ecotypic classifications were identified in the study area on the basis of field investigations. The percent cover by life form and non-living material for the 17 classes is summarized along with the percent cover by species for the 17 classes.
Geographic and temporal dynamics of a global radiation and diversification in the killer whale.
Morin, Phillip A; Parsons, Kim M; Archer, Frederick I; Ávila-Arcos, María C; Barrett-Lennard, Lance G; Dalla Rosa, Luciano; Duchêne, Sebastián; Durban, John W; Ellis, Graeme M; Ferguson, Steven H; Ford, John K; Ford, Michael J; Garilao, Cristina; Gilbert, M Thomas P; Kaschner, Kristin; Matkin, Craig O; Petersen, Stephen D; Robertson, Kelly M; Visser, Ingrid N; Wade, Paul R; Ho, Simon Y W; Foote, Andrew D
2015-08-01
Global climate change during the Late Pleistocene periodically encroached and then released habitat during the glacial cycles, causing range expansions and contractions in some species. These dynamics have played a major role in geographic radiations, diversification and speciation. We investigate these dynamics in the most widely distributed of marine mammals, the killer whale (Orcinus orca), using a global data set of over 450 samples. This marine top predator inhabits coastal and pelagic ecosystems ranging from the ice edge to the tropics, often exhibiting ecological, behavioural and morphological variation suggestive of local adaptation accompanied by reproductive isolation. Results suggest a rapid global radiation occurred over the last 350 000 years. Based on habitat models, we estimated there was only a 15% global contraction of core suitable habitat during the last glacial maximum, and the resources appeared to sustain a constant global effective female population size throughout the Late Pleistocene. Reconstruction of the ancestral phylogeography highlighted the high mobility of this species, identifying 22 strongly supported long-range dispersal events including interoceanic and interhemispheric movement. Despite this propensity for geographic dispersal, the increased sampling of this study uncovered very few potential examples of ancestral dispersal among ecotypes. Concordance of nuclear and mitochondrial data further confirms genetic cohesiveness, with little or no current gene flow among sympatric ecotypes. Taken as a whole, our data suggest that the glacial cycles influenced local populations in different ways, with no clear global pattern, but with secondary contact among lineages following long-range dispersal as a potential mechanism driving ecological diversification. © 2015 John Wiley & Sons Ltd.
Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice.
Diedhiou, Abdala Gamby; Mbaye, Fatou Kine; Mbodj, Daouda; Faye, Mathieu Ndigue; Pignoly, Sarah; Ndoye, Ibrahima; Djaman, Koffi; Gaye, Souleymane; Kane, Aboubacry; Laplaze, Laurent; Manneh, Baboucarr; Champion, Antony
2016-01-01
The overuse of agricultural chemicals such as fertilizer and pesticides aimed at increasing crop yield results in environmental damage, particularly in the Sahelian zone where soils are fragile. Crop inoculation with beneficial soil microbes appears as a good alternative for reducing agricultural chemical needs, especially for small farmers. This, however, requires selecting optimal combinations of crop varieties and beneficial microbes tested in field conditions. In this study, we investigated the response of rice plants to inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB) under screenhouse and field conditions in two consecutive seasons in Senegal. Evaluation of single and mixed inoculations with AMF and PGPB was conducted on rice (Oryza sativa) variety Sahel 202, on sterile soil under screenhouse conditions. We observed that inoculated plants, especially plants treated with AMF, grew taller, matured earlier and had higher grain yield than the non-inoculated plants. Mixed inoculation trials with two AMF strains were then conducted under irrigated field conditions with four O. sativa varieties, two O. glaberrima varieties and two interspecific NERICA varieties, belonging to 3 ecotypes (upland, irrigated, and rainfed lowland). We observed that the upland varieties had the best responses to inoculation, especially with regards to grain yield, harvest index and spikelet fertility. These results show the potential of using AMF to improve rice production with less chemical fertilizers and present new opportunities for the genetic improvement in rice to transfer the ability of forming beneficial rice-microbe associations into high yielding varieties in order to increase further rice yield potentials.
Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice
Diedhiou, Abdala Gamby; Mbaye, Fatou Kine; Mbodj, Daouda; Faye, Mathieu Ndigue; Pignoly, Sarah; Ndoye, Ibrahima; Djaman, Koffi; Gaye, Souleymane; Kane, Aboubacry; Laplaze, Laurent; Manneh, Baboucarr; Champion, Antony
2016-01-01
The overuse of agricultural chemicals such as fertilizer and pesticides aimed at increasing crop yield results in environmental damage, particularly in the Sahelian zone where soils are fragile. Crop inoculation with beneficial soil microbes appears as a good alternative for reducing agricultural chemical needs, especially for small farmers. This, however, requires selecting optimal combinations of crop varieties and beneficial microbes tested in field conditions. In this study, we investigated the response of rice plants to inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB) under screenhouse and field conditions in two consecutive seasons in Senegal. Evaluation of single and mixed inoculations with AMF and PGPB was conducted on rice (Oryza sativa) variety Sahel 202, on sterile soil under screenhouse conditions. We observed that inoculated plants, especially plants treated with AMF, grew taller, matured earlier and had higher grain yield than the non-inoculated plants. Mixed inoculation trials with two AMF strains were then conducted under irrigated field conditions with four O. sativa varieties, two O. glaberrima varieties and two interspecific NERICA varieties, belonging to 3 ecotypes (upland, irrigated, and rainfed lowland). We observed that the upland varieties had the best responses to inoculation, especially with regards to grain yield, harvest index and spikelet fertility. These results show the potential of using AMF to improve rice production with less chemical fertilizers and present new opportunities for the genetic improvement in rice to transfer the ability of forming beneficial rice-microbe associations into high yielding varieties in order to increase further rice yield potentials. PMID:27907023
Projected changes in wildlife habitats in Arctic natural areas of northwest Alaska
Marcot, Bruce G.; Jorgenson, M. Torre; Lawler, James P.; Handel, Colleen M.; DeGange, Anthony R.
2015-01-01
We project the effects of transitional changes among 60 vegetation and other land cover types (“ecotypes”) in northwest Alaska over the 21st century on habitats of 162 bird and 39 mammal species known or expected to occur regularly in the region. This analysis, encompassing a broad suite of arctic and boreal wildlife species, entailed building wildlife-habitat matrices denoting levels of use of each ecotype by each species, and projecting habitat changes under historic and expected accelerated future rates of change from increasing mean annual air temperature based on the average of 5 global climate models under the A1B emissions scenario, and from potential influence of a set of 23 biophysical drivers. Under historic rates of change, we project that 52 % of the 201 species will experience an increase in medium- and high-use habitats, 3 % no change, and 45 % a decrease, and that a greater proportion of mammal species (62 %) will experience habitat declines than will bird species (50 %). Outcomes become more dire (more species showing habitat loss) under projections made from effects of biophysical drivers and especially from increasing temperature, although species generally associated with increasing shrub and tree ecotypes will likely increase in distribution. Changes in wildlife habitats likely will also affect trophic cascades, ecosystem function, and ecosystem services; of particular significance are the projected declines in habitats of most small mammals that form the prey base for mesocarnivores and raptors, and habitat declines in 25 of the 50 bird and mammal species used for subsistence hunting and trapping.
Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun
2016-01-01
The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.
Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun
2016-01-01
The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment. PMID:27380174
McEwen, Jamie R.; Vamosi, Jana C.; Rogers, Sean M.
2013-01-01
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence. PMID:23874801
Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela
2017-01-01
Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles. PMID:29270186
Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela
2017-01-01
Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.
Al Hayek, Patrick; Touzard, Blaise; Le Bagousse-Pinguet, Yoann; Michalet, Richard
2014-10-01
Few studies have examined consequences of ecotypic differentiation within alpine foundation species for community diversity and their feedbacks for the foundation species' fitness. Additionally, no study has quantified ecotypic differences in competitive effects in the field and in controlled conditions to disentangle genetic from plasticity effects in foundation/subordinate species interactions. We focused on a subalpine community of the French Pyrenees including two phenotypes of a cushion-forming species, Festuca gautieri: tight cushions in dry convex outcrops, and loose cushions (exhibiting high subordinate species richness) in wet concave slopes. We assessed, with field and shadehouse experiments, the genetic vs. plasticity basis of differences in: (1) cushion traits and (2) competitive effects on subordinates, and (3) quantified community feedbacks on foundation species' fitness. We found that trait differences across habitats had both genetic and plasticity bases, with stronger contribution of the latter. Field results showed higher competition within loose than tight phenotypes. In contrast, shadehouse results showed higher competitive ability for tight phenotypes. However, as changes in interactions across habitats were due to environmental effects without changes in cushion effects, we argue that heritable and plastic changes in competitive effects maintain high subordinate species diversity through decreasing competition. We showed high reproduction cost for loose cushions when hosting subordinates highlighting the occurrence of community feedbacks. These results suggest that phenotypic differentiation within foundation species may cascade on subordinate species diversity through heritable and plastic changes in the foundation species' competitive effects, and that community feedbacks may affect foundation species' fitness.
Disentangling plasticity of serotiny, a key adaptive trait in a Mediterranean conifer.
Martín-Sanz, Ruth C; Santos-Del-Blanco, Luis; Notivol, Eduardo; Chambel, M Regina; San-Martín, Roberto; Climent, José
2016-09-01
Serotiny, the maintenance of ripe seeds in closed fruits or cones until fire causes dehiscence, is a key adaptive trait of plants in fire-prone ecosystems, but knowledge of phenotypic plasticity for cone retention in woody plants is extremely scarce. On the basis of published literature and our field observations, we hypothesized that increased aridity might decrease the aerial seed bank as a plastic response, not necessarily adaptive. We used a Pinus halepensis common garden replicated in three contrasted sites (mild, cold, and dry) to separate population differentiation from phenotypic plasticity of cone serotiny and canopy cone bank (CCB). Differences in growth among trees of the same provenance allowed us to include size effect as a proxy of ontogenetic age for the same chronological age of the trees. Tree size had a strong negative effect on serotiny, but serotiny degree differed among trial sites even after accounting for size effects. As hypothesized, serotiny was lower at the harsh (dry and cold) sites compared with the mild site. Genetic variation for size-dependent cone serotiny and significant population × site interaction were confirmed, the latter implying different plasticity of serotiny among populations. Population differentiation for CCB showed an ecotypic trend, with positive correlation with temperature oscillation (continentality) and negative correlation with summer rainfall. Growth-limiting environments exacerbated the precocious release of seeds, contrary to the ecotypic trend found for the aerial cone bank, suggesting a counter-gradient plasticity. This plastic response is potentially maladaptive under a scenario of frequent wildfires. © 2016 Botanical Society of America.
Centeno-Cuadros, A; Hulva, P; Romportl, D; Santoro, S; Stříbná, T; Shohami, D; Evin, A; Tsoar, A; Benda, P; Horáček, I; Nathan, R
2017-11-01
Understanding the ecological, behavioural and evolutionary response of organisms to changing environments is of primary importance in a human-altered world. It is crucial to elucidate how human activities alter gene flow and what are the consequences for the genetic structure of a species. We studied two lineages of the Egyptian fruit bat (Rousettus aegyptiacus) throughout the contact zone between mesic and arid Ecozones in the Middle East to evaluate the species' response to the growing proportion of human-altered habitats in the desert. We integrated population genetics, morphometrics and movement ecology to analyse population structure, morphological variation and habitat use from GPS- or radio-tagged individuals from both desert and Mediterranean areas. We classified the spatial distribution and environmental stratification by describing physical-geographical conditions and land cover. We analysed this information to estimate patch occupancy and used an isolation-by-resistance approach to model gene flow patterns. Our results suggest that lineages from desert and Mediterranean habitats, despite their admixture, are isolated by environment and by adaptation supporting their classification as ecotypes. We found a positive effect of human-altered habitats on patch occupancy and habitat use of fruit bats by increasing the availability of roosting and foraging areas. While this commensalism promotes the distribution of fruit bats throughout the Middle East, gene flow between colonies has not been altered by human activities. This discrepancy between habitat use and gene flow patterns may, therefore, be explained by the breeding system of the species and modifications of natal dispersal patterns. © 2017 John Wiley & Sons Ltd.
Krauss, K.W.; Doyle, T.W.; Howard, R.J.
2009-01-01
Plant populations may adapt to environmental conditions over time by developing genetically based morphological or physiological characteristics. For tidal freshwater forested wetlands, we hypothesized that the conditions under which trees developed led to ecotypic difference in response of progeny to hydroperiod. Specifically, we looked for evidence of ecotypic adaptation for tidal flooding at different salinity regimes using growth and ecophysiological characteristics of two tidal and two non-tidal source collections of baldcypress (Taxodium distichum (L.) L.C. Rich) from the southeastern United States. Saplings were subjected to treatments of hydrology (permanent versus tidal flooding) and salinity (0 versus ???2 g l-1) for two and a half growing seasons in a greenhouse environment. Saplings from tidal sources maintained 21-41% lower overall growth and biomass accumulation than saplings from non-tidal sources, while saplings from non-tidal sources maintained 14-19% lower overall rates of net photosynthetic assimilation, leaf transpiration, and stomatal conductance than saplings from tidal sources. However, we found no evidence for growth or physiological enhancement of saplings from tidal sources to tide, or of saplings from non-tidal sources to no tide. All saplings growing under permanent flooding exhibited reduced growth and leaf gas exchange regardless of source, with little evidence for consistent salinity effects across hydroperiods. While we reject our original hypothesis, we suggest that adaptations of coastal baldcypress to broad (rather than narrow) environmental conditions may promote ecophysiological and growth enhancements under a range of global-change-induced stressors, perhaps reflecting a natural resilience to environmental change while precluding adaptations for specific flood regimes.
Oneal, Elen; Lowry, David B.; Wright, Kevin M.; Zhu, Zhirui; Willis, John H.
2014-01-01
Chromosomal rearrangement polymorphisms are common and increasingly found to be associated with adaptive ecological divergence and speciation. Rearrangements, such as inversions, reduce recombination in heterozygous individuals and thus can protect favourable allelic combinations at linked loci, facilitating their spread in the presence of gene flow. Recently, we identified a chromosomal inversion polymorphism that contributes to ecological adaptation and reproductive isolation between annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus. Here we evaluate the population genetic structure of this inverted region in comparison with the collinear regions of the genome across the M. guttatus species complex. We tested whether annual and perennial M. guttatus exhibit different patterns of divergence for loci in the inverted and noninverted regions of the genome. We then evaluated whether there are contrasting climate associations with these genomic regions through redundancy analysis. We found that the inversion exhibits broadly different patterns of divergence among annual and perennial M. guttatus and is associated with environmental variation across population accessions. This study is the first widespread population genetic survey of the diversity of the M. guttatus species complex. Our findings contribute to a greater understanding of morphological, ecological, and genetic evolutionary divergence across this highly diverse group of closely related ecotypes and species. Finally, understanding species relationships among M. guttatus sp. has hitherto been stymied by accumulated evidence of substantial gene flow among populations as well as designated species. Nevertheless, our results shed light on these relationships and provide insight into adaptation in life history traits within the complex. PMID:24796267
Assessment of LANDSAT for rangeland mapping, Rush Valley, Utah
NASA Technical Reports Server (NTRS)
Ridd, M. K.; Price, K. P.; Douglass, G. E.
1984-01-01
The feasibility of using LANDSAT MSS (multispectral scanner) data to identify and map cover types for rangeland, and to determine comparative condition of the ecotypes was assessed. A supporting objective is to assess the utility of various forms of aerial photography in the process. If rangelands can be efficiently mapped with Landsat data, as supported by appropriate aerial photography and field data, then uniform standards of cover classification and condition may be applied across the rangelands of the state. Further, a foundation may be established for long-term monitoring of range trend, using the same satellite system over time.
Sockeye salmon evolution, ecology, and management
Woody, Carol Ann
2007-01-01
This collection of articles and photographs gives managers a good idea of recent research into what the sockeye salmon is and does, covering such topics as the vulnerability and value of sockeye salmon ecotypes, their homing ability, using new technologies to monitor reproduction, DNA and a founder event in the Lake Clark sockeye salmon, marine-derived nutrients, the exploitation of large prey, dynamic lake spawning migrations by females, variability of sockeye salmon residence, expression profiling using cDNA microarray technology, learning from stable isotropic records of native otolith hatcheries, the amount of data needed to manage sockeye salmon and estimating salmon "escapement."
The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide
Liolios, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Philip; Kyrpides, Nikos C.
2006-01-01
The Genomes On Line Database (GOLD) is a web resource for comprehensive access to information regarding complete and ongoing genome sequencing projects worldwide. The database currently incorporates information on over 1500 sequencing projects, of which 294 have been completed and the data deposited in the public databases. GOLD v.2 has been expanded to provide information related to organism properties such as phenotype, ecotype and disease. Furthermore, project relevance and availability information is now included. GOLD is available at . It is also mirrored at the Institute of Molecular Biology and Biotechnology, Crete, Greece at PMID:16381880
Mbunwen, Ndofor-Foleng Harriet; Ngongeh, Lucas Atehmengo; Okolie, Peter Nzeribe; Okoli, Emeka Linus
2015-08-01
One hundred fifty Anak and 120 Nigerian heavy local ecotype (NHLE) chickens were used to study the effects of feeding graded levels of mango seed kernel meal (MKM) replacing maize diet on growth traits and haematological parameters. A 2 × 5 factorial arrangement was employed: two breeds and five diets. The birds were randomly allocated to five finisher diets formulated such that MKM replaced maize at 0, 10, 20, 30 and 40% (T1, T2, T3, T4 and T5) inclusion levels, respectively. The effect of breed and dietary treatments on growth performance and blood characteristics were determined. The results showed a significant (P < 0.05) breed effect on body weight and gain, shank length, thigh length, body width and body length. The growth traits of Anak breed were found to be superior to NHLE chickens. Within treatments, chicks on T1, T2 and T3, grew heavier than those on T4 and T5. However, feed intake, feed conversion ratio (FCR) and haematological indices (RBC, Hb, MCV, MCH and MCHC count) were not significant (P > 0.05) when the breeds and treatments were compared. It was concluded that inclusion of dietary MKM below 30% could replace maize in the diets of Anak and NHLE growing chickens without adverse effect on growth performance and blood constituents. This work suggests that genetic differences exist in growth traits of these breeds of chickens. This advantage could be useful in breed improvement programmes and better feeding managements of the NHLE and Anak chickens.
Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich
2013-01-01
Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability. PMID:23789085
Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina; Sagi, Moshe
2017-09-01
Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H 2 S, NH 3 , and pyruvate. The major function of O -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H 2 S. This activity was significantly higher in Sarcocornia than in Salicornia , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia . © 2017 American Society of Plant Biologists. All Rights Reserved.
Palacios, Maura; Arias-Rodriguez, Lenin; Plath, Martin; Eifert, Constanze; Lerp, Hannes; Lamboj, Anton; Voelker, Gary; Tobler, Michael
2013-01-01
The process of ecological speciation drives the evolution of locally adapted and reproductively isolated populations in response to divergent natural selection. In Southern Mexico, several lineages of the freshwater fish species of the genus Poecilia have independently colonized toxic, hydrogen sulfide-rich springs. Even though ecological speciation processes are increasingly well understood in this system, aligning the taxonomy of these fish with evolutionary processes has lagged behind. While some sulfide spring populations are classified as ecotypes of Poecilia mexicana, others, like P. sulphuraria, have been described as highly endemic species. Our study particularly focused on elucidating the taxonomy of the long described sulfide spring endemic, Poecilia thermalis Steindachner 1863, and investigates if similar evolutionary patterns of phenotypic trait divergence and reproductive isolation are present as observed in other sulfidic species of Poecilia. We applied a geometric morphometric approach to assess body shape similarity to other sulfidic and non-sulfidic fish of the genus Poecilia. We also conducted phylogenetic and population genetic analyses to establish the phylogenetic relationships of P. thermalis and used a population genetic approach to determine levels of gene flow among Poecilia from sulfidic and non-sulfidic sites. Our results indicate that P. thermalis' body shape has evolved in convergence with other sulfide spring populations in the genus. Phylogenetic analyses placed P. thermalis as most closely related to one population of P. sulphuraria, and population genetic analyses demonstrated that P. thermalis is genetically isolated from both P. mexicana ecotypes and P. sulphuraria. Based on these findings, we make taxonomic recommendations for P. thermalis. Overall, our study verifies the role of hydrogen sulfide as a main factor shaping convergent, phenotypic evolution and the emergence of reproductive isolation between Poecilia populations residing in adjacent sulfidic and non-sulfidic environments. PMID:23976979
Gómez, J. M.; Muñoz-Pajares, A. J.; Abdelaziz, M.; Lorite, J.; Perfectti, F.
2014-01-01
Background and Aims How generalist plants diverge in response to pollinator selection without becoming specialized is still unknown. This study explores this question, focusing on the evolution of the pollination system in the pollination generalist Erysimum mediohispanicum (Brassicaceae). Methods Pollinator assemblages were surveyed from 2001 to 2010 in 48 geo-referenced populations covering the entire geographic distribution of E. mediohispanicum. Bipartite modularity, a complex network tool, was used to find the pollination niche of each population. Evolution of the pollination niches and the correlated evolution of floral traits and pollination niches were explored using within-species comparative analyses. Key Results Despite being generalists, the E. mediohispanicum populations studied can be classified into five pollination niches. The boundaries between niches were not sharp, the niches differing among them in the relative frequencies of the floral visitor functional groups. The absence of spatial autocorrelation and phylogenetic signal indicates that the niches were distributed in a phylogeographic mosaic. The ancestral E. mediohispanicum populations presumably belonged to the niche defined by a high number of beetle and ant visits. A correlated evolution was found between pollination niches and some floral traits, suggesting the existence of generalist pollination ecotypes. Conclusions It is conjectured that the geographic variation in pollination niches has contributed to the observed floral divergence in E. mediohispanicum. The process mediating this floral divergence presumably has been adaptive wandering, but the adaptation to the local pollinator faunas has been not universal. The outcome is a landscape where a few populations locally adapted to their pollination environment (generalist pollination ecotypes) coexist with many populations where this local adaptation has failed and where the plant phenotype is not primarily shaped by pollinators. PMID:23965614
Noutoshi, Yoshiteru; Ito, Takuya; Seki, Motoaki; Nakashita, Hideo; Yoshida, Shigeo; Marco, Yves; Shirasu, Ken; Shinozaki, Kazuo
2005-09-01
In this study we characterized the sensitive to low humidity 1 (slh1) mutant of Arabidopsis ecotype No-0 which exhibits normal growth on agar plate medium but which on transfer to soil shows growth arrest and development of necrotic lesions. cDNA microarray hybridization and RNA gel blot analysis revealed that genes associated with activation of disease resistance were upregulated in the slh1 mutants in response to conditions of low humidity. Furthermore, the slh1 mutants accumulate callose, autofluorescent compounds and salicylic acid (SA). We demonstrate that SA is required for the slh1 phenotype but not PAD4 or NPR1. SLH1 was isolated by map-based cloning and it encodes a resistance (R)-like protein consisting of a domain with Toll and interleukin-1 receptor homology (TIR), a nucleotide-binding domain (NB), leucine-rich repeats (LRR) and a carboxy-terminal WRKY domain. SLH1 is identical to the R gene RRS1-R of the Arabidopsis ecotype Nd-1, a gene which confers resistance to the bacterial pathogen Ralstonia solanacearum GMI1000 and also functions as an R gene to this pathogen in No-0. We identified a 3 bp insertion mutation in slh1 that results in the addition of a single amino acid in the WRKY domain; thereby impairing its DNA-binding activity. Our data suggest that SLH1 disease resistance signaling may be negatively regulated by its WRKY domain in the R protein and that the constitutive defense activation conferred by the slh1 mutation is inhibited by conditions of high humidity.
Bracamonte, Seraina E; Smith, Steve; Hammer, Michael; Pavey, Scott A; Sunnucks, Paul; Beheregaray, Luciano B
2015-10-01
Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern. Copyright © 2015 Elsevier Ltd. All rights reserved.
Horsley, Kimberly; Stark, Lloyd R; McLetchie, D Nicholas
2011-05-01
Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale. Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass. The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females. Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.
Lovell, John T; Schwartz, Scott; Lowry, David B; Shakirov, Eugene V; Bonnette, Jason E; Weng, Xiaoyu; Wang, Mei; Johnson, Jenifer; Sreedasyam, Avinash; Plott, Christopher; Jenkins, Jerry; Schmutz, Jeremy; Juenger, Thomas E
2016-04-01
Climatic adaptation is an example of a genotype-by-environment interaction (G×E) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression G×E are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C4 grass,Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit drought-responsive G×E. While less well-represented, we observe 1294 genes (7.8%) with transeffects.Trans-by-environment interactions are weaker and much less common than cis G×E, occurring in only 0.7% oft rans-regulated genes. Finally, gene expression heterosis is highly enriched in expression phenotypes with significant G×E. As such, modes of inheritance that drive heterosis, such as dominance or overdominance, may be common among G×E genes. Interestingly, motifs specific to drought-responsive transcription factors are highly enriched in the promoters of genes exhibiting G×E and transregulation, indicating that expression G×E and heterosis may result from the evolution of transcription factors or their binding sites.P. hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (Panicum virgatum). Accordingly, the results here not only aid in the discovery of the genetic mechanisms that underlie local adaptation but also provide a foundation to improve switchgrass yield under water-limited conditions. © 2016 Lovell et al.; Published by Cold Spring Harbor Laboratory Press.
Lovell, John T.; Schwartz, Scott; Lowry, David B.; Shakirov, Eugene V.; Bonnette, Jason E.; Weng, Xiaoyu; Wang, Mei; Johnson, Jenifer; Sreedasyam, Avinash; Plott, Christopher; Jenkins, Jerry; Schmutz, Jeremy; Juenger, Thomas E.
2016-01-01
Climatic adaptation is an example of a genotype-by-environment interaction (G×E) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression G×E are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C4 grass, Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit drought-responsive G×E. While less well-represented, we observe 1294 genes (7.8%) with trans effects. Trans-by-environment interactions are weaker and much less common than cis G×E, occurring in only 0.7% of trans-regulated genes. Finally, gene expression heterosis is highly enriched in expression phenotypes with significant G×E. As such, modes of inheritance that drive heterosis, such as dominance or overdominance, may be common among G×E genes. Interestingly, motifs specific to drought-responsive transcription factors are highly enriched in the promoters of genes exhibiting G×E and trans regulation, indicating that expression G×E and heterosis may result from the evolution of transcription factors or their binding sites. P. hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (Panicum virgatum). Accordingly, the results here not only aid in the discovery of the genetic mechanisms that underlie local adaptation but also provide a foundation to improve switchgrass yield under water-limited conditions. PMID:26953271
Berger, J D; Ludwig, C
2014-11-01
Our understanding of within-species annual plant adaptation to rainfall gradients is fragmented. Broad-scale ecological applications of Grime's C-S-R triangle are often superficial, while detailed drought physiology tends to be narrow, focusing on elite cultivars. The former lack the detail to explain how plants respond, while the latter provide little context to investigate trade-offs among traits, to explain where/why these might be adaptive. Ecophysiology, combining the breadth of the former with the detail of the latter, can resolve this disconnect and is applied here to describe adaptive strategies in the Mediterranean legume Lupinus luteus. Wild and domesticated material from low- and high-rainfall environments was evaluated under contrasting terminal drought. These opposing environments have selected for contrasting, integrated, adaptive strategies. Long-season, high-rainfall habitats select for competitive (C) traits: delayed phenology, high above- and below-ground biomass, productivity, and fecundity, leading to high water-use and early stress onset. Terminal drought-prone environments select for the opposite: ruderal (R) traits that facilitate drought escape/avoidance but limit reproductive potential. Surprisingly, high-rainfall ecotypes generate lower critical leaf water potentials under water deficit, maintaining higher relative water content than the latter. Given that L. luteus evolved in sandy, low-water-holding capacity soils, this represents a bet-hedging response to intermittent self-imposed water-deficits associated with a strongly C-selected adaptive strategy that is therefore redundant in R-selected low-rainfall ecotypes. Domesticated L. luteus is even more R-selected, reflecting ongoing selection for early maturity. Introgression of appropriate C-selected adaptive traits from wild germplasm may widen the crop production range. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Berger, J. D.; Ludwig, C.
2014-01-01
Our understanding of within-species annual plant adaptation to rainfall gradients is fragmented. Broad-scale ecological applications of Grime’s C-S-R triangle are often superficial, while detailed drought physiology tends to be narrow, focusing on elite cultivars. The former lack the detail to explain how plants respond, while the latter provide little context to investigate trade-offs among traits, to explain where/why these might be adaptive. Ecophysiology, combining the breadth of the former with the detail of the latter, can resolve this disconnect and is applied here to describe adaptive strategies in the Mediterranean legume Lupinus luteus. Wild and domesticated material from low- and high-rainfall environments was evaluated under contrasting terminal drought. These opposing environments have selected for contrasting, integrated, adaptive strategies. Long-season, high-rainfall habitats select for competitive (C) traits: delayed phenology, high above- and below-ground biomass, productivity, and fecundity, leading to high water-use and early stress onset. Terminal drought-prone environments select for the opposite: ruderal (R) traits that facilitate drought escape/avoidance but limit reproductive potential. Surprisingly, high-rainfall ecotypes generate lower critical leaf water potentials under water deficit, maintaining higher relative water content than the latter. Given that L. luteus evolved in sandy, low-water-holding capacity soils, this represents a bet-hedging response to intermittent self-imposed water-deficits associated with a strongly C-selected adaptive strategy that is therefore redundant in R-selected low-rainfall ecotypes. Domesticated L. luteus is even more R-selected, reflecting ongoing selection for early maturity. Introgression of appropriate C-selected adaptive traits from wild germplasm may widen the crop production range. PMID:24591050
Schulz-Mirbach, Tanja; Heß, Martin; Plath, Martin
2011-01-01
Background Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico. Results The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane. Conclusions Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis—especially with regard to the application of 3D techniques—for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here. PMID:22110746
Schulz-Mirbach, Tanja; Hess, Martin; Plath, Martin
2011-01-01
Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico. The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane. Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis--especially with regard to the application of 3D techniques--for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here.
Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis.
Davila, Jaime I; Arrieta-Montiel, Maria P; Wamboldt, Yashitola; Cao, Jun; Hagmann, Joerg; Shedge, Vikas; Xu, Ying-Zhi; Weigel, Detlef; Mackenzie, Sally A
2011-09-27
The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene MSH1 (MutS 1 homolog), lending itself to detailed study of de novo mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution. We obtained evidence of double-strand break (DSB) repair, including NHEJ, sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and msh1 mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the msh1 mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. De novo asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes. Extensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants.
Kurmanbayeva, Assylay; Bekturova, Aizat; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Salazar, Octavio; Fedoroff, Nina
2017-01-01
Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5′-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia. PMID:28743765
Stankowski, Sean
2013-05-01
Speciation is the process by which reproductive isolation evolves between populations. Two general models of speciation have been proposed: ecological speciation, where reproductive barriers evolve due to ecologically based divergent selection, and mutation-order speciation, where populations fix different mutations as they adapt to similar selection pressures. I evaluate these alternative models and determine the progress of speciation in a diverse group of land snails, genus Rhagada, inhabiting Rosemary Island. A recently derived keeled-flat morphotype occupies two isolated rocky hills, while globose-shelled snails inhabit the surrounding plains. The study of one hill reveals that they are separated by a narrow hybrid zone. As predicted by ecological speciation theory, there are local and landscape level associations between shell shape and habitat, and the morphological transition coincides with a narrow ecotone between the two distinct environments. Microsatellite DNA revealed a cline of hybrid index scores much wider than the morphological cline, further supporting the ecological maintenance of the morphotypes. The hybrid zone does not run through an area of low population density, as is expected for mutation-order hybrid zones, and there is a unimodal distribution of phenotypes at the centre, suggesting that there is little or no prezygotic isolation. Instead, these data suggest that the ecotypes are maintained by ecologically dependent postzygotic isolation (i.e. ecological selection against hybrids). Mitochondrial and Microsatellite DNA indicate that the keeled-flat form evolved recently, and without major historical disruptions to gene flow. The data also suggest that the two keeled-flat populations, inhabiting similar rocky hills, have evolved in parallel. These snails provide a complex example of ecological speciation in its early stages. © 2013 Blackwell Publishing Ltd.
Plazinski, Jacek; Zheng, Qi; Taylor, Rona; Croft, Lynn; Rolfe, Barry G.; Gunning, Brian E. S.
1990-01-01
Twenty-two isolates of Anabaena azollae derived from seven Azolla species from various geographic and ecological sources were characterized by DNA-DNA hybridization. Cloned DNA fragments derived from the genomic sequences of three different A. azollae isolates were used to detect restriction fragment length polymorphism among all symbiotic anabaenas. DNA clones were radiolabeled and hybridized against southern blot transfers of genomic DNAs of different isolates of A. azollae digested with restriction endonucleases. Eight DNA probes were selected to identify the Anabaena strains tested. Two were strain specific and hybridized only to A. azollae strains isolated from Azolla microphylla or Azolla caroliniana. One DNA probe was section specific (hybridized only to anabaenas isolated from Azolla ferns representing the section Euazolla), and five other probes gave finer discrimination among anabaenas representing various ecotypes of Azolla species. These cloned genomic DNA probes identified 11 different genotypes of A. azollae isolates. These included three endosymbiotic genotypes within Azolla filiculoides species and two genotypes within both A. caroliniana and Azolla pinnata endosymbionts. Although we were not able to discriminate among anabaenas extracted from different ecotypes of Azolla nilotica, Azolla mexicina, Azolla rubra and Azolla microphylla species, each of the endosymbionts was easily identified as a unique genotype. When total DNA isolated from free-living Anabaena sp. strain PCC7120 was screened, none of the genomic DNA probes gave detectable positive hybridization. Total DNA of Nostoc cycas PCC7422 hybridized with six of eight genomic DNA fragments. These data imply that the dominant symbiotic organism in association with Azolla spp. is more closely related to Nostoc spp. than to free-living Anabaena spp. Images PMID:16348182
Badri, Dayakar V.; De-la-Peña, Clelia; Lei, Zhentian; Manter, Daniel K.; Chaparro, Jacqueline M.; Guimarães, Rejane L.; Sumner, Lloyd W.; Vivanco, Jorge M.
2012-01-01
The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress- related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions. PMID:23056382
Xu, Xiaojing; Feng, Jinchao; Lü, Shiyou; Lohrey, Greg T; An, Huiling; Zhou, Yijun; Jenks, Matthew A
2014-08-01
The impact of water-deficit stress on leaf cuticular waxes and cutin monomers, and traits associated with cuticle permeability were examined in Shandong and Yukon ecotypes of Eutrema salsugineum (syn. Thellungiella salsuginea). Although Shandong exhibits glaucous leaves, and Yukon is non-glaucous, wax amounts on non-stressed Yukon leaves were 4.6-fold higher than on Shandong, due mainly to Yukon's eightfold higher wax fatty acids, especially the C22 and C24 acid homologues. Water deficit caused a 26.9% increase in total waxes on Shandong leaves, due mainly to increased C22 and C24 acids; and caused 10.2% more wax on Yukon, due mainly to an increase in wax alkanes. Total cutin monomers on non-stressed leaves of Yukon were 58.3% higher than on Shandong. Water deficit caused a 28.2% increase in total cutin monomers on Shandong, whereas total cutin monomers were not induced on Yukon. With or without stress, more abundant cuticle lipids were generally associated with lower water loss rates, lower chlorophyll efflux rates and an extended time before water deficit-induced wilting. In response to water deficit, Shandong showed elevated transcription of genes encoding elongase subunits, consistent with the higher stress induction of acids by Shandong. Yukon's higher induction of CER1 and CER3 transcripts may explain why alkanes increased most on Yukon after water deficit. Eutrema, with its diverse cuticle lipids and responsiveness, provides a valuable genetic resource for identifying new genes and alleles effecting cuticle metabolism, and lays groundwork for studies of the cuticle's role in extreme stress tolerance. Published 2013. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Yang, Xian-Ming; Sun, Jing-Tao; Xue, Xiao-Feng; Li, Jin-Bo; Hong, Xiao-Yue
2012-01-01
The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. F. occidentalis, which is endemic to North America, was initially detected in Kunming in southwestern China in 2000 and since then it has rapidly invaded several other localities in China where it has greatly damaged greenhouse vegetables and ornamental crops. Controlling this invasive pest in China requires an understanding of its genetic makeup and migration patterns. Using the mitochondrial COI gene and 10 microsatellites, eight of which were newly isolated and are highly polymorphic, we investigated the genetic structure and the routes of range expansion of 14 F. occidentalis populations in China. Both the mitochondrial and microsatellite data revealed that the genetic diversity of F. occidentalis of the Chinese populations is lower than that in its native range. Two previously reported cryptic species (or ecotypes) were found in the study. The divergence in the mitochondrial COI of two Chinese cryptic species (or ecotypes) was about 3.3% but they cannot be distinguished by nuclear markers. Hybridization might produce such substantial mitochondrial-nuclear discordance. Furthermore, we found low genetic differentiation (global F ST = 0.043, P<0.001) among all the populations and strong evidence for gene flow, especially from the three southwestern populations (Baoshan, Dali and Kunming) to the other Chinese populations. The directional gene flow was further supported by the higher genetic diversity of these three southwestern populations. Thus, quarantine and management of F. occidentalis should focus on preventing it from spreading from the putative source populations to other parts of China. PMID:22509325
Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia
2014-01-01
Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375–780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery.
Schilling, Megan A.; Katani, Robab; Memari, Sahar; Cavanaugh, Meredith; Buza, Joram; Radzio-Basu, Jessica; Mpenda, Fulgence N.; Deist, Melissa S.; Lamont, Susan J.; Kapur, Vivek
2018-01-01
Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens. PMID:29535762
Phylogeonomics and Ecogenomics of the Mycorrhizal Symbiosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Alan; Grigoriev, Igor V.; Kohler, Annegret
Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze 2 dozen mycorrhizal genomes of numerous known mycorrhizal orders and several ecological types (ectomycorrhizal [ECM], ericoid, orchid, and arbuscular). JGI has developed and deployed high-throughput pipelines for genomic, transcriptomic, and re-sequencing, and platforms formore » assembly, annotation, and analysis. In the last 2 years we have sequenced 21 genomes of mycorrhizal fungi, and resequenced 6 additional strains of L. bicolor. Most of this data is publicly available on JGI MycoCosm?s Mycorrhizal Fungi Portal (http://jgi.doe.gov/Mycorrhizal_fungi/), which provides access to both the genome data and tools with which to analyze the data. These data allow us to address long-standing issues in mycorrhizal evolution and ecology. For example, a major observation of mycorrhizal evolution is that each of the major ecological types appears to have evolved independently in multiple fungal clades. Using an ecogenomic approach we provide preliminary evidence that 2 clades (Cantharellales and Sebacinales) of a single symbiotic ecotype (orchid) utilize some common regulatory (protein tyrosine kinase) and metabolic (lipase) paths, the latter of which may be the product of HGT. Using a phylogenomic approach we provide preliminary evidence that a particular ecotype (ericoid) may have evolved more than once within a major clade (Leotiomycetes).« less
Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape
Morris, Geoffrey P.; Grabowski, Paul; Borevitz, Justin O.
2011-01-01
Connecting broad-scale patterns of genetic variation and population structure to genetic diversity on a landscape is a key step towards understanding historical processes of migration and adaptation. New genomic approaches can be used to increase the resolution of phylogeographic studies while reducing locus sampling effects and circumventing ascertainment bias. Here, we use a novel approach based on high-throughput sequencing to characterize genetic diversity in complete chloroplast genomes and >10,000 nuclear loci in switchgrass, across a continental and landscape scale. Switchgrass is a North American tallgrass species, which is widely used in conservation and perennial biomass production, and shows strong ecotypic adaptation and population structure across the continental range. We sequenced 40.9 billion base pairs from 24 individuals from across the species’ range and 20 individuals from the Indiana Dunes. Analysis of plastome sequence revealed 203 variable SNP sites that define eight haplogroups, which are differentiated by 4 to 127 SNPs and confirmed by patterns of indel variation. These include three deeply divergent haplogroups, which correspond to the previously described lowland-upland ecotypic split and a novel upland haplogroup split that dates to the mid-Pleistoscene. Most of the plastome haplogroup diversity present in the northern switchgrass range, including in the Indiana Dunes, originated in the mid- or upper-Pleistocene prior to the most recent postglacial recolonization. Furthermore, a recently colonized landscape feature (~150 ya) in the Indiana Dunes contains several deeply divergent upland haplogroups. Nuclear markers also support a deep lowland-upland split, followed by limited gene flow, and show extensive gene flow in the local population of the Indiana Dunes. PMID:22060816
Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich
2013-06-01
Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.
Jimenez-Infante, Francy; Ngugi, David Kamanda; Vinu, Manikandan; Alam, Intikhab; Kamau, Allan Anthony; Blom, Jochen; Bajic, Vladimir B.
2015-01-01
The OM43 clade within the family Methylophilaceae of Betaproteobacteria represents a group of methylotrophs that play important roles in the metabolism of C1 compounds in marine environments and other aquatic environments around the globe. Using dilution-to-extinction cultivation techniques, we successfully isolated a novel species of this clade (here designated MBRS-H7) from the ultraoligotrophic open ocean waters of the central Red Sea. Phylogenomic analyses indicate that MBRS-H7 is a novel species that forms a distinct cluster together with isolate KB13 from Hawaii (Hawaii-Red Sea [H-RS] cluster) that is separate from the cluster represented by strain HTCC2181 (from the Oregon coast). Phylogenetic analyses using the robust 16S-23S internal transcribed spacer revealed a potential ecotype separation of the marine OM43 clade members, which was further confirmed by metagenomic fragment recruitment analyses that showed trends of higher abundance in low-chlorophyll and/or high-temperature provinces for the H-RS cluster but a preference for colder, highly productive waters for the HTCC2181 cluster. This potential environmentally driven niche differentiation is also reflected in the metabolic gene inventories, which in the case of the H-RS cluster include those conferring resistance to high levels of UV irradiation, temperature, and salinity. Interestingly, we also found different energy conservation modules between these OM43 subclades, namely, the existence of the NADH:quinone oxidoreductase complex I (NUO) system in the H-RS cluster and the nonhomologous NADH:quinone oxidoreductase (NQR) system in the HTCC2181 cluster, which might have implications for their overall energetic yields. PMID:26655752
Vergin, Kevin L; Beszteri, Bánk; Monier, Adam; Cameron Thrash, J; Temperton, Ben; Treusch, Alexander H; Kilpert, Fabian; Worden, Alexandra Z; Giovannoni, Stephen J
2013-01-01
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1–V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes. PMID:23466704
Vergin, Kevin L; Beszteri, Bánk; Monier, Adam; Thrash, J Cameron; Temperton, Ben; Treusch, Alexander H; Kilpert, Fabian; Worden, Alexandra Z; Giovannoni, Stephen J
2013-07-01
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1-V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.
San Martin Y Gomez, Gilles; Van Dyck, Hans
2012-05-01
Urbanization alters environmental conditions in multiple ways and offers an ecological or evolutionary challenge for organisms to cope with. Urban areas typically have a warmer climate and strongly fragmented herbaceous vegetation; the urban landscape matrix is often assumed to be hostile for many organisms. Here, we addressed the issue of evolutionary differentiation between urban and rural populations of an ectotherm insect, the grasshopper Chorthippus brunneus. We compared mobility-related morphology and climate-related life history traits measured on the first generation offspring of grasshoppers from urban and rural populations reared in a common garden laboratory experiment. We predicted (1) the urban phenotype to be more mobile (i.e., lower mass allocation to the abdomen, longer relative femur and wing lengths) than the rural phenotype; (2) the urban phenotype to be more warm adapted (e.g., higher female body mass); and (3) further evidence of local adaptation in the form of significant interaction effects between landscape of origin and breeding temperature. Both males and females of urban origin had significantly longer relative femur and wing lengths and lower mass allocation to the abdomen (i.e., higher investment in thorax and flight muscles) relative to individuals of rural origin. The results were overall significant but small (2-4%). Body mass and larval growth rate were much higher (+10%) in females of urban origin. For the life history traits, we did not find evidence for significant interaction effects between the landscape of origin and the two breeding temperatures. Our results point to ecotypic differentiation with urbanization for mobility-related morphology and climate-related life history traits. We argue that the warmer urban environment has an indirect effect through longer growth season rather than direct effects on the development.
Hu, Anyi; Jiao, Nianzhi; Zhang, Rui; Yang, Zao
2011-11-01
Marine group I Crenarchaeota (MGI) represents a ubiquitous and numerically predominant microbial population in marine environments. An understanding of the spatial dynamics of MGI and its controlling mechanisms is essential for an understanding of the role of MGI in energy and element cycling in the ocean. In the present study, we investigated the diversity and abundance of MGI in the East China Sea (ECS) by analysis of crenarchaeal 16S rRNA gene, the ammonia monooxygenase gene amoA, and the biotin carboxylase gene accA. Quantitative PCR analyses revealed that these genes were higher in abundance in the mesopelagic than in the euphotic zone. In addition, the crenarchaeal amoA gene was positively correlated with the copy number of the MGI 16S rRNA gene, suggesting that most of the MGI in the ECS are nitrifiers. Furthermore, the ratios of crenarchaeal accA to amoA or to MGI 16S rRNA genes increased from the euphotic to the mesopelagic zone, suggesting that the role of MGI in carbon cycling may change from the epipelagic to the mesopelagic zones. Denaturing gradient gel electrophoretic profiling of the 16S rRNA genes revealed depth partitioning in MGI community structures. Clone libraries of the crenarchaeal amoA and accA genes showed both "shallow" and "deep" groups, and their relative abundances varied in the water column. Ecotype simulation analysis revealed that MGI in the upper ocean could diverge into special ecotypes associated with depth to adapt to the light gradient across the water column. Overall, our results showed niche partitioning of the MGI population and suggested a shift in their ecological functions between the euphotic and mesopelagic zones of the ECS.
Human Lice in Paleoentomology and Paleomicrobiology.
Drali, Rezak; Mumcuoglu, Kosta; Raoult, Didier
2016-08-01
Lice are a classic example of cospeciation. Human lice confirm this cospeciation with lice specialized in hominids which differ from those of gorillas and chimpanzees. Head lice and body lice seem to belong to closely related species with different ecotypes and a different geographical distribution which may reflect population movements. Paleo-entomology allows us in some cases to trace the migrations of archaic human populations. The analysis of lice found on mummies in Egypt and South America has clarified a certain number of these migrations, also the study of lice and the diseases they transmit has shed a new light on the epidemics of the past.
High-frequency modulated signals of killer whales (Orcinus orca) in the North Pacific.
Simonis, Anne E; Baumann-Pickering, Simone; Oleson, Erin; Melcón, Mariana L; Gassmann, Martin; Wiggins, Sean M; Hildebrand, John A
2012-04-01
Killer whales in the North Pacific, similar to Atlantic populations, produce high-frequency modulated signals, based on acoustic recordings from ship-based hydrophone arrays and autonomous recorders at multiple locations. The median peak frequency of these signals ranged from 19.6-36.1 kHz and median duration ranged from 50-163 ms. Source levels were 185-193 dB peak-to-peak re: 1 μPa at 1 m. These uniform, repetitive, down-swept signals are similar to bat echolocation signals and possibly could have echolocation functionality. A large geographic range of occurrence suggests that different killer whale ecotypes may utilize these signals.
Rakocevic, Alexandra; Mondy, Samuel; Tirichine, Leïla; Cosson, Viviane; Brocard, Lysiane; Iantcheva, Anelia; Cayrel, Anne; Devier, Benjamin; Abu El-Heba, Ghada Ahmed; Ratet, Pascal
2009-11-01
We have identified an active Medicago truncatula copia-like retroelement called Medicago RetroElement1-1 (MERE1-1) as an insertion in the symbiotic NSP2 gene. MERE1-1 belongs to a low-copy-number family in the sequenced Medicago genome. These copies are highly related, but only three of them have a complete coding region and polymorphism exists between the long terminal repeats of these different copies. This retroelement family is present in all M. truncatula ecotypes tested but also in other legume species like Lotus japonicus. It is active only during tissue culture in both R108 and Jemalong Medicago accessions and inserts preferentially in genes.
Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype.
Coneva, Viktoriya; Chitwood, Daniel H
2018-01-01
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.
Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype
Coneva, Viktoriya; Chitwood, Daniel H.
2018-01-01
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait. PMID:29593772
Ecotypic variation in recruitment of reintroduced bighorn sheep: implications for translocation
Wiedmann, Brett P.; Sargeant, Glen A.
2014-01-01
European settlement led to extirpation of native Audubon's bighorn sheep (formerly Ovis canadensis auduboni) from North Dakota during the early 20th century. The North Dakota Game and Fish Department subsequently introduced California bighorn sheep (formerly O. c. californiana) that were indigenous to the Williams Lake region of British Columbia, Canada, and Rocky Mountain bighorn sheep (O. c. canadensis) that were indigenous to the Sun River region of Montana. Although California bighorn sheep are no longer recognized as a distinct subspecies, they are smaller and adapted to a milder climate than either the native bighorn sheep of North Dakota or introduced bighorn sheep from Montana. Because reintroductions still play a key role in the management of bighorn sheep and because local adaptation may have substantial demographic consequences, we evaluated causes of variation in recruitment of bighorn sheep reintroduced in North Dakota. During 2006–2011, Montana stock recruited 0.54 juveniles/adult female (n = 113), whereas British Columbia stock recruited 0.24 juveniles/adult female (n = 562). Our most plausible mixed-effects logistic regression model (53% of model weight) attributed variation in recruitment to differences between source populations (odds ratio = 4.5; 90% CI = 1.5, 15.3). Greater recruitment of Montana stock (fitted mean = 0.56 juveniles/adult female; 90% CI = 0.41, 0.70) contributed to a net gain in abundance (r = 0.15), whereas abundance of British Columbia stock declined (fitted mean = 0.24 juveniles/adult female; 90% CI = 0.09, 0.41; r = − 0.04). Translocations have been the primary tool used to augment and restore populations of wild sheep but often have failed to achieve objectives. Our results show that ecotypic differences among source stocks may have long-term implications for recruitment and demographic performance of reintroduced populations.
Zhan, Juan; Li, Tingxuan; Yu, Haiying; Zhang, Xizhou; Zhao, Li
2016-09-01
The application of organic amendments into heavy metal contaminated soil is considered as an environmentally friendly technique to promote the potential of phytoremediation. A pot experiment was carried out to evaluate the effect of humic substances on growth, cadmium (Cd) accumulation and phytostabilization potential of the mining ecotype (ME) and the corresponding non-mining ecotype (NME) of Athyrium wardii (Hook.) grown in Cd-contaminated soils. The addition of the humic substances demonstrated great promotion for the growth and Cd uptake of ME. Both plant biomass and Cd concentration significantly increased with the increasing application of the humic substances up to 100 g kg(-1), beyond which no significant change of underground part biomass and Cd concentrations in underground part of A. wardii was observed. The maximum Cd concentration in underground part of ME was 180 mg kg(-1) when 150 g kg(-1) humic substances were applied. The ME showed greater Cd accumulation capability in underground part (0.47-0.68 mg plant(-1)) than that of NME (0.27-0.45 mg plant(-1)). Increasing bioaccumulation coefficient (BCF) values of A. wardii was observed with increasing application of the humic substances. The BCF values of ME were higher than those of NME. However, the use of the humic substances exhibited little impact on translocation factors (TFs) of ME, and the TF values of ME were less than NME. Furthermore, the application of the humic substances improved the remediation factors (RFs) of A. wardii. The RF values in underground part of ME ranging from 0.73 to 0.91 % were apparently higher than those of NME. These results indicated that the humic substances can be a potential candidate for enhancing the phytostabilization of A. wardii grown in Cd-contaminated soils.
Huang, Mengsu; Abel, Christian; Sohrabi, Reza; Petri, Jana; Haupt, Ina; Cosimano, John; Gershenzon, Jonathan; Tholl, Dorothea
2010-01-01
When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-β-ocimene, the sesquiterpene (E,E)-α-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-β-ocimene and (E,E)-α-farnesene from accession Wassilewskija (Ws), a high-(E)-β-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-β-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-β-ocimene and (E,E)-α-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-β-ocimene/(E,E)-α-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species. PMID:20463089
Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.
2009-01-01
Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic δ13C and δ15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in δ15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable δ15N and δ13C values throughout the remainder of their lives, whereas δ15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean δ13C and δ15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean
Rosenfeld, Carla E; Chaney, Rufus L; Martínez, Carmen E
2018-03-01
Cadmium contamination in soil is a substantial global problem, and of significant concern due to high food-chain transfer. Cadmium hyperaccumulators are of particular interest because of their ability to tolerate and take up significant amounts of heavy metal pollution from soils. One particular plant, Noccaea caerulescens (formerly, Thlaspi caerulescens), has been extensively studied in terms of its capacity to accumulate heavy metals (specifically Zn and Cd), though these studies have primarily utilized hydroponic and metal-spiked model soil systems. We studied Cd and nutrient uptake by two N. caerulescens ecotypes, Prayon (Zn-only hyperaccumulator) and Ganges (Zn- and Cd-hyperaccumulator) in four long-term field-contaminated soils. Our data suggest that individual soil properties such as total soil Cd, Zn:Cd molar ratio, or soil pH do not accurately predict Cd uptake by hyperaccumulating plants. Additionally, total Cd uptake by the hyperaccumulating Ganges ecotype was substantially less than its physiological capacity, which is likely due to Cd-containing solid phases (primarily iron oxides) and pH that play an important role in regulating and limiting Cd solubility. Increased P accumulation in the Ganges leaves, and greater plant Fe accumulation from Cd-containing soils suggests that rhizosphere alterations via proton, and potentially organic acid, secretion may also play a role in nutrient and Cd acquisition by the plant roots. The current study highlights the role that soil geochemical factors play in influencing Cd uptake by hyperaccumulating plants. While these plants may have high physiological potential to accumulate metals from contaminated soils, individual soil geochemical factors and the plant-soil interactions in that soil will dictate the actual amount of phytoextractable metal. This underlines the need for site-specific understanding of metal-containing solid phases and geochemical properties of soils before undertaking phytoextraction efforts. Copyright © 2017 Elsevier B.V. All rights reserved.
Worthington, Thomas A; Brewer, Shannon K; Grabowski, Timothy B; Mueller, Julia
2014-01-01
Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375-780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery. Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.
Ascunce, Marina S.; Toups, Melissa A.; Kassu, Gebreyes; Fane, Jackie; Scholl, Katlyn; Reed, David L.
2013-01-01
Understanding the evolution of parasites is important to both basic and applied evolutionary biology. Knowledge of the genetic structure of parasite populations is critical for our ability to predict how an infection can spread through a host population and for the design of effective control methods. However, very little is known about the genetic structure of most human parasites, including the human louse (Pediculus humanus). This species is composed of two ecotypes: the head louse (Pediculus humanus capitis De Geer), and the clothing (body) louse (Pediculus humanus humanus Linnaeus). Hundreds of millions of head louse infestations affect children every year, and this number is on the rise, in part because of increased resistance to insecticides. Clothing lice affect mostly homeless and refugee-camp populations and although they are less prevalent than head lice, the medical consequences are more severe because they vector deadly bacterial pathogens. In this study we present the first assessment of the genetic structure of human louse populations by analyzing the nuclear genetic variation at 15 newly developed microsatellite loci in 93 human lice from 11 sites in four world regions. Both ecotypes showed heterozygote deficits relative to Hardy–Weinberg equilibrium and high inbreeding values, an expected pattern given their parasitic life history. Bayesian clustering analyses assigned lice to four distinct genetic clusters that were geographically structured. The low levels of gene flow among louse populations suggested that the evolution of insecticide resistance in lice would most likely be affected by local selection pressures, underscoring the importance of tailoring control strategies to population-specific genetic makeup and evolutionary history. Our panel of microsatellite markers provides powerful data to investigate not only ecological and evolutionary processes in lice, but also those in their human hosts because of the long-term coevolutionary association between lice and humans. PMID:23460886
Horsley, Kimberly; Stark, Lloyd R.; McLetchie, D. Nicholas
2011-01-01
Background and Aims Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale. Methods Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass. Key Results The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females. Conclusions Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes. PMID:21320878
Evidence That Head and Body Lice on Homeless Persons Have the Same Genotype
Veracx, Aurélie; Rivet, Romain; McCoy, Karen D.; Brouqui, Philippe; Raoult, Didier
2012-01-01
Human head lice and body lice are morphologically and biologically similar but have distinct ecologies. They were shown to have almost the same basic genetic content (one gene is absent in head lice), but differentially express certain genes, presumably responsible for the vector competence. They are now believed to be ecotypes of the same species (Pediculus humanus) and based on mitochondrial studies, body lice have been included with head lice in one of three clades of human head lice (Clade A). Here, we tested whether head and body lice collected from the same host belong to the same population by examining highly polymorphic intergenic spacers. This study was performed on lice collected from five homeless persons living in the same shelter in which Clade A lice are prevalent. Lice were individually genotyped at four spacer loci. The genetic identity and diversity of lice from head and body populations were compared for each homeless person. Population genetic structure was tested between lice from the two body regions and between the lice from different host individuals. We found two pairs of head and body lice on the same homeless person with identical multi locus genotypes. No difference in genetic diversity was found between head and body louse populations and no evidence of significant structure between the louse populations was found, even after controlling for a possible effect of the host individual. More surprisingly, no structure was obvious between lice of different homeless persons. We believe that the head and body lice collected from our five subjects belong to the same population and are shared between people living in the same shelter. These findings confirm that head and body lice are two ecotypes of the same species and show the importance of implementing measures to prevent lice transmission between homeless people in shelters. PMID:23049889
Phenology, growth, and fecundity as determinants of distribution in closely related nonnative taxa
Marushia, Robin G.; Brooks, Matthew L.; Holt, Jodie S.
2012-01-01
Invasive species researchers often ask: Why do some species invade certain habitats while others do not? Ecological theories predict that taxonomically related species may invade similar habitats, but some related species exhibit contrasting invasion patterns. Brassica nigra, Brassica tournefortii, and Hirschfeldia incana are dominant, closely related nonnative species that have overlapping, but dissimilar, distributions. Brassica tournefortii is rapidly spreading in warm deserts of the southwestern United States, whereas B. nigra and H. incana are primarily limited to semiarid and mesic regions. We compared traits of B. tournefortii that might confer invasiveness in deserts with those of related species that have not invaded desert ecosystems. Brassica tournefortii, B. nigra and H. incana were compared in controlled experiments conducted outdoors in a mesic site (Riverside, CA) and a desert site (Blue Diamond, NV), and in greenhouses, over 3 yr. Desert and mesic B. tournefortii populations were also compared to determine whether locally adapted ecotypes contribute to desert invasion. Experimental variables included common garden sites and soil water availability. Response variables included emergence, growth, phenology, and reproduction. There was no evidence for B. tournefortii ecotypes, but B. tournefortii had a more rapid phenology than B. nigra or H. incana. Brassica tournefortii was less affected by site and water availability than B. nigra and H. incana, but was smaller and less fecund regardless of experimental conditions. Rapid phenology allows B. tournefortii to reproduce consistently under variable, stressful conditions such as those found in Southwestern deserts. Although more successful in milder, mesic ecosystems, B. nigra and H. incana may be limited by their ability to reproduce under desert conditions. Rapid phenology and drought response partition invasion patterns of nonnative mustards along a gradient of aridity in the southwestern United States, and may serve as a predictive trait for other potential invaders of arid and highly variable ecosystems.
Lowry, David B.; Willis, John H.
2010-01-01
The role of chromosomal inversions in adaptation and speciation is controversial. Historically, inversions were thought to contribute to these processes either by directly causing hybrid sterility or by facilitating the maintenance of co-adapted gene complexes. Because inversions suppress recombination when heterozygous, a recently proposed local adaptation mechanism predicts that they will spread if they capture alleles at multiple loci involved in divergent adaptation to contrasting environments. Many empirical studies have found inversion polymorphisms linked to putatively adaptive phenotypes or distributed along environmental clines. However, direct involvement of an inversion in local adaptation and consequent ecological reproductive isolation has not to our knowledge been demonstrated in nature. In this study, we discovered that a chromosomal inversion polymorphism is geographically widespread, and we test the extent to which it contributes to adaptation and reproductive isolation under natural field conditions. Replicated crosses between the prezygotically reproductively isolated annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus, revealed that alternative chromosomal inversion arrangements are associated with life-history divergence over thousands of kilometers across North America. The inversion polymorphism affected adaptive flowering time divergence and other morphological traits in all replicated crosses between four pairs of annual and perennial populations. To determine if the inversion contributes to adaptation and reproductive isolation in natural populations, we conducted a novel reciprocal transplant experiment involving outbred lines, where alternative arrangements of the inversion were reciprocally introgressed into the genetic backgrounds of each ecotype. Our results demonstrate for the first time in nature the contribution of an inversion to adaptation, an annual/perennial life-history shift, and multiple reproductive isolating barriers. These results are consistent with the local adaptation mechanism being responsible for the distribution of the two inversion arrangements across the geographic range of M. guttatus and that locally adaptive inversion effects contribute directly to reproductive isolation. Such a mechanism may be partially responsible for the observation that closely related species often differ by multiple chromosomal rearrangements. PMID:20927411
Profiling membrane glycerolipids during γ-ray-induced membrane injury.
Zheng, Guowei; Li, Weiqi
2017-11-15
γ-rays are high-energy radiation that cause a range of random injuries to plant cells. Most studies on this issue have focused on γ-ray-induced nucleotide damage and the production of reactive oxygen species in cells, so little is known about the glycerolipid metabolism during γ-rays induced membrane injury. Using an ESI-MS/MS-based lipidomic method, we analysed the lipidome changes in wild-type and phospholipase D (PLD)δ- and α1-deficient Arabidopsis after γ-ray treatment. The aim of this study was to investigate the role of PLD-mediated glycerolipid metabolism in γ-ray-induced membrane injury. The ion leakage of Arabidopsis leaves after 2885-Gy γ-ray treatment was less than 10%. High does γ-ray treatment could induce the accumulation of intracellular reactive oxygen species (ROS). Inhibition of PLDα1 caused severe lipid degradation under γ-ray treatment. γ-ray-induced glycerolipid degradation mostly happened in chloroplastidic lipids, rather than extraplastidic ones. The levels of lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) were maintained in the WS ecotypes during γ-ray treatments, while increased significantly in the Col ecotype treated with 1100 Gy. After 210- and 1100-Gy γ-ray treatments, the level of lysophosphatidylglycerol (lysoPG) decreased significantly in the four genotypes of Arabidopsis. γ-ray-induced membrane injury may occur via an indirect mechanism. The degradation of distinct lipids is not synchronous, and that interconversions among lipids can occur. During γ-ray-induced membrane injury, the degradation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) may be mediated by PLDζ1 or phospholipase A1. The degradation of phosphatidylglycerol was not mediated by PLA, PLDδ or PLDα1, but by phospholipase C or other PLDs. γ-rays can decrease the double-bond index and increase the acyl chain length in membrane lipids, which may make membranes more rigid and further cause injury in membranes.
Ascunce, Marina S; Toups, Melissa A; Kassu, Gebreyes; Fane, Jackie; Scholl, Katlyn; Reed, David L
2013-01-01
Understanding the evolution of parasites is important to both basic and applied evolutionary biology. Knowledge of the genetic structure of parasite populations is critical for our ability to predict how an infection can spread through a host population and for the design of effective control methods. However, very little is known about the genetic structure of most human parasites, including the human louse (Pediculus humanus). This species is composed of two ecotypes: the head louse (Pediculus humanus capitis De Geer), and the clothing (body) louse (Pediculus humanus humanus Linnaeus). Hundreds of millions of head louse infestations affect children every year, and this number is on the rise, in part because of increased resistance to insecticides. Clothing lice affect mostly homeless and refugee-camp populations and although they are less prevalent than head lice, the medical consequences are more severe because they vector deadly bacterial pathogens. In this study we present the first assessment of the genetic structure of human louse populations by analyzing the nuclear genetic variation at 15 newly developed microsatellite loci in 93 human lice from 11 sites in four world regions. Both ecotypes showed heterozygote deficits relative to Hardy-Weinberg equilibrium and high inbreeding values, an expected pattern given their parasitic life history. Bayesian clustering analyses assigned lice to four distinct genetic clusters that were geographically structured. The low levels of gene flow among louse populations suggested that the evolution of insecticide resistance in lice would most likely be affected by local selection pressures, underscoring the importance of tailoring control strategies to population-specific genetic makeup and evolutionary history. Our panel of microsatellite markers provides powerful data to investigate not only ecological and evolutionary processes in lice, but also those in their human hosts because of the long-term coevolutionary association between lice and humans.
Marcot, Bruce G.; Jorgenson, M. Torre; DeGange, Anthony R.
2014-01-01
5. A Canon® Rebel 3Ti with a Sigma zoom lens (18–200 mm focal length). The Drift® HD-170 and GoPro® Hero3 cameras were secured to the struts and underwing for nadir (direct downward) imaging. The Panasonic® and Canon® cameras were each hand-held for oblique-angle landscape images, shooting through the airplanes’ windows, targeting both general landscape conditions as well as landscape features of special interest, such as tundra fire scars and landslips. The Drift® and GoPro® cameras each were set for time-lapse photography at 5-second intervals for overlapping coverage. Photographs from all cameras (100 percent .jpg format) were date- and time-synchronized to geographic positioning system waypoints taken during the flights, also at 5-second intervals, providing precise geotagging (latitude-longitude) of all files. All photographs were adjusted for color saturation and gamma, and nadir photographs were corrected for lens distortion for the Drift® and GoPro® cameras’ 170° wide-angle distortion. EXIF (exchangeable image file format) data on camera settings and geotagging were extracted into spreadsheet databases. An additional 1 hour, 20 minutes, and 43 seconds of high-resolution videos were recorded at 60 frames per second with the GoPro® camera along selected transect segments, and also were image-adjusted and corrected for lens distortion. Geotagged locations of 12,395 nadir photographs from the Drift® and GoPro® cameras were overlayed in a geographic information system (ArcMap 10.0) onto a map of 44 ecotypes (land- and water-cover types) of the Arctic Network study area. Presence and area of each ecotype occurring within a geographic information system window centered on the location of each photograph were recorded and included in the spreadsheet databases. All original and adjusted photographs, videos, geographic positioning system flight tracks, and photograph databases are available by contacting ascweb@usgs.gov.
Factors influencing elk recruitment across ecotypes in the Western United States
Lukacs, Paul M.; Mitchell, Michael S.; Hebblewhite, Mark; Johnson, Bruce K.; Johnson, Heather; Kauffman, Matthew J.; Proffitt, Kelly M.; Zager, Peter; Brodie, Jedediah; Hersey, Kent R.; Holland, A. Andrew; Hurley, Mark; McCorquodale, Scott; Middleton, Arthur; Nordhagen, Matthew; Nowak, J. Joshua; Walsh, Daniel P.; White, P.J.
2018-01-01
Ungulates are key components in ecosystems and economically important for sport and subsistence harvest. Yet the relative importance of the effects of weather conditions, forage productivity, and carnivores on ungulates are not well understood. We examined changes in elk (Cervus canadensis) recruitment (indexed as age ratios) across 7 states and 3 ecotypes in the northwestern United States during 1989–2010, while considering the effects of predator richness, forage productivity, and precipitation. We found a broad‐scale, long‐term decrease in elk recruitment of 0.48 juveniles/100 adult females/year. Weather conditions (indexed as summer and winter precipitation) showed small, but measurable, influences on recruitment. Forage productivity on summer and winter ranges (indexed by normalized difference vegetation index [NDVI] metrics) had the strongest effect on elk recruitment relative to other factors. Relationships between forage productivity and recruitment varied seasonally and regionally. The productivity of winter habitat was more important in southern parts of the study area, whereas annual variation in productivity of summer habitat had more influence on recruitment in northern areas. Elk recruitment varied by up to 15 juveniles/100 adult females across the range of variation in forage productivity. Areas with more species of large carnivores had relatively low elk recruitment, presumably because of increased predation. Wolves (Canis lupus) were associated with a decrease of 5 juveniles/100 adult females, whereas grizzly bears (Ursus arctos) were associated with an additional decrease of 7 juveniles/100 adult females. Carnivore species can have a critical influence on ungulate recruitment because their influence rivals large ranges of variation in environmental conditions. A more pressing concern, however, stems from persistent broad‐scale decreases in recruitment across the distribution of elk in the northwestern United States, irrespective of carnivore richness. Our results suggest that wildlife managers interested in improving recruitment of elk consider the combined effects of habitat and predators. Efforts to manage summer and winter ranges to increase forage productivity may have a positive effect on recruitment.
Evidence that head and body lice on homeless persons have the same genotype.
Veracx, Aurélie; Rivet, Romain; McCoy, Karen D; Brouqui, Philippe; Raoult, Didier
2012-01-01
Human head lice and body lice are morphologically and biologically similar but have distinct ecologies. They were shown to have almost the same basic genetic content (one gene is absent in head lice), but differentially express certain genes, presumably responsible for the vector competence. They are now believed to be ecotypes of the same species (Pediculus humanus) and based on mitochondrial studies, body lice have been included with head lice in one of three clades of human head lice (Clade A). Here, we tested whether head and body lice collected from the same host belong to the same population by examining highly polymorphic intergenic spacers. This study was performed on lice collected from five homeless persons living in the same shelter in which Clade A lice are prevalent. Lice were individually genotyped at four spacer loci. The genetic identity and diversity of lice from head and body populations were compared for each homeless person. Population genetic structure was tested between lice from the two body regions and between the lice from different host individuals.We found two pairs of head and body lice on the same homeless person with identical multi locus genotypes. No difference in genetic diversity was found between head and body louse populations and no evidence of significant structure between the louse populations was found, even after controlling for a possible effect of the host individual. More surprisingly, no structure was obvious between lice of different homeless persons.We believe that the head and body lice collected from our five subjects belong to the same population and are shared between people living in the same shelter. These findings confirm that head and body lice are two ecotypes of the same species and show the importance of implementing measures to prevent lice transmission between homeless people in shelters.
Yin, Guoan; Niu, Fujun; Lin, Zhanju; Luo, Jing; Liu, Minghao
2017-03-01
Beiluhe basin is underlain by warm and ice-rich permafrost, and covered by vegetation and soils characteristic of the Qinghai-Tibet Plateau. A field monitoring network was established to investigate permafrost conditions and to assess potential impacts of local factors and climate change. This paper describes the spatial variations in permafrost conditions from instrumented boreholes, controlling environmental factors, and recent thermal evolution of permafrost in the basin. The study area was divided into 10 ecotypes using satellite imagery based classification. The field investigations and cluster analysis of ground temperatures indicated that permafrost underlies most of the ground in swamp meadow, undisturbed alpine meadow, degrading alpine meadow, and desert alpine grassland, but is absent in other cover types. Permafrost-ecotope relations examined over a 2-year (2014-2016) period indicated that: (i) ground surface temperatures varied largely among ecotopes; (ii) annual mean ground temperatures ranged from -1.5 to 0°C in permafrost, indicating sensitive permafrost conditions; (iii) active-layer thicknesses ranged from 1.4m to 3.4m; (iv) ground ice content at the top of permafrost is high, but the active-layer soil is relatively dry. Long-term climate warming has driven thermal changes to permafrost, but ground surface characteristics and soil moisture content strongly influence the ground thermal state. These factors control local-scale spatial variations in permafrost conditions. The warm permafrost in the basin is commonly in thermal disequilibrium, and is sensitive to future climate change. Active-layer thicknesses have increased by at least 42cm and the mean annual ground temperatures have increased by up to 0.2°C in the past 10years over the basin. A permafrost distribution map was produced based on ecotypes, suggesting that permafrost underlies 64% of the study region. Copyright © 2017 Elsevier B.V. All rights reserved.
Martínez-Casas, Lucía; Lage-Yusty, María; López-Hernández, Julia
2017-12-13
Black garlic is an elaborated product obtained from fresh garlic (Allium sativum L.) at a controlled high humidity and temperature, which leads to modifications in color, taste, and texture. To clarify the physicochemical changes that occur during the thermal process, this work aimed to evaluate and contrast the antioxidant capacity and that of other compounds between purple garlic ecotype "Purple from Las Pedroñeras" and its black garlic derivative. Our results showed numerous differences between both, because black garlic presented a significant divergence in its volatile profile, a decreased amount of ascorbic acid, an increment in sugar and polyphenol contents, a greater antioxidant capacity, and a different composition of phenolic acids and flavonoids.
Fluidized muds: a novel setting for the generation of biosphere diversity through geologic time.
Aller, J Y; Aller, R C; Kemp, P F; Chistoserdov, A Y; Madrid, V M
2010-06-01
Reworked and fluidized fine-grained deposits in energetic settings are a major modern-day feature of river deltas and estuaries. Similar environments were probably settings for microbial evolution on the early Earth. These sedimentary systems act as efficient biogeochemical reactors with high bacterial phylogenetic diversity and functional redundancy. They are temporally rather than spatially structured, with repeated cycling of redox conditions and successive stages of microbial metabolic processes. Intense reworking of the fluidized bed entrains bacteria from varied habitats providing new, diverse genetic materials to contribute to horizontal gene transfer events and the creation of new bacterial ecotypes. These vast mud environments may act as exporters and promoters of biosphere diversity and novel adaptations, potentially on a globally important scale.
Spatial and temporal variation in the prokaryotic community in the Australian Tropical Ocean
NASA Astrophysics Data System (ADS)
Huang, T.; Ostrowski, M.; Mazard, S.; Paulsen, I.
2016-02-01
Prokaryotes play a vital role in marine food webs as primary producers. However, little is known about their ecology and physiology in oceanic waters surrounding Australia. We examined the distribution patterns of pico-phytoplankton collected in the Arafura Sea, Torres Strait and outside the Great Barrier Reef in the Coral Sea in 2012 across environmental gradients and estimated their contribution to photosynthetic biomass. Flow cytometry and petB amplicon sequencing revealed that Synechococcus ecotypes were abundant in the Arafura Sea and Torres Strait, while Prochlorococcus is the dominate phototroph in the Coral Sea. Principal component analysis and Multidimensional scaling analyses were undertaken to identify the main biotic and abiotic drivers affecting microbial community composition across the sampled marine environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, A.J.; Albright, D.L.
Tolerance of copper, zinc, lead, and nickel were measured in two individuals from each of seven populations of Bryum argenteum. The populations represented a range of habitats including industrial sites subject to atmospheric metal deposition, metal-contaminated mine tailings, serpentine barrens, and urban areas. Nevertheless, there was no evidence of adaptive differentiation in tolerance to any of the metals. Populations did differ significantly in general growth vigor across all experimental treatments. These observations contrast with results from studies of angiosperms, in which the evolution of heavy-metal tolerance almost always involves ecotypic differentiation among populations, but fit an emerging picture of B.more » argenteum as a plastic, broadly tolerant species with surprisingly little genetic differentiation among populations.« less
Positive selection on the killer whale mitogenome.
Foote, Andrew D; Morin, Phillip A; Durban, John W; Pitman, Robert L; Wade, Paul; Willerslev, Eske; Gilbert, M Thomas P; da Fonseca, Rute R
2011-02-23
Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches. It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non-synonymous amino acid changes were found; one in each of two ecotypes that inhabit the Antarctic pack ice. Both substitutions were associated with changes in local polarity, increased steric constraints and α-helical tendencies that could influence overall metabolic performance, suggesting a functional change.
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.
Lenski, Richard E
2017-10-01
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Sharma, V. P.
2012-01-01
Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1.5 billion in the coming years against the annual requirement of US$ 5 billion. While appreciating the foreign assistance, we wish to highlight the fact that unless we have internal strength of resources and manpower, sustained battles against malaria may face serious problems in achieving the final goal of malaria elimination. PMID:23391787
NASA Astrophysics Data System (ADS)
Kesselmeier, J.
2012-12-01
Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge based on short-term experiments is risky being transferred to an ecotype which is governed under natural conditions by long term flooding. Furthermore, contrasting such experiments with usually young trees (saplings or a few years old) nothing is known about the emission behavior of adult trees under field conditions.
Bahri, Bochra A; Daverdin, Guillaume; Xu, Xiangyang; Cheng, Jan-Fang; Barry, Kerrie W; Brummer, E Charles; Devos, Katrien M
2018-06-14
Advances in genomic technologies have expanded our ability to accurately and exhaustively detect natural genomic variants that can be applied in crop improvement and to increase our knowledge of plant evolution and adaptation. Switchgrass (Panicum virgatum L.), an allotetraploid (2n = 4× = 36) perennial C4 grass (Poaceae family) native to North America and a feedstock crop for cellulosic biofuel production, has a large potential for genetic improvement due to its high genotypic and phenotypic variation. In this study, we analyzed single nucleotide polymorphism (SNP) variation in 372 switchgrass genotypes belonging to 36 accessions for 12 genes putatively involved in biomass production to investigate signatures of selection that could have led to ecotype differentiation and to population adaptation to geographic zones. A total of 11,682 SNPs were mined from ~ 15 Gb of sequence data, out of which 251 SNPs were retained after filtering. Population structure analysis largely grouped upland accessions into one subpopulation and lowland accessions into two additional subpopulations. The most frequent SNPs were in homozygous state within accessions. Sixty percent of the exonic SNPs were non-synonymous and, of these, 45% led to non-conservative amino acid changes. The non-conservative SNPs were largely in linkage disequilibrium with one haplotype being predominantly present in upland accessions while the other haplotype was commonly present in lowland accessions. Tajima's test of neutrality indicated that PHYB, a gene involved in photoperiod response, was under positive selection in the switchgrass population. PHYB carried a SNP leading to a non-conservative amino acid change in the PAS domain, a region that acts as a sensor for light and oxygen in signal transduction. Several non-conservative SNPs in genes potentially involved in plant architecture and adaptation have been identified and led to population structure and genetic differentiation of ecotypes in switchgrass. We suggest here that PHYB is a key gene involved in switchgrass natural selection. Further analyses are needed to determine whether any of the non-conservative SNPs identified play a role in the differential adaptation of upland and lowland switchgrass.
Ali-Rachedi, Sonia; Bouinot, Denise; Wagner, Marie-Hélène; Bonnet, Magda; Sotta, Bruno; Grappin, Philippe; Jullien, Marc
2004-07-01
Mature seeds of the Cape Verde Islands (Cvi) ecotype of Arabidopsis thaliana (L.) Heynh. show a very marked dormancy. Dormant (D) seeds completely fail to germinate in conditions that are favourable for germination whereas non-dormant (ND) seeds germinate easily. Cvi seed dormancy is alleviated by after-ripening, stratification, and also by nitrate or fluridone treatment. Addition of gibberellins to D seeds does not suppress dormancy efficiently, suggesting that gibberellins are not directly involved in the breaking of dormancy. Dormancy expression of Cvi seeds is strongly dependent on temperature: D seeds do not germinate at warm temperatures (20-27 degrees C) but do so easily at a low temperature (13 degrees C) or when a fluridone treatment is given to D seeds sown at high temperature. To investigate the role of abscisic acid (ABA) in dormancy release and maintenance, we measured the ABA content in both ND and D seeds imbibed using various dormancy-breaking conditions. It was found that dry D seeds contained higher amounts of ABA than dry ND after-ripened seeds. During early imbibition in standard conditions, there was a decrease in ABA content in both seeds, the rate of which was slower in D seeds. Three days after sowing, the ABA content in D seeds increased specifically and then remained at a high level. When imbibed with fluridone, nitrate or stratified, the ABA content of D seeds decreased and reached a level very near to that of ND seeds. In contrast, gibberellic acid (GA3) treatment caused a transient increase in ABA content. When D seeds were sown at low optimal temperature their ABA content also decreased to the level observed in ND seeds. The present study indicates that Cvi D and ND seeds can be easily distinguished by their ability to synthesize ABA following imbibition. Treatments used here to break dormancy reduced the ABA level in imbibed D seeds to the level observed in ND seeds, with the exception of GA3 treatment, which was active in promoting germination only when ABA synthesis was inhibited.
A Trio of Viral Proteins Tunes Aphid-Plant Interactions in Arabidopsis thaliana
Du, Zhiyou; Murphy, Alex M.; Anggoro, Damar Tri; Tungadi, Trisna; Luang-In, Vijitra; Lewsey, Mathew G.; Rossiter, John T.; Powell, Glen; Smith, Alison G.; Carr, John P.
2013-01-01
Background Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV), on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: ‘peach-potato aphid’, ‘green peach aphid’). Methodology/Principal Findings Infection of Arabidopsis (ecotype Col-0) with CMV strain Fny (Fny-CMV) induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M). 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase), triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1), a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s) toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. Conclusions/Significance Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b) appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis) that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences between the effects of Fny-CMV on this plant and those seen previously in tobacco (inhibition of resistance to aphids) may have important epidemiological consequences. PMID:24349433
Sharma, V P
2012-12-01
Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1.5 billion in the coming years against the annual requirement of US$ 5 billion. While appreciating the foreign assistance, we wish to highlight the fact that unless we have internal strength of resources and manpower, sustained battles against malaria may face serious problems in achieving the final goal of malaria elimination.
Habitability Assessment on Earth in Preparation for Mars Science Laboratory
NASA Astrophysics Data System (ADS)
Conrad, Pamela; Mahaffy, Paul
NASA's upcoming Mars Science Laboratory mission is designed to explore and quantitatively assess a local region on the surface of Mars as a potential habitat for life, past or present. In advance of this complex mission, we are developing metrics from which to frame such an assess-ment. Evaluation of habitability potential is clearly different and more challenging than direct measurement of a discrete potential such as a voltage, which is a single parameter expressing the magnitude of a difference between a ground state and a measurable charge. Habitability potential is likely to require measurement of several parameters whose relationships determine the threshold value above which an environment may be deemed habitable in some regard. On Earth, in the continuum from uninhabitable to inhabited, one can measure environmental parameters that co-vary with biological parameters such as total biomass, functional diversity and/or ecotype along that binary join. Recognition of this statistical association facilitates development of predictive tools for assessment of habitability potential in environments that fall in between the end members of the habitability spectrum. The success of a habitabil-ity investigation on Mars depends upon development of criteria that can be agreed upon by the scientific community that will enable interpretation of the data from experiments on Mars within the context of a scalar notion of habitability, which we describe in this report. The scalar approach involves (1) measurement of physical, chemical and biological features of the candidate environment, (2) normalization of the scales over which they vary and (3) evaluation of their covariance. Inclusion of biological measurements, e.g., total biomass, diversity, ecotype, etc., serves as a benchmark in Earth environments, and the subsequent step in a campaign to develop a habitability scale involves measuring and analyzing only the chemical and physical environmental parameters, then predicting the habitability of the environment and validating the prediction with the biological measurements. Ultimately, one compares the parameters we measure at Earth analogs to environments of deposition that are most consistent with the candidate MSL landing sites. In this way, we can optimize the measurement approach of the powerful MSL payload to evaluate the habitability potential at the field site where its mission conducts surface operations.
Positive selection on the killer whale mitogenome
Foote, Andrew D.; Morin, Phillip A.; Durban, John W.; Pitman, Robert L.; Wade, Paul; Willerslev, Eske; Gilbert, M. Thomas P.; da Fonseca, Rute R.
2011-01-01
Mitochondria produce up to 95 per cent of the eukaryotic cell's energy. The coding genes of the mitochondrial DNA may therefore evolve under selection owing to metabolic requirements. The killer whale, Orcinus orca, is polymorphic, has a global distribution and occupies a range of ecological niches. It is therefore a suitable organism for testing this hypothesis. We compared a global dataset of the complete mitochondrial genomes of 139 individuals for amino acid changes that were associated with radical physico-chemical property changes and were influenced by positive selection. Two such selected non-synonymous amino acid changes were found; one in each of two ecotypes that inhabit the Antarctic pack ice. Both substitutions were associated with changes in local polarity, increased steric constraints and α-helical tendencies that could influence overall metabolic performance, suggesting a functional change. PMID:20810427
Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.
Whiteside, Jessica H; Lindström, Sofie; Irmis, Randall B; Glasspool, Ian J; Schaller, Morgan F; Dunlavey, Maria; Nesbitt, Sterling J; Smith, Nathan D; Turner, Alan H
2015-06-30
A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.
Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria
Bailey, Jake V; Salman, Verena; Rouse, Gregory W; Schulz-Vogt, Heide N; Levin, Lisa A; Orphan, Victoria J
2011-01-01
We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization. PMID:21697959
Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years
NASA Astrophysics Data System (ADS)
Whiteside, Jessica H.; Lindström, Sofie; Irmis, Randall B.; Glasspool, Ian J.; Schaller, Morgan F.; Dunlavey, Maria; Nesbitt, Sterling J.; Smith, Nathan D.; Turner, Alan H.
2015-06-01
A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.
A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece.
Bravakos, Panos; Kotoulas, Georgios; Skaraki, Katerina; Pantazidou, Adriani; Economou-Amilli, Athena
2016-05-01
Strains of Cyanobacteria isolated from mats of 9 thermal springs of Greece have been studied for their taxonomic evaluation. A polyphasic taxonomic approach was employed which included: morphological observations by light microscopy and scanning electron microscopy, maximum parsimony, maximum likelihood and Bayesian analysis of 16S rDNA sequences, secondary structural comparisons of 16S-23S rRNA Internal Transcribed Spacer sequences, and finally environmental data. The 17 cyanobacterial isolates formed a diverse group that contained filamentous, coccoid and heterocytous strains. These included representatives of the polyphyletic genera of Synechococcus and Phormidium, and the orders Oscillatoriales, Spirulinales, Chroococcales and Nostocales. After analysis, at least 6 new taxa at the genus level provide new evidence in the taxonomy of Cyanobacteria and highlight the abundant diversity of thermal spring environments with many potential endemic species or ecotypes. Copyright © 2016 Elsevier Inc. All rights reserved.
Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
Koopmans, G F; Römkens, P F A M; Fokkema, M J; Song, J; Luo, Y M; Japenga, J; Zhao, F J
2008-12-01
A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg(-1). A biomass production of 1 and 5 t dm ha(-1) yr(-1) yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.
The genomic basis of adaptive evolution in threespine sticklebacks
Jones, Felicity C; Grabherr, Manfred G; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C; Myers, Richard M; Miller, Craig T; Summers, Brian R; Knecht, Anne K; Brady, Shannon D; Zhang, Haili; Pollen, Alex A; Howes, Timothy; Amemiya, Chris; Lander, Eric S; Di Palma, Federica
2012-01-01
Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature. PMID:22481358
Zhang, Qingzhu; Wang, Dong; Lang, Zhaobo; He, Li; Yang, Lan; Zeng, Liang; Li, Yanqiang; Zhao, Cheng; Huang, Huan; Zhang, Heng; Zhang, Huiming; Zhu, Jian-Kang
2016-01-01
DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hybrids displayed nonadditive DNA methylation levels, termed methylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differentially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interactions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. PMID:27382183
Jones, Benjamin M.; Arp, Christopher D.; Whitman, Matthew S.; Nigro, Debora A.; Nitze, Ingmar; Beaver, John; Gadeke, Anne; Zuck, Callie; Liljedahl, Anna K.; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido
2017-01-01
Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.
Calibration and analysis of genome-based models for microbial ecology.
Louca, Stilianos; Doebeli, Michael
2015-10-16
Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.
Combined effect of boron and salinity on water transport: The role of aquaporins.
Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela
2008-10-01
Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.
Brunner, P C; Frey, J E
2010-04-01
Invasions by pest organisms are among the main challenges for sustainable crop protection. They pose a serious threat to crop production by introducing a highly unpredictable element to existing crop protection strategies. The western flower thrips Frankliniella occidentalis (Insecta, Thysanoptera) managed to invade ornamental greenhouses worldwide within < 25 years. To shed light on possible genetic and/or ecological factors that may have been responsible for this invasion success, we studied the population genetic structure of western flower thrips in its native range in western North America. Analysis of nucleotide sequence variation and variation at microsatellite loci revealed the existence of two habitat-specific phylogenetic lineages (ecotypes) with allopatric distribution. One lineage is associated with hot/dry climates, the second lineage is restricted to cool/moist climates. We speculate that the ecological niche segregation found in this study may be among the key factors determining the invasion potential of western flower thrips.
Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years
Whiteside, Jessica H.; Lindström, Sofie; Irmis, Randall B.; Glasspool, Ian J.; Schaller, Morgan F.; Dunlavey, Maria; Nesbitt, Sterling J.; Smith, Nathan D.; Turner, Alan H.
2015-01-01
A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10–15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic. PMID:26080428
PlantDB – a versatile database for managing plant research
Exner, Vivien; Hirsch-Hoffmann, Matthias; Gruissem, Wilhelm; Hennig, Lars
2008-01-01
Background Research in plant science laboratories often involves usage of many different species, cultivars, ecotypes, mutants, alleles or transgenic lines. This creates a great challenge to keep track of the identity of experimental plants and stored samples or seeds. Results Here, we describe PlantDB – a Microsoft® Office Access database – with a user-friendly front-end for managing information relevant for experimental plants. PlantDB can hold information about plants of different species, cultivars or genetic composition. Introduction of a concise identifier system allows easy generation of pedigree trees. In addition, all information about any experimental plant – from growth conditions and dates over extracted samples such as RNA to files containing images of the plants – can be linked unequivocally. Conclusion We have been using PlantDB for several years in our laboratory and found that it greatly facilitates access to relevant information. PMID:18182106
The genomic basis of adaptive evolution in threespine sticklebacks.
Jones, Felicity C; Grabherr, Manfred G; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C; Myers, Richard M; Miller, Craig T; Summers, Brian R; Knecht, Anne K; Brady, Shannon D; Zhang, Haili; Pollen, Alex A; Howes, Timothy; Amemiya, Chris; Baldwin, Jen; Bloom, Toby; Jaffe, David B; Nicol, Robert; Wilkinson, Jane; Lander, Eric S; Di Palma, Federica; Lindblad-Toh, Kerstin; Kingsley, David M
2012-04-04
Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.
Alqarni, Abdulaziz S; Hannan, Mohammed A; Owayss, Ayman A; Engel, Michael S
2011-01-01
Apis mellifera jemenitica Ruttner (= yemenitica auctorum: videEngel 1999) has been used in apiculture throughout the Arabian Peninsula since at least 2000 BC. Existing literature demonstrates that these populations are well adapted for the harsh extremes of the region. Populations of Apis mellifera jemenitica native to Saudi Arabia are far more heat tolerant than the standard races often imported from Europe. Central Saudi Arabia has the highest summer temperatures for the Arabian Peninsula, and it is in this region where only Apis mellifera jemenitica survives, while other subspecies fail to persist. The indigenous race of Saudi Arabia differs from other subspecies in the region in some morphological, biological, and behavioral characteristics. Further taxonomic investigation, as well as molecular studies, is needed in order to confirm whether the Saudi indigenous bee populations represent a race distinct from Apis mellifera jemenitica, or merely an ecotype of this subspecies.
Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano
2016-01-01
Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner. PMID:27242857
A pollinator shift explains floral divergence in an orchid species complex in South Africa
Peter, Craig I.; Johnson, Steven D.
2014-01-01
Background and Aims Floral diversification driven by shifts between pollinators has been one of the key explanations for the radiation of angiosperms. According to the Grant–Stebbins model of pollinator-driven speciation, these shifts result in morphologically distinct ‘ecotypes’ which may eventually become recognizable as species. The current circumscription of the food-deceptive southern African orchid Eulophia parviflora encompasses a highly variable monophyletic species complex. In this study, two forms were identified within this complex that differ in distribution, floral morphology, scent chemistry and phenology, and a test was made of whether these differences represent adaptations for different pollinators. Methods and Results Multivariate analysis of floral and vegetative traits revealed that there are at least two discrete morphological forms in the species complex. Field observations revealed that each form is pollinated by a different insect species, and thus represent distinct ecotypes. The early-flowering coastal form which has long spurs and floral scent dominated by sesquiterpene compounds is pollinated exclusively by the long-tongued bee Amegilla fallax (Apidae, Anthophorinae), while the late-flowering inland form with short spurs and floral scent dominated by benzenoid compounds is pollinated exclusively by the beetle Cyrtothyrea marginalis (Cetoniinae; Scarabaeidae). Choice experiments in a Y-maze olfactometer showed that beetles are preferentially attracted to the scent of the short-spurred form. A spur-shortening experiment showed that long spurs are required for effective pollination of the bee-pollinated form. Although it was initially thought likely that divergence occurred across a geographical pollinator gradient, plants of the long-spurred form were effectively pollinated when transplanted to an inland locality outside the natural coastal range of this form. Thus, the underlying geographical basis for the evolution of ecotypes in the E. parviflora complex remains uncertain, although early flowering in the long-spurred form to exploit the emergence of naïve bees may restrict this form to coastal areas where there is no frost that would damage flower buds. Later flowering of the short-spurred form coincides closely with the emergence of the pollinating beetles following winter frosts. Conclusions This study identifies a shift between bee and beetle pollination as the main driver of floral divergence in an orchid species complex. Floral scent and spur length appear to be key traits in mediating this evolutionary transition. PMID:24107684
Bianco, Giuliana; Pascale, Raffaella; Carbone, Cecilia F; Acquavia, Maria A; Cataldi, Tommaso R I; Schmitt-Kopplin, Philippe; Buchicchio, Alessandro; Russo, Daniela; Milella, Luigi
2018-02-01
Soyasaponins are oleanene-type triterpenoid saponins, naturally occurring in many edible plants that have attracted a great deal of attention for their role in preventing chronic diseases. The aim of this study was to establish the distribution and the content of soyasaponins in 21 ecotypes of Fagioli di Sarconi beans (Phaseolus vulgaris, Leguminosae). High-performance reversed-phase liquid chromatography (RPLC) with positive electrospray ionization (ESI(+)) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) in conjunction with infrared multiphoton dissociation (IRMPD) was applied for the unambiguous identification of soyasaponins Ba (m/z 959.5213, [C 48 H 79 O 19 ] + ), Bb (m/z 943.5273, [C 48 H 79 O 18 ] + ), Bd (m/z 957.5122, [C 48 H 77 O 19 ] + ), and Be (m/z 941.5166, [C 48 H 77 O 18 ] + ), which are the only commercially available reference standards. In addition, the several diagnostic product ions generated by IRMPD in the ICR-MS cell allowed us the putative identification of soyasaponins Bb' (m/z 797.4680, [C 42 H 69 O 14 ] + ), αg (m/z 1085.5544, [C 54 H 85 O 22 ] + ), βg (m/z 1069.5600, [C 54 H 85 O 21 ] + ), and γg (m/z 923.5009, [C 48 H 75 O 17 ] + ), establishing thus their membership in the soyasaponin group. Quantitative and semiquantitative analysis of identified soyasaponins were also performed by RPLC-ESI(+) FTICR-MS; the total concentration levels were found ranging from 83.6 ± 9.3 to 767 ± 37 mg/kg. In vitro hypoglycemic outcomes of four soyasaponin standards were evaluated; significant inhibitory activities were obtained with IC 50 values ranging from 1.5 ± 0.1 to 2.3 ± 0.2 μg/mL and 12.0 ± 1.1 to 29.4 ± 1.4 μg/mL for α-glucosidase and α-amylase, respectively. This study represents the first detailed investigation on the antidiabetic activity of bioactive constituents found in Fagioli di Sarconi beans. Graphical abstract The first detailed RPLC-ESI(+) FTICR-MS investigation of the qualitative and semiquantitative profile of soyasaponins, occurring in 21 ecotypes of Fagioli di Sarconi beans (P. vulgaris L.).
Divergent biology of facultative heavy metal plants.
Bothe, Hermann; Słomka, Aneta
2017-12-01
Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current literature favours the idea that hyperaccumulation of heavy metals serves plants as deterrent against attack by feeding animals (termed elemental defense hypothesis). The capability to hyperaccumulate heavy metals in A. halleri and N. caerulescens is achieved by duplications and alterations of the cis-regulatory properties of genes coding for heavy metal transporting/excreting proteins. Several metallophytes have developed ecotypes with a varying content of such heavy metal transporters as an adaption to the specific toxicity of a heavy metal site. Copyright © 2017 Elsevier GmbH. All rights reserved.
Alqarni, Abdulaziz S.; Hannan, Mohammed A.; Owayss, Ayman A.; Engel, Michael S.
2011-01-01
Abstract Apis mellifera jemenitica Ruttner (= yemenitica auctorum: vide Engel 1999) has been used in apiculture throughout the Arabian Peninsula since at least 2000 BC. Existing literature demonstrates that these populations are well adapted for the harsh extremes of the region. Populations of Apis mellifera jemenitica native to Saudi Arabia are far more heat tolerant than the standard races often imported from Europe. Central Saudi Arabia has the highest summer temperatures for the Arabian Peninsula, and it is in this region where only Apis mellifera jemenitica survives, while other subspecies fail to persist. The indigenous race of Saudi Arabia differs from other subspecies in the region in some morphological, biological, and behavioral characteristics. Further taxonomic investigation, as well as molecular studies, is needed in order to confirm whether the Saudi indigenous bee populations represent a race distinct from Apis mellifera jemenitica, or merely an ecotype of this subspecies. PMID:22140343
LeDuc, Richard G; Robertson, Kelly M; Pitman, Robert L
2008-08-23
Recently, three visually distinct forms of killer whales (Orcinus orca) were described from Antarctic waters and designated as types A, B and C. Based on consistent differences in prey selection and habitat preferences, morphological divergence and apparent lack of interbreeding among these broadly sympatric forms, it was suggested that they may represent separate species. To evaluate this hypothesis, we compared complete sequences of the mitochondrial control region from 81 Antarctic killer whale samples, including 9 type A, 18 type B, 47 type C and 7 type-undetermined individuals. We found three fixed differences that separated type A from B and C, and a single fixed difference that separated type C from A and B. These results are consistent with reproductive isolation among the different forms, although caution is needed in drawing further conclusions. Despite dramatic differences in morphology and ecology, the relatively low levels of sequence divergence in Antarctic killer whales indicate that these evolutionary changes occurred relatively rapidly and recently.