Diffusion in Brain Extracellular Space
Syková, Eva; Nicholson, Charles
2009-01-01
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is about 20% and the tortuosity about 1.6 (i.e. free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties are valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain. PMID:18923183
Influence of solvent species on the charge-discharge characteristics of a natural graphite electrode
NASA Astrophysics Data System (ADS)
Fujimoto, Masahisa; Shoji, Yoshihiro; Kida, Yoshinori; Ohshita, Ryuji; Nohma, Toshiyuki; Nishio, Koji
The charge-discharge characteristics of a natural graphite electrode are examined in a mixed solvent composed of ethylene carbonate (EC) and propylene carbonate (PC). The characteristics are influenced largely by the solvent species. Natural graphite electrode displays good charge-discharge characteristics in an electrolyte containing EC with a high volume fraction. In an electrolyte containing PC, however, the electrode cannot be charged and the solvent is decomposed. X-ray photoelectron spectroscopy is used to obtain information about the surface of natural graphite. A thin LiF layer, the decomposition product of lithium hexafluorophosphate (LiPF 6), is formed on the surface of the natural graphite charged to 0.5 V (vs. Li/Li +) in an electrolyte containing a high volume fraction of EC. On the other hand, LiF and a carbonate compound are formed in the bulk and on the surface of natural graphite when the volume fraction of PC is high. These results suggest that the thin LiF layer, which is produced at a potential higher than 0.5 V (vs. Li/Li +) on the surface of natural graphite, enables the lithium ions to intercalate into the natural graphite without further decomposition of the electrolyte.
Belcher, Donald Andrew; Banerjee, Uddyalok; Baehr, Christopher Michael; Richardson, Kristopher Emil; Cabrales, Pedro; Berthiaume, François
2017-01-01
Pure tense (T) and relaxed (R) quaternary state polymerized human hemoglobins (PolyhHbs) were synthesized and their biophysical properties characterized, along with mixtures of T- and R-state PolyhHbs. It was observed that the oxygen affinity of PolyhHb mixtures varied linearly with T-state mole fraction. Computational analysis of PolyhHb facilitated oxygenation of a single fiber in a hepatic hollow fiber (HF) bioreactor was performed to evaluate the oxygenation potential of T- and R-state PolyhHb mixtures. PolyhHb mixtures with T-state mole fractions greater than 50% resulted in hypoxic and hyperoxic zones occupying less than 5% of the total extra capillary space (ECS). Under these conditions, the ratio of the pericentral volume to the perivenous volume in the ECS doubled as the T-state mole fraction increased from 50 to 100%. These results show the effect of varying the T/R-state PolyhHb mole fraction on oxygenation of tissue-engineered constructs and their potential to oxygenate tissues. PMID:29020036
Astrocytes and extracellular matrix in extrasynaptic volume transmission.
Vargová, Lýdia; Syková, Eva
2014-10-19
Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Glisić, Radmila; Koko, Vesna; Todorović, Vera; Drndarević, Neda; Cvijić, Gordana
2006-09-11
The aim of our study was to investigate the morphological, immunohistochemical and ultrastructural changes of rat serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2 mg/kg dexamethasone, rats developed diabetes similar to human diabetes type 2. Stomach, small and large intestines were examined. Large serotonin positive EC cells appeared in the corpus mucosa epithelium of D group of rats, although these cells were not present in control (C) rats. Both volume fraction and the number of EC cells per mm(2) of mucosa were significantly increased only in the duodenum. However, the number of EC cells per circular sections of both antrum and small intestine was increased, but reduced both in the ascending and descending colon in D group. The dexamethasone treatment caused a strong reduction in number of granules in the antral EC cells, while it was gradually increased beginning from the jejunum to descending colon. The mean granular content was reduced in the antral EC cells but increased in the jejunal EC cells in D group. In conclusion, the present study showed that morphological changes in gut serotonin-producing EC cells occurred in diabetic rats.
Jin, Songwan; Zador, Zsolt; Verkman, A. S.
2008-01-01
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises ∼20% of brain parenchymal volume and contains cell-cell gaps ∼50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (α), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (Do/D). Experimental Do/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. Do/D for the small solute calcein in different regions of brain was in the range 3.0–4.1, and increased with brain cell swelling after water intoxication. Do/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured Do/D using realistic α, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted Do/D for different solute sizes. Also, the modeling showed unanticipated effects on Do/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS. PMID:18469079
Jin, Songwan; Zador, Zsolt; Verkman, A S
2008-08-01
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises approximately 20% of brain parenchymal volume and contains cell-cell gaps approximately 50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (alpha), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (D(o)/D). Experimental D(o)/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. D(o)/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. D(o)/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured D(o)/D using realistic alpha, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted D(o)/D for different solute sizes. Also, the modeling showed unanticipated effects on D(o)/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.
Aquaporin-4 Regulates the Velocity and Frequency of Cortical Spreading Depression in Mice
Yao, Xiaoming; Smith, Alex J.; Jin, Byung-Ju; Zador, Zsolt; Manley, Geoffrey T.; Verkman, A.S.
2016-01-01
The astrocyte water channel aquaporin-4 (AQP4) regulates extracellular space (ECS) K+ concentration ([K+]e) and volume dynamics following neuronal activation. Here, we investigated how AQP4-mediated changes in [K+]e and ECS volume affect the velocity, frequency and amplitude of cortical spreading depression (CSD) depolarizations produced by surface KCl application in wild-type (AQP4+/+) and AQP4-deficient (AQP4−/−) mice. Contrary to initial expectations, both the velocity and frequency of CSD were significantly reduced in AQP4−/− mice when compared to AQP4+/+ mice, by 22% and 32%, respectively. Measurement of [K+]e with K+-selective microelectrodes demonstrated an increase to ~35 mM during spreading depolarizations in both AQP4+/+ and AQP4−/− mice, but the rates of [K+]e increase (3.5 vs. 1.5 mM/s) and reuptake (t1/2 33 vs. 61 s) were significantly reduced in AQP4−/− mice. ECS volume fraction measured by trimethylammonium iontophoresis was greatly reduced during depolarizations from 0.18 to 0.053 in AQP4+/+ mice, and 0.23 to 0.063 in AQP4−/− mice. Analysis of the experimental data using a mathematical model of CSD propagation suggested that the reduced velocity of CSD depolarizations in AQP4−/− mice was primarily a consequence of the slowed increase in [K+]e during neuronal depolarization. These results demonstrate that AQP4 effects on [K+]e and ECS volume dynamics accelerate CSD propagation. PMID:25944186
Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu
2016-01-01
Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractionsLEF and CEF were identified as noncompetitive and competitive á-glucosidase inhibitors, respectivelyAntiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. Abbreviations used: LHF: Leaf hexane fraction, LCF: Leaf chloroform fraction, LEF: Leaf ethyl acetate fraction, LBF: Leaf butanol fraction, LWF: Leaf water fraction, CHF: Callus hexane fraction, CCF: Callus chloroform fraction, CEF: Callus ethyl acetate fraction, CBF: Callus butanol fraction, CWF: Callus water fraction, TP: Total phenolic, TF: Total flavonoid, TC: Total coumarin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay
Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis ofmore » tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.« less
NASA Astrophysics Data System (ADS)
Peng, Tsung-Ren; Zhan, Wen-Jun; Tong, Lun-Tao; Chen, Chi-Tsun; Liu, Tsang-Sen; Lu, Wan-Chung
2018-03-01
A study in eastern Taiwan evaluated the importance of montane water contribution (MC) to adjacent valley-plain groundwater (VPG) in a tectonic suture zone. The evaluation used a ternary natural-tracer-based end-member mixing analysis (EMMA). With this purpose, VPG and three end-member water samples of plain precipitation (PP), mountain-front recharge (MFR), and mountain-block recharge (MBR) were collected and analyzed for stable isotopic compositions (δ 2H and δ 18O) and chemical concentrations (electrical conductivity (EC) and Cl-). After evaluation, Cl- is deemed unsuitable for EMMA in this study, and the contribution fractions of respective end members derived by the δ 18O-EC pair are similar to those derived by the δ 2H-EC pair. EMMA results indicate that the MC, including MFR and MBR, contributes at least 70% (679 × 106 m3 water volume) of the VPG, significantly greater than the approximately 30% of PP contribution, and greater than the 20-50% in equivalent humid regions worldwide. The large MC is attributable to highly fractured strata and the steep topography of studied catchments caused by active tectonism. Furthermore, the contribution fractions derived by EMMA reflect the unique hydrogeological conditions in the respective study sub-regions. A region with a large MBR fraction is indicative of active lateral groundwater flow as a result of highly fractured strata in montane catchments. On the other hand, a region characterized by a large MFR fraction may possess high-permeability stream beds or high stream gradients. Those hydrogeological implications are helpful for water resource management and protection authorities of the studied regions.
Jin, Byung-Ju; Smith, Alex J.
2016-01-01
A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. PMID:27836940
Jin, Byung-Ju; Smith, Alex J; Verkman, Alan S
2016-12-01
A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. © 2016 Jin et al.
NASA Astrophysics Data System (ADS)
Pavlovic, J.; Kinsey, J. S.; Hays, M. D.
2014-09-01
Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the National Institute of Occupational Safety and Health Method 5040 (NIOSH) and Interagency Monitoring of Protected Visual Environment (IMPROVE) protocols. The application of the oven calibration procedure to our dual-optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the widespread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.
Azeem, Hafiz Abdul; Martinsson, Johan; Stenström, Kristina Eriksson; Swietlicki, Erik; Sandahl, Margareta
2017-07-01
Air-starved combustion of biomass and fossil fuels releases aerosols, including airborne carbonaceous particles, causing negative climatic and health effects. Radiocarbon analysis of the elemental carbon (EC) fraction can help apportion sources of its emission, which is greatly constrained by the challenges in isolation of EC from organic compounds in atmospheric aerosols. The isolation of EC using thermo-optical analysis is however biased by the presence of interfering compounds that undergo pyrolysis during the analysis. EC is considered insoluble in all acidic, basic, and organic solvents. Based on the property of insolubility, a sample preparation method using supercritical CO 2 and methanol as co-solvent was developed to remove interfering organic compounds. The efficiency of the method was studied by varying the density of supercritical carbon dioxide by means of temperature and pressure and by varying the methanol content. Supercritical CO 2 with 10% methanol by volume at a temperature of 60 °C, a pressure of 350 bar and 20 min static mode extraction were found to be the most suitable conditions for the removal of 59 ± 3% organic carbon, including compounds responsible for pyrolysis with 78 ± 16% EC recovery. The results indicate that the method has potential for the estimation and isolation of EC from OC for subsequent analysis methods and source apportionment studies.
Substituting energy crops with organic wastes and agro-industrial residues for biogas production.
Schievano, Andrea; D'Imporzano, Giuliana; Adani, Fabrizio
2009-06-01
In this study, industrial and agro-industrial by-products and residues (BRs), animal manures (AMs), and various types of organic wastes (OWs) were analyzed to evaluate their suitability as substitutes for energy crops (ECs) in biogas production. A comparison between the costs of the volume of biogas that can be produced from each substrate was presented with respect to the prices of the substrates in the Italian market. Furthermore, four different feeding mixtures were compared with a mixture of EC and swine manure (Mixture A) used in a full-scale plant in Italy. Swine manure is always included as a basic substrate in the feeding mixtures, because many of the Italian biogas plants are connected to farms. When EC were partially substituted with BR (Mixture B), the cost (0.28 euro Nm(-3)) of the volume of biogas of Mixture A dropped to 0.18 euro Nm(-3). Furthermore, when the organic fraction of municipal solid waste (OFMSW) and olive oil sludge (OS) were used as possible solutions (Mixtures C and D), the costs of the volume of biogas were -0.20 and 0.11euroNm(-3), respectively. The negative price signifies that operators earn money for treating the waste. For the fifth mix (Mixture E) of the OFMSW with a high solid substrate, such as glycerin from biodiesel production, the resulting cost of the volume of biogas produced was -0.09 euro Nm(-3). By comparing these figures, it is evident that the biogas plants at farm level are good candidates for treating organic residues of both municipalities and the agro-industrial sector in a cost-effective way, and in providing territorially diffused electric and thermal power. This may represent a potential development for agrarian economy.
2016-08-22
POSS dinadic composite cross-section. Prior to aging, a few voids are seen in the matrix , but no cracks. After the same time aging as with the PMR-15...the composite , fiber and matrix , respectively; σc, σf, and σm are stress in the composite , fiber and matrix , respectively; Vf and Vm are volume...fraction of the fiber and matrix , respectively; Ec, Ef and Em are the moduli of the composite , fiber and matrix , respectively
Acute toxicity and antispasmodic activities of Achillea wilhelmsii C. Koch.
Ali, Niaz; Shah, Syed Wadood Ali; Ahmed, Ghayour; Shah, Ismail; Shoaib, Mohammad; Junaid, Muhammad; Ali, Waqar
2014-03-01
Since Achillea wilhelmsii is used as antispasmodic in traditional medicine, we conducted our current work to investigate its rationale on scientific grounds. Acute toxicity studies of crude methanol extract of Achillea wilhelmsii (Aw. CMeOH) is also performed. Effect of Aw. CMeOH and its fractions were tested on isolated sections of rabbits' jejunum at test concentrations 0.01, 0.03, 1.0, 3.0, 5.0 and 10mg/ml. The test extracts, in similar concentrations, were also tested on KCl-induced contractions. Calcium chloride curves were constructed for those fractions which relaxed KCl induced contractions in the absence and presence of the test samples to investigate its possible mode of action through calcium channels. Aw. CMeOH tested positive for flavonoids, saponins, tannins, glycosides, terpenoids, sterols, phenols, carbohydrates and proteins. LD(50) for acute toxicity studies is 2707±12.6 mg/kg. Mean EC(50) values for Aw. CMeOH on spontaneous and KCl-induced contractions are 3.41±0.18 (2.56-3.8, n=6) and 0.68±0.05 (0.6-0.85, n=6) mg/ml, respectively. Respective EC(50) values for n-hexane fraction on spontaneous and KCl-induced contractions are 3.06±0.08 (2.8-3.3, n=6) and 1.68±0.8 (1.4-1.9, n=6) mg/ml, respectively. Corresponding EC(50) (mg/ml) values for chloroformic, ethylacetate and aqueous fractions of Achillea wilhelmsii on spontaneous rabbits' jejunum preparations are 4.8±0.2 (4.41-5.63, n=6), 5.07±0.15 (4.7-5.58, n=6) and 5.2±0.13 (4.91-5.64, n=4), respectively. Constructing calcium chloride curves, in the presence of 0.1 mg/ml of Aw. CMeOH, mean EC(50) value (log molar [Ca(++)]) is-1.98±0.03 (-1.89-2.05, n=6) vs. control EC(50) (log molar [Ca(++)])-2.41±0.02 (-2.32-2.44, n=6). Mean EC(50) value (log molar [Ca(++)]) for 0.3 mg/ml n-hexane fraction is-1.76±0.05 (-1.70 -1.93, n=6) vs. control EC(50) (log molar [Ca(++)]) value-2.18±0.07 (-2.0-2.46, n=6). While in the presence of chloroformic fraction (3 mg/ml), mean EC(50) (log molar [Ca(++)]) value is -2.4±0.1 (-2.78 -2.9, n=6) vs. control EC(50) (log molar [Ca(++)]) value-2.70±0.05 (-2.5-2.8, n=6). Mean EC(50) value (log molar [Ca(++)]) for ethyl acetate fraction (1 mg/ml) is-1.94±0.07 (-1.75-2.05, n=6) vs. control EC(50) (log molar [Ca(++)]) value-2.69±0.04 (-2.57-2.79, n=6). Mean EC(50) (log molar [Ca(++)]) value for residual aqueous fraction (3 mg/ml) is-1.8±0.3 (-1.71-1.84, n=6) vs. control EC(50) (log molar [Ca(++)]) -2.6±0.04 (-2.59-2.76, n=6). Whereas, the verapamil (0.1µM) EC(50) value (log molar [Ca(++)]) is-1.7±0.1 (-1.6-1.8, n=6) vs. control EC(50) value (log molar [Ca(++)])- 2.4±0.09 (-2.3-2.47, n=6). The present research work confirms that the intestinal relaxation effect of Achillea wilhelmsii is supporting its traditional use as antispasmodic. The plant species can be a source for calcium antagonist(s), which can preferably be isolated from n-hexane fraction.
In silico prediction of drug solubility: 2. Free energy of solvation in pure melts.
Lüder, Kai; Lindfors, Lennart; Westergren, Jan; Nordholm, Sture; Kjellander, Roland
2007-02-22
The solubility of drugs in water is investigated in a series of papers and in the current work. The free energy of solvation, DeltaG*(vl), of a drug molecule in its pure drug melt at 673.15 K (400 degrees C) has been obtained for 46 drug molecules using the free energy perturbation method. The simulations were performed in two steps where first the Coulomb and then the Lennard-Jones interactions were scaled down from full to no interaction. The results have been interpreted using a theory assuming that DeltaG*(vl) = DeltaG(cav) + E(LJ) + E(C)/2 where the free energy of cavity formation, DeltaG(cav), in these pure drug systems was obtained using hard body theories, and E(LJ) and E(C) are the Lennard-Jones and Coulomb interaction energies, respectively, of one molecule with the other ones. Since the main parameter in hard body theories is the volume fraction, an equation of state approach was used to estimate the molecular volume. Promising results were obtained using a theory for hard oblates, in which the oblate axial ratio was calculated from the molecular surface area and volume obtained from simulations. The Coulomb term, E(C)/2, is half of the Coulomb energy in accord with linear response, which showed good agreement with our simulation results. In comparison with our previous results on free energy of hydration, the Coulomb interactions in pure drug systems are weaker, and the van der Waals interactions play a more important role.
Park, In-Sun; Park, Jae-Woo
2011-01-30
Total petroleum hydrocarbon (TPH) is an important environmental contaminant that is toxic to human and environmental receptors. However, human health risk assessment for petroleum, oil, and lubricant (POL)-contaminated sites is especially challenging because TPH is not a single compound, but rather a mixture of numerous substances. To address this concern, this study recommends a new human health risk assessment strategy for POL-contaminated sites. The strategy is based on a newly modified TPH fractionation method and includes an improved analytical protocol. The proposed TPH fractionation method is composed of ten fractions (e.g., aliphatic and aromatic EC8-10, EC10-12, EC12-16, EC16-22 and EC22-40). Physicochemical properties and toxicity values of each fraction were newly defined in this study. The stepwise ultrasonication-based analytical process was established to measure TPH fractions. Analytical results were compared with those from the TPH Criteria Working Group (TPHCWG) Direct Method. Better analytical efficiencies in TPH, aliphatic, and aromatic fractions were achieved when contaminated soil samples were analyzed with the new analytical protocol. Finally, a human health risk assessment was performed based on the developed tiered risk assessment framework. Results showed that a detailed quantitative risk assessment should be conducted to determine scientifically and economically appropriate cleanup target levels, although the phase II process is useful for determining the potency of human health risks posed by POL-contamination. Copyright © 2010 Elsevier B.V. All rights reserved.
Avino, Pasquale; Manigrasso, Maurizio; Rosada, Alberto; Dodaro, Alessandro
2015-02-01
A significant portion of the particulate matter is the total carbonaceous fraction (or total carbon, TC), composed of two main fractions, elemental carbon (EC) and organic carbon (OC), which shows a large variety of organic compounds, e.g. aliphatic, aromatic compounds, alcohols, acids, etc. In this paper, TC, EC and OC concentrations determined in a downtown Rome urban area are discussed considering the influence of meteorological conditions on the temporal-spatial aerosol distribution. Similar measurements were performed at ENEA Casaccia, an area outside Rome, which is considered as the ome background. Since 2000, TC, EC and OC measurements have been performed by means of an Ambient Carbon Particulate Monitor equipped with a NDIR detector. The EC and OC concentrations trends are compared with benzene and CO trends, which are specific indicators of autovehicular traffic, for identifying the primary EC and OC contributions and the secondary OC fraction origin. Further, a chemical investigation is reported for investigating how the main organic (i.e., n-alkanes, n-alkanoic acids, polyaromatic hydrocarbons and nitro-polyaromatic hydrocarbons) and inorganic (i.e., metals, ions) fractions vary their levels during the investigated period in relationship to new regulations and/or technological innovations.
Puffing Topography and Nicotine Intake of Electronic Cigarette Users
Behar, Rachel Z.; Hua, My; Talbot, Prue
2015-01-01
Background Prior electronic cigarette (EC) topography data are based on two video analyses with limited parameters. Alternate methods for measuring topography are needed to understand EC use and nicotine intake. Objectives This study evaluated EC topography with a CReSS Pocket device and quantified nicotine intake. Methods Validation tests on pressure drop, flow rate, and volume confirmed reliable performance of the CReSS Pocket device. Twenty participants used Blu Cigs and V2 Cigs for 10 minute intervals with a 10–15 minute break between brands. Brand order was reversed and repeated within 7 days Data were analyzed to determine puff duration, puff count, volume, flow rate, peak flow, and inter-puff interval. Nicotine intake was estimated from cartomizer fluid consumption and topography data. Results Nine patterns of EC use were identified. The average puff count and inter-puff interval were 32 puffs and 17.9 seconds. All participants, except one, took more than 20 puffs/10 minutes. The averages for puff duration (2.65 seconds/puff), volume/puff (51ml/puff), total puff volume (1,579 ml), EC fluid consumption (79.6 mg), flow rate (20 ml/s), and peak flow rate (27 ml/s) were determined for 10-minute sessions. All parameters except total puff count were significantly different for Blu versus V2 EC. Total volume for Blu versus V2 was four-times higher than for conventional cigarettes. Average nicotine intake for Blu and V2 across both sessions was 1.2 ± 0.5 mg and 1.4 ± 0.7 mg, respectively, which is similar to conventional smokers. Conclusions EC puffing topography was variable among participants in the study, but often similar within an individual between brands or days. Puff duration, inter-puff interval, and puff volume varied from conventional cigarette standards. Data on total puff volume and nicotine intake are consistent with compensatory usage of EC. These data can contribute to the development of a standard protocol for laboratory testing of EC products. PMID:25664463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, W; Fan, X; Qiu, R
2014-06-01
Purpose: To compare and analyze the characteristics of static intensity-modulated radiotherapy (IMRT) plans designed on Elekta and Varian Linac in different esophageal cancer(EC), exploring advantages and disadvantages of different vendor Linac, thus can be better serve for clinical. Methods: Twenty-four patients with EC were selected, including 6 cases located in the cervical, upper, middle and the lower thorax, respectively. Two IMRT plans were generated with the Oncentra planning system: in Elekta and Varian Linac, prescription dose of 60Gy in 30 fractions to the PTV. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such asmore » lungs, spinal cord and heart, and additional Monitor units(MU), treatment time, Homogeneity index(HI), Conformity index(CI) and Gamma index comparisons were performed. Results: All plans resulted in abundant dose coverage of PTV for EC of different locations. The doses to PTV, HI and OAR in Elekta plans were not statistically different in comparison with Varian plans, with the following exceptions: in cervical, upper and lower thoracic EC the PTV's CI, and in middle thorax EC PTV's D2, D50, V105 and PTV-average were better in Elekta plans than in Varian plans. In the cervical, upper and the middle thorax EC, treatment time were significantly decreased in Varian plans as against Elekta plans, while in the lower thoracic EC treatment time were no striking difference. MUs and gamma index were similar between the two Linac plans. Conclusion: For the the middle thorax EC Varian plans is better than Elekta plans, not only in treatment time but in the PTV dose; while for the lower thorax EC Elekta plans is the first choice for better CI; for the other part of the EC usually Elekta plans can increase the CI, while Varian plans can reduce treatment time, can be selected according to the actual situation of the patient treatment.« less
Urman, Robert; Gauderman, James; Fruin, Scott; Lurmann, Fred; Liu, Feifei; Hosseini, Reza; Franklin, Meredith; Avol, Edward; Penfold, Bryan; Gilliland, Frank; Brunekreef, Bert; McConnell, Rob
2014-01-01
Emerging evidence indicates that near-roadway pollution (NRP) in ambient air has adverse health effects. However, specific components of the NRP mixture responsible for these effects have not been established. A major limitation for health studies is the lack of exposure models that estimate NRP components observed in epidemiological studies over fine spatial scale of tens to hundreds of meters. In this study, exposure models were developed for fine-scale variation in biologically relevant elemental carbon (EC). Measurements of particulate matter (PM) and EC less than 2.5 μm in aerodynamic diameter (EC2.5) and of PM and EC of nanoscale size less than 0.2 μm were made at up to 29 locations in each of eight Southern California Children's Health Study communities. Regression-based prediction models were developed using a guided forward selection process to identify traffic variables and other pollutant sources, community physical characteristics and land use as predictors of PM and EC variation in each community. A combined eight-community model including only CALINE4 near-roadway dispersion-estimated vehicular emissions accounting for distance, distance-weighted traffic volume, and meteorology, explained 51% of the EC0.2 variability. Community-specific models identified additional predictors in some communities; however, in most communities the correlation between predicted concentrations from the eight-community model and observed concentrations stratified by community were similar to those for the community-specific models. EC2.5 could be predicted as well as EC0.2. EC2.5 estimated from CALINE4 and population density explained 53% of the within-community variation. Exposure prediction was further improved after accounting for between-community heterogeneity of CALINE4 effects associated with average distance to Pacific Ocean shoreline (to 61% for EC0.2) and for regional NOx pollution (to 57% for EC2.5). PM fine spatial scale variation was poorly predicted in both size fractions. In conclusion, models of exposure that include traffic measures such as CALINE4 can provide useful estimates for EC0.2 and EC2.5 on a spatial scale appropriate for health studies of NRP in selected Southern California communities. PMID:25313293
Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh
2018-02-01
Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.
Shi, Yuping; Huang, Limin; Soh, Ai Kah; Weng, George J; Liu, Shuangyi; Redfern, Simon A T
2017-09-11
Electrocaloric (EC) materials show promise in eco-friendly solid-state refrigeration and integrable on-chip thermal management. While direct measurement of EC thin-films still remains challenging, a generic theoretical framework for quantifying the cooling properties of rich EC materials including normal-, relaxor-, organic- and anti-ferroelectrics is imperative for exploiting new flexible and room-temperature cooling alternatives. Here, we present a versatile theory that combines Master equation with Maxwell relations and analytically relates the macroscopic cooling responses in EC materials with the intrinsic diffuseness of phase transitions and correlation characteristics. Under increased electric fields, both EC entropy and adiabatic temperature changes increase quadratically initially, followed by further linear growth and eventual gradual saturation. The upper bound of entropy change (∆S max ) is limited by distinct correlation volumes (V cr ) and transition diffuseness. The linearity between V cr and the transition diffuseness is emphasized, while ∆S max = 300 kJ/(K.m 3 ) is obtained for Pb 0.8 Ba 0.2 ZrO 3 . The ∆S max in antiferroelectric Pb 0.95 Zr 0.05 TiO 3 , Pb 0.8 Ba 0.2 ZrO 3 and polymeric ferroelectrics scales proportionally with V cr -2.2 , owing to the one-dimensional structural constraint on lattice-scale depolarization dynamics; whereas ∆S max in relaxor and normal ferroelectrics scales as ∆S max ~ V cr -0.37 , which tallies with a dipolar interaction exponent of 2/3 in EC materials and the well-proven fractional dimensionality of 2.5 for ferroelectric domain walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com; Indiana University Health Proton Therapy Center, Bloomington, Indiana; Linton, Okechukwu R.
Purpose: We evaluated patient and treatment parameters correlated with development of temporal lobe radiation necrosis. Methods and Materials: This was a retrospective analysis of a cohort of 66 patients treated for skull base chordoma, chondrosarcoma, adenoid cystic carcinoma, or sinonasal malignancies between 2005 and 2012, who had at least 6 months of clinical and radiographic follow-up. The median radiation dose was 75.6 Gy (relative biological effectiveness [RBE]). Analyzed factors included gender, age, hypertension, diabetes, smoking status, use of chemotherapy, and the absolute dose:volume data for both the right and left temporal lobes, considered separately. A generalized estimating equation (GEE) regression analysis evaluatedmore » potential predictors of radiation necrosis, and the median effective concentration (EC50) model estimated dose–volume parameters associated with radiation necrosis. Results: Median follow-up time was 31 months (range 6-96 months) and was 34 months in patients who were alive. The Kaplan-Meier estimate of overall survival at 3 years was 84.9%. The 3-year estimate of any grade temporal lobe radiation necrosis was 12.4%, and for grade 2 or higher radiation necrosis was 5.7%. On multivariate GEE, only dose–volume relationships were associated with the risk of radiation necrosis. In the EC50 model, all dose levels from 10 to 70 Gy (RBE) were highly correlated with radiation necrosis, with a 15% 3-year risk of any-grade temporal lobe radiation necrosis when the absolute volume of a temporal lobe receiving 60 Gy (RBE) (aV60) exceeded 5.5 cm{sup 3}, or aV70 > 1.7 cm{sup 3}. Conclusions: Dose–volume parameters are highly correlated with the risk of developing temporal lobe radiation necrosis. In this study the risk of radiation necrosis increased sharply when the temporal lobe aV60 exceeded 5.5 cm{sup 3} or aV70 > 1.7 cm{sup 3}. Treatment planning goals should include constraints on the volume of temporal lobes receiving higher dose. The EC50 model provides suggested dose–volume temporal lobe constraints for conventionally fractionated high-dose skull base radiation therapy.« less
Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.
Egg, R P; Sweeten, J M; Coble, C G
1985-12-01
Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.
NASA Astrophysics Data System (ADS)
Mahayasih, Putu Gita Maya Widyaswari; Elya, Berna; Hanafi, Muhammad
2018-02-01
Garcinia lateriflora leaves extract of the family Guttiferae has been known to have excellent antioxidant activity. The objective of the study was to determine the antioxidant effect of the n-hexane, ethyl acetate and methanol extracts of G. lateriflora leaves extract. The antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging methods and Feric Reducing Antioxidant Power (FRAP) to determine the antioxidant properties. The extracts were fractionated by using column chromatography. The Methanol extract exhibited the strongest antioxidant activity with EC50 values are 13.95 and 19.65 µg/mL by DPPH and FRAP methods respectively. E13 fraction was the most active fraction from ethyl acetate extract with EC50 value for DPPH scavenging method was 37.14 µg/mL and 34.46 µg/mL for reducing power by the FRAP method. Meanwhile M3 fraction was the most active fraction in methanol extract with EC50 value for DPPH scavenging method was 50.02 µg/mL and 37.32 µg/mL for reducing power by the FRAP method.
Characteristics and sources of the fine carbonaceous aerosols in Haikou, China
NASA Astrophysics Data System (ADS)
Liu, Baoshuang; Zhang, Jiaying; Wang, Lu; Liang, Danni; Cheng, Yuan; Wu, Jianhui; Bi, Xiaohui; Feng, Yinchang; Zhang, Yufen; Yang, Haihang
2018-01-01
Ambient PM2.5 samples were collected from January to September 2015 in Haikou. The carbonaceous fractions included OC, EC, OC1, OC2, OC3, OC4, EC1, EC2, EC3, Char-EC (EC1 minus POC) and Soot-EC (EC2 plus EC3) were analysed in this study. The results indicate that the mean concentrations of OC and EC are 5.6 and 2.5 μg/m3 during the sampling period, respectively; and the concentrations of most of carbonaceous fractions are the highest in winter and the lowest in spring. The seasonal variations of Soot-EC and Char-EC concentrations show distinct differences. The concentrations of Char-EC are higher in winter and lower in spring; while those of Soot-EC are lower in winter and higher in summer. Compared to Char-EC, the concentrations of Soot-EC show smaller seasonal-variation in Haikou. The Char-EC has the higher correlations with OC and EC (r = 0.91 and 0.95, P < 0.01), while the correlation between the Soot-EC and either OC or EC is absent (r = 0.15 and 0.11, P > 0.05). The average ratios of Char-EC/Soot-EC are in the order of winter (15.9) > autumn (4.9) > summer (4.0) > spring (3.6), with an average value of 7.1. According to error estimation (EE) diagnostics analysis, four factors are revealed in Positive Matrix Factorization (PMF) analysis during each season. The combined gasoline/diesel vehicle exhaust, coal combustion, biomass burning and specific diesel vehicle exhaust are identified as the major sources of carbonaceous aerosols, and their contributions during the whole year are up to 29.3%, 27.4%, 17.9% and 15.9%, respectively. The transport trajectories of the air masses illustrate distinct differences during different seasons, and the transport trajectories are mainly derived from the mainland China (i.e. Jiangxi, Fujian and Guangdong provinces) in winter, likely caused by higher contribution of coal combustion.
Ali, Niaz; Ahmed, Ghayour; Shah, Syed Wadood Ali; Shah, Ismail; Ghias, Mehreen; Khan, Imran
2011-10-24
Callistemon citrinus Curtis belongs to family Myrtaceae that has a great medicinal importance. In our previous work, fruits of Callistemon citrinus were reported to have relaxant (antispasmodic) activity. The current work describes the screening of fractions of the crude methanol extract for tracing spasmolytic constituents so that it shall help us for isolation of bioactive compounds. Acute toxicity and brine shrimp cytotoxicity of crude methanol extract are also performed to standardize it. The crude methanol extract was obtained by maceration with distilled water (500 ml) three times and fractionated successively with n-hexane, chloroform, ethyl acetate and n-butanol (300 ml of each solvent). Phytochemical analysis for crude methanol extract was performed. Acute toxicity studies were performed in mice. Brine shrimp cytotoxicity studies were performed to determine its cytotoxicity and standardize it. In other series of experiments, rabbits' jejunum preparations were used in screening for possible relaxant activities of various fractions. They were applied in concentrations of 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 5.0 and 10.0 mg/ml on spontaneous rabbits' jejunum preparations. In similar fashion, fractions were also tested on KCl (80 mM) -induced contractions. Calcium chloride curves were constructed in K-rich Tyrode's solution. The effects of various fractions were tested on calcium chloride curves at concentrations 1.0, 3.0, 5.0 and 10.0 mg/ml. Curves of verapamil used as reference drug at concentration 0.1 μM and 0.3 μM were also constructed. The curves were compared with their respective controls for possible right shift. Methanol extract tested strongly positive for saponins and tannins. However, it tested mild positive for presence of proteins, amino acids, carbohydrates and phenolic compounds. LD(50) value for crude methanol extract is 476.25 ± 10.3 (470-481, n = 4) mg/ml. Similarly, EC(50) value for brine shrimp cytotoxicity is 65.5 ± 7.28 (60.8- 69.4, n = 4) mg/ml. All the fractions relaxed the spontaneous and KCl-induced contractions. EC(50) values (mg/ml) for effects of ethyl acetate fraction on spontaneous and KCl induced contractions are 2.62 ± 0.78 (2.15-3.0, n = 4) and 3.72 ± 0.86 (3.38-4.28, n = 4) respectively. Respective EC(50) values (mg/ml) for n-butanol fraction are 3.59 ± 0.2(3.07-3.9, n = 4) for spontaneous, and 5.57 ± 0.2 (5.07-6.11, n = 4) for KCl- induced contractions. EC(50) value for control calcium chloride curve (without extract) is -2.73 ± 0.19 (-2.6 - -2.81, n = 4) while EC(50) for curves treated with 5.0 mg/ml of chloroform is -2.22 ± 0.02 (-2.16 - -2.3, n = 4). EC(50) value for ethyl acetate treated (1.0 mg/ml) tissues is -1.95 ± 0.10 (-1.88 - -2.0, n = 4) vs. control EC(50) = -2.71 ± 0.08 (-2.66 - -2.76, n = 4). All the fractions, except n-hexane, showed a right shift like that of verapamil (EC(50) = -1.72 ± 0.15 (-1.62 - -1.8, n = 4) vs. Control EC(50) = -2.41 ± 0.06 (-2.38 - - 2.44, n = 4), a standard drug that blocks voltage operated calcium channels. Relaxant constituents were more concentrated in ethylacetate fraction followed by chloroform, n -butanol and aqueous fractions that warrant for its isolation. The crude methanol extract is safe at concentration 250 mg/ml or below and results of brine shrimp cytotoxicity assay imply the plant specie may be a source of cytotoxic agents.
Esatbeyoglu, Tuba; Winterhalter, Peter
2010-04-28
A semisynthetic approach has been used for the preparative formation of dimeric procyanidins B1, B2, B5, and B7. As starting material for the semisynthesis, polymeric procyanidins from black chokeberry were applied. These polymers were found to consist almost exclusively of (-)-epicatechin units. Under acidic conditions the interflavanoid linkages of the polymeric procyanidins are cleaved and the liberated (-)-epicatechin can react with nucleophiles, such as (+)-catechin or (-)-epicatechin. In this way, the polymeric procyanidins are degraded while dimeric procyanidins are formed. During this reaction only dimeric procyanidins are formed that contain (-)-epicatechin in the upper unit, that is, B1 [(-)-EC-4beta-->8-(+)-C)], B2 [(-)-EC-4beta-->8-(-)-EC], B5 [(-)-EC-4beta-->6-(-)-EC], and B7 [(-)-EC-4beta-->6-(+)-C]. The reaction mixtures of the semisynthesis can be successfully fractionated with high-speed countercurrent chromatography (HSCCC), and it is possible to isolate pure procyanidins B1, B2, B5, and B7 on a preparative scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salizzato, M.; Bertato, V.; Pavoni, B.
1998-04-01
Chemical analyses and bioassays were used in conjunction to assess the quality of sediments of the Venice lagoon. Organic micropollutants (polycyclic aromatic hydrocarbons [PAHs] polychlorinated biphenyls [PCBs], and chlorinated pesticides) were extracted from sediment samples and analyzed by gas chromatography after fractionation into classes of compounds. The Vibrio fischeri test was used to assess the acute toxicity of sediment extracts. The test was applied to organic extracts before cleanup and to extracts purified from sulfur and fractionated into single classes of compounds. Extracts before purification were much more toxic than single fractions. In particular, sulfur was toxic to V. fischeri.more » For PAHs and PCBs the 50% effective concentration (EC50) and EC20 values were determined using natural and spiked extracts. Sensitivity limits of the method for these compounds were also estimated as was in EC50 value of elemental sulfur dissolved in ethanol. A mathematical model was used to fit the concentration-response data to a sigmoid curve.« less
NASA Astrophysics Data System (ADS)
Salma, Imre; Németh, Zoltán; Weidinger, Tamás; Maenhaut, Willy; Claeys, Magda; Molnár, Mihály; Major, István; Ajtai, Tibor; Utry, Noémi; Bozóki, Zoltán
2017-11-01
An intensive aerosol measurement and sample collection campaign was conducted in central Budapest in a mild winter for 2 weeks. The online instruments included an FDMS-TEOM, RT-OC/EC analyser, DMPS, gas pollutant analysers and meteorological sensors. The aerosol samples were collected on quartz fibre filters by a low-volume sampler using the tandem filter method. Elemental carbon (EC), organic carbon (OC), levoglucosan, mannosan, galactosan, arabitol and mannitol were determined, and radiocarbon analysis was performed on the aerosol samples. Median atmospheric concentrations of EC, OC and PM2.5 mass were 0.97, 4.9 and 25 µg m-3, respectively. The EC and organic matter (1.6 × OC) accounted for 4.8 and 37 %, respectively, of the PM2.5 mass. Fossil fuel (FF) combustion represented 36 % of the total carbon (TC = EC + OC) in the PM2.5 size fraction. Biomass burning (BB) was a major source (40 %) for the OC in the PM2.5 size fraction, and a substantial source (11 %) for the PM10 mass. We propose and apply here a novel, straightforward, coupled radiocarbon-levoglucosan marker method for source apportionment of the major carbonaceous chemical species. The contributions of EC and OC from FF combustion (ECFF and OCFF) to the TC were 11.0 and 25 %, respectively, EC and OC from BB (ECBB and OCBB) were responsible for 5.8 and 34 %, respectively, of the TC, while the OC from biogenic sources (OCBIO) made up 24 % of the TC. The overall relative uncertainty of the OCBIO and OCBB contributions was assessed to be up to 30 %, while the relative uncertainty for the other apportioned species is expected to be below 20 %. Evaluation of the apportioned atmospheric concentrations revealed some of their important properties and relationships among them. ECFF and OCFF were associated with different FF combustion sources. Most ECFF was emitted by vehicular road traffic, while the contribution of non-vehicular sources such as domestic and industrial heating or cooking using gas, oil or coal to OCFF was substantial. The mean contribution of BB to EC particles was smaller by a factor of approximately 2 than that of road traffic. The main formation processes of OCFF, OCBB and OCBIO from volatile organic compounds were jointly influenced by a common factor, which is most likely the atmospheric photochemistry, while primary organic emissions can also be important. Technological improvements and control measures for various BB appliances, together with efficient education and training of their users, in particular on the admissible fuel types, offer an important potential for improving the air quality in Budapest, and likely in other cities as well.
Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S.; Kim, Sungheon Gene
2016-01-01
Solid tumor microstructure is related to aggressiveness of tumor, interstitial pressure and drug delivery pathways that are closely associated with treatment response, metastatic spread and prognosis. In this study, we introduce a novel diffusion MRI data analysis framework, Pulsed and Oscillating gradient MRI for Assessment of Cell size and Extracellular space (POMACE), and demonstrate its feasibility in a mouse tumor model. In vivo and ex vivo POMACE experiments were performed on mice bearing the GL261 murine glioma model (n=8). Since the complete diffusion time-dependence is in general non-analytical, the tumor microstructure was modeled in an appropriate time/frequency regime by impermeable spheres (radius Rcell, intracellular diffusivity Dics) surrounded by extracellular space (approximated by constant apparent diffusivity Decs in volume fraction ECS). POMACE parametric maps (ECS, Rcell, Dics, Decs) were compared with conventional diffusion weighted imaging metrics, electron microscopy (EM), alternative ECS determination based on effective medium theory (EMT), and optical microscopy performed on the same samples. It was shown that Decs can be approximated by its long-time tortuosity limit in the range [1/(88 Hz) - 31 ms]. ECS estimations (44±7% in vivo and 54±11% ex vivo) were in agreement with EMT-based ECS and literature on brain gliomas. Ex vivo, ECS maps correlated well with optical microscopy. Cell sizes (Rcell=4.8±1.3 in vivo and 4.3±1.4 μm ex vivo) were consistent with EM measurements (4.7±1.8 μm). In conclusion, Rcell and ECS can be quantified and mapped in vivo and ex vivo in brain tumors using the proposed POMACE method. Our experimental results support that POMACE provides a way to interpret the frequency- or time-dependence of the diffusion coefficient in tumors in terms of objective biophysical parameters of neuronal tissue, which can be used for non-invasive monitoring of preclinical cancer studies and treatment efficacy. PMID:27448059
Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Monteiro dos Santos, Djacinto A.; Brito, Joel F.; Godoy, José Marcus; Artaxo, Paulo
2016-11-01
The São Paulo Metropolitan Area (SPMA) is a megacity with about 20 million people and about 8 million vehicles, most of which are fueled with a significant fraction of ethanol - making it a unique case worldwide. This study presents organic and elemental carbon measurements using thermal-optical analysis from quartz filters collected in four sampling sites within the SPMA. Overall Organic Carbon (OC) concentration was comparable at all sites, where Street Canyon had the highest concentration (3.37 μg m-3) and Park site the lowest (2.65 μg m-3). Elemental Carbon (EC), emitted as result of incomplete combustion, has been significantly higher at the Street Canyon site (6.11 μg m-3) in contrast to all other three sites, ranging from 2.25 μg m-3 (Downtown) to 1.50 μg m-3 (Park). For all sampling sites, the average OC:EC ratio are found on the lower bound (<2) of what is usually observed for other megacities, highlighting the significant contribution of EC in Sao Paulo. At the Street Canyon site, average OC:EC ratio was 0.56, to our knowledge the lowest value ever observed for any urban site. An approach for apportionment between primary and secondary organic carbon based on primary OC:EC ratio was evaluated. The secondary OC was estimated to be 30-40% of total OC concentrations throughout the various sampling sites. The organic carbon dynamics has been further studied using each of the thermally-derived organic carbon fractions. Each of these has been studied regarding their correlation with EC and the correlation between different sites. The analyses have identified that the OC3 and OC4, i.e., the carbon fraction which evolves from the filter at temperatures above 450 °C, presents a regional behavior, with high correlation among all sites. Conversely, OC1, the first fraction to evolve, has depicted a more local characteristic. Furthermore, the fraction of OC which becomes char during the temperature increase under inert atmosphere (the Pyrolytic Carbon-PC) has been the only fraction not to present a significant correlation with EC. Since that EC is assumed to be a primary emission marker, it indicates that PC is not significant in traffic emissions. This study provided innovative insights of the organic aerosol content associated with air pollution dynamics in a megacity impacted by a unique vehicular fleet. It also shows the need of implementation of EURO VI technology and to improve mass transport systems such a metro and more bus corridors to allow better transport for 19 million people in the SPMA.
Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino; Ihsen, Ben Salah
2017-02-01
Electrocoagulation (EC) was employed to treat residual organic matter from a landfill leachate pretreated by an aerated bio-filter system. Organic matter (humic acids (HA), fulvic acids (FA) and hydrophilic compounds (Hyl)) was fractionated using DAX-8 resin in order to estimate the efficiency of EC on each fraction. Initial characterization of the bio-filtrated landfill leachate showed that humic substances (HA + FA) represented nearly 90% of TOC. The effects of current densities, type of anode (Aluminum versus iron), and treatment time on the performance of COD removal were investigated. The best COD removal performances were recorded at a current density ranging between 8.0 and 10 mA cm -2 during 20 min of treatment time. Under these conditions, 70% and 65% of COD were removed using aluminum and iron electrodes, respectively. The fractionating of organic matter after EC treatment revealed that HA was completely removed using either aluminum or iron anode. However, FA and Hyl fractions were partially removed, with the percentages varying from 57 to 60% and 37-46%, respectively. FA and Hyl removal were quite similar using either aluminum or iron anode. Likewise, a significant decrease in 254-nm absorbance was recorded (UV 254 removal of 79-80%) using either type of anode. These results proved that EC is a suitable and efficient approach for treating the residual refractory organic matter from a landfill leachate previously treated by a biological system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wells, Michael L; Moynagh, Michael R; Carter, Rickey E; Childs, Robert A; Leitch, Cameron E; Fletcher, Joel G; Yeh, Benjamin M; Venkatesh, Sudhakar K
2017-01-01
To compare MR hepatic fractional extracellular space (fECS) to liver stiffness (LS) with magnetic resonance elastography (MRE) for evaluation of liver fibrosis. 71 consecutive patients with suspected chronic liver disease underwent standard liver MRI with MR elastography and additional delayed Gd-DTPA-enhanced sequences at 5 and 10 min in order to calculate hepatic fECS (%) and LS (kilopascals, kPa). Two radiologists blinded to clinical history examined MR images and calculated fECS and LS in identical locations for every patient. Interobserver agreement was calculated using the intraclass correlation coefficient. Pearson's correlation was calculated for LS and fECS measures, as was the area under the receiver operatic curve (AUROC), sensitivity and specificity of fECS to predict liver stiffness ≥2.93 and ≥5 kPa. The sensitivity of fECS for detecting fibrosis was separately analyzed in the subgroup of patients without anatomic findings of cirrhosis. Substantial to excellent interobserver agreement for both LS and fECS measurements was seen with intraclass correlation of 0.88 (95% CI 0.81-0.92) for LS, 0.77 (95% CI 0.66-0.85) for fECS 5 and 0.76 (95% CI 0.64-0.84) for fECS 10 . A significant correlation was found between MRE and fECS 5 (r = 0.47, p < 0.0001) and fECS 10 (r = 0.44, p < 0.0001). The performance of fECS improved for detection of advanced fibrosis (≥5 kPa) with AUROC, sensitivity and specificity of 0.72, 38%, and 94% for fECS 5 and 0.72, 67%, and 66% for fECS 10 . fECS correlates modestly with MRE-determined LS. fECS at MRI is a simple calculation to perform and may represent a practical way to suggest the presence of fibrosis during routine liver evaluation.
NASA Astrophysics Data System (ADS)
Currie, L. A.; Kessler, J. D.
2005-10-01
The primary objective of the research reported here has been the development of a hybrid reference material (RM) to serve as a test of accuracy for elemental carbon (EC) isotopic (14C) speciation measurements. Such measurements are vital for the quantitative apportionment of fossil and biomass sources of "soot" (EC), the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust), showed a range of results, but since the "truth" was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC) of measurement validity (Currie et al., 2002). Components of the new Hybrid RM (DiesApple), however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically). NIST SRM 2975 (Forklift Diesel Soot) has little or no 14C, and its major compositional component is EC; SRM 1515 (Apple Leaves) has the 14C content of biomass-C, and it has little or no EC. Thus, the Hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C (char) from SRM 1515 in the EC isolate of the Hybrid RM, as well as a test for conservation of its dominant soot fraction throughout the isolation procedure.
The secondary objective was to employ the Hybrid RM for the comparative evaluation of the thermal optical kinetic (TOK) and thermal optical transmission (TOT) methods for the isolation of EC for micro-molar carbon accelerator mass spectrometry (AMS). As part of this process, the relatively new TOK method was subjected to a critical evaluation and significant development. Key findings of our study are: (1) both methods exhibited biomass-C "leakage"; for TOT, the EC fraction isolated for AMS contained about 8% of the original biomass-C; for TOK, the refractory carbon (RC) isolated contained about 3% of the original biomass-C.; (2) the initial isothermal oxidation stage of the TOK method substantially reduced the transfer of artifact char to the RC fraction, improving isolation capabilities; (3) the Hybrid RM was not equal to the sum of its parts, with matrix interactions inducing premature loss of EC which, however, could be quantified and minimized; (4) the three-stage TOK method provided a superior capability for carbonate quantification at the sub-micromolar level, with "reagent-free" removal of carbonate-C from EC - essential for low-level EC-14C AMS.
NASA Astrophysics Data System (ADS)
Tachibana, Rie; Kohlhase, Naja; Näppi, Janne J.; Hironaka, Toru; Ota, Junko; Ishida, Takayuki; Regge, Daniele; Yoshida, Hiroyuki
2016-03-01
Accurate electronic cleansing (EC) for CT colonography (CTC) enables the visualization of the entire colonic surface without residual materials. In this study, we evaluated the accuracy of a novel multi-material electronic cleansing (MUMA-EC) scheme for non-cathartic ultra-low-dose dual-energy CTC (DE-CTC). The MUMA-EC performs a wateriodine material decomposition of the DE-CTC images and calculates virtual monochromatic images at multiple energies, after which a random forest classifier is used to label the images into the regions of lumen air, soft tissue, fecal tagging, and two types of partial-volume boundaries based on image-based features. After the labeling, materials other than soft tissue are subtracted from the CTC images. For pilot evaluation, 384 volumes of interest (VOIs), which represented sources of subtraction artifacts observed in current EC schemes, were sampled from 32 ultra-low-dose DE-CTC scans. The voxels in the VOIs were labeled manually to serve as a reference standard. The metric for EC accuracy was the mean overlap ratio between the labels of the reference standard and the labels generated by the MUMA-EC, a dualenergy EC (DE-EC), and a single-energy EC (SE-EC) scheme. Statistically significant differences were observed between the performance of the MUMA/DE-EC and the SE-EC methods (p<0.001). Visual assessment confirmed that the MUMA-EC generated less subtraction artifacts than did DE-EC and SE-EC. Our MUMA-EC scheme yielded superior performance over conventional SE-EC scheme in identifying and minimizing subtraction artifacts on noncathartic ultra-low-dose DE-CTC images.
Huang, Ai-Guo; Yi, Yang-Lei; Ling, Fei; Lu, Lin; Zhang, Qi-Zhong; Wang, Gao-Xue
2013-12-01
With the aim of finding natural anthelmintic agents against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus), 26 plants were screened for antiparasitic properties using in vivo anthelmintic efficacy assay. The results showed that Caesalpinia sappan, Lysima chiachristinae, Cuscuta chinensis, Artemisia argyi, and Eupatorium fortunei were found to have 100% anthelmintic efficacy at 125, 150, 225, 300, and 500 mg L(-1) after 48 h of exposure. Crude extract of the five plants were further partitioned with petroleum ether, chloroform, ethyl acetate, methanol, and water to obtain anthelmintically active fractions with various polarity. Among these fractions tested, the ethyl acetate extract of L. chiachristinae was found to be the most effective with a 50% effective concentration (EC50) value of 5.1 mg/L after 48 h of exposure. This was followed by ethyl acetate extract of C. chinensis (48 h-EC50 = 8.5 mg L(-1)), chloroform extracts of C. sappan (48 h-EC50 = 15.6 mg L(-1)), methanol extract of C. chinensis (48 h-EC50 = 15.9 mg L(-1)), and chloroform and petroleum ether extract of L. chiachristinae (EC50 values of 17.2 and 21.1 mg/L, respectively), suggesting that these plants, as well as the active fractions, provide potential sources of botanic drugs for the control of D. intermedius in aquaculture.
Chai, Tsun-Thai; Kwek, Meng-Tee; Ong, Hean-Chooi; Wong, Fai-Chu
2015-11-01
This study aimed to isolate a potent antiglucosidase and antioxidant fraction from Stenochlaena palustris. Extraction was performed with hexane, chloroform, ethyl acetate, methanol, and water. Antiglucosidase, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing antioxidant power (FRAP) assays found methanol extract (ME) to be the most active. Water fraction (WF) of ME was a stronger α-glucosidase inhibitor (EC50 2.9 μg/mL) than quercetin, with weak antiamylase activity. WF was a competitive α-glucosidase inhibitor. DPPH scavenging activity of WF (EC50 7.7 μg/mL) was weaker than quercetin. WF (EC50 364 μg/mL) was a stronger hydrogen peroxide scavenger than gallic acid (EC50 838 μg/mL) and was equally strong as quercetin in scavenging superoxide. WF possessed moderate copper chelating activity. WF was enriched in total phenolics (TP) and hydroxycinnamic acids (THC). TP correlated with antioxidant activity (R(2) > 0.76). Only THC correlated with antiglucosidase activity (R(2) = 0.86). Overall, WF demonstrated concurrent, potent antiglucosidase and antioxidant activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ürményi, Fernanda Gouvêa Gomes; Saraiva, Georgia do Nascimento; Casanova, Livia Marques; Matos, Amanda Dos Santos; de Magalhães Camargo, Luiza Maria; Romanos, Maria Teresa Villela; Costa, Sônia Soares
2016-12-01
Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from K. daigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (1), was isolated from the AcOEt fraction (Kd-AC). The BuOH-soluble fraction afforded quercetin 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (2) and the new kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside-7-O-β-d-glucopyranoside (3), named daigremontrioside. The crude extract, Kd-AC fraction, flavonoids 1 and 2 were evaluated using acyclovir-sensitive strains of HSV-1 and HSV-2. Kd-AC was highly active against HSV-1 (EC 50 = 0.97 μg/ml, SI > 206.1) and HSV-2 (EC 50 = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti-HSV-1 (EC 50 = 7.4 μg/ml; SI > 27 and EC 50 = 5.8 μg/ml; SI > 8.6, respectively) and anti-HSV-2 (EC 50 = 9.0 μg/ml; SI > 22.2 and EC 50 = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity. © 2016 Wiley-VHCA AG, Zurich, Switzerland.
Degiovanni, Anna; Boggio, Enrico; Prenna, Eleonora; Sartori, Chiara; De Vecchi, Federica; Marino, Paolo N
2018-04-01
Diastolic dysfunction promotes atrial fibrillation (AF) inducing left atrial (LA) remodeling, with chamber dilation and fibrosis. Predominance of LA phasic conduit (LAC) function should reflect not only chamber alterations but also underlying left ventricular (LV) filling impairment. Thus, LAC was tested as possible predictor of early AF relapse after electrical cardioversion (EC). 96 consecutive patients, who underwent EC for persistent non-valvular AF, were prospectively enrolled. Immediately after successful EC (3 h ± 15 min), an echocardiographic apical four-chamber view was acquired with transmitral velocities, annular tissue Doppler and simultaneous LV and LA three-dimensional full-volume datasets. Then, from LA-LV volumetric curves we computed LAC as: [(LV maximum - LV minimum) - (LA maximum - LA minimum) volume], expressed as % LV stroke volume. LA pump, immediately post-EC, was assumed and verified as being negligible. Sinus rhythm persistence at 1 month was checked with ECG-Holter monitoring. At 1 month 62 patients were in sinus rhythm and 34 in AF. AF patients presented pre-EC higher E/é values (p = 0.012), no major LA volume differences (p = NS), but a stiffer LV cavity (p = 0.012) for a comparable LV capacitance (p = 0.461). Conduit contributed more (p < 0.001) to LV stroke volume in AF subpopulation. Multiple regression revealed LAC as the most significant AF predictor (p = 0.013), even after correction for biometric characteristics and pharmacotherapy (p = 0.008). Our data suggest that LAC larger contribution to LV filling soon after EC reflects LA-LV stiffening, which skews atrioventricular interaction leading to AF perpetuation and makes conduit dominance a powerful predictor of early AF recurrence.
Fibrinogen Reduction During Selective Plasma Exchange due to Membrane Fouling.
Ohkubo, Atsushi; Okado, Tomokazu; Miyamoto, Satoko; Hashimoto, Yurie; Komori, Shigeto; Yamamoto, Motoki; Maeda, Takuma; Itagaki, Ayako; Yamamoto, Hiroko; Seshima, Hiroshi; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu
2017-06-01
Fibrinogen is substantially reduced by most plasmapheresis modalities but retained in selective plasma exchange using Evacure EC-4A10 (EC-4A). Although EC-4A's fibrinogen sieving coefficient is 0, a session of selective plasma exchange reduced fibrinogen by approximately 19%. Here, we investigated sieving coefficient in five patients. When the mean processed plasma volume was 1.15 × plasma volume, the mean reduction of fibrinogen during selective plasma exchange was approximately 15%. Fibrinogen sieving coefficient was 0 when the processed plasma volume was 1.0 L, increasing to 0.07 when the processed plasma volume was 3.0 L, with a mean of 0.03 during selective plasma exchange. When fibrinogen sieving coefficient was 0, selective plasma exchange reduced fibrinogen by approximately 10%. Scanning electron microscopy images revealed internal fouling of EC-4A's hollow fiber membrane by substances such as fibrinogen fibrils. Thus, fibrinogen reduction by selective plasma exchange may be predominantly caused by membrane fouling rather than filtration. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
Arranz, Amaia M.; Perkins, Katherine L.; Irie, Fumitoshi; Lewis, David P.; Hrabe, Jan; Xiao, Fanrong; Itano, Naoki; Kimata, Koji
2014-01-01
Hyaluronan (HA), a large anionic polysaccharide (glycosaminoglycan), is a major constituent of the extracellular matrix of the adult brain. To address its function, we examined the neurophysiology of knock-out mice deficient in hyaluronan synthase (Has) genes. Here we report that these Has mutant mice are prone to epileptic seizures, and that in Has3−/− mice, this phenotype is likely derived from a reduction in the size of the brain extracellular space (ECS). Among the three Has knock-out models, namely Has3−/−, Has1−/−, and Has2CKO, the seizures were most prevalent in Has3−/− mice, which also showed the greatest HA reduction in the hippocampus. Electrophysiology in Has3−/− brain slices demonstrated spontaneous epileptiform activity in CA1 pyramidal neurons, while histological analysis revealed an increase in cell packing in the CA1 stratum pyramidale. Imaging of the diffusion of a fluorescent marker revealed that the transit of molecules through the ECS of this layer was reduced. Quantitative analysis of ECS by the real-time iontophoretic method demonstrated that ECS volume was selectively reduced in the stratum pyramidale by ∼40% in Has3−/− mice. Finally, osmotic manipulation experiments in brain slices from Has3−/− and wild-type mice provided evidence for a causal link between ECS volume and epileptiform activity. Our results provide the first direct evidence for the physiological role of HA in the regulation of ECS volume, and suggest that HA-based preservation of ECS volume may offer a novel avenue for development of antiepileptogenic treatments. PMID:24790187
In vitro anthelmintic effects of Spigelia anthelmia protein fractions against Haemonchus contortus.
Araújo, Sandra Alves; Soares, Alexandra Martins Dos Santos; Silva, Carolina Rocha; Almeida Júnior, Eduardo Bezerra; Rocha, Cláudia Quintino; Ferreira, André Teixeira da Silva; Perales, Jonas; Costa-Júnior, Livio M
2017-01-01
Gastrointestinal nematodes are a significant concern for animal health and well-being, and anthelmintic treatment is mainly performed through the use of chemical products. However, bioactive compounds produced by plants have shown promise for development as novel anthelmintics. The aim of this study is to assess the anthelmintic activity of protein fractions from Spigelia anthelmia on the gastrointestinal nematode Haemonchus contortus. Plant parts were separated into leaves, stems and roots, washed with distilled water, freeze-dried and ground into a fine powder. Protein extraction was performed with sodium phosphate buffer (75 mM, pH 7.0). The extract was fractionated using ammonium sulfate (0-90%) and extensively dialyzed. The resulting fractions were named LPF (leaf protein fraction), SPF (stem protein fraction) and RPF (root protein fraction), and the protein contents and activities of the fractions were analyzed. H. contortus egg hatching (EHA), larval exsheathment inhibition (LEIA) and larval migration inhibition (LMIA) assays were performed. Proteomic analysis was conducted, and high-performance liquid chromatography (HPLC) chromatographic profiles of the fractions were established to identify proteins and possible secondary metabolites. S. anthelmia fractions inhibited H. contortus egg hatching, with LPF having the most potent effects (EC50 0.17 mg mL-1). During LEIA, SPF presented greater efficiency than the other fractions (EC50 0.25 mg mL-1). According to LMIA, the fractions from roots, stems and leaves also reduced the number of larvae, with EC50 values of 0.11, 0.14 and 0.21 mg mL-1, respectively. Protein analysis indicated the presence of plant defense proteins in the S. anthelmia fractions, including protease, protease inhibitor, chitinase and others. Conversely, secondary metabolites were absent in the S. anthemia fractions. These results suggest that S. anthelmia proteins are promising for the control of the gastrointestinal nematode H. contortus.
Ecophysiological variation of transpiration of pine forests: synthesis of new and published results
Pantana Tor-ngern; Ram Oren; Andrew C. Oishi; Joshua M. Uebelherr; Sari Palmroth; Lasse Tarvainen; Mikaell Ottosson-Löfvenius; Sune Linder; Jean-Christophe Domec; Torgny Näsholm
2017-01-01
Canopy transpiration (EC) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to...
Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits.
Dahm, Matthew M; Schubauer-Berigan, Mary K; Evans, Douglas E; Birch, M Eileen; Fernback, Joseph E; Deddens, James A
2015-07-01
Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P < 0.0001). Overall, EC PBZ and area TWA samples were below the NIOSH REL (96% were <1 μg m(-3) at the respirable size fraction), while 30% of the inhalable PBZ EC samples were found to be >1 μg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF materials by monitoring EC at both the respirable and inhalable size fractions. Concurrent TEM samples should be collected to confirm the presence of CNT and CNF. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2015.
NASA Astrophysics Data System (ADS)
Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina
2015-09-01
Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.
Ren, Li; Zhang, Fan; Min, Su; Hao, Xuechao; Qin, Peipei; Zhu, Xianlin
2016-06-30
Electroconvulsive therapy (ECT) is an effective treatment for depression, but it can induce learning and memory impairment. Our previous study found propofol (γ-aminobutyric acid (GABA) receptor agonist) could ameliorate electroconvulsive shock (ECS, an analog of ECT to animals)-induced cognitive impairment, however, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of propofol on metaplasticity and autophosphorylation of CaMKIIa in stressed rats receiving ECS. Depressive-like behavior and learning and memory function were assessed by sucrose preference test and Morris water test respectively. LTP were tested by electrophysiological experiment, the expression of CaMKIIa, p-T305-CaMKII in hippocampus and CaMKIIα in hippocampal PSD fraction were evaluated by western blot. Results suggested ECS raised the baseline fEPSP and impaired the subsequent LTP, increased the expression of p-T305-CaMKII and decreased the expression of CaMKIIα in hippocampal PSD fraction, leading to cognitive dysfunction in stressed rats. Propofol could down-regulate the baseline fEPSP and reversed the impairment of LTP partly, decreased the expression of p-T305-CaMKII and increased the expression of CaMKIIα in hippocampal PSD fraction and alleviated ECS-induced learning and memory impairment. In conclusion, propofol ameliorates ECS-induced learning and memory impairment, possibly by regulation of synaptic metaplasticity via p-T305-CaMKII. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Qiu, Rangjian; Liu, Chunwei; Wang, Zhenchang; Yang, Zaiqiang; Jing, Yuanshu
2017-08-03
We investigated whether leaching fraction (LF) is able to modify the effects of irrigation water salinity (EC iw ) on evapotranspiration (ET). We conducted an experiment with a completely randomized block design using five levels of EC iw and two LFs. Results showed that the electrical conductivity of drainage water (EC dw ) in an LF of 0.29 was considerably higher during the 21-36 days after transplanting (DAT), and considerably lower after 50 DAT than in an LF of 0.17. The hourly, nighttime, daily, cumulative and seasonal ET all decreased considerably as a result of an increase in the EC iw . The daily ET started to be considerably higher in the LF of 0.29 than in the LF of 0.17 from 65 DAT. Compared with the LF of 0.17, the seasonal ET in the LF of 0.29 under various EC iw levels increased by 4.8%-8.7%. The Maas and Hoffman and van Genuchten and Hoffman models both corresponded well with the measured relative seasonal ET and the LF had no marked effects on these model parameters. Collectively, an increase in the level of EC iw always decreased the ET substantially. An increase in the LF increased the ET considerably, but there was a time lag.
Gavrilyuk, Oxana; Braaten, Tonje; Weiderpass, Elisabete; Licaj, Idlir; Lund, Eiliv
2018-05-21
Lifetime number of years of menstruation (LNYM) reflects a woman's cumulative exposure to endogenous estrogen and can be used as a measure of the combined effect of reproductive factors related to endometrial cancer (EC) risk. We aimed to study the association between LNYM and EC risk among postmenopausal women and calculate the population attributable fraction of EC for different LNYM categories. Our study sample consisted of 117 589 women from the Norwegian Women and Cancer (NOWAC) Study. All women were aged 30-70 years at enrollment and completed a baseline questionnaire between 1991 and 2006. Women were followed up for EC through December 2014 via linkages to national registries. We used Cox proportional hazards models to estimate hazard ratios with 95% confidence intervals (CIs), adjusted for potential confounders. Altogether, 720 women developed EC. We found a statistically significant, positive dose-response relationship between LNYM and EC, with a 9.1% higher risk for each additional year of LNYM (p for trend <0.001). Using the LNYM category ≥40 as a reference, the hazard ratios for LNYM <25, 25-29, 30-34, 35-39 were 0.17 (95% CI 0.22-0.27), 0.25 (95% CI 0.17-0.36), 0.43 (95% CI 0.32-0.58), and 0.68 (95% CI 0.51-0.92), respectively. The association between LNYM and EC was independent of incomplete pregnancies, menopausal hormone therapy, diabetes and body mass index. When considering population attributable fraction, 67% of EC was estimated to be attributable to LNYM ≥25. Our study supports that increasing LNYM is an important and independent predictor of EC risk. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers
NASA Astrophysics Data System (ADS)
Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang
2016-03-01
Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.
Bansal, Baljinder K; Hamann, Joern; Grabowskit, Nils Th; Singh, Krishan B
2005-05-01
Seven variables--electrical conductivity (EC), somatic cell count (SCC), N-acetyl-beta-D-glucosaminidase (NAGase), lactose, protein, fat and pH--were compared in four quarter milk fractions (MF1: strict foremilk; MF2: first 12-15 ml foremilk; MF3: subsequent 40-45 ml milk; MF4: strippings) and in one cow composite milk sample (CC) per cow. The study used 142 quarters from 37 lactating cows of the German Black Pied breed. To rule out any possible effect due to management, animal physiology and analytical procedures, the collection and processing of milk samples from each cow was repeated for three consecutive days, and the means of 3-d values were used. All variables were affected significantly by milk fraction and udder health. Compared with foremilk, EC, lactose and protein levels in strippings decreased, while SCC, NAGase and fat increased. The pH of foremilk and strippings did not differ significantly in healthy or in mastitic quarters. The difference between MF1 and MF2 was significant for EC in mastitic quarters, and for SCC in healthy quarters only. In general, mastitis resulted in a significant increase in EC, SCC, NAGase and protein but in a decrease in lactose and fat contents of milk in one or more of the milk fractions studied. Comparison of cow composite milk samples from healthy and mastitic cows revealed the significance (P < 0.01) of udder health for EC, SCC and lactose. Of the different parameters that can distinguish between healthy and mastitic quarters or cows, EC could be used to classify 76% of quarters and 73% of cows correctly, while the lactose content permitted correct identification of 81% of quarters and 76% of cows. NAGase and pH could be used to determine the status of 73% and 61% of quarters, respectively. In general, the correlation observed in strippings was higher than in foremilk for almost all the variables studied. Surprisingly, EC, SCC, NAGase and lactose in milk from healthy quarters of mastitic cows (with at least one mastitic quarter) differed significantly (P < 0.05) from those from healthy quarters of cows with all four healthy quarters, indicating an inconsistent effect of mastitic quarters on neighbouring healthy quarters (quarter interdependence).
Electrolyte-carbohydrate beverage prevents water loss in the early stage of high altitude training.
Yanagisawa, Kae; Ito, Osamu; Nagai, Satsuki; Onishi, Shohei
2012-01-01
To prevent water loss in the early stage of high altitude training, we focused on the effect of electrolyte-carbohydrate beverage (EC). Subjects were 16 male university students who belonged to a ski club. They had ski training at an altitude of 1,800 m. The water (WT) group drank only water, and the EC group drank only an electrolyte-carbohydrate beverage. They arrived at the training site in the late afternoon. The study started at 7 pm on the day of arrival and continued until noon of the 4(th) day. In the first 12 hours, 1 L of beverages were given. On the second and third days, 2.5 L of beverages were given. All subjects ate the same meals. Each morning while in fasting condition, subjects were weighed and blood was withdrawn for various parameters (hemoglobin, hematocrit, sodium, potassium and aldosterone). Urine was collected at 12 hour intervals for a total 60 hours (5 times). The urine volume, gravity, sodium and potassium concentrations were measured. Peripheral oxygen saturation and heart rate were measured during sleep with a pulse oximeter. Liquid intakes in both groups were similar, hence the electrolytes intake was higher in the EC group than in the WT group. The total urine volume was lower in the EC group than in the WT group, respectively (p<0.05). Plasma volume decreased in the WT group and increased in the EC group but a significant difference was not observed in the final value. Aldosterone concentration tended to be less in the EC group than in the WT group. Electrolyte-carbohydrate beverage in the early stage of high altitude training may be effective in decreasing urinary output and preventing loss of blood plasma volume.
Cheng, Tian; Wang, Wenzhu; Li, Qian; Han, Xiaoning; Xing, Jing; Qi, Cunfang; Lan, Xi; Wan, Jieru; Potts, Alexa; Guan, Fangxia; Wang, Jian
2016-01-01
Traumatic brain injury (TBI), which leads to disability, dysfunction, and even death, is a prominent health problem worldwide with no effective treatment. A brain-permeable flavonoid named (−)-epicatechin (EC) modulates redox/oxidative stress and has been shown to be beneficial for vascular and cognitive function in humans and for ischemic and hemorrhagic stroke in rodents. Here we examined whether EC is able to protect the brain against TBI-induced brain injury in mice and if so, whether it exerts neuroprotection by modulating the NF-E2-related factor (Nrf2) pathway. We used the controlled cortical impact model to mimic TBI. EC was administered orally at 3 h after TBI and then every 24 h for either 3 or 7 days. We evaluated lesion volume, brain edema, white matter injury, neurologic deficits, cognitive performance and emotion-like behaviors, neutrophil infiltration, reactive oxygen species (ROS), and a variety of injury-related protein markers. Nrf2 knockout mice were used to determine the role of the Nrf2 signaling pathway after EC treatment. In wild-type mice, EC significantly reduced lesion volume, edema, and cell death and improved neurologic function on days 3 and 28; cognitive performance and depression-like behaviors were also improved with EC administration. In addition, EC reduced white matter injury, heme oxygenase-1 expression, and ferric iron deposition after TBI. These changes were accompanied by attenuation of neutrophil infiltration and oxidative insults, reduced activity of matrix metalloproteinase 9, decreased Keap 1 expression, increased Nrf2 nuclear accumulation, and increased expression of superoxide dismutase 1 and quinone 1. However, EC did not significantly reduce lesion volume or improve neurologic deficits in Nrf2 knockout mice after TBI. Our results show that EC protects the TBI brain by activating the Nrf2 pathway, inhibiting heme oxygenase-1 protein expression, and reducing iron deposition. The latter two effects could represent an Nrf2-independent mechanism in this model of TBI. PMID:26724590
NASA Astrophysics Data System (ADS)
Bohrson, Wendy A.; Spera, Frank J.
2007-11-01
Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.
NASA Astrophysics Data System (ADS)
Rogula-Kopiec, Patrycja; Pastuszka, Józef S.; Rogula-Kozłowska, Wioletta; Mucha, Walter
2017-11-01
The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc.
2012-01-01
Background Viral infections, particularly the infections caused by herpes simplex virus (HSV), represent one of the most serious public health concerns globally because of their devastating impact. The aim of this study was to evaluate the antiviral potential of methanolic crude extract of an ethnomedicine Mallotus peltatus, its active fraction and pure compound, against HSV-1 F and HSV-2 G. Result The cytotoxicity (CC50, the concentration of 50% cellular toxicity), antiviral effective concentration (EC50, the concentration required to achieve 50% protection against virus-induced cytopathic effect), plaque reduction and the selectivity index (SI, the ratio of CC50 and EC50) was determined. Results showed that the crude methanolic extract of M. peltatus possessed weak anti-HSV activity. In contrast, the active fraction A and isolated ursolic acid from fraction A exhibited potent antiherpesvirus activity against both HSV-1 (EC50 = 7.8 and 5.5 μg/ml; SI = 22.3 and 20) and HSV-2 (EC50 = 8.2 and 5.8 μg/ml, and SI = 21.2 and 18.97). The fraction A and isolated ursolic acid (10 μg/ml) inhibited plaque formation of HSV-1 and HSV-2 at more than 80% levels, with a dose dependent antiviral activity, compared to acyclovir. The time response study revealed that the anti-HSV activity of fraction A and isolated ursolic acid is highest at 2–5 h post-infection. Moreover, the time kinetics study by indirect immunofluorescence assay showed a characteristic pattern of small foci of single fluorescent cells in fraction A- treated virus infected cells at 2 h and 4 h post-infection, suggesting drug inhibited viral dissemination. Further, the PCR study with infected cell cultures treated with fraction A and isolated ursolic acid at various time intervals, failed to show amplification at 48–72 h, like acyclovir treated HSV-infected cells. Moreover, fraction A or isolated ursolic acid showed no interaction in combination with acyclovir. Conclusion This study revealed that bioactive fraction A and isolated ursolic acid of M. peltatus has good anti-HSV activity, probably by inhibiting the early stage of multiplication (post-infection of 0–5 h), with SI value of 20, suggesting its potential use as anti-HSV agents. PMID:22624581
Coherence between woody carbon uptake and net ecosystem productivity at five eddy-covariance sites
NASA Astrophysics Data System (ADS)
Babst, F.; Bouriaud, O.; Papale, D.; Gielen, B.; Janssens, I.; Nikinmaa, E.; Ibrom, A.; Wu, J.; Bernhofer, C.; Koestner, B.; Gruenwald, T.; Seufert, G.; Ciais, P.; Frank, D. C.
2013-12-01
Forest growth ranks amongst the most important processes that determine the carbon balance of terrestrial ecosystems. Quantifications of forest carbon cycling can be made e.g. using biometric and eddy-covariance (EC) techniques. Both offer different perspectives on carbon uptake and attempts to combine them have been inconsistent and variably successful in the past. This contributes to persistent uncertainties regarding carbon allocation in forest ecosystems and complicates precise vegetation model parameterization. Aiming to reconcile assessments of carbon cycling from biometric and EC techniques, we measured radial tree growth and wood density at five long-term EC stations across Europe. The resulting records were used to calculate annual carbon uptake during above-ground wood formation and compared to monthly and seasonal CO2-flux measurements. Efforts were made to identify i) the time periods when EC and tree-ring data correspond best in different parts of Europe and ii) the fraction of eddy-fluxes which is associated with changes in above-ground woody carbon stocks. Biometric measurements and net ecosystem productivity (NEP) proved largely compatible at seasonal time scales while relationships with gross primary productivity (GPP) were often weaker. Results suggest a partitioning of sequestered carbon mainly used for volume increase (January-June) and a combination of cell-wall thickening and storage (July-September). The inter-annual variability in above-ground woody carbon uptake was significantly linked with absolute productivity ranging between 69-366 g C m-2 y-1 at boreal and temperate sites, thereby accounting for 10-25% of GPP, 15-32% of TER, and 25-80% of NEP. These findings from sites representing the major European climate zones and tree species contribute to improved quantification of above-ground carbon allocation in forests. Furthermore, they refine knowledge on processes driving ecosystem productivity important for e.g. vegetation models and provide an enhanced framework for integrative studies linking tree-ring parameters with EC measurements.
NASA Astrophysics Data System (ADS)
Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.
2017-03-01
Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte showed enhanced performance compared with the conventional symmetric EDLC using aqueous electrolyte, with reduced cell mass and volume. These results can obviously reduce the number of experiments required to determine the optimum manufacturing design for ECs and also demonstrate that use of an asymmetric electrode and organic electrolyte was very successful for improving the performance of the EC, with reduced cell mass and volume. These results can also act as guidelines for design, fabrication, and operation of electrochemical capacitors with outstanding storable energy, energy density, and power density.
Kuwahara, Yoshikazu; Mori, Miyuki; Kitahara, Shuji; Fukumoto, Motoi; Ezaki, Taichi; Mori, Shiro; Echigo, Seishi; Ohkubo, Yasuhito; Fukumoto, Manabu
2014-01-01
Radiotherapy is widely used to treat cancer because it has the advantage of physically and functionally conserving the affected organ. To improve radiotherapy and investigate the molecular mechanisms of cellular radioresistance, we established a clinically relevant radioresistant (CRR) cell line, SAS-R, from SAS cells. SAS-R cells continue to proliferate when exposed to fractionated radiation (FR) of 2 Gy/day for more than 30 days in vitro. A xenograft tumor model of SAS-R was also resistant to 2 Gy/day of X-rays for 30 days. The density of blood vessels in SAS-R tumors was higher than in SAS tumors. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, sensitized microvascular endothelial cells to radiation, but failed to radiosensitize SAS and SAS-R cells in vitro. Everolimus with FR markedly reduced SAS and SAS-R tumor volumes. Additionally, the apoptosis of endothelial cells (ECs) increased in SAS-R tumor tissues when both Everolimus and radiation were administered. Both CD34-positive and tomato lectin-positive blood vessel densities in SAS-R tumor tissues decreased remarkably after the Everolimus and radiation treatment. Everolimus-induced apoptosis of vascular ECs in response to radiation was also followed by thrombus formation that leads to tumor necrosis. We conclude that FR combined with Everolimus may be an effective modality to overcome radioresistant tumors via targeting tumor ECs. PMID:24464839
USDA-ARS?s Scientific Manuscript database
Components of emulsifiable concentrates (ECs) used in pesticide formulations may be emitted to air following application in agricultural use and contribute to ozone formation. A key consideration is the fraction of the ECs that is volatilized. This study is designed to provide a mechanistic model fr...
NASA Astrophysics Data System (ADS)
Soomro, Feroz Ahmed; Rizwan-ul-Haq; Khan, Z. H.; Zhang, Qiang
2017-10-01
Main theme of the article is to examine the entropy generation analysis for the magneto-hydrodynamic mixed convection flow of water functionalized carbon nanotubes along an inclined stretching surface. Thermophysical properties of both particles and working fluid are incorporated in the system of governing partial differential equations. Rehabilitation of nonlinear system of equations is obtained via similarity transformations. Moreover, solutions of these equations are further utilized to determine the volumetric entropy and characteristic entropy generation. Solutions of governing boundary layer equations are obtained numerically using the finite difference method. Effects of two types of carbon nanotubes, namely, single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) with water as base fluid have been analyzed over the physical quantities of interest, namely, surface skin friction, heat transfer rate and entropy generation coefficients. Influential results of velocities, temperature, entropy generation and isotherms are plotted against the emerging parameter, namely, nanoparticle fraction 0≤φ ≤ 0.2, thermal convective parameter 0≤ λ ≤ 5, Hartmann number 0≤ M≤ 2, suction/injection parameter -1≤ S≤ 1, and Eckert number 0≤ Ec ≤ 2. It is finally concluded that skin friction increases due to the increase in the magnetic parameter, suction/injection and nanoparticle volume fraction, whereas the Nusselt number shows an increasing trend due to the increase in the suction parameter, mixed convection parameter and nanoparticle volume fraction. Similarly, entropy generation shows an opposite behavior for the Hartmann number and mixed convection parameter for both single-wall and multi-wall carbon nanotubes.
Jimenez, A.; Hernandez, J. A.; Del Rio, L. A.; Sevilla, F.
1997-01-01
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles. PMID:12223704
Source apportionment of carbonaceous aerosol in Sao Paulo using 13C and 14C measurements
NASA Astrophysics Data System (ADS)
Oyama, Beatriz; Andrade, Maria de Fatima; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro A. J.; Dusek, Ulrike
2016-04-01
The Metropolitan Area of Sao Paulo is affected by high aerosol concentrations, which contain a large fraction of organic material. Up to date, not much is known about the composition and origin of the organic aerosol in this city. We present the first source apportionment of the carbonaceous aerosol fraction in Sao Paulo, using stable (13C) and radioactive carbon isotopes (14C). 14C provides a clear-cut distinction between fossil sources, which contain no 14C, and contemporary sources such as biofuels, biomass burning, or biogenic sources, which contain a typical contemporary 14C/12C ratio. 13C can be used to distinguish C3 plants, such as maize and sugarcane, from C4 plants. This can help to identify a possible impact of sugarcane field burning in the rural areas of Sao Paulo State on the aerosol carbon in the city. In the first part of the study, we compare two tunnel studies: Tunnel 1 is frequented only by light duty vehicles, which run mainly on mixtures of gasoline with ethanol (gasohol, 25% ethanol and 85% gasoline) or hydrated ethanol (5% water and 95% ethanol). Tunnel 2 contains a significant fraction of heavy-duty diesel vehicles, and therefore the fraction of biofuels in the average fleet is lower. Comparison of 14C in organic and elemental carbon (OC and EC) shows that in both tunnels there is no significant contribution of biofuels to EC. Combusting ethanol-gasoline fuels in a vehicle engine does apparently not result in significant EC formation from ethanol. Biofuels contribute around 45% to OC in Tunnel 1 an only 20% in Tunnel 2, reflecting a strong impact of diesel vehicles in Tunnel 2. In the second part of the study we conduct a source apportionment of ambient aerosol carbon collected in a field study during winter (July-August) 2012. Ambient EC has two main sources, vehicular emissions and biomass burning. We estimate a contribution of vehicular sources to EC of roughly 90% during weekdays and 80% during weekends, using the 14C values measured in the tunnel studies. The absolute concentration of biomass burning EC is roughly 0.5 μg/m3 both during weekend and weekdays, whereas vehicular EC concentrations almost double during weekdays, increasing from 1.8 to 3.7 μg/m3 on average. OC concentrations are dominated by secondary carbon from vehicular emissions, both on weekdays and during weekends, however primary OC from biomass burning and contemporary secondary OC (from both biogenic and biomass burning emissions) are important fractions as well. Overall, primary biomass burning contributes between 10 and 30% to the carbonaceous aerosol in Sao Paulo. 13C measurements indicate that sugarcane burning could account for up to 15% of OC in the Sao Paulo metropolitan area.
Puthumana, Jayesh; Lee, Min-Chul; Han, Jeonghoon; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong
2017-02-01
Ecdysteroid hormones are pivotal in the development, growth, and molting of arthropods, and the hormone pathway is triggered by binding ecdysteroid to a heterodimer of the two nuclear receptors; ecdysone receptors (EcR) and ultraspiracle (USP). We have characterized EcR and USP genes, and their 5'-untranslated region (5'-UTR) from the copepod Paracyclopina nana, and studied mRNA transcription levels in post-embryonic stages and in response to water accommodated fractions (WAFs) of crude oil. The open reading frames (ORF) of EcR and USP were 1470 and 1287bp that encoded 490 and 429 amino acids with molecular weight of 121.18 and 105.03kDa, respectively. Also, a well conserved DNA-binding domain (DBD) and ligand-binding domain (LBD) were identified which confirmed by phylogenetic analysis. Messenger RNA transcriptional levels of EcR and USP were developmental stage-specific in early post-embryonic stages (N3-4). However, an evoked expression of USP was observed throughout copepodid stage and in adult females. WAFs (40 and 80%) were acted as an ecdysone agonist in P. nana, and elicited the mRNA transcription levels in adults. Developmental stage-specific transcriptional activation of EcR and USP in response to WAFs was observed. USP gene was down-regulated in the nauplius in response to WAF, whereas up-regulation of USP was observed in the adults. This study represents the first data of molecular elucidation of EcR and USP genes and their regulatory elements from P. nana and the developmental stage specific expression in response to WAFs, which can be used as potential biomarkers for environmental stressors with ecotoxicological evaluations in copepods. Copyright © 2016 Elsevier Inc. All rights reserved.
Antioxidant properties of Australian canola meal protein hydrolysates.
Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; He, Rong; Girgih, Abraham; Aluko, Rotimi E
2014-03-01
Antioxidant activities of canola protein hydrolysates (CPHs) and peptide fractions prepared using five proteases and ultrafiltration membranes (1, 3, 5, and 10kDa) were investigated. CPHs had similar and adequate quantities of essential amino acids. The effective concentration that scavenged 50% (EC50) of the ABTS(+) was greatest for the <1kDa pancreatin fraction at 10.1μg/ml. CPHs and peptide fractions scavenged DPPH(+) with most of the EC50 values being <1.0mg/ml. Scavenging of superoxide radical was generally weak, except for the <1kDa pepsin peptide fraction that had a value of 51%. All CPHs inhibited linoleic acid oxidation with greater efficiency observed for pepsin hydrolysates. The oxygen radical absorbance capacity of Alcalase, chymotrypsin and pepsin hydrolysates was found to be better than that of glutathione (GSH) (p<0.05). These results show that CPHs have the potential to be used as bioactive ingredients in the formulation of functional foods against oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.
Radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum.
Yu, Huahua; Liu, Xiguang; Xing, Ronge; Liu, Song; Li, Cuiping; Li, Pengcheng
2005-05-16
In this study, radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum (R. esculentum) was assayed including superoxide anion radical and hydroxyl radical scavenging. The protein samples showed strong scavenging activity on superoxide anion radical and values EC50 of full protein (FP), first fraction (FF), second fraction (SF), and 30% (NH4)2 SO4 precipitate (Fr-1) were 2.65, 7.28, 1.10, and 22.51 microg/mL, respectively, while values EC50 of BHA, BHT, and alpha-tocopherol were 31, 61, and 88 microg/mL, respectively. Also, the protein samples had strong scavenging effect on hydroxyl radical and the values EC50 of FP, FF, SF, Fr-1, and Fr-2 were 48.91, 27.72, 1.82, 16.36, and 160.93 microg/mL, but values EC50 of Vc and mannitol were 1907 and 4536 microg/mL, respectively. Of the five protein samples, SF had the strongest radical scavenging activity and may have a use as a possible supplement in the food and pharmaceutical industries. The radical scavenging activity was stable at high temperature so that R. esculentum may be used as a kind of natural functional food.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere
NASA Astrophysics Data System (ADS)
Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.
2010-05-01
Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µm
Sogawa, Michiru; Kawanoue, Hikaru; Todorov, Yanko Marinov; Hirayama, Daisuke; Mimura, Hideyuki; Yoshimoto, Nobuko; Morita, Masayuki; Fujii, Kenta
2018-02-28
The structural and electrochemical properties of lithium-ion solvation complexes in a nonflammable organic solvent, tris(2,2,2-trifluoroethyl)phosphate (TFEP) containing ethylene carbonate (EC), were investigated using vibrational spectroscopic and electrochemical measurements. Based on quantitative Raman and infrared (IR) spectral analysis of the Li bis(trifluoromethanesulfonyl)amide (TFSA) salt in TFEP + EC electrolytes, we successfully evaluated the individual solvation numbers of EC (n EC ), TFEP (n TFEP ), and TFSA - (n TFSA ) in the first solvation sphere of the Li-ion. We found that the n EC value linearly increased with increasing EC mole fraction (x EC ), whereas the n TFEP and n TFSA values gradually decreased with increasing n EC . The ionic conductivity and viscosity (Walden plots) indicated that mainly Li + TFSA - ion pairs formed in neat TFEP (x EC = 0). This ion pair gradually dissociated into positively charged Li-ion complexes as x EC increased, which was consistent with the Raman/IR spectroscopy results. The redox reaction corresponding to an insertion/desertion of Li-ion into/from the graphite electrode occurred in the LiTFSA/TFEP + EC system at x EC ≥ 0.25. The same was not observed in the lower x EC cases. We discussed the relation between Li-ion solvation and electrode reaction behaviors at the molecular level and proposed that n EC plays a crucial role in the electrode reaction, particularly in terms of solid electrolyte interphase formation on the graphite electrode.
NASA Astrophysics Data System (ADS)
Mouteva, G.; Randerson, J. T.; Fahrni, S.; Santos, G.; Bush, S. E.; Ehleringer, J. R.; Czimczik, C. I.
2015-12-01
Anthropogenic emissions of carbonaceous aerosols are a major component of fine air particulate matter (PM2.5) in polluted metropolitan areas and in the global atmosphere. Elemental (EC) and organic carbon (OC) aerosols influence Earth's energy balance by means of direct and indirect pathways and EC has been suggested as a better indicator of public health impacts from combustion-related sources than PM mass. Quantifying the contribution of fossil fuel and biomass combustion to the EC and OC emissions and their temporal and spatial variations is critical for developing efficient legislative air pollution control measures and successful climate mitigation strategies. In this study, we used radiocarbon (14C) to separate and quantify fossil and biomass contributions to a time series of EC and OC collected at 3 locations in Salt Lake City (SLC). Aerosol samples were collected on quartz fiber filters and a modified OC/EC analyzer was used with the Swiss_4S protocol to isolate and trap the EC fraction. Together with the total carbon (TC) content of the samples, the EC was analyzed for its 14C content with accelerator mass spectrometry. The 14C of OC was derived as a mass balance difference between TC and EC. EC had an annual average fraction modern of 0.13±0.06 and did not vary significantly across seasons. OC had an annual average FM of 0.49±0.13, with the winter mean (0.43±0.11) lower than the summer mean (0.64±0.13) at the 5% significance level. While the 3 stations were chosen to represent a variety of environmental conditions within SLC, no major differences in this source partitioning were observed between stations. During winter, the major sources of air pollutants in SLC are motor vehicles and wood stove combustion and determining their relative contributions has been the subject of debate. Our results indicated that fossil fuels were the dominant source of carbonaceous aerosols during winter, contributing 87% or more of the total EC mass and 40-75% of the OC. This suggests that fossil fuel-derived emissions should be a target for improving air quality during winter in SLC.
NASA Astrophysics Data System (ADS)
Fang, W.; Andersson, A.; Zheng, M.; Lee, M.; Kim, S. W.; Du, K.; Gustafsson, O.
2016-12-01
Improved understanding of anthropogenic aerosol effects on atmospheric chemistry and climate as well as efficient mitigation actions are hampered by the limited comprehension of the relative contributions of different sources of carbonaceous aerosols and of their subsequent atmospheric processing. Here, we present dual carbon isotope constrained source apportionment and optical properties of carbonaceous aerosols simultaneously both at urban and rural receptor sites, includes North China Plain (NCP, Beijing and Tianjin), Yangtze River Delta (YRD, Shanghai, Zhejiang), and Jeju Island (Korea Climate Observatory at Gosan) during January 2014 field campaigns. The radiocarbon (Δ14C) data show that fossil combustions contribute equally ˜80 ± 5% to elemental carbon (EC) aerosol in Beijing, Tianjin, and Shanghai, and 66 ± 9% to Gosan-EC aerosol, while the specific sources of the dominant fossil fuel component were dramatically different among these sites. The mean fraction coal combustion of Beijing-EC, Tianjin-EC, and Gosan-EC is double that of Shanghai-EC. The other large fraction (72―92%) of carbonaceous aerosol is organic carbon (OC) aerosol which contains water soluble and water insoluble organic carbon (WSOC and WISOC). OC, WISOC, and WSOC in Beijing and Gosan sites were still observed largely from fossil sources (53―75%). The more 13C-enriched signature of Gosan-WSOC (-22.8 ± 0.2‰) compared to Gosan-EC (-23.9 ± 0.4‰) and Beijing-WSOC (-23.5 ± 0.7‰) reflects that WSOC is likely more affected by atmospheric aging during long-rang transport than is EC. The high light absorption coefficients of PM2.5, PM1, and TSP were observed at Gosan during this study and was frequently reaching 20―60 Mm-1 by aethalometer and continuous light absorption photometer. The mass absorption cross section of WSOC (MAC365) for above sites is high (1.5 ± 0.8 m2/g), accounted for ˜14 ± 5% of the total direct absorbance relative to EC, which is significantly higher than the previous findings in S. Asia, N. America, and Europe.
40 CFR 60.393 - Performance test and compliance provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... volume of applied solids emitted after the control device, by the following equation: N=G[1-FE] (A... month by the following equation: EC16NO91.031 (v) If the volume weighted average mass of VOC per volume...
Glial diffusion barriers during aging and pathological states.
Syková, E
2001-01-01
In conclusion, glial cells control not only ECS ionic composition, but also ECS size and geometry. Since ECS ionic and volume changes have been shown to play an important role in modulating the complex synaptic and extrasynaptic signal transmission in the CNS, glial cells may thus affect neuronal interaction, synchronization and neuron-glia communication. As shown in Fig. 2, a link between ionic and volume changes and signal transmission has been proposed as a model for the non-specific feedback mechanism suppressing neuronal activity (Syková, 1997; Ransom, 2000). First, neuronal activity results in the accumulation of [K+]e, which in turn depolarizes glial cells, and this depolarization induces an alkaline shift in glial pHi. Second, the glial cells extrude acid and the resulting acid shift causes a decrease in the neuronal excitability. Because ionic transmembrane shifts are always accompanied by water, this feedback mechanism is amplified by activity-related glial swelling compensated for by ECS volume shrinkage and by increased tortuosity, presumably by the crowding of molecules of the ECS matrix and/or by the swelling of fine glial processes. This, in turn, results in a larger accumulation of ions and other neuroactive substances in the brain due to increased diffusion hinderance in the ECS. Astrocyte hypertrophy, proliferation and swelling influence the size of the ECS volume and tortuosity around neurons, slowing diffusion in the ECS. Their organization may also affect diffusion anisotropy, which could be an underlying mechanism for the specificity of extrasynaptic transmission, including 'cross-talk' between distinct synapses (Barbour and Hausser, 1997; Kullmann and Asztely, 1998). An increased concentration of transmitter released into a synapse (e.g. repetitive adequate stimuli or during high frequency electrical stimulation which induces LTP) results in a significant activation of high-affinity receptors at neighboring synapses. The efficacy of such synaptic cross-talk would be dependent on the extracellular space surrounding the synapses, i.e. on intersynaptic geometry and diffusion parameters. Other recent studies have also suggested an important role for proteoglycans, known to participate in multiple cellular processes, such as axonal outgrowth, axonal branching and synaptogenesis (Hardington and Fosang, 1992; Margolis and Margolis, 1993) that are important for the formation of memory traces. Recent observation of a decrease of fibronectin and chondroitin sulfate proteoglycan staining in the hippocampus of behaviorally impaired aged rats (Syková et al., 1998a,b) supports this hypothesis. It is reasonable to assume that besides neuronal and glial processes, macromolecules of the extracellular matrix contribute to diffusion barriers in the ECS. It is therefore apparent that glial cells play an important role in the local architecture of the CNS and they may also be involved in the modulation of signal transmission, in plastic changes, LTP, LTD and in changes of behavior and memory formation.
Brain structure and verbal function across adulthood while controlling for cerebrovascular risks.
Sanfratello, L; Lundy, S L; Qualls, C; Knoefel, J E; Adair, J C; Caprihan, A; Stephen, J M; Aine, C J
2017-04-08
The development and decline of brain structure and function throughout adulthood is a complex issue, with cognitive aging trajectories influenced by a host of factors including cerebrovascular risk. Neuroimaging studies of age-related cognitive decline typically reveal a linear decrease in gray matter (GM) volume/density in frontal regions across adulthood. However, white matter (WM) tracts mature later than GM, particularly in regions necessary for executive functions and memory. Therefore, it was predicted that a middle-aged group (MC: 35-45 years) would perform best on a verbal working memory task and reveal greater regional WM integrity, compared with both young (YC: 18-25 years) and elder groups (EC: 60+ years). Diffusion tensor imaging (DTI) and magnetoencephalography (MEG) were obtained from 80 healthy participants. Objective measures of cerebrovascular risk and cognition were also obtained. As predicted, MC revealed best verbal working memory accuracy overall indicating some maturation of brain function between YC and MC. However, contrary to the prediction fractional anisotropy values (FA), a measure of WM integrity, were not greater in MC (i.e., there were no significant differences in FA between YC and MC but both groups showed greater FA than EC). An overall multivariate model for MEG ROIs showed greater peak amplitudes for MC and YC, compared with EC. Subclinical cerebrovascular risk factors (systolic blood pressure and blood glucose) were negatively associated with FA in frontal callosal, limbic, and thalamic radiation regions which correlated with executive dysfunction and slower processing speed, suggesting their contribution to age-related cognitive decline. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Pischiutta, Francesca; Micotti, Edoardo; Hay, Jennifer R; Marongiu, Ines; Sammali, Eliana; Tolomeo, Daniele; Vegliante, Gloria; Stocchetti, Nino; Forloni, Gianluigi; De Simoni, Maria-Grazia; Stewart, William; Zanier, Elisa R
2018-02-01
There is increasing recognition that traumatic brain injury (TBI) may initiate long-term neurodegenerative processes, particularly chronic traumatic encephalopathy. However, insight into the mechanisms transforming an initial biomechanical injury into a neurodegenerative process remain elusive, partly as a consequence of the paucity of informative pre-clinical models. This study shows the functional, whole brain imaging and neuropathological consequences at up to one year survival from single severe TBI by controlled cortical impact in mice. TBI mice displayed persistent sensorimotor and cognitive deficits. Longitudinal T2 weighted magnetic resonance imaging (MRI) showed progressive ipsilateral (il) cortical, hippocampal and striatal volume loss, with diffusion tensor imaging demonstrating decreased fractional anisotropy (FA) at up to one year in the il-corpus callosum (CC: -30%) and external capsule (EC: -21%). Parallel neuropathological studies indicated reduction in neuronal density, with evidence of microgliosis and astrogliosis in the il-cortex, with further evidence of microgliosis and astrogliosis in the il-thalamus. One year after TBI there was also a decrease in FA in the contralateral (cl) CC (-17%) and EC (-13%), corresponding to histopathological evidence of white matter loss (cl-CC: -68%; cl-EC: -30%) associated with ongoing microgliosis and astrogliosis. These findings indicate that a single severe TBI induces bilateral, long-term and progressive neuropathology at up to one year after injury. These observations support this model as a suitable platform for exploring the mechanistic link between acute brain injury and late and persistent neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
In vitro toxicity testing with microplate cell cultures: Impact of cell binding.
Gülden, Michael; Schreiner, Jeannine; Seibert, Hasso
2015-06-05
In vitro generated data on toxic potencies are generally based on nominal concentrations. However, cellular and extracellular binding and elimination processes may reduce the available free fraction of a compound. Then, nominal effective concentrations do not represent appropriate measures of toxic exposure in vitro and underestimate toxic potencies. In this study it was investigated whether cell binding can affect the availability of chemicals in microplate based toxicity assays. To this end the cytotoxicity of compounds like mercury chloride, digitonin and alcohol ethoxylates, accumulated by cells via different modes, was investigated in 96-well microplate cultures with varying concentrations of Balb/c 3T3 cells. The median effective nominal concentrations of all but one of the tested compounds depended linearly from the cell concentration. Applying a previously developed equilibrium distribution model cell concentration-independent median effective extracellular concentrations and cell burdens, respectively, could be calculated. The compounds were accumulated by the cells with bioconcentration factors, BCF, between 480 and ≥ 25,000. Cell binding of the alcohol ethoxylates was correlated with their lipophilicity. The results show that significant cell binding can occur even at the small cell volume fractions (∼ 1 × 10(-5) to 3 × 10(-3) L/L) encountered in microplate assays. To what extent cell binding affects the bioavailability depends on the BCF and the cell volume fraction. EC50 measurements in the presence of at least two different cell concentrations allow for excluding or detecting significant cell binding and for determining more appropriate measures of toxic exposure in vitro like median effective extracellular (free) concentrations or cell burdens. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Electrocoagulation of Palm Oil Mill Effluent
Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai
2008-01-01
Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537
Characterization of biomass burning aerosols from forest fire in Indonesia
NASA Astrophysics Data System (ADS)
Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.
2012-12-01
Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were composed of ~ 18 % OC and ~ 10 % EC. OC/EC ratio was consistently lower (~ 2) for baseline periods than that for forest fire events (~ 20). OC and EC concentrations for forest fire events were more than 150 times and 10 times higher than those for baseline periods.
Comparing Treatment Plan in All Locations of Esophageal Cancer
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-01-01
Abstract The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations. This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle3 with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume. In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques. IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted. PMID:25929910
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-05-01
The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations.This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume.In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques.IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted.
NASA Astrophysics Data System (ADS)
Vana, M.; Holubova, A.; Cech, J.
2016-12-01
Carbonaceous aerosol (TC) is a complex mixture of many organics (OC fraction) and elemental carbon (EC). EC is a product of anthropogenic activities, especially incomplete combustion of fossil fuels by transport, heating, power plants, wood and biomass burning and agriculture activities. EC could have larger health impact than other PM constituents (Cassee et al., 2013). Carbonaceous aerosols also play an important role in climate change (Boucher et al., 2013). Kosetice Observatory, operated by the Czech Hydrometeorological Institute has been carrying out long-term air quality monitoring at the background scale the Czech Republic since 1988. Regular EC-OC measurement has been implementing within EU-projects EUSAAR and ACTRIS since 2009. Sampling frequency is every 6th day in fraction PM2,5 on 2 quartz-fibre filters. Since October 2011 the sampling on filters has been implementing behind the denuder catching the organic vapor. Amount of OC on back quartz fiber filter represents positive artifact by measurement without denuder and negative artifact by measurements with denuder. The analytical method is thermal-optical analysis. The samples are analyzed in CHMI Central Laboratories in Prague-Libuš using EC-OC Sunset Lab Dual Analyzer. Charring correction is made by laser transmission monitoring. Slightly decreasing tendency of EC-OC was found in the period under review (2009-2014). The mean annual concentration of total carbon (TC) in PM2,5 was 3,73 µg.m-3. The figure for elemental carbon (0,5 µg.m-3) represents the mean annual ratio of 13% on TC. EC-OC concentrations follow an annual course that reflects their emission levels, i.e. with maximums in winter and minimums in summer. The seasonal variation of EC/TC ratio ranges between 9,6 (summer) - 14,2% (winter). Mean TC ratio on PM2,5 total mass in the period under review was 29%, the highest ratios reached 50%. EC participated on PM2,5 total mass by 3,5% in average. 3D trajectories were used for sector analysis of measured EC-OC data (NILU, 2016). The highest concentrations are recorded in situations when air masses reach the territory of the Czech Republic from the north-eastern directions or the local air masses prevailing. The differences between sectors are much larger in the cold period of the year.
Storage flux uncertainty impact on eddy covariance net ecosystem exchange measurements
NASA Astrophysics Data System (ADS)
Nicolini, Giacomo; Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernard; Lindroth, Anders; Mamadou, Ossénatou; Moderow, Uta; Mölder, Meelis; Montagnani, Leonardo; Rebmann, Corinna; Papale, Dario
2017-04-01
Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements, quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC (Fc) and the storage flux (Sc). Sc is the rate of change of CO2, within the so called control volume below the EC measurement level, given by the difference in the instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. While cumulating over time led to a nullification of Sc, it can be significant at short time periods. The approaches used to estimate Sc fluxes largely vary, from measurements based only on a single sampling point (usually located at the EC measurement height) to measurements based on several sampling profiles distributed within the control volume. Furthermore, the number of sampling points within each profile vary, according to their height and the ecosystem typology. It follows that measurement accuracy increases with the sampling intensity within the control volume. In this work we use the experimental dataset collected during the ADVEX campaign in which Sc flux has been measured in three similar forest sites by the use of 5 sampling profiles (towers). Our main objective is to quantify the impact of Sc measurement uncertainty on NEE estimates. Results show that different methods may produce substantially different Sc flux estimates, with problematic consequences in case high frequency (half-hourly) data are needed for the analysis. However, the uncertainty on long-term estimates may be tolerate.
Mirzoian, Armen; Mabud, Abdul
2006-01-01
A procedure to analyze ethyl carbamate (EC) by gas chromatography/mass spectrometry was optimized and validated. Deuterated EC (d5-EC) was added to the samples as an internal standard followed by extraction with polystyrene crosslinked polystyrene cartridges using minimal volumes of ethyl acetate. The EC response was measured in selective ion monitoring (SIM) mode and found to be linear in the range between the limit of quantitation (10 micro/L) and 1000 microg/L. EC recoveries varied from 92 to 112%, with the average value of 100 +/- 8%. The procedure compared well (r2 = 0.9970) with the existing AOAC Official Method with the added benefits of minimal solvent usage and reduced matrix interferences.
NASA Astrophysics Data System (ADS)
Chan, T. W.; Huang, L.; Leaitch, R.; Sharma, S.; Brook, J.; Slowik, J.; Abbatt, J.
2008-05-01
Carbonaceous species (organic carbon (OC) and elemental carbon (EC)) contribute a large portion of atmospheric fine particle mass and influence air quality, human health, and climate forcing. However, their emission sources and atmospheric aging processes are not well understood. The OM/OC ratio, defined as the organic mass per unit OC mass, is useful to understand the degree of oxidation of aerosol particles in atmospheric processes. We define the modified BC/EC (mod BC/EC) ratio as the ratio of the non-scattering corrected absorption coefficient per unit mass of EC. The mod BC/EC ratio has a similar meaning as the site specific attenuation coefficient, which is an important parameter used to convert light absorption measurements to black carbon mass. The mod BC/EC ratio can vary due to light scattering effect on absorption measurements, in which the oxygenated organics may play a role. The pyrolysis organic carbon (POC) is defined as the carbon mass fraction obtained at T= 870°C under a pure helium environment using the thermal separation method [Huang et al., 2006]. Since POC mass is generally proportional to the amount of oxygenated OC, studying the relationships among OC, EC, POC, as well as OM/OC and mod BC/EC ratios may help us understand the mechanisms of aerosol aging from different emission sources. Two 1-month field studies were conducted at a rural site in southern Ontario (NW of Toronto) during fall 2005 and spring 2007. Quartz filter samples were collected and analyzed for OC, POC, and EC concentrations using a thermal/optical method [Huang et al., 2006]. Together with the total organic matter measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and the absorption coefficient obtained from a Particle Soot Absorption Photometer (PSAP), the OM/OC and mod BC/EC ratios for ambient aerosols were obtained. Our results show that when air mass was mainly from south, OC, POC, and EC were relatively high, with average ratios of OC/EC, OM/OC, and POC/EC as 1.94, 1.41, and 0.52, respectively; this indicates significant anthropogenic impacts and relatively large portion of oxygenated OC, which might be due to either primary emissions or photo-chemical reactions occurred in a short period of time. When air mass was mainly from north, OC, POC, and EC were much lower, with average ratios of OC/EC, OM/OC, and POC/EC as 3.10, 1.20, and 0.79, respectively; this suggests less influence from anthropogenic emissions and relatively aged air mass from biogenic-source dominated clean air. Using POC, we estimate the specific attenuation at the site to be 5.8 m2 g-1 independent of the air mass origin. The relationships among OM/OC, mod BC/EC, and POC will be further discussed. References: Huang, L., Brook, J.R., Zhang, W., Li, S.M., Graham, L., Ernst, D., Chivulescu, A., and Lu, G. (2006) Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: a new dimension for source characterization and apportionment, Atmospheric Environment, 40, 2690-2705.
NASA Astrophysics Data System (ADS)
Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina
2016-04-01
A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (< 2 vol. %). To fill this gap, we performed in situ electrical conductivity (EC) measurement on a partially-molten olivine aggregate (Fo92-olivine from a natural peridotite of Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.
NASA Astrophysics Data System (ADS)
Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.
2015-12-01
It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.
Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G
2015-01-10
Antibody-based therapeutics exhibit great promise in the treatment of central nervous system (CNS) disorders given their unique customizable properties. Although several clinical trials have evaluated therapeutic antibodies for treatment of CNS disorders, success to date has likely been limited in part due to complex issues associated with antibody delivery to the brain and antibody distribution within the CNS compartment. Major obstacles to effective CNS delivery of full length immunoglobulin G (IgG) antibodies include transport across the blood-brain and blood-cerebrospinal fluid barriers. IgG diffusion within brain extracellular space (ECS) may also play a role in limiting central antibody distribution; however, IgG transport in brain ECS has not yet been explored using established in vivo methods. Here, we used real-time integrative optical imaging to measure the diffusion properties of fluorescently labeled, non-targeted IgG after pressure injection in both free solution and in adult rat neocortex in vivo, revealing IgG diffusion in free medium is ~10-fold greater than in brain ECS. The pronounced hindered diffusion of IgG in brain ECS is likely due to a number of general factors associated with the brain microenvironment (e.g. ECS volume fraction and geometry/width) but also molecule-specific factors such as IgG size, shape, charge and specific binding interactions with ECS components. Co-injection of labeled IgG with an excess of unlabeled Fc fragment yielded a small yet significant increase in the IgG effective diffusion coefficient in brain, suggesting that binding between the IgG Fc domain and endogenous Fc-specific receptors may contribute to the hindered mobility of IgG in brain ECS. Importantly, local IgG diffusion coefficients from integrative optical imaging were similar to those obtained from ex vivo fluorescence imaging of transport gradients across the pial brain surface following controlled intracisternal infusions in anesthetized animals. Taken together, our results confirm the importance of diffusive transport in the generation of whole brain distribution profiles after infusion into the cerebrospinal fluid, although convective transport in the perivascular spaces of cerebral blood vessels was also evident. Our quantitative in vivo diffusion measurements may allow for more accurate prediction of IgG brain distribution after intrathecal or intracerebroventricular infusion into the cerebrospinal fluid across different species, facilitating the evaluation of both new and existing strategies for CNS immunotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Wolak, Daniel J.; Pizzo, Michelle E.; Thorne, Robert G.
2014-01-01
Antibody-based therapeutics exhibit great promise in the treatment of central nervous system (CNS) disorders given their unique customizable properties. Although several clinical trials have evaluated therapeutic antibodies for treatment of CNS disorders, success to date has likely been limited in part due to complex issues associated with antibody delivery to the brain and antibody distribution within the CNS compartment. Major obstacles to effective CNS delivery of full length immunoglobulin G (IgG) antibodies include transport across the blood-brain and blood-cerebrospinal fluid barriers. IgG diffusion within brain extracellular space (ECS) may also play a role in limiting central antibody distribution; however, IgG transport in brain ECS has not yet been explored using established in vivo methods. Here, we used real-time integrative optical imaging to measure the diffusion properties of fluorescently labeled, non-targeted IgG after pressure injection in both free solution and in adult rat neocortex in vivo, revealing IgG diffusion in free medium is ~10-fold greater than in brain ECS. The pronounced hindered diffusion of IgG in brain ECS is likely due to a number of general factors associated with the brain microenvironment (e.g. ECS volume fraction and geometry/width) but also molecule-specific factors such as IgG size, shape, charge and specific binding interactions with ECS components. Co-injection of labeled IgG with an excess of unlabeled Fc fragment yielded a small yet significant increase in the IgG effective diffusion coefficient in brain, suggesting that binding between the IgG Fc domain and endogenous Fc-specific receptors may contribute to the hindered mobility of IgG in brain ECS. Importantly, local IgG diffusion coefficients from integrative optical imaging were similar to those obtained from ex vivo fluorescence imaging of transport gradients across the pial brain surface following controlled intracisternal infusions in anesthetized animals. Taken together, our results confirm the importance of diffusive transport in the generation of whole brain distribution profiles after infusion into the cerebrospinal fluid, although convective transport in the perivascular spaces of cerebral blood vessels was also evident. Our quantitative in vivo diffusion measurements may allow for more accurate prediction of IgG brain distribution after intrathecal or intracerebroventricular infusion into the cerebrospinal fluid across different species, facilitating the evaluation of both new and existing strategies for CNS immunotherapy. PMID:25449807
Complex and region-specific changes in astroglial markers in the aging brain.
Rodríguez, José J; Yeh, Chia-Yu; Terzieva, Slavica; Olabarria, Markel; Kulijewicz-Nawrot, Magdalena; Verkhratsky, Alexei
2014-01-01
Morphological aging of astrocytes was investigated in entorhinal cortex (EC), dentate gyrus (DG), and cornu ammonis 1 (CA1) regions of hippocampus of male SV129/C57BL6 mice of different age groups (3, 9, 18, and 24 months). Astroglial profiles were visualized by immunohistochemistry by using glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and s100β staining; these profiles were imaged using confocal or light microscopy for subsequent morphometric analysis. GFAP-positive profiles in the DG and the CA1 of the hippocampus showed progressive age-dependent hypertrophy, as indicated by an increase in surface, volume, and somata volume at 24 months of age compared with 3-month-old mice. In contrast with the hippocampal regions, aging induced a decrease in GFAP-positive astroglial profiles in the EC: the surface, volume, and cell body volume of astroglial cells at 24 months of age were decreased significantly compared with the 3-month group. The GS-positive astrocytes displayed smaller cellular surface areas at 24 months compared with 3-month-old animals in both areas of hippocampus, whereas GS-positive profiles remained unchanged in the EC of old mice. The morphometry of s100β-immunoreactive profiles revealed substantial increase in the EC, more moderate increase in the DG, and no changes in the CA1 area. Based on the morphological analysis of 3 astroglial markers, we conclude that astrocytes undergo a complex age-dependent remodeling in a brain region-specific manner. Copyright © 2014. Published by Elsevier Inc.
Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer
Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei
2017-01-01
Abstract Background: Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose–volume histograms and outcomes including survival and toxicity. Methods: A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Results: Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Conclusion: Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity. PMID:28767597
Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei
2017-08-01
Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose-volume histograms and outcomes including survival and toxicity. A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity.
Shi, Xiao-Yan; He, Ke-Bin; Zhang, Jie; Ge, Yun-Shan; Tan, Jian-Wei
2009-06-15
Acetal (1,1-diethoxyethane) is considered as an alternative to ethanol as bio-derived additive for diesel fuel, which is miscible in diesel fuel. Biodiesel can improve the oxygen content and flash point of the fuel blend of acetal and diesel fuel. Two oxygenated fuels were prepared: a blend of 10% acetal + 90% diesel fuel and 10% acetal + 10% biodiesel + 80% diesel fuel. The emissions of NO(x), HC and PM2.5 from oxygenated fuels were investigated on a diesel engine bench at five modes according to various loads at two steady speeds and compared with base diesel fuel. Additionally, the carbon compositions of PM2.5 were analyzed by DRI thermal/optical carbon analyzer. Oxygenated fuels have unconspicuous effect on NO(x) emission rate but HC emission rate is observed significantly increased at some modes. The emission rate of PM2.5 is decreased by using oxygenated fuels and it decreases with the increase of fuel oxygen content. The emission rates of TC (total carbon) and EC (elemental carbon) in PM2.5 are also decreased by oxygenated fuels. The emission rate of organic carbon (OC) is greatly decreased at modes of higher engine speed. The OC/EC ratios of PM2.5 from oxygenated fuels are higher than that from base diesel fuel at most modes. The carbon compositions fractions of PM2.5 from the three test fuels are similar, and OC1 and EC1 are contributed to the most fractions of OC and EC, respectively. Compared with base diesel fuel, oxygenated fuels decrease emission rate of PM2.5, and have more OC contribution to PM2.5 but have little effect on carbon composition fractions.
2003-08-01
sepiolite , Mg 4 (OH) 2 Si 6 O 15 ·H 2 O...EC050801-3-5 EC050801-3-3 EC050801-3-2 EC050801-3-1 In te n si ty degrees 2-theta In te n si ty In te n si ty downgradient edge upgradient edge In te n...400 b ic a rb o n a te , m g /L 0 2 4 6 8 10 12 14 16 si lic a , m g /L Figure 4.12 Average (± 1 s.d.) concentrations of Na, K , Ca,
Kolodziejczyk-Czepas, Joanna; Nowak, Pawel; Moniuszko-Szajwaj, Barbara; Kowalska, Iwona; Stochmal, Anna
2015-01-01
Three clover [Trifolium L. (Leguminosae)] species were selected on the basis of data from traditional medicine, phytochemical profiles, and agricultural significance. The in vitro evaluations of free radical scavenging properties, ferric reducing abilities, and antioxidant effects of extracts from T. pratense L. (crude extract and phenolic fraction), T. pallidum L., and T. scabrum L. (phenolic fractions) were performed. Activities of the Trifolium extracts were determined at their final concentrations of 1.5-50 µg/ml. Free radical scavenging properties of methanol extract solutions were estimated by the reduction of DPPH(•) and ABTS(•) radicals. Measurements of the total antioxidant capacity (TAC) were carried out to assess the antioxidant activities of the extracts in human blood plasma under conditions of oxidative stress, induced by 200 μM peroxynitrite. The phenolic fraction of T. pratense displayed the strongest ABTS(•) and DPPH(•) radical scavenging effects (EC50 value of 21.69 and 12.27 µg/ml, respectively). The EC50 value for T. pallidum extract attained 29.77 and 30.06 µg/ml. The two remaining extracts were less potent scavengers (EC50 value higher than 50 µg/ml). Similar differences were obtained during evaluation of the ferric reducing abilities. Analysis of antioxidant properties of the extracts in blood plasma did not provide such evident differences in their actions, however, it indicated that the T. pratense phenolic fraction displayed the strongest effect. The examined Trifolium extracts partly protected blood plasma and enhanced its non-enzymatic antioxidant defense against harmful action of peroxynitrite in vitro.
Pohl, Pedro H. I.; Lozito, Thomas P.; Cuperman, Thais; Yurube, Takashi; Moon, Hong J.; Ngo, Kevin; Tuan, Rocky S.; Croix, Claudette St.; Sowa, Gwendolyn A.; Rodrigues, Luciano M. R.; Kang, James D.; Vo, Nam V.
2017-01-01
Neovascularization of intervertebral discs, a phenomenon considered pathological since normal discs are primarily avascular structures, occurs most frequently in annulus fibrosus (AF) of degenerated discs. Endothelial cells (ECs) are involved in this process, but the mechanism of the interaction between AF and endothelial cells is unclear. In this study we evaluated the effects on matrix catabolic activity of AF cells by the extracellular endothelial microparticles (EMPs) and soluble protein factors (SUP fraction) produced from ECs. Passage 1 human AF cells grown in monolayer cultures were treated for 72 hours with 250μg of EMPs or SUP fraction isolated from culture of the microvascular endothelial cell line, HEMC-I. Live-cell imaging revealed uptake of EMPs by AF cells. RT-PCR analysis demonstrated increased mRNA expression of MMP-1 (50.3 fold), MMP-3 (4.5 fold) and MMP-13 (5.5 fold) in AF cell cultures treated with EMPs compared to untreated control. Western analysis also demonstrated increased MMP protein expression in EMP-treated AF cells. AF cells treated with the SUP fraction also exhibited a dramatic increase in MMP mRNA and protein expression. Increased MMP expression is primarily due to EMP or SUP stimulation of AF cells since EMPs or SUP fraction alone contained negligible amount of MMPs. Interestingly, MMP activity was elevated in AF cell cultures treated with EMPs but not with SUP. This study revealed enhanced matrix catabolism as a molecular consequence of action of ECs on AF cells via EMPs, which might be expected during neo-angiogenesis of degenerating disc. PMID:27246627
Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.
1990-10-01
The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plumemore » OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).« less
Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.
1990-10-01
The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plumemore » OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent, one-sided confidence limit and a sample size of n1. (2) For an energy consumption standard (ECS..., where ECS is the energy consumption standard and t is a statistic based on a 97.5 percent, one-sided...
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent, one-sided confidence limit and a sample size of n1. (2) For an energy consumption standard (ECS..., where ECS is the energy consumption standard and t is a statistic based on a 97.5 percent, one-sided...
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent, one-sided confidence limit and a sample size of n1. (2) For an energy consumption standard (ECS..., where ECS is the energy consumption standard and t is a statistic based on a 97.5 percent, one-sided...
Clinical evaluation of a miniaturized desktop breath hydrogen analyzer.
Duan, L P; Braden, B; Clement, T; Caspary, W F; Lembcke, B
1994-10-01
A small desktop electrochemical H2 analyzer (EC-60-Hydrogen monitor) was compared with a stationary electrochemical H2 monitor (GMI-exhaled Hydrogen monitor). The EC-60-H2 monitor shows a high degree of precision for repetitive (n = 10) measurements of standard hydrogen mixtures (CV 1-8%). The response time for completion of measurement is shorter than that of the GMI-exhaled H2 monitor (37 sec. vs 53 sec.; p < 0.0001), while reset times are almost identical (54 sec. vs 51 sec. n.s). In a clinical setting, breath H2-concentrations measured with the EC-60-H2 monitor and the GMI-exhaled H2 monitor were in excellent agreement with a linear correlation (Y = 1.12X + 1.022, r2 = 0.9617, n = 115). With increasing H2-concentrations the EC-60-H2 monitor required larger sample volumes for maintaining sufficient precision, and sample volumes greater than 200 ml were required with H2-concentrations > 30 ppm. For routine gastrointestinal function testing, the EC-60-H2 monitor is an satisfactory and reliable, easy to use and inexpensive desktop breath hydrogen analyzer, whereas in patients with difficulty in cooperating (children, people with severe pulmonary insufficiency), special care has to be applied to obtain sufficiently large breath samples.
Anti-inflammatory and analgesic activities of Chaenomeles speciosa fractions in laboratory animals.
Li, X; Yang, Y-B; Yang, Q; Sun, L-N; Chen, W-S
2009-10-01
The prescription of current existing anti-inflammatory drugs is hampered by their adverse effects over time. Botanical extracts are thought to be a potential source of a natural anti-inflammatory property with fewer adverse effects. Chaenomeles speciosa has long been used as an herbal medicine for treatment of various diseases such as rheumatoid arthritis, prosopalgia, and hepatitis. Until now there have been no reports on the specific anti-inflammatory fractions of extract of C. speciosa (ECS). In the present study the anti-inflammatory activities of different fractions of ECS were evaluated using carrageenan-induced paw edema in rats. The 10% ethanol fraction (C3) was found to have stronger anti-inflammatory effects compared with other fractions at the same dose. We also found that chlorogenic acid was one of the active constituents responsible for the anti-inflammatory effect using bioassay-guided fractionation by means of high-performance liquid chromatography. Compared with controls, fraction C3 demonstrated significant anti-inflammatory activity in the xylene-induced ear edema test (P < .01), acetic acid-induced peritoneal capillary permeability test, and the cotton pellet granuloma test in mice or rats (P < .01); it also showed marked analgesic activity in the acetic acid-induced abdominal contraction test and formalin-induced paw licking test in mice and rats (P < .05 or .01). However, fraction C3 showed no significant effect in the hot plate test in mice. These findings justify the use of the C. speciosa for treating pain and inflammation. These results support the proposal of C. speciosa fraction C3 as a potential anti-inflammatory agent.
Status of Europe's contribution to the ITER EC system
NASA Astrophysics Data System (ADS)
Albajar, F.; Aiello, G.; Alberti, S.; Arnold, F.; Avramidis, K.; Bader, M.; Batista, R.; Bertizzolo, R.; Bonicelli, T.; Braunmueller, F.; Brescan, C.; Bruschi, A.; von Burg, B.; Camino, K.; Carannante, G.; Casarin, V.; Castillo, A.; Cauvard, F.; Cavalieri, C.; Cavinato, M.; Chavan, R.; Chelis, J.; Cismondi, F.; Combescure, D.; Darbos, C.; Farina, D.; Fasel, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gantenbein, G.; Gassmann, T.; Gessner, R.; Goodman, T. P.; Gracia, V.; Grossetti, G.; Heemskerk, C.; Henderson, M.; Hermann, V.; Hogge, J. P.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Jin, J.; Kasparek, W.; Koning, J.; Krause, A. S.; Landis, J. D.; Latsas, G.; Li, F.; Mazzocchi, F.; Meier, A.; Moro, A.; Nousiainen, R.; Purohit, D.; Nowak, S.; Omori, T.; van Oosterhout, J.; Pacheco, J.; Pagonakis, I.; Platania, P.; Poli, E.; Preis, A. K.; Ronden, D.; Rozier, Y.; Rzesnicki, T.; Saibene, G.; Sanchez, F.; Sartori, F.; Sauter, O.; Scherer, T.; Schlatter, C.; Schreck, S.; Serikov, A.; Siravo, U.; Sozzi, C.; Spaeh, P.; Spichiger, A.; Strauss, D.; Takahashi, K.; Thumm, M.; Tigelis, I.; Vaccaro, A.; Vomvoridis, J.; Tran, M. Q.; Weinhorst, B.
2015-03-01
The electron cyclotron (EC) system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter) non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO). F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS), 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows) for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europe's contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems.
Accuracy of cancellous bone volume fraction measured by micro-CT scanning.
Ding, M; Odgaard, A; Hvid, I
1999-03-01
Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.
Uchide, Keiji; Sakon, Masato; Ariyoshi, Hideo; Nakamori, Syouji; Tokunaga, Masaru; Monden, Morito
2007-02-01
Cancer cell mediated vascular endothelial cell (vEC) retraction plays a pivotal role in cancer metastasis. The aim of this study is to clarify the biochemical character of vEC retraction factor derived from human breast cancer cell line, MCF-7. In order to estimate vEC retracting activity, transwell chamber assay system was employed. We first tested the effects of trypsin digestion as well as lipid extraction of culture medium (CM). Trypsin digestion of CM resulted in approximately 40% loss of vEC retracting activity and lipid extraction of CM by Brigh and Dyer methods recovered approximately 60% of vEC retracting activity, suggesting that approximately 60% of vEC retracting activity in MCF-7 derived CM is due to lipid. Although Nordihydroguaiaretic acid (NDGA), the specific lipoxygenase inhibitor, suppressed vEC retracting activity in CM, Acetyl salicylic acid (ASA), a specific cyclooxygenase inhibitor, did not affect the activity, suggesting that lipid exerting vEC retracting activity in CM belongs to lipoxygenase mediated arachidonate metabolites. Thin layer chromatography clearly demonstrated that Rf value of lipid vEC retracting factor in CM is identical to 12HETE. Authentic 12(S)HETE, but not 12(R)HETE, showed vEC retracting activity. After the ultracentrifugation of CM, most lipid vEC retracting activity was recovered from the pellet fraction, and flow cytometric analysis using specific antibody against 12(S)HETE clearly showed the association of 12(S)HETE with small particle in CM. These findings suggested the principal involvement of 12(S)HETE in cancer cell derived microparticles in cancer cell mediated vEC retraction.
Simultaneous modulated accelerated radiation therapy for esophageal cancer: a feasibility study.
Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen
2014-10-14
To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN ±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf-IMRT plans, the SMART plans permitted a simultaneous dose escalation (6 Gy) to the primary tumor while demonstrating a significant trend of a lower irradiation dose to all organs at risk except the spinal cord, for which no significant difference was found. SMART offers the potential for a 6 Gy simultaneous escalation in the irradiation dose delivered to the primary tumor of EC and improves the sparing of normal tissues.
Simultaneous modulated accelerated radiation therapy for esophageal cancer: A feasibility study
Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen
2014-01-01
AIM: To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). METHODS: Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. RESULTS: Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf-IMRT plans, the SMART plans permitted a simultaneous dose escalation (6 Gy) to the primary tumor while demonstrating a significant trend of a lower irradiation dose to all organs at risk except the spinal cord, for which no significant difference was found. CONCLUSION: SMART offers the potential for a 6 Gy simultaneous escalation in the irradiation dose delivered to the primary tumor of EC and improves the sparing of normal tissues. PMID:25320535
Electrorheological suspensions of laponite in oil: rheometry studies.
Parmar, K P S; Méheust, Y; Schjelderupsen, Børge; Fossum, J O
2008-03-04
We have studied the effect of an external direct current (DC) electric field ( approximately 1 kV/mm) on the rheological properties of colloidal suspensions consisting of aggregates of laponite particles in a silicone oil. Microscopy observations show that, under application of an electric field greater than a triggering electric field Ec approximately 0.6 kV/mm, laponite aggregates assemble into chain- and/or columnlike structures in the oil. Without an applied electric field, the steady-state shear behavior of such suspensions is Newtonian-like. Under application of an electric field larger than Ec, it changes dramatically as a result of the changes in the microstructure: a significant yield stress is measured, and under continuous shear the fluid is shear-thinning. The rheological properties, in particular the dynamic and static shear stress, were studied as a function of particle volume fraction for various strengths (including null) of the applied electric field. The flow curves at constant shear rate can be scaled with respect to both the particle fraction and electric field strength onto a master curve. This scaling is consistent with simple scaling arguments. The shape of the master curve accounts for the system's complexity; it approaches a standard power-law model at high Mason numbers. Both dynamic and static yield stresses are observed to depend on the particle fraction Phi and electric field E as PhibetaEalpha, with alpha approximately 1.85 and beta approximately 1 and 1.70 for the dynamic and static yield stresses, respectively. The yield stress was also determined as the critical stress at which there occurs a bifurcation in the rheological behavior of suspensions that are submitted to a constant shear stress; a scaling law with alpha approximately 1.84 and beta approximately 1.70 was obtained. The effectiveness of the latter technique confirms that such electrorheological (ER) fluids can be studied in the framework of thixotropic fluids. The method is very reproducible; we suggest that it could be used routinely for studying ER fluids. The measured overall yield stress behavior of the suspensions may be explained in terms of standard conduction models for electrorheological systems. Interesting prospects include using such systems for guided self-assembly of clay nanoparticles.
Owen, Peter; Salton, Milton R. J.
1977-01-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions. Images PMID:144722
Owen, P; Salton, M R
1977-12-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions.
Effect of cold drawing ratio on γ′ precipitation in Inconel X-750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jeong Won; Research and Development Center, KOS Limited, Yangsan 626-230; Seong, Baek Seok
2014-10-15
Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawingmore » ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.« less
Silurian Micrometeorite Flux: The Demise of the Mid-Ordovician L-Chondrite Reign.
NASA Astrophysics Data System (ADS)
Martin, E.; Schmitz, B.
2017-12-01
Earth's sedimentary record holds information about the micrometeorite flux through time, reflecting the collisional evolution of the asteroid belt. Around 466 Ma ago in the mid-Ordovician period the L-chondrite parent body breakup (LCPB) took place in the main asteroid belt causing a massive increase, up to two orders of magnitude, in the flux of meteorites to Earth (Schmitz, 2013). What did the meteorite flux look like after the breakup event? And when in time can we see a decrease in the fraction of L-chondritic micrometeorites? We dissolved in acids condensed, marine limestone representing the mid-Ordovician and the late Silurian about 0.5 and 40 Ma, respectively after the LCPB, and searched the residues for spinel grains from equilibrated ordinary chondrites (EC). We used 102 kg from the mid-Ordovician Komstad Limestone Formation, Killeröd quarry in Sweden, and 321 kg from the Silurian Kok Formation, Cellon section in Austria. Elemental analyses of the spinel grains were used to link the grains to different types of meteorites. In the large grain size fraction (63-355 µm) there are 4.5 EC grains/kg of rock in the mid-Ordovician sample and only 0.03 EC grains/kg in the Silurian sample. Because the two formations formed at about the same rate (a few mm per kyr) the results represent strong evidence for a major tailing off in the L-chondritic meteorite contribution by the late Silurian. The EC grains have been divided into the H, L, and LL groups based on the TiO2 content. The results show that the fraction of L chondrites compared to H and LL chondrites had declined significantly by the late Silurian. In the study of Heck et al. (2016) it was shown that ≥99% of the ordinary chondritic micrometeorites were L chondrites right after the LCPB. Our data indicate that the L-chondrite fraction had decreased to 60% by the Silurian, with the H and LL chondrites making up 30% and 10% respectively of the flux.
NASA Astrophysics Data System (ADS)
Yoon, S.; Kirchstetter, T.; Fairley, D.; Sheesley, R. J.; Tang, X.
2017-12-01
Elemental carbon (EC), also known as black carbon or soot, is an important particulate air pollutant that contributes to climate forcing through absorption of solar radiation and to adverse human health impacts through inhalation. Both fossil fuel combustion and biomass burning, via residential firewood burning, agricultural burning, wild fires, and controlled burns, are significant sources of EC. Our ability to successfully control ambient EC concentrations requires understanding the contribution of these different emission sources. Radiocarbon (14C) analysis has been increasingly used as an apportionment tool to distinguish between EC from fossil fuel and biomass combustion sources. However, there are uncertainties associated with this method including: 1) uncertainty associated with the isolation of EC to be used for radiocarbon analysis (e.g., inclusion of organic carbon, blank contamination, recovery of EC, etc.) 2) uncertainty associated with the radiocarbon signature of the end member. The objective of this research project is to utilize laboratory experiments to evaluate some of these uncertainties, particularly for EC sources that significantly impact the San Francisco Bay Area. Source samples of EC only and a mix of EC and organic carbon (OC) were produced for this study to represent known emission sources and to approximate the mixing of EC and OC that would be present in the atmosphere. These samples include a combination of methane flame soot, various wood smoke samples (i.e. cedar, oak, sugar pine, pine at various ages, etc.), meat cooking, and smoldering cellulose smoke. EC fractions were isolated using a Sunset Laboratory's thermal optical transmittance carbon analyzer. For 14C analysis, samples were sent to Woods Hole Oceanographic Institution for isotope analysis using an accelerated mass spectrometry. End member values and uncertainties for the EC isolation utilizing this method will be reported.
NASA Astrophysics Data System (ADS)
Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; Masalaite, A.; Blees, J.; Fröhlich, R.; Dällenbach, K. R.; Canonaco, F.; Slowik, J. G.; Dommen, J.; Zimmermann, R.; Schnelle-Kreis, J.; Salazar, G. A.; Agrios, K.; Szidat, S.; El Haddad, I.; Prévôt, A. S. H.
2015-09-01
In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 μg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the TC, respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 % and 7-12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.
NASA Astrophysics Data System (ADS)
Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.
2016-05-01
In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.
Pohl, Pedro H I; Lozito, Thomas P; Cuperman, Thais; Yurube, Takashi; Moon, Hong J; Ngo, Kevin; Tuan, Rocky S; St Croix, Claudette; Sowa, Gwendolyn A; Rodrigues, Luciano M R; Kang, James D; Vo, Nam V
2016-08-01
Neovascularization of intervertebral discs, a phenomenon considered pathological since normal discs are primarily avascular structures, occurs most frequently in annulus fibrosus (AF) of degenerated discs. Endothelial cells (ECs) are involved in this process, but the mechanism of the interaction between AF and endothelial cells is unclear. In this study, we evaluated the effects on matrix catabolic activity of AF cells by the extracellular endothelial microparticles (EMPs) and soluble protein factors (SUP fraction) produced from ECs. Passage 1 human AF cells grown in monolayer cultures were treated for 72 h with 250 µg of EMPs or SUP fraction isolated from culture of the microvascular endothelial cell line, HEMC-I. Live-cell imaging revealed uptake of EMPs by AF cells. RT-PCR analysis demonstrated increased mRNA expression of MMP-1 (50.3-fold), MMP-3 (4.5-fold) and MMP-13 (5.5-fold) in AF cell cultures treated with EMPs compared to untreated control. Western analysis also demonstrated increased MMP protein expression in EMP-treated AF cells. AF cells treated with the SUP fraction also exhibited a dramatic increase in MMP mRNA and protein expression. Increased MMP expression is primarily due to EMP or SUP stimulation of AF cells since EMPs or SUP fraction alone contained negligible amount of MMPs. Interestingly, MMP activity was elevated in AF cell cultures treated with EMPs but not with SUP. This study revealed enhanced matrix catabolism as a molecular consequence of action of ECs on AF cells via EMPs, which might be expected during neo-angiogenesis of degenerating disc. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1466-1474, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
GC-MS profile of antimicrobial and antioxidant fractions from Cordia rothii roots.
Khan, Kehkashan; Firdous, Sadiqa; Ahmad, Aqeel; Fayyaz, Nida; Nadir, Muhammad; Rasheed, Munawwer; Faizi, Shaheen
2016-11-01
An ethnobotanical survey of Cordia rothii Roem. & Schult. (Boraginaceae) reveals it as a medicinal plant. Antimicrobial and antioxidant potential evaluation and identification of chemical constituents via GC-MS of C. rothii roots fractions. To the best of our knowledge, this is the first systematic investigation of the roots exploiting GC-MS. Extraction and fractionation of C. rothii roots furnished various fractions using solvents of varying polarity, i.e., n-hexane, chloroform, ethyl acetate, acetone and methanol. In vitro antimicrobial and antioxidant screening was performed using disk diffusion and DPPH methods, respectively. MIC of active fractions was also determined using disk diffusion method. GC-MS was used to identify constituents which may be responsible for these activities. Among various fractions from C. rothii roots, fraction KA-C showed strong antibacterial activity against 17 microorganisms tested, with MIC ranging from 250-31.25 μg/mL. Fractions KA-A, KM and KM-A exhibited significant antioxidant potential with EC 50 46.875 μg/mL, while fractions KEA-PE, KM-PE and KM-M were good with EC 50 93.750 μg/mL. Forty-five phytochemicals were identified in GC-MS studies including eight hydrocarbons, six free fatty acids, 11 fatty acids esters, two phenylpropanoids, four aromatics, four terpenoid quinones/hydroquinones, three triterpenes, four phytosterols, two hexose metabolites and a DNA base. Of these, 32 constituents have been reported for the first time from C. rothii, 24 from genus Cordia and 15 from Boraginaceae. Strong antibacterial and antioxidant potential of C. rothii roots may be due to the contribution of phytoconstituents identified through GC-MS studies.
Thermal and ultrasonic evaluation of porosity in composite laminates
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.
1992-01-01
The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.
Observational constraints on mixed-phase clouds imply higher climate sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO 2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here, in this paper, we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. Finally, wemore » point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.« less
Observational constraints on mixed-phase clouds imply higher climate sensitivity
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.
2016-04-08
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO 2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here, in this paper, we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. Finally, wemore » point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.« less
NASA Astrophysics Data System (ADS)
Romano, Annalisa; Boine-Frankenheim, Oliver; Buffat, Xavier; Iadarola, Giovanni; Rumolo, Giovanni
2018-06-01
At the beginning of the 2016 run, an anomalous beam instability was systematically observed at the CERN Large Hadron Collider (LHC). Its main characteristic was that it spontaneously appeared after beams had been stored for several hours in collision at 6.5 TeV to provide data for the experiments, despite large chromaticity values and high strength of the Landau-damping octupole magnet. The instability exhibited several features characteristic of those induced by the electron cloud (EC). Indeed, when LHC operates with 25 ns bunch spacing, an EC builds up in a large fraction of the beam chambers, as revealed by several independent indicators. Numerical simulations have been carried out in order to investigate the role of the EC in the observed instabilities. It has been found that the beam intensity decay is unfavorable for the beam stability when LHC operates in a strong EC regime.
Observational constraints on mixed-phase clouds imply higher climate sensitivity.
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D
2016-04-08
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback. Copyright © 2016, American Association for the Advancement of Science.
PLOTNIKOV, A; FISHMAN, D; TICHLER, T; KORENSTEIN, R; KEISARI, Y
2004-01-01
Low electric field cancer treatment − enhanced chemotherapy (LEFCT-EC) is a new anticancer treatment which utilizes a combination of chemotherapeutic agents and a low electric field. We investigated the antitumour effectiveness of this technique in a model of murine colon carcinoma (CT-26). The low electric field was applied to ∼65 mm3 intracutaneous tumours after intratumoral injection of 5FU, bleomycin or BCNU. We observed significant tumour size reduction and a prolongation of survival time. The complete cure of a significant fraction of animals treated by LEFCT-EC with 5FU (33%), bleomycin (51%) or BCNU (83%) was observed. Mice cured by LEFCT-EC developed resistance to a tumour challenge and their splenocytes had antitumour activity in vivo. Our results suggest that LEFCT-EC is an effective method for treatment of solid tumours. PMID:15544616
Plotnikov, A; Fishman, D; Tichler, T; Korenstein, R; Keisari, Y
2004-12-01
Low electric field cancer treatment-enhanced chemotherapy (LEFCT-EC) is a new anticancer treatment which utilizes a combination of chemotherapeutic agents and a low electric field. We investigated the antitumour effectiveness of this technique in a model of murine colon carcinoma (CT-26). The low electric field was applied to approximately 65 mm3 intracutaneous tumours after intratumoral injection of 5FU, bleomycin or BCNU. We observed significant tumour size reduction and a prolongation of survival time. The complete cure of a significant fraction of animals treated by LEFCT-EC with 5FU (33%), bleomycin (51%) or BCNU (83%) was observed. Mice cured by LEFCT-EC developed resistance to a tumour challenge and their splenocytes had antitumour activity in vivo. Our results suggest that LEFCT-EC is an effective method for treatment of solid tumours.
NASA Astrophysics Data System (ADS)
Weyant, C.; Athalye, V.; Ragavan, S.; Rajarathnam, U.; Kr, B.; Lalchandani, D.; Maithel, S.; Malhotra, G.; Bhanware, P.; Thoa, V.; Phuong, N.; Baum, E.; Bond, T. C.
2012-12-01
About 150-200 billion clay bricks are produced in India every year. Most of these bricks are fired in small-scale traditional kilns that burn coal or biomass without pollution controls. Reddy and Venkataraman (2001) estimated that 8% of fossil fuel related PM2.5 emissions and 23% of black carbon emissions in India are released from brick production. Few direct emissions measurements have been done in this industry and black carbon emissions, in particular, have not been previously measured. In this study, 9 kilns representing five common brick kiln technologies were tested for aerosol properties and gaseous pollutant emissions, including optical scattering and absorption and thermal-optical OC/EC. Simple relationships are then used to estimate the radiative-forcing impact. Kiln design and fuel quality greatly affect the overall emission profiles and relative climate warming. Batch production kilns, such as the Downdraft kiln, produce the most PM2.5 (0.97 gPM2.5/fired brick) with an OC/EC fraction of 0.3. Vertical Shaft Brick kilns using internally mixed fuels produce the least PM (0.09 gPM2.5/kg fired brick) with the least EC (OC/EC = 16.5), but these kilns are expensive to implement and their use throughout Southern Asia is minimal. The most popular kiln in India, the Bull's Trench kiln, had fewer emissions per brick than the Downdraft kiln, but an even higher EC fraction (OC/EC = 0.05). The Zig-zag kiln is similar in structure to the Bull's Trench kiln, but the emission factors are significantly lower: 50% reduction for CO, 17% for PM2.5 and 60% for black carbon. This difference in emissions suggests that converting traditional Bull's Trench kilns into less polluting Zig-zag kilns would result in reduced atmospheric warming from brick production.
NASA Astrophysics Data System (ADS)
Chen, Yang; Yang, Fumo; Mi, Tian; Cao, Junji; Shi, Guangming; Huang, Rujin; Wang, Huanbo; Chen, Jun; Lou, Shengrong; Wang, Qiyuan
2017-05-01
Urban particles were investigated using a single particle aerosol mass spectrometer (SPAMS) in Chongqing during the summertime (from 07/05/2014 to 08/06/2014). Chemical composition, mixing state, and atmospheric behavior of urban particles were studied. The major particle types include ECOC (Elemental-Carbon-Organic-Carbon 20.6%), OC (20.1%), KSec (K-Secondary) (13.3%), BB (Biomass burning, 11.9%), NaK (sodium-potassium-rich, 7.3%), Al-rich (4.0%), Fe-rich (3.2%), Ca-rich (1.4%), Ca-EC (1.6%), and NaKPb (0.5%). EC, ECOC, OC, and Ca-EC were prevalent in the condensation mode (< 0.7 μm), while KSec, EC, NaK were significant in both the droplet mode (0.7-1.1 μm) and coarse mode. Increases in aged groups such as EC, KSec, and NaK were observed in the afternoon. Case studies suggested that wet scavenging (rain) rates of different single particle types followed an order of NaKPb > Fe-rich > EC > Ca-EC > Ca-rich > KSec > OC > NaK > ECOC > Al-rich > BB. Increased number fraction of EC and KSec were correlated with the increase of odd oxygen (Ox = O3 + NO2). EC, OC, and ECOC were enriched at higher relative humidity. The findings of this study on the mixing state, temporal variation, processing, and evolution of single particles provide new insight into the atmospheric behavior and impacts of urban particles.
NASA Astrophysics Data System (ADS)
Currie, L. A.; Kessler, J. D.
2005-05-01
The primary objective of the research reported here has been the development of an hybrid reference material (RM) to serve as a test of accuracy for elemental carbon (EC) isotopic (14C) speciation measurements. Such measurements are critically important for the quantitative apportionment of fossil and biomass sources of ''soot'' (EC), the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust), showed a range of results, but since the ''truth'' was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC) of measurement validity (Currie et al., 2002). Components of the new Hybrid RM (DiesApple), however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically). NIST SRM 2975 (Forklift Diesel Soot) has little or no 14C, and its major compositional component is EC. SRM 1515 (Apple Leaves) has the 14C content of biomass-C, and it has little or no EC. Thus, the hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C from SRM 1515 in the EC isolate of the hybrid RM, together with testing for conservation of its dominant soot fraction through the isolation procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn
The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less
Evaluation of Propiconazole Application Methods for Control of Oak Wilt in Texas Live Oaks
A. Dan Wilson; D.G. Lester
1996-01-01
Four fungicide application methods using the microencapsulated (blue) 14.3% EC formulation of propiconazole (Alamo), including a low-concentration high volume method, two high-concentration low volume microinjection methods, and a low-concentration intermediate volume soil drench method, were tested for effectiveness in controlling oak wilt in a mature natural stand of...
40 CFR 60.393 - Performance test and compliance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... per volume of applied coating solids (G) during each calendar month for each affected facility by the following equation: EC16NO91.030 (E) For each EDP prime coat operation, calculate the turnover ratio (RT) by....392(a). (ii) If the volume weighted average mass of VOC per volume of applied coating solids (G...
NASA Astrophysics Data System (ADS)
Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent
2017-03-01
The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.
Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.
2014-01-01
This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.
Using Optical Tweezers to Study Cell Mechanics during Airway Reopening
NASA Astrophysics Data System (ADS)
Yalcin, Huseyin; Wang, Jing; Ghadiali, Samir; Ou-Yang, H. Daniel
2006-03-01
Patients suffering from the acute respiratory distress syndrome (ARDS) must be mechanically ventilated in order to survive. However, these ventilation protocols may generate injurious hydrodynamic stresses especially during low tidal volume (VT) ventilation when the flow of micron-sized air bubbles displace the surrounding liquid. In-vitro studies in our lab revealed that microbubble flows can severally damage lung epithelial cells (EC). The degree of injury was elevated for sub-confluent monolayers in small channel heights. Under these conditions, the micromechanics of individual EC may influence the degree of cellular injury. To investigate the role of cell mechanics, we used an oscillating Optical Tweezers (OT) technique to measure the intrinsic mechanical properties of EC before and after the flow of microbubbles. Knowledge of how the EC's micromechanical properties influence cell viability may lead to the development of novel treatment therapies that enhance the EC's ability to withstand injurious hydrodynamic stresses during ventilation treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betisheva, N.K.; Samoilova, K.A.
This paper studies the DNA-synthetic activity of hyman embryonic cells (EC) cultured in the presence of supernatants from intact and irradiated cell fractions of blood or plasma. Human EC obtained from abortion material were incubated; after incubation, tritium-thymidine was added to the growth medium for 30 min. It is shown that stimulation of DNA synthesis in EC growing in the presence of supernatants from irradiated whole blood is not connected with photoactivation of growth factors in the blood plasma, but takes place as a result of their release from the cells. Donated blood, irradiated with UV light of the samemore » wavelength and within the same dose range as are used under clinical conditions (up to 1200 J/m/sup 2/), possesses growth-stimulating properties.« less
Féboli, Aline; Laurentiz, Antonio C; Soares, Suelen C S; Augusto, Jeferson G; Anjos, Luciano A; Magalhães, Lizandra G; Filardi, Rosemeire S; Laurentiz, Rosangela S
2016-08-15
This study describes the in vitro anthelmintic activity of extracts from Opuntia ficus indica against gastrointestinal nematodes of sheep. The anthelmintic activity was evaluated by inhibition of egg hatching, larval development and larval migration assays. The residual aqueous fractions from cladodes and fruits showed higher ovicidal activity with EC50 values of 7.2mg/mL and 1.5mg/mL, respectively. The aqueous, hexane, and ethyl acetate fractions from fruits and the aqueous fraction from cladodes inhibited 100% of larval development at the lowest concentration tested (1.56mg/mL). The crude cladode and fruit ethanolic extracts inhibited larval migration and showed EC50 values of 0.74mg/mL and 0.27mg/mL, respectively. Phytochemical screening detected high concentrations of alkaloids, tannins, flavonoids, and saponins in the fruits and cladodes. The results demonstrated that O. ficus exhibits anthelmintic activity in vitro, suggesting that, beyond its nutritional potential, this plant can also be an ally for parasite control in sheep. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Ju-Sung; Kwon, Yong-Soo; Sa, Yeo-Jin; Kim, Myong-Jo
2011-01-12
This study was performed to evaluate the antioxidant and α-glucosidase inhibitory effects from the extract, fractions, and isolated compounds of sea buckthorn leaves. Six compounds, kaempferol-3-O-β-D-(6''-O-coumaryl) glycoside, 1-feruloyl-β-D-glucopyranoside, isorhamnetin-3-O-glucoside, quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside, and isorhamnetin-3-O-rutinoside, were isolated from sea buckthorn leaf extracts. The butanol fraction (EC(50) = 1.81 μg/mL) along with quercetin 3-O-β-D-glucopyranoside (EC(50) = 1.86 μg/mL) had a higher DPPH radical-scavenging activity and showed stronger reducing power (OD(700) = 1.83 and 1.78, respectively). The butanol fraction (477 mg GAE/g) contained the highest amount of phenolic compounds and also the most powerful α-glucosidase inhibitory effect (86%) at 5 μg/mL. The results indicate that sea buckthorn leaf extracts could potentially be used for food additives and the development of useful natural compounds.
Transpiration Rate for Chile Peppers Irrigated with Brackish Groundwater and ro Concentrate
NASA Astrophysics Data System (ADS)
Shukla, M. K.; Baath, G.
2016-12-01
Fresh water availability is declining in most of the semi-arid and arid regions across the world including southwestern United States. Use of marginal quality groundwater has been increasing for sustaining agriculture in these arid regions. Reverse Osmosis (RO) can treat brackish groundwater but the possibility of using RO concentrate for irrigation needs further exploration. This greenhouse study evaluates the transpiration rate, water use, leaching fraction and yield responses of five selected chile pepper (Capsicum annuum) cultivars irrigated with natural brackish groundwater and RO concentrate. The four saline water treatments used for irrigation were tap water of EC 0.6 (control), ground water of EC 3 and 5 dS/m and RO concentrate of EC 8 dS/m. The transpiration of all chile peppers cultivars decreased and leaching fraction increased with increasing irrigation water salinity. Based on the water use efficiency (WUEY) of selected chile pepper cultivars, brackish water of EC ≤ 3 dS/m can be used for irrigation. The average yield of chile peppers was stable up to a saturated soil paste extract electrical conductivity (ECe) of about 2 dS/m, although further increases in ECe resulted in an exponential yield decline. This study showed that yield reductions in chile peppers irrigated with Ca rich brackish groundwater were less than those reported using NaCl dominant saline solution studies. Environmentally safe reuse of RO concentrate could stimulate implementation of inland desalination in water scarce areas and increase greenhouse chile pepper cultivation.
NASA Astrophysics Data System (ADS)
Nunes, Teresa; Mirante, Fátima; Almeida, Elza; Pio, Casimiro
2010-05-01
Atmospheric carbon consists of: organic carbon (OC, including various organic compounds), elemental carbon (EC, or black carbon [BC]/soot, a non-volatile/light-absorbing carbon), and a small quantity of carbonate carbon. Thermal/optical methods (TOM) have been widely used for quantifying total carbon (TC), OC, and EC in ambient and source particulate samples. Unfortunately, the different thermal evolution protocols in use can result in a wide elemental carbon-to-total carbon variation. Temperature evolution in thermal carbon analysis is critical to the allocation of carbon fractions. Another critical point in OC and EC quantification by TOM is the interference of carbonate carbon (CC) that could be present in the particulate samples, mainly in the coarse fraction of atmospheric aerosol. One of the methods used to minimize this interference consists on the use of a sample pre-treatment with acid to eliminate CC prior to thermal analysis (Chow et al., 2001; Pio et al., 1994). In Europe, there is currently no standard procedure for determining the carbonaceous aerosol fraction, which implies that data from different laboratories at various sites are of unknown accuracy and cannot be considered comparable. In the framework of the EU-project EUSAAR, a comprehensive study has been carried out to identify the causes of differences in the EC measured using different thermal evolution protocols. From this study an optimised protocol, the EUSAAR-2 protocol, was defined (Cavali et al., 2009). During the last two decades thousands of aerosol samples have been taken over quartz filters at urban, industrial, rural and background sites, and also from plume forest fires and biomass burning in a domestic closed stove. These samples were analysed for OC and EC, by a TOM, similar to that in use in the IMPROVE network (Pio et al., 2007). More recently we reduced the number of steps in thermal evolution protocols, without significant repercussions in the OC/EC quantifications. In order to evaluate the possibility of continue using, for trend analysis, the historical data set, we performed an inter-comparison between our method and an adaptation of EUSAAR-2 protocol, taking into account that this last protocol will possibly be recommended for analysing carbonaceous aerosols at European sites. In this inter-comparison we tested different types of samples (PM2,5, PM2,5-10, PM10) with large spectra of carbon loadings, with and without pre-treatment acidification. For a reduced number of samples, five replicates of each one were analysed by each method for statistical purposes. The inter-comparison study revealed that when the sample analysis were performed in similar room conditions, the two thermo-optic methods give similar results for TC, OC and EC, without significant differences at a 95% confidence level. The correlation between the methods, DAO and EUSAAR-2 for EC is smaller than for TC and OC, although showing a coefficient correlation over 0,95, with a slope close to one. For samples performed in different periods, room temperatures seem to have a significant effect over OC quantification. The sample pre-treatment with HCl fumigation tends to decrease TC quantification, mainly due to the more volatile organic fraction release during the first heating step. For a set of 20 domestic biomass burning samples analyzed by the DAO method we observed an average decrease in TC quantification of 3,7 % in relation to non-acidified samples, even though this decrease is accompanied by an average increase in the less volatile organic fraction. The indirect measurement of carbon carbonate, usually a minor carbon component in the carbonaceous aerosol, based on the difference between TC measured by TOM of acidified and non-acidified samples is not a robust measurement, considering the biases affecting his quantification. The present study show that the two thermo-optic temperature program used for OC and EC quantification give similar results, and if in the future the EUSAAR-2 protocol will be adopted the past measurement of carbonaceous fractions can be used for trend analysis. However this study demonstrates that the temperature control during post-sampling handling is a critical point in total OC and TC quantification that must be assigned in the new European protocol. References: Cavali et al., 2009, AMTD 2, 2321-2345, 2009 Chow et al., 2001, Aerosol. Sci. Technol., 34, 23-34, 2001. Pio et al., 1994, Proceedings of the Sixth European Symposium on Physico-Chemical Behavior of Atmospheric Pollutants. Report EUR 15609/2 EN, pp. 706-711. Pio et al, 2007, J. Geophys. Res. 112, D23S02 Acknowledgement: This work was funded by the Portuguese Science Foundation through the projects POCI/AMB/60267/2004 and PTDC/AMB/65706/2006 (BIOEMI). F. Mirante acknowledges the PhD grant SFRH/BD/45473/2008.
Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E
2017-11-01
The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
NASA Technical Reports Server (NTRS)
Andrews, C. W.
1976-01-01
Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.
NASA Technical Reports Server (NTRS)
Conklin, Lindsey
2017-01-01
Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plataniotis, George A.; Dale, Roger G.
2008-12-01
Purpose: To express the magnitude of the contribution of chemotherapy to local tumor control in chemoradiotherapy cervical cancer trials in terms of the concept of the biologically effective dose. Methods and Materials: The local control rates of both arms of each study (radiotherapy vs. radiotherapy plus chemotherapy) reported from randomized controlled trials of concurrent chemoradiotherapy for cervical cancer were reviewed and expressed using the Poisson model for tumor control probability (TCP) as TCP = exp(-exp E), where E is the logarithm of cell kill. By combining the two TCP values from each study, we calculated the chemotherapy-related log cell killmore » as Ec = ln[(lnTCP{sub Radiotherapy})/(lnTCP{sub Chemoradiotherapy})]. Assuming a range of radiosensitivities ({alpha} = 0.1-0.5 Gy{sup -1}) and taking the calculated log cell kill, we calculated the chemotherapy-BED, and using the linear quadratic model, the number of 2-Gy fractions corresponding to each BED. The effect of a range of tumor volumes and radiosensitivities ({alpha} Gy{sup -1}) on the TCP was also explored. Results: The chemotherapy-equivalent number of 2-Gy fractions range was 0.2-4 and was greater in tumors with lower radiosensitivity. In those tumors with intermediate radiosensitivity ({alpha} = 0.3 Gy{sup -1}), the equivalent number of 2-Gy fractions was 0.6-1.3, corresponding to 120-260 cGy of extra dose. The opportunities for clinically detectable improvement are only available in tumors with intermediate radiosensitivity with {alpha} = 0.22-0.28 Gy{sup -1}. The dependence of TCP on the tumor volume decreases as the radiosensitivity increases. Conclusion: The results of our study have shown that the contribution of chemotherapy to the TCP in cervical cancer is expected to be clinically detectable in larger and less-radiosensitive tumors.« less
Mah, Linda; Binns, Malcolm A; Steffens, David C
2015-05-01
To test the hypothesis that anxiety in amnestic mild cognitive impairment (aMCI) increases rates of conversion to Alzheimer disease (AD) and to identify potential neural mechanisms underlying such an association. Participants (N = 376) with aMCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were studied over a median period of 36 months. A Cox proportional-hazards model was used to assess the association between anxiety severity ratings on the Neuropsychiatric Inventory Questionnaire and AD risk. Other variables were depression, memory loss, and MRI-derived AD-related regions of interest (ROIs), including hippocampal, amygdalar, entorhinal cortical (EC) volumes, and EC thickness, In addition, a linear regression model was used to determine the effect of anxiety in aMCI on rates of atrophy within ROIs. Anxiety severity increased rate of aMCI conversion to AD, after controlling for depression and cognitive decline. The association between anxiety and AD remained significant even with inclusion of ROI baseline values or atrophy rates as explanatory variables. Further, anxiety status predicted greater rates of decrease in EC volume. An association between anxiety and EC thickness missed significance. Anxiety symptoms in aMCI predict conversion to AD, over and beyond the effects of depression, memory loss, or atrophy within AD neuroimaging biomarkers. These findings, together with the greater EC atrophy rate predicted by anxiety, are compatible with the hypothesis that anxiety is not a prodromal noncognitive feature of AD but may accelerate decline toward AD through direct or indirect effects on EC. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Vlasova, Anastasia N; Shao, Lulu; Kandasamy, Sukumar; Fischer, David D; Rauf, Abdul; Langel, Stephanie N; Chattha, Kuldeep S; Kumar, Anand; Huang, Huang-Chi; Rajashekara, Gireesh; Saif, Linda J
2016-10-01
Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4 + mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172 + MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mancilla, Yasmany; Herckes, Pierre; Fraser, Matthew P.; Mendoza, Alberto
2015-02-01
Air pollution caused by fine particles is a problem of great concern in the Monterrey Metropolitan Area (MMA) which is the third largest city and the second most important industrial center in Mexico. In this study, samples of fine particulate matter emissions with an aerodynamic diameter of less than 2.5 μm (PM2.5) were collected for 12-hour periods during the spring and fall of 2011 and 2012. Eighty-three samples were analyzed for organic carbon (OC) and elemental carbon (EC). The carbonaceous fraction (OC + EC) accounted for 28-55% of the PM2.5 mass. The average OC/EC ratios ranged from 7.4 to 12.6, and OC and EC concentrations were statistically significant correlated (R2 = 0.81, p < 0.01). The secondary organic aerosol (SOA) contributions were determined using two approaches: the EC tracer method based on a primary OC/EC ratio derived from a tunnel study and the minimum observed OC/EC ratio. SOAs were determined to constitute, on average, 59-87% and 32-45% of the total OC and PM2.5, respectively. The relationship between O3 and wind speed indicated that pollutant levels were influenced by transport events during the spring, while stagnation events predominated during the fall campaigns. Statistically significant correlations were observed between OC and EC and gaseous species (CO, NOx, and SO2), indicating a contribution by combustion of fossil fuels to the carbonaceous material.
Zhang, Li-Guo; Ouyang, Xiao-Wen; Wu, Ting-Ting; Ni, Li-Jun; Shi, Wan-Zhong
2014-09-29
Yaotongning Capsule (YTNC) is a Traditional Chinese Medicinal (TCM) formula that has been demonstrated to be effective for osteoarthritis (OA) treatment in clinical use. Many compounds and 10 component medicinal materials (CMMs for short, i.e., the fundamental elements used in TCM formulas) in YTNC are challenging to study the pharmacological effects and interactions of the CMMs. Besides, it is difficult to know whether the YTNC formula is reasonable, and if YTNC formula could be improved without comparing YTNC with other TCM formulas of treating OA. Based on different combinations of the active fractions from the 10 CMMs of YTNC and eight additional herbs frequently used in the TCM formulas of treating OA, the present study evaluated systematically the in vitro effects of these active fractions and the interactions among the active fractions from YTNC on rat chondrocytes to find possible solutions of the above questions. Based on the formulation of YTNC and the concept of combinatorial chemistry, the active fractions were applied to form the whole YTNC prescription (i.e., the combination of all YTNC active fractions and the extract of YTNC׳s vehicle), five disassembled formulas of YTNC (i.e., the combinations of some active fractions in YTNC) and 21 TCM samples consisted of different kinds of active fractions. The degenerated chondrocytes were induced with interleukin-1β (IL-1β), and then the half-effective concentration (EC50) value of the proliferation activity was analyzed to evaluate the 27 TCM samples. Nine samples were screened for the following evaluation on glycosaminoglycan (GAG) synthesis. Rat articular cartilage was obtained from six Sprague-Dawley rats (seven days of age), and then chondrocytes were isolated through enzymatic digestion with 0.2% Collagenase II. Proliferations of chondrocytes were examined through Cell Counting Kit-8 assay, when the intracellular levels of GAG were detected by 1,9-Dimethylmethylene blue staining. The interactions between the active fractions in YTNC were evaluated by comparing experimental EC50 values of the YTNC formulas with their additive EC50 values. The effects of every active fraction were estimated by comparing the EC50 values of the TCM sample containing the active fraction with that of the initial sample without the active fraction. The whole formula of YTNC was very good at promoting the proliferation and GAG synthesis among all the 27 TCM samples. The vehicle of YTNC (Chinese rice wine) strengthened the two activities of YTNC. Refer to promoting the proliferation in chondrocytes, Davallia mariesii flavonoids (not belong to YTNC) were more potent than Glycyrrhiza uralensis flavonoids in YTNC, while the saponins, volatile oils and polysaccharides of YTNC were more potent than those from the eight additional herbs. Some samples including fewer active fractions were as good as YTNC. The YTNC formula and its disassembled formulas exhibited good activities both in promoting the proliferation and GAG synthesis, and the whole formula was most potent among the six YTNC formulas. The YTNC formula is reasonable and has advantage in promoting the proliferation and GAG synthesis in IL-1β induced chondrocytes. YTNC׳s vehicle Chinese rice wine plays an important role in strengthening the activity of YTNC. YTNC may have the potential activity on treating chondrocytes degeneration caused by OA. However, the formula still can be simplified based on the combination of alkaloids, flavonoids and 50% of saponins from Glycyrrhiza uralensis to improve its quality controllability and safety. The present study can be a quite purposeful work for developing new YTNC-based formulas with maximal therapeutic efficacy and minimal adverse effects. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao
2016-01-07
With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.
Lavoie, Serge; Côté, Isabelle; Pichette, André; Gauthier, Charles; Ouellet, Michaël; Nagau-Lavoie, Francine; Mshvildadze, Vakhtang; Legault, Jean
2017-02-22
Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. However, the antiviral activities of these plants have been seldom evaluated on cellular models to validate their in vitro efficiencies. In this study, Cornus canadensis L. (Cornaceae), a plant used in Native American traditional medicine to treat possible antiviral infections, has been selected for further examination. The plant was extracted by decoction and infusion with water, water/ethanol 1:1 and ethanol to obtain extracts similar to those used by Native Americans. The effects of the extracts were tested on herpes simplex virus type-1 (HSV-1) using a plaque reduction assay. Moreover, bioassay-guided fractionation was achieved to isolate bioactive compounds. Water/ethanol 1:1 infusion of C. canadensis leaves were the most active extracts to inhibit virus absorption with EC 50 of about 9 μg mL -1 , whereas for direct mode, both extraction methods using water or water/ethanol 1:1 as solvent were relatively similar with EC 50 ranging from 11 to 17 μg mL -1 . The fractionation led to the identification of active fractions containing hydrolysable tannins. Tellimagrandin I was found the most active compound with an EC 50 of 2.6 μM for the direct mode and 5.0 μM for the absorption mode. Altogether, the results presented in this work support the antiviral activity of Cornus canadensis used in Native American traditional medicine.
Evaluation of tests to assess the quality of mine-contaminated soils.
Alvarenga, P; Palma, P; Gonçalves, A P; Fernandes, R M; de Varennes, A; Vallini, G; Duarte, E; Cunha-Queda, A C
2008-04-01
An acid metal-contaminated soil from the Aljustrel mining area (a pyrite mine located in SW Portugal in the Iberian Pyrite Belt) was subjected to chemical characterisation and total metal quantification (Cd, Cr, Cu, Ni, Pb and Zn). Water-soluble metals were determined and a sequential extraction procedure was used to investigate metal speciation. Two bioavailable metal fractions were determined: a mobile fraction and a mobilisable fraction. Soil ecotoxicity was studied using a battery of bioassays: plant growth test and seed germination with cress (Lepidium sativum L.), earthworm (Eisenia fetida) mortality, E. fetida avoidance behaviour, luminescent inhibition of Vibrio fischeri and Daphnia magna immobilisation. Although the total content of Cu, Zn and Pb in the soil was large (362, 245 and 1,250 mg/kg dry matter, respectively), these metals were mostly structurally bound (87% for Cu, 81% for Zn and 89% for Pb) and, therefore, scarcely bioavailable. Nonetheless, the D. magna immobilization test using soil leachate showed an EC50 (48 h) of 36.3% (v/v), and the luminescent inhibition of V. fischeri presented an EC20 (15 min) of 45.2% and an EC20 (30 min) of 10.7% (v/v), suggesting a considerable toxic effect. In the direct exposure bioassays, E. fetida avoided the mine soil at the highest concentrations (50%, 75% and 100% v/v). At the same soil concentrations, cress showed negligible growth. The results suggest the need to use a battery of toxicity tests, in conjunction with chemical methods, in order to assess the quality of mine-contaminated soils correctly.
Monitoring of approved studies: A difficult tightrope walk by Ethics Committees.
Davis, Sanish
2018-01-01
Continuing review of studies approved by the Ethics Committees (ECs) involves review of the progress of the study, annual reports, protocol deviations/violations, serious adverse event monitoring, and on-site monitoring. International and national regulations and guidelines for continuing review state that it is an opportunity for the EC to be assured that risks to subjects are minimized and is are reasonable in relation to anticipated benefits if any to the subjects and the knowledge it will generate. There are several barriers (e.g. lack of workforce, lack of training of members for conducting onsite review, and poor infrastructure) for ECs to do ongoing review of projects approved by them. Industry is an important stakeholder for the research enterprise in India and strongly advocates that ECs should at a minimum have pragmatic standard operating procedures for continuing review/monitoring of studies initially approved. ECs which deal with larger volume of studies with well-functioning secretariat, appropriately trained EC members and funding should definitely conduct onsite review/monitoring in addition to the ongoing review.
Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure
Ravva, Subbarao V.; Korn, Anna
2015-01-01
Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork. PMID:26184255
Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure.
Ravva, Subbarao V; Korn, Anna
2015-07-10
Escherichia coli O157:H7 (EcO157) shed in cattle manure can survive for extended periods of time and intervention strategies to control this pathogen at the source are critical as produce crops are often grown in proximity to animal raising operations. This study evaluated whether neem (Azadirachta indica), known for its antimicrobial and insecticidal properties, can be used to amend manure to control EcO157. The influence of neem materials (leaf, bark, and oil) on the survival of an apple juice outbreak strain of EcO157 in dairy manure was monitored. Neem leaf and bark supplements eliminated the pathogen in less than 10 d with a D-value (days for 90% elimination) of 1.3 d. In contrast, nearly 4 log CFU EcO157/g remained after 10 d in neem-free manure control. The ethyl acetate extractable fraction of neem leaves was inhibitory to the growth of EcO157 in LB broth. Azadirachtin, a neem product with insect antifeedant properties, failed to inhibit EcO157. Application of inexpensive neem supplements to control pathogens in manure and possibly in produce fields may be an option for controlling the transfer of foodborne pathogens from farm to fork.
Exceptional Infant: Studies in Abnormalities, Volume 2.
ERIC Educational Resources Information Center
Hellmuth, Jerome, Ed.
Designed as a complement to Volume 1 on the normal infant (available as EC 003 414), the text examines the following areas: neurological examination of the newborn, neurobehavioral organization of the newborn, neuropsychology examinations in young children, learning of motor skills on the basis of self-induced movements, factors in vulnerability…
Pectinolytic enzymes of anaerobic fungi.
Kopecný, J; Hodrová, B
1995-05-01
Pectinolytic enzymes of four rumen fungi have been described. Three fungal species were monocentric Neocallimastix spp. H15, JL3 and OC2, and one isolate was a polycentric strain of Orpinomyces joyonii, A4. They differed in degree of pectin degradation and utilization. Only the strain Neocallimastix sp. H15 and partially Orpinomyces joyonii A4 were able to utilize pectin to a higher extent. The most important pectinolytic activity in all these isolates represented pectin lyase (EC 4.2.2.10) and polygalacturonase (EC 3.2.1.15). Their specific activities were in the range of 100-900 and 10-450 micrograms galacturonic acid h-1 mg protein-1 for pectin lyase and polygalacturonase, respectively. Polygalacturonase, located mainly in the endocellular fraction, was inhibited by calcium ions and had the main pH optimum at pH 6.0. All strains produced pectate lyase (EC 4.2.2.2). None of the strains tested produced pectinesterase (EC 3.1.1.11).
NASA Technical Reports Server (NTRS)
Pan, Ning
1992-01-01
Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
ERIC Educational Resources Information Center
de Jonge, J. F. M.; And Others
This report examines, country by country, the present state of student access to higher education institutions in the Member States of the European Community (EC), as well as the elements which affect access directly and the elements which can potentially have an effect on access. Volume 1 of the report gives an overview of the methods of data…
NASA Astrophysics Data System (ADS)
Nurdin, Irwan; Satriananda
2017-03-01
Thermal conductivity of maghemite nanofluids were experimentally investigated at different maghemite nanoparticles volume fraction and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. The thermal conductivity ratio of maghemite nanofluids was linearly increase with increasing particle volume fraction and temperature. The highest enhancement of thermal conductivity is 42.5% which is obtained at particle volume fraction 2.5% and temperature 60 °C.
NASA Astrophysics Data System (ADS)
Kim, Eugene; Hopke, Philip K.; Edgerton, Eric S.
Daily integrated PM 2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) composition data including eight individual carbon fractions collected at the Jefferson Street monitoring site in Atlanta were analyzed with positive matrix factorization (PMF). Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. A total of 529 samples and 28 variables were measured between August 1998 and August 2000. PMF identified 11 sources in this study: sulfate-rich secondary aerosol I (50%), on-road diesel emissions (11%), nitrate-rich secondary aerosol (9%), wood smoke (7%), gasoline vehicle (6%), sulfate-rich secondary aerosol II (6%), metal processing (3%), airborne soil (3%), railroad traffic (3%), cement kiln/carbon-rich (2%), and bus maintenance facility/highway traffic (2%). Differences from previous studies using only the traditional OC and EC data (J. Air Waste Manag. Assoc. 53(2003a)731; Atmos Environ. (2003b)) include four traffic-related combustion sources (gasoline vehicle, on-road diesel, railroad, and bus maintenance facility) containing carbon fractions whose abundances were different between the various sources. This study indicates that the temperature resolved fractional carbon data can be utilized to enhance source apportionment study, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and identified source contributions aid the identifications of local point sources.
Phase-field simulations of coherent precipitate morphologies and coarsening kinetics
NASA Astrophysics Data System (ADS)
Vaithyanathan, Venugopalan
2002-09-01
The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)
Hagiwara, A; Hori, M; Yokoyama, K; Nakazawa, M; Ueda, R; Horita, M; Andica, C; Abe, O; Aoki, S
2017-10-01
Myelin and axon volume fractions can now be estimated via MR imaging in vivo, as can the g-ratio, which equals the ratio of the inner to the outer diameter of a nerve fiber. The purpose of this study was to evaluate WM damage in patients with MS via this novel MR imaging technique. Twenty patients with relapsing-remitting MS with a combined total of 149 chronic plaques were analyzed. Myelin volume fraction was calculated based on simultaneous tissue relaxometry. Intracellular and CSF compartment volume fractions were quantified via neurite orientation dispersion and density imaging. Axon volume fraction and g-ratio were calculated by combining these measurements. Myelin and axon volume fractions and g-ratio were measured in plaques, periplaque WM, and normal-appearing WM. All metrics differed significantly across the 3 groups ( P < .001, except P = .027 for g-ratio between periplaque WM and normal-appearing WM). Those in plaques differed most from those in normal-appearing WM. The percentage changes in plaque and periplaque WM metrics relative to normal-appearing WM were significantly larger in absolute value for myelin volume fraction than for axon volume fraction and g-ratio ( P < .001, except P = .033 in periplaque WM relative to normal-appearing WM for comparison between myelin and axon volume fraction). In this in vivo MR imaging study, the myelin of WM was more damaged than axons in plaques and periplaque WM of patients with MS. Myelin and axon volume fractions and g-ratio may potentially be useful for evaluating WM damage in patients with MS. © 2017 by American Journal of Neuroradiology.
Cho, Suengmok; Han, Daeseok; Kim, Seon-Bong; Yoon, Minseok; Yang, Hyejin; Jin, Young-Ho; Jo, Jinho; Yong, Hyeim; Lee, Sang-Hoon; Jeon, You-Jin; Shimizu, Makoto
2012-01-01
Marine plants have been reported to possess various pharmacological properties; however, there have been few reports on their neuropharmacological effects. Terrestrial plants have depressive effects on the central nervous system (CNS) because of their polyphenols which make them effective as anticonvulsants and sleep inducers. We investigated in this study the depressive effects of the polyphenol-rich brown seaweed, Ecklonia cava (EC), on CNS. An EC enzymatic extract (ECEE) showed significant anticonvulsive (>500 mg/kg) and sleep-inducing (>500 mg/kg) effects on the respective mice seizure induced by picrotoxin and on the mice sleep induced by pentobarbital. The phlorotannin-rich fraction (PTRF) from ECEE significantly potentiated the pentobarbital-induced sleep at >50 mg/kg. PTRF had binding activity to the gamma aminobutyric acid type A (GABA(A))-benzodiazepine (BZD) receptors. The sleep-inducing effects of diazepam (DZP, a well-known GABA(A)-BZD agonist), ECEE, and PTRF were completely blocked by flumazenil, a well-known antagonist of GABA(A)-BZD receptors. These results imply that ECEE produced depressive effects on CNS by positive allosteric modulation of its phlorotannins on GABA(A)-BZD receptors like DZP. Our study proposes EC as a candidate for the effective treatment of neuropsychiatric disorders such as anxiety and insomnia.
Cosgrove, Casey M; Cohn, David E; Hampel, Heather; Frankel, Wendy L; Jones, Dan; McElroy, Joseph P; Suarez, Adrian A; Zhao, Weiqiang; Chen, Wei; Salani, Ritu; Copeland, Larry J; O'Malley, David M; Fowler, Jeffrey M; Yilmaz, Ahmet; Chassen, Alexis S; Pearlman, Rachel; Goodfellow, Paul J; Backes, Floor J
2017-09-01
To determine the relationship between mismatch repair (MMR) classification and clinicopathologic features including tumor volume, and explore outcomes by MMR class in a contemporary cohort. Single institution cohort evaluating MMR classification for endometrial cancers (EC). MMR immunohistochemistry (IHC)±microsatellite instability (MSI) testing and reflex MLH1 methylation testing was performed. Tumors with MMR abnormalities by IHC or MSI and MLH1 methylation were classified as epigenetic MMR deficiency while those without MLH1 methylation were classified as probable MMR mutations. Clinicopathologic characteristics were analyzed. 466 endometrial cancers were classified; 75% as MMR proficient, 20% epigenetic MMR defects, and 5% as probable MMR mutations. Epigenetic MMR defects were associated with advanced stage, higher grade, presence of lymphovascular space invasion, and older age. MMR class was significantly associated with tumor volume, an association not previously reported. The epigenetic MMR defect tumors median volume was 10,220mm 3 compared to 3321mm 3 and 2,846mm 3 , for MMR proficient and probable MMR mutations respectively (P<0.0001). Higher tumor volume was associated with lymph node involvement. Endometrioid EC cases with epigenetic MMR defects had significantly reduced recurrence-free survival (RFS). Among advanced stage (III/IV) endometrioid EC the epigenetic MMR defect group was more likely to recur compared to the MMR proficient group (47.7% vs 3.4%) despite receiving similar adjuvant therapy. In contrast, there was no difference in the number of early stage recurrences for the different MMR classes. MMR testing that includes MLH1 methylation analysis defines a subset of tumors that have worse prognostic features and reduced RFS. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandecasteele, Katrien, E-mail: Katrien.Vandecasteele@uzgent.be; Tummers, Philippe; Makar, Amin
2012-10-01
Purpose: To report on toxicity after postoperative intensity-modulated arc therapy (IMAT) for cervical (CC) and endometrial cancer (EC). Methods and Materials: Twenty-four CC and 41 EC patients were treated with postoperative IMAT. If indicated, para-aortic lymph node irradiation (preventive or when affected, PALN) and/or concomitant cisplatin (40 mg/m Superscript-Two , weekly) was administered. The prescribed dose for IMAT was 45 Gy (CC, 25 fractions) and 46 Gy (EC, 23 fractions), followed by a brachytherapeutic boost if possible. Radiation-related toxicity was assessed prospectively. The effect of concomitant cisplatin and PALN irradiation was evaluated. Results: Regarding acute toxicity (n = 65), Grademore » 3 and 2 acute gastrointestinal toxicity was observed in zero and 63% of patients (79% CC, 54% EC), respectively. Grade 3 and 2 acute genitourinary toxicity was observed in 1% and 18% of patients, respectively. Grade 2 (21%) and 3 (12%) hematologic toxicity (n = 41) occurred only in CC patients. Seventeen percent of CC patients and 2% of EC patients experienced Grade 2 fatigue and skin toxicity, respectively. Adding cisplatin led to an increase in Grade >2 nausea (57% vs. 9%; p = 0.01), Grade 2 nocturia (24% vs. 4%; p = 0.03), Grade {>=}2 hematologic toxicity (38% vs. nil, p = 0.003), Grade {>=}2 leukopenia (33% vs. nil, p = 0.009), and a strong trend toward more fatigue (14% vs. 2%; p = 0.05). Para-aortic lymph node irradiation led to an increase of Grade 2 nocturia (31% vs. 4%, p = 0.008) and a strong trend toward more Grade >2 nausea (44% vs. 18%; p = 0.052). Regarding late toxicity (n = 45), no Grade 3 or 4 late toxicity occurred. Grade 2 gastrointestinal toxicity, genitourinary toxicity, and fatigue occurred in 4%, 9%, and 1% of patients. Neither concomitant cisplatin nor PALN irradiation increased late toxicity rates. Conclusions: Postoperative IMAT for EC or CC is associated with low acute and late toxicity. Concomitant chemotherapy and PALN irradiation influences acute but not late toxicity.« less
Polyethylene Glycol Camouflaged Earthworm Hemoglobin.
Jani, Vivek P; Jelvani, Alborz; Moges, Selamawit; Nacharaju, Parimala; Roche, Camille; Dantsker, David; Palmer, Andre; Friedman, Joel M; Cabrales, Pedro
2017-01-01
Nearly 21 million components of blood and whole blood and transfused annually in the United States, while on average only 13.6 million units of blood are donated. As the demand for Red Blood Cells (RBCs) continues to increase due to the aging population, this deficit will be more significant. Despite decades of research to develop hemoglobin (Hb) based oxygen (O2) carriers (HBOCs) as RBC substitutes, there are no products approved for clinical use. Lumbricus terrestris erythrocruorin (LtEc) is the large acellular O2 carrying protein complex found in the earthworm Lumbricus terrestris. LtEc is an extremely stable protein complex, resistant to autoxidation, and capable of transporting O2 to tissue when transfused into mammals. These characteristics render LtEc a promising candidate for the development of the next generation HBOCs. LtEc has a short half-life in circulation, limiting its application as a bridge over days, until blood became available. Conjugation with polyethylene glycol (PEG-LtEc) can extend LtEc circulation time. This study explores PEG-LtEc pharmacokinetics and pharmacodynamics. To study PEG-LtEc pharmacokinetics, hamsters instrumented with the dorsal window chamber were subjected to a 40% exchange transfusion with 10 g/dL PEG-LtEc or LtEc and followed for 48 hours. To study the vascular response of PEG-LtEc, hamsters instrumented with the dorsal window chamber received multiple infusions of 10 g/dL PEG-LtEc or LtEc solution to increase plasma LtEc concentration to 0.5, then 1.0, and 1.5 g/dL, while monitoring the animals' systemic and microcirculatory parameters. Results confirm that PEGylation of LtEc increases its circulation time, extending the half-life to 70 hours, 4 times longer than that of unPEGylated LtEc. However, PEGylation increased the rate of LtEc oxidation in vivo. Vascular analysis verified that PEG-LtEc showed the absence of microvascular vasoconstriction or systemic hypertension. The molecular size of PEG-LtEc did not change the colloid osmotic pressure or blood volume expansion capacity compared to LtEc, due to LtEc's already large molecular size. Taken together, these results further encourage the development of PEG-LtEc as an O2 carrying therapeutic.
Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng
2013-01-01
Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.
Exposure of Trucking Company Workers to Particulate Matter during the Winter
Lee, Byeong-Kyu; Smith, Thomas J.; Garshick, Eric; Natkin, Jonathan; Reaser, Paul; Lane, Kevin; Lee, Haengah Kim
2006-01-01
This study analyzed the workplace area concentrations and the personal exposure concentrations to fine particulate (PM2.5), elemental carbon (EC), and organic carbon (OC) measured during the winter period in trucking companies. The averaged personal exposure concentrations at breathing zones of workers are much greater than those of the microenvironment concentrations. The highest difference between the area (microenvironment) and personal exposure concentrations was in the PM2.5 concentrations followed by the OC concentrations. The area concentrations of PM2.5, EC, and OC at a large terminal were higher than those at a small one. The highest area concentrations of PM2.5, EC, and OC were observed in the shop areas followed by pick-up and delivery (P&D) areas. The area concentrations and personal exposure to PM2.5, EC, and OC in the shop and P&D areas which are highly affected by diesel engine exhaust emissions were much higher than those in the docks which are significantly affected by liquefied petroleum gas (LPG) engine exhaust emissions. The highest EC fraction to the total carbon (EC + OC) concentrations was observed in the shops, while the lowest one was identified in the offices. The personal exposure of the smoking workers to PM2.5 and OC was much higher than that of the non-smoking workers. However, the smoking might not significantly contribute to the personal exposure to EC. There were significant correlations between the PM2.5 and OC concentrations in both the area and personal exposure concentrations. However, significant correlations between the PM2.5 and EC concentrations and between the OC and EC concentrations were not identified. PMID:15913707
Deep multi-spectral ensemble learning for electronic cleansing in dual-energy CT colonography
NASA Astrophysics Data System (ADS)
Tachibana, Rie; Näppi, Janne J.; Hironaka, Toru; Kim, Se Hyung; Yoshida, Hiroyuki
2017-03-01
We developed a novel electronic cleansing (EC) method for dual-energy CT colonography (DE-CTC) based on an ensemble deep convolution neural network (DCNN) and multi-spectral multi-slice image patches. In the method, an ensemble DCNN is used to classify each voxel of a DE-CTC image volume into five classes: luminal air, soft tissue, tagged fecal materials, and partial-volume boundaries between air and tagging and those between soft tissue and tagging. Each DCNN acts as a voxel classifier, where an input image patch centered at the voxel is generated as input to the DCNNs. An image patch has three channels that are mapped from a region-of-interest containing the image plane of the voxel and the two adjacent image planes. Six different types of spectral input image datasets were derived using two dual-energy CT images, two virtual monochromatic images, and two material images. An ensemble DCNN was constructed by use of a meta-classifier that combines the output of multiple DCNNs, each of which was trained with a different type of multi-spectral image patches. The electronically cleansed CTC images were calculated by removal of regions classified as other than soft tissue, followed by a colon surface reconstruction. For pilot evaluation, 359 volumes of interest (VOIs) representing sources of subtraction artifacts observed in current EC schemes were sampled from 30 clinical CTC cases. Preliminary results showed that the ensemble DCNN can yield high accuracy in labeling of the VOIs, indicating that deep learning of multi-spectral EC with multi-slice imaging could accurately remove residual fecal materials from CTC images without generating major EC artifacts.
Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear.
Aatmeeyata; Sharma, Mukesh
2010-09-15
Tire-wear is an important source of PAHs, elemental carbon (EC) and organic carbon (OC). The emissions of these pollutants have been studied in an experimental set-up, simulating a realistic road-tire interaction (summer tire-concrete road). The large particle non-exhaust emissions (LPNE; diameter greater than 10 microm) have been evaluated over 14,500 km run of the tire. An increasing linear trend with cumulative km run was observed for emissions of PAHs and carbon. Amongst PAHs in LPNE, pyrene has been observed to be the highest (30+/-4 mg kg(-1)) followed by benzo[ghi]perylene (17+/-2 mg kg(-1)). Different fractions of EC-OC for tire-wear have been analyzed, and unlike exhaust emissions, EC1 was observed to be 99% of EC whereas more than 70% of the OC was the high temperature carbon (OC3 and OC4). The overall emission factors (mass tire(-1) km(-1)) for PAHs, EC and OC from tire-wear are 378 ng tire(-1) km(-1), 1.46 mg tire(-1) km(-1) and 2.37 mg tire(-1) km(-1) for small cars. Copyright 2010 Elsevier B.V. All rights reserved.
Safavi, Arash; Lai, Sarah; Butterworth, Sonia; Hameed, Morad; Schiller, Dan; Skarsgard, Erik
2012-01-01
Background Identification of attributes of residency training that predict competency would improve surgical education. We hypothesized that case experience during residency would correlate with self-reported competency of recent graduates. Methods Aggregate case log data of residents enrolled in 2 general surgery programs were collected over a 12-month period and stratified into Surgical Council on Resident Education (SCORE) categories. We surveyed recent (< 5 yr) residency graduates on procedural competency. Resident case volumes were correlated with survey responses by SCORE category. Results In all, 75 residents performed 11 715 operations, which were distributed by SCORE category as follows: essential-common (EC) 9935 (84.8%), essential-uncommon (EU) 889 (7.6%) and complex 891 (7.6%). Alimentary tract procedures were the most commonly performed EC (2386, 24%) and EU (504, 56.7%) procedures. The least common EC procedure was plastic surgery (4, 0.04%), and the least common EU procedure was abdomen–spleen (1, 0.1%). The questionnaire response rate was 45%. For EC procedures, self-reported competency was highest in skin and soft tissue, thoracic and head and neck (each 100%) and lowest in vascular–venous (54%), whereas for EU procedures it was highest in abdomen–general (100%) and lowest in vascular–arterial (62%). The correlation between case volume and self-reported competency was poor (R = 0.2 for EC procedures). Conclusion Self-reported competency correlates poorly with operative case experience during residency. Other curriculum factors, including specific rotations and timing, balance between inpatient and outpatient surgical experience and competition for cases, may contribute to procedural competency acquisition during residency. PMID:22854144
Measuring the fraction of pool volume filled with fine sediment
Sue Hilton; Thomas E. Lisle
1993-01-01
The fraction of pool volume filled with fine sediment (usually fine sand to medium gravel) can be a useful index of the sediment supply and substrate habitat of gravel-bed channels. It can be used to evaluate and monitor channel condition and to detect and evaluate sediment sources. This fraction (V*) is the ratio of fine-sediment volume to pool water volume plus fine-...
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2016-12-01
The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
Characterization and Demonstrations of Laser-Induced Incandescence in both Normal and Low-Gravity
NASA Technical Reports Server (NTRS)
VanderWal, Randall L.
1997-01-01
Knowledge of soot volume fraction is important to a wide range of combustion studies in microgravity. Laser-induced incandescence (LII) offers high sensitivity, high temporal and spatial resolution in addition to geometric versatility for real-time determination of soot volume fraction. Implementation of LII into the 2.2 see drop tower at The NASA-Lewis Research Center along with system characterization is described. Absolute soot volume fraction measurements are presented for laminar and turbulent gas-jet flames in microgravity to illustrate the capabilities of LII in microgravity. Comparison between LII radial intensity profiles with soot volume fraction profiles determined through a full-field light extinction technique are also reported validating the accuracy of LII for soot volume fraction measurements in a microgravity environment.
Wang, Deli; Zhao, Zhiqi; Dai, Minhan
2014-02-15
This study examined the Pb content and Pb isotopic composition in a sediment core taken from the East China Sea (ECS) shelf, and it was observed that since 2003 the increasing anthropogenic Pb inputs have impacted as far as the ECS shelf sediments. The ECS shelf sediments were generally characterized with low bulk Pb contents (12.5-15.0 μg/g) and relatively lithogenic Pb isotopic signatures (both HCl-leached and residual fractions). However, elevated Pb records along with lighter Pb isotopic signals have occurred in the post-2003 sediments, as a result of a small but increasing anthropogenic Pb contribution from the heavily human perturbed coastal sediments due to the sharply increasing coal consumption in mainland China since 2003. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina
2014-06-15
Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina
2014-06-01
In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.
Chronotype differences in cortical thickness: grey matter reflects when you go to bed.
Rosenberg, Jessica; Jacobs, Heidi I L; Maximov, Ivan I; Reske, Martina; Shah, N J
2018-06-15
Based on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering "chronotype" as a potentially modulating factor in all kinds of structural brain-imaging experiments.
NASA Astrophysics Data System (ADS)
Lin, Qinhao; Zhang, Guohua; Peng, Long; Bi, Xinhui; Wang, Xinming; Brechtel, Fred J.; Li, Mei; Chen, Duohong; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen
2017-07-01
To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. ), southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC), potassium-rich (K-rich), amine, dust, Pb, Fe, organic carbon (OC), sodium-rich (Na-rich) and Other
. The largest fraction of the total cloud residues was the aged EC type (49.3 %), followed by the K-rich type (33.9 %). Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF) of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5-4.1 %) to the total cloud residues. Higher fraction of nitrate (88-89 %) was found in the dust and Na-rich cloud residues relative to sulfate (41-42 %) and ammonium (15-23 %). Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.
Begam, G Reshma; Vachaspati, C Viswanatha; Ahammed, Y Nazeer; Kumar, K Raghavendra; Reddy, R R; Sharma, S K; Saxena, Mohit; Mandal, T K
2017-01-01
To better understand the sources as well as characterization of regional aerosols at a rural semi-arid region Kadapa (India), size-resolved composition of atmospheric particulate matter (PM) mass concentrations was sampled and analysed. This was carried out by using the Anderson low-pressure impactor for a period of 2 years during March 2013-February 2015. Also, the variations of organic carbon (OC), elemental carbon (EC) and water-soluble inorganic ion components (WSICs) present in total suspended particulate matter (TSPM) were studied over the measurement site. From the statistical analysis, the PM mass concentration showed a higher abundance of coarse mode particles than the fine mode during pre-monsoon season. In contrast, fine mode particles in the PM concentration showed dominance over coarse mode particle contribution during the winter. During the post-monsoon season, the percentage contributions of coarse and fine fractions were equal, whereas during the monsoon, coarse mode fraction was approximately 26 % higher than the fine mode. This distinct feature in the case of fine mode particles during the studied period is mainly attributed to large-scale anthropogenic activities and regional prevailing meteorological conditions. Further, the potential sources of PM have been identified qualitatively by using the ratios of certain ions. A high sulphate (SO 4 ) concentration at the measurement site was observed during the studied period which is caused by the nearby/surrounding mining activity. Carbon fractions (OC and EC) were also analysed from the TSPM, and the results indicated (OC/EC ratio of ~4.2) the formation of a secondary organic aerosol. At last, the cluster backward trajectory analyses were also performed at Kadapa for different seasons to reveal the origin of sources from long-range transport during the study period.
NASA Astrophysics Data System (ADS)
Vassura, Ivano; Venturini, Elisa; Marchetti, Sara; Piazzalunga, Andrea; Bernardi, Elena; Fermo, Paola; Passarini, Fabrizio
2014-01-01
This study aims to characterize PM from the open burning of bonfires as well as detect a series of useful tracer species for source apportionment studies. Total suspended particulate (TSP), PM10 and PM2.5 were collected before, during, and after St. Joseph's Eve (18th of March). On this day, several bonfires are lit throughout the study area. Levoglucosan (Lvg), OC, EC, PAHs, soluble ions, and some metals (Al, Cd, Cu, Ni, and Pb) have been determined in each fraction. Results show that the contamination of the area is similar to what is generally found in suburban areas. The fine fraction makes the highest contribution to PM. This fraction is mainly related to compounds composing the PM secondarily formed, while the coarser fractions are associated with natural matrices. The bonfire event is an important source of particulate. All the combustion markers determined in PM2.5 (EC, OC, PAHs (except for Flu and Pyr), K+, Cl-, and Lvg) register a higher concentration. Lvg/OC ratio confirms higher wood smoke emissions during these days. Both the concentration and the compound profile indicate a different origin of PAHs in the atmosphere. The highest concentration of K+ and OC in TSP confirm the contribution of open fire, as well, to this fraction, which can be ascribable mainly to combustion ash. Nitrates and sulphates also show a higher concentration in the PM10-TSP fraction. Surprisingly, there is also an increase in the concentration of components not usually considered combustion markers, i.e. Pb and Al in PM2.5. This is probably ascribable to their bioaccumulation. In conclusion, Lvg, OC, PAHs, Al, and Pb can be used together as specific markers of bonfires to identify this source of particulate matter.
Njayou, Frédéric Nico; Kouam, Arnaud Fondjo; Simo, Brice Fredy Nemg; Tchana, Angèle Nkouatchoua; Moundipa, Paul Fewou
2016-07-07
Khaya grandifoliola (Meliaceae) and Entada africana (Fabaceae) are traditionally used in Bamun (a western tribe of Cameroon) traditional medicine for the treatment of liver related diseases. In this study, the synergistic hepatoprotective effect of respective active fractions of the plants were investigated against paracetamol-induced toxicity in primary cultures of rat hepatocytes. Paracetamol conferred hepatocyte toxicity, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay, alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT) activities, malondialdehyde (MDA) and glutathione (GSH) content assays. The crude extracts were fractionated by flash chromatography and fractions were tested for hepato-(protective and curative) activities. The most active fractions of both plants were tested individually, and in combination based on their respective half effective concentration (EC50). The methylene chloride/methanol fractions of K. grandifoliola (75:25 v/v) (KgF25) and E. africana (90:10 v/v) (EaF10) were found to be the most hepato-protective with EC50 values of 10.30 ± 1.66 μg/ml and 13.47 ± 2.06 μg/ml respectively, comparable with that of silymarin (13.71 ± 3.87 μg/ml). These fractions and their combination significantly (P <0.05) improved cell viability, inhibited ALT leakage and MDA formation, and restored cellular CAT, SOD activities and GSH content. The combination was more effective in restoring biochemical parameters with coefficients of drugs interaction (CDI) less than 1. These findings demonstrate that the active fractions have synergistic action in the protection of rat hepatocytes against paracetamol-induced damage and suggest that their hepatoprotective properties may be maximized by using them in combination.
NASA Astrophysics Data System (ADS)
Kim, J.; Hwang, G.; Han, J.; Lee, M.; Sim, J.
2008-12-01
The aim of this study is to examine characteristic of long range transported aerosol in the East China Sea. The PM2.5 samples have been collected using RAAS 2.5-300 since June 2004 at Ieodo Ocean Research Station (IORS), which is located in the middle of China and South Korea. The number of total samples is 118 for which inorganic ions, elemental carbon (EC) and organic carbon (OC) were analyzed. Along with aerosol species, ozone and meteorological parameters were measured. From December 2004 to June 2007, The mean PM2.5 concentration was 21.2ug/m3. The average concentrations (mass fractions) of SO42- and NH4+ were 6.74ug/3(32.2%), 1.70ug/m3(14.2%), respectively. EC and OC concentrations for 1 year from June 2006 to June 2007 were 1.1ug/m3, 2.2ug/m3. Organic matter (OM=OC*1.4) and elemental carbon constituted 15.0% and 5.1% of PM2.5 mass, respectively. The average OC/EC ratio was 2.49 and there was a good correlation among EC, OC, and SO42- except for July and August : r= 0.54 (EC and SO42-, 0.45 (OC and SO42-), 0.71 (EC and OC)
NASA Astrophysics Data System (ADS)
Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.
2017-05-01
The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.
NASA Astrophysics Data System (ADS)
Saeedi, Amir Hussein; Akbari, Mohammad; Toghraie, Davood
2018-05-01
In this paper, the nanofluid dynamic viscosity composed of CeO2- Ethylene Glycol is examined within 25-50 °C with 5 °C intervals and at six volume fractions (0.05, 0.1, 0.2, 0.4, 0.8 and 1.2%) experimentally. The nanofluid was exposed to ultrasound waves for various durations to study the effect of this parameter on dynamic viscosity of the fluid. We found that at a constant temperature, nanofluid viscosity increases with increases in the volume fraction of the nanoparticles. Also, at a given volume fraction, nanofluid viscosity decreases when temperature is increased. Maximum increase in nanofluid viscosity compared to the base fluid viscosity occurs at 25 °C and volume fraction of 1.2%. It can be inferred that the obtained mathematical relationship is a suitable predicting model for estimating dynamic viscosity of CeO2- Ethylene Glycol (EG) at different volume fractions and temperatures and its results are consistent to laboratory results in the set volume fraction and temperature ranges.
Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue
Halnes, Geir; Mäki-Marttunen, Tuomo; Keller, Daniel; Pettersen, Klas H.; Andreassen, Ole A.
2016-01-01
Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental recordings. PMID:27820827
Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.
Halnes, Geir; Mäki-Marttunen, Tuomo; Keller, Daniel; Pettersen, Klas H; Andreassen, Ole A; Einevoll, Gaute T
2016-11-01
Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1) the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2) the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i) ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii) The power spectral density (PSD) of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in experimental recordings.
Assessment of road users' elemental carbon personal exposure levels, London, UK
NASA Astrophysics Data System (ADS)
Adams, H. S.; Nieuwenhuijsen, M. J.; Colvile, R. N.; Older, M. J.; Kendall, M.
Little is known about particulate elemental carbon (EC) personal exposure levels, a key component of diesel exhaust, specifically in transport microenvironments. A method utilizing the optical properties of EC particles has been applied to personal exposure measurement filter samples. In a series of field studies carried out in London, UK, during 1999-2000 over 400 fine particle (PM 2.5) personal exposure level measurements were taken for journeys in bicycle, bus, car and underground rail transport microenvironments, along three main fixed routes. The particulate EC contribution to the PM 2.5 personal exposure was assessed indirectly by means of an optical technique and with the development and use of a size fraction specific and site-specific calibration curve. In this first EC personal exposure study of transport users geometric mean exposure levels in the summer field campaign were 11.2 μg m -3 (GSD=2.7) for cyclists, 13.6 μg m -3 (GSD=1.9) for bus passengers and 21.6 μg m -3 (GSD=2.1) for car drivers; corresponding exposure levels in the winter were 16.4 μg m -3 (GSD=1.8), 18.6 μg m -3 (GSD=2.3) and 27.3 μg m -3 (GSD=2.0), respectively. EC/PM 2.5 ratios were approximately 0.5-0.6 for bicycle and bus modes and 0.7-0.8 for the car mode. EC/PM 2.5 ratios for different routes ranged from approximately 0.7 for Route 1 to 0.4 for Route 3. Cyclists had the lowest exposure to EC, and car occupants the highest exposure. A large difference in exposure levels between a central high traffic density route and the other less central routes was observed. Particulate EC was a very significant proportion of the total PM 2.5 personal exposure and EC personal exposure levels were considerably higher than reported fixed site monitor EC concentrations.
A discrete model of Ostwald ripening based on multiple pairwise interactions
NASA Astrophysics Data System (ADS)
Di Nunzio, Paolo Emilio
2018-06-01
A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.
NASA Astrophysics Data System (ADS)
Nurdin, I.; Johan, M. R.; Ang, B. C.
2018-03-01
Thermal conductivity and kinematic viscosity of maghemite nanofluids were experimentally investigated at a small volume fraction of maghemite nanoparticles and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. Results show that the thermal conductivity of maghemite nanofluids linearly increase with increasing particle volume fraction and temperature, while kinematic viscosity increase with increasing particle volume fraction and decrease with increasing temperature. The highest enhancement of thermal conductivity and kinematic viscosity are 18.84% and 13.66% respectively, at particle volume fraction 0.6% and temperature 35.
Predicting Morphology of Polymers Using Mesotek+
2010-02-01
file is then produced for Mesotek+ to reproduce the phase behavior for an experimental system of poly (styrene-b- isoprene ) in the solvent tetradecane...theoretical code 3a and (b) experimental code 3b. .....6 Figure 3. Results from 40/60 volume styrene-b- isoprene + tetradecane using gnuplot: A...styrene volume fraction, B) isoprene volume fraction, and C) tetradecane volume fraction. The color bar to the right of each plot indicates how the
Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter
2010-07-14
Fifty-seven samples have been analyzed with regard to the occurrence of dimeric procyanidins B1-B8 as well as the composition of polymeric procyanidins. Fifty-two samples were found to contain polymeric procyanidins. In most of the samples, (-)-epicatechin was the predominant unit present. In white willow bark (Salix alba), however, large amounts of (+)-catechin (81.0%) were determined by means of phloroglucinolysis. White willow bark has therefore been used for the semisynthetic formation of dimeric procyanidins B3 [(+)-C-4alpha --> 8-(+)-C)], B4 [(+)-C-4alpha --> 8-(-)-EC)], B6 [(+)-C-4alpha --> 6-(+)-C)], and B8 [(+)-C-4alpha --> 6-(-)-EC)]. The reaction mixtures of the semisynthesis were successfully fractionated with high-speed countercurrent chromatography (HSCCC), and dimeric procyanidins B3, B4, B6, and B8 were obtained on a preparative scale.
NASA Astrophysics Data System (ADS)
Mkoma, Stelyus L.; Chi, Xuguang; Maenhaut, Willy
2010-05-01
Atmospheric aerosol samples in PM10 and PM2.5 size fractions were collected in parallel at a rural site in Morogoro during wet season in March and April 2006. All samples were analysed for the particulate matter mass, for organic, elemental, and total carbon (OC, EC, and TC), and for water-soluble OC (WSOC). The average PM10 and PM2.5 mass concentrations and associated standard deviations were 14 ± 13 μg/m 3 and 7.3 ± 4 μg/m 3 respectively. On average, TC accounted for 33% of the PM10 mass and 44% of the PM2.5 mass for the campaign. The average OC/PM percentage ratios were 27% and 33% in PM10 and PM2.5 size fractions respectively and a larger fraction of the OC was water-soluble. The observed low EC/TC mean percentage ratios of 10-14% respectively for PM10 and PM2.5 fractions indicate that the carbonaceous aerosol originates mainly from biogenic aerosols and/or biomass burning. A simple source apportionment approach was used to apportion the OC to biofuel and charcoal burning. On average, 93% of the PM10 OC was attributed to biofuel and 7% to charcoal burning in the 2006 wet season campaign. However, it is suggested that a contribution to the OC at Morogoro could also come from other natural biogenic matter, and/or biomass burning aerosols. The results for the sources of OC at Morogoro should therefore be considered with great caution.
In vitro anti-herpes simplex virus-2 activity of Salvia desoleana Atzei & V. Picci essential oil
Sanna, Cinzia; Cagliero, Cecilia; Ballero, Mauro; Civra, Andrea; Donalisio, Manuela; Bicchi, Carlo; Lembo, David
2017-01-01
Salvia desoleana Atzei & V. Picci is an indigenous species in Sardinia island used in folk medicine to treat menstrual, digestive and central nervous system diseases. Nowadays, it is widely cultivated for the pleasant smell of its essential oil (EO), whose antimicrobial and antifungal activities have already been screened. This study evaluated the in vitro anti-Herpes Simplex Virus-2 (HSV-2) activity of S. desoleana EO, fractions and main components: linalyl acetate, alpha terpinyl acetate, and germacrene D. Phytochemical composition of S. desoleana EO was studied by GC-FID/MS analysis and the active fraction(s) and/or compounds in S. desoleana EO were identified with a bioassay-guided fractionation procedure through in vitro assays on cell viability and HSV-2 and RSV inhibition. S. desoleana EO inhibits both acyclovir sensitive and acyclovir resistant HSV-2 strains with EC50 values of 23.72 μg/ml for the former and 28.57 μg/ml for the latter. Moreover, a significant suppression of HSV-2 replication was observed with an EC50 value of 33.01 μg/ml (95% CI: 26.26 to 41.49) when the EO was added post-infection. Among the fractions resulting from flash column chromatography on silica gel, the one containing 54% of germacrene D showed a similar spectrum of activity of S. desoleana EO with a stronger suppression in post-infection stage. These results indicated that S. desoleana EO can be of interest to develop new and alternative anti-HSV-2 products active also against acyclovir-resistant HSV-2 strains. PMID:28207861
Code of Federal Regulations, 2012 CFR
2012-07-01
... section 2 of this Appendix; W i for a segregated ballast tank may be taken equal to zero; C i=Volume of a... segregated ballast tank may be taken equal to zero; EC15NO91.180 when b i is equal to or greater than t c, Ki is equal to zero; EC15NO91.181 when h i is equal to or greater than v s, Z i is equal to zero; b i...
Code of Federal Regulations, 2011 CFR
2011-07-01
... section 2 of this Appendix; W i for a segregated ballast tank may be taken equal to zero; C i=Volume of a... segregated ballast tank may be taken equal to zero; EC15NO91.180 when b i is equal to or greater than t c, Ki is equal to zero; EC15NO91.181 when h i is equal to or greater than v s, Z i is equal to zero; b i...
Code of Federal Regulations, 2010 CFR
2010-07-01
... section 2 of this Appendix; W i for a segregated ballast tank may be taken equal to zero; C i=Volume of a... segregated ballast tank may be taken equal to zero; EC15NO91.180 when b i is equal to or greater than t c, Ki is equal to zero; EC15NO91.181 when h i is equal to or greater than v s, Z i is equal to zero; b i...
Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P
1985-06-01
Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)
Tai, Chih-Yin; Joy, Jordan M; Falcone, Paul H; Carson, Laura R; Mosman, Matt M; Straight, Justen L; Oury, Susie L; Mendez, Carlos; Loveridge, Nick J; Kim, Michael P; Moon, Jordan R
2014-05-26
In cases of dehydration exceeding a 2% loss of body weight, athletic performance can be significantly compromised. Carbohydrate and/or electrolyte containing beverages have been effective for rehydration and recovery of performance, yet amino acid containing beverages remain unexamined. Therefore, the purpose of this study is to compare the rehydration capabilities of an electrolyte-carbohydrate (EC), electrolyte-branched chain amino acid (EA), and flavored water (FW) beverages. Twenty men (n = 10; 26.7 ± 4.8 years; 174.3 ± 6.4 cm; 74.2 ± 10.9 kg) and women (n = 10; 27.1 ± 4.7 years; 175.3 ± 7.9 cm; 71.0 ± 6.5 kg) participated in this crossover study. For each trial, subjects were dehydrated, provided one of three random beverages, and monitored for the following three hours. Measurements were collected prior to and immediately after dehydration and 4 hours after dehydration (3 hours after rehydration) (AE = -2.5 ± 0.55%; CE = -2.2 ± 0.43%; FW = -2.5 ± 0.62%). Measurements collected at each time point were urine volume, urine specific gravity, drink volume, and fluid retention. No significant differences (p > 0.05) existed between beverages for urine volume, drink volume, or fluid retention for any time-point. Treatment x time interactions existed for urine specific gravity (USG) (p < 0.05). Post hoc analysis revealed differences occurred between the FW and EA beverages (p = 0.003) and between the EC and EA beverages (p = 0.007) at 4 hours after rehydration. Wherein, EA USG returned to baseline at 4 hours post-dehydration (mean difference from pre to 4 hours post-dehydration = -0.0002; p > 0.05) while both EC (-0.0067) and FW (-0.0051) continued to produce dilute urine and failed to return to baseline at the same time-point (p < 0.05). Because no differences existed for fluid retention, urine or drink volume at any time point, yet USG returned to baseline during the EA trial, an EA supplement may enhance cellular rehydration rate compared to an EC or FW beverage in healthy men and women after acute dehydration of around 2% body mass loss.
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.
NASA Astrophysics Data System (ADS)
Huzaizi, Rahmatina Mohd; Tahir, Syuhada Mohd; Mahbor, Kamisah Mohamad
2017-12-01
Waste cooking oil-based polyol was synthesized using epoxidation and hydroxylation methods. The polyol was combined with 4,4-diphenylmethane diisocyanate to produce polyurethane (PU) to be used as polymer host in solid polymer electrolyte. 30 wt% LiClO4 was added as doping salt and two types of plasticizers were used; ethylene carbonate (PU-EC) and polyethylene glycol (PU-PEG). The SPE films were characterized using Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The highest conductivity achieved was 8.4 x 10-8 S cm-1 upon addition of 10 wt% EC. The XRD results showed a decrease of crystalline peaks in PU-EC and the increase in PU-PEG. DSC results revealed that the films; PU, PU-EC and PU-PEG had glass transition temperatures of 159.7, 106.0 and 179.7 °C, respectively. The results showed that the addition of EC increased the amorphous region and the free volume in the SPE structure, thus resulted in higher ionic conductivity.
Informatics in Radiology: Dual-Energy Electronic Cleansing for Fecal-Tagging CT Colonography
Kim, Se Hyung; Lee, June-Goo; Yoshida, Hiroyuki
2013-01-01
Electronic cleansing (EC) is an emerging technique for the removal of tagged fecal materials at fecal-tagging computed tomographic (CT) colonography. However, existing EC methods may generate various types of artifacts that severely impair the quality of the cleansed CT colonographic images. Dual-energy fecal-tagging CT colonography is regarded as a next-generation imaging modality. EC that makes use of dual-energy fecal-tagging CT colonographic images promises to be effective in reducing cleansing artifacts by means of applying the material decomposition capability of dual-energy CT. The dual-energy index (DEI), which is calculated from the relative change in the attenuation values of a material at two different photon energies, is a reliable and effective indicator for differentiating tagged fecal materials from various types of tissues on fecal-tagging CT colonographic images. A DEI-based dual-energy EC scheme uses the DEI to help differentiate the colonic lumen—including the luminal air, tagged fecal materials, and air-tagging mixture—from the colonic soft-tissue structures, and then segments the entire colonic lumen for cleansing of the tagged fecal materials. As a result, dual-energy EC can help identify partial-volume effects in the air-tagging mixture and inhomogeneous tagging in residual fecal materials, the major causes of EC artifacts. This technique has the potential to significantly improve the quality of EC and promises to provide images of a cleansed colon that are free of the artifacts commonly observed with conventional single-energy EC methods. © RSNA, 2013 PMID:23479680
Solar absorption by elemental and brown carbon determined from spectral observations.
Bahadur, Ranjit; Praveen, Puppala S; Xu, Yangyang; Ramanathan, V
2012-10-23
Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC.
GilPavas, Edison; Arbeláez-Castaño, Paula; Medina, José; Acosta, Diego A
2017-11-01
A combined electrocoagulation (EC) and electrochemical oxidation (EO) industrial textile wastewater treatment potential is evaluated in this work. A fractional factorial design of experiment showed that EC current density, followed by pH, were the most significant factors. Conductivity and number of electrooxidation cells did not affect chemical oxygen demand degradation (DCOD). Aluminum and iron anodes performed similarly as sacrificial anodes. Current density, pH and conductivity were chosen for a Box-Behnken design of experiment to determine optimal conditions to achieve a high DCOD minimizing operating cost (OC). The optimum to achieve a 70% DCOD with an OC of USD 1.47/m 3 was: pH of 4, a conductivity of 3.7 mS/cm and a current density of 4.1 mA/cm 2 . This study also shows the applicability of a combined EC/EO treatment process of a real complex industrial wastewater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Robert
The purpose of this study was to measure the organic carbon (OC) and elemental carbon (EC) fractions of PM2.5 particulate matter at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) sampling site for a 6-month period during the summer of 2013. The site is in a rural location remote from any populated areas, so it would be expected to reflect carbon concentration over long-distance transport patterns. During the same period in 2012, a number of prairie fires in Oklahoma and Texas had produced large plumes of smoke particles, but OC andmore » EC particles had not been quantified. In addition, during the summer months, other wild fires, such as forest fires in the Rocky Mountain states and other areas, can produce carbon aerosols that are transported over long distances. Both of these source types would be expected to contain mixtures of both OC and EC.« less
Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment.
Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino
2018-05-01
Landfill leachates are known for their high and complex composition of organic, inorganic and microbial pollutants. As a result, it is quite challenging to treat these effluents by using only one treatment process. A combining approach is generally required to treat efficiently these wastewaters and comply with the discharge standards. In this present study, electrocoagulation (EC) and biofiltration (BF) processes were sequentially used to treat landfill leachate. EC process has been able to remove 37 ± 2% of the initial total COD. A fractionation of organic compounds showed that EC was particularly efficient to remove insoluble COD and humic acids. In addition, other pollutants such as turbidity, true color, Zn and phosphorus were significantly reduced by EC with 82 ± 2.7%, 60 ± 13%, 95 ± 2.6% and 82 ± 5.5% of removal respectively. The subsequent treatment by BF process led to completely removal of ammonia pollution (>99% of NH 4 removal) and a partial removal of dissolved organic compounds (42 ± 7% of COD removal). The hybrid process EC/BF could form the basis of a process capable of removing organic and inorganic pollutants from many refractory wastewaters (mature landfill leachates, industrial and municipal wastewaters). Copyright © 2018 Elsevier Ltd. All rights reserved.
Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites
NASA Astrophysics Data System (ADS)
Sundar, Udhay
Three-phase piezoelectric bulk composites were fabricated using a mix and cast method. The composites were comprised of lead zirconate titanate (PZT), aluminum (Al) and an epoxy matrix. The volume fraction of the PZT and Al were varied from 0.1 to 0.3 and 0.0 to 0.17, respectively. The influences of three entities on piezoelectric and dielectric properties: inclusion of an electrically conductive filler (Al), poling process (contact and Corona) and Al surface treatment, were observed. The piezoelectric strain coefficient, d33, effective dielectric constant, epsilon r, capacitance, C, and resistivity were measured and compared according to poling process, volume fraction of constituent phases and Al surface treatment. The maximum values of d33 were 3.475 and 1.0 pC/N for Corona and contact poled samples respectively, for samples with volume fractions of 0.40 and 0.13 of PZT and Al (surface treated) respectively. Also, the maximum dielectric constant for the surface treated Al samples was 411 for volume fractions of 0.40 and 0.13 for PZT and Al respectively. The percolation threshold was observed to occur at an Al volume fraction of 0.13. The composites achieved a percolated state for Al volume fractions >0.13 for both contact and corona poled samples. In addition, a comparative time study was conducted to examine the influence of surface treatment processing time of Al particles. The effectiveness of the surface treatment, sample morphology and composition was observed with the aid of SEM and EDS images. These images were correlated with piezoelectric and dielectric properties. PZT-epoxy-aluminum thick films (200 mum) were also fabricated using a two-step spin coat deposition and annealing method. The PZT volume fraction were varied from 0.2, 0.3 and 0.4, wherein the Aluminum volume fraction was varied from 0.1 to 0.17 for each PZT volume fraction, respectively. The two-step process included spin coating the first layer at 500 RPM for 30 seconds, and the second layer at 1000 RPM for 1 minute. The piezoelectric strain coefficients d33 and d31, capacitance and the dielectric constant were measured, and were studied as a function of Aluminum volume fraction.
Ester-Based Electrolytes for Low-Temperature Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar
2005-01-01
Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in five different solvent mixtures of alkyl carbonates have been found to afford improved performance in rechargeable lithium-ion electrochemical cells at temperatures as low as -70 C. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells (NPO-30226), NASA Tech Briefs, Vol. 27, No. 1 (January 2003), page 46. The ingredients of the present solvent mixtures are ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), and ethyl valerate (EV). In terms of volume proportions of these ingredients, the present solvent mixtures are 1EC + 1EMC + 8MB, 1EC + 1EMC + 8EB, 1EC + 1EMC + 8MP, 1EC + 1EMC + 8EV, and 1EC + 9EMC. These electrolytes were placed in Liion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the low-temperature electrical performances of the cells were measured. The cells containing the MB and MP mixtures performed best.
Intra-Urban Variability in Elemental Carbon Deposition to Tree Canopies
NASA Astrophysics Data System (ADS)
Barrett, T. E.; Ponette-González, A.; Rindy, J. E.; Sheesley, R. J.
2017-12-01
Urban areas cover <1% of the earth's land surface, yet they represent globally significant sources of atmospheric elemental carbon (EC). A product of incomplete fossil fuel, biofuel, and biomass combustion, EC is a powerful climate-forcing agent and a significant component of fine particulate matter in urban atmospheres. Thus, understanding the factors that govern EC removal in urban areas could help mitigate climate change, while improving air quality for urban residents. EC particles can be removed from the atmosphere in precipitation (wet and fog deposition) or they can settle directly onto receptor surfaces (dry deposition). Only limited measurements indicate that EC deposition is higher in urban than in rural and remote regions. However, EC deposition likely exhibits considerable intra-urban variability, with tree canopies serving as potentially important sinks for EC on the cityscape. The goal of this research is to quantify spatial variability in total (wet + dry) EC deposition to urban tree canopies in the Dallas-Fort Worth Metroplex. Using a stratified non-random sampling design, 41 oak trees (22 post oak (Quercus stellata) and 19 live oak (Quercus virginiana)) were selected near (<100 m) and far from roads (>100 m) for measurements of throughfall (water that falls from the canopy to the forest floor). Additionally, 16 bulk rainfall samplers were deployed in grassy areas with no canopy cover. Results from one rain event indicate a volume weighted mean concentration of 83 µg EC L-1 in post oak throughfall, 36 µg EC L-1 in live oak throughfall, and 4 µg EC L-1 in bulk rainfall. Total EC deposition to oak tree canopies was 2.0 ± 2.1 (SD) mg m-2 for post oak and 0.7 ± 0.3 mg m-2 for live oak. Bulk rainfall deposition was 0.08 ± 0.1 mg m-2. Our preliminary findings show that trees are effective urban air filters, removing 9-25 times more EC from the atmosphere than rainwater alone. Resolving surface controls on atmospheric EC removal is key to developing and assessing near-term climate and air quality mitigation strategies.
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning material and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of...
Hydrocarbons in particulate samples from wildfire events in central Portugal in summer 2010.
Vicente, Ana; Calvo, Ana; Fernandes, Ana P; Nunes, Teresa; Monteiro, Cristina; Pio, Casimiro; Alves, Célia
2017-03-01
In summer 2010, twenty eight (14 PM 2.5 samples plus 14 samples PM 2.5-10 ) smoke samples were collected during wildfires that occurred in central Portugal. A portable high-volume sampler was used to perform the sampling, on quartz fibre filters of coarse (PM 2.5-10 ) and fine (PM 2.5 ) smoke samples. The carbonaceous content (elemental and organic carbon) of particulate matter was analysed by a thermal-optical technique. Subsequently, the particulate samples were solvent extracted and fractionated by vacuum flash chromatography into three different classes of organic compounds (aliphatics, polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds). The organic speciation was performed by gas chromatography-mass spectrometry (GC-MS). Emissions were dominated by the fine particles, which represented around 92% of the PM 10 . A clear predominance of carbonaceous constituents was observed, with organic to elemental carbon (OC/EC) ratios ranging between 1.69 and 245 in both size fractions. The isoprenoid ketone 6,10,14-trimethyl-2-pentadecanone, a tracer for secondary organic aerosol formation, was one of the dominant constituents in both fine and coarse particles. Retene was the most abundant compound in all samples. Good correlations were obtained between OC and both aliphatic and PAH compounds. Pyrogenic processes, thermal release of biogenic compounds and secondary processing accounted for 97% of the apportioned PM 2.5 levels. Copyright © 2016. Published by Elsevier B.V.
2010-01-01
Background Alpinia katsumadai (AK) extracts and fractions were tested for in vitro antiviral activities against influenza virus type A, specially human A/PR/8/34 (H1N1) and avian A/Chicken/Korea/MS96/96 (H9N2), by means of time-of-addition experiments; pre-treatment, simultaneous treatment, and post treatment. Results In pre-treatment assay, the AK extracts and AK fractions did not show significant antiviral activity. During the simultaneous treatment assay, one AK extract and five AK fractions designated as AK-1 to AK-3, AK-5, AK-10, and AK-11 showed complete inhibition of virus infectivity against A/PR/8/34 (H1N1) and A/Chicken/Korea/MS96/96 (H9N2). The 50% effective inhibitory concentrations (EC50) of these one AK extracts and five AK fractions with exception of the AK-9 were from 0.8 ± 1.4 to 16.4 ± 4.5 μg/mL against A/PR/8/34 (H1N1). The two AK extracts and three AK fractions had EC50 values ranging from <0.39 ± 0.4 to 2.3 ± 3.6 μg/mL against A/Chicken/Korea/MS96/96 (H9N2). By the hemagglutination inhibition (HI) assay, the two AK extracts and five AK fractions completely inhibited viral adsorption onto chicken RBCs at less than 100 μg/mL against both A/PR/8/34 (H1N1) and A/Chicken/Korea/MS96/96 (H9N2). Interestingly, only AK-3 was found with inhibition for both viral attachment and viral replication after showing extended antiviral activity during the post treatment assay and quantitative real-time PCR. Conclusions These results suggest that AK extracts and fractions had strong anti-influenza virus activity that can inhibit viral attachment and/or viral replication, and may be used as viral prophylaxis. PMID:21062499
Sönmez, Mehmet Giray; Göğer, Yunus Emre; Sönmez, Leyla Öztürk; Aydın, Arif; Balasar, Mehmet; Kara, Cengiz
2016-01-01
Blood count parameters of patients referring with erectile dysfunction (ED) were examined in this study and it was investigated whether eosinophil count (EC), platelet count (PC), and mean platelet volume values among the suspected predictive parameters which may play a role in especially penile arteriogenic ED etiopathogenesis had a contribution on pathogenesis. Patients referring with ED complaint were evaluated. Depending on the medical story, ED degree was determined by measuring International Index of Erectile Function. Penile Doppler ultrasonography was taken in patients suspected to have vasculogenic ED. According to penile Doppler ultrasonography result, patients with arterial deficiency were included in the penile arteriogenic ED group and the patients with normal results were included in the nonvasculogenic ED group. A total of 36 patients participated in the study from the penile arteriogenic ED group and 32 patients from the nonvasculogenic ED group. Compared with the nonvasculogenic ED group, the penile arteriogenic ED group’s low International Index of Erectile Function score, high EC, mean platelet volume and PC values were detected to be statistically significant (p < .001, p = .021, p = .018, p = .034, respectively). No statistically significant difference was observed among the two groups when age, white blood cells, red blood cells, and hemoglobin values were considered. Pansystolic volume velocities were detected as statistically significantly low compared with the nonvasculogenic ED group in the measurements made in 5th, 10th, 15th, and 20th minutes on the right and left sides in the penile arteriogenic ED group. High MPV value and PC is a significant predictive factor for penile arteriogenic ED and vasculogenic ED and high EC is specifically predictive of arteriogenic ED. PMID:27895254
Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng
2013-01-01
Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method. PMID:24358286
Ahmed, Khalil; Nasir, Muhammad; Fatima, Nasreen; Khan, Khalid M.; Zahra, Durey N.
2014-01-01
This paper presents the comparative results of a current study on unsaturated polyester resin (UPR) matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM). Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities. PMID:26644920
40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?
Code of Federal Regulations, 2011 CFR
2011-07-01
... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...
40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?
Code of Federal Regulations, 2012 CFR
2012-07-01
... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...
40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?
Code of Federal Regulations, 2013 CFR
2013-07-01
... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...
40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?
Code of Federal Regulations, 2010 CFR
2010-07-01
... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...
40 CFR 80.1415 - How are equivalence values assigned to renewable fuel?
Code of Federal Regulations, 2014 CFR
2014-07-01
... renewable fuel that came from renewable biomass, expressed as a fraction, on an energy basis. EC = Energy... renewable fuel? 80.1415 Section 80.1415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1415 How...
Characteristics and sources of carbonaceous aerosols from Shanghai, China
NASA Astrophysics Data System (ADS)
Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.
2013-01-01
An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.
NASA Astrophysics Data System (ADS)
Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi
2016-01-01
Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.
Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C
2007-06-01
Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.
Laser-Induced Incandescence Measurements in Low Gravity
NASA Technical Reports Server (NTRS)
VanderWal, R. L.
1997-01-01
A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.
Quantification of skeletal fraction volume of a soil pit by means of photogrammetry
NASA Astrophysics Data System (ADS)
Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens
2015-04-01
The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.
40 CFR 63.3930 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating... coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction... rather than a record of the volume used. (e) A record of the mass fraction of organic HAP for each...
NASA Astrophysics Data System (ADS)
Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing
2018-03-01
Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.
Long-term aging behaviors in a model soft colloidal system.
Li, Qi; Peng, Xiaoguang; McKenna, Gregory B
2017-02-15
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τ α of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
Park, Chang-Beom; Jang, Jiyi; Kim, Sanghun; Kim, Young Jun
2017-03-01
In freshwater environments, aquatic organisms are generally exposed to mixtures of various chemical substances. In this study, we tested the toxicity of three organic UV-filters (ethylhexyl methoxycinnamate, octocrylene, and avobenzone) to Daphnia magna in order to evaluate the combined toxicity of these substances when in they occur in a mixture. The values of effective concentrations (ECx) for each UV-filter were calculated by concentration-response curves; concentration-combinations of three different UV-filters in a mixture were determined by the fraction of components based on EC 25 values predicted by concentration addition (CA) model. The interaction between the UV-filters were also assessed by model deviation ratio (MDR) using observed and predicted toxicity values obtained from mixture-exposure tests and CA model. The results from this study indicated that observed ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values obtained from mixture-exposure tests were higher than predicted ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values calculated by CA model. MDR values were also less than a factor of 1.0 in a mixtures of three different UV-filters. Based on these results, we suggest for the first time a reduction of toxic effects in the mixtures of three UV-filters, caused by antagonistic action of the components. Our findings from this study will provide important information for hazard or risk assessment of organic UV-filters, when they existed together in the aquatic environment. To better understand the mixture toxicity and the interaction of components in a mixture, further studies for various combinations of mixture components are also required. Copyright © 2016 Elsevier Inc. All rights reserved.
Hydrogeochemistry in the coastal area during construction of geological repository
NASA Astrophysics Data System (ADS)
Kim, Youn-Tae; Hyun, Seung Gyu; Cheong, Jae-Yeol; Woo, Nam C.; Lee, Sangdeok
2018-07-01
A geological repository for low and intermediate radioactive waste (bottom at -130 m a.s.l.) was constructed from 2008 to 2014 in the southeastern coastal area in Korea. This research aimed to evaluate the hydrogeochemistry in this area during the construction period and to determine the characteristics that should be monitored during the operational period. During construction, the groundwater level decreased up to 136 m and the upper groundwater flow in the southeastern area reversed. After the groundwater level dropped below the sea level, the electrical conductivity (EC) in several wells along the coastal line started to increase; 23.2% of the measured water was classified as brackish water and the highest EC observed in groundwater was 18.9 mS/cm, nearly 38% of EC in seawater. The response time of the groundwater chemistry differs depending on the depth, even in wells, because of fracture networks. Among locations that showed drastic changes in EC, only the shallow depth of GM-4 showed a peak pattern in EC, but other locations showed increasing EC patterns or patterns with initial increase and sustained high till the end of the construction period. Based on the Cl/Br ratio, the source of the groundwater salinity was seawater intrusion, and ion exchange played an important role. Compared to Cl concentration, sodium was depleted and calcium was in excess in brackish water; however, the SO4/Cl ratio remained constant at a level similar to seawater. Ca and Fe concentrations showed distinguishable characteristics depending on the location, suggesting differences in geological media. During the operational period, periodical evaluation of the groundwater chemistry in the mixing zone and continuous monitoring of EC patterns and seawater fractions are required.
NASA Astrophysics Data System (ADS)
Chen, Dong; Cui, Hongfei; Zhao, Yu; Yin, Lina; Lu, Yan; Wang, Qingeng
2017-01-01
To analyze the characteristics of regional background carbonaceous aerosols in western Yangtze River Delta (YRD), hourly organic carbon (OC) and elemental carbon (EC) in fine particular matter (PM2.5) were measured with a semi-continuous carbon analyzer at a suburban site in upwind Nanjing from June 2013 to May 2015. Relatively low OC, EC and OC/EC were observed compared to other studies conducted in Nanjing. The reasons include the limited primary emissions around the observation site, the improved emission controls in recent years, and the use of denuder to reduce positive artifact in OC measurement. Resulting from the stable atmosphere conditions and emission variations, the highest concentrations of carbonaceous aerosols were found in both winters, with average OC and EC observed at 11.8 ± 10.0 and 5.9 ± 3.4 μg/m3 for the first one, and 8.1 ± 5 and 4.5 ± 2.4 μg/m3 for the second one, respectively. Compared to 2013, reduced OC and EC were found in summer and autumn 2014, demonstrating the benefits of emission control polices implemented for the Nanjing Youth Olympic, while elevated OC observed in spring 2015 was attributed probably to the increased biomass burning. For the hazy event in winter 2013, the back trajectories of air masses suggested that heavy pollution were from eastern Jiangsu, northern Anhui and Jiangsu, downtown Nanjing, and Shanghai. Secondary aerosol formation played an important role indicated by the larger mass fraction of OC and increased OC/EC in PM2.5 during the heavy pollution period. In the harvest season, biomass burning was estimated to contribute 51% and 16% of OC and EC concentrations, respectively.
Rice evapotranspiration at the field and canopy scales under water-saving irrigation
NASA Astrophysics Data System (ADS)
Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang
2018-04-01
Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p < 0.01) in WSI rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p < 0.05) correlated with R n, air temperature ( T a), and air vapor pressure deficit ( D), and its partial correlation coefficients to R n and T a were slightly greater than D. Thus, R n, T a and D are important variables for understanding the spatial scale effect of rice ET in WSI fields, and for its cross scale conversion.
Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California
NASA Astrophysics Data System (ADS)
Na, Kwangsam; Sawant, Aniket A.; Song, Chen; Cocker, David R.
Elemental carbon (EC), organic carbon (OC) and PM 2.5 mass concentrations were measured from September 2001 through January 2002 in Mira Loma, CA. EC and OC were analyzed using the NIOSH (National Institute of Occupational Safety and Health) 5040 thermal/optical transmittance method. OC concentrations in Mira Loma were found to be higher than those of other urban sites in the South Coast Air Basin (SoCAB), while EC concentrations were comparable to or lower than those of other SoCAB sites. Overall, OC and EC concentrations accounted for 26% and 5% of the total PM 2.5, respectively. OC/EC ratios ranged from 1.6 to 12.8 with an average of 5.2. These values were higher than those observed at other urban sites in the United States by a factor of 2. A stronger correlation between suspended OC and EC concentrations was noted in months with lower photochemical activity (December and January, r=0.82) than in months with greater photochemical activity (September and October, r=0.64). The elevated levels of OC, OC/EC ratios, and the seasonal difference in correlation between OC and EC concentrations were attributed in part to significant secondary organic aerosol formation. The fraction of total organic carbon that was secondary organic carbon (SOC) was estimated using the OC/EC minimum ratio method and Chemical Mass Balance (CMB) modeling. Based on the OC/EC minimum ratio method, the contribution of SOC to the total organic carbon tended to be higher during the months with greater photochemical activity (63%) than those with lower photochemical activity (44%). Based on CMB modeling, SOC contributed to 14% of the total PM 2.5 mass and 57% of the total organic carbon during the study period. Overall, these findings suggest that photochemical activity can appreciably affect total PM 2.5 mass concentrations in Mira Loma, and that measures to control emissions of SOC precursors incorporated as part of a region-wide air quality management plan could lead to a perceptible drop in total PM 2.5 mass concentrations in this area.
Comparison of the triple-point temperatures of {sup 20}Ne, {sup 22}Ne and normal Ne
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, T.; Tamura, O.; Nagao, K.
2013-09-11
At the National Metrology Institute of Japan (NMIJ), the triple points of {sup 20}Ne and {sup 22}Ne were realized using modular sealed cells, Ec3Ne20 and Ec8Ne22, made by the Istituto Nazionale di Ricerca Metrologica (INRiM) in Italy. The difference of the triple-point temperatures of {sup 20}Ne and {sup 22}Ne was estimated by using the sub-range of standard platinum resistance thermometers (SPRTs) calibrated by NMIJ on the International Temperature Scale of 1990 (ITS-90). The melting curves obtained with the Ec3Ne20 and Ec8Ne22 cells show narrow widths (0.1 mK) over a wide range of the inverse of the melted fraction (1/F) frommore » 1/F=1 to 1/F=10. The liquidus point T{sub tp} estimated by the melting curves from F∼0.5 to F∼0.85 using the Ec8Ne22 is 0.146 29 (4) K higher than that using the Ec3Ne20 cell, which is in good agreement with that observed by INRiM using the same cells. After correction of the effect of impurities and other isotopes for Ec3Ne20 and Ec8Ne22 cells, the difference of T{sub tp} between pure {sup 20}Ne and pure {sup 22}Ne is estimated to be 0.146 61 (4) K, which is consistent with the recent results reported elsewhere. The sub-ranges of SPRTs computed by using the triple point of {sup 20}Ne or {sup 22}Ne realized by the Ec3Ne20 cell or the Ec8Ne22 cell in place of the triple point of Ne for the defining fixed point of the ITS-90 are in good agreement with those realized on the basis of the ITS-90 at NMIJ within 0.03 mK, which is much smaller than the non-uniqueness and the sub-range inconsistency of SPRTs.« less
2016-07-01
Predicted variation in (a) hot-spot number density , (b) hot-spot volume fraction, and (c) hot-spot specific surface area for each ensemble with piston speed...packing density , characterized by its effective solid volume fraction φs,0, affects hot-spot statistics for pressure dominated waves corresponding to...distribution in solid volume fraction within each ensemble was nearly Gaussian, and its standard deviation decreased with increasing density . Analysis of
Lamb Wave Assessment of Fiber Volume Fraction in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.
1998-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.
Dhaini, Hassan R; Salameh, Thérèse; Waked, Antoine; Sauvage, Stéphane; Borbon, Agnès; Formenti, Paola; Doussin, Jean-François; Locoge, Nadine; Afif, Charbel
2017-06-01
Health risks posed by ambient air pollutants to the urban Lebanese population have not been well characterized. The aim of this study is to assess cancer risk and mortality burden of non-methane hydrocarbons (NMHCs) and particulates (PM) based on two field-sampling campaigns conducted during summer and winter seasons in Beirut. Seventy NMHCs were analyzed by TD-GC-FID. PM 2.5 elemental carbon (EC) components were examined using a Lab OC-EC aerosol Analyzer, and polycyclic aromatic hydrocarbons were analyzed by GC-MS. The US EPA fraction-based approach was used to assess non-cancer hazard and cancer risk for the hydrocarbon mixture, and the UK Committee on Medical Effects of Air Pollutants (COMEAP) guidelines were followed to determine the PM 2.5 attributable mortality burden. The average cumulative cancer risk exceeded the US EPA acceptable level (10 -6 ) by 40-fold in the summer and 30-fold in the winter. Benzene was found to be the highest contributor to cancer risk (39-43%), followed by 1,3-butadiene (25-29%), both originating from traffic gasoline evaporation and combustion. The EC attributable average mortality fraction was 7.8-10%, while the average attributable number of deaths (AD) and years of life lost (YLL) were found to be 257-327 and 3086-3923, respectively. Our findings provide a baseline for future air monitoring programs, and for interventions aiming at reducing cancer risk in this population.
NASA Astrophysics Data System (ADS)
Ding, Luyi C.; Ke, Fu; Wang, Daniel K. W.; Dann, Tom; Austin, Claire C.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33-98% by mass of the organic compounds identified. PAHs accounted for 1-65% and biomarkers (hopanes and steranes) 1-8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07-1.55 ng m -3), 16 PAHs (0.02-1.83 ng m -3), and biomarkers (0.02-0.18 ng m -3). Daily levels of these organics were 4.89-74.38 ng m -3, 0.27-100.24 ng m -3, 0.14-4.39 ng m -3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source - most likely motor vehicles and space heating.
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
Phytochemical investigations and antioxidant potential of roots of Leea macrophylla (Roxb.).
Mahmud, Zobaer Al; Bachar, Sitesh C; Hasan, Choudhury Mahmood; Emran, Talha Bin; Qais, Nazmul; Uddin, Mir Muhammad Nasir
2017-07-06
Oleanolic acid (NZ-15), 7 α, 28-olean diol (NZ-38) and Stigmasterol (NZ-14) were isolated from the ethanolic extracts of the roots of Leea macrophylla (Family: Leeaceae) by using chromatographic analysis. This is the first report of isolation of these compounds from this plant. Their structures were constructed by spectroscopic analysis and by comparing the data with the published one. Subsequently the ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property. The ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property by DPPH free radical scavenging assay, superoxide anion radical scavenging assay, nitric oxide radical scavenging assay, and reducing power assay. In the DPPH free radical scavenging assay and superoxide radical scavenging assay, the ethyl acetate soluble fraction of ethanolic extract revealed the highest free radical scavenging activity with IC 50 value of 2.65 and 155.62 μg/ml, respectively as compared to standard ascorbic acid (IC 50 value of 5.8 and 99.66 μg/ml). Ethyl acetate fraction also possessed highest reducing power activity with an EC50 value of 15.27 μg/ml compared to ascorbic acid (EC 50 0.91 μg/ml). On the other hand, the carbon tetrachloride fraction exhibited most significant NO scavenging activity with IC 50 value of 277.8 μg/ml that was even higher than that of standard ascorbic acid (IC 50 value 356.04 μg/ml). In addition, the total phenolic contents of these extract and fractions were evaluated using Folin-Ciocalteu reagent and varied from 7.93 to 50.21 mg/g dry weight expressed as gallic acid equivalents (GAE). This study showed that different extracts of roots of L. macrophylla possess potential DPPH, superoxide, and NO free radical scavenging activities. The antioxidant activities of the plant extracts might be due to the presence of oleanolic acid, oleanolic acid derivative 7 α, 28-olean diol and stigmasterol.
Rasip1 regulates vertebrate vascular endothelial junction stability through Epac1-Rap1 signaling
Wilson, Christopher W.; Parker, Leon H.; Hall, Christopher J.; Smyczek, Tanya; Mak, Judy; Crow, Ailey; Posthuma, George; De Mazière, Ann; Sagolla, Meredith; Chalouni, Cecile; Vitorino, Philip; Roose-Girma, Merone; Warming, Søren; Klumperman, Judith; Crosier, Philip S.
2013-01-01
Establishment and stabilization of endothelial tubes with patent lumens is vital during vertebrate development. Ras-interacting protein 1 (RASIP1) has been described as an essential regulator of de novo lumenogenesis through modulation of endothelial cell (EC) adhesion to the extracellular matrix (ECM). Here, we show that in mouse and zebrafish embryos, Rasip1-deficient vessels transition from an angioblast cord to a hollow tube, permit circulation of primitive erythrocytes, but ultimately collapse, leading to hemorrhage and embryonic lethality. Knockdown of RASIP1 does not alter EC-ECM adhesion, but causes cell-cell detachment and increases permeability of EC monolayers in vitro. We also found that endogenous RASIP1 in ECs binds Ras-related protein 1 (RAP1), but not Ras homolog gene family member A or cell division control protein 42 homolog. Using an exchange protein directly activated by cyclic adenosine monophosphate 1 (EPAC1)-RAP1–dependent model of nascent junction formation, we demonstrate that a fraction of the RASIP1 protein pool localizes to cell-cell contacts. Loss of RASIP1 phenocopies loss of RAP1 or EPAC1 in ECs by altering junctional actin organization, localization of the actin-bundling protein nonmuscle myosin heavy chain IIB, and junction remodeling. Our data show that RASIP1 regulates the integrity of newly formed blood vessels as an effector of EPAC1-RAP1 signaling. PMID:23886837
Angell, Robin A; Kullman, Steve; Shrive, Emma; Stephenson, Gladys L; Tindal, Miles
2012-11-01
Ecological tier 1 Canada-wide standards (CWS) for petroleum hydrocarbon (PHC) fraction 2 (F2; >nC10-C16) in soil were derived using ecotoxicological assessment endpoints (effective concentrations [ECs]/lethal concentrations [LCs]/inhibitory concentrations, 25% [IC25s]) with freshly spiked (fresh) fine- and coarse-grained soils. These soil standards might be needlessly conservative when applied to field samples with weathered hydrocarbons. The purpose of the present study was to assess the degradation and toxicity of weathered PHC F2 in a fine-grained soil and to derive direct soil contact values for ecological receptors. Fine-grained reference soils were spiked with distilled F2 and weathered for 183 d. Toxicity tests using plants and invertebrates were conducted with the weathered F2-spiked soils. Endpoint EC/IC25s were calculated and used to derive soil standards for weathered F2 in fine-grained soil protective of ecological receptors exposed via direct soil contact. The values derived for weathered F2 were less restrictive than current ecological tier 1 CWS for F2 in soil. Copyright © 2012 SETAC.
NASA Astrophysics Data System (ADS)
Dusek, Ulrike; Hitzenberger, Regina; Kasper-Giebl, Anne; Kistler, Magdalena; Meijer, Harro A. J.; Szidat, Sönke; Wacker, Lukas; Holzinger, Rupert; Röckmann, Thomas
2017-03-01
We measured the radioactive carbon isotope 14C (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar Observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water-insoluble organic carbon (WIOC), and elemental carbon (EC), we estimated the contribution of major sources to the carbonaceous aerosol. The main source categories were fossil fuel combustion, biomass burning, and other contemporary carbon, which is mainly biogenic secondary organic aerosol material (SOA). A clear seasonal variation is seen in EC from biomass burning (ECbb), with lowest values in summer and highest values in winter, but ECbb is a minor fraction of EC in all seasons. WIOC from contemporary sources is highly correlated with ECbb, indicating that biomass burning is a dominant source of contemporary WIOC. This suggests that most biogenic SOA is water soluble and that water-insoluble carbon stems mainly from primary sources. Seasonal variations in other carbon fractions are less clear and hardly distinguishable from variations related to air mass history. Air masses originating from the ocean sector presumably contain little carbonaceous aerosol from outside the Netherlands, and during these conditions measured carbon concentrations reflect regional sources. In these situations absolute TC concentrations are usually rather low, around 1.5 µg m-3, and ECbb is always very low ( ˜ 0.05 µg m-3), even in winter, indicating that biomass burning is not a strong source of carbonaceous aerosol in the Netherlands. In continental air masses, which usually arrive from the east or south and have spent several days over land, TC concentrations are on average by a factor of 3.5 higher. ECbb increases more strongly than TC to 0.2 µg m-3. Fossil EC and fossil WIOC, which are indicative of primary emissions, show a more moderate increase by a factor of 2.5 on average. An interesting case is fossil water-soluble organic carbon (WSOC, calculated as OC-WIOC), which can be regarded as a proxy for SOA from fossil precursors. Fossil WSOC has low concentrations when regional sources are sampled and increases by more than a factor of 5 in continental air masses. A longer residence time of air masses over land seems to result in increased SOA concentrations from fossil origin.
Potential Impacts of Urban Land Expansion on Asian Outflows of Air Pollutants
NASA Astrophysics Data System (ADS)
Wei, T.; Liu, J.; Tao, S.; Ban-Weiss, G. A.
2016-12-01
We investigate the impacts of urban land expansion over Eastern China (EC) on the export of black carbon (BC), carbon monoxide (CO) and ozone (O3) to the West Pacific during the January, April, July and October of 2009, using WRF/Chem model coupled with the tracers tagging technique and an up-to-date single layer urban canopy scheme updated with the treatment of urban hydrological processes. Our model simulations could reproduce well the vertical profiles of Asian outflows of BC and CO observed during the A-FORCE period (March to April of 2009). Over urbanizing areas, increment in urban land fraction could linearly elevate primary pollutants from the lower boundary layer to higher altitudes, and perturb the thermal, hydrological, and kinetic exchange processes between land surface and the atmosphere aloft through all seasons (such local impacts highest in July but lowest in January). Furthermore, we find robust linear relationships exist between urban land fraction (averaged over EC) and export of BC emitted from EC across meridional planes over the western Pacific (e.g., 140 °E). Specifically, each 10% increase in urban land fraction over EC enhances the eastward mass fluxes of BC by about 5%-10% in January and July, and 10%-20% in April and October, respectively, in the free troposphere, which is the dominant pathway for Asian outflows. Such a linear relationship is relatively weaker for CO and only appears in April and October. The different response patterns between BC and CO arise from their distinct physical and chemical properties. Even with decreased vegetation (and reduced biogenic emissions), the O3 concentrations at the surface and 800 hPa over urbanizing areas both tend to increase. However, no clear trend is observed for the export of O3 over West Pacific for all four months. Urban land expansion facilitates the uplift of local pollutants, but also changes the large-scale circulation pattern (the perturbation cyclone over the downwind Pacific acts to impede the eastward transpacific transport), both playing important roles on the efficiency that Asian emissions are exported. Our finding indicates that the extensive urban land expansion would significantly impact the local climate and air quality, which also have a large impact on long-range transboundary transport.
NASA Astrophysics Data System (ADS)
Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel
2017-06-01
In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
Hetta, Mona H; Owis, Asmaa I; Haddad, Pierre S; Eid, Hoda M
2017-12-01
Eruca sativa Mill. (Brassicaceae), commonly known as rocket salad, is a popular leafy-green vegetable with many health benefits. To evaluate the antidiabetic activities of this plant in major insulin-responsive tissues. Five E. sativa leaf extracts of varying polarity were prepared (aqueous extract, 70% and 95% ethanol extracts, the n-hexane-soluble fraction of the 95% ethanol extract (ES3) and the defatted 95% ethanol extract). Eruca sativa extracts were investigated through a variety of cell-based in vitro bioassays for antidiabetic activities in C2C12 skeletal muscle cells, H4IIE hepatocytes and 3T3-L1 adipocytes. Guided by the results of these bioassays, ES3 was fractionated into the saponifiable (SM) and the unspaonifiable (USM) fractions. Glucose uptake was measured using [ 3 H]-deoxy-glucose, while the effects on hepatic glucose-6-phosphatase (G6Pase) and adipogenesis were assessed using Wako AutoKit Glucose and AdipoRed assays, respectively. ES3 and its SM fraction significantly stimulated glucose uptake with EC 50 values of 8.0 and 5.8 μg/mL, respectively. Both extracts significantly inhibited G6Pase activity (IC 50 values of 4.8 and 9.3 μg/mL, respectively). Moreover, ES3 and SM showed significant adipogenic activities with EC 50 of 4.3 and 6.1 μg/mL, respectively. Fatty acid content of SM was identified by GC-MS. trans-Vaccenic and palmitoleic acids were the major unsaturated fatty acids, while palmitic and azelaic acids were the main saturated fatty acids. These findings indicate that ES3 and its fatty acid-rich fraction exhibit antidiabetic activities in insulin-responsive cell lines and may hence prove useful for the treatment of type 2 diabetes.
Trenfield, Melanie A; van Dam, Joost W; Harford, Andrew J; Parry, David; Streten, Claire; Gibb, Karen; van Dam, Rick A
2016-07-01
Chronic toxicity test methods for assessing the toxicity of contaminants to tropical marine organisms are generally lacking. A 96-h chronic growth rate toxicity test was developed for the larval stage of the tropical dogwhelk, Nassarius dorsatus. Growth rates of N. dorsatus larvae were assessed following exposures to copper (Cu), aluminium (Al), gallium (Ga), and molybdenum (Mo). Exposure to Cu at 28 °C validated the sensitivity of the test method, with 10% (EC10) and 50% (EC50) effect concentrations of 4.2 μg/L and 7.3 μg/L Cu, respectively. The EC10 and EC50 values for Al (<0.45-μm filtered fraction) at 28 °C were 115 μg/L and 185 μg/L, respectively. The toxicity of Cu and Al was also assessed at 24 °C and 31 °C, representing average year-round water temperatures for subtropical and tropical Australian coastal environments. At 24 °C, the growth rate of control larvae was reduced by 52% compared with the growth rate at 28 °C and there was an increase in sensitivity to Cu (EC50 = 4.7 μg/L) but a similar sensitivity to Al (EC50 = 180 μg/L). At 31 °C the control growth rate increased by 35% from that measured at 28 °C and there was reduced sensitivity to both Cu and Al (EC50s = 8.5 μg/L and 642 μg/L, respectively). There was minimal toxicity resulting from Ga (EC50 = 4560 μg/L) and Mo (no effect at ≤7000 μg/L Mo). Environ Toxicol Chem 2016;35:1788-1795. © 2015 SETAC. © 2015 SETAC.
Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika
2014-01-01
Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs. PMID:25162582
NASA Astrophysics Data System (ADS)
Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin
2018-01-01
This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (
NASA Astrophysics Data System (ADS)
Wu, Cheng; Huang, X. H. Hilda; Ng, Wai Man; Griffith, Stephen M.; Zhen Yu, Jian
2016-09-01
Organic carbon (OC) and elemental carbon (EC) are operationally defined by analytical methods. As a result, OC and EC measurements are protocol dependent, leading to uncertainties in their quantification. In this study, more than 1300 Hong Kong samples were analyzed using both National Institute for Occupational Safety and Health (NIOSH) thermal optical transmittance (TOT) and Interagency Monitoring of Protected Visual Environment (IMPROVE) thermal optical reflectance (TOR) protocols to explore the cause of EC disagreement between the two protocols. EC discrepancy mainly (83 %) arises from a difference in peak inert mode temperature, which determines the allocation of OC4NSH, while the rest (17 %) is attributed to a difference in the optical method (transmittance vs. reflectance) applied for the charring correction. Evidence shows that the magnitude of the EC discrepancy is positively correlated with the intensity of the biomass burning signal, whereby biomass burning increases the fraction of OC4NSH and widens the disagreement in the inter-protocol EC determination. It is also found that the EC discrepancy is positively correlated with the abundance of metal oxide in the samples. Two approaches (M1 and M2) that translate NIOSH TOT OC and EC data into IMPROVE TOR OC and EC data are proposed. M1 uses direct relationship between ECNSH_TOT and ECIMP_TOR for reconstruction: M1 : ECIMP_TOR = a × ECNSH_TOT + b; while M2 deconstructs ECIMP_TOR into several terms based on analysis principles and applies regression only on the unknown terms: M2 : ECIMP_TOR = AECNSH + OC4NSH - (a × PCNSH_TOR + b), where AECNSH, apparent EC by the NIOSH protocol, is the carbon that evolves in the He-O2 analysis stage, OC4NSH is the carbon that evolves at the fourth temperature step of the pure helium analysis stage of NIOSH, and PCNSH_TOR is the pyrolyzed carbon as determined by the NIOSH protocol. The implementation of M1 to all urban site data (without considering seasonal specificity) yields the following equation: M1(urban data) : ECIMP_TOR = 2.20 × ECNSH_TOT - 0.05. While both M1 and M2 are acceptable, M2 with site-specific parameters provides the best reconstruction performance. Secondary OC (SOC) estimation using OC and EC by the two protocols is compared. An analysis of the usability of reconstructed ECIMP_TOR and OCIMP_TOR suggests that the reconstructed values are not suitable for SOC estimation due to the poor reconstruction of the OC / EC ratio.
Gong, Guanzhong; Wang, Ruozheng; Guo, Yujie; Zhai, Deyin; Liu, Tonghai; Lu, Jie; Chen, Jinhu; Liu, Chengxin; Yin, Yong
2013-12-20
Lung radiation injury is a critical complication of radiotherapy (RT) for thoracic esophageal carcinoma (EC). Therefore, the goal of this study was to investigate the feasibility and dosimetric effects of reducing the lung tissue irradiation dose during RT for thoracic EC by applying volumetric modulated arc radiotherapy (VMAT) combined with active breathing control (ABC) for moderate deep inspiration breath-hold (mDIBH). Fifteen patients with thoracic EC were randomly selected to undergo two series of computed tomography (CT) simulation scans with ABC used to achieve mDIBH (representing 80% of peak DIBH value) versus free breathing (FB). Gross tumor volumes were contoured on different CT images, and planning target volumes (PTVs) were obtained using different margins. For PTV-FB, intensity-modulated radiotherapy (IMRT) was designed with seven fields, and VMAT included two whole arcs. For PTV-DIBH, VMAT with three 135° arcs was applied, and the corresponding plans were named: IMRT-FB, VMAT-FB, and VMAT-DIBH, respectively. Dosimetric differences between the different plans were compared. The heart volumes decreased by 19.85%, while total lung volume increased by 52.54% in mDIBH, compared to FB (p < 0.05). The mean conformality index values and homogeneity index values for VMAT-DIBH (0.86, 1.07) were slightly worse than those for IMRT-FB (0.90, 1.05) and VMAT-FB (0.90, 1.06) (p > 0.05). Furthermore, compared to IMRT-FB and VMAT-FB, VMAT-DIBH reduced the mean total lung dose by 18.64% and 17.84%, respectively (p < 0.05); moreover, the V5, V10, V20, and V30 values for IMRT-FB and VMAT-FB were reduced by 10.84% and 10.65% (p > 0.05), 12.5% and 20% (p < 0.05), 30.77% and 33.33% (p < 0.05), and 50.33% and 49.15% (p < 0.05), respectively. However, the heart dose-volume indices were similar between VMAT-DIBH and VMAT-FB which were lower than IMRT-FB without being statistically significant (p > 0.05). The monitor units and treatment time of VMAT-DIBH were also the lowest (p < 0.05). VMAT combined with ABC to achieve mDIBH is a feasible approach for RT of thoracic EC. Furthermore, this method has the potential to effectively reduce lung dose in a shorter treatment time and with better targeting accuracy.
2014-01-01
Background In cases of dehydration exceeding a 2% loss of body weight, athletic performance can be significantly compromised. Carbohydrate and/or electrolyte containing beverages have been effective for rehydration and recovery of performance, yet amino acid containing beverages remain unexamined. Therefore, the purpose of this study is to compare the rehydration capabilities of an electrolyte-carbohydrate (EC), electrolyte-branched chain amino acid (EA), and flavored water (FW) beverages. Methods Twenty men (n = 10; 26.7 ± 4.8 years; 174.3 ± 6.4 cm; 74.2 ± 10.9 kg) and women (n = 10; 27.1 ± 4.7 years; 175.3 ± 7.9 cm; 71.0 ± 6.5 kg) participated in this crossover study. For each trial, subjects were dehydrated, provided one of three random beverages, and monitored for the following three hours. Measurements were collected prior to and immediately after dehydration and 4 hours after dehydration (3 hours after rehydration) (AE = −2.5 ± 0.55%; CE = −2.2 ± 0.43%; FW = −2.5 ± 0.62%). Measurements collected at each time point were urine volume, urine specific gravity, drink volume, and fluid retention. Results No significant differences (p > 0.05) existed between beverages for urine volume, drink volume, or fluid retention for any time-point. Treatment x time interactions existed for urine specific gravity (USG) (p < 0.05). Post hoc analysis revealed differences occurred between the FW and EA beverages (p = 0.003) and between the EC and EA beverages (p = 0.007) at 4 hours after rehydration. Wherein, EA USG returned to baseline at 4 hours post-dehydration (mean difference from pre to 4 hours post-dehydration = -0.0002; p > 0.05) while both EC (-0.0067) and FW (-0.0051) continued to produce dilute urine and failed to return to baseline at the same time-point (p < 0.05). Conclusion Because no differences existed for fluid retention, urine or drink volume at any time point, yet USG returned to baseline during the EA trial, an EA supplement may enhance cellular rehydration rate compared to an EC or FW beverage in healthy men and women after acute dehydration of around 2% body mass loss. PMID:24884613
Hydromagnetic flow of a Cu-water nanofluid past a moving wedge with viscous dissipation
NASA Astrophysics Data System (ADS)
M. Salem, A.; Galal, Ismail; Rania, Fathy
2014-04-01
A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter λ, solid volume fraction φ, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.
Paulista, Larissa Oliveira; Presumido, Pedro Henrique; Theodoro, Joseane Debora Peruço; Pinheiro, Alexei Lorenzetti Novaes
2018-05-08
The application of electrocoagulation (EC) and electroflotation (EF) was investigated for the treatment of poultry slaughterhouse wastewater in a bench scale unit cell electrolyzer with different EC-to-EF ratios at current densities of 3, 9, and 15 mA cm -2 . The EC-to-EF ratio was controlled by current reversal using aluminum and graphite electrodes. The electrochemical treatment showed satisfactory removal efficiencies for Al coagulant loads greater than 51.8 mg L -1 . The 4/5 EC to EF ratio (69.1 mg L -1 Al and 32.2 NmL L -1 additional EF gas) and 3/5 (51.8 mg L -1 Al/64 NmL L -1 additional EF gas) presented the best results for the removal of COD (76-85%), color (93-99%), and turbidity (95-99%), with the additional benefit of reducing the electrode consumption and sludge disposal costs proportionally to the EC-to-EF ratio. The effects of the EC-to-EF ratio and the current density on efficiency of the electrochemical treatment for the removal of COD, apparent color, turbidity, TSS, TSD, and NH 3 -N were discussed in the light of the physicochemical and electrochemical processes underlying the removal mechanism for each parameter. In particular, the blow-off mechanism seems to play an important role in the NH 3 -N removal, whereas indirect electrooxidation mechanism accounts for a fraction of the soluble COD removal for the electrodes configuration used in the treatment.
Jwo, Ching-Song; Chang, Ho; Teng, Tun-Ping; Kao, Mu-Jnug; Guo, Yu-Ting
2007-06-01
By using copper oxide nanofluid fabricated by the self-made Submerged Arc Nanofluid Synthesis System (SANSS), this paper measures the thermal conductivity under different volume fractions and different temperatures by thermal properties analyzer, and analyzes the correlation among the thermal conductivity, volume fraction, and temperature of nanofluid. The CuO nanoparticles used in the experiment are needle-like, with a mean particle size of about 30 nm. They can be stably suspended in deionized water for a long time. The experimental results show that under the condition that the temperature is 40 degrees C, when the volume fraction of nanofluid increases from 0.2% to 0.8%, the thermal conductivity increment of the prepared nanofluid towards deionized water can be increased from 14.7% to 38.2%. Under the condition that the volume fraction is 0.8%, as the temperature of nanofluid rises from 5 degrees C to 40 degrees C, the thermal conductivity increment of the prepared nanofluid towards deionized water increases from 5.9% to 38.2%. Besides, the effects of temperature change are greater than the effects of volume fraction on the thermal conductivity of nanofluid. Therefore, when the self-made copper oxide nanofluid is applied to the heat exchange device under medium and high temperature, an optimal radiation effect can be acquired.
Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas.
Farzin, Mostafa; Molls, Michael; Astner, Sabrina; Rondak, Ina-Christine; Oechsner, Markus
2015-12-01
In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (Dmax and Dmean) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs.
Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo
2017-01-01
Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579
Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar; Surampudi, Subbarao
2003-01-01
Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in three different mixtures of alkyl carbonates have been found well suited for use in rechargeable lithium-ion electrochemical cells at low temperatures. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells down to -60 C. This research at earlier stages was reported in numerous previous NASA Tech Briefs articles, the three most recent being "Ethyl Methyl Carbonate as a Cosolvent for Lithium-Ion Cells" (NPO-20605), Vol. 25, Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells No. 6 (June 2001), page 53; "Alkyl Pyrocarbonate Electrolyte Additives for Li-Ion Cells" (NPO-20775), Vol. 26, No. 5 (May 2002), page 37; and "Fluorinated Alkyl Carbonates as Cosolvents in Li-Ion Cells (NPO-21076), Vol. 26, No. 5 (May 2002), page 38. The present solvent mixtures, in terms of volume proportions of their ingredients, are 1 ethylene carbonate (EC) + 1 diethyl carbonate (DEC) + 1 dimethyl carbonate (DMC) + 3 ethyl methyl carbonate (EMC); 3EC + 3DMC + 14EMC; and 1EC + 1DEC + 1DMC + 4EMC. Relative to similar mixtures reported previously, the present mixtures, which contain smaller proportions of EC, have been found to afford better performance in experimental Li-ion cells at temperatures < -20 C.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-11-02
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-01-01
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701
Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris
NASA Astrophysics Data System (ADS)
Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.
2012-02-01
An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.
Rattmann, Yanna D; Cipriani, Thales R; Sassaki, Guilherme L; Iacomini, Marcello; Rieck, Lia; Marques, Maria C A; da Silva-Santos, José E
2006-04-06
This study reveals that an ethanolic supernatant obtained from an aqueous extractive solution prepared from residues of methanolic extracts of ground leaves of Maytenus ilicifolia is able to cause a concentration- and endothelium-dependent relaxation in pre-contract rat aorta rings, with EC(50) of 199.7 (190-210) microg/ml. The non-selective nitric oxide synthase inhibitors l-NAME and l-NMMA abolished this effect, while superoxide dismutase and MnTBAP (a non-enzymatic superoxide dismutase mimetic) enhanced it. Further, relaxation induced by this ethanolic supernatant have been strongly inhibited by the guanylate cyclase inhibitors methylene blue and ODQ, as well as by the potassium channel blockers 4-aminopyridine and tetraethylammonium, but was unchanged by the cyclooxygenase inhibitor indomethacin and the membrane receptor antagonists atropine, HOE-140 and pirilamine. Partition of the ethanolic supernatant between H(2)O and EtOAc generated a fraction several times more potent, able to fully relax endothelium-intact aorta rings with an EC(50) of 4.3 (3.9-4.8) microg/ml. (13)C NMR spectrum of this fraction showed signals typical of catechin. This study reveals that the leaves of M. ilicifolia possess one or more potent substances able to relax endothelium-intact rat aorta rings, an event that appears to involve nitric oxide production, guanylate cyclase activation and potassium channel opening.
NASA Astrophysics Data System (ADS)
Morais, A. P.; Pino, A. V.; Souza, M. N.
2016-08-01
This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.
Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Ribeiro, Sara; Santos, José Francisco; Patinha, Carla; da Silva, Eduardo Ferreira; Soares, Rosário; Duarte, Armando C
2017-04-01
In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM 2.5 ) was sampled for 17 months at an urban location in the Western European Coast. The PM 2.5 samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope ( 87 Sr/ 86 Sr) composition. Organic matter dominates the identifiable urban PM 2.5 mass, followed by secondary inorganic aerosols. The acquired data resulted also in a seasonal overview of the carbonaceous and inorganic aerosol composition, with an important contribution from primary biomass burning and secondary formation processes in colder and warmer periods, respectively. The fossil-related primary EC seems to be continually present throughout the sampling period. The 87 Sr/ 86 Sr ratios were measured on both the labile and residual PM 2.5 fractions as well as on the bulk PM 2.5 samples. Regardless of the air mass origin, the residual fractions are more radiogenic (representative of a natural crustal dust source) than the labile fractions, whose 87 Sr/ 86 Sr ratios are comparable to that of seawater. The 87 Sr/ 86 Sr ratios and the mineralogical composition data further suggest that sea salt and mineral dust are important primary natural sources of fine aerosols throughout the sampling period.
NASA Astrophysics Data System (ADS)
Dillner, A. M.; Takahama, S.
2015-10-01
Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a concentration value based on the nominal IMPROVE sample volume of 32.8 m3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples, providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).
NASA Astrophysics Data System (ADS)
Dillner, A. M.; Takahama, S.
2015-06-01
Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 μg m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples; providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter (OM) estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).
Local structure of percolating gels at very low volume fractions
NASA Astrophysics Data System (ADS)
Griffiths, Samuel; Turci, Francesco; Royall, C. Patrick
2017-01-01
The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical simulations and show that, in the absence of hydrodynamic interactions and for sufficiently strong interactions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the structure of the network of the arrested material we find that, when reducing the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential. Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the fractal dimension, with low interaction strength favouring more chain-like structures.
Dependence of particle volume fraction on sound velocity and attenuation of EPDM composites.
Kim, K S; Lee, K I; Kim, H Y; Yoon, S W; Hong, S H
2007-05-01
The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp's) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.
Severini, Carla; Derossi, Antonio; Fiore, Anna G; De Pilli, Teresa; Alessandrino, Ofelia; Del Mastro, Arcangela
2016-07-01
To improve the quality of espresso coffee, the variables under the control of the barista, such as grinding grade, coffee quantity and pressure applied to the coffee cake, as well as their variance, are of great importance. A nonlinear mixed effect modeling was used to obtain information on the changes in chemical attributes of espresso coffee (EC) as a function of the variability of extraction conditions. During extraction, the changes in volume were well described by a logistic model, whereas the chemical attributes were better fit by a first-order kinetic. The major source of information was contained in the grinding grade, which accounted for 87-96% of the variance of the experimental data. The variability of the grinding produced changes in caffeine content in the range of 80.03 mg and 130.36 mg when using a constant grinding grade of 6.5. The variability in volume and chemical attributes of EC is large. Grinding had the most important effect as the variability in particle size distribution observed for each grinding level had a profound effect on the quality of EC. Standardization of grinding would be of crucial importance for obtaining all espresso coffees with a high quality. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajani, Abdallah A.; Qureshi, Muhammad M.; Kovalchuk, Nataliya
To evaluate the change in volume and movement of the parotid gland measured by serial contrast-enhanced computed tomography scans in patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). A prospective study was performed on 13 patients with head and neck cancer undergoing dose-painted IMRT to 69.96 Gy in 33 fractions. Serial computed tomography scans were performed at baseline, weeks 2, 4, and 6 of radiotherapy (RT), and at 6 weeks post-RT. The parotid volume was contoured at each scan, and the movement of the medial and lateral borders was measured. The patient's body weight was recordedmore » at each corresponding week during RT. Regression analyses were performed to ascertain the rate of change during treatment as a percent change per fraction in parotid volume and distance relative to baseline. The mean parotid volume decreased by 37.3% from baseline to week 6 of RT. The overall rate of change in parotid volume during RT was−1.30% per fraction (−1.67% and−0.91% per fraction in≥31 Gy and<31 Gy mean planned parotid dose groups, respectively, p = 0.0004). The movement of parotid borders was greater in the≥31 Gy mean parotid dose group compared with the<31 Gy group (0.22% per fraction and 0.14% per fraction for the lateral border and 0.19% per fraction and 0.06% per fraction for the medial border, respectively). The median change in body weight was−7.4% (range, 0.75% to−17.5%) during RT. A positive correlation was noted between change in body weight and parotid volume during the course of RT (Spearman correlation coefficient, r = 0.66, p<0.01). Head and neck IMRT results in a volume loss of the parotid gland, which is related to the planned parotid dose, and the patient's weight loss during RT.« less
Change in Seroma Volume During Whole-Breast Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rajiv; Spierer, Marnee; Mutyala, Subhakar
2009-09-01
Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) ormore » standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm{sup 3} (SD, 50.5 cm{sup 3}) and 35.6 cm{sup 3} (SD, 24.8 cm{sup 3}), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.« less
Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting Survival.
Qiu, Lihong; Su, Yingjun; Zhang, Dongliang; Song, Yajuan; Liu, Bei; Yu, Zhou; Guo, Shuzhong; Yi, Chenggang
2016-01-01
The Coleman centrifugation procedure generates fractions with different adipocyte and progenitor cell densities. This study aimed to identify all fractions that are feasible for implantation. Human lipoaspirates were processed by Coleman centrifugation. The centrifugates were divided arbitrarily into upper, middle, and lower layers. Adipocyte viability, morphology, numbers of stromal vascular fraction cells, and adipose-derived mesenchymal stem cells of each layer were determined. The 12-week volume retention of subcutaneously implanted 0.3-ml lipoasperate of each layer was investigated in an athymic mice model. Most damaged adipocytes were located in the upper layers, whereas the intact adipocytes were distributed in the middle and lower layers. A gradient of stromal vascular fraction cell density was formed in the centrifugates. The implant volume retentions of samples from the upper, middle, and lower layers were 33.44 ± 5.9, 55.11 ± 4.4, and 71.2 ± 5.8 percent, respectively. Furthermore, the middle and lower layers contained significantly more adipose-derived stem cells than did the upper layer. The lower layer contains more viable adipocytes and stromal vascular fraction cells leading to the highest implant volume retention, whereas the most impaired cells are distributed in the upper layer, leading to the least volume retention. Although with a lower stromal vascular fraction content, the middle layer has a substantial number of intact adipocytes that are capable of retaining partial adipose tissue volume after implantation, suggesting that the middle layer may be an alternative fat source when large volumes of fat grafts are needed for transplantation.
Intra-fraction motion of larynx radiotherapy
NASA Astrophysics Data System (ADS)
Durmus, Ismail Faruk; Tas, Bora
2018-02-01
In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.
NASA Astrophysics Data System (ADS)
Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.
2014-12-01
The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul
2016-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun
2017-01-01
Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl4)-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H2O in CCl4-intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl4-intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl4-intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro. The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration. PMID:28587348
Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun
2017-06-01
Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl 4 )-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H 2 O in CCl 4 -intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl 4 -intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl 4- intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro . The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-08-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
Subcellular Localization of Rice Leaf Aryl Acylamidase Activity 1
Gaynor, John J.; Still, Cecil C.
1983-01-01
The intracellular localization of aryl acylamidase (aryl-acylamide amidohydrolase, EC 3.5.1.13) in rice (Oryza sativa L. var Starbonnet) leaves was investigated. The enzyme hydrolyzes and detoxifies the herbicide propanil (3,4-dichloropropionanilide) thereby accounting for immunity of the rice plant to herbicidal action. Fractionation of mesophyll protoplasts by differential centrifugation yielded the highest specific activity of amidase in the crude mitochondrial fraction. Further separation of density gradients of the silica sol Percoll also indicated that this enzyme was mitochondrial. By the use of biochemical markers, the purified mitochondrial fraction was shown to be substantially free of contamination from nuclei, chloroplasts, golgi, and plasma membranes. Subfractionation of the purified mitochondria suggests that this enzyme is located on the outer membrane. PMID:16662987
Pharmacokinetic evidence for improved ophthalmic drug delivery by reduction of instilled volume.
Patton, T F
1977-07-01
The bioavailability of topically applied pilocarpine nitrate was studied as a function of instilled volume. As the instilled volume decreased, the fraction of dose absorbed increased. The relationship between fraction absorbed and instilled volume was not direct, but appropriate adjustment of instilled volume and concentration should permit substantial dosage reductions without sacrifice of drug concentration in the eye. The implications of these findings from both a therapeutic and toxicity standpoint are discussed.
Pohl, Juergen; Pech, Oliver; May, Andrea; Manner, Hendrik; Fissler-Eckhoff, Annette; Ell, Christian
2010-11-01
The gold standard for endoscopic surveillance of Barrett's esophagus (BE) includes targeted biopsies (TBs) from abnormalities as well as stepwise four-quadrant biopsies (4QBs) for detection of invisible high-grade intraepithelial neoplasias (HGINs) or early carcinomas (ECs). In a large mixed BE population, we investigated the rate of HGINs/ECs that are macroscopically occult to enhanced visualization with high-resolution endoscopy plus acetic acid chromoendoscopy. From January 2007 to December 2009, 701 consecutive BE patients were enrolled in a prospective study at a tertiary referral center. Of these, 406 patients had a history of HGIN/EC (high-risk group) and 295 patients did not (low-risk group). In 701 patients, 459 TBs and 5,485 4QBs were obtained. Altogether, 92 patients with 132 lesions containing HGINs/ECs were detected. For the diagnosis of HGINs/ECs, patient-related sensitivity and specificity rates of endoscopic imaging with TBs were 96.7 and 66.5%, with a positive and negative predictive value of 30.4 and 99.3%, respectively. In the high-risk group, 4QBs identified three additional patients (3.3%) with macroscopically occult HGINs/ECs. In the low-risk group, no HGINs/ECs were identified with either biopsy approach. Advanced endoscopic imaging identifies the vast majority of BE patients with early neoplasias, and the additive effect of 4QB is minimal. Therefore, in low- and high-risk patients, limiting endoscopic surveillance to guided biopsies is justified in specialized high-volume centers with permanent quality control. However, we do not advocate abandoning 4QB outside this setting.
Matsumura, Noboru; Oguro, Sota; Okuda, Shigeo; Jinzaki, Masahiro; Matsumoto, Morio; Nakamura, Masaya; Nagura, Takeo
2017-10-01
In patients with rotator cuff tears, muscle degeneration is known to be a predictor of irreparable tears and poor outcomes after surgical repair. Fatty infiltration and volume of the whole muscles constituting the rotator cuff were quantitatively assessed using 3-dimensional 2-point Dixon magnetic resonance imaging. Ten shoulders with a partial-thickness tear, 10 shoulders with an isolated supraspinatus tear, and 10 shoulders with a massive tear involving supraspinatus and infraspinatus were compared with 10 control shoulders after matching age and sex. With segmentation of muscle boundaries, the fat fraction value and the volume of the whole rotator cuff muscles were computed. After reliabilities were determined, differences in fat fraction, muscle volume, and fat-free muscle volume were evaluated. Intra-rater and inter-rater reliabilities were regarded as excellent for fat fraction and muscle volume. Tendon rupture adversely increased the fat fraction value of the respective rotator cuff muscle (P < .002). In the massive tear group, muscle volume was significantly decreased in the infraspinatus (P = .035) and increased in the teres minor (P = .039). With subtraction of fat volume, a significant decrease of fat-free volume of the supraspinatus muscle became apparent with a massive tear (P = .003). Three-dimensional measurement could evaluate fatty infiltration and muscular volume with excellent reliabilities. The present study showed that chronic rupture of the tendon adversely increases the fat fraction of the respective muscle and indicates that the residual capacity of the rotator cuff muscles might be overestimated in patients with severe fatty infiltration. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
A tunable electrochromic fabry-perot filter for adaptive optics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea
2006-10-01
The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction ofmore » this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set, the severe absorption associated with the refractive index change suggests that incorporating EC materials into phase correcting spatial light modulators (SLMS) would allow for only negligible phase correction before transmission losses became too severe. However, we would like to emphasize that other EC materials may allow sufficient phase correction with limited absorption, which could make this approach attractive.« less
Effect of ethanol on crystallization of the polymorphs of L-histidine
NASA Astrophysics Data System (ADS)
Wantha, Lek; Punmalee, Neeranuch; Sawaddiphol, Vanida; Flood, Adrian E.
2018-05-01
It is known that the antisolvents used for crystallization can affect the crystallization outcome and may promote the crystallization of a specific polymorph. In this study L-histidine (L-his) is used as a model substance, and ethanol was selected to be an antisolvent. The formation of the polymorphs of L-his in antisolvent crystallization as a function of supersaturation, ethanol volume fraction, and temperature was studied. The induction time for the antisolvent crystallization was also measured. The results showed that the induction time decreases with higher supersaturation and ethanol volume fraction, indicating that the nucleation rate of L-his from antisolvent crystallization (where water was used as the solvent and ethanol as the antisolvent) increases with higher supersaturation, as expected, and ethanol fraction. At all temperatures studied, the pure metastable polymorph B of L-his was obtained initially at higher ethanol volume fraction and supersaturation, while a mixture of the polymorphs A and B was obtained at lower ethanol volume fraction and supersaturation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Hrycushko, B; Jiang, S
2014-06-01
Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less
Effect on the operation properties of DMBR with the addition of GAC
NASA Astrophysics Data System (ADS)
Lin, Jizhi; Zhang, Qian; Hong, Junming
2017-01-01
The membrane bioreactor and dynamic membrane bioreactor were used to examine the effect of granular activated carbon (GAC) on the treatment of synthetic wastewater. After the addition of different volume fractions GAC in the DMBR, the operation parameters, effluent COD, NH4 +-N, NO3 --N, TN concentrations and sludge viscosity of the bioreactor was investigated. The results showed that the addition of GAC could relieve the membrane fouling and improve the removal efficiencies of pollutants in the DMBR. The effluent concentrations of pollutants were linear correlation with the addition of volume fractions of GAC in the bioreactor. The value of R2 of each modulation was almost more than 0.9. The sludge viscosity was almost not affected by the volume fractions of GAC in the bioreactor. The best volume fractions of GAC were 20% in the DMBR.
Yu, Qiang; Reutens, David; O'Brien, Kieran; Vegh, Viktor
2017-02-01
Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Geer, Richard D.
1989-01-01
An electrochemical microbial check valve method (EC-MCV) for controlling the iodine disinfectant in potable water (PW) for NASA's space operations was proposed. The factors affecting the design and performance of the unit were analyzed. This showed that it would be feasible to construct a recyclable unit in a small volume that will operate in either an iodine removal or addition mode. The EC-MCV should remove active iodine species rapidly from PW, but the rapid delivery rates at end-use may make complete removal of excess I(-) difficult under some conditions. Its performace change with AgI buildup needs to be investigated, as this controls the time for recycling the unit. The EC-MCV has advantages over the passive microbial check valve (MCV) method currently in use, as it would allow precise control of the I2 level and would not introduce excess I(-) to the water. The presence of oxygen in the EC-MCV needs to be investigated as it could affect the efficiency of I2 addition and excess I(-) removal.
Balestrini, Kira; Holt, Gregory; Mirsaeidi, Mehdi; Calderon-Candelario, Rafael; Whitney, Philip; Salathe, Matthias
2018-01-01
Background Understanding vaping patterns of electronic cigarette (EC) use is important to understand the real-life exposure to EC vapor. Long term information on vaping topography in relation to tobacco cigarette (TC) smoking cessation success has not been explored. Methods Observational non-blinded study where active TC smokers were asked to replace TC with EC over 4 weeks (replacement phase, RP) followed by exclusive EC use for an additional 12 weeks (maintenance phase, MP). TC use and EC compliance was monitored weekly. Subjects were classified as success or failure whether or not they completed the protocol. Vaping information was stored and downloaded directly from the EC device and averaged per calendar day for analysis. Results From 25 subjects that followed the protocol, sixteen succeeded in completing the RP and 8 the MP (32%). No significant differences in baseline characteristics were noted between subjects in the success and failure groups including markers of nicotine addiction, plasma cotinine levels or smoking history. Success subjects showed significantly longer puff duration (seconds per vape) and total overall vapor exposure (number of vapes x average vape duration or vape-seconds) in both study phases. Furthermore, subjects in the success group continued to increase the number of vapes, device voltage and wattage significantly as they transitioned into the MP. After an initial drop, subjects in the success group were able to regain plasma cotinine levels comparable to their TC use while subjects in the failure group could not. Cotinine levels significantly correlated with the average number of daily vapes and vapes-seconds, but not with other vaping parameters. Conclusion The topography of smokers who adhere to exclusive EC use reflects a progressive and dynamic device adaptation over weeks to maintain baseline cotinine levels. The higher inhaled volume over time should be considered when addressing the potential toxic effects of EC and the variable EC adherence when addressing public health policies regarding their use. PMID:29694428
Guerrero-Cignarella, Andrea; Luna Diaz, Landy V; Balestrini, Kira; Holt, Gregory; Mirsaeidi, Mehdi; Calderon-Candelario, Rafael; Whitney, Philip; Salathe, Matthias; Campos, Michael A
2018-01-01
Understanding vaping patterns of electronic cigarette (EC) use is important to understand the real-life exposure to EC vapor. Long term information on vaping topography in relation to tobacco cigarette (TC) smoking cessation success has not been explored. Observational non-blinded study where active TC smokers were asked to replace TC with EC over 4 weeks (replacement phase, RP) followed by exclusive EC use for an additional 12 weeks (maintenance phase, MP). TC use and EC compliance was monitored weekly. Subjects were classified as success or failure whether or not they completed the protocol. Vaping information was stored and downloaded directly from the EC device and averaged per calendar day for analysis. From 25 subjects that followed the protocol, sixteen succeeded in completing the RP and 8 the MP (32%). No significant differences in baseline characteristics were noted between subjects in the success and failure groups including markers of nicotine addiction, plasma cotinine levels or smoking history. Success subjects showed significantly longer puff duration (seconds per vape) and total overall vapor exposure (number of vapes x average vape duration or vape-seconds) in both study phases. Furthermore, subjects in the success group continued to increase the number of vapes, device voltage and wattage significantly as they transitioned into the MP. After an initial drop, subjects in the success group were able to regain plasma cotinine levels comparable to their TC use while subjects in the failure group could not. Cotinine levels significantly correlated with the average number of daily vapes and vapes-seconds, but not with other vaping parameters. The topography of smokers who adhere to exclusive EC use reflects a progressive and dynamic device adaptation over weeks to maintain baseline cotinine levels. The higher inhaled volume over time should be considered when addressing the potential toxic effects of EC and the variable EC adherence when addressing public health policies regarding their use.
NASA Astrophysics Data System (ADS)
Lalia, Boor Singh; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki
A binary mixture of triethylphosphate (TEP) and ethylene carbonate (EC) has been examined as a new non-flammable additive for ionic liquid-based electrolytes for lithium-ion batteries. The optimized electrolyte composition consists of 0.6 mol dm -3 (=M) LiTFSI in PP13TFSI mixed with TEP and EC in volume ratio of 80:10:10, where TFSI and PP13 denote bis(trifluoromethanesulfonyl)imide and N-methyl- N-propylpiperidinium, respectively. The ionic conductivity of PP13TFSI dissolving 0.4 M LiTFSI was improved from 8.2 × 10 -4 S cm -1 to 3.5 × 10 -3 S cm -1 (at 20 °C) with the addition of TEP and EC. The electrochemical behavior of 0.4 M LiTFSI/PP13TFSI with and without TEP and EC was studied by cyclic voltammetry, which showed no deteriorating effect by the addition of TEP and EC on the electrochemical window of PP13TFSI. The flammability of the electrolyte was tested by a direct flame test. The proposed ionic liquid-based electrolyte revealed significant improvements in the electrochemical charge-discharge characteristics for both graphite negative and LiMn 2O 4 positive electrodes.
Turbulent forced convection of nanofluids downstream an abrupt expansion
NASA Astrophysics Data System (ADS)
Kimouche, Abdelali; Mataoui, Amina
2018-03-01
Turbulent forced convection of Nanofluids through an axisymmetric abrupt expansion is investigated numerically in the present study. The governing equations are solved by ANYS 14.0 CFD code based on the finite volume method by implementing the thermo-physical properties of each nanofluid. All results are analyzed through the evolutions of skin friction coefficient and Nusselt number. For each nanofluid, the effect of both volume fraction and Reynolds number on this type of flow configuration, are examined. An increase on average Nusselt number with the volume fraction and Reynolds number, are highlighted and correlated. Two relationships are proposed. The first one, determines the average Nusselt number versus Reynolds number, volume fraction and the ratio of densities of the solid particles to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, ρ_s/ρ_f) ). The second one varies according Reynolds number, volume fraction and the conductivities ratio of solid particle to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, k_s/k_f) ).
SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
2014-06-01
Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less
Nonghanphithak, Ditthawat; Reechaipichitkul, Wipa; Namwat, Wises; Naranbhai, Vivek; Faksri, Kiatichai
2017-07-01
Current diagnostic tests for tuberculosis (TB) remain limited in their ability to discriminate between active TB (ATB) and latent TB infection (LTBI). Early clearance (EC) of TB by individuals exposed to Mycobacterium tuberculosis is a debated phenomenon for which evidence is lacking. We measured and compared secreted chemokines in the plasma fraction from 48 ATB, 38 LTBI, 162 presumed EC and 39 healthy controls (HC) using the QuantiFERON ® -TB Gold In-Tube assay. Single chemokine markers were limited in their ability to discriminate between ATB and LTBI: IFN-γ showed 16.7% sensitivity; CCL2 showed moderate sensitivity (70.8%) and specificity (74.4%); CXCL10 showed high sensitivity (87.5%) and specificity (78.9%). Compared to IFN-γ alone, IFN-γ combined with CXCL10 significantly improved (p < 0.001) the sensitivity and specificity to discriminate between ATB and HC (97.9% sensitivity and 94.9% specificity) and between ATB and LTBI (89.6% sensitivity and 71.1% specificity). Levels of CCL2 were very significantly lower (p < 0.0001) in EC compared to HC groups and hence CCL2 is a useful marker for EC. This study demonstrated the potential application of profiling using multiple chemokines for differentiating among the various M. tuberculosis infection possibilities. We also present evidence to support the EC phenomenon based on the decrease of CCL2 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barrett, T E; Robinson, E M; Usenko, S; Sheesley, R J
2015-10-06
To quantify the contributions of fossil and biomass sources to the wintertime Arctic aerosol burden source apportionment is reported for elemental (EC) and organic carbon (OC) fractions of six PM10 samples collected during a wintertime (2012-2013) campaign in Barrow, AK. Radiocarbon apportionment of EC indicates that fossil sources contribute an average of 68 ± 9% (0.01-0.07 μg m(-3)) in midwinter decreasing to 49 ± 6% (0.02 μg m(-3)) in late winter. The mean contribution of fossil sources to OC for the campaign was stable at 38 ± 8% (0.04-0.32 μg m(-3)). Samples were also analyzed for organic tracers, including levoglucosan, for use in a chemical mass balance (CMB) source apportionment model. The CMB model was able to apportion 24-53% and 99% of the OC and EC burdens, respectively, during the campaign, with fossil OC contributions ranging from 25 to 74% (0.02-0.09 μg m(-3)) and fossil EC contributions ranging from 73 to 94% (0.03-0.07 μg m(-3)). Back trajectories identified two major wintertime source regions to Barrow: the Russian and North American Arctic. Atmospheric lifetimes of levoglucosan, ranging from 50 to 320 h, revealed variability in wintertime atmospheric processing of this biomass burning tracer. This study allows for unambiguous apportionment of EC to fossil fuel and biomass combustion sources and intercomparison with CMB modeling.
Yin, Y; Liu, T; Zhai, D
2012-06-01
To compare the dosimetric benefits of Rapidarc (RA) combined with deep inspiration breath-hold (DIBH) with those of other standard techniques, including free breathing (FB) during fixed-field intensity modulated radiation therapy (IMRT) and dual arc RA, in the treatment of patients with thoracic esophageal carcinoma (EC). Ten patients with EC underwent computed tomography (CT) scans under 2 respiration conditions: free-breathing (FB) and DIBH. These scans were used to generate 3-dimensional conformal treatment plans. For breath-hold scans, the patients were brought to reproducible respiration levels using active breathing control (ABC) maneuvers. Planning target volumes (PTVs) for FB plans included a 0.5 cm margin for setup plus a 1 cm margin equal to the extent of tumor motion for respiration. PTVs for DIBH plans included a 0.5 cm margin for setup error and a 0.5 cm margin for residual uncertainty in tumor position. Using a dose level of 60 Gy to the PTV, three treatment plans were generated: IMRT-FB, RA-FB and RA-ABC, and the target and normal tissue volumes were compared, as were the dosimetry parameters. On average, the DIBH technique resulted in increased lung volumes compared with FB techniques. There was no significant differences in gross tumor volume between the two breathing states (p > 0.05); but PTV and heart volume were larger for FB than for DIBH (p < 0.05). The overall CI and HI for the RA-ABC plan was slightly inferior to those of the IMRT- FB and RA-FB plans (p < 0.05 each). With DIBH, the heart was partly out of the beam portals and the average mean heart dose was reduced. Compared with conventional FB, RA combined with DIBH significantly reduced cardiac and pulmonary doses without compromising the target coverage and may reduce treatment toxicity, enabling dose escalation in future prospective studies of patients with EC. © 2012 American Association of Physicists in Medicine.
Planar measurements of soot volume fraction and OH in a JP-8 pool fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G.
2009-07-15
The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near themore » base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)« less
Carbonaceous species in PM2.5 at a pair of rural/urban sites in Beijing, 2005-2008
NASA Astrophysics Data System (ADS)
Yang, F.; Huang, L.; Duan, F.; Zhang, W.; He, K.; Ma, Y.; Brook, J. R.; Tan, J.; Zhao, Q.; Cheng, Y.
2011-08-01
One-week integrated PM2.5 samples were collected over four years (2005-2008) at a pair of sites, one rural and one urban site, in the area of Beijing, China. Weekly organic and elemental carbon (OC and EC) concentrations from these samples were measured to investigate their atmospheric concentrations, temporal variation patterns and the factors influencing these aspects. A slightly systematic decrease in annual mean concentration of OC and an opposite trend for EC at both sites was observed. Since OC accounted for about 70 % of total carbon (TC, i.e. OC + EC) the total carbonaceous mass experienced a slight decline on a yearly basis over the study period. Its fraction of PM2.5 mass at the urban site in 2008 was significantly lower than observed 10 years earlier (1999), indicating that the relative importance of carbonaceous species in PM2.5 has decreased. In urban Beijing clear seasonal variations (by factors of 1.35 ~ 3.0) were shown in both OC and EC with higher weekly concentrations and fluctuations in winter and much lower values in summer and spring. The minimum seasonal urban excesses of OC (3.0 μg m-3) and EC (1.3 μg m-3) occurred in the summer of 2008, which were only one-ninth and one-seventh of their corresponding maximum values, respectively. This reduction in the urban-difference, coupled with more positive stable carbon isotope values of EC at the urban site in that summer relative to the preceding summers, supports that the special clean air campaign for the 2008 Summer Olympic Games very likely had noticeable impact on the ambient concentrations of carbonaceous aerosols in the Beijing area, particularly on the local urban scale. Less consistent seasonal patterns in OC and EC, their scattered correlation, and higher mass ratios of OC to EC (OC/EC) at the rural site indicate more complex and variable major sources regarding aerosol formation in the rural area. These emission sources include biomass burning during the harvest seasons, widely used high-polluting family stoves and small boilers for cooking and heating with high OC/EC ratios, and a greater relative quantity of secondary organic aerosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, Vedang, E-mail: vmurthy@actrec.gov.in; Shukla, Pragya; Adurkar, Pranjal
2012-09-01
Purpose: To evaluate whether information from the initial fractions can determine which patients are likely to consistently exceed their planning dose-volume constraints during the course of radiotherapy for prostate cancer. Methods and Materials: Ten patients with high-risk prostate cancer were treated with helical tomotherapy to a dose of 60 Gy in 20 fractions. The prostate, rectum, and bladder were recontoured on their daily megavoltage computed tomography scans and the dose was recalculated. The bladder and rectal volumes (in mL) receiving {>=}100% and {>=}70% of the prescribed dose in each fraction and in the original plans were recorded. A fraction formore » which the difference between planned and delivered was more than 2 mL was considered a volume failure. Similarly if the difference in the planned and delivered maximum dose (D{sub max}) was {>=}1% for the rectum and bladder, the fraction was considered a dose failure. Each patient's first 3 to 5 fractions were analyzed to determine if they correctly identified those patients who would consistently fail (i.e., {>=}20% of fractions) during the course of their radiotherapy. Results: Six parameters were studied; the rectal volume (RV) and bladder volumes (BV) (in mL) received {>=}100% and {>=}70% of the prescribed dose and maximum dose to 2 mL of the rectum and bladder. This was given by RV{sub 100}, RV{sub 70}, BV{sub 100}, BV{sub 70}, RD{sub max}, and BD{sub max}, respectively. When more than 1 of the first 3 fractions exceed the planning constraint as defined, it accurately predicts consistent failures through the course of the treatment. This method is able to correctly identify the consistent failures about 80% (RV{sub 70}, BV{sub 100}, and RV{sub 100}), 90% (BV{sub 70}), and 100% (RD{sub max} and BD{sub max}) of the times. Conclusions: This study demonstrates the feasibility of a method accurately identifying patients who are likely to consistently exceed the planning constraints during the course of their treatment, using information from the first 3 to 5 fractions.« less
Wet scavenging of organic and elemental carbon during summer monsoon and winter monsoon seasons
NASA Astrophysics Data System (ADS)
Sonwani, S.; Kulshrestha, U. C.
2017-12-01
In the era of rapid industrialization and urbanization, atmospheric abundance of carbonaceous aerosols is increasing due to more and more fossil fuel consumption. Increasing levels of carbonaceous content have significant adverse effects on air quality, human health and climate. The present study was carried out at Delhi covering summer monsoon (July -Sept) and winter monsoon (Dec-Jan) seasons as wind and other meteorological factors affect chemical composition of precipitation in different manner. During the study, the rainwater and PM10 aerosols were collected in order to understand the scavenging process of elemental and organic carbon. The Rain water samples were collected on event basis. PM10 samples were collected before rain (PR), during rain (DR) and after rain (AR) during 2016-2017. The collected samples were analysed by the thermal-optical reflectance method using IMPROVE-A protocol. In PM10, the levels of organic carbon (OC) and its fractions (OC1, OC2, OC3 and OC4) were found significantly lower in the AR samples as compared to PR and DR samples. A significant positive correlation was noticed between scavenging ratios of organic carbon and rain intensity indicating an efficient wet removal of OC. In contrast to OCs, the levels of elemental carbon and its fractions (EC1, EC2, and EC3) in AR were not distinct during PR and DR. The elemental carbon showed very week correlation with rain intensity in Delhi region which could be explained on the basis of hydrophobic nature of freshly emitted carbon soot. The detailed results will be discussed during the conference.
Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang
2017-11-15
In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.
Two endogenous substrates for polyphenoloxidase in pericarp tissues of postharvest rambutan fruit.
Sun, Jian; Su, Weiqiang; Peng, Hongxiang; Zhu, Jianhua; Xu, Liangxiong; Bruñá, Nuria Martí
2010-08-01
The catalytic oxidation of phenolic substrates by polyphenoloxidase (PPO) causes pericarp browning of postharvest rambutan fruit. In the present study, PPO and its endogenous substrates were extracted from rambutan pericarp tissues (RPT). The substrate extracts were sequentially partitioned with ethyl acetate and n-butanol. The analysis of total phenolic content showed that the most phenolic compounds were distributed in ethyl acetate fraction. By high-performance liquid chromatography (HPLC), (-)-epicatechin (EC) and proanthocyanidin A2 (PA2) were identified from this fraction. After reacting with rambutan PPO, EC turned brown rapidly within 10 min, indicating that it was a significant endogenous substrate. Although PA2 could also be oxidized by the PPO, it turned brown very slowly. In addition, because EC and PA2 were continually catalyzed into browning products by PPO during storage of the fruit at 4 and 25 degrees C, their contents in RPT gradually declined with the extended storage time. It was further observed that both substrate contents in rambutan fruit storing at 25 degrees C decreased more rapidly than that storing at 4 degrees C, suggesting that low temperature inhibited the catalytic oxidation of substrates so as to slow down pericarp browning. Practical Application: Pericarp browning is a serious problem to storage and transport of harvested rambutan fruit. A generally accepted opinion on the browning mechanism is the oxidation of phenolic substrates by PPO. Ascertaining PPO substrates will effectively help us to control enzymatic reaction by chemical methods so as to delay or even prevent pericarp browning of harvested rambutan fruit.
Chen, Jianzhou; Guo, Hong; Zhai, Tiantian; Chang, Daniel; Chen, Zhijian; Huang, Ruihong; Zhang, Wuzhe; Lin, Kun; Guo, Longjia; Zhou, Mingzhen; Li, Dongsheng; Li, Derui; Chen, Chuangzhen
2016-04-19
The outcomes for patients with esophageal cancer (EC) underwent standard-dose radical radiotherapy were still disappointing. This phase II study investigated the feasibility, safety and efficacy of radiation dose escalation using simultaneous modulated accelerated radiotherapy (SMART) combined with chemotherapy in 60 EC patients. Radiotherapy consisted of 66Gy at 2.2 Gy/fraction to the gross tumor and 54Gy at 1.8 Gy/fraction to subclinical diseases simultaneously. Chemotherapy including cisplatin and 5fluorouracil were administered to all patients during and after radiotherapy. The data showed that the majority of patients (98.3%) completed the whole course of radiotherapy and concurrent chemotherapy. The most common ≥ grade 3 acute toxicities were neutropenia (16.7%), followed by esophagitis (6.7%) and thrombopenia (5.0%). With a median follow-up of 24 months (5-38) for all patients and 30 months (18-38) for those still alive, 11 patients (18.3%) developed ≥ Grade 3 late toxicities and 2 (3.3%) of them died subsequently due to esophageal hemorrhage. The 1- and 2-year local-regional control, distant metastasis-free survival, disease-free survival and overall survival rates were 87.6% and 78.6%, 86.0% and 80.5%, 75.6% and 64.4%, 86.7% and 72.7%, respectively. SMART combined with concurrent chemotherapy is feasible in EC patients with tolerable acute toxicities. They showed a trend of significant improvements in local-regional control and overall survival. Further follow-up is needed to evaluate the late toxicities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugano, Yasutaka; Mizuta, Masahiro; Takao, Seishin
Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of themore » tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.« less
Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, Paul C.; Vesala, T.; Wofsy, S.C.
2007-01-01
The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.
Ontañon, Ornella M; Ghio, Silvina; Marrero Díaz de Villegas, Rubén; Piccinni, Florencia E; Talia, Paola M; Cerutti, María L; Campos, Eleonora
2018-06-06
Biomass hydrolysis constitutes a bottleneck for the biotransformation of lignocellulosic residues into bioethanol and high-value products. The efficient deconstruction of polysaccharides to fermentable sugars requires multiple enzymes acting concertedly. GH43 β-xylosidases are among the most interesting enzymes involved in hemicellulose deconstruction into xylose. In this work, the structural and functional properties of β-xylosidase EcXyl43 from Enterobacter sp. were thoroughly characterized. Molecular modeling suggested a 3D structure formed by a conserved N-terminal catalytic domain linked to an ancillary C-terminal domain. Both domains resulted essential for enzymatic activity, and the role of critical residues, from the catalytic and the ancillary modules, was confirmed by mutagenesis. EcXyl43 presented β-xylosidase activity towards natural and artificial substrates while arabinofuranosidase activity was only detected on nitrophenyl α-L-arabinofuranoside (pNPA). It hydrolyzed xylobiose and purified xylooligosaccharides (XOS), up to degree of polymerization 6, with higher activity towards longer XOS. Low levels of activity on commercial xylan were also observed, mainly on the soluble fraction. The addition of EcXyl43 to GH10 and GH11 endoxylanases increased the release of xylose from xylan and pre-treated wheat straw. Additionally, EcXyl43 exhibited high efficiency and thermal stability under its optimal conditions (40 °C, pH 6.5), with a half-life of 58 h. Therefore, this enzyme could be a suitable additive for hemicellulases in long-term hydrolysis reactions. Because of its moderate inhibition by monomeric sugars but its high inhibition by ethanol, EcXyl43 could be particularly more useful in separate hydrolysis and fermentation (SHF) than in simultaneous saccharification and co-fermentation (SSCF) or consolidated bioprocessing (CBP).
van Genuchten, Case M; Bandaru, Siva R S; Surorova, Elena; Amrose, Susan E; Gadgil, Ashok J; Peña, Jasquelin
2016-06-01
Extended field trials to remove arsenic (As) via Fe(0) electrocoagulation (EC) have demonstrated consistent As removal from groundwater to concentrations below 10 μg L(-1). However, the coulombic performance of long-term EC field operation is lower than that of laboratory-based systems. Although EC electrodes used over prolonged periods show distinct passivation layers, which have been linked to decreased treatment efficiency, the spatial distribution and mineralogy of such surface layers have not been investigated. In this work, we combine wet chemical measurements with sub-micron-scale chemical maps and selected area electron diffraction (SAED) to determine the chemical composition and mineral phase of surface layers formed during long-term Fe(0) EC treatment. We analyzed Fe(0) EC electrodes used for 3.5 months of daily treatment of As-contaminated groundwater in rural West Bengal, India. We found that the several mm thick layer that formed on cathodes and anodes consisted of primarily magnetite, with minor fractions of goethite. Spatially-resolved SAED patterns also revealed small quantities of CaCO3, Mn oxides, and SiO2, the source of which was the groundwater electrolyte. We propose that the formation of the surface layer contributes to decreased treatment performance by preventing the migration of EC-generated Fe(II) to the bulk electrolyte, where As removal occurs. The trapped Fe(II) subsequently increases the surface layer size at the expense of treatment efficiency. Based on these findings, we discuss several simple and affordable methods to prevent the efficiency loss due to the surface layer, including alternating polarity cycles and cleaning the Fe(0) surface mechanically or via electrolyte scouring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)
NASA Astrophysics Data System (ADS)
Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina
2015-09-01
Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.
von Weitzel-Mudersbach, Paul; Andersen, Grethe; Rosenbaum, Sverre
2018-06-07
Patients with symptomatic atherosclerotic carotid artery occlusion (SACAO) have a high risk of a recurrent stroke. Extracranial-intracranial bypass (EC-IC bypass) has been shown not to improve outcome compared with medical treatment alone because long-term prevention of recurrent stroke in operated patients was offset by high perioperative stroke rates. We report our experience with EC-IC bypass operated at an experienced high-volume centre. We conducted a nationwide observational study of EC-IC bypass patients operated in the years 2007-2016 due to SACAO with ongoing clinical symptoms or progression on MRI and severe haemodynamic failure (SHF). Perioperative stroke and death within 30 days after the operation, ipsilateral stroke, bypass patency, transient ischaemic attack, and all-stroke events and deaths during long-term follow-up were registered prospectively. EC-IC bypass was performed in 48 patients with SHF and SACAO. The mean age was 64 (45-83) years. The mean follow-up was 3.6 years. The stroke rate after 30 days was 4.2%. No further ipsilateral strokes occurred during follow-up. Clinical symptoms arrested in all patients. Bypass patency rate was 94%. The perioperative stroke rate in EC-IC bypass operation, performed at a highly experienced centre, was low. During long-term follow-up, no ipsilateral stroke occurred. Consequently, EC-IC-bypass should still be considered for selected patients with SACAO, if operation can be carried out in experienced centres with low perioperative morbidity. © 2018 S. Karger AG, Basel.
Shin, Jae-Won; Jo, Sang-Hee; Kim, Ki-Hyun; Song, Hee-Nam; Kang, Chang-Hee; Bolan, Nanthi; Hong, Jongki
2018-05-04
This study investigated the emission characteristics of glass particles resulting from smoking electronic cigarettes (ECs). First, the most suitable filter for the collection of glass particles was explored by examining the performance (reliability) of various types of filters. A polycarbonate filter was determined as the optimum choice to collect glass particles in EC aerosol. A cartomizer was filled with EC refill solution composed of an equal volume of propylene glycol (PG) and vegetable glycol (VG). To simulate the potential conditions for glass particle emission, EC vaped aerosols were collected at three distinctive puffing intervals: (1) 0-10 puffs, (2) 101-110 puffs, and (3) 201-210 puffs (flow rate of 1 L min -1 , 2 s per puff, and 10 puffs per sample). Glass particles were observed as early as after 100 times puffing from certain products, while after 200 from others. Thus, glass particles were generated by increasing the number of puffs and usage of the EC cartomizer. The analysis of glass particles collected onto polycarbonate filters by scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) confirmed the presence of glass particles in samples collected after puffing 100-200 times. The study demonstrated that the possibility of glass particle emissions from the EC device increased considerably with the increasing number of total puffs. Copyright © 2018 Elsevier Inc. All rights reserved.
Soriano, Brian D; Hoch, Martin; Ithuralde, Alejandro; Geva, Tal; Powell, Andrew J; Kussman, Barry D; Graham, Dionne A; Tworetzky, Wayne; Marx, Gerald R
2008-04-08
Quantitative assessment of ventricular volumes and mass in pediatric patients with single-ventricle physiology would aid clinical management, but it is difficult to obtain with 2-dimensional echocardiography. The purpose of the present study was to compare matrix-array 3-dimensional echocardiography (3DE) measurements of single-ventricle volumes, mass, and ejection fraction with those measured by cardiac magnetic resonance (CMR) in young patients. Twenty-nine patients (median age, 7 months) with a functional single ventricle undergoing CMR under general anesthesia were prospectively enrolled. The 3DE images were acquired at the conclusion of the CMR. Twenty-seven of 29 3DE data sets (93%) were optimal for 3DE assessment. Two blinded and independent observers performed 3DE measurements of volume, mass, and ejection fraction. The 3DE end-diastolic volume correlated well (r=0.96) but was smaller than CMR by 9% (P<0.01), and 3DE ejection fraction was smaller than CMR by 11% (P<0.01). There was no significant difference in measurements of end-systolic volume and mass. The 3DE interobserver differences for mass and volumes were not significant except for ejection fraction (8% difference; P<0.05). Intraobserver differences were not significant. In young pediatric patients with a functional single ventricle, matrix-array 3DE measurements of mass and volumes compare well with those obtained by CMR. 3DE will provide an important modality for the serial analysis of ventricular size and performance in young patients with functional single ventricles.
Chantarudee, Atip; Phuwapraisirisan, Preecha; Kimura, Kiyoshi; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo; Chanchao, Chanpen
2012-04-18
Bee pollen is composed of floral pollen mixed with nectar and bee secretion that is collected by foraging honey (Apis sp.) and stingless bees. It is rich in nutrients, such as sugars, proteins, lipids, vitamins and flavonoids, and has been ascribed antiproliferative, anti-allergenic, anti-angiogenic and free radical scavenging activities. This research aimed at a preliminary investigation of the chemical constituents and free radical scavenging activity in A. mellifera bee pollen. Bee pollen was directly collected from A. mellifera colonies in Nan province, Thailand, in June, 2010, whilst floral corn (Zea mays L.) pollen was collected from the nearby corn fields. The pollen was then sequentially extracted with methanol, dichloromethane (DCM) and hexane, and each crude extract was tested for free radical scavenging activity using the DPPH assay, evaluating the percentage scavenging activity and the effective concentration at 50% (EC50). The most active crude fraction from the bee pollen was then further enriched for bioactive components by silica gel 60 quick and adsorption or Sephadex LH-20 size exclusion chromatography. The purity of all fractions in each step was observed by thin layer chromatography and the bioactivity assessed by the DPPH assay. The chemical structures of the most active fractions were analyzed by nuclear magnetic resonance. The crude DCM extract of both the bee corn pollen and floral corn pollen provided the highest active free radical scavenging activity of the three solvent extracts, but it was significantly (over 28-fold) higher in the bee corn pollen (EC(50) = 7.42 ± 0.12 μg/ml), than the floral corn pollen (EC(50) = 212 ± 13.6% μg/ml). After fractionation to homogeneity, the phenolic hydroquinone and the flavone 7-O-R-apigenin were found as the minor and major bioactive compounds, respectively. Bee corn pollen contained a reasonably diverse array of nutritional components, including biotin (56.7 μg/100 g), invert sugar (19.9 g/100 g), vitamin A and β carotene (1.53 mg/100 g). Bee pollen derived from corn (Z. mays), a non-toxic or edible plant, provided a better free radical scavenging activity than floral corn pollen.
2012-01-01
Background Bee pollen is composed of floral pollen mixed with nectar and bee secretion that is collected by foraging honey (Apis sp.) and stingless bees. It is rich in nutrients, such as sugars, proteins, lipids, vitamins and flavonoids, and has been ascribed antiproliferative, anti-allergenic, anti-angiogenic and free radical scavenging activities. This research aimed at a preliminary investigation of the chemical constituents and free radical scavenging activity in A. mellifera bee pollen. Methods Bee pollen was directly collected from A. mellifera colonies in Nan province, Thailand, in June, 2010, whilst floral corn (Zea mays L.) pollen was collected from the nearby corn fields. The pollen was then sequentially extracted with methanol, dichloromethane (DCM) and hexane, and each crude extract was tested for free radical scavenging activity using the DPPH assay, evaluating the percentage scavenging activity and the effective concentration at 50% (EC50). The most active crude fraction from the bee pollen was then further enriched for bioactive components by silica gel 60 quick and adsorption or Sephadex LH-20 size exclusion chromatography. The purity of all fractions in each step was observed by thin layer chromatography and the bioactivity assessed by the DPPH assay. The chemical structures of the most active fractions were analyzed by nuclear magnetic resonance. Results The crude DCM extract of both the bee corn pollen and floral corn pollen provided the highest active free radical scavenging activity of the three solvent extracts, but it was significantly (over 28-fold) higher in the bee corn pollen (EC50 = 7.42 ± 0.12 μg/ml), than the floral corn pollen (EC50 = 212 ± 13.6% μg/ml). After fractionation to homogeneity, the phenolic hydroquinone and the flavone 7-O-R-apigenin were found as the minor and major bioactive compounds, respectively. Bee corn pollen contained a reasonably diverse array of nutritional components, including biotin (56.7 μg/100 g), invert sugar (19.9 g/100 g), vitamin A and β carotene (1.53 mg/100 g). Conclusions Bee pollen derived from corn (Z. mays), a non-toxic or edible plant, provided a better free radical scavenging activity than floral corn pollen. PMID:22513008
Figueirôa, Evellyne de Oliveira; de Melo, Cristiane Moutinho Lagos; Neves, Juliana Kelle de Andrade Lemoine; da Silva, Nicácio Henrique; Pereira, Valéria Rêgo Alves; Correia, Maria Tereza dos Santos
2013-01-01
An increasing number of biological activities presented by medicinal plants has been investigated over the years, and they are used in the search for new substances with lower side effects. Eugenia uniflora L. and Eugenia malaccensis L. (Myrtaceae) have many folk uses in various countries. This current study was designed to quantify the polyphenols and flavonoids contents and evaluate the immunomodulatory, antioxidant, and cytotoxic potentials of fractions from E. uniflora L. and E. malaccensis L. It was observed that the polyphenol content was higher in ethyl acetate fractions. These fractions have high antioxidant potential. E. malaccensis L. seeds showed the largest DPPH radical scavenger capacity (EC50 = 22.62). The fractions of E. malaccensis L. leaves showed lower antioxidant capacity. The samples did not alter the profile of proinflammatory cytokines and nitric oxide release. The results indicate that species of the family Myrtaceae are rich in compounds with antioxidant capacity, which can help reduce the inflammatory response. PMID:24089599
Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I
2012-01-01
Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.
Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume
2012-12-17
A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-28
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).
Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook
2017-01-01
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm). PMID:28772477
Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System
NASA Technical Reports Server (NTRS)
Moskito, John
1996-01-01
This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.
NASA Astrophysics Data System (ADS)
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of <001> textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the <001> texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
Laser-induced incandescence calibration via gravimetric sampling
NASA Technical Reports Server (NTRS)
Choi, M. Y.; Vander Wal, R. L.; Zhou, Z.
1996-01-01
Absolute calibration of laser-induced incandescence (LII) is demonstrated via comparison of LII signal intensities with gravimetrically determined soot volume fractions. This calibration technique does not rely upon calculated or measured optical characteristics of soot. The variation of the LII signal with gravimetrically measured soot volume fractions ranging from 0.078 to 1.1 ppm established the linearly of the calibration. With the high spatial and temporal resolution capabilities of laser-induced incandescence (LII), the spatial and temporal fluctuations of the soot field within a gravimetric chimney were characterized. Radial uniformity of the soot volume fraction, f(sub v) was demonstrated with sufficient averaging of the single laser-shot LII images of the soot field thus confirming the validity of the calibration method for imaging applications. As illustration, instantaneous soot volume fractions within a Re = 5000 ethylene/air diffusion flame measured via planar LII were established quantitatively with this calibration.
Daniels, Julie L.; Messer, Lynne C.; Poole, Charles; Lobdell, Danelle T.
2015-01-01
Background Particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied. Objective We estimated risk differences (RD) of PTB (reported per 106 pregnancies) associated with change in ambient concentrations of elemental carbon (EC), organic carbon (OC), nitrates (NO3), and sulfates (SO4). Methods From live birth certificates from three states, we constructed a cohort of singleton pregnancies at or beyond 20 weeks of gestation from 2000 through 2005 (n = 1,771,225; 8% PTB). We estimated mean species exposures for each week of gestation from monitor-corrected Community Multi-Scale Air Quality modeling data. RDs and 95% confidence intervals (CIs) for four PTB categories were estimated for each exposure using linear regression, adjusted for maternal race/ethnicity, marital status, education, age, smoking, maximum temperature, ozone, and season of conception. We also adjusted for other species in multi-species models. Results RDs varied by exposure window and outcome period. EC was positively associated with PTB after 27 and before 35 weeks of gestation. For example, for a 0.25-μg/m3 increase in EC exposure during gestational week 9, RD = 96 (95% CI: –20, 213) and RD = 145 (95% CI: –50, 341) for PTB during weeks 28–31 and 32–34, respectively. Associations with OCs were null or negative. RDs for NO3 were elevated with exposure in early weeks of gestation, and null in later weeks. RDs for SO4 exposure were positively associated with PTB, though magnitude varied across gestational weeks. We observed effect measure modification for associations between EC and PTB by race/ethnicity and smoking status. Conclusion EC and SO4 may contribute to associations between PM2.5 and PTB. Associations varied according to the timing of exposure and the timing of PTB. Citation Rappazzo KM, Daniels JL, Messer LC, Poole C, Lobdell DT. 2015. Exposure to elemental carbon, organic carbon, nitrate, and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000–2005). Environ Health Perspect 123:1059–1065; http://dx.doi.org/10.1289/ehp.1408953 PMID:25910280
Patel, Amit R; Fatemi, Omid; Norton, Patrick T; West, J Jason; Helms, Adam S; Kramer, Christopher M; Ferguson, John D
2008-06-01
Left atrial (LA) volume determines prognosis and response to therapy for atrial fibrillation. Integration of electroanatomic maps with three-dimensional images rendered from computed tomography and magnetic resonance imaging (MRI) is used to facilitate atrial fibrillation ablation. The purpose of this study was to measure LA volume changes and regional motion during the cardiac cycle that might affect the accuracy of image integration and to determine their relationship to standard LA volume measurements. MRI was performed in 30 patients with paroxysmal atrial fibrillation. LA time-volume curves were generated and used to divide LA ejection fraction into pumping ejection fraction and conduit ejection fraction and to determine maximum LA volume (LA(max)) and preatrial contraction volume. LA volume was measured using an MRI angiogram and traditional geometric models from echocardiography (area-length model and ellipsoid model). In-plane displacement of the pulmonary veins, anterior left atrium, mitral annulus, and LA appendage was measured. LA(max) was 107 +/- 36 mL and occurred at 42% +/- 5% of the R-R interval. Preatrial contraction volume was 86 +/- 34 mL and occurred at 81% +/- 4% of the R-R interval. LA ejection fraction was 45% +/- 10%, and pumping ejection fraction was 31% +/- 10%. LA volume measurements made from MRI angiogram, area-length model, and ellipsoid model underestimated LA(max) by 21 +/- 25 mL, 16 +/- 26 mL, and 35 +/- 22 mL, respectively. Anterior LA, mitral annulus, and LA appendage were significantly displaced during the cardiac cycle (8.8 +/- 2.0 mm, 13.2 +/- 3.8 mm, and 10.2 +/- 3.4 mm, respectively); the pulmonary veins were not displaced. LA volume changes significantly during the cardiac cycle, and substantial regional variation in LA motion exists. Standard measurements of LA volume significantly underestimate LA(max) compared to the gold standard measure of three-dimensional volumetrics.
Safaei, M. R.; Mahian, O.; Garoosi, F.; Hooman, K.; Karimipour, A.; Kazi, S. N.; Gharehkhani, S.
2014-01-01
This paper addresses erosion prediction in 3-D, 90° elbow for two-phase (solid and liquid) turbulent flow with low volume fraction of copper. For a range of particle sizes from 10 nm to 100 microns and particle volume fractions from 0.00 to 0.04, the simulations were performed for the velocity range of 5–20 m/s. The 3-D governing differential equations were discretized using finite volume method. The influences of size and concentration of micro- and nanoparticles, shear forces, and turbulence on erosion behavior of fluid flow were studied. The model predictions are compared with the earlier studies and a good agreement is found. The results indicate that the erosion rate is directly dependent on particles' size and volume fraction as well as flow velocity. It has been observed that the maximum pressure has direct relationship with the particle volume fraction and velocity but has a reverse relationship with the particle diameter. It also has been noted that there is a threshold velocity as well as a threshold particle size, beyond which significant erosion effects kick in. The average friction factor is independent of the particle size and volume fraction at a given fluid velocity but increases with the increase of inlet velocities. PMID:25379542
Imai, Haruki; Tanaka, Yoji; Nomura, Naoyuki; Doi, Hisashi; Tsutsumi, Yusuke; Ono, Takashi; Hanawa, Takao
2017-02-01
Zr-Ag composites were fabricated to decrease the magnetic susceptibility by compensating for the magnetic susceptibility of their components. The Zr-Ag composites with a different Zr-Ag ratio were swaged, and their magnetic susceptibility, artifact volume, and mechanical properties were evaluated by magnetic balance, three-dimensional (3-D) artifact rendering, and a tensile test, respectively. These properties were correlated with the volume fraction of Ag using the linear rule of mixture. We successfully obtained the swaged Zr-Ag composites up to the reduction ratio of 96% for Zr-4, 16, 36, 64Ag and 86% for Zr-81Ag. However, the volume fraction of Ag after swaging tended to be lower than that before swaging, especially for Ag-rich Zr-Ag composites. The magnetic susceptibility of the composites linearly decreased with the increasing volume fraction of Ag. No artifact could be estimated with the Ag volume fraction in the range from 93.7% to 95.4% in three conditions. Young's modulus, ultimate tensile strength (UTS), and 0.2% yield strength of Zr-Ag composites showed slightly lower values compared to the estimated values using a linear rule of mixture. The decrease in magnetic susceptibility of Zr and Ag by alloying or combining would contribute to the decrease of the Ag fraction, leading to the improvement of mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K
1995-04-01
The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Ku, Jerry C.
1997-01-01
The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.
Habib, Muddasar; Miles, Nicholas J; Hall, Philip
2013-03-01
The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated. Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs. The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tripathi, Jaindra N; Oduor, Richard O; Tripathi, Leena
2015-01-01
Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.
Tripathi, Jaindra N.; Oduor, Richard O.; Tripathi, Leena
2015-01-01
Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties “Cavendish Williams” and “Gros Michel” were developed using multiple buds, whereas ECS of “Sukali Ndiizi” was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000–50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20–70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa. PMID:26635849
Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian
2016-03-15
Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being < 1.5 µm, 1.5-8 µm, 8-35 µm, 35-186 µm, 186-516 µm, > 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material, and then affected the volume fraction of particle size's components and the quality of apparent water. Hydrodynamic conditions mainly had a certain influence on the median particle size, and had no effect on the apparent polluted condition of water.
Surgeons' efficiency change is a major determinant of their productivity change.
Nakata, Yoshinori; Watanabe, Yuichi; Narimatsu, Hiroto; Yoshimura, Tatsuya; Otake, Hiroshi; Sawa, Tomohiro
2016-05-09
Purpose - The sustainability of the Japanese healthcare system is in question because the government has had a huge fiscal debt. Despite an enormous effort to cut the deficit, our healthcare expenditure is increasing every year because of the rapidly aging population. One of the solutions for this problem is to improve the productivity of healthcare. The purpose of this paper is to determine the factors that change surgeons' productivity in one year. Design/methodology/approach - The authors collected data of all surgical procedures performed at Teikyo University Hospital from April 1 through September 30 in 2014 and 2015, and computed the surgeons' Malmquist index (MI), efficiency change (EC) and technical change (TC) using non-radial and non-oriented Malmquist model under the constant returns-to-scale assumptions. The authors then divided the surgeons into two groups; one whose productivity progressed and the other whose productivity regressed. These two groups were compared to identify factors that may influence their MI. Findings - The only significant difference between the two groups was ECs (p < 0.0001). The other factors, such as TC, experience, surgical volume, emergency cases, surgical specialty, academic ranks, medical schools and gender, were not significantly different between the two groups. Originality/value - EC is a major determinant of surgeons' productivity change. The best way to improve surgeons' productivity may be to enhance their efficiency regardless of their surgical volume and personal backgrounds.
Standard filtration practices may significantly distort planktonic microbial diversity estimates.
Padilla, Cory C; Ganesh, Sangita; Gantt, Shelby; Huhman, Alex; Parris, Darren J; Sarode, Neha; Stewart, Frank J
2015-01-01
Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05-0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morais, A. P.; Salgado de Oliveira University, Marechal Deodoro Street, 217 – Centro, Niterói, Rio de Janeiro; Pino, A. V.
This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C andmore » α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.« less
Automated culture system experiments hardware: developing test results and design solutions.
Freddi, M; Covini, M; Tenconi, C; Ricci, C; Caprioli, M; Cotronei, V
2002-07-01
The experiment proposed by Prof. Ricci University of Milan is funded by ASI with Laben as industrial Prime Contractor. ACS-EH (Automated Culture System-Experiment Hardware) will support the multigenerational experiment on weightlessness with rotifers and nematodes within four Experiment Containers (ECs) located inside the European Modular Cultivation System (EMCS) facility..Actually the Phase B is in progress and a concept design solution has been defined. The most challenging aspects for the design of such hardware are, from biological point of view the provision of an environment which permits animal's survival and to maintain desiccated generations separated and from the technical point of view, the miniaturisation of the hardware itself due to the reduce EC provided volume (160mmx60mmx60mm). The miniaturisation will allow a better use of the available EMCS Facility resources (e.g. volume. power etc.) and to fulfil the experiment requirements. ACS-EH, will be ready to fly in the year 2005 on boar the ISS.
Nandigam, Ravi K.; Kroll, Daniel M.
2007-01-01
The extracellular space of the brain is the heterogeneous porous medium formed by the spaces between the brain cells. Diffusion in this interstitial space is the mechanism by which glucose and oxygen are delivered to the brain cells from the vascular system. It is also a medium for the transport of certain informational substances between the cells (called volume transmission), and for drug delivery. This work involves three-dimensional modeling of the extracellular space as void space in close-packed arrays of fluid membrane vesicles. These packings are generated by minimizing the configurational energy using a Monte Carlo procedure. Both regular and random packs of vesicles are considered. A random walk algorithm is then used to compute the geometric tortuosities, and the results are compared with published experimental data. For the random packings, it is found that although the absolute values for the tortuosities differ, the dependence of the tortuosity on pore volume fraction is very similar to that observed in experiment. The tortuosities we measure are larger than those computed in previous studies of packings of convex polytopes, and modeling improvements, which require higher resolution studies and an improved modeling of brain cell shapes and mechanical properties, could help resolve remaining discrepancies between model simulations and experiment. It is also shown that the specular reflection scheme is the appropriate technique for implementing zero-flux boundary conditions in random walk simulations commonly encountered in diffusion problems. PMID:17307830
Nandigam, Ravi K; Kroll, Daniel M
2007-05-15
The extracellular space of the brain is the heterogeneous porous medium formed by the spaces between the brain cells. Diffusion in this interstitial space is the mechanism by which glucose and oxygen are delivered to the brain cells from the vascular system. It is also a medium for the transport of certain informational substances between the cells (called volume transmission), and for drug delivery. This work involves three-dimensional modeling of the extracellular space as void space in close-packed arrays of fluid membrane vesicles. These packings are generated by minimizing the configurational energy using a Monte Carlo procedure. Both regular and random packs of vesicles are considered. A random walk algorithm is then used to compute the geometric tortuosities, and the results are compared with published experimental data. For the random packings, it is found that although the absolute values for the tortuosities differ, the dependence of the tortuosity on pore volume fraction is very similar to that observed in experiment. The tortuosities we measure are larger than those computed in previous studies of packings of convex polytopes, and modeling improvements, which require higher resolution studies and an improved modeling of brain cell shapes and mechanical properties, could help resolve remaining discrepancies between model simulations and experiment. It is also shown that the specular reflection scheme is the appropriate technique for implementing zero-flux boundary conditions in random walk simulations commonly encountered in diffusion problems.
Mowlavi, Ali Asghar; Fornasier, Maria Rossa; Mirzaei, Mohammd; Bregant, Paola; de Denaro, Mario
2014-10-01
The beta and gamma absorbed fractions in organs and tissues are the important key factors of radionuclide internal dosimetry based on Medical Internal Radiation Dose (MIRD) approach. The aim of this study is to find suitable analytical functions for beta and gamma absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution of iodine-131 radionuclide. MCNPX code has been used to calculate the energy absorption from beta and gamma rays of iodine-131 uniformly distributed inside different ellipsoids and spheres, and then the absorbed fractions have been evaluated. We have found the fit parameters of a suitable analytical function for the beta absorbed fraction, depending on a generalized radius for ellipsoid based on the radius of sphere, and a linear fit function for the gamma absorbed fraction. The analytical functions that we obtained from fitting process in Monte Carlo data can be used for obtaining the absorbed fractions of iodine-131 beta and gamma rays for any volume of the thyroid lobe. Moreover, our results for the spheres are in good agreement with the results of MIRD and other scientific literatures.
NASA Astrophysics Data System (ADS)
Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; Sánchez de la Campa, A.; Fernández-Camacho, R.; Rodríguez, S.; Pio, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández Patier, R.
2013-07-01
We interpret here the variability of levels of carbonaceous aerosols based on a 12 yr database from 78 monitoring stations across Spain specially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC) with very little elemental carbon (EC), around 0.1 μg m-3; OC / EC = 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC / EC = 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning and of biogenic emissions. Correlations between yearly averaged OC / EC and EC concentrations adjust very well to a potential equation (OC = 3.37 EC0.326, R2 = 0.8). A similar equation is obtained when including average concentrations obtained at other European sites (OC = 3.60EC0.491, R2 = 0.7). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance from road, traffic volume and density, mixing-layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend for NO2 / (OC + EC) ratios as these standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC + EC are very good candidates for new air quality standards since they cover both emission impact and health-related issues.
NASA Astrophysics Data System (ADS)
Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; de la Campa Sánchez, A.; Fernández-Camacho, R.; Rodríguez, S.; Pío, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; Dos Santos García, S.; Patier Fernández, R.
2013-03-01
We interpret here the variability of levels of carbonaceous aerosols based on a 12-yr database from 78 monitoring stations across Spain especially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC), with very little elemental carbon (EC) 0.1 μg m-3; OC/EC = 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC/EC = 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning. Correlations between yearly averaged OC/EC and EC concentrations adjust very well to a potential equation (OC/EC = 3.37 EC-0.67 R2 = 0.94). A similar equation is obtained when including average concentrations obtained at other European sites (y = 3.61x-0.5, R2 = 0.78). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance to road, traffic volume and density, mixing layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend of NO2/OC+EC ratios, because these standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC+EC are very good candidates for new air quality standards since they cover both emission impact and health related issues.
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Ganji, D. D.
2017-12-01
In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo-Kleinstreuer-Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.
Visualization of the hot chocolate sound effect by spectrograms
NASA Astrophysics Data System (ADS)
Trávníček, Z.; Fedorchenko, A. I.; Pavelka, M.; Hrubý, J.
2012-12-01
We present an experimental and a theoretical analysis of the hot chocolate effect. The sound effect is evaluated using time-frequency signal processing, resulting in a quantitative visualization by spectrograms. This method allows us to capture the whole phenomenon, namely to quantify the dynamics of the rising pitch. A general form of the time dependence volume fraction of the bubbles is proposed. We show that the effect occurs due to the nonlinear dependence of the speed of sound in the gas/liquid mixture on the volume fraction of the bubbles and the nonlinear time dependence of the volume fraction of the bubbles.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
NASA Astrophysics Data System (ADS)
Gholipour Peyvandi, R.; Islami Rad, S. Z.
2017-12-01
The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.
Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.
Seth, Mansi; Ramachandran, Arun; Murch, Bruce P; Leal, L Gary
2014-09-02
It is observed that charged unilamellar vesicles in a suspension can spontaneously deflate and subsequently transition to form bilamellar vesicles, even in the absence of externally applied triggers such as salt or temperature gradients. We provide strong evidence that the driving force for this deflation-induced transition is the repulsive electrostatic pressure between charged vesicles in concentrated suspensions, above a critical effective volume fraction. We use volume fraction measurements and cryogenic transmission electron microscopy imaging to quantitatively follow both the macroscopic and microstructural time-evolution of cationic diC18:1 DEEDMAC vesicle suspensions at different surfactant and salt concentrations. A simple model is developed to estimate the extent of deflation of unilamellar vesicles caused by electrostatic interactions with neighboring vesicles. It is determined that when the effective volume fraction of the suspension exceeds a critical value, charged vesicles in a suspension can experience "crowding" due to overlap of their electrical double layers, which can result in deflation and subsequent microstructural transformations to reduce the effective volume fraction of the suspension. Ordinarily in polydisperse colloidal suspensions, particles interacting via a repulsive potential transform into a glassy state above a critical volume fraction. The behavior of charged vesicle suspensions reported in this paper thus represents a new mechanism for the relaxation of repulsive interactions in crowded situations.
Crystallization of sheared hard spheres at 64.5% volume fraction
NASA Astrophysics Data System (ADS)
Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.
2017-11-01
A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.
Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas; Andersen, Mads J; Vejlstrup, Niels; Kelbæk, Henning; Engstrøm, Thomas; Møller, Jacob E; Kofoed, Klaus F
2012-06-01
Measurement of left atrial (LA) maximal volume (LA(max)) using two-dimensional transthoracic echocardiography (TTE) provides prognostic information in several cardiac diseases. However, the relationship between LA(max) and LA function is poorly understood and TTE is less well suited for measuring dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir volume) and pump function (left atrial ejection fraction-LAEF) were derived using CMR and MSCT. Left atrial fractional change and left atrial ejection fraction (LAEF) determined with CMR and MSCT were unrelated to LA(max) enlargement by echocardiography (P = NS). There was an overall good agreement between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P < 0.001). Left atrial function assessed with MSCT and CMR as LA fractional change and LAEF is not significantly related to LA(max) measured by TTE. TTE systematically underestimated LA volumes, whereas there are good agreements between MSCT and CMR for volumetric and functional properties.
Pancreas volume and fat fraction in children with Type 1 diabetes.
Regnell, S E; Peterson, P; Trinh, L; Broberg, P; Leander, P; Lernmark, Å; Månsson, S; Elding Larsson, H
2016-10-01
People with Type 1 diabetes have smaller pancreases than healthy individuals. Several diseases causing pancreatic atrophy are associated with pancreatic steatosis, but pancreatic fat in Type 1 diabetes has not been measured. This cross-sectional study aimed to compare pancreas size and fat fraction in children with Type 1 diabetes and controls. The volume and fat fraction of the pancreases of 22 children with Type 1 diabetes and 29 controls were determined using magnetic resonance imaging. Pancreas volume was 27% smaller in children with diabetes (median 34.9 cm(3) ) than in controls (47.8 cm(3) ; P < 0.001). Pancreas volume correlated positively with age in controls (P = 0.033), but not in children with diabetes (P = 0.649). Pancreas volume did not correlate with diabetes duration, but it did correlate positively with units of insulin/kg body weight/day (P = 0.048). A linear model of pancreas volume as influenced by age, body surface area and insulin units/kg body weight/day found that insulin dosage correlated with pancreas volume after controlling for both age and body surface area (P = 0.009). Pancreatic fat fraction was not significantly different between the two groups (1.34% vs. 1.57%; P = 0.891). Our findings do not indicate that pancreatic atrophy in Type 1 diabetes is associated with an increased pancreatic fat fraction, unlike some other diseases featuring reduced pancreatic volume. We speculate that our results may support the hypotheses that much of pancreatic atrophy in Type 1 diabetes occurs before the clinical onset of the disease and that exogenous insulin administration decelerates pancreatic atrophy after diabetes onset. © 2016 Diabetes UK.
Severini, C; Ricci, I; Marone, M; Derossi, A; De Pilli, T
2015-03-04
The changes in chemical attributes and aromatic profile of espresso coffee (EC) were studied taking into account the extraction time and grinding level as independent variables. Particularly, using an electronic nose system, the changes of the global aromatic profile of EC were highlighted. The results shown as the major amounts of organic acids, solids, and caffeine were extracted in the first 8 s of percolation. The grinding grade significantly affected the quality of EC probably as an effect of the particle size distribution and the percolation pathways of water through the coffee cake. The use of an electronic nose system allowed us to discriminate the fractions of the brew as a function of the percolation time and also the regular coffee obtained from different grinding grades. Particularly, the aromatic profile of a regular coffee (25 mL) was significantly affected by the grinding level of the coffee grounds and percolation time, which are two variables under the control of the bar operator.
Xia, Wei; Yan, Zhuangzhi; Gao, Xin
2017-10-01
To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chuang, Ming-Tung; Lee, Chung-Te; Chou, Charles C.-K.; Lin, Neng-Huei; Sheu, Guey-Rong; Wang, Jia-Lin; Chang, Shuenn-Chin; Wang, Sheng-Hsiang; Chi, Kai Hsien; Young, Chea-Yuan; Huang, Hill; Chen, Horng-Wen; Weng, Guo-Hau; Lai, Sin-Yu; Hsu, Shao-Peng; Chang, Yu-Jia; Chang, Jia-Hon; Wu, Xyue-Chang
2014-06-01
Eight carbonaceous fractions from aerosols were resolved using the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol (Chow et al., 1993). The aerosols were collected at the Mountain Lulin Atmospheric Background Station (Mt. Lulin, 2862 m a.s.l.) in Central Taiwan from April 2003 to April 2012. The monthly and yearly levels of organic carbon (OC) and elemental carbon (EC) varied consistently with PM2.5 mass concentrations during biomass burning (BB) period. The highest monthly carbonaceous content was observed in March and the highest yearly carbonaceous concentration was observed in 2007. This finding is consistent with the BB activity in Indochina and indicates that carbonaceous content is a major component of BB aerosols. Lee et al. (2011) classified four trajectory groups from the air masses transported to Mt. Lulin during the aerosol collection period. For the air masses transported from the BB area (the BB group) in Indochina, the carbonaceous content was greater than the water-soluble ions in PM2.5, and the OC/EC ratio (4.8 ± 1.5) was high. With EC as the indicator of primary emission sources, the air masses of the BB group were found to contain more primary than secondary OC. The Anthropogenic group (from the local and free troposphere below the 700-hPa pressure level over the Asian continent) probably contained more secondary than primary OC or the sources of OC and EC could be quite diverse. The average char-EC/soot-EC (low-temperature EC/high-temperature EC) ratios were 3.9 ± 3.5, 0.4 ± 0.4, 0.9 ± 0.8, and 0.3 ± 0.4 for the trajectory groups BB, SNBB (from BB source areas during the non-BB period), Anthropogenic, and FT (from the oceanic area and the free troposphere above the 700-hPa pressure level over the Asian continent), respectively. The presence of a high char-EC/soot-EC ratio confirmed the correct classification of the BB group, whereas the low ratios from the other groups indicated the strong influence of vehicle exhaust. It is noted that higher OC and EC levels were obtained at Mt. Lulin as compared with those obtained at other high-elevation sites. This difference suggested that the Indochina BB plume exhibited a more serious climatic impact on the background air in East Asia than in other places in Asia and Europe. On the basis of the carbonaceous levels of the SNBB and FT groups, the background OC and EC levels of approximately 3000 m in the West Pacific are around 1.33 μg m-3 and 0.35 μg m-3, respectively.
Brown Adipose Tissue Quantification in Human Neonates Using Water-Fat Separated MRI
Rasmussen, Jerod M.; Entringer, Sonja; Nguyen, Annie; van Erp, Theo G. M.; Guijarro, Ana; Oveisi, Fariba; Swanson, James M.; Piomelli, Daniele; Wadhwa, Pathik D.
2013-01-01
There is a major resurgence of interest in brown adipose tissue (BAT) biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction) were calculated. Neonatal scans (n = 22) were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38%, p<10−4). Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99). BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93) and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93). This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot volume and fat fraction measurements. PMID:24205024
An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties
NASA Technical Reports Server (NTRS)
Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.
2007-01-01
The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.
NASA Astrophysics Data System (ADS)
Hemmat Esfe, Mohammad; Firouzi, Masoumeh; Afrand, Masoud
2018-01-01
In this paper, functionalized single walled carbon nanotubes (FSWCNTs) were suspended in Ethylene Glycol (EG) at different volume fractions. A KD2 pro thermal conductivity meter was used to measure the thermal conductivity in the temperature range from 30 to 50 °C. Nanofluids were prepared in solid volume fraction of 0.02, 0.05, 0.075, 0.1, 0.25, 0.5 and, 0.75%. Experimental results revealed that the thermal conductivity of the nanofluid is a non-linear function of temperature and SWCNTs volume fraction in the range of this investigation. Thermal conductivity increases with temperature and nanoparticles volume fraction as usual for this type of nanofluid. Maximum increment in thermal conductivity of the nanofluids was found to be about 45% at 0.75 vol fractions loading at 50 °C. Finally, a new correlation based on artificial neural network (ANN) approach has been proposed for SWCNT-EG thermal conductivity in terms of nanoparticles volume fraction and temperature using the experimental data. Used ANN approach has estimated the experimental values of thermal conductivity with the absolute average relative deviation lower than 0.9%, mean square error of 3.67 × 10-5 and regression coefficient of 0.9989. Comparison between the suggested techniques with various used correlation in the literatures established that the ANN approach is better to other presented methods and therefore can be proposed as a useful means for predicting of the nanofluids thermal conductivity.
Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension
Gao, He; Bai, Wenjia; Evangelou, Evangelos; Glocker, Ben; O’Regan, Declan P.; Elliott, Paul; Matthews, Paul M.
2017-01-01
Objectives To characterize effects of chronically elevated blood pressure on the brain, we tested for brain white matter microstructural differences associated with normotension, pre-hypertension and hypertension in recently available brain magnetic resonance imaging data from 4659 participants without known neurological or psychiatric disease (62.3±7.4 yrs, 47.0% male) in UK Biobank. Methods For assessment of white matter microstructure, we used measures derived from neurite orientation dispersion and density imaging (NODDI) including the intracellular volume fraction (an estimate of neurite density) and isotropic volume fraction (an index of the relative extra-cellular water diffusion). To estimate differences associated specifically with blood pressure, we applied propensity score matching based on age, sex, educational level, body mass index, and history of smoking, diabetes mellitus and cardiovascular disease to perform separate contrasts of non-hypertensive (normotensive or pre-hypertensive, N = 2332) and hypertensive (N = 2337) individuals and of normotensive (N = 741) and pre-hypertensive (N = 1581) individuals (p<0.05 after Bonferroni correction). Results The brain white matter intracellular volume fraction was significantly lower, and isotropic volume fraction was higher in hypertensive relative to non-hypertensive individuals (N = 1559, each). The white matter isotropic volume fraction also was higher in pre-hypertensive than in normotensive individuals (N = 694, each) in the right superior longitudinal fasciculus and the right superior thalamic radiation, where the lower intracellular volume fraction was observed in the hypertensives relative to the non-hypertensive group. Significance Pathological processes associated with chronically elevated blood pressure are associated with imaging differences suggesting chronic alterations of white matter axonal structure that may affect cognitive functions even with pre-hypertension. PMID:29145428
Accelerated Gray and White Matter Deterioration With Age in Schizophrenia.
Cropley, Vanessa L; Klauser, Paul; Lenroot, Rhoshel K; Bruggemann, Jason; Sundram, Suresh; Bousman, Chad; Pereira, Avril; Di Biase, Maria A; Weickert, Thomas W; Weickert, Cynthia Shannon; Pantelis, Christos; Zalesky, Andrew
2017-03-01
Although brain changes in schizophrenia have been proposed to mirror those found with advancing age, the trajectory of gray matter and white matter changes during the disease course remains unclear. The authors sought to measure whether these changes in individuals with schizophrenia remain stable, are accelerated, or are diminished with age. Gray matter volume and fractional anisotropy were mapped in 326 individuals diagnosed with schizophrenia or schizoaffective disorder and in 197 healthy comparison subjects aged 20-65 years. Polynomial regression was used to model the influence of age on gray matter volume and fractional anisotropy at a whole-brain and voxel level. Between-group differences in gray matter volume and fractional anisotropy were regionally localized across the lifespan using permutation testing and cluster-based inference. Significant loss of gray matter volume was evident in schizophrenia, progressively worsening with age to a maximal loss of 8% in the seventh decade of life. The inferred rate of gray matter volume loss was significantly accelerated in schizophrenia up to middle age and plateaued thereafter. In contrast, significant reductions in fractional anisotropy emerged in schizophrenia only after age 35, and the rate of fractional anisotropy deterioration with age was constant and best modeled with a straight line. The slope of this line was 60% steeper in schizophrenia relative to comparison subjects, indicating a significantly faster rate of white matter deterioration with age. The rates of reduction of gray matter volume and fractional anisotropy were significantly faster in males than in females, but an interaction between sex and diagnosis was not evident. The findings suggest that schizophrenia is characterized by an initial, rapid rate of gray matter loss that slows in middle life, followed by the emergence of a deficit in white matter that progressively worsens with age at a constant rate.
NASA Astrophysics Data System (ADS)
Kupke, A.; Hodgson, P. D.; Weiss, M.
2017-07-01
The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young's modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young's modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young's modulus, which is the difference between the material's initial Young's modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young's modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young's modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young's modulus are strongest for the microstructure consisting of 35% martensite volume fraction.
Removal of nitrate and sulphate from biologically treated municipal wastewater by electrocoagulation
NASA Astrophysics Data System (ADS)
Sharma, Arun Kumar; Chopra, A. K.
2017-06-01
The present investigation observed the effect of current density ( j), electrocoagulation (EC) time, inter electrode distance, electrode area, initial pH and settling time on the removal of nitrate (NO3 -) and sulphate (SO4 2-) from biologically treated municipal wastewater (BTMW), and optimization of the operating conditions of the EC process. A glass chamber of two-liter volume was used for the experiments with DC power supply using two electrode plates of aluminum (Al-Al). The maximum removal of NO3 - (63.21 %) and SO4 2- (79.98 %) of BTMW was found with the optimum operating conditions: current density: 2.65 A/m2, EC time: 40 min, inter electrode distance: 0.5 cm, electrode area: 160 cm2, initial pH: 7.5 and settling time: 60 min. The EC brought down the concentration of NO3 - within desirable limit of the Bureau of Indian Standard (BIS)/WHO for drinking water. Under optimal operating conditions, the operating cost was found to be 1.01/m3 of water in terms of the electrode consumption (23.71 × 10-5 kg Al/m3) and energy consumption (101.76 kWh/m3).
Kup, Philipp Günther; Nieder, Carsten; Geinitz, Hans; Henkenberens, Christoph; Besserer, Angela; Oechsner, Markus; Schill, Sabine; Mücke, Ralph; Scherer, Vera; Combs, Stephanie E; Adamietz, Irenäus A; Fakhrian, Khashayar
2015-01-01
To assess the association between dosimetric factors of the lung and incidence of intra- and postoperative mortality among esophageal cancer (EC) patients treated with neoadjuvant radiochemotherapy (N-RCT) followed by surgery (S). Inclusion criteria were: age < 85 years, no distant metastases at the time of diagnosis, no induction chemotherapy, conformal radiotherapy, total dose ≤ 50.4 Gy, and available dose volume histogram (DVH) data. One-hundred thirty-five patients met our inclusion criteria. Median age was 62 years. N-RCT consisted of 36 - 50.4 Gy (median 45 Gy), 1.8 - 2 Gy per fraction. Concomitant chemotherapy consisted of 5-Fluoruracil (5-FU) and cisplatin in 113 patients and cisplatin and taxan-derivates in 15 patients. Seven patients received a single cytotoxic agent. In 130 patients an abdominothoracal and in 5 patients a transhiatal resection was performed. The following dosimetric parameters were generated from the total lung DVH: mean dose, V5, V10, V15, V20, V30, V40, V45 and V50. The primary endpoint was the rate of intra- and postoperative mortality (from the start of N-RCT to 60 days after surgical resection). A total of ten postoperative deaths (7%) were observed: 3 within 30 days (2%) and 7 between 30 and 60 days after surgical intervention (5%); no patient died during the operation. In the univariate analysis, weight loss (≥10% in 6 months prior to diagnosis, risk ratio: 1.60, 95%CI: 0.856-2.992, p=0.043), Eastern Cooperative Oncology Group-performance status (ECOG 2 vs. 1, risk ratio: 1.931, 95%CI: 0.898-4.150, p=0.018) and postoperative pulmonary plus non-pulmonary complications (risk ratio: 2.533, 95%CI: 0.978-6.563, p=0.004) were significantly associated with postoperative mortality. There was no significant association between postoperative mortality and irradiated lung volumes. Lung V45 was the only variable which was significantly associated with higher incidence of postoperative pulmonary plus non-pulmonary complications (Exp(B): 1.285, 95%CI 1.029-1.606, p=0.027), but not with the postoperative pulmonary complications (Exp(B): 1.249, 95%CI 0.999-1.561, p=0.051). Irradiated lung volumes did not show relevant associations with intra- and postoperative mortality of patients treated with moderate dose (36 - 50.4 Gy) conventionally fractionated conformal radiotherapy combined with widely used radiosensitizers. Postoperative mortality was significantly associated with greater weight loss, poor performance status and development of postoperative complications, but not with treatment-related factors. Limiting the volume of lung receiving higher radiation doses appears prudent because of the observed association with risk of postoperative complications.
Han, Deming; Zhang, Jiaqi; Hu, Zihao; Ma, Yingge; Duan, Yusen; Han, Yan; Chen, Xiaojia; Zhou, Yong; Cheng, Jinping; Wang, Wenhua
2018-07-01
Mercury (Hg) has a complex atmospheric transformation cycle and acts as a global pollutant. Size-specific particle bound mercury (PBM) was implemented in different functional (industrial, urban and suburban) areas in Shanghai, China. The total concentration of 13-staged PBM (rang of 0.01-18.0 μm) varied of 99.0-611 pg/m 3 , with an average value of 318 ± 144 pg/m 3 . The Gaoqiao petrochemical industry (GQPI) site showed the highest concentrations, whereas the suburban Shanghai Jiao Tong University (SJTU) displayed the lowest. The PBM in nucleation, accumulation and coarse modes were 7.63-96.7, 69.5-455, and 9.43-176 pg/m 3 , respectively, and the fractions of 0.56-1.00 and 0.32-0.56 μm were the two most abundant. Both OC and EC displayed unimodal distribution patterns (peak of 0.56-1.00 μm) at GQPI, while bimodal distributions were observed at urban and suburban sites. Statistically positive correlations between the overall PBM and the corresponding PM and carbonaceous compounds (r = 0.38-0.54, p < 0.01), indicating their similar origins and OC/EC enhanced gaseous mercury forming PBM. The gas-particle partition model predicted gaseous oxidized mercury (GOM) were 253 ± 133, 237 ± 122, and 257 ± 144 pg/m 3 for GQPI, SAES and SJTU, respectively. The particle proportions of divalent mercury in the fraction of 0.32-1.00 μm were substantial (>80%), but smaller (<50%) for nucleation and coarse modes. The fraction of 9.90-18.00 μm occupied nearly 50% of the overall dry deposition fluxes of mercury. These finding highlight the emissions from different mercury and OC/EC origins, caused different size-specific distributions of PBM, which further affect their gas-particle partitioning and dry deposition of mercury species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan
NASA Astrophysics Data System (ADS)
Tsai, Ying I.; Chen, Chien-Lung
In this study, the chemical characteristics of winter aerosol at four sites in southern Taiwan were determined and the Gaussian Trajectory transfer coefficient model (GTx) was then used to identify the major air pollutant sources affecting the study sites. Aerosols were found to be acidic at all four sites. The most important constituents of the particulate matter (PM) by mass were SO 42-, organic carbon (OC), NO 3-, elemental carbon (EC) and NH 4+, with SO 42-, NO 3-, and NH 4+ together constituting 86.0-87.9% of the total PM 2.5 soluble inorganic salts and 68.9-78.3% of the total PM 2.5-10 soluble inorganic salts, showing that secondary photochemical solution components such as these were the major contributors to the aerosol water-soluble ions. The coastal site, Linyuan (LY), had the highest PM mass percentage of sea salts, higher in the coarse fraction, and higher sea salts during daytime than during nighttime, indicating that the prevailing daytime sea breeze brought with it more sea-salt aerosol. Other than sea salts, crustal matter, and EC in PM 2.5 at Jenwu (JW) and in PM 2.5-10 at LY, all aerosol components were higher during nighttime, due to relatively low nighttime mixing heights limiting vertical and horizontal dispersion. At JW, a site with heavy traffic loadings, the OC/EC ratio in the nighttime fine and coarse fractions of approximately 2.2 was higher than during daytime, indicating that in addition to primary organic aerosol (POA), secondary organic aerosol (SOA) also contributed to the nighttime PM 2.5. This was also true of the nighttime coarse fraction at LY. The GTx produced correlation coefficients ( r) for simulated and observed daily concentrations of PM 10 at the four sites (receptors) in the range 0.45-0.59 and biases from -6% to -20%. Source apportionment indicated that point sources were the largest PM 10 source at JW, LY and Daliao (DL), while at Meinung (MN), a suburban site with less local PM 10, SO x and NO x emissions, upwind boundary concentration was the major PM 10 source, followed by point sources and top boundary concentration.
NASA Astrophysics Data System (ADS)
Ha, Jeong Won; Seong, Baek Seok; Jeong, Hi Won; Choi, Yoon Suk; Kang, Namhyun
2015-02-01
Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ‧ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ‧ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ‧ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ‧ volume fraction and gained a smaller fraction of γ‧ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ‧ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M23C6 secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ‧ thereby decreasing the volume fraction of γ‧ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ‧ volume fraction was measured with loading rather than without. This is probably associated with the dislocation accumulation generated under loading that facilitate the nucleation and growth of heterogeneous γ‧ phase due to enhanced diffusion.
NASA Astrophysics Data System (ADS)
Tang, Ronglin; Li, Zhao-Liang; Sun, Xiaomin; Bi, Yuyun
2017-01-01
Surface evapotranspiration (ET) is an important component of water and energy in land and atmospheric systems. This paper investigated whether using variable surface resistances in the reference ET estimates from the full-form Penman-Monteith (PM) equation could improve the upscaled daily ET estimates in the constant reference evaporative fraction (EFr, the ratio of actual to reference grass/alfalfa ET) method on clear-sky days using ground-based measurements. Half-hourly near-surface meteorological variables and eddy covariance (EC) system-measured latent heat flux data on clear-sky days were collected at two sites with different climatic conditions, namely, the subhumid Yucheng station in northern China and the arid Yingke site in northwestern China and were used as the model input and ground-truth, respectively. The results showed that using the Food and Agriculture Organization (FAO)-PM equation, the American Society of Civil Engineers-PM equation, and the full-form PM equation to estimate the reference ET in the constant EFr method produced progressively smaller upscaled daily ET at a given time from midmorning to midafternoon. Using all three PM equations produced the best results at noon at both sites regardless of whether the energy imbalance of the EC measurements was closed. When the EC measurements were not corrected for energy imbalance, using variable surface resistance in the full-form PM equation could improve the ET upscaling in the midafternoon, but worse results may occur in the midmorning to noon. Site-to-site and time-to-time variations were found in the performances of a given PM equation (with fixed or variable surface resistances) before and after the energy imbalance was closed.
Baquerizo, Guillermo; Maestre, Juan P; Machado, Vinicius C; Gamisans, Xavier; Gabriel, David
2009-05-01
A comprehensive study of long-term ammonia removal in a biofilter packed with coconut fiber is presented under both steady-state and transient conditions. Low and high ammonia loads were applied to the reactor by varying the inlet ammonia concentration from 90 to 260 ppm(v) and gas contact times ranging from 20 to 36 s. Gas samples and leachate measurements were periodically analyzed and used for characterizing biofilter performance in terms of removal efficiency (RE) and elimination capacity (EC). Also, N fractions in the leachate were quantified to both identify the experimental rates of nitritation and nitratation and to determine the N leachate distribution. Results showed stratification in the biofilter activity and, thus, most of the NH(3) removal was performed in the lower part of the reactor. An average EC of 0.5 kg N-NH(3)m(-3)d(-1) was obtained for the whole reactor with a maximum local average EC of 1.7 kg N-NH(3)m(-3)d(-1). Leachate analyses showed that a ratio of 1:1 of ammonium and nitrate ions in the leachate was obtained throughout steady-state operation at low ammonia loads with similar values for nitritation and nitratation rates. Low nitratation rates during high ammonia load periods occurred because large amounts of ammonium and nitrite accumulated in the packed bed, thus causing inhibition episodes on nitrite-oxidizing bacteria due to free ammonia accumulation. Mass balances showed that 50% of the ammonia fed to the reactor was oxidized to either nitrite or nitrate and the rest was recovered as ammonium indicating that sorption processes play a fundamental role in the treatment of ammonia by biofiltration.
NASA Astrophysics Data System (ADS)
Herrera Murillo, J.; Cardenas, B.; Campos-Ramos, A.; Blanco-Jimenez, S.; Angeles-Garcia, F.
2011-12-01
During 2006-2010 the National Center for Environmental Research and Training of the National Institute of Ecology of Mexico, carried out several short field studies in the cities of Salamanca, Gto, Tula, Hgo; Guadalajara, Jal; Toluca, Edo Mex; and Tijuana, BC to determine concentration and chemical compositions of PM2.5. These cities, although different in size population have all important industrial and area sources that contribute to high PM2.5 concentrations and therefore potential health impacts. Chemical analyses included organic and elemental carbon for which DRI Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc, Calabasas, CA, USA) was used. Highest PM2.5 mass mean concentrations were obtained in Salamanca (46 μg/m3), followed by Toluca (43 μg/m3), Guadalajara (37 μg/m3), Tula (20 μg/m3) and Tijuana (18 μg/m3). For Salamanca and Tula, annual levels exceeded the Mexican PM2.5 annual standard of 15 μg/m3. Total carbonaceous aerosol accounted for 41.4%, 41.1%, 32.3%, 29.5% and 29.1% of PM2.5 mass in Tula, Toluca, Guadalajara, Salamanca and Tijuana, respectively. Higher OC2, OC3 and OC4 carbon fractions were observed in Guadalajara, Tijuana and Toluca, indicating an important contribution of gasoline and diesel vehicles emissions in these cities. As for Tula and Salamanca, cities in which refineries and power plants are present, OC3, OC4, EC1 and EC2 represent the higher fractions which could be attributed to stationary sources that use heavy fuels for their combustion process. UNMIX and PMF analyses were used in order to identify the most important sources that contributes to OC and EC concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Janmejai K.; Department of Urology, University Hospitals of Cleveland, Cleveland, OH 44106; Gupta, Sanjay
2006-07-28
One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation inmore » all three prostate cancer cell lines. The IC{sub 5} values after 24 h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 {mu}g/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 {mu}g/ml. In cell cycle analysis, TRF (10-40 {mu}g/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.« less
SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trulove, Paul C.; Foley, Matthew P.
2012-09-30
The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF 3SO 3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that couldmore » be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li + ions in a Li-ion battery.« less
NASA Astrophysics Data System (ADS)
Soltani, Omid; Akbari, Mohammad
2016-10-01
In this paper, the effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid is examined. The experiments carried out in the solid volume fraction range of 0 to 1.0% under the temperature ranging from 30 °C to 60 °C. The results showed that the hybrid nanofluid behaves as a Newtonian fluid for all solid volume fractions and temperatures considered. The measurements also indicated that the dynamic viscosity increases with increasing the solid volume fraction and decreases with the temperature rising. The relative viscosity revealed that when the solid volume fraction enhances from 0.1 to 1%, the dynamic viscosity increases up to 168%. Finally, using experimental data, in order to predict the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluids, a new correlation has been suggested. The comparisons between the correlation outputs and experimental results showed that the suggested correlation has an acceptable accuracy.
Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis
2015-11-01
Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Louis, P.; Gokhale, A. M.
1996-01-01
Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.
NASA Technical Reports Server (NTRS)
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.
In Situ Raman Microscopy of a Single Graphite Microflake Electrode in a Li(+)-containing Electrolyte
NASA Technical Reports Server (NTRS)
Shi, Qing-Fang; Dokko, Kaoru; Scherson, Daniel A.
2003-01-01
Highly detailed Raman spectra from a single KS-44 graphite microflake electrode as a function of the applied potential have been collected in situ using a Raman microscope and a sealed spectroelectrochemical cell isolated from the laboratory environment. Correlations were found between the Raman spectral features and the various Li(+) intercalation stages while recording in real time Raman spectra during a linear potential scan from 0.7 down ca. 0.0V vs Li/Li(+) at a rate of 0.1 mV/s in a 1M LiClO4 solution in a 1:l (by volume) ethylene carbonate (EC):diethyl carbonate (DEC) mixture. In particular, clearly defined isosbestic points were observed for data collected in the potential range where the transition between dilute phase 1 and phase 4 of lithiated graphite is known to occur, i.e. 0.157 < E < 0.215 vs Li/Li(+). Statistical analysis of the spectroscopic data within this region made it possible to determine independently the fraction of each of the two phases present as a function of potential without relying on coulometric information and then predict, based on the proposed stoichiometry for the transition, a spectrally-derived voltammetric feature.
NASA Astrophysics Data System (ADS)
Liu, Fengshan; Rogak, Steven; Snelling, David R.; Saffaripour, Meghdad; Thomson, Kevin A.; Smallwood, Gregory J.
2016-11-01
Multimode pulsed Nd:YAG lasers are commonly used in auto-compensating laser-induced incandescence (AC-LII) measurements of soot in flames and engine exhaust as well as black carbon in the atmosphere. Such lasers possess a certain degree of fluence non-uniformity across the laser beam even with the use of beam shaping optics. Recent research showed that the measured volume fraction of ambient-temperature soot using AC-LII increases significantly, by about a factor of 5-8, with increasing the laser fluence in the low-fluence regime from a very low fluence to a relatively high fluence of near sublimation. The causes of this so-called soot volume fraction anomaly are currently not understood. The effects of laser fluence non-uniformity on the measured soot volume fraction using AC-LII were investigated. Three sets of LII experiments were conducted in the exhaust of a MiniCAST soot generator under conditions of high elemental carbon using Nd:YAG lasers operated at 1064 nm. The laser beams were shaped and relay imaged to achieve a relatively uniform fluence distribution in the measurement volume. To further homogenize the laser fluence, one set of LII experiments was conducted by using a diffractive optical element. The measured soot volume fractions in all three sets of LII experiments increase strongly with increasing the laser fluence before a peak value is reached and then start to decrease at higher fluences. Numerical calculations were conducted using the experimental laser fluence histograms. Laser fluence non-uniformity is found partially responsible for the soot volume fraction anomaly, but is insufficient to explain the degree of soot volume fraction anomaly observed experimentally. Representing the laser fluence variations by a histogram derived from high-resolution images of the laser beam energy profile gives a more accurate definition of inhomogeneity than a simple averaged linear profile across the laser beam.
Experiments were completed to determine the extent of artifacts from sampling elemental carbon (EC) and organic carbon (OC) under sample conditions consistent with personal sampling. Two different types of experiments were completed; the first examined possible artifacts from oil...
NASA Astrophysics Data System (ADS)
Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.
2015-01-01
The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Shuja, S. Z.
2017-01-01
Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, D.G.; West, J.T.
FRAC-IN-THE-BOX is a computer code developed to calculate the fractions of rectangular parallelepiped mesh cell volumes that are intersected by combinatorial geometry type zones. The geometry description used in the code is a subset of the combinatorial geometry used in SABRINA. The input file may be read into SABRINA and three dimensional plots made of the input geometry. The volume fractions for those portions of the geometry that are too complicated to describe with the geometry routines provided in FRAC-IN-THE-BOX may be calculated in SABRINA and merged with the volume fractions computed for the remainder of the geometry. 21 figs.,more » 1 tab.« less
NASA Astrophysics Data System (ADS)
Hanafee, Z. M.; Khalina, A.; Norkhairunnisa, M.; Syams, Z. Edi; Liew, K. E.
2017-09-01
This paper investigates the effect of fibre volume fraction on mechanical properties of banana-pineapple leaf (PaLF)-glass reinforced epoxy resin under tensile loading. Uniaxial tensile tests were carried out on specimens with different fibre contents (30%, 40%, 50% in weight). The composite specimens consists of 13 different combinations. The effect of hybridisation between synthetic and natural fibre onto tensile properties was determined and the optimum fibre volume fraction was obtained at 50% for both banana and PaLF composites. Additional 1 layer of woven glass fibre increased the tensile strength of banana-PaLF composite up to 85%.
Philippe, A M; Baravian, C; Bezuglyy, V; Angilella, J R; Meneau, F; Bihannic, I; Michot, L J
2013-04-30
In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).
The effect of latent adenovirus 5 infection on cigarette smoke-induced lung inflammation.
Vitalis, T Z; Kern, I; Croome, A; Behzad, H; Hayashi, S; Hogg, J C
1998-03-01
The aim of this study was to test the hypothesis that latent adenovirus (Ad) 5 infection increases the lung inflammation that follows a single acute exposure to cigarette smoke. A recently developed model of latent adenoviral infection in guinea-pigs was used. Twelve animals were infected with Ad5 (10(8) plaque-forming units) and 12 animals were sham-infected. Thirty five days later six Ad5-infected and six sham-infected animals were exposed to the smoke from five cigarettes. The remaining animals were used as controls for both infection and smoking. As markers of inflammation, the volume fraction of macrophages, T-lymphocytes, neutrophils and eosinophils were measured by quantitative histology. We found that latent Ad5-infection alone, doubled the number of macrophages in the lung parenchyma and that smoking alone, doubled the volume fraction of neutrophils in the airway wall and the volume fraction of macrophages in the lung parenchyma. Neither viral infection nor smoking, alone, had an effect on T-lymphocytes or eosinophils. However, the combination of viral infection and smoking doubled the T-lymphocyte helper cells and quadrupled the volume fraction of macrophages in the lung parenchyma. We conclude that in guinea-pigs, latent adenovirus 5 infection increases the inflammation that follows a single acute exposure to cigarette smoke, by increasing the volume fraction of macrophages and T-lymphocyte helper cells.
Universal scaling of permeability through the granular-to-continuum transition
NASA Astrophysics Data System (ADS)
Wadsworth, F. B.; Scheu, B.; Heap, M. J.; Kendrick, J. E.; Vasseur, J.; Lavallée, Y.; Dingwell, D. B.
2015-12-01
Magmas fragment forming a transiently granular material, which can weld back to a fluid-continuum. This process results in dramatic changes in the gas-volume fraction of the material, which impacts the gas permeability. We collate published data for the gas-volume fraction and permeability of volcanic and synthetic materials which have undergone this process to different amounts and note that in all cases there exists a discontinuity in the relationship between these two properties. By discriminating data for which good microstructural information are provided, we use simple scaling arguments to collapse the data in both the still-granular, high gas-volume fraction regime and the fluid-continuum low gas-volume fraction regime such that a universal description can be achieved. We use this to argue for the microstructural meaning of the well-described discontinuity between gas-permeability and gas-volume fraction and to infer the controls on the position of this transition between dominantly granular and dominantly fluid-continuum material descriptions. As a specific application, we consider the transiently granular magma transported through and deposited in fractures in more-coherent magmas, thought to be a primary degassing pathway in high viscosity systems. We propose that our scaling coupled with constitutive laws for densification can provide insights into the longevity of such degassing channels, informing sub-surface pressure modelling at such volcanoes.
Applications for carbon fibre recovered from composites
NASA Astrophysics Data System (ADS)
Pickering; Liu, Z.; Turner, TA; Wong, KH
2016-07-01
Commercial operations to recover carbon fibre from waste composites are now developing and as more recovered fibre becomes available new applications for recovered fibre are required. Opportunities to use recovered carbon fibre as a structural reinforcement are considered involving the use of wet lay processes to produce nonwoven mats. Mats with random in-plane fibre orientation can readily be produced using existing commercial processes. However, the fibre volume fraction, and hence the mechanical properties that can be achieved, result in composites with limited mechanical properties. Fibre volume fractions of 40% can be achieved with high moulding pressures of over 100 bar, however, moulding at these pressures results in substantial fibre breakage which reduces the mean fibre length and the properties of the composite manufactured. Nonwoven mats made from aligned, short carbon fibres can achieve higher fibre volume fractions with lower fibre breakage even at high moulding pressure. A process for aligning short fibres is described and a composite of over 60% fibre volume fraction has been manufactured at a pressures up to 100 bar with low fibre breakage. Further developments of the alignment process have been undertaken and a composite of 46% fibre volume fraction has been produced moulded at a pressure of 7 bar in an autoclave, exhibiting good mechanical properties that compete with higher grade materials. This demonstrates the potential for high value applications for recovered carbon fibre by fibre alignment.
Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky
2016-09-01
Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Numerical simulation of convective heat transfer of nonhomogeneous nanofluid using Buongiorno model
NASA Astrophysics Data System (ADS)
Sayyar, Ramin Onsor; Saghafian, Mohsen
2017-08-01
The aim is to study the assessment of the flow and convective heat transfer of laminar developing flow of Al2O3-water nanofluid inside a vertical tube. A finite volume method procedure on a structured grid was used to solve the governing partial differential equations. The adopted model (Buongiorno model) assumes that the nanofluid is a mixture of a base fluid and nanoparticles, with the relative motion caused by Brownian motion and thermophoretic diffusion. The results showed the distribution of nanoparticles remained almost uniform except in a region near the hot wall where nanoparticles volume fraction were reduced as a result of thermophoresis. The simulation results also indicated there is an optimal volume fraction about 1-2% of the nanoparticles at each Reynolds number for which the maximum performance evaluation criteria can be obtained. The difference between Nusselt number and nondimensional pressure drop calculated based on two phase model and the one calculated based on single phase model was less than 5% at all nanoparticles volume fractions and can be neglected. In natural convection, for 4% of nanoparticles volume fraction, in Gr = 10 more than 15% enhancement of Nusselt number was achieved but in Gr = 300 it was less than 1%.
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Unique strain history during ejection in canine left ventricle.
Douglas, A S; Rodriguez, E K; O'Dell, W; Hunter, W C
1991-05-01
Understanding the relationship between structure and function in the heart requires a knowledge of the connection between the local behavior of the myocardium (e.g., shortening) and the pumping action of the left ventricle. We asked the question, how do changes in preload and afterload affect the relationship between local myocardial deformation and ventricular volume? To study this, a set of small radiopaque beads was implanted in approximately 1 cm3 of the isolated canine heart left ventricular free wall. Using biplane cineradiography, we tracked the motion of these markers through various cardiac cycles (controlling pre- and afterload) using the relative motion of six markers to quantify the local three dimensional Lagrangian strain. Two different reference states (used to define the strains) were considered. First, we used the configuration of the heart at end diastole for that particular cardiac cycle to define the individual strains (which gave the local "shortening fraction") and the ejection fraction. Second, we used a single reference state for all cardiac cycles i.e., the end-diastolic state at maximum volume, to define absolute strains (which gave local fractional length) and the volume fraction. The individual strain versus ejection fraction trajectories were dependent on preload and afterload. For any one heart, however, each component of absolute strain was more tightly correlated to volume fraction. Around each linear regression, the individual measurements of absolute strain scattered with standard errors that averaged less than 7% of their range. Thus the canine hearts examined had a preferred kinematic (shape) history during ejection, different from the kinematics of filling and independent or pre-or afterload and of stroke volume.
Abd Aziz, Maheran; Stanslas, Johnson; Abdul Kadir, Mihdzar
2013-01-01
The present paper focused on antioxidant and cytotoxicity assessment of crude and total saponin fraction of Chlorophytum borivilianum as an important medicinal plant. In this study, three different antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferrous ion chelating (FIC), and β-carotene bleaching (BCB) activity) of crude extract and total saponin fraction of C. borivilianum tubers were performed. Crude extract was found to possess higher free radical scavenging activity (ascorbic acid equivalents 2578 ± 111 mg AA/100 g) and bleaching activity (IC50 = 0.7 mg mL−1), while total saponin fraction displayed higher ferrous ion chelating (EC50 = 1 mg mL−1). Cytotoxicity evaluation of crude extract and total saponin fraction against MCF-7, PC3, and HCT-116 cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF-7 human breast cancer cell line. PMID:24223502
Nonlinear, non-stationary image processing technique for eddy current NDE
NASA Astrophysics Data System (ADS)
Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita
2012-05-01
Automatic analysis of eddy current (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.
Enhanced explosive sensing based on bis(methyltetraphenyl)silole nanoaggregate
NASA Astrophysics Data System (ADS)
Shin, Bomina; Sohn, Honglae
2018-01-01
New photoluminescent bis(methyltetraphenyl)silole nanoaggregates for the detection of trinitrotoluene (TNT) were developed by using aggregation-induced emission property. Bis(methyltetraphenyl)silole nanoaggregates exhibited that photoluminescence (PL) intensity was increased when the water fraction was increased to 90% by volume. Relative PL efficiency of bis(methyltetraphenyl)silole nanoaggregates was exponentially increased to the percent of water fraction and particle diameter was dependent on solvent composition. Particle size of bis(methyltetraphenyl)silole nanoaggregates was tuned by controlling the water fraction by volume. Absolute quantum yield of bis(methyltetraphenyl)silole nanoaggregates in 90% water volume fraction were 32.4%, which increases by about 40 times. Detection of TNT was achieved from the quenching PL measurement of bis(methyltetraphenyl)silole nanoaggregates by adding the TNT. A linear Stern-Volmer relationship was observed for the detection of TNT.
He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Weaver, K M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J
2005-09-16
Using 55.8 pb(-1) of e+e- collisions recorded at the psi(3770) resonance with the CLEO-c detector at CESR, we determine absolute hadronic branching fractions of charged and neutral D mesons using a double tag technique. Among measurements for three D0 and six D+ modes, we obtain reference branching fractions B(D0-->K-pi+)=(3.91+/-0.08+/-0.09)% and B(D+-->K-pi+pi+)=(9.5+/-0.2+/-0.3)%, where the uncertainties are statistical and systematic, respectively. Final state radiation is included in these branching fractions by allowing for additional, unobserved, photons in the final state. Using a determination of the integrated luminosity, we also extract the cross sections sigma(e+e- -->D0D0)=(3.60+/-0.07(+0.07)(-0.05)) nb and sigma(e+e- -->D+D-)=(2.79+/-0.07(+0.10)(-0.04)) nb.
Patel, Vipulkumar; Celec, Peter; Grunt, Magdalena; Schwarzenbach, Heidi; Jenneckens, Ingo; Hillebrand, Timo
2016-01-01
Circulating cell-free DNA (ccfDNA) is a promising diagnostic tool and its size fractionation is of interest. However, kits for isolation of ccfDNA available on the market are designed for small volumes hence processing large sample volumes is laborious. We have tested a new method that enables enrichment of ccfDNA from large volumes of plasma and subsequently allows size-fractionation of isolated ccfDNA into two fractions with individually established cut-off levels of ccfDNA length. This method allows isolation of low-abundant DNA as well as separation of long and short DNA molecules. This procedure may be important e.g., in prenatal diagnostics and cancer research that have been already confirmed by our primary experiments. Here, we report the results of selective separation of 200- and 500-bp long synthetic DNA fragments spiked in plasma samples. Furthermore, we size-fractionated ccfDNA from the plasma of pregnant women and verified the prevalence of fetal ccfDNA in all fractions.
Kostoglou, M; Varka, E-M; Kalogianni, E P; Karapantsios, T D
2010-09-01
Destabilization of hexane-in-water emulsions is studied by a continuous, non-intrusive, multi-probe, electrical conductance technique. Emulsions made of different oil fractions and surfactant (C(10)E(5)) concentrations are prepared in a stirred vessel using a Rushton turbine to break and agitate droplets. During the separation of phases, electrical signals from pairs of ring electrodes mounted at different heights onto the vessel wall, are recorded. The evolution of the local water volume fractions at the locations of the electrodes is estimated from these signals. It is found that in the absence of coalescence, the water fraction evolution curve from the bottom pair of electrodes is compatible with a bidisperse oil droplet size distribution. The sizes and volume fractions of the two droplet modes are estimated using theoretical arguments. The electrically determined droplet sizes are compared to data from microscopy image analysis. Results are discussed in detail. Copyright 2010 Elsevier Inc. All rights reserved.
Son, Jino; Lee, Yun-Sik; Lee, Sung-Eun; Shin, Key-Il; Cho, Kijong
2017-01-01
Bioavailability and toxicity of Cu, Mn, and Ni in Paronychiurus kimi were investigated after 28 days of exposure to OECD artificial soil spiked with these metals. Uptake and effect of Cu, Mn, and Ni on the reproduction of P. kimi were related to different metal fractions (water-soluble, 0.01 M CaCl 2 -extractable or porewater metal concentrations). Cu and Mn concentrations in P. kimi increased with increasing Cu and Mn concentrations in the soil, while Ni contents in P. kimi reached a plateau at a concentration higher than 200 mg/kg in soil. Both uptake and juvenile production related well to different metal fractions, suggesting that these metal fractions are suitable for assessing bioavailability and toxicity of metals in P. kimi. When toxicity for reproduction was compared, as reflected by EC 50 values, the order of metal toxicity varied depending upon how exposure concentration was expressed. Moreover, the results of proteomic analysis showed that several proteins involved in the immune system, neuronal outgrowth, and metal ion binding were up-regulated in P. kimi following short-term (7 days) exposure to sublethal level (corresponding to 50% of the EC 50 ) of Cu, Mn, or Ni, respectively. This suggests that the ecotoxicoproteomic approach seems to be a promising tool for early exposure warnings below which significant adverse effects are unlikely to occur. This study demonstrated that a combination of chemical and biological measures can provide information about metal bioavailability and toxicity to which P. kimi has been exposed.
Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison
Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying
2012-01-01
AIM: To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage. PMID:23066322
Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison.
Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying
2012-10-07
To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs. 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs. 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs. 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.
Mangas, I; Vilanova, E; Benabent, M; Estévez, J
2014-02-10
Low level exposure to organophosphorus esters (OPs) may cause long-term neurological effects and affect specific cognition domains in experimental animals and humans. Action on known targets cannot explain most of these effects by. Soluble carboxylesterases (EC 3.1.1.1) of chicken brain have been kinetically discriminated using paraoxon, mipafox and phenylmethyl sulfonylfluoride as inhibitors and phenyl valerate as a substrate. Three different enzymatic components were discriminated and called Eα, Eβ and Eγ. In this work, a fractionation procedure with various steps was developed using protein native separation methods by preparative HPLC. Gel permeation chromatography followed by ion exchange chromatography allowed enriched fractions with different kinetic behaviors. The soluble chicken brain fraction was fractionated, while total esterase activity, proteins and enzymatic components Eα, Eβ and Eγ were monitored in each subfraction. After the analysis, 13 fractions were pooled and conserved. Preincubation of the soluble chicken brain fraction of with the organophosphorus mipafox gave rise to a major change in the ion exchange chromatography profile, but not in the molecular exchanged chromatography profile, which suggest that mipafox permanently modifies the ionic properties of numerous proteins. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Determination of bilirubin glucuronide and assay of glucuronyltransferase with bilirubin as acceptor
Van Roy, F. P.; Heirwegh, K. P. M.
1968-01-01
1. Conjugated bilirubin is conveniently determined by coupling with the diazonium salt of ethyl anthranilate. 2. This method has been used in the development of assays for UDP-glucuronyltransferase (EC 2.4.1.17), with bilirubin as substrate, in rat liver homogenates, microsomal preparations and partly purified fractions. 3. Chromatographic analysis suggests that bilirubin monoglucuronide is the product of the enzyme systems studied. PMID:5660631
2012-01-01
Background The aim of this study was to screen various solvent extracts of whole plant of Torilis leptophylla to display potent antioxidant activity in vitro and in vivo, total phenolic and flavonoid contents in order to find possible sources for future novel antioxidants in food and pharmaceutical formulations. Material and methods A detailed study was performed on the antioxidant activity of the methanol extract of whole plant of Torilis leptophylla (TLM) and its derived fractions {n-hexane (TLH), chloroform (TLC) ethyl acetate (TLE) n-butanol (TLB) and residual aqueous fraction (TLA)} by in vitro chemical analyses and carbon tetrachloride (CCl4) induced hepatic injuries (lipid peroxidation and glutathione contents) in male Sprague-Dawley rat. The total yield, total phenolic (TPC) and total flavonoid contents (TFC) of all the fractions were also determined. TLM was also subjected to preliminary phytochemical screening test for various constituents. Results The total phenolic contents (TPC) (121.9±3.1 mg GAE/g extract) of TLM while total flavonoid contents (TFC) of TLE (60.9 ±2.2 mg RTE/g extract) were found significantly higher as compared to other solvent fractions. Phytochemical screening of TLM revealed the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. The EC50 values based on the DPPH (41.0±1 μg/ml), ABTS (10.0±0.9 μg/ml) and phosphomolybdate (10.7±2 μg/ml) for TLB, hydroxyl radicals (8.0±1 μg/ml) for TLC, superoxide radicals (57.0±0.3 μg/ml) for TLM and hydrogen peroxide radicals (68.0±2 μg/ml) for TLE were generally lower showing potential antioxidant properties. A significant but marginal positive correlation was found between TPC and EC50 values for DPPH, hydroxyl, phosphomolybdate and ABTS, whereas another weak and positive correlation was determined between TFC and EC50 values for superoxide anion and hydroxyl radicals. Results of in vivo experiment revealed that administration of CCl4 caused a significant increase in lipid peroxidation (TBARS) while decrease in GSH contents of liver. In contrast, TLM (200 mg/kg bw) and silymarin (50 mg/kg bw) co-treatment effectively prevented these alterations and maintained the antioxidant status. Conclusion Data from present results revealed that Torilis leptophylla act as an antioxidant agent due to its free radical scavenging and cytoprotective activity. PMID:23153304
Rolland, N; Droux, M; Douce, R
1992-03-01
The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs.
Rolland, Norbert; Droux, Michel; Douce, Roland
1992-01-01
The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs. ImagesFigure 1 PMID:16668766
NASA Astrophysics Data System (ADS)
Soltani, Mohsen; Mauder, Matthias; Laux, Patrick; Kunstmann, Harald
2017-07-01
The temporal multiscale variability of the surface heat fluxes is assessed by the analysis of the turbulent heat and moisture fluxes using the eddy covariance (EC) technique at the TERrestrial ENvironmental Observatories (TERENO) prealpine region. The fast and slow response variables from three EC sites located at Fendt, Rottenbuch, and Graswang are gathered for the period of 2013 to 2014. Here, the main goals are to characterize the multiscale variations and drivers of the turbulent fluxes, as well as to quantify the energy balance closure (EBC) and analyze the possible reasons for the lack of EBC at the EC sites. To achieve these goals, we conducted a principal component analysis (PCA) and a climatological turbulent flux footprint analysis. The results show significant differences in the mean diurnal variations of the sensible heat (H) and latent heat (LE) fluxes, because of variations in the solar radiation, precipitation patterns, soil moisture, and the vegetation fraction throughout the year. LE was the main consumer of net radiation. Based on the first principal component (PC1), the radiation and temperature components with a total mean contribution of 29.5 and 41.3%, respectively, were found to be the main drivers of the turbulent fluxes at the study EC sites. A general lack of EBC is observed, where the energy imbalance values amount 35, 44, and 35% at the Fendt, Rottenbuch, and Graswang sites, respectively. An average energy balance ratio (EBR) of 0.65 is obtained in the region. The best closure occurred in the afternoon peaking shortly before sunset with a different pattern and intensity between the study sites. The size and shape of the annual mean half-hourly turbulent flux footprint climatology was analyzed. On average, 80% of the flux footprint was emitted from a radius of approximately 250 m around the EC stations. Moreover, the overall shape of the flux footprints was in good agreement with the prevailing wind direction for all three TERENO EC sites.
Singh, Savita; Zheng, Yun; Jagadeeswaran, Guru; Ebron, Jey Sabith; Sikand, Kavleen; Gupta, Sanjay; Sunker, Ramanjulu; Shukla, Girish C
2016-02-28
Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells. Over 50 million reads were obtained for PrEC in which 860,468 were unique sequences. Similarly, nearly 76 million reads for PrSC were obtained in which over 1 million were unique reads. Expression of many miRNAs of broadly conserved and poorly conserved miRNA families were identified. Sixteen highly expressed miRNAs with significant change in expression in PrSC than PrEC were further analyzed in silico. ConsensusPathDB showed the target genes of these miRNAs were significantly involved in adherence junction, cell adhesion, EGRF, TGF-β and androgen signaling. Let-7 family of tumor-suppressor miRNAs expression was highly pervasive in both, PrEC and PrSC cells. In addition, we have also identified several miRNAs that are unique to PrEC or PrSC cells and their predicted putative targets are a group of transcription factors. This study provides perspective on the miRNA expression in PrEC and PrSC, and reveals a global trend in miRNA interactome. We conclude that the most abundant miRNAs are potential regulators of development and differentiation of the prostate gland by targeting a set of growth factors. Additionally, high level expression of the most members of let-7 family miRNAs suggests their role in the fine tuning of the growth and proliferation of prostate epithelial and stromal cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Robert, Michael A; Kleeman, Michael J; Jakober, Christopher A
2007-12-01
Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load condition.
NASA Astrophysics Data System (ADS)
Blanchard, C. L.; Hidy, G. M.; Tanenbaum, S.; Edgerton, E. S.
2011-02-01
Carbonaceous compounds constitute a major fraction of the fine particle mass at locations throughout North America; much of the condensed-phase organic carbon (OC) is produced in the atmosphere from NMOC reactions as "secondary" OC (SOC). Ten years of particulate carbon and speciated non-methane organic compound (NMOC) data combined with other measurements from Southeastern Aerosol Research and Characterization (SEARCH) and other sites provide insight into the association between elemental carbon (EC), OC and NMOCs. Data are analyzed to characterize the OC and SOC contrasts between urban Atlanta, Georgia, and nearby non-urban conditions in the Southeast. Analysis of the monitoring record indicates that the mean Atlanta urban excess of total carbon (TC) is 2.1-2.8 μg m -3. The OC/EC ratio of the Atlanta urban excess is in the range 1.3 to 1.8, consistent with OC/EC ratios observed in motor vehicle emissions and a fossil carbon source of urban excess TC. Carbon isotope analysis of a subset of particle samples demonstrates that the urban excess is mainly fossil in origin, even though the majority of the TC is modern at both urban and non-urban sites. Temperature-dependent partitioning of OC between gas and condensed phases cannot explain the observed diurnal and seasonal variations of OC/CO, EC/CO, and OC/EC ratios. Alternatively, a hypothesis involving vertical mixing of OC-enriched air from aloft is supported by the seasonal and diurnal OC, isopentane, aromatic and isoprene observations at the ground. A statistical model is applied to indicate the relative significance of aerometric factors affecting OC and EC concentrations, including meteorological and pollutant associations. The model results demonstrate strong linkages between fine particle carbon and pollutant indicators of source emissions compared with meteorological factors; the model results show weaker dependence of OC on meteorological factors than is the case for ozone (O 3) concentrations.
Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep
2017-01-01
To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume, number of fractions and volume of brain receiving atleast 8 Gy of radiation. DFGKRS is feasible for large AVMs with a fair nidus obliteration rate and acceptable toxicity. Cumulative prescription dose seems to be the most significant independent predictor for outcome following DFGKRS with 29-30 Gy resulting in a fair nidus obliteration with least adverse events.
NASA Astrophysics Data System (ADS)
Jayarathne, Thilina; Stockwell, Chelsea E.; Gilbert, Ashley A.; Daugherty, Kaitlyn; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Yokelson, Robert J.; Stone, Elizabeth A.
2018-02-01
Fine particulate matter (PM2.5) was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE) values of 0.725-0.833. PM emissions were determined and chemically characterized for elemental carbon (EC), organic carbon (OC), water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs) ranged from 6.0 to 29.6 g kg-1 with an average of 17.3 ± 6.0 g kg-1. EC was detected only in 15 plumes and comprised ∼ 1 % of PM mass. Together, OC (72 %), EC (1 %), water-soluble ions (1 %), and metal oxides (0.1 %) comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N) an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %), primarily water-insoluble OC (84 ± 11 %C), low EC mass fractions (1 %), vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C) with a carbon preference index of 1.2-1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2-11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016), it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to improve the accuracy of the representation of Indonesian peat burning in emission inventories and receptor-based models.
Li, Xiadong; Wang, Lu; Wang, Jiahao; Han, Xu; Xia, Bing; Wu, Shixiu; Hu, Weigang
2017-01-01
This study aimed to design automated volumetric-modulated arc therapy (VMAT) plans in Pinnacle auto-planning and compare it with manual plans for patients with lower thoracic esophageal cancer (EC). Thirty patients with lower thoracic EC were randomly selected for replanning VMAT plans using auto-planning in Pinnacle treatment planning system (TPS) version 9.10. Historical plans of these patients were then compared. Dose-volume histogram (DVH) statistics, dose uniformity, and dose homogeneity were analyzed to evaluate treatment plans. Auto-planning was superior in terms of conformity index (CI) and homogeneity index (HI) for planning target volume (PTV), significantly improving 8.2% (p = 0.013) and 25% (p = 0.007) compared with manual planning, respectively, and decreasing dose of heart and liver irradiated by 20 to 40 Gy and 5 to 30 Gy, respectively (p < 0.05). Meanwhile, auto-planning further reduced the maximum dose (D max ) of spinal cord by 6.9 Gy compared with manual planning (p = 0.000). Additionally, manual planning showed the significantly lower low-dose volume (V 5 ) for the lung (p = 0.005). For auto-planning, the V 5 of the lung was significantly associated with the relative volume index (the volume ratio of PTV to the lung), and the correlation coefficient (R) and p-value were 0.994 and 0.000. Pinnacle auto-planning achieved superior target conformity and homogeneity and similar target coverage compared with historical manual planning. Most of organs at risk (OARs) sparing was significantly improved by auto-planning except for the V 5 of the lung, and the low dose distribution was highly associated with PTV volume and lung volume in auto-planning. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.
2000-09-01
We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.
Rodríguez, F A
2000-06-01
This study compared the cardiorespiratory response of trained swimmers to 400-m unimpeded front crawl swimming (SW), treadmill running (TR) and ergometer cycling (EC) maximal exercise tests, and evaluated the validity and specificity of a method to measure maximal aerobic power in swimming. Two series of experiments were conducted. In series A (n=15), comparisons were made between VO2peak and other cardiorespiratory variables in three maximal tests: after 400-m SW, and during incremental TR and EC. In series B, VO2 peak and related variables were measured after SW and during EC (n=33). No significant differences were observed between VO2peak and VE in the three modes of exercise, although SW values tended to be higher. After SW, maximal ventilatory response was characterized by higher tidal volumes (VT) and lower respiratory rates (fR) as compared with TR and EC. The highest heart rate values (fH) were also observed in TR, followed by EC and SW. In series B, no significant differences were observed either in peak VO2 or VE, but fH was also lower in SW. A maximal 400-m unimpeded freestyle SW test yields essentially equal or nonsignificantly higher peak VO2 and VE values than during maximal TR or EC tests in trained swimmers. The specific maximal cardiorespiratory response to the SW test is characterized by higher VT, lower fR, and lower fH. Breath-by-breath measurements during the immediate recovery after a 400-m voluntary maximal swim is proposed as a valid and specific test for directly measuring maximal metabolic parameters and evaluating specific maximal aerobic power in swimming.
Characterization of carbonaceous species of ambient PM2.5 in Beijing, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fumo Yang; Kebin He; Yongliang Ma
2005-07-01
One-week integrated fine particulate matter (i.e., particles {lt}2.5 {mu}m in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 {mu}g m{sup -3}, much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weeklymore » variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the maximum weekly carbonaceous concentration the week of November 18-25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330-0.479. Estimated SOC accounted for {approximately}38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations. Main carbonaceous sources are from coal combustion, vehicles and cooking. 44 refs., 5 figs., 2 tabs.« less
Goodfellow, Paul J; Billingsley, Caroline C; Lankes, Heather A; Ali, Shamshad; Cohn, David E; Broaddus, Russell J; Ramirez, Nilsa; Pritchard, Colin C; Hampel, Heather; Chassen, Alexis S; Simmons, Luke V; Schmidt, Amy P; Gao, Feng; Brinton, Louise A; Backes, Floor; Landrum, Lisa M; Geller, Melissa A; DiSilvestro, Paul A; Pearl, Michael L; Lele, Shashikant B; Powell, Matthew A; Zaino, Richard J; Mutch, David
2015-12-20
The best screening practice for Lynch syndrome (LS) in endometrial cancer (EC) remains unknown. We sought to determine whether tumor microsatellite instability (MSI) typing along with immunohistochemistry (IHC) and MLH1 methylation analysis can help identify women with LS. ECs from GOG210 patients were assessed for MSI, MLH1 methylation, and mismatch repair (MMR) protein expression. Each tumor was classified as having normal MMR, defective MMR associated with MLH1 methylation, or probable MMR mutation (ie, defective MMR but no methylation). Cancer family history and demographic and clinical features were compared for the three groups. Lynch mutation testing was performed for a subset of women. Analysis of 1,002 ECs suggested possible MMR mutation in 11.8% of tumors. The number of patients with a family history suggestive of LS was highest among women whose tumors were classified as probable MMR mutation (P = .001). Lynch mutations were identified in 41% of patient cases classified as probable mutation (21 of 51 tested). One of the MSH6 Lynch mutations was identified in a patient whose tumor had intact MSH6 expression. Age at diagnosis was younger for mutation carriers than noncarriers (54.3 v 62.3 years; P < .01), with five carriers diagnosed at age > 60 years. Combined MSI, methylation, and IHC analysis may prove useful in Lynch screening in EC. Twenty-four percent of mutation carriers presented with ECs at age > 60 years, and one carrier had an MSI-positive tumor with no IHC defect. Restricting Lynch testing to women diagnosed at age < 60 years or to women with IHC defects could result in missing a substantial fraction of genetic disease. © 2015 by American Society of Clinical Oncology.
Goodfellow, Paul J.; Billingsley, Caroline C.; Lankes, Heather A.; Ali, Shamshad; Cohn, David E.; Broaddus, Russell J.; Ramirez, Nilsa; Pritchard, Colin C.; Hampel, Heather; Chassen, Alexis S.; Simmons, Luke V.; Schmidt, Amy P.; Gao, Feng; Brinton, Louise A.; Backes, Floor; Landrum, Lisa M.; Geller, Melissa A.; DiSilvestro, Paul A.; Pearl, Michael L.; Lele, Shashikant B.; Powell, Matthew A.; Zaino, Richard J.; Mutch, David
2015-01-01
Purpose The best screening practice for Lynch syndrome (LS) in endometrial cancer (EC) remains unknown. We sought to determine whether tumor microsatellite instability (MSI) typing along with immunohistochemistry (IHC) and MLH1 methylation analysis can help identify women with LS. Patients and Methods ECs from GOG210 patients were assessed for MSI, MLH1 methylation, and mismatch repair (MMR) protein expression. Each tumor was classified as having normal MMR, defective MMR associated with MLH1 methylation, or probable MMR mutation (ie, defective MMR but no methylation). Cancer family history and demographic and clinical features were compared for the three groups. Lynch mutation testing was performed for a subset of women. Results Analysis of 1,002 ECs suggested possible MMR mutation in 11.8% of tumors. The number of patients with a family history suggestive of LS was highest among women whose tumors were classified as probable MMR mutation (P = .001). Lynch mutations were identified in 41% of patient cases classified as probable mutation (21 of 51 tested). One of the MSH6 Lynch mutations was identified in a patient whose tumor had intact MSH6 expression. Age at diagnosis was younger for mutation carriers than noncarriers (54.3 v 62.3 years; P < .01), with five carriers diagnosed at age > 60 years. Conclusion Combined MSI, methylation, and IHC analysis may prove useful in Lynch screening in EC. Twenty-four percent of mutation carriers presented with ECs at age > 60 years, and one carrier had an MSI-positive tumor with no IHC defect. Restricting Lynch testing to women diagnosed at age < 60 years or to women with IHC defects could result in missing a substantial fraction of genetic disease. PMID:26552419
Characterization of carbonaceous species of ambient PM2.5 in Beijing, China.
Yang, Fumo; He, Kebin; Ma, Yongliang; Zhang, Qiang; Cadle, Steven H; Chan, Tai; Mulawa, Patricia A
2005-07-01
One-week integrated fine particulate matter (i.e., particles <2.5 microm in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 microg m(-3), much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weekly variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the max weekly carbonaceous concentration the week of November 18-25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330-0.479. Estimated SOC accounted for approximately 38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations.
Liu, Xiao-Feng; Peng, Lin; Bai, Hui-Ling; Mu, Ling; Song, Chong-Fang
2013-08-01
In order to investigate the characteristic of organic carbon (OC) and elemental carbon (EC) in particles on the top of coke oven and in the plant area, the particle matter samples of five size fraction including < or = 1.4 microm, 1.4-2.1 microm, 2.1-4.2 microm, 4.2-10.2 microm and > or = 10.2 microm were collected using Staplex234 cascade impactor, and OC and EC were analyzed by Elementar Analysensysteme GmbH vario EL cube. The mass concentrations of OC and EC associated with TSP on the top of coke oven were 291.6 microg x m(-3) and 255.1 microg x m(-3), while those in the plant area were 377.8 microg x m(-3) and 151.7 microg x m(-3). The mass concentration of secondary organic carbon (SOC) in particles with size of < or = 1.4 microm was 147.3 microg x m(-3) in the plant area. The value of OC/EC in particles less than 2.1 microm was 1.3 on the top of coke oven. The mass concentration of EC in TSP in the plant area was lower than that on the top of coke oven, while the mass concentration of OC in the plant area was significantly higher than that on the top of coke oven. The mass concentrations of OC and EC associated with particles less than 10.2 microm in the plant area were far higher than those in the atmosphere of area where the coke plant is located. The OC and EC in particles, which were collected both on the top of coke oven and in the plant area, were mainly enriched in fine particles. The size distribution of OC showed a clear distinction between the coke oven top and the plant area, which revealed that OC in the plant area was more preferably enriched in fine particles than that on the top of coke oven, and the same size distribution of EC was found on the top of coke oven and in the plant area. In the plant area, the mass concentration of SOC and the contribution of SOC to OC increased with the decreasing diameter in particles with diameter of less than 10.2 microm.
1982-02-01
of i, nd to (! Lvel op an awareness of the T&E roles and responsioi Ii ties Viir~dte various Air Force organizations involved in the T&EC process... mathematical models to determine controller messages and issue controller messages using computer generated speech. AUTOMATED PERFORMANCE ALERTS: Signals
Comparative stereology of the mouse and finch left ventricle.
Bossen, E H; Sommer, J R; Waugh, R A
1978-01-01
The volume fractions and surface per unit cell volume of some subcellular components of the left ventricles of the finch and mouse were quantitated by stereologic techniques. These species were chosen for study because they have similar heart rates but differ morphologically in some respects: fiber diameter is larger in the mouse; the mouse has transverse tubules while the finch does not; and the finch has a form of junctional sarcoplasmic reticulum (JSR), extended JSR (EJSR), located in the cell interior with no direct plasmalemmal contact, while the mouse interior JSR (IJSR) abuts on transverse tubules. Our data show that the volume fraction (Vv) and surface area per unit cell volume (Sv) of total SR, and free SR (FSR) are similar. The volume fractions of mitochondria, myofibrils, and total junctional SR were also similar. The Sv of the cell surface of the finch was similar to the Sv of the cell surface of the mouse (Sv-plasmalemma plus Sv of the transverse tubules). The principal difference was in the distribution of JSR; the mouse peripheral JSR (PJSR) represents only 9% of the total JSR, while the finch PJSR accounts for 24% of the bird's JSR. The similar volume fractions of total junctional SR (PJSR + EJSR in the finch; PJSR + IJSR in the mouse) suggest that the EJSR is not an embryologic remnant, and raises the possibility that some function of JSR is independent of plasmalemmal contact.
Pulmonary functions of narghile smokers compared to cigarette smokers: a case-control study.
Ben Saad, Helmi; Khemiss, Mehdi; Nhari, Saida; Ben Essghaier, Mejda; Rouatbi, Sonia
2013-01-01
Studies of the lung function profiles of exclusive narghile smokers (ENS) are few, have some methodological limits, and present contradictory conclusions. The present study aimed to compare the plethysmographic profiles of ENS with age- and height-matched exclusive cigarette smokers (ECS). Males aged 35-60 living in Sousse, Tunisia, who have been smoking narghile exclusively for more than 10 narghile-years (n = 36) or cigarettes exclusively for more than 10 pack-years (n = 106) were recruited to participate in this case-control study. The anthropometric and plethysmographic data were measured according to international recommendations using a body plethysmograph (ZAN 500 Body II, Meβgreräte GmbH, Germany). Large-airway-obstructive-ventilatory-defect (LAOVD) was defined as: first second forced expiratory volume/forced vital capacity (FEV1/FVC) below the lower-limit-of-normal (LLN). Restrictive-ventilatory-defect (RVD) was defined as total lung capacity < LLN. Lung hyperinflation was defined as residual volume > upper-limit-of-normal. Student t-test and χ(2) test were used to compare plethysmographic data and profiles of the two groups. The subjects in the ENS and ECS groups are well matched in age (45±7 vs. 47±5 years) and height (1.73±0.06 vs. 1.72±0.06 m) and used similar quantities of tobacco (36±22 narghile-years vs. 35±19 pack-years). Compared to the ENS group, the ECS group had significantly lower FEV1 (84±12 vs. 60±21%), FVC (90±12 vs. 76±18%), and FEV1/FVC (99±7 vs. 83±17%). The two groups had similar percentages of RVD (31 vs. 36%), while the ECS group had a significantly higher percentage of LAOVD (8 vs. 58%) and lung hyperinflation (36 vs.57%). Chronic exclusive narghile smoking has less adverse effects on pulmonary function tests than chronic exclusive cigarette smoking.
Pulmonary functions of narghile smokers compared to cigarette smokers: a case-control study.
Saad, Helmi Ben; Khemiss, Mehdi; Nhari, Saida; Essghaier, Mejda Ben; Rouatbi, Sonia
2013-01-01
Background Studies of the lung function profiles of exclusive narghile smokers (ENS) are few, have some methodological limits, and present contradictory conclusions. The present study aimed to compare the plethysmographic profiles of ENS with age- and height-matched exclusive cigarette smokers (ECS). Methods Males aged 35-60 living in Sousse, Tunisia, who have been smoking narghile exclusively for more than 10 narghile-years (n = 36) or cigarettes exclusively for more than 10 pack-years (n = 106) were recruited to participate in this case-control study. The anthropometric and plethysmographic data were measured according to international recommendations using a body plethysmograph (ZAN 500 Body II, Meβgreräte GmbH, Germany). Large-airway-obstructive-ventilatory-defect (LAOVD) was defined as: first second forced expiratory volume/forced vital capacity (FEV 1 /FVC) below the lower-limit-of-normal (LLN). Restrictive-ventilatory-defect (RVD) was defined as total lung capacity < LLN. Lung hyperinflation was defined as residual volume > upper-limit-of-normal. Student t-test and χ 2 test were used to compare plethysmographic data and profiles of the two groups. Results The subjects in the ENS and ECS groups are well matched in age (45±7 vs. 47±5 years) and height (1.73±0.06 vs. 1.72±0.06 m) and used similar quantities of tobacco (36±22 narghile-years vs. 35±19 pack-years). Compared to the ENS group, the ECS group had significantly lower FEV 1 (84±12 vs. 60±21%), FVC (90±12 vs. 76±18%), and FEV 1 /FVC (99±7 vs. 83±17%). The two groups had similar percentages of RVD (31 vs. 36%), while the ECS group had a significantly higher percentage of LAOVD (8 vs. 58%) and lung hyperinflation (36 vs.57%). Conclusion Chronic exclusive narghile smoking has less adverse effects on pulmonary function tests than chronic exclusive cigarette smoking.
Influence of root-bed size on the response of tobacco to elevated CO2 as mediated by cytokinins
Schaz, Ulrike; Düll, Barbara; Reinbothe, Christiane; Beck, Erwin
2014-01-01
The extent of growth stimulation of C3 plants by elevated CO2 is modulated by environmental factors. Under optimized environmental conditions (high light, continuous water and nutrient supply, and others), we analysed the effect of an elevated CO2 atmosphere (700 ppm, EC) and the importance of root-bed size on the growth of tobacco. Biomass production was consistently higher under EC. However, the stimulation was overridden by root-bed volumes that restricted root growth. Maximum growth and biomass production were obtained at a root bed of 15 L at ambient and elevated CO2 concentrations. Starting with seed germination, the plants were strictly maintained under ambient or elevated CO2 until flowering. Thus, the well-known acclimation effect of growth to enhanced CO2 did not occur. The relative growth rates of EC plants exceeded those of ambient-CO2 plants only during the initial phases of germination and seedling establishment. This was sufficient for a persistently higher absolute biomass production by EC plants in non-limiting root-bed volumes. Both the size of the root bed and the CO2 concentration influenced the quantitative cytokinin patterns, particularly in the meristematic tissues of shoots, but to a smaller extent in stems, leaves and roots. In spite of the generally low cytokinin concentrations in roots, the amounts of cytokinins moving from the root to the shoot were substantially higher in high-CO2 plants. Because the cytokinin patterns of the (xylem) fluid in the stems did not match those of the shoot meristems, it is assumed that cytokinins as long-distance signals from the roots stimulate meristematic activity in the shoot apex and the sink leaves. Subsequently, the meristems are able to synthesize those phytohormones that are required for the cell cycle. Root-borne cytokinins entering the shoot appear to be one of the major control points for the integration of various environmental cues into one signal for optimized growth. PMID:24790131
Population pharmacokinetics and pharmacodynamics of bivalirudin in young healthy Chinese volunteers.
Zhang, Dong-mei; Wang, Kun; Zhao, Xia; Li, Yun-fei; Zheng, Qing-shan; Wang, Zi-ning; Cui, Yi-min
2012-11-01
To investigate the population pharmacokinetics (PK) and pharmacodynamics (PD) of bivalirudin, a synthetic bivalent direct thrombin inhibitor, in young healthy Chinese subjects. Thirty-six young healthy volunteers were randomly assigned into 4 groups received bivalirudin 0.5 mg/kg, 0.75 mg/kg, and 1.05 mg/kg intravenous bolus, 0.75 mg/kg intravenous bolus followed by 1.75 mg/kg intravenous infusion per hour for 4 h. Blood samples were collected to measure bivalirudin plasma concentration and activated clotting time (ACT). Population PK-PD analysis was performed using the nonlinear mixed-effects model software NONMEM. The final models were validated with bootstrap and prediction-corrected visual predictive check (pcVPC) approaches. The final PK model was a two-compartment model without covariates. The typical PK population values of clearance (CL), apparent distribution volume of the central-compartment (V(1)), inter-compartmental clearance (Q) and apparent distribution volume of the peripheral compartment (V(2)) were 0.323 L·h(-1)·kg(-1), 0.086 L/kg, 0.0957 L·h(-1)·kg(-1), and 0.0554 L/kg, respectively. The inter-individual variabilities of these parameters were 14.8%, 24.2%, fixed to 0% and 15.6%, respectively. The final PK-PD model was a sigmoid E(max) model without the Hill coefficient. In this model, a covariate, red blood cell count (RBC(*)), had a significant effect on the EC(50) value. The typical PD population values of maximum effect (E(max)), EC(50), baseline ACT value (E(0)) and the coefficient of RBC(*) on EC(50) were 318 s, 2.44 mg/L, 134 s and 1.70, respectively. The inter-individual variabilities of E(max), EC(50), and E(0) were 6.80%, 46.4%, and 4.10%, respectively. Population PK-PD models of bivalirudin in healthy young Chinese subjects have been developed, which may provide a reference for future use of bivalirudin in China.
Enteropathogen infections in canine puppies: (Co-)occurrence, clinical relevance and risk factors.
Duijvestijn, Mirjam; Mughini-Gras, Lapo; Schuurman, Nancy; Schijf, Wim; Wagenaar, Jaap A; Egberink, Herman
2016-11-15
Laboratory confirmation of the causative agent(s) of diarrhoea in puppies may allow for appropriate treatment. The presence of potential pathogens however, does not prove a causal relationship with diarrhoea. The aim of this study was to identify specific enteropathogens in ≤12 month old puppies with and without acute diarrhoea and to assess their associations with clinical signs, putative risk factors and pathogen co-occurrence. Faecal samples from puppies with (n=113) and without (n=56) acute diarrhoea were collected and screened for Canine Parvovirus (CPV), Canine Coronavirus (CCoV), Salmonella spp., Campylobacter spp., Clostridium perfringens, Clostridium difficile, β-hemolytic Eschericha coli (hEC), Giardia spp., Toxocara spp., Cystoisospora spp., and Cyniclomyces guttulatus. One or more pathogens were detected in 86.5% of diarrhoeic puppies and in 77.8% of asymptomatic puppies. Significant positive associations were found between CPV and CCoV, CPV and Cystoisospora spp., Toxocara spp. and hEC, Giardia spp. and C. guttulatus. Only CPV and CCoV were significantly associated with diarrhoea, hEC with a subset of puppies that had diarrhoea and severe clinical signs. CPV was more prevalent in puppies under 3 months of age. Puppies from high-volume dog breeders were significantly at increased risk for CPV (OR 4.20), CCoV (OR 4.50) and Cystoisospora spp. (OR 3.60). CCoV occurred significantly more often in winter (OR 3.35), and CPV in winter (OR 3.78) and spring (OR 4.72) as compared to summer. We conclude that routine screening for CPV, CCoV and hEC is recommended in puppies with acute diarrhoea, especially if they are under 3 months of age and originate from high-volume dog breeders. Routine screening for other pathogens may lead to less conclusive results. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Lieder, Ernestine; Weiler, Markus; Blume, Theresa
2017-04-01
Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing drainage area. Combining spatially distributed time series of stream temperatures and EC with information about geology, landscape and climate provides insight into the underlying hydrological processes and allows for the identification of thermally sensitive regions and reaches.
Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W
2017-02-01
The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer conditions and complex dumpsite conditions.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Kar, Manoranjan
2018-05-01
Novel ceramic-polymer nanocomposites have great potential for electrical energy storage applications due to its high energy storage density. In the present work, BNT and PVDF based flexible polymer nanocomposites (BNT-PVDF) with different volume fraction (ϕ = 0, 5, 10, 15) were fabricated by solution casting method. Enhancement in beta phase of PVDF polymer matrix with the volume fraction (ϕ = 5, 10, 15) of BNT has been confirmed by X-ray diffraction (XRD) technique as well as Fourier transform infrared (FTIR) spectroscopy analysis. The enhancement of β phase increases as compared to (α) phases with volume fraction (ϕ) of nanofiller (BNT) in the matrix (PVDF) due to internal stress at the interface as well as structural modification of PVDF matrix. BNT-PVDF nanocomposites (with ϕ=10) showed a high dielectric constant (ɛr ≈ 78) relative to pure PVDF (ɛr ≈ 10) at 100 Hz. In addition to this, it exhibits relaxor type ferroelectric behavior with energy storage efficiency up to 77% for the volume fraction (ϕ) of 10.
Twinning and martensite in a 304 austenitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yongfeng; Li, Xi; Sun, Xin
2012-08-30
The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyondmore » that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Lavender, Curt
2015-05-08
Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...
2017-11-08
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Roshani, G H; Karami, A; Khazaei, A; Olfateh, A; Nazemi, E; Omidi, M
2018-05-17
Gamma ray source has very important role in precision of multi-phase flow metering. In this study, different combination of gamma ray sources (( 133 Ba- 137 Cs), ( 133 Ba- 60 Co), ( 241 Am- 137 Cs), ( 241 Am- 60 Co), ( 133 Ba- 241 Am) and ( 60 Co- 137 Cs)) were investigated in order to optimize the three-phase flow meter. Three phases were water, oil and gas and the regime was considered annular. The required data was numerically generated using MCNP-X code which is a Monte-Carlo code. Indeed, the present study devotes to forecast the volume fractions in the annular three-phase flow, based on a multi energy metering system including various radiation sources and also one NaI detector, using a hybrid model of artificial neural network and Jaya Optimization algorithm. Since the summation of volume fractions is constant, a constraint modeling problem exists, meaning that the hybrid model must forecast only two volume fractions. Six hybrid models associated with the number of used radiation sources are designed. The models are employed to forecast the gas and water volume fractions. The next step is to train the hybrid models based on numerically obtained data. The results show that, the best forecast results are obtained for the gas and water volume fractions of the system including the ( 241 Am- 137 Cs) as the radiation source. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishibashi, Hidemi
2009-03-01
Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.
Kälin, Pascal S; Crawford, Rebecca J; Marcon, Magda; Manoliu, Andrei; Bouaicha, Samy; Fischer, Michael A; Ulbrich, Erika J
2018-04-23
We aimed to provide mean values for fat-fraction and volume for full-length bilateral rotator cuff and deltoid muscles in asymptomatic adults selected on the basis of their good musculoskeletal and systemic health, and to understand the influence of gender, age, and arm dominance. Seventy-six volunteers aged 20 to 60 years who were screened for normal BMI and high general health were included in the study. MRI was performed at 3 Tesla using three-point DIXON sequences. Volume and fat-signal fraction of the rotator cuff muscles and the deltoid muscle were determined with semi-automated segmentation of entire muscle lengths. Differences according to age, gender, and handedness per muscle were evaluated. Fat-signal fractions were comparable between genders (mean ± 2 SD, 95% CI, women 7.0 ± 3.0; 6.8-7.2%, men 6.8 ± 2.7; 6.7-7.0%) but did not show convincing changes with age. Higher shoulder muscle volume and lower fat-signal fraction in the dominant arm were shown for teres minor and deltoid (p < 0.01) with similar trends shown for the other rotator cuff muscles. Bilateral fat-signal fractions and volumes based on entire length shoulder muscles in asymptomatic 20-60 year old adults may provide reference for clinicians. Differences shown according to arm dominance should be considered and may rationalize the need for bilateral imaging in determining appropriate management.
Analyzing near infrared scattering from human skin to monitor changes in hematocrit
NASA Astrophysics Data System (ADS)
Chaiken, Joseph; Deng, Bin; Goodisman, Jerry; Shaheen, George; Bussjager, R. J.
2012-01-01
The leading preventable cause of death, world-wide, civilian or military, for all people between the ages of 18-45 is undetected internal hemorrhage. Autonomic compensation mechanisms mask changes such as e.g. hematocrit fluctuations that could give early warning if only they could be monitored continuously with reasonable degrees of precision and relative accuracy. Probing tissue with near infrared radiation (NIR) simultaneously produces remitted fluorescence and Raman scattering (IE) plus Rayleigh/Mie light scattering (EE) that noninvasively give chemical and physical information about the materials and objects within. We model tissue as a three-phase system: plasma and red blood cell (RBC) phases that are mobile and a static tissue phase. In vivo, any volume of tissue naturally experiences spatial and temporal fluctuations of blood plasma and RBC content. Plasma and RBC fractions may be discriminated from each other on the basis of their physical, chemical and optical properties. Thus IE and EE from NIR probing yield information about these fractions. Assuming there is no void volume in viable tissue, or that void volume is constant, changes in plasma and RBC volume fractions may be calculated from simultaneous measurements of the two observables, EE and IE. In a previously published analysis we showed the underlying phenomenology but did not provide an algorithm for calculating volume fractions from experimental data. Here we present a simple analysis that allows continuous monitoring of fluid fraction and hematocrit (Hct) changes by measuring IE and EE, and apply it to some experimental in vivo measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kai
Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cutmore » by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.« less
Rogez, J C; Plaquet, R; Biserte, G
1975-12-18
Two distinct L-asparaginase (EC 3.5.1.1) activities were detected in guinea pig liver: Asparaginase 1 and Asparaginase 2. Asparaginase 1 has been purified 272 fold from the crude homogenate; its molecular weight was evaluated by gel filtration to be about 150 000. The purified preparation was shown to be homogeneous by cellulose acetate strip and polyacrylamide disc-gel electrophoresis. Asparaginase 2 has been purified 63.5 fold from the crude homogenate. Its molecular weight was evaluated by gel filtration to be about 21 500. Cellulose acetate strip electrophoresis demonstrated two bands, one of which corresponded to Asparaginase 1 and the other to Asparaginase 2. Cellular fractionation in the ultracentrifuge, showed Asparaginase 1 to be present only in the cytosol fraction. Asparaginase 2 which was unstable at 105 000 X g seemed mostly localized in the mitochondria and secondarily in the cytoplasmic fraction.
Characterization of the Membrane-Bound Succinic Dehydrogenase of Micrococcus lysodeikticus
Pollock, Jerry J.; Linder, Regina; Salton, Milton R. J.
1971-01-01
The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 × g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca2+ and Mg2+ exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents. Images PMID:4327510
Characterization of the membrane-bound succinic dehydrogenase of Micrococcus lysodeikticus.
Pollock, J J; Linder, R; Salton, M R
1971-07-01
The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 x g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca(2+) and Mg(2+) exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Steup, M.
1990-11-01
From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction withmore » the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by {sup 14}C-labeling experiments in which the glucosyl transfer from ({sup 14}C)glucose 1-phosphate to the polysaccharide preparation was monitored.« less
Habibi, Mohammadali; Samiei, Sanaz; Ambale Venkatesh, Bharath; Opdahl, Anders; Helle-Valle, Thomas M; Zareian, Mytra; Almeida, Andre L C; Choi, Eui-Young; Wu, Colin; Alonso, Alvaro; Heckbert, Susan R; Bluemke, David A; Lima, João A C
2016-08-01
Early detection of structural changes in left atrium (LA) before atrial fibrillation (AF) development could be helpful in identification of those at higher risk for AF. Using cardiac magnetic resonance imaging, we examined the association of LA volume and function, and incident AF in a multiethnic population free of clinical cardiovascular diseases. In a case-cohort study embedded in MESA (Multi-Ethnic Study of Atherosclerosis), baseline LA size and function assessed by cardiac magnetic resonance feature-tracking were compared between 197 participants with incident AF and 322 participants randomly selected from the whole MESA cohort. Participants were followed up for 8 years. Incident AF cases had a larger LA volume and decreased passive, active, and total LA emptying fractions and peak global LA longitudinal strain (peak LA strain) at baseline. In multivariable analysis, elevated LA maximum volume index (hazard ratio, 1.38 per SD; 95% confidence interval, 1.01-1.89) and decreased peak LA strain (hazard ratio, 0.68 per SD; 95% confidence interval, 0.48-0.96), and passive and total LA emptying fractions (hazard ratio for passive LA emptying fractions, 0.55 per SD; 95% confidence interval, 0.40-0.75 and hazard ratio for active LA emptying fractions, 0.70 per SD; 95% confidence interval, 0.52-0.95), but not active LA emptying fraction, were associated with incident AF. Elevated LA volumes and decreased passive and total LA emptying fractions were independently associated with incident AF in an asymptomatic multiethnic population. Including LA functional variables along with other risk factors of AF may help to better risk stratify individuals at risk of AF development. © 2016 American Heart Association, Inc.
Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.
2006-01-01
New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma-Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions. ?? 2005 Elsevier B.V. All rights reserved.
Rich, David Q.; Özkaynak, Halûk; Crooks, James; Baxter, Lisa; Burke, Janet; Ohman-Strickland, Pamela; Thevenet-Morrison, Kelly; Kipen, Howard M.; Zhang, Junfeng; Kostis, John B.; Lunden, Melissa; Hodas, Natasha; Turpin, Barbara J.
2013-01-01
Previous studies have reported an increased risk of myocardial infarction (MI) associated with acute increases in PM concentration. Recently, we reported that MI/fine particle (PM2.5) associations may be limited to transmural infarctions. In this study, we retained data on hospital discharges with a primary diagnosis of acute myocardial infarction (using International Classification of Diseases 9th Revision [ICD-9] codes), for those admitted January 1, 2004 to December 31, 2006, who were ≥18 years of age, and were residents of New Jersey at the time of their MI. We excluded MI with a diagnosis of a previous MI and MI coded as a subendocardial infarction, leaving n=1563 transmural infarctions available for analysis. We coupled these health data with PM2.5 species concentrations predicted by the Community Multiscale Air Quality chemical transport model, ambient PM2.5 concentrations, and used the same case-crossover methods to evaluate whether the relative odds of transmural MI associated with increased PM2.5 concentration is modified by the PM2.5 composition/mixture (i.e. mass fractions of sulfate, nitrate, elemental carbon, organic carbon, and ammonium). We found the largest relative odds estimates on the days with the highest tertile of sulfate mass fraction (OR=1.13; 95% CI = 1.00, 1.27), nitrate mass fraction (OR=1.18; 95% CI = 0.98, 1.35), and ammonium mass fraction (OR=1.13; 95% CI = 1.00 1.28), and the lowest tertile of EC mass fraction (OR=1.17; 95% CI = 1.03, 1.34). Air pollution mixtures on these days were enhanced in pollutants formed through atmospheric chemistry (i.e., secondary PM2.5) and depleted in primary pollutants (e.g., EC). When mixtures were laden with secondary PM species (sulfate, nitrate, and/or organics) we observed larger relative odds of myocardial infarction associated with increased PM2.5 concentrations. Further work is needed to confirm these findings and examine which secondary PM2.5 component(s) is/are responsible for an acute MI response. PMID:23819750
Rich, David Q; Özkaynak, Halûk; Crooks, James; Baxter, Lisa; Burke, Janet; Ohman-Strickland, Pamela; Thevenet-Morrison, Kelly; Kipen, Howard M; Zhang, Junfeng; Kostis, John B; Lunden, Melissa; Hodas, Natasha; Turpin, Barbara J
2013-08-20
Previous studies have reported an increased risk of myocardial infarction (MI) associated with acute increases in PM concentration. Recently, we reported that MI/fine particle (PM2.5) associations may be limited to transmural infarctions. In this study, we retained data on hospital discharges with a primary diagnosis of acute myocardial infarction (using International Classification of Diseases ninth Revision [ICD-9] codes), for those admitted January 1, 2004 to December 31, 2006, who were ≥ 18 years of age, and were residents of New Jersey at the time of their MI. We excluded MI with a diagnosis of a previous MI and MI coded as a subendocardial infarction, leaving n = 1563 transmural infarctions available for analysis. We coupled these health data with PM2.5 species concentrations predicted by the Community Multiscale Air Quality chemical transport model, ambient PM2.5 concentrations, and used the same case-crossover methods to evaluate whether the relative odds of transmural MI associated with increased PM2.5 concentration is modified by the PM2.5 composition/mixture (i.e., mass fractions of sulfate, nitrate, elemental carbon, organic carbon, and ammonium). We found the largest relative odds estimates on the days with the highest tertile of sulfate mass fraction (OR = 1.13; 95% CI = 1.00, 1.27), nitrate mass fraction (OR = 1.18; 95% CI = 0.98, 1.35), and ammonium mass fraction (OR = 1.13; 95% CI = 1.00 1.28), and the lowest tertile of EC mass fraction (OR = 1.17; 95% CI = 1.03, 1.34). Air pollution mixtures on these days were enhanced in pollutants formed through atmospheric chemistry (i.e., secondary PM2.5) and depleted in primary pollutants (e.g., EC). When mixtures were laden with secondary PM species (sulfate, nitrate, and/or organics), we observed larger relative odds of myocardial infarction associated with increased PM2.5 concentrations. Further work is needed to confirm these findings and examine which secondary PM2.5 component(s) is/are responsible for an acute MI response.
Neolignans from Aristolochia elegans as antagonists of the neurotropic effect of scorpion venom.
Zamilpa, Alejandro; Abarca-Vargas, Rodolfo; Ventura-Zapata, Elsa; Osuna-Torres, Lidia; Zavala, Miguel A; Herrera-Ruiz, Maribel; Jiménez-Ferrer, Enrique; González-Cortazar, Manasés
2014-11-18
The high frequency of poisoning by sting or bite from venomous animals has begun to be a serious public health problem in Mexico where scorpion sting is the most common. Because of this, there is the need to seek active substances in plant species with an antagonistic effect against neurotropic activity of scorpion venom. The aim of this work was to demonstrate which of the compounds contained in the n-hexane extract from Aristolochia elegans roots display activity against scorpion venom. Antagonist activity displayed by extract, fractions and isolated compounds obtained from Aristolochia elegans was guided by the inhibition of smooth muscle contraction induced by scorpion venom (Centruroides limpidus limpidus) in a model of isolated guinea pig ileum. The neolignans obtained from this extract were isolated and analyzed by chromatographic methods including HPLC. The chemical characterization of these compounds was performed by the analysis of (1)H and (13)C NMR spectra. The bio-guided chromatographic fractionation allowed us to isolate 4 known neolignans: Eupomatenoid-7 (1), licarin A (2), licarin B (3), eupomatenoid-1 (4) and other new neolignan which was characterized as 2-(3'-hydroxy-4'-methoxyphenyl)-3-methyl-5-[(E)-α-propen-γ-al]-7-methoxy-benzo [b] furan (5). This compound was named as eleganal. Compounds 1 and 2 were purified from the most active fraction AeF3 (EC50 of 149.9μg/mL, Emax of 65.66%). A doses-response analysis of eupomatenoid-7(1) and licarin A(2) allowed us to establish EC50 values (65.96μg/mL and 51.96μg/mL) respectively. The antagonistic effect against Centuroides limpidus limpidus scorpion venom displayed by the n-hexane extract from Aristolochia elegans roots is due to the presence of neolignans 1-2 contained in the fraction AeF3. Chemical analysis of fraction AeF2 allowed the isolation of a new compound which was identified as 2-(3'-hydroxy-4'-methoxyphenyl)-3-methyl-5-[(E)-α-propen-γ-al]-7-methoxy-benzo[b]furan (5), denominated as eleganal. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Chemical profiling of PM10 from urban road dust.
Alves, C A; Evtyugina, M; Vicente, A M P; Vicente, E D; Nunes, T V; Silva, P M A; Duarte, M A C; Pio, C A; Amato, F; Querol, X
2018-09-01
Road dust resuspension is one of the main sources of particulate matter with impacts on air quality, health and climate. With the aim of characterising the thoracic fraction, a portable resuspension chamber was used to collect road dust from five main roads in Oporto and an urban tunnel in Braga, north of Portugal. The PM 10 samples were analysed for: i) carbonates by acidification and quantification of the evolved CO 2 , ii) carbonaceous content (OC and EC) by a thermo-optical technique, iii) elemental composition by ICP-MS and ICP-AES after acid digestion, and iv) organic speciation by GC-MS. Dust loadings of 0.48±0.39mgPM 10 m -2 were obtained for asphalt paved roads. A much higher mean value was achieved in a cobbled pavement (50mgPM 10 m -2 ). In general, carbonates were not detected in PM 10 . OC and EC accounted for PM 10 mass fractions up to 11% and 5%, respectively. Metal oxides accounted for 29±7.5% of the PM 10 mass from the asphalt paved roads and 73% in samples from the cobbled street. Crustal and anthropogenic elements, associated with tyre and brake wear, dominated the inorganic fraction. PM 10 comprised hundreds of organic constituents, including hopanoids, n-alkanes and other aliphatics, polycyclic aromatic hydrocarbons (PAH), alcohols, sterols, various types of acids, glycerol derivatives, lactones, sugars and derivatives, phenolic compounds and plasticizers. In samples from the cobbled street, these organic classes represented only 439μgg -1 PM 10 , while for other pavements mass fractions up to 65mgg -1 PM 10 were obtained. Except for the cobbled street, on average, about 40% of the analysed organic fraction was composed of plasticizers. Although the risk via inhalation of PAH was found to be insignificant, the PM 10 from some roads can contribute to an estimated excess of 332 to 2183 per million new cancer cases in adults exposed via ingestion and dermal contact. Copyright © 2018 Elsevier B.V. All rights reserved.
Grabowsky, Jana; Streibel, Thorsten; Sklorz, Martin; Chow, Judith C; Watson, John G; Mamakos, Athanasios; Zimmermann, Ralf
2011-12-01
The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong influence of the biodiesel content on the nature of the particulate organic material.
NASA Astrophysics Data System (ADS)
Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.
2017-04-01
A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.
Sedimentary silicon isotope indicates the Kuroshio subsurface upwelling in the East China Sea
NASA Astrophysics Data System (ADS)
Zhao, Y.; Yang, S.; Su, N.
2017-12-01
The Kuroshio as the western boundary current of the North Pacific subtropical circulation, originates from east of the Philippine Islands, and flows northeastward along the eastern coast of Taiwan. It's subsurface water intrudes the East China Sea (ECS) and forms a typical upwelling on the inner shelf, which may play an important role in the material and heat transport, biogeochemical process and marine ecosystem of the ECS.To date, most previous studies on the Kuroshio subsurface upwelling focuse on the seasonal and interannual variations, and few researches touch on the upwelling evolution in the geologic past. In this study, eight short sediment cores were taken along the ECS inner shelf (upwelling area), which allow us to reconstruct the upwelling history over the last several hundred years. Although conventional indexes of oceanographic changes, such as salinity, temperature and hydrogen and oxygen isotope, provide valuable constraints on the modern oceanic circulation and water mass movements, how to reconstruct them from geologic records is always a challenging work. In this contribution, we present the data of stable silicon isotope, biogenic opal, diatom assemblages, element geochemistry and stable carbon and nitrogen isotopes of these core sediments, and aim to decipher the Kuroshio subsurface upwelling history on the ECS shelf. We will also illustrate the difference in δ30Si signals between small (<30 um) and large (>150 um) diatom fractions, and test whether it is an effective indicator for paleo-upwelling intensity.
Brooks, Steven J; Bolam, Thi; Tolhurst, Laura; Bassett, Janice; La Roche, Jay; Waldock, Mike; Barry, Jon; Thomas, Kevin V
2007-08-01
The effects of humic acid (HA) on copper speciation and its subsequent toxicity to the sensitive early life stages of the Pacific oyster (Crassostrea gigas) are presented. Differential pulse anodic stripping voltammetry with a hanging mercury drop electrode was used to measure the copper species as labile copper (LCu; free ion and inorganic copper complexes) and total copper (TCu) with respect to increasing HA concentration. The TCu and LCu 50% effect concentrations (EC50s) in the absence of HA were 20.77 microg/L (95% confidence interval [CI], 24.02-19.97 microg/L) and 8.05 microg/L (95% CI, 9.6-5.92 microg/L) respectively. A corrected dissolved organic carbon (DOC) concentration (HA only) of 1.02 mg/L was required to significantly increase the TCu EC50 to approximately 41.09 microg/L (95% CI, 44.27-37.52 microg/L; p < 0.05), almost doubling that recorded when DOC (as HA) was absent from the test media. In contrast, the LCu EC50 was unaffected by changes in DOC concentration and was stable throughout the corrected DOC concentration range. The absence of change in the LCu EC50, despite increased HA concentration, suggests that the LCu fraction, not TCu, was responsible for the observed toxicity to the oyster embryo. This corresponds with the current understanding of copper toxicity and supports the free-ion activity model for copper toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, Andrew; Menon, Angeli; Scott, Israel
2014-03-26
Although as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium. The metals assimilated and their concentrations in the cytoplasm of Desulfovibrio vulgaris strainmore » Hildenborough (DvH) and Enterobacter cloacae strain Hanford (EcH) varied dramatically, with a larger number of metals present in Enterobacter. For example, a total of 9 and 19 metals were assimilated into their cytoplasmic fractions, respectively, and DvH did not assimilate significant amounts of zinc or copper whereas EcH assimilated both. However, bioinformatic analysis of their genome sequences revealed a comparable number of predicted metalloproteins, 813 in DvH and 953 in EcH. These allowed some rationalization of the types of metal assimilated in some cases (Fe, Cu, Mo, W, V) but not in others (Zn, Nd, Ce, Pr, Dy, Hf and Th). It was also shown that U binds an unknown soluble protein in EcH but this incorporation was the result of extracellular U binding to cytoplasmic components after cell lysis.« less
Jan, Shumaila; Khan, Muhammad Rashid; Rashid, Umbreen; Bokhari, Jasia
2013-10-01
This study was conducted to investigate the antioxidant potential of methanol extract and its derived fractions (hexane, ethyl acetate, butanol, and aqueous) of fruits of Monotheca buxifolia (Falc.) Dc., a locally used fruit in Pakistan. Dried powder of the fruit of M. buxifolia was extracted with methanol and the resultant was fractionated with solvents having escalating polarity; n-hexane, chloroform, ethyl acetate, n-butanol and the residual soluble aqueous fraction. Total phenolic and total flavonoid contents were estimated for the methanol and various fractions. These fractions were also subjected to various in vitro assays to estimate the scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide, hydroxyl, hydrogen peroxide and reductive ability for ferric ions and phosphomolybdate assay. The n-butanol, aqueous and methanol fractions possessed high amount of phenolics and flavonoids compared with other fractions, and subsequently showed a pronounced scavenging activity on DPPH, ABTS, superoxide, hydroxyl and hydrogen peroxide radicals and had a potent reductive ability on ferric ion and phosphomolybdate assay. There was a found significant correlation between total phenolic and flavonoid contents and EC50 of DPPH, superoxide, hydrogen peroxide radical and phosphomolybdate assays, whereas a nonsignificant correlation was found with the hydroxyl radical and ABTS radical assay. M. buxifolia fruit can be used as natural antioxidant source to prevent damage associated with free radicals.
Hao, Tian
2015-09-14
The underlying relationships among viscosity equations of glass liquids and colloidal suspensions are explored with the aid of free volume concept. Viscosity equations of glass liquids available in literature are focused and found to have a same physical basis but different mathematical expressions for the free volume. The glass transitions induced by temperatures in glass liquids and the percolation transition induced by particle volume fractions in colloidal suspensions essentially are a second order phase transition: both those two transitions could induce the free volume changes, which in turn determines how the viscosities are going to change with temperatures and/or particle volume fractions. Unified correlations of the free volume to both temperatures and particle volume fractions are thus proposed. The resulted viscosity equations are reducible to many popular viscosity equations currently widely used in literature; those equations should be able to cover many different types of materials over a wide temperature range. For demonstration purpose, one of the simplified versions of those newly developed equations is compared with popular viscosity equations and the experimental data: it can well fit the experimental data over a wide temperature range. The current work reveals common physical grounds among various viscosity equations, deepening our understanding on viscosity and unifying the free volume theory across many different systems.
NASA Astrophysics Data System (ADS)
Mora, A.; Skurtys, O.; Osorio, F.
2015-04-01
The rheological properties of high molecular weight POE and CMC suspensions by adding micro-metric solid particles such as fibers or spheres were studied. The volume fraction, Φ, was varied between 0 and 0.4. Their rheological properties were obtained after fitting a Cross model. For POE suspending fluid with spherical particle, the behavior of the normalized steady shear viscosity, μ/μ0, as function of the fraction volume followed a Thomas model. However, for CMC suspensions, μ/μ0 seems to be lineal with Φ. For a pure fluid or a suspension with Φ = 0; 2, the suspension presented an elastic behavior whereas it was observed a viscous behavior when the volume fraction was increased.
Roth, Emmanuel Peter
2008-01-01
We report Lithium-Ion batteries are being considered as a high-energy density replacement for Nickel Metal Hydride (NiMH) batteries in Hybrid Electric Vehicles (HEVs) and in the new Plug-In Hybrids (PHEVs). Although these cells can result in significant reduction in weight and volume, they have several safety related issues that still need to be addressed. We report here on the thermal response of Li-ion cells specifically assembled in our laboratory to test new materials, electrolytes and additives. Finally, improvements in the thermal abuse tolerance of cells are reported and discussed in terms of the need for overall battery system safety.
Harbaugh, Calista M; Shlykov, Maksim A; Tsuchida, Ryan E; Holcombe, Sven A; Hirschl, Jake; Wang, Stewart C; Ehrlich, Peter F
2015-06-01
Motor vehicle crashes are the leading cause of injury-related mortality in children, with a higher rate of multiorgan injuries than in adults. This may be related to increased solid organ volume relative to abdominal cavity and decreased protection of an underdeveloped cartilaginous rib cage in young children. To date, these anatomic relationships have not been fully described. Our study used analytic morphomics to obtain precise measures of the pediatric liver, spleen, kidneys, and ribs. This pilot study included 215 trauma patients (aged 0-18 years) with anonymized computed tomography (CT) scans. Liver, spleen, and kidney volumes were modeled using semiautomatic algorithms (MATLAB 2013a, MathWorks Inc., Natick, MA). Thirty-one scans were adequate to model the rib cage. Pearson's r was used to correlate absolute organ volume, fractional organ volume, and organ exposure with age and weight. Spleen, right and left kidney, and liver volumes increased with age and weight (p < 0.01). Right/left kidney and liver fractional volumes decreased with age (p < 0.01), whereas spleen fractional volume remained relatively constant. Exposed surface area of the liver only significantly decreased with age in the anterior (p < 0.01), right (p < 0.01), and posterior views (p = 0.02). With this study, we have demonstrated the ability to model solid organ and rib cage anatomy of children using cross-sectional imaging. In younger children, there may be a decrease in fractional organ volume and increase in liver surface exposure, although analysis of a larger sample size is warranted. In the future, this information may be used to improve the design of safety restraints in motor vehicles.
ERIC Educational Resources Information Center
Rigby, Mary E.; Woodcock, Charles C.
A continuation of a report (EC 004 818) presents appended case studies of 15 children involved in a residential school program for the multiply handicapped blind. Each study provides information and developmental history, medical data, personal hygiene, eating habits, physical development, psychological adjustment, object recognition, classroom…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Kee Sung; Rajput, Nav Nidhi; Persson, Kristin A.
Ferrocene (Fc) and N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethyl-sulfonimide (Fc1N112-TFSI) were dissolved in carbonate solvents and self-diffusion coefficients (D) of solutes and solvents were measured by {sup 1}H and {sup 19}F pulsed field gradient nuclear magnetic resonance (NMR) spectroscopy. The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC), and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR studies over the temperature range of 0–50 °C and for various concentrations (0.25–1.7 M) of Fc1N112-TFSI are compared to values of D simulated with classical molecular dynamics (MD). The measured self-diffusion coefficients gradually decreased as the Fc1N112-TFSI concentration increased in allmore » solvents. Since TFSI{sup −} has fluoromethyl groups (CF{sub 3}), D{sub TFSI} could be measured separately and the values found are larger than those for D{sub Fc1N112} in all samples measured. The EC, PC, and EMC have the same D in the neat solvent mixture and when Fc is dissolved in EC/PC/EMC at a concentration of 0.2 M, probably due to the interactions between common carbonyl structures within EC, PC, and EMC. A difference in D (D{sub PC} < D{sub EC} < D{sub EMC}), and both a higher E{sub a} for translational motion and higher effective viscosity for PC in the mixture containing Fc1N112-TFSI reflect the interaction between PC and Fc1N112{sup +}, which is a relatively stronger interaction than that between Fc1N112{sup +} and other solvent species. In the EC/PC/EMC solution that is saturated with Fc1N112-TFSI, we find that D{sub PC} = D{sub EC} = D{sub EMC} and Fc1N112{sup +} and all components of the EC/PC/EMC solution have the same E{sub a} for translational motion, while the ratio D{sub EC/PC/EMC}/D{sub Fc1N112} is approximately 3. These results reflect the lack of available free volume for independent diffusion in the saturated solution. The Fc1N112{sup +} transference numbers lie around 0.4 and increase slightly as the temperature is increased in the PC and EMC solvents. The trends observed for D from simulations are in good agreement with experimental results and provide molecular level understanding of the solvation structure of Fc1N112-TFSI dissolved in EC/PC/EMC.« less
Coburn-Litvak, P S; Tata, D A; Gorby, H E; McCloskey, D P; Richardson, G; Anderson, B J
2004-01-01
Corticosterone (CORT), the predominant glucocorticoid in rodents, is known to damage hippocampal area CA3. Here we investigate how that damage is represented at the cellular and ultrastructural level of analyses. Rats were injected with CORT (26.8 mg/kg, s.c.) or vehicle for 56 days. Cell counts were estimated with the physical disector method. Glial and mitochondrial volume fractions were obtained from electron micrographs. The effectiveness of the CORT dose used was demonstrated in two ways. First, CORT significantly inhibited body weight gain relative to vehicles. Second, CORT significantly reduced adrenal gland, heart and gastrocnemius muscle weight. Both the adrenal and gastrocnemius muscle weight to body weight ratios were also significantly reduced. Although absolute brain weight was reduced, the brain to body weight ratio was higher in the CORT group relative to vehicles, suggesting that the brain is more resistant to the effects of CORT than many peripheral organs and muscles. Consistent with that interpretation, CORT did not alter CA3 cell density, cell layer volume, or apical dendritic neuropil volume. Likewise, CORT did not significantly alter glial volume fraction, but did reduce mitochondrial volume fraction. These findings highlight the need for ultrastructural analyses in addition to cellular level analyses before conclusions can be drawn about the damaging effects of prolonged CORT elevations. The relative reduction in mitochondria may indicate a reduction in bioenergetic capacity that, in turn, could render CA3 vulnerable to metabolic challenges.
A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils
NASA Technical Reports Server (NTRS)
Piqueux, S.; Christensen, P. R.
2009-01-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface
A model of thermal conductivity for planetary soils: 2. Theory for cemented soils
NASA Astrophysics Data System (ADS)
Piqueux, S.; Christensen, P. R.
2009-09-01
A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s-0.5 m-2 K-1) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.
Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y
2015-02-24
Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.
Alander, Timo J A; Leskinen, Ari P; Raunemaa, Taisto M; Rantanen, Leena
2004-05-01
Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhainaut, J.F.; Devaux, J.Y.; Monsallier, J.F.
1986-07-01
Continuous positive pressure ventilation is associated with a reduction in left ventricular preload and cardiac output, but the mechanisms responsible are controversial. The decrease in left ventricular preload may result exclusively from a decreased systemic venous return due to increased pleural pressure, or from an additional effect such as decreased left ventricular compliance. To determine the mechanisms responsible, we studied the changes in cardiac output induced by continuous positive pressure ventilation in eight patients with the adult respiratory distress syndrome. We measured cardiac output by thermodilution, and biventricular ejection fraction by equilibrium gated blood pool scintigraphy. Biventricular end-diastolic volumes weremore » then calculated by dividing stroke volume by ejection fraction. As positive end-expiratory pressure increased from 0 to 20 cm H/sub 2/O, stroke volume and biventricular end-diastolic volumes fell about 25 percent, and biventricular ejection fraction remained unchanged. At 20 cm H/sub 2/O positive end-expiratory pressure, volume expansion for normalizing cardiac output restored biventricular end-diastolic volumes without markedly changing biventricular end-diastolic transmural pressures. The primary cause of the reduction in left ventricular preload with continuous positive pressure ventilation appears to be a fall in venous return and hence in right ventricular stroke volume, without evidence of change in left ventricular diastolic compliance.« less
Thermal Dose Fractionation Affects Tumor Physiologic Response
Thrall, Donald E; Maccarini, Paolo; Stauffer, Paul; MacFall, James; Hauck, Marlene; Snyder, Stacey; Case, Beth; Linder, Keith; Lan, Lan; McCall, Linda; Dewhirst, Mark W.
2013-01-01
Purpose It is unknown whether a thermal dose should be administered using a few large fractions with higher temperatures or a larger number of fractions with lower temperatures. To evaluate this, we assessed the effect of administering the same total thermal dose, approximately 30 CEM43T90, in 1 versus 3–4 fractions per week, over 5 weeks. Materials and Methods Canine sarcomas were randomized to receive one of the hyperthermia fractionation schemes along with fractionated radiotherapy. Tumor response was based on changes in tumor volume, oxygenation, water diffusion quantified using MRI, and a panel of histologic and immunohistochemical endpoints. Results There was a greater reduction in tumor volume and water diffusion at the end of therapy In tumors receiving 1 hyperthermia fraction per week. There was a weak but significant association between improved tumor oxygenation 24 hours after the first hyperthermia treatment and extent of volume reduction at the end of therapy. Finally, the direction of change of HIF 1α and CA IX immunoreactivity after the first hyperthermia fraction was similar and there was an inverse relationship between temperature and the direction of change of CA IX. There were no significant changes in interstitial fluid pressure, VEGF, wVf, apoptosis or necrosis as a function of treatment group or temperature. Conclusions We did not identify an advantage to a 3–4/week hyperthermia prescription and response data pointed to a 1/week prescription being superior. PMID:22804741
Schubert, Michael; Knoeller, Kay; Rocha, Carlos; Einsiedl, Florian
2015-03-01
Freshwater discharge into the coastal sea is of general interest for two reasons: (i) It acts as vehicle for the transport of contaminants or nutrients into the ocean, and (ii) it indicates the loss of significant volumes of freshwater that might be needed for irrigation or drinking water supply. Due to the large-scale and long-term nature of the related hydrological processes, locating and quantitatively assessing freshwater discharge into the sea require naturally occurring tracers that allow fast, inexpensive and straightforward detection. In several studies, the standard water parameters electrical conductivity (EC) and pH have proven their suitability in this regard. However, while distribution patterns of EC and pH in the coastal sea indicate freshwater discharge in general, a separation between discharging surface water and submarine groundwater discharge (SGD) is not possible with these alone. The naturally occurring radionuclide radon-222 has been shown to be useful in the quantification of SGD and its distinction from surface runoff. This study aimed to evaluate and compare the informative value of the three parameters-EC, pH and radon concentration-in detecting and quantifying SGD by carrying out a case study in a bay located in western Ireland. The results reveal that radon activity is the most sensitive parameter for detecting SGD. However, only the combined evaluation of radon, EC and pH allows a quantitative allocation of groundwater and surface water contributions to the overall freshwater discharge into the sea. This conclusion is independently supported by stable isotope data measured on selected samples.
Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola
2017-07-01
Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.
Thermosetting resins with high fractions of free volume and inherently low dielectric constants.
Lin, Liang-Kai; Hu, Chien-Chieh; Su, Wen-Chiung; Liu, Ying-Ling
2015-08-18
This work demonstrates a new class of thermosetting resins, based on Meldrum's acid (MA) derivatives, which have high fractions of free volume and inherently low k values of about 2.0 at 1 MHz. Thermal decomposition of the MA groups evolves CO2 and acetone to create air-trapped cavities so as to reduce the dielectric constants.
A smoothed two- and three-dimensional interface reconstruction method
Mosso, Stewart; Garasi, Christopher; Drake, Richard
2008-04-22
The Patterned Interface Reconstruction algorithm reduces the discontinuity between material interfaces in neighboring computational elements. This smoothing improves the accuracy of the reconstruction for smooth bodies. The method can be used in two- and three-dimensional Cartesian and unstructured meshes. Planar interfaces will be returned for planar volume fraction distributions. Finally, the algorithm is second-order accurate for smooth volume fraction distributions.
NASA Technical Reports Server (NTRS)
Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.
2003-01-01
An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roar Skartlien; Espen Sollum; Andreas Akselsen
2012-07-01
A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it atmore » later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.« less
Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Bin; Liu, Zhuang; Wang, Yanan; Rolfe, Bernard; Wang, Liang; Zhang, Yisheng
2018-04-01
Application of quenching and partitioning process in hot stamping has proven to be an effective method to improve the plasticity of advanced high-strength steels (AHSSs). In this study, the hot stamping and partitioning process of advanced high-strength steel 30CrMnSi2Nb is investigated with a hot stamping mold. Given the specific partitioning time and temperature, the influence of quenching temperature on the volume fraction of microstructure evolution and mechanical properties of the above steel are studied in detail. In addition, a model for quenching and partitioning process is applied to predict the carbon diffusion and interface migration during partitioning, which determines the retained austenite volume fraction and final properties of the part. The predicted trends of the retained austenite volume fraction agree with the experimental results. In both cases, the volume fraction of retained austenite increases first and then decreases with the increasing quenching temperature. The optimal quenching temperature is approximately 290 °C for 30CrMnSi2Nb with the partition conditions of 425 °C and 20 seconds. It is suggested that the model can be used to help determine the process parameters to obtain retained austenite as much as possible.
Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong
2007-04-28
Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.
Effects of C and Si on strain aging of strain-based API X60 pipeline steels
NASA Astrophysics Data System (ADS)
Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Lee, Byeong-Joo; Hong, Seung-Pyo; Kim, Young-Woon; Yoo, Jang Yong; Hwang, Byoungchul; Shin, Sang Yong
2017-05-01
Four types of strain-based API X60 pipeline steels were fabricated by varying the C and Si contents, and the effects of C and Si on strain aging were investigated. The 0.05 wt% C steels consisted mainly of polygonal ferrite (PF), whereas the 0.08 wt% C steels consisted of acicular ferrite (AF). The volume fraction of AF increased with increasing C content because C is an austenite stabilizer element. The volume fractions of bainitic ferrite (BF) of the 0.15 wt% Si steels were higher than those of the 0.25 wt% Si steels, whereas the volume fractions of the secondary phases were lower. From the tensile properties before and after the aging process of the strainbased API X60 pipeline steels, the yield strength increased and the uniform and total elongation decreased, which is the strain aging effect. The strain aging effect in the strain-based API X60 pipeline steels was minimized when the volume fraction of AF was increased and secondary phases were distributed uniformly. On the other hand, an excessively high C content formed fine precipitates, and the strain aging effect occurred because of the interactions among dislocations and fine precipitates.
Tensile strength and fracture of cemented granular aggregates.
Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V
2012-11-01
Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.
NASA Astrophysics Data System (ADS)
Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan
2017-03-01
Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.
NASA Astrophysics Data System (ADS)
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2016-06-01
Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.
High solid loading aqueous base metal/ceramic feedstock for injection molding
NASA Astrophysics Data System (ADS)
Behi, Mohammad
2001-07-01
Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.
Effect of martensitic transformation on springback behavior of 304L austenitic stainless steel
NASA Astrophysics Data System (ADS)
Fathi, H.; Mohammadian Semnani, H. R.; Emadoddin, E.; Sadeghi, B. Mohammad
2017-09-01
The present paper studies the effect of martensitic transformation on the springback behavior of 304L austenitic stainless steel. Martensite volume fraction was determined at the bent portion under various strain rates after bending test. Martensitic transformation has a significant effect on the springback behavior of this material. The findings of this study indicated that the amount of springback was reduced under a situation of low strain rate, while a higher amount of springback was obtained with a higher strain rate. The reason for this phenomenon is that higher work hardening occurs during the forming process with the low strain rate due to the higher martensite volume fraction, therefore the formability of the sheet is enhanced and it leads to a decreased amount of springback after the bending test. Dependency of the springback on the martensite volume fraction and strain rate was expressed as formulas from the results of the experimental tests and simulation method. Bending tests were simulated using LS-DYNA software and utilizing MAT_TRIP to determine the martensite volume fraction and strain under various strain rates. Experimental result reveals good agreement with the simulation method.
Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code
NASA Astrophysics Data System (ADS)
Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-06-01
We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.
140 GHz EC waves propagation and absorption for normal/oblique injection on FTU tokamak
NASA Astrophysics Data System (ADS)
Nowak, S.; Airoldi, A.; Bruschi, A.; Buratti, P.; Cirant, S.; Gandini, F.; Granucci, G.; Lazzaro, E.; Panaccione, L.; Ramponi, G.; Simonetto, A.; Sozzi, C.; Tudisco, O.; Zerbini, M.
1999-09-01
Most of the interest in ECRH experiments is linked to the high localization of EC waves absorption in well known portions of the plasma volume. In order to take full advantage of this capability a reliable code has been developed for beam tracing and absorption calculations. The code is particularly important for oblique (poloidal and toroidal) injection, when the absorbing layer is not simply dependent on the position of the EC resonance only. An experimental estimate of the local heating power density is given by the jump in the time derivative of the local electron pressure at the switching ON of the gyrotron power. The evolution of the temperature profile increase (from ECE polychromator) during the nearly adiabatic phase is also considered for ECRH profile reconstruction. An indirect estimate of optical thickness and of the overall absorption coefficient is given by the measure of the residual e.m. power at the tokamak walls. Beam tracing code predictions of the power deposition profile are compared with experimental estimates. The impact of the finite spatial resolution of the temperature diagnostic on profile reconstruction is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Charles, E-mail: charles.mayo@umassmemorial.or; Yorke, Ellen; Merchant, Thomas E.
Publications relating brainstem radiation toxicity to quantitative dose and dose-volume measures derived from three-dimensional treatment planning were reviewed. Despite the clinical importance of brainstem toxicity, most studies reporting brainstem effects after irradiation have fewer than 100 patients. There is limited evidence relating toxicity to small volumes receiving doses above 60-64 Gy using conventional fractionation and no definitive criteria regarding more subtle dose-volume effects or effects after hypofractionated treatment. On the basis of the available data, the entire brainstem may be treated to 54 Gy using conventional fractionation using photons with limited risk of severe or permanent neurological effects. Smaller volumesmore » of the brainstem (1-10 mL) may be irradiated to maximum doses of 59 Gy for dose fractions <=2 Gy; however, the risk appears to increase markedly at doses >64 Gy.« less
NASA Astrophysics Data System (ADS)
Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.
2018-04-01
We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.
3D Modeling Effect of Spherical Inclusions on the Magnetostriction of Bulk Superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Pan, Baocai
2018-02-01
In this paper, the dependence of the effective magnetostriction of bulk superconductors on the elastic parameters including the volume fraction and elastic modulus ratio is studied by a three-dimensional model consisting of a spherical inclusion-superconducting matrix system. The effect of the elastic modulus and volume fraction on the magnetostriction is also obtained through the magnetostriction loop. The results indicate that the elastic modulus and volume fraction have obvious effects on the effective magnetostriction of the superconducting composite, which gives an explanation about the differences between the experimental and the theoretical results. Furthermore, it is worth pointing out that the linear field dependence of magnetostriction is unique to the Bean model by comparing the curve shapes of the magnetostriction loop with and without inclusion.
Damping behavior of polymer composites with high volume fraction of NiMnGa powders
NASA Astrophysics Data System (ADS)
Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying
2011-03-01
Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
Brain architecture and social complexity in modern and ancient birds.
Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H
2004-01-01
Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. Copyright 2004 S. Karger AG, Basel
Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara
2011-04-01
As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.
Antihypoxic activities of Eryngium caucasicum and Urtica dioica.
Khalili, M; Dehdar, T; Hamedi, F; Ebrahimzadeh, M A; Karami, M
2015-09-01
Urtica dioica and Eryngium spp. have been used in traditional medicine for many years. In spite of many works, nothing is known about their protective effect against hypoxia-induced lethality. Protective effects of U. dioica (UD) aerial parts and E. caucasicum (EC) inflorescence against hypoxia-induced lethality in mice were evaluated by three experimental models of hypoxia, asphyctic, haemic and circulatory. Statistically significant protective activities were established in some doses of extracts in three models. Antihypoxic activity was especially pronounced in polyphenol fractions in asphyctic model. EC polyphenol fraction at 400 mg/kg prolonged survival time (48.80 ± 4.86, p < 0.001) which was comparable with that of phenytoin (p > 0.05). It was the most effective extract in circulatory model, too. It prolonged survival time significantly respect to control group (p < 0.001). UD extracts protected the mice but the response was not dose-dependent. In haemic model, extracts of EP significantly and dose dependently prolonged survival time as compared to control group (p < 0.001). At 600 mg/kg, EP was the most effective one, being capable of keeping the mice alive for 12.71 ± 0.75 min. Only the concentration of 300 mg/kg of UD was effective (p < 0.001). Extracts showed remarkable antihypoxic effects. Pharmacological effects may be attributed to the presence of polyphenols in the extracts.
Anas, Andrea Roxanne J; Mori, Akane; Tone, Mineka; Naruse, Chiaki; Nakajima, Anna; Asukabe, Hirohiko; Takaya, Yoshiaki; Imanishi, Susumu Y; Nishizawa, Tomoyasu; Shirai, Makoto; Harada, Ken-Ichi
2017-08-30
The rise of bleeding and bleeding complications caused by oral anticoagulant use are serious problems nowadays. Strategies that block the initiation step in blood coagulation involving activated factor VII-tissue factor (fVIIa-TF) have been considered. This study explores toxic Microcystis aeruginosa K-139, from Lake Kasumigaura, Ibaraki, Japan, as a promising cyanobacterium for isolation of fVIIa-sTF inhibitors. M. aeruginosa K-139 underwent reversed-phase solid-phase extraction (ODS-SPE) from 20% MeOH to MeOH elution with 40%-MeOH increments, which afforded aeruginosin K-139 in the 60% MeOH fraction; micropeptin K-139 and microviridin B in the MeOH fraction. Aeruginosin K-139 displayed an fVIIa-sTF inhibitory activity of ~166 µM, within a 95% confidence interval. Micropeptin K-139 inhibited fVIIa-sTF with EC 50 10.62 µM, which was more efficient than thrombin inhibition of EC 50 26.94 µM. The thrombin/fVIIa-sTF ratio of 2.54 in micropeptin K-139 is higher than those in 4-amidinophenylmethane sulfonyl fluoride (APMSF) and leupeptin, when used as positive controls. This study proves that M. aeruginosa K-139 is a new source of fVIIa-sTF inhibitors. It also opens a new avenue for micropeptin K-139 and related depsipeptides as fVIIa-sTF inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedicini, Piernicola, E-mail: ppiern@libero.it; Strigari, Lidia; Benassi, Marcello
2014-04-01
To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volumemore » histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.« less
Khonkarn, Ruttiros; Okonogi, Siriporn; Ampasavate, Chadarat; Anuchapreeda, Songyot
2010-01-01
The aim of this study was to evaluate antioxidant activity and cytotoxicity against human cell lines of fruit peel extracts from rambutan, mangosteen and coconut. The highest antioxidant activity was found from rambutan peel crude extract where the highest radical scavenging capacity via ABTS assay was from its ethyl acetate fraction with a TEAC value of 23.0mM/mg and the highest ferric ion reduction activity via FRAP assay was from its methanol fraction with an EC value of 20.2mM/mg. Importantly, using both assays, these fractions had a higher antioxidant activity than butylated hydroxyl toluene and vitamin E. It was shown that the ethyl acetate fraction of rambutan peel had the highest polyphenolic content with a gallic acid equivalent of 2.3mg/mL. The results indicate that the polyphenolic compounds are responsible for the observed antioxidant activity of the extracts. Interestingly, the hexane fraction of coconut peel showed a potent cytotoxic effect on KB cell line by MTT assay (IC(50)=7.7 microg/mL), and no detectable cytotoxicity toward normal cells. We concluded that the ethyl acetate fraction of rambutan peel is a promising resource for potential novel antioxidant agents whereas the hexane fraction of coconut peel may contain novel anticancer compounds. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.3512 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to determine the mass fraction of organic HAP and density for each coating and thinner and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction...) A record of the mass fraction of organic HAP for each coating and thinner used during each...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...
40 CFR 63.4130 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning... mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of... period. (e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material...