Science.gov

Sample records for ecto-nucleoside triphosphate diphosphohydrolase

  1. E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation.

    PubMed

    Gomes, Rodrigo Saar; de Carvalho, Luana Cristina Faria; de Souza Vasconcellos, Raphael; Fietto, Juliana Lopes Rangel; Afonso, Luís Carlos Crocco

    2015-04-01

    Leishmania amazonensis, the causal agent of diffuse cutaneous leishmaniasis, is known for its ability to modulate the host immune response. Because a relationship between ectonucleotidase activity and the ability of Leishmania to generate injury in C57BL/6 mice has been demonstrated, in this study we evaluated the involvement of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of L. amazonensis in the process of infection of J774-macrophages. Our results show that high-activity parasites show increased survival rate in LPS/IFN-γ-activated cells, by inhibiting the host-cell NO production. Conversely, inhibition of E-NTPDase activity reduces the parasite survival rates, an effect associated with increased macrophage NO production. E-NTPDase activity generates substrate for the production of extracellular adenosine, which binds to A2B receptors and reduces IL-12 and TNF-α produced by activated macrophages, thus inhibiting NO production. These results indicate that E-NTPDase activity is important for survival of L. amazonensis within macrophages, showing the role of the enzyme in modulating macrophage response and lower NO production, which ultimately favors infection. Our results point to a new mechanism of L. amazonensis infection that may pave the way for the development of new treatments for this neglected disease. PMID:25554487

  2. Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions.

    PubMed

    Sansom, Fiona M; Robson, Simon C; Hartland, Elizabeth L

    2008-12-01

    In humans, purinergic signaling plays an important role in the modulation of immune responses through specific receptors that recognize nucleoside tri- and diphosphates as signaling molecules. Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) have important roles in the regulation of purinergic signaling by controlling levels of extracellular nucleotides. This process is key to pathophysiological protective responses such as hemostasis and inflammation. Ecto-NTPDases are found in all higher eukaryotes, and recently it has become apparent that a number of important parasitic pathogens of humans express surface-located NTPDases that have been linked to virulence. For those parasites that are purine auxotrophs, these enzymes may play an important role in purine scavenging, although they may also influence the host response to infection. Although ecto-NTPDases are rare in bacteria, expression of a secreted NTPDase in Legionella pneumophila was recently described. This ecto-enzyme enhances intracellular growth of the bacterium and potentially affects virulence. This discovery represents an important advance in the understanding of the contribution of other microbial NTPDases to host-pathogen interactions. Here we review other progress made to date in the characterization of ecto-NTPDases from microbial pathogens, how they differ from mammalian enzymes, and their association with organism viability and virulence. In addition, we postulate how ecto-NTPDases may contribute to the host-pathogen interaction by reviewing the effect of selected microbial pathogens on purinergic signaling. Finally, we raise the possibility of targeting ecto-NTPDases in the development of novel anti-infective agents based on potential structural and clear enzymatic differences from the mammalian ecto-NTPDases.

  3. Leishmania amazonensis: Biological and biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities.

    PubMed

    Pinheiro, Carla M; Martins-Duarte, Erica S; Ferraro, Rodrigo B; Fonseca de Souza, André Luíz; Gomes, Marta T; Lopes, Angela H C S; Vannier-Santos, Marcos A; Santos, André L S; Meyer-Fernandes, José R

    2006-09-01

    The presence of Leishmania amazonensis ecto-nucleoside triphosphate triphosphohydrolase activities was demonstrated using antibodies against different NTPDase members by Western blotting, flow cytometry, and immunoelectron microscopy analysis. Living promastigote cells sequentially hydrolyzed the ATP molecule generating ADP, AMP, and adenosine, indicating that this surface enzyme may play a role in the salvage of purines from the extracellular medium. The L. amazonensis ecto-NTPDase activities were insensitive to Triton X-100, but they were enhanced by divalent cations, such as Mg(2+). In addition, the ecto-NTPDase activities decreased with time for 96 h when promastigotes were grown in vitro. On the other hand, these activities increased considerably when measured in living amastigote forms. Furthermore, the treatment with adenosine, a mediator of several relevant biological phenomena, induced a decrease in the reactivity with anti-CD39 antibody, raised against mammalian E-NTPDase, probably because of down regulation in the L. amazonensis ecto-NTPDase expression. Also, adenosine and anti-NTPDase antibodies induced a significant diminishing in the interaction between promastigotes of L. amazonensis and mouse peritoneal macrophages. PMID:16603157

  4. Multiple ecto-nucleoside triphosphate diphosphohydrolases facilitate intracellular replication of Legionella pneumophila.

    PubMed

    Riedmaier, Patrice; Sansom, Fiona M; Sofian, Trifina; Beddoe, Travis; Schuelein, Ralf; Newton, Hayley J; Hartland, Elizabeth L

    2014-09-01

    Legionella pneumophila is an opportunistic pathogen that replicates within alveolar macrophages resulting in the onset of severe atypical pneumonia. Previously we have identified Lpg1905, a eukaryotic-type ecto-NTPDase (nucleoside triphosphate diphosphohydrolase) from L. pneumophila that was required for optimal intracellular replication and virulence in a mouse lung infection model. In the present study, we characterized the activity of a second eukaryotic-type NTPDase, Lpg0971, from L. pneumophila. We observed that recombinant Lpg0971 hydrolysed only ATP and exhibited divalent cation preference for manganese (II) ions. Similar to lpg1905, an lpg0971 mutant carrying the plasmid pMIP was attenuated in a mouse lung infection model and impaired for replication in human macrophages and amoebae. Increased trafficking of the LCV (Legionella-containing vacuole) to a LAMP-1 (lysosome-associated membrane protein-1)-positive compartment was observed for both the lpg1905 and lpg0971 mutants carrying pMIP. Complementation with either lpg1905 or lpg0971 restored intracellular replication, suggesting that a minimum level of ATPase activity was required for this function. A double lpg1905/0971 mutant was not more impaired for intracellular replication than the single mutants and complementation of the double mutant with lpg0971, but not lpg1905, restored intracellular replication. This suggested that although the NTPDases have overlapping activities they have distinct functions. Unlike many eukaryotic-type proteins from L. pneumophila, neither Lpg1905 nor Lpg0971 were translocated into the host cell by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IV secretion system. Overall our data suggest that the ability of L. pneumophila to replicate in eukaryotic cells relies in part on the ability of the pathogen to hydrolyse ATP within an intracellular compartment.

  5. Extracellular ATP Selectively Upregulates Ecto-Nucleoside Triphosphate Diphosphohydrolase 2 and Ecto-5'-Nucleotidase by Rat Cortical Astrocytes In Vitro.

    PubMed

    Brisevac, Dusica; Adzic, Marija; Laketa, Danijela; Parabucki, Ana; Milosevic, Milena; Lavrnja, Irena; Bjelobaba, Ivana; Sévigny, Jean; Kipp, Markus; Nedeljkovic, Nadezda

    2015-11-01

    Extracellular ATP (eATP) acts as a danger-associated molecular pattern which induces reactive response of astrocytes after brain insult, including morphological remodeling of astrocytes, proliferation, chemotaxis, and release of proinflammatory cytokines. The responses induced by eATP are under control of ecto-nucleotidases, which catalyze sequential hydrolysis of ATP to adenosine. In the mammalian brain, ecto-nucleotidases comprise three enzyme families: ecto-nucleoside triphosphate diphosphohydrolases 1-3 (NTPDase1-3), ecto-nucleotide pyrophosphatase/phospodiesterases 1-3 (NPP1-3), and ecto-5'-nucleotidase (eN), which crucially determine ATP/adenosine ratio in the pericellular milieu. Altered expression of ecto-nucleotidases has been demonstrated in several experimental models of human brain dysfunctions. In the present study, we have explored the pattern of NTPDase1-3, NPP1-3, and eN expression by cultured cortical astrocytes challenged with 1 mmol/L ATP (eATP). At the transcriptional level, eATP upregulated expression of NTPDase1, NTPDase2, NPP2, and eN, while, at translational and functional levels, these were paralleled only by the induction of NTPDase2 and eN. Additionally, eATP altered membrane topology of eN, from clusters localized in membrane domains to continuous distribution along the cell membrane. Our results suggest that eATP, by upregulating NTPDase2 and eN and altering the enzyme membrane topology, affects local kinetics of ATP metabolism and signal transduction that may have important roles in the process related to inflammation and reactive gliosis. PMID:26080748

  6. Enzymatic properties of an ecto-nucleoside triphosphate diphosphohydrolase from Legionella pneumophila: substrate specificity and requirement for virulence.

    PubMed

    Sansom, Fiona M; Riedmaier, Patrice; Newton, Hayley J; Dunstone, Michelle A; Müller, Christa E; Stephan, Holger; Byres, Emma; Beddoe, Travis; Rossjohn, Jamie; Cowan, Peter J; d'Apice, Anthony J F; Robson, Simon C; Hartland, Elizabeth L

    2008-05-01

    Legionella pneumophila is the predominant cause of Legionnaires disease, a severe and potentially fatal form of pneumonia. Recently, we identified an ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila, termed Lpg1905, which enhances intracellular replication of L. pneumophila in eukaryotic cells. Lpg1905 is the first prokaryotic member of the CD39/NTPDase1 family of enzymes, which are characterized by the presence of five apyrase conserved regions and the ability to hydrolyze nucleoside tri- and diphosphates. Here we examined the substrate specificity of Lpg1905 and showed that apart from ATP and ADP, the enzyme catalyzed the hydrolysis of GTP and GDP but had limited activity against CTP, CDP, UTP, and UDP. Based on amino acid residues conserved in the apyrase conserved regions of eukaryotic NTPDases, we generated five site-directed mutants, Lpg1905E159A, R122A, N168A, Q193A, and W384A. Although the mutations E159A, R122A, Q193A, and W384A abrogated activity completely, N168A resulted in decreased activity caused by reduced affinity for nucleotides. When introduced into the lpg1905 mutant strain of L. pneumophila, only N168A partially restored the ability of L. pneumophila to replicate in THP-1 macrophages. Following intratracheal inoculation of A/J mice, none of the Lpg1905 mutants was able to restore virulence to an lpg1905 mutant during lung infection, thereby demonstrating the importance of NTPDase activity to L. pneumophila infection. Overall, the kinetic studies undertaken here demonstrated important differences to mammalian NTPDases and different sensitivities to NTPDase inhibitors that may reflect underlying structural variations.

  7. Recombinant Leishmania (Leishmania) infantum Ecto-Nucleoside Triphosphate Diphosphohydrolase NTPDase-2 as a new antigen in canine visceral leishmaniasis diagnosis.

    PubMed

    de Souza, Ronny Francisco; Dos Santos, Yaro Luciolo; de Souza Vasconcellos, Raphael; Borges-Pereira, Lucas; Caldas, Ivo Santana; de Almeida, Márcia Rogéria; Bahia, Maria Terezinha; Fietto, Juliana Lopes Rangel

    2013-01-01

    Canine visceral leishmaniasis is an important public health concern. In the epidemiological context of human visceral leishmaniasis, dogs are considered the main reservoir of Leishmania parasites; therefore, dogs must be epidemiologically monitored constantly in endemic areas. Furthermore, dog to human transmission has been correlated with emerging urbanization and increasing rates of leishmaniasis infection worldwide. Leishmania (Leishmania) infantum (L. chagasi) is the etiologic agent of visceral leishmaniasis in the New World. In this work, a new L. (L.) infantum (L. chagasi) recombinant antigen, named ATP diphosphohydrolase (rLic-NTPDase-2), intended for use in the immunodiagnosis of CVL was produced and validated. The extracellular domain of ATP diphosphohydrolase was cloned and expressed in the pET21b-Escherichia coli expression system. Indirect ELISA assays were used to detect the purified rLic-NTPDase-2 antigen using a standard canine sera library. This library contained CVL-positive samples, leishmaniasis-negative samples and samples from Trypanosoma cruzi-infected dogs. The results show a high sensitivity of 100% (95% CI=92.60-100.0%) and a high specificity of 100% (95% CI=86.77-100.0%), with a high degree of confidence (k=1). These findings demonstrate the potential use of this recombinant protein in immune diagnosis of canine leishmaniasis and open the possibility of its application to other diagnostic approaches, such as immunochromatography fast lateral flow assays and human leishmaniasis diagnosis. PMID:23022017

  8. Ecto-nucleoside triphosphate diphosphohydrolase 3 in the ventral and lateral hypothalamic area of female rats: morphological characterization and functional implications

    PubMed Central

    Kiss, David S; Zsarnovszky, Attila; Horvath, Krisztina; Gyorffy, Andrea; Bartha, Tibor; Hazai, Diana; Sotonyi, Peter; Somogyi, Virag; Frenyo, Laszlo V; Diano, Sabrina

    2009-01-01

    Background Based on its distribution in the brain, ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) may play a role in the hypothalamic regulation of homeostatic systems, including feeding, sleep-wake behavior and reproduction. To further characterize the morphological attributes of NTPDase3-immunoreactive (IR) hypothalamic structures in the rat brain, here we investigated: 1.) The cellular and subcellular localization of NTPDase3; 2.) The effects of 17β-estradiol on the expression level of hypothalamic NTPDase3; and 3.) The effects of NTPDase inhibition in hypothalamic synaptosomal preparations. Methods Combined light- and electron microscopic analyses were carried out to characterize the cellular and subcellular localization of NTPDase3-immunoreactivity. The effects of estrogen on hypothalamic NTPDase3 expression was studied by western blot technique. Finally, the effects of NTPDase inhibition on mitochondrial respiration were investigated using a Clark-type oxygen electrode. Results Combined light- and electron microscopic analysis of immunostained hypothalamic slices revealed that NTPDase3-IR is linked to ribosomes and mitochondria, is predominantly present in excitatory axon terminals and in distinct segments of the perikaryal plasma membrane. Immunohistochemical labeling of NTPDase3 and glutamic acid decarboxylase (GAD) indicated that γ-amino-butyric-acid- (GABA) ergic hypothalamic neurons do not express NTPDase3, further suggesting that in the hypothalamus, NTPDase3 is predominantly present in excitatory neurons. We also investigated whether estrogen influences the expression level of NTPDase3 in the ventrobasal and lateral hypothalamus. A single subcutaneous injection of estrogen differentially increased NTPDase3 expression in the medial and lateral parts of the hypothalamus, indicating that this enzyme likely plays region-specific roles in estrogen-dependent hypothalamic regulatory mechanisms. Determination of mitochondrial respiration rates

  9. The biochemical properties of the Arabidopsis ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 contradict a direct role in purinergic signaling.

    PubMed

    Massalski, Carolin; Bloch, Jeannine; Zebisch, Matthias; Steinebrunner, Iris

    2015-01-01

    The Arabidopsis E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) AtAPY1 was previously shown to be involved in growth and development, pollen germination and stress responses. It was proposed to perform these functions through regulation of extracellular ATP signals. However, a GFP-tagged version was localized exclusively in the Golgi and did not hydrolyze ATP. In this study, AtAPY1 without the bulky GFP-tag was biochemically characterized with regard to its suggested role in purinergic signaling. Both the full-length protein and a soluble form without the transmembrane domain near the N-terminus were produced in HEK293 cells. Of the twelve nucleotide substrates tested, only three--GDP, IDP and UDP--were hydrolyzed, confirming that ATP was not a substrate of AtAPY1. In addition, the effects of pH, divalent metal ions, known E-NTPDase inhibitors and calmodulin on AtAPY1 activity were analyzed. AtAPY1-GFP extracted from transgenic Arabidopsis seedlings was included in the analyses. All three AtAPY1 versions exhibited very similar biochemical properties. Activity was detectable in a broad pH range, and Ca(2+), Mg(2+) and Mn(2+) were the three most efficient cofactors. Of the inhibitors tested, vanadate was the most potent one. Surprisingly, sulfonamide-based inhibitors shown to inhibit other E-NTPDases and presumed to inhibit AtAPY1 as well were not effective. Calmodulin stimulated the activity of the GFP-tagless membranous and soluble AtAPY1 forms about five-fold, but did not alter their substrate specificities. The apparent Km values obtained with AtAPY1-GFP indicate that AtAPY1 is primarily a GDPase. A putative three-dimensional structural model of the ecto-domain is presented, explaining the potent inhibitory potential of vanadate and predicting the binding mode of GDP. The found substrate specificity classifies AtAPY1 as a nucleoside diphosphatase typical of N-terminally anchored Golgi E-NTPDases and negates a direct function in purinergic signaling

  10. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5'-nucleotidase, and alkaline phosphatase inhibitors.

    PubMed

    al-Rashida, Mariya; Iqbal, Jamshed

    2014-07-01

    The modulatory role of extracellular nucleotides and adenosine in relevance to purinergic cell signaling mechanisms has long been known and is an object of much research worldwide. These extracellular nucleotides are released by a variety of cell types either innately or as a response to patho-physiological stress or injury. A variety of surface-located ecto-nucleotidases (of four major types; nucleoside triphosphate diphosphohydrolases or NTPDases, nucleotide pyrophosphatase/phosphodiesterases or NPPs, alkaline phosphatases APs or ALPs, and ecto-5'-nucleotidase or e5NT) are responsible for meticulously controlling the availability of these important signaling molecules (at their respective receptors) in extracellular environment and are therefore crucial for maintaining the integrity of normal cell functioning. Overexpression of many of these ubiquitous ecto-enzymes has been implicated in a variety of disorders including cell adhesion, activation, proliferation, apoptosis, and degenerative neurological and immunological responses. Selective inhibition of these ecto-enzymes is an area that is currently being explored with great interest and hopes remain high that development of selective ecto-nucleotidase inhibitors will prove to have many beneficial therapeutic implications. The aim of this review is to emphasize and focus on recent developments made in the field of inhibitors of ecto-nucleotidases and to highlight their structure activity relationships wherever possible. Most recent and significant advances in field of NTPDase, NPP, AP, and e5NT inhibitors is being discussed in detail in anticipation of providing prolific leads and relevant background for research groups interested in synthesis of selective ecto-nucleotidase inhibitors.

  11. A bacterial ecto-triphosphate diphosphohydrolase similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila.

    PubMed

    Sansom, Fiona M; Newton, Hayley J; Crikis, Sandra; Cianciotto, Nicholas P; Cowan, Peter J; d'Apice, Anthony J F; Hartland, Elizabeth L

    2007-08-01

    As part of its pathogenesis, Legionella pneumophila persists within human alveolar macrophages in non-acidified organelles that do not mature into phagolysosomes. Two L. pneumophila genes, lpg0971 and lpg1905, are predicted to encode ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) that share sequence similarity with human CD39/NTPDase1. The predicted products possess five apyrase conserved domains that are typical of eukaryotic ecto-NTPDases. In this study, we found that an lpg1905 mutant was recovered in lower numbers from macrophages, alveolar epithelial cells and the amoeba, Hartmannella vermiformis compared with wild-type L. pneumophila and an lpg0971 mutant. Similar to human CD39, recombinant purified Lpg1905 exhibited ATPase and ADPase activity and possessed the ability to inhibit platelet aggregation. Mutation of a conserved Glu159 residue that is essential for CD39 activity inhibited ATPase and ADPase activity of Lpg1905. In addition, enzyme activity was inhibited in the presence of the specific ecto-NTPDase inhibitor, ARL67156. The entry and replication defect of the lpg1905 mutant was reversed upon transcomplementation with lpg1905 but not lpg1905E159A encoding an enzymatically inactive form of the protein. Although several protozoan parasites exhibit ecto-NTPDase activity, including Toxoplasma gondii, Trichomonas vaginalis and Trypanosoma cruzi, this is the first time a bacterial ecto-NTPDase has been implicated in virulence.

  12. Five putative nucleoside triphosphate diphosphohydrolase genes are expressed in Trichomonas vaginalis.

    PubMed

    Frasson, Amanda Piccoli; Dos Santos, Odelta; Meirelles, Lúcia Collares; Macedo, Alexandre José; Tasca, Tiana

    2016-01-01

    Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis.

  13. Crystal structure of a Legionella pneumophila ecto -triphosphate diphosphohydrolase, a structural and functional homolog of the eukaryotic NTPDases.

    PubMed

    Vivian, Julian P; Riedmaier, Patrice; Ge, Honghua; Le Nours, Jérôme; Sansom, Fiona M; Wilce, Matthew C J; Byres, Emma; Dias, Manisha; Schmidberger, Jason W; Cowan, Peter J; d'Apice, Anthony J F; Hartland, Elizabeth L; Rossjohn, Jamie; Beddoe, Travis

    2010-02-10

    Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes. To address the function of bacterial NTPDases, we describe the structures of an NTPDase from the pathogen Legionella pneumophila (Lpg1905/Lp1NTPDase) in its apo state and in complex with the ATP analog AMPPNP and the subtype-specific NTPDase inhibitor ARL 67156. Lp1NTPDase is structurally and catalytically related to eukaryotic NTPDases and the structure provides a basis for NTPDase-specific inhibition. Furthermore, we demonstrate that the activity of Lp1NTPDase correlates directly with intracellular replication of Legionella within macrophages. Collectively, these findings provide insight into the mechanism of this enzyme and highlight its role in host-pathogen interactions.

  14. Crystal Structure of a Legionella pneumophila Ecto -Triphosphate Diphosphohydrolase, A Structural and Functional Homolog of the Eukaryotic NTPDases

    SciTech Connect

    Vivian, Julian P.; Riedmaier, Patrice; Ge, Honghua; Le Nours, Jérôme; Sansom, Fiona M.; Wilce, Matthew C.J.; Byres, Emma; Dias, Manisha; Schmidberger, Jason W.; Cowan, Peter J.; d'Apice, Anthony J.F.; Hartland, Elizabeth L.; Rossjohn, Jamie; Beddoe, Travis

    2010-04-19

    Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes. To address the function of bacterial NTPDases, we describe the structures of an NTPDase from the pathogen Legionella pneumophila (Lpg1905/Lp1NTPDase) in its apo state and in complex with the ATP analog AMPPNP and the subtype-specific NTPDase inhibitor ARL 67156. Lp1NTPDase is structurally and catalytically related to eukaryotic NTPDases and the structure provides a basis for NTPDase-specific inhibition. Furthermore, we demonstrate that the activity of Lp1NTPDase correlates directly with intracellular replication of Legionella within macrophages. Collectively, these findings provide insight into the mechanism of this enzyme and highlight its role in host-pathogen interactions.

  15. Apyrases (Nucleoside Triphosphate-Diphosphohydrolases) Play a Key Role in Growth Control in Arabidopsis1[W][OA

    PubMed Central

    Wu, Jian; Steinebrunner, Iris; Sun, Yu; Butterfield, Timothy; Torres, Jonathan; Arnold, David; Gonzalez, Antonio; Jacob, Francis; Reichler, Stuart; Roux, Stanley J.

    2007-01-01

    Expression of two Arabidopsis (Arabidopsis thaliana) apyrase (nucleoside triphosphate-diphosphohydrolase) genes with high similarity, APY1 and APY2, was analyzed during seedling development and under different light treatments using β-glucuronidase fusion constructs with the promoters of both genes. As evaluated by β-glucuronidase staining and independently confirmed by other methods, the highest expression of both apyrases was in rapidly growing tissues and/or tissues that accumulate high auxin levels. Red-light treatment of etiolated seedlings suppressed the protein and message level of both apyrases at least as rapidly as it inhibited hypocotyl growth. Adult apy1 and apy2 single mutants had near-normal growth, but apy1apy2 double-knockout plants were dwarf, due primarily to reduced cell elongation. Pollen tubes and etiolated hypocotyls overexpressing an apyrase had faster growth rates than wild-type plants. Growing pollen tubes released ATP into the growth medium and suppression of apyrase activity by antiapyrase antibodies or by inhibitors simultaneously increased medium ATP levels and inhibited pollen tube growth. These results imply that APY1 and APY2, like their homologs in animals, act to reduce the concentration of extracellular nucleotides, and that this function is important for the regulation of growth in Arabidopsis. PMID:17434987

  16. Leishmania (Viannia) braziliensis nucleoside triphosphate diphosphohydrolase (NTPDase 1): localization and in vitro inhibition of promastigotes growth by polyclonal antibodies.

    PubMed

    Porcino, Gabriane Nascimento; Carvalho-Campos, Cristiane; Maia, Ana Carolina Ribeiro Gomes; Detoni, Michelle Lima; Faria-Pinto, Priscila; Coimbra, Elaine Soares; Marques, Marcos José; Juliano, Maria Aparecida; Juliano, Luiz; Diniz, Vanessa Álvaro; Corte-Real, Suzana; Vasconcelos, Eveline Gomes

    2012-10-01

    Nucleoside triphosphate diphosphohydrolase (NTPDase) activity was recently characterized in Leishmania (Viannia) braziliensis promastigotes (Lb), and an antigenic conserved domain (r82-121) from the specific NTPDase 1 isoform was identified. In this work, mouse polyclonal antibodies produced against two synthetic peptides derived from this domain (LbB1LJ, r82-103; LbB2LJ, r102-121) were used. The anti-LbB1LJ or anti-LbB2LJ antibodies were immobilized on protein A-sepharose and immunoprecipitated the NTPDase 1 of 48 kDa and depleted approximately 40% of the phosphohydrolytic activity from detergent-homogenized Lb preparation. Ultrastructural immunocytochemical microscopy identified the NTPDase 1 on the parasite surface and in its subcellular cytoplasmic vesicles, mitochondria, kinetoplast and nucleus. The ATPase and ADPase activities of detergent-homogenized Lb preparation were partially inhibited by anti-LbB1LJ antibody (43-79%), which was more effective than that inhibition (18-47%) by anti-LbB2LJ antibody. In addition, the immune serum anti-LbB1LJ (67%) or anti-LbB2LJ (33%) was cytotoxic, significantly reducing the promastigotes growth in vitro. The results appoint the conserved domain from the L. braziliensis NTPDase as an important target for inhibitor design and the potential application of these biomolecules in experimental protocols of disease control. PMID:22921497

  17. Upregulation of nucleoside triphosphate diphosphohydrolase-1 and ecto-5'-nucleotidase in rat hippocampus after repeated low-dose dexamethasone administration.

    PubMed

    Drakulić, Dunja; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana; Veličković, Nataša; Guševac, Ivana; Mitrović, Nataša; Buzadžić, Ivana; Horvat, Anica

    2015-04-01

    Although dexamethasone (DEX), a synthetic glucocorticoid receptor (GR) analog with profound effects on energy metabolism, immune system, and hypothalamic-pituitary-adrenal axis, is widely used therapeutically, its impact on the brain is poorly understood. The aim of the present study was to explore the effect of repeated low-dose DEX administration on the activity and expression of the ectonucleotidase enzymes which hydrolyze and therefore control extracellular ATP and adenosine concentrations in the synaptic cleft. Ectonucleotidases tested were ectonucleoside triphosphate diphosphohydrolase 1-3 (NTPDase1-3) and ecto-5'-nucleotidase (eN), whereas the effects were evaluated in two brain areas that show different sensitivity to glucocorticoid action, hippocampus, and cerebral cortex. In the hippocampus, but not in cerebral cortex, modest level of neurodegenerative changes as well as increase in ATP, ADP, and AMP hydrolysis and upregulation of NTPDase1 and eN mRNA expression ensued under the influence of DEX. The observed pattern of ectonucleotidase activation, which creates tissue volume with enhanced capacity for adenosine formation, is the hallmark of the response after different insults to the brain.

  18. Ectonucleotide Triphosphate Diphosphohydrolase-1 (CD39) Mediates Resistance to Occlusive Arterial Thrombus Formation after Vascular Injury in Mice

    PubMed Central

    Huttinger, Zachary M.; Milks, Michael W.; Nickoli, Michael S.; Aurand, William L.; Long, Lawrence C.; Wheeler, Debra G.; Dwyer, Karen M.; d'Apice, Anthony J.F.; Robson, Simon C.; Cowan, Peter J.; Gumina, Richard J.

    2013-01-01

    Modulation of purinergic signaling, which is critical for vascular homeostasis and the response to vascular injury, is regulated by hydrolysis of proinflammatory ATP and/or ADP by ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) to AMP, which then is hydrolyzed by ecto-5′-nucleotidase (CD73) to adenosine. We report here that compared with littermate controls (wild type), transgenic mice expressing human ENTPDase-1 were resistant to the formation of an occlusive thrombus after FeCl3-induced carotid artery injury. Treatment of mice with the nonhydrolyzable ADP analog, adenosine-5′-0-(2-thiodiphosphate) trilithium salt, Ado-5′-PP[S], negated the protection from thrombosis, consistent with a role for ADP in platelet recruitment and thrombus formation. ENTPD-1 expression decreased whole-blood aggregation after stimulation by ADP, an effect negated by adenosine-5′-0-(2-thiodiphosphate) trilithium salt, Ado-5′-PP[S] stimulation, and limited the ability to maintain the platelet fibrinogen receptor, glycoprotein αIIb/β3, in a fully activated state, which is critical for thrombus formation. In vivo treatment with a CD73 antagonist, a nonselective adenosine-receptor antagonist, or a selective A2A or A2B adenosine-receptor antagonist, negated the resistance to thrombosis in transgenic mice expressing human ENTPD-1, suggesting a role for adenosine generation and engagement of adenosine receptors in conferring in vivo resistance to occlusive thrombosis in this model. In summary, our findings identify ENTPDase-1 modulation of purinergic signaling as a key determinant of the formation of an occlusive thrombus after vascular injury. PMID:22613024

  19. Osmotic surveillance mediates rapid wound closure through nucleotide release

    PubMed Central

    Gault, William J.; Enyedi, Balázs

    2014-01-01

    Osmotic cues from the environment mediate rapid detection of epithelial breaches by leukocytes in larval zebrafish tail fins. Using intravital luminescence and fluorescence microscopy, we now show that osmolarity differences between the interstitial fluid and the external environment trigger ATP release at tail fin wounds to initiate rapid wound closure through long-range activation of basal epithelial cell motility. Extracellular nucleotide breakdown, at least in part mediated by ecto-nucleoside triphosphate diphosphohydrolase 3 (Entpd3), restricts the range and duration of osmotically induced cell migration after injury. Thus, in zebrafish larvae, wound repair is driven by an autoregulatory circuit that generates pro-migratory tissue signals as a function of environmental exposure of the inside of the tissue. PMID:25533845

  20. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities. PMID:27638696

  1. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  2. Hypercholesterolemia and Ecto-enzymes of Purinergic System: Effects of Paullinia cupana.

    PubMed

    Ruchel, J B; Rezer, J F P; Thorstenberg, M L; Dos Santos, C B; Cabral, F L; Lopes, S T A; da Silva, C B; Machado, A K; da Cruz, I B M; Schetinger, M R C; Gonçalves, J F; Leal, D B R

    2016-01-01

    Hypercholesterolemia is a metabolic disorder characterized by high levels of low-density lipoprotein and blood cholesterol, causing inflammatory lesion. Purinergic signaling modulates the inflammatory and immune responses through adenine nucleotides and nucleoside. Guaraná has hypocholesterolemic and antiinflammatory properties. Considering that there are few studies demonstrating the effects of guaraná powder on the metabolism of adenine nucleotides, we investigated its effects on the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase activity in lymphocytes of rats with diet-induced hypercholesterolemia. The rats were divided into hypercholesterolemic and normal diet groups. Each group was subdivided by treatment: saline, guaraná powder 12.5, 25, or 50 mg/kg/day and caffeine concentration equivalent to highest dose of guaraná, fed orally for 30 days. An increase in adenosine triphosphate hydrolysis was observed in the lymphocytes of rats with hypercholesterolemia and treated with 25 or 50 mg/kg/day when compared with the other groups. The hypercholesterolemic group treated with the highest concentration of guaraná powder showed decreased ecto-adenosine deaminase activity compared with the normal diet groups. Guaraná was able to reduce the total cholesterol and low-density lipoprotein cholesterol to basal levels in hypercholesterolemic rats. High concentrations of guaraná associated with a hypercholesterolemic diet are likely to have contributed to the reduction of the inflammatory process. PMID:26514663

  3. Hypercholesterolemia and Ecto-enzymes of Purinergic System: Effects of Paullinia cupana.

    PubMed

    Ruchel, J B; Rezer, J F P; Thorstenberg, M L; Dos Santos, C B; Cabral, F L; Lopes, S T A; da Silva, C B; Machado, A K; da Cruz, I B M; Schetinger, M R C; Gonçalves, J F; Leal, D B R

    2016-01-01

    Hypercholesterolemia is a metabolic disorder characterized by high levels of low-density lipoprotein and blood cholesterol, causing inflammatory lesion. Purinergic signaling modulates the inflammatory and immune responses through adenine nucleotides and nucleoside. Guaraná has hypocholesterolemic and antiinflammatory properties. Considering that there are few studies demonstrating the effects of guaraná powder on the metabolism of adenine nucleotides, we investigated its effects on the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase activity in lymphocytes of rats with diet-induced hypercholesterolemia. The rats were divided into hypercholesterolemic and normal diet groups. Each group was subdivided by treatment: saline, guaraná powder 12.5, 25, or 50 mg/kg/day and caffeine concentration equivalent to highest dose of guaraná, fed orally for 30 days. An increase in adenosine triphosphate hydrolysis was observed in the lymphocytes of rats with hypercholesterolemia and treated with 25 or 50 mg/kg/day when compared with the other groups. The hypercholesterolemic group treated with the highest concentration of guaraná powder showed decreased ecto-adenosine deaminase activity compared with the normal diet groups. Guaraná was able to reduce the total cholesterol and low-density lipoprotein cholesterol to basal levels in hypercholesterolemic rats. High concentrations of guaraná associated with a hypercholesterolemic diet are likely to have contributed to the reduction of the inflammatory process.

  4. Altered E-NTPDase/E-ADA activities and CD39 expression in platelets of sickle cell anemia patients.

    PubMed

    Castilhos, Lívia G; Doleski, Pedro H; Adefegha, Stephen A; Becker, Lara V; Ruchel, Jader B; Leal, Daniela B R

    2016-04-01

    Sickle cell anemia (SCA) is a hemoglobinopathy characterized by hemolysis and vaso-occlusions caused by rigidly distorted red blood cells. Sickle cell crisis is associated with extracellular release of nucleotides and platelets, which are critical mediators of hemostasis participating actively in purinergic thromboregulatory enzymes system.This study aimed to investigate the activities of purinergic system ecto-enzymes present on the platelet surface as well as CD39 and CD73 expressions on platelets of SCA treated patients. Fifteen SCA treated patients and 30 health subjects (control group) were selected. Ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-5'-NT) and ecto-adenosine deaminase (E-ADA) activities were measured in platelets isolated from these individuals. Results demonstrated an increase of 41 % in the E-NTPDase for ATP hydrolysis, 52% for ADP hydrolysis and 60 % in the E-ADA activity in SCA patients (P<0.05); however, a two folds decrease in the CD39 expression in platelets was observed in the same group (P<0.01). The increased E-NTPDase activity could be a compensatory mechanism associated with the low expression of CD39 in platelets. Besides, alteration of these enzymes activities suggests that the purinergic system could be involved in the thromboregulatory process in SCA patients. PMID:27044834

  5. Optical Aptasensors for Adenosine Triphosphate

    PubMed Central

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  6. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.

    PubMed

    Kowal, J M; Yegutkin, G G; Novak, I

    2015-12-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide

  7. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.

    PubMed

    Kowal, J M; Yegutkin, G G; Novak, I

    2015-12-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide

  8. Cytochemical localization of ATP diphosphohydrolase from Leishmania (Viannia) braziliensis promastigotes and identification of an antigenic and catalytically active isoform.

    PubMed

    Rezende-Soares, F A; Carvalho-Campos, C; Marques, M J; Porcino, G N; Giarola, N L L; Costa, B L S; Taunay-Rodrigues, A; Faria-Pinto, P; Souza, M A; Diniz, V A; Corte-Real, S; Juliano, M A; Juliano, L; Vasconcelos, E G

    2010-04-01

    An ATP diphosphohydrolase (EC 3.6.1.5) activity was identified in a Leishmania (Viannia) braziliensis promastigotes preparation (Lb). Ultrastructural cytochemical microscopy showed this protein on the parasite surface and also stained a possible similar protein at the mitochondrial membrane. Isolation of an active ATP diphosphohydrolase isoform from Lb was obtained by cross-immunoreactivity with polyclonal anti-potato apyrase antibodies. These antibodies, immobilized on Protein A-Sepharose, immunoprecipitated a polypeptide of approximately 48 kDa and, in lower amount, a polypeptide of approximately 43 kDa, and depleted 83% ATPase and 87% of the ADPase activities from detergent-homogenized Lb. Potato apyrase was recognized in Western blots by IgG antibody from American cutaneous leishmaniasis (ACL) patients, suggesting that the parasite and vegetable proteins share antigenic conserved epitopes. Significant IgG seropositivity in serum samples diluted 1:50 from ACL patients (n=20) for Lb (65%) and potato apyrase (90%) was observed by ELISA technique. Significant IgG antibody reactivity was also observed against synthetic peptides belonging to a conserved domain from L. braziliensis NDPase (80% seropositivity) and its potato apyrase counterpart (50% seropositivity), in accordance with the existence of shared antigenic epitopes and demonstrating that in leishmaniasis infection the domain r82-103 from L. braziliensis NDPase is a target for the human immune response. PMID:19961654

  9. Red Wine Inhibits Aggregation and Increases ATP-diphosphohydrolase (CD39) Activity of Rat Platelets in Vitro.

    PubMed

    Caiazzo, Elisabetta; Tedesco, Idolo; Spagnuolo, Carmela; Russo, Gian Luigi; Ialenti, Armando; Cicala, Carla

    2016-06-01

    Moderate consumption of red wine has been shown to exert a peculiar cardioprotective effect compared with other alcoholic beverages; inhibition of platelet aggregation seems to be one of the mechanisms underlying this beneficial effect. CD39/ATP-diphosphohydrolase is an integral membrane glycoprotein metabolizing ATP and ADP to AMP; in concert with CD73/ecto-5'-nucleotidase, it contributes to extracellular adenosine accumulation. CD39 is considered a key modulator of thrombus formation; it inhibits platelet aggregation by promoting ADP hydrolysis. There is evidence that red wine consumption increases CD39 activity in platelets from streptozotocin-induced diabetic rats. Here we show that two kinds of Aglianico red wines inhibit aggregation and increase ATP--and ADPase activity in rat platelets. PMID:27534113

  10. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  11. Methylotrophic yeast Pichia pastoris as a host for production of ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum).

    PubMed

    Nourizad, Nader; Ehn, Maria; Gharizadeh, Baback; Hober, Sophia; Nyrén, Pål

    2003-02-01

    ATP-diphosphohydrolase (apyrase) catalyzes the hydrolysis of phosphoanhydride bonds of nucleoside tri- and di-phosphates in the presence of divalent cations. This enzyme has broad substrate specificity for nucleotides, which makes it an ideal enzyme for different biotechnical applications, such as DNA sequencing and platelet-aggregation inhibition. The only commercially available apyrase is isolated from potato tubers. To avoid batch-to-batch variations in activity and quality, we decided to produce a recombinant enzyme. The methylotrophic yeast Pichia pastoris was chosen as an eukaryotic expression host. The coding sequence of potato apyrase, without the signal peptide, was cloned into the YpDC541 vector to create a fusion with the alpha-mating secretion signal of Saccharomyces cerevisiae. The gene was placed under the control of the methanol-inducible alcohol oxidase promoter. The YpDC541-apyrase construct was integrated into P. pastoris strain SMD1168. Methanol induction resulted in secretion of apyrase to a level of 1mg/L. The biologically active recombinant apyrase was purified by hydrophobic interaction and ion exchange chromatography. According to SDS-PAGE and Western blot analysis, the purified enzyme showed to be hyperglycosylated. By enzymatic removal of N-glycans, a single band corresponding to a molecular mass of 48kDa was detected. The recombinant apyrase was found to function well when it was used in combination with the Pyrosequencing technology.

  12. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment.

  13. Acidosis is a key regulator of osteoblast ecto-nucleotidase pyrophosphatase/phosphodiesterase 1 (NPP1) expression and activity.

    PubMed

    Orriss, Isabel R; Key, Michelle L; Hajjawi, Mark O R; Millán, José L; Arnett, Timothy R

    2015-12-01

    Previous work has shown that acidosis prevents bone nodule formation by osteoblasts in vitro by inhibiting mineralisation of the collagenous matrix. The ratio of phosphate (Pi ) to pyrophosphate (PPi ) in the bone microenvironment is a fundamental regulator of bone mineralisation. Both Pi and PPi , a potent inhibitor of mineralisation, are generated from extracellular nucleotides by the actions of ecto-nucleotidases. This study investigated the expression and activity of ecto-nucleotidases by osteoblasts under normal and acid conditions. We found that osteoblasts express mRNA for a number of ecto-nucleotidases including NTPdase 1-6 (ecto-nucleoside triphosphate diphosphohydrolase) and NPP1-3 (ecto-nucleotide pyrophosphatase/phosphodiesterase). The rank order of mRNA expression in differentiating rat osteoblasts (day 7) was Enpp1 > NTPdase 4 > NTPdase 6 > NTPdase 5 >  alkaline phosphatase > ecto-5-nucleotidase > Enpp3 > NTPdase 1 > NTPdase 3 > Enpp2 > NTPdase 2. Acidosis (pH 6.9) upregulated NPP1 mRNA (2.8-fold) and protein expression at all stages of osteoblast differentiation compared to physiological pH (pH 7.4); expression of other ecto-nucleotidases was unaffected. Furthermore, total NPP activity was increased up to 53% in osteoblasts cultured in acid conditions (P < 0.001). Release of ATP, one of the key substrates for NPP1, from osteoblasts, was unaffected by acidosis. Further studies showed that mineralised bone formation by osteoblasts cultured from NPP1 knockout mice was increased compared with wildtypes (2.5-fold, P < 0.001) and was partially resistant to the inhibitory effect of acidosis. These results indicate that increased NPP1 expression and activity might contribute to the decreased mineralisation observed when osteoblasts are exposed to acid conditions.

  14. Polyoxometalates--potent and selective ecto-nucleotidase inhibitors.

    PubMed

    Lee, Sang-Yong; Fiene, Amelie; Li, Wenjin; Hanck, Theodor; Brylev, Konstantin A; Fedorov, Vladimir E; Lecka, Joanna; Haider, Ali; Pietzsch, Hans-Jürgen; Zimmermann, Herbert; Sévigny, Jean; Kortz, Ulrich; Stephan, Holger; Müller, Christa E

    2015-01-15

    Polyoxometalates (POMs) are inorganic cluster metal complexes that possess versatile biological activities, including antibacterial, anticancer, antidiabetic, and antiviral effects. Their mechanisms of action at the molecular level are largely unknown. However, it has been suggested that the inhibition of several enzyme families (e.g., phosphatases, protein kinases or ecto-nucleotidases) by POMs may contribute to their pharmacological properties. Ecto-nucleotidases are cell membrane-bound or secreted glycoproteins involved in the hydrolysis of extracellular nucleotides thereby regulating purinergic (and pyrimidinergic) signaling. They comprise four distinct families: ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs), alkaline phosphatases (APs) and ecto-5'-nucleotidase (eN). In the present study, we evaluated the inhibitory potency of a series of polyoxometalates as well as chalcogenide hexarhenium cluster complexes at a broad range of ecto-nucleotidases. [Co4(H2O)2(PW9O34)2](10-) (5, PSB-POM142) was discovered to be the most potent inhibitor of human NTPDase1 described so far (Ki: 3.88 nM). Other investigated POMs selectively inhibited human NPP1, [TiW11CoO40](8-) (4, PSB-POM141, Ki: 1.46 nM) and [NaSb9W21O86](18-) (6, PSB-POM143, Ki: 4.98 nM) representing the most potent and selective human NPP1 inhibitors described to date. [NaP5W30O110](14-) (8, PSB-POM144) strongly inhibited NTPDase1-3 and NPP1 and may therefore be used as a pan-inhibitor to block ATP hydrolysis. The polyoxoanionic compounds displayed a non-competitive mechanism of inhibition of NPPs and eN, but appeared to be competitive inhibitors of TNAP. Future in vivo studies with selected inhibitors identified in the current study are warranted. PMID:25449596

  15. The F0F1 ATP Synthase Complex Localizes to Membrane Rafts in Gonadotrope Cells.

    PubMed

    Allen-Worthington, Krystal; Xie, Jianjun; Brown, Jessica L; Edmunson, Alexa M; Dowling, Abigail; Navratil, Amy M; Scavelli, Kurt; Yoon, Hojean; Kim, Do-Geun; Bynoe, Margaret S; Clarke, Iain; Roberson, Mark S

    2016-09-01

    Fertility in mammals requires appropriate communication within the hypothalamic-pituitary-gonadal axis and the GnRH receptor (GnRHR) is a central conduit for this communication. The GnRHR resides in discrete membrane rafts and raft occupancy is required for signaling by GnRH. The present studies use immunoprecipitation and mass spectrometry to define peptides present within the raft associated with the GnRHR and flotillin-1, a key raft marker. These studies revealed peptides from the F0F1 ATP synthase complex. The catalytic subunits of the F1 domain were validated by immunoprecipitation, flow cytometry, and cell surface biotinylation studies demonstrating that this complex was present at the plasma membrane associated with the GnRHR. The F1 catalytic domain faces the extracellular space and catalyzes ATP synthesis when presented with ADP in normal mouse pituitary explants and a gonadotrope cell line. Steady-state extracellular ATP accumulation was blunted by coadministration of inhibitory factor 1, limiting inorganic phosphate in the media, and by chronic stimulation of the GnRHR. Steady-state extracellular ATP accumulation was enhanced by pharmacological inhibition of ecto-nucleoside triphosphate diphosphohydrolases. Kisspeptin administration induced coincident GnRH and ATP release from the median eminence into the hypophyseal-portal vasculature in ovariectomized sheep. Elevated levels of extracellular ATP augmented GnRH-induced secretion of LH from pituitary cells in primary culture, which was blocked in media containing low inorganic phosphate supporting the importance of extracellular ATP levels to gonadotrope cell function. These studies indicate that gonadotropes have intrinsic ability to metabolize ATP in the extracellular space and extracellular ATP may serve as a modulator of GnRH-induced LH secretion. PMID:27482602

  16. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment. PMID:26769247

  17. CrATP interferes in the promastigote-macrophage interaction in Leishmania amazonensis infection.

    PubMed

    Ennes-Vidal, V; Castro, R O S; Britto, C; Barrabin, H; D'Avila-Levy, C M; Moreira, O C

    2011-07-01

    Recent have shown the relationship between Ecto-Nucleoside-Triphosphate-Diphosphohydrolases (Ecto-NTPDases or ecto-nucleotidases) and virulence and infectivity in trypanosomatids. In this work, the inhibition of the ecto-ATPase activities and promastigote growth of Leishmania amazonensis by CrATP was characterized. Furthermore, this compound was used to investigate the role of ecto-nucleotidase in the interaction of L. amazonensis with resident peritoneal macrophages obtained from BALB/c mice. CrATP partially inhibits the ecto-ATPase activity, presenting Ki values of 575·7±199·1 and 383·5±79·0 μm, in the presence or absence of 5 mm MgCl2, respectively. The apparent Kms for ATP (2·9±0·5 mm to Mg2+-dependent ecto-ATPase and 0·4±0·2 mm to Mg2+-independent ecto-ATPase activities) are not significantly altered by CrATP, suggesting a reversible non-competitive inhibition of both enzymes. When CrATP was added to the cultivation medium at 500 μm, it drastically inhibited the cellular growth. The interaction of promastigote forms of L. amazonensis with BALB/c peritoneal macrophages is strongly affected by CrATP. When the parasites were treated with 500 μm CrATP before interacting with macrophages, the adhesion and endocytic indices were strongly reduced to 53·0±14·8% and 39·8±1·1%, respectively. These results indicate that ecto-nucleotidase plays an important role in the infection process caused by Leishmania amazonensis. PMID:21679488

  18. The F0F1 ATP Synthase Complex Localizes to Membrane Rafts in Gonadotrope Cells.

    PubMed

    Allen-Worthington, Krystal; Xie, Jianjun; Brown, Jessica L; Edmunson, Alexa M; Dowling, Abigail; Navratil, Amy M; Scavelli, Kurt; Yoon, Hojean; Kim, Do-Geun; Bynoe, Margaret S; Clarke, Iain; Roberson, Mark S

    2016-09-01

    Fertility in mammals requires appropriate communication within the hypothalamic-pituitary-gonadal axis and the GnRH receptor (GnRHR) is a central conduit for this communication. The GnRHR resides in discrete membrane rafts and raft occupancy is required for signaling by GnRH. The present studies use immunoprecipitation and mass spectrometry to define peptides present within the raft associated with the GnRHR and flotillin-1, a key raft marker. These studies revealed peptides from the F0F1 ATP synthase complex. The catalytic subunits of the F1 domain were validated by immunoprecipitation, flow cytometry, and cell surface biotinylation studies demonstrating that this complex was present at the plasma membrane associated with the GnRHR. The F1 catalytic domain faces the extracellular space and catalyzes ATP synthesis when presented with ADP in normal mouse pituitary explants and a gonadotrope cell line. Steady-state extracellular ATP accumulation was blunted by coadministration of inhibitory factor 1, limiting inorganic phosphate in the media, and by chronic stimulation of the GnRHR. Steady-state extracellular ATP accumulation was enhanced by pharmacological inhibition of ecto-nucleoside triphosphate diphosphohydrolases. Kisspeptin administration induced coincident GnRH and ATP release from the median eminence into the hypophyseal-portal vasculature in ovariectomized sheep. Elevated levels of extracellular ATP augmented GnRH-induced secretion of LH from pituitary cells in primary culture, which was blocked in media containing low inorganic phosphate supporting the importance of extracellular ATP levels to gonadotrope cell function. These studies indicate that gonadotropes have intrinsic ability to metabolize ATP in the extracellular space and extracellular ATP may serve as a modulator of GnRH-induced LH secretion.

  19. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation.... Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet...

  20. Chemoelectrical energy conversion of adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Sarles, Stephen Andrew; Leo, Donald J.

    2007-04-01

    Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) -synthesized within the cell. The adenosine triphosphatase (ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm2 and a current density of 43.4 μA/cm2 of membrane area.

  1. Inhibition of Influenza Virus Ribonucleic Acid Polymerase by Ribavirin Triphosphate

    PubMed Central

    Eriksson, Bertil; Helgstrand, Erik; Johansson, Nils Gunnar; Larsson, Alf; Misiorny, Alfons; Noren, Jan Olof; Philipson, Lennart; Stenberg, Kjell; Stening, Goran; Stridh, Stig; Öberg, Bo

    1977-01-01

    Ribavirin 5′-triphosphate (RTP), derived from the broad-spectrum antiviral compound ribavirin (Virazole), can selectively inhibit influenza virus ribonucleic acid polymerase in a cell-free assay. Ribavirin and its 5′-monophosphate have no effect on the polymerase. The inhibition is competitive with respect to adenosine 5′-triphosphate and guanosine 5′-triphosphate. RTP also inhibits ApG- and GpC-stimulated influenza virus ribonucleic acid polymerase. Since ribavirin is phosphorylated in the cell, the inhibition of influenza multiplication in the cell may also be caused by RTP. PMID:879760

  2. [Vascular effects of adenosine-triphosphate].

    PubMed

    Colson, P; Saussine, M; Gaba, S; Sequin, J; Chaptal, P A; Roquefeuil, B

    1991-01-01

    This study assessed the effects of adenosine triphosphate (ATP) on systemic vascular resistances during the hypothermic cardiopulmonary bypass phase of cardiac surgery. Twenty patients scheduled for cardiac surgery were randomly divided into an ATP group (n = 10), and a placebo group (n = 10). Anaesthesia was similar for all the patients (diazepam, fentanyl and pancuronium). During the heart arrest phase, and as soon as the arterial pressure, the level in the venous return reservoir, and the pump flow rate had all been in steady state for 5 min, ATP or placebo was injected into the venous line of the oxygenator. Injection speed was doubled every three minutes, twice. The following ATP doses were administered: 0.012, 0.025 and 0.05 mg.kg-1.min-1. The level in the venous return reservoir was kept constant. Mean arterial pressure (MAP) and pump flow rate (DP) were assessed every half minute. Systemic vascular resistances were calculated with the relationship MAP/DP. Changes in vascular capacitance were directly proportional to changes in DP as the heart had been excluded, and all the blood returned to the pump, the blood volume being kept constant. MAP and DP remained unchanged in the placebo group. In the opposite ATP induced a dose-related systemic vasodilation: MAP decreased from 82.8 +/- 12.5 mmHg (control) to 66.0 +/- 14.8 mmHg, 59.8 +/- 10.6 mmHg, and 49.0 +/- 4.7 mmHg with 0.012, 0.025 and 0.05 mg.kg-1.min-1 ATP respectively. The MAP returned to preinfusion control levels when the ATP infusion was discontinued (90.0 +/- 17.8 mmHg). The DP, and therefore venous return, did not change, neither during ATP infusion, nor after its discontinuation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1854051

  3. 5'-Triphosphate RNA is the ligand for RIG-I.

    PubMed

    Hornung, Veit; Ellegast, Jana; Kim, Sarah; Brzózka, Krzysztof; Jung, Andreas; Kato, Hiroki; Poeck, Hendrik; Akira, Shizuo; Conzelmann, Karl-Klaus; Schlee, Martin; Endres, Stefan; Hartmann, Gunther

    2006-11-10

    The structural basis for the distinction of viral RNA from abundant self RNA in the cytoplasm of virally infected cells is largely unknown. We demonstrated that the 5'-triphosphate end of RNA generated by viral polymerases is responsible for retinoic acid-inducible protein I (RIG-I)-mediated detection of RNA molecules. Detection of 5'-triphosphate RNA is abrogated by capping of the 5'-triphosphate end or by nucleoside modification of RNA, both occurring during posttranscriptional RNA processing in eukaryotes. Genomic RNA prepared from a negative-strand RNA virus and RNA prepared from virus-infected cells (but not from noninfected cells) triggered a potent interferon-alpha response in a phosphatase-sensitive manner. 5'-triphosphate RNA directly binds to RIG-I. Thus, uncapped 5'-triphosphate RNA (now termed 3pRNA) present in viruses known to be recognized by RIG-I, but absent in viruses known to be detected by MDA-5 such as the picornaviruses, serves as the molecular signature for the detection of viral infection by RIG-I.

  4. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  5. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  6. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  7. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  8. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  9. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  10. Automated parallel synthesis of 5'-triphosphate oligonucleotides and preparation of chemically modified 5'-triphosphate small interfering RNA.

    PubMed

    Zlatev, Ivan; Lackey, Jeremy G; Zhang, Ligang; Dell, Amy; McRae, Kathy; Shaikh, Sarfraz; Duncan, Richard G; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2013-02-01

    A fully automated chemical method for the parallel and high-throughput solid-phase synthesis of 5'-triphosphate and 5'-diphosphate oligonucleotides is described. The desired full-length oligonucleotides were first constructed using standard automated DNA/RNA solid-phase synthesis procedures. Then, on the same column and instrument, efficient implementation of an uninterrupted sequential cycle afforded the corresponding unmodified or chemically modified 5'-triphosphates and 5'-diphosphates. The method was readily translated into a scalable and high-throughput synthesis protocol compatible with the current DNA/RNA synthesizers yielding a large variety of unique 5'-polyphosphorylated oligonucleotides. Using this approach, we accomplished the synthesis of chemically modified 5'-triphosphate oligonucleotides that were annealed to form small-interfering RNAs (ppp-siRNAs), a potentially interesting class of novel RNAi therapeutic tools. The attachment of the 5'-triphosphate group to the passenger strand of a siRNA construct did not induce a significant improvement in the in vitro RNAi-mediated gene silencing activity nor a strong specific in vitro RIG-I activation. The reported method will enable the screening of many chemically modified ppp-siRNAs, resulting in a novel bi-functional RNAi therapeutic platform. PMID:23260577

  11. Modified Nucleoside Triphosphates for in-vitro Selection Techniques

    NASA Astrophysics Data System (ADS)

    Iribarren, Adolfo; Dellafiore, María; Montserrat, Javier

    2016-05-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  12. Modified Nucleoside Triphosphates for In-vitro Selection Techniques.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  13. Modified Nucleoside Triphosphates for In-vitro Selection Techniques

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed. PMID:27200340

  14. Modified Nucleoside Triphosphates for In-vitro Selection Techniques.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed. PMID:27200340

  15. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  16. A one-pot synthesis of α-l-threofuranosyl nucleoside triphosphates (tNTPs).

    PubMed

    Sau, Sujay P; Chaput, John C

    2016-07-15

    TNA (α-l-threofuranosyl nucleoside) triphosphates of adenosine (tATP), guanosine (tGTP), cytidine (tCTP), and thymidine (tTTP) were synthesized from their corresponding 3'-O-phosphoramidite derivatives using a novel one-pot reaction that is less moisture sensitive than traditional methods. The chemically synthesized tNTPs, despite containing an unnatural 3'-triphosphate moiety, are similar in thermal stability to natural nucleotide triphosphates. PMID:27246616

  17. A one-pot synthesis of α-l-threofuranosyl nucleoside triphosphates (tNTPs).

    PubMed

    Sau, Sujay P; Chaput, John C

    2016-07-15

    TNA (α-l-threofuranosyl nucleoside) triphosphates of adenosine (tATP), guanosine (tGTP), cytidine (tCTP), and thymidine (tTTP) were synthesized from their corresponding 3'-O-phosphoramidite derivatives using a novel one-pot reaction that is less moisture sensitive than traditional methods. The chemically synthesized tNTPs, despite containing an unnatural 3'-triphosphate moiety, are similar in thermal stability to natural nucleotide triphosphates.

  18. An Efficient Protection-Free One-Pot Chemical Synthesis of Modified Nucleoside-5'-Triphosphates.

    PubMed

    Shanmugasundaram, Muthian; Senthilvelan, Annamalai; Xiao, Zejun; Kore, Anilkumar R

    2016-07-01

    A simple, reliable, and an efficient "one-pot, three step" chemical method for the synthesis of modified nucleoside triphosphates such as 5-methylcytidine-5'-triphosphate (5-MeCTP), pseudouridine-5'-triphosphate (pseudoUTP) and N(1)-methylpseudouridine-5'-triphosphate (N(1)-methylpseudoUTP) starting from the corresponding nucleoside is described. The overall reaction involves the monophosphorylation of nucleoside, followed by the reaction with pyrophosphate and subsequent hydrolysis of the cyclic intermediate to furnish the corresponding NTP in moderate yields with high purity (>99.5%).

  19. Dideoxy nucleoside triphosphate (ddNTP) analogues: Synthesis and polymerase substrate activities of pyrrolidinyl nucleoside triphosphates (prNTPs).

    PubMed

    Gade, Chandrasekhar Reddy; Dixit, Manjusha; Sharma, Nagendra K

    2016-09-15

    The dideoxynucleoside triphosphates (ddNTPs) terminate the bio-polymerization of DNA and become essential chemical component of DNA sequencing technology which is now basic tool for molecular biology research. In this method the radiolabeled or fluorescent dye labeled ddNTP analogues are being used for DNA sequencing by detection of the terminated DNA fragment after single labeled ddNTP incorporation into DNA under PCR conditions. This report describes the syntheses of rationally designed novel amino-functionalized ddNTP analogue such as Pyrrolidine nucleoside triphosphates (prNTPs), and their polymerase activities with DNA polymerase by LC-MS and Gel-electrophoretic techniques. The Mass and PAGE analyses strongly support the incorporation of prNTPs into DNA oligonucleotide with Therminator DNA polymerase as like control substrate ddNTP. As resultant the DNA oligonucleotide are functionalized as amine group by prNTP incorporation with polymerase. Hence prNTPs provide opportunities to prepare demandable conjugated DNA with other biomolecules/dyes/fluorescence molecule without modifying nucleobase structure. PMID:27377861

  20. A terbium(III)-organic framework for highly selective sensing of cytidine triphosphate.

    PubMed

    Zhao, Xi Juan; He, Rong Xing; Li, Yuan Fang

    2012-11-21

    Highly selective sensing of cytidine triphosphate (CTP) against other triphosphate nucleosides including ATP, GTP and UTP is successfully achieved with a luminescent terbium(III)-organic framework (TbOF) of [Tb(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)](n) (2,3-pzdc(2-) = 2,3-pyrazinedicarboxylate, ox(2-) = oxalate).

  1. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  2. Measurement of Inositol Triphosphate Levels from Rat Hippocampal Slices

    PubMed Central

    Tabatadze, Nino; Woolley, Catherine

    2016-01-01

    Inositol triphosphate (IP3) is an important second messenger that participates in signal transduction pathways in diverse cell types including hippocampal neurons. Stimulation of phospholipase C in response to various stimuli (hormones, growth factors, neurotransmitters, neurotrophins, neuromodulators, odorants, light, etc) results in hydrolysis of phosphatidylinositol 4, 5-bisphosphate (PIP2), a phospholipid that is located in the plasma membrane, and leads to the production of IP3 and diacylglycerol. Binding of IP3 to the IP3 receptor (IP3R) induces Ca2+ release from intracellular stores and enables the initiation of intracellular Ca2+-dependent signaling. Here we describe a procedure for the measurement of cellular IP3 levels in tissue homogenates prepared from rat hippocampal slices. PMID:27468425

  3. 2-Selenouridine triphosphate synthesis and Se-RNA transcription.

    PubMed

    Sun, Huiyan; Jiang, Sibo; Caton-Williams, Julianne; Liu, Hehua; Huang, Zhen

    2013-09-01

    2-Selenouridine ((Se)U) is one of the naturally occurring modifications of Se-tRNAs ((Se)U-RNA) at the wobble position of the anticodon loop. Its role in the RNA-RNA interaction, especially during the mRNA decoding, is elusive. To assist the research exploration, herein we report the enzymatic synthesis of the (Se)U-RNA via 2-selenouridine triphosphate ((Se)UTP) synthesis and RNA transcription. Moreover, we have demonstrated that the synthesized (Se)UTP is stable and recognizable by T7 RNA polymerase. Under the optimized conditions, the transcription yield of (Se)U-RNA can reach up to 85% of the corresponding native RNA. Furthermore, the transcribed (Se)U-hammerhead ribozyme has the similar activity as the corresponding native, which suggests usefulness of (Se)U-RNAs in function and structure studies of noncoding RNAs, including the Se-tRNAs.

  4. Extraction and analysis of adenosine triphosphate from aquatic environments

    USGS Publications Warehouse

    Stephens, Doyle W.; Shultz, David J.

    1981-01-01

    A variety of adenosine triphosphate (ATP) extraction procedures have been investigated for their applicability to samples from aquatic environments. The cold sulfuric-oxalic acid procedure was best suited to samples consisting of water, periphyton, and sediments. Due to cation and fulvic acid interferences, a spike with a known quantity of ATP was necessary to estimate losses when sediments were extracted. Variable colonization densities for periphyton required that several replicates be extracted to characterize accurately the periphyton community. Extracted samples were stable at room temperature for one to five hours, depending on the ATP concentration, if the pH was below 2. Neutralized samples which were quick frozen and stored at -30C were stable for months. (USGS)

  5. Mechanistic studies of ribonucleoside triphosphate reductase from Lactobacillus leichmannii

    SciTech Connect

    Harris, G.M.

    1984-01-01

    The mechanism of action of the adenosylcobalamin (AdoCbl)-dependent ribonucleoside triphosphate reductase (RTPR) was investigated using isotope effect and substrate specificity studies. These experiments were conducted on RTPR purified by a new method from Lactobacillus leichmannii. Isotope effect studies using (3{prime}-{sup 3}H)UTP and (3{prime}-{sup 3}H)ATP demonstrated that the 3{prime} C-H bond of the nucleotide is cleaved in order to cleave the 2{prime} C-OH bond. AdoCbl does not act as a direct H abstractor from the 3{prime} position of the substrate, but instead is thought to act as a radical chain initiator to generate an amino acid radical on the enzyme. Further support for this enzyme mediated cleavage of the 3{prime} C-H bond of the nucleotide and the novel role of AdoCbl came from studies using (3{prime}{sup 3}H)2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate ((3{prime}-{sup 3}H)CIUTP). Evidence is presented that during the course of this reaction, the {sup 3}H abstracted from the 3{prime} position of (3{prime}-{sup 3}H)CIUTP was either exchanged with the solvent or returned to the {beta} face of the 2{prime} position to produce (2{prime}{sup 3}H)-2{prime}-deoxy-3{prime}-ketoUTP. This result demonstrates that RTPR is capable of catalyzing a rearrangement reaction. The significance of the RTPR-catalyzed rearrangement with respect to the AdoCbl-dependent enzymes which catalyze rearrangements is discussed.

  6. Synthesis of α-l-Threofuranosyl Nucleoside Triphosphates (tNTPs)

    PubMed Central

    Zou, Keyong; Horhota, Allen; Yu, Biao; Szostak, Jack W.

    2005-01-01

    The α-l-threofuranosyl nucleoside triphosphates of T, G, and D (tTTP, tGTP, and tDTP) were synthesized from the described 2‘-O-DMT-protected derivatives using the Eckstein method, while the corresponding C derivative (tCTP) was prepared from the 2‘-O-acetyl derivative. The prepared α-l-threofuranosyl nucleoside triphosphates, despite being one carbon shorter than the native 2‘-deoxyfuranosyl nucleoside triphosphates, are effective substrates for selected DNA polymerases. PMID:15816733

  7. Formation of. beta. ,. gamma. -methylene-7,8-dihydroneopterin 3'-triphosphate from. beta. ,. gamma. -methyleneguanosine 5'-triphosphate by GTP cyclohydrolase I of Escherichia coli

    SciTech Connect

    Ferre, J.; Jacobson, K.B.

    1984-01-01

    GTP cyclohydrolase I of Escherichia coli converts (..beta..,..gamma..-methylene)GTP to a fluorescent product that is characterized as (..beta..,..gamma..-methylene)dihydroneopterin triphosphate. Interaction between the GTP analog and the enzyme gave a K/sub i/ of 3.0 ..mu..M, which may be compared to the K/sub m/ of 0.1 ..mu..M for GTP. This new analog of dihydroneopterin triphosphate may, in turn, be converted to the same greenish-yellow pteridines (compounds X, X1, and X2) that are obtained from dihydroneopterin triphosphate. Because of its stability to phosphatase action, this analog may be useful for studies in pteridine metabolism. 14 references, 5 figures.

  8. Intracellular Adenosine Triphosphate Delivery Enhanced Skin Wound Healing in Rabbits

    PubMed Central

    Wang, Jianpu; Zhang, Qunwei; Wan, Rong; Mo, Yiqun; Li, Ming; Tseng, Michael T.; Chien, Sufan

    2016-01-01

    Small unilamellar lipid vesicles were used to encapsulate adenosine triphosphate (ATP-vesicles) for intracellular energy delivery. This technique was tested in full-thickness skin wounds in 16 adult rabbits. One ear was rendered ischemic by using a minimally invasive surgery. The other ear served as a normal control. Four circular full-thickness wounds were created on the ventral side of each ear. ATP-vesicles or saline was used and the wounds were covered with Tegaderm (3M, St. Paul, MN). Dressing was changed and digital photos were taken daily until all the wounds were healed. The mean healing times of ATP-vesicles–treated wounds were significantly shorter than that of saline-treated wounds on ischemic and nonischemic ears. Histologic study indicated better-developed granular tissue and reepithelial-ization in the ATP-vesicles–treated wounds. The wounds treated by ATP-vesicles exhibited extremely fast granular tissue growth. More CD31 positive cells were seen in the ATP-vesicles–treated wounds. This preliminary study shows that direct intracellular delivery of ATP can accelerate the healing process of skin wounds on ischemic and nonischemic rabbit ears. The extremely fast granular tissue growth was something never seen or reported in the past. PMID:19158531

  9. Detection of bacteriuria by luciferase assay of adenosine triphosphate.

    PubMed Central

    Thore, A; Anséhn, S; Lundin, A; Bergman, S

    1975-01-01

    A selective method for distinguishing bacterial and nonbacterial adenosine triphosphate (ATP) in clinical bacteriological specimens was studied. The method involved incubation of samples with the detergent Triton X-100 and the ATP-hydrolyzing enzyme apyrase. The incubation selectively destroyed ATP in suspensions of various human cells while not affecting the ATP content in microbial cells. ATP remaining in the sample after incubation was extracted in boiling buffer and assayed by the firefly luciferase assay. Application of the method to 469 clinical urine specimens showed that the ATP level after treatment with Triton/apyrase was correlated to bacterial counts and that the sensitivity of the assay was sufficient for the detection of 10(5) bacteria/ml. The ATP levels per bacterial cell remaining in the urine specimen after treatment with Triton/apyrase were close to values observed in laboratory-grown cultures. The specificity and sensitivity of the luciferase assay for the detection of urinary bacteria and its possible use as a bacteriuria screening method are discussed. PMID:1100645

  10. Perfusion pressure control by adenosine triphosphate given during cardiopulmonary bypass.

    PubMed

    Hashimoto, K; Kurosawa, H; Horikoshi, S; Miyamoto, H; Suzuki, K

    1993-01-01

    Administration of exogenous adenosine triphosphate (ATP) as a vasodilator during cardiopulmonary bypass was assessed in consecutive adult patients (n = 24) who demonstrated a high arterial perfusion pressure (mean, > 90 mm Hg). The action of ATP was characterized by rapid induction and stabilization of the blood pressure level. The dose of ATP ranged from 0.68 to 2.68 mg/min. Within 1 minute after the administration, there was a significant reduction in the perfusion pressure from 102 +/- 18 mm Hg (mean +/- standard deviation) to 72 +/- 19 mm Hg. The ATP was then able to maintain the desired pressure of 69 +/- 12 mm Hg at 5 minutes, 67 +/- 12 mm Hg at 10 minutes, and consistent values thereafter. After the ATP administration was discontinued, there was a prompt recovery of pressure without bradyarrhythmia. The frequency and amount of inotropes used were consistent with the control group (n = 26). Although the administration of ATP reduced the increase in serum catecholamine concentration, there were no significant changes in other vasoactive mediators (eicosanoid, angiotensin II, endothelin) between the two groups during cardiopulmonary bypass. There was neither an accumulation of metabolic products (uric acid, phosphate) nor a decrease in the level of divalent cation (Ca2+), which is observed when the cations combine with phosphates or adenosine nucleotides. This study confirmed the efficacy and safety of ATP infusion during cardiopulmonary bypass. PMID:8417658

  11. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  12. Cyclization of the phosphate side chain of adenosine triphosphate: formation of monoadenosine 5'-trimetaphosphate.

    PubMed

    Glonek, T; Kleps, R A; Myers, T C

    1974-07-26

    Monoadenosine 5'-trimetaphosphate has been prepared from adeno-sine 5'-triphosphate by a carbodiimide-mediated condensation. The molecule was characterized by (3l)P nuclear magnetic resonance, and its (31)P spectrum was simulated through the assumption of a three-phosphorus spin system. The molecule is highly reactive and is rapidly converted to adenosine triphosphate upon contact with water. PMID:4834364

  13. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    PubMed

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems. PMID:27295623

  14. Adenosine triphosphate stress echocardiography in the detection of myocardial ischemia.

    PubMed

    Fukai, T; Koyanagi, S; Tashiro, H; Ichiki, T; Tsutsui, H; Matsumoto, T; Takeshita, A

    1995-10-01

    The purpose of this study was to assess feasibility and safety in the diagnosis of coronary artery in the diagnosis of coronary artery disease and myocardial ischemia using adenosine triphosphate (ATP) stress echocardiography. ATP, a product of human myocardial tissue, is more potent than adenosine in increasing coronary blood flow. Like adenosine, ATP also has a short half-life (<10 s). Left ventricular echocardiograms were recorded during step-wise infusions of ATP in 86 patients who underwent coronary angiography and stress thallium 201 scintigraphy. No serious complications occurred with ATP infusion and most of the side effects were mild and transient. Significant coronary artery disease (>75% diameter stenosis) was present in 34 of 48 patients who had normal echocardiograms at rest. The sensitivity and specificity of ATP-induced wall motion abnormalities for coronary artery disease was 65% (22 of 34) and 100% (14 of 14), respectively. The sensitivity was 50% (10 of 20) in those with one-vessel disease and 86% (12 of 14) in those with multivessel disease (P < .05). In patients with normal echocardiograms at rest and without prior myocardial infarction, the sensitivity of ATP stress echocardiography for the detection of myocardial ischemia assessed by 201Tl single proton emission computed tomography was 58%, with a specificity of 76%, and a diagnostic accuracy of 66%. The sensitivity was 43% in those with one-vessel disease, and 86% in those with multivessel disease (P = .05). In patients with prior myocardial infarction, the sensitivity of ATP stress echocardiography for the detection of viable but jeopardized myocardium was 81%, with a specificity of 91%. The patients with well-developed collateral circulation had a higher incidence of developing wall motion abnormality than those without collaterals (70% v 40%, P < .01). ATP stress echocardiography is valuable for the assessment of coronary artery disease in patients with multivessel disease, coronary

  15. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    PubMed

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects.

  16. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    PubMed

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  17. Vasodilatory responsiveness to adenosine triphosphate in ageing humans

    PubMed Central

    Kirby, Brett S; Crecelius, Anne R; Voyles, Wyatt F; Dinenno, Frank A

    2010-01-01

    Endothelium-dependent vasodilatation is reduced with advancing age in humans, as evidenced by blunted vasodilator responsiveness to acetylcholine (ACh). Circulating adenosine triphosphate (ATP) has been implicated in the control of skeletal muscle vascular tone during mismatches in oxygen delivery and demand (e.g. exercise) via binding to purinergic receptors (P2Y) on the endothelium evoking subsequent vasodilatation, and ageing is typically associated with reductions in muscle blood flow under such conditions. Therefore, we tested the hypothesis that ATP-mediated vasodilatation is impaired with age in healthy humans. We measured forearm blood flow (venous occlusion plethysmography) and calculated vascular conductance (FVC) responses to local intra-arterial infusions of ACh, ATP, and sodium nitroprusside (SNP) before and during ascorbic acid (AA) infusion in 13 young and 13 older adults. The peak increase in FVC to ACh was significantly impaired in older compared with young adults (262 ± 71%vs. 618 ± 97%; P < 0.05), and this difference was abolished during AA infusion (510 ± 82%vs. 556 ± 71%; not significant, NS). In contrast, peak FVC responses were not different between older and young adults to either ATP (675 ± 105%vs. 734 ± 126%) or SNP (1116 ± 111%vs. 1138 ± 148%) and AA infusion did not alter these responses in either age group (both NS). In another group of six young and six older adults, we determined whether vasodilator responses to adenosine and ATP were influenced by P1-receptor blockade via aminophylline. The peak FVC responses to adenosine were not different in young (350 ± 65%) versus older adults (360 ± 80%), and aminophylline blunted these responses by ∼50% in both groups. The peak FVC responses to ATP were again not different in young and older adults, and aminophylline did not impact the vasodilatation in either group. Thus, in contrast to the observed impairments in ACh responses, the vasodilatory response to exogenous ATP is not

  18. Inactivation of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii by 2 prime -chloro-2 prime -deoxyuridine 5 prime -triphosphate: A 3 prime -2 prime hydrogen transfer during the formation of 3 prime -keto-2 prime -deoxyuridine 5 prime -triphosphate

    SciTech Connect

    Ashley, G.W.; Harris, G.; Stubbe, J. )

    1988-10-04

    The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate (C1UTP) into a mixture of 2{prime}-deoxyuridine triphosphate (dUTP) and the unstable product 3{prime}-keto-2{prime}-deoxyuridine triphosphate (3{prime}-keto-dUTP). This ketone can be trapped by reduction with NaBH{sub 4}, producing a 4:1 mixture of xylo-dUTP and dUTP. When (3{prime}-{sup 3}H)C1UTP is treated with enzyme in the presence of NaBH{sub 4}, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the {sup 3}H in C1UTP. Degradation of these isomeric nucleosides has established the location of the {sup 3}H in 3{prime}-keto-dUTP as predominantly 2{prime}(S). The xylo-dU had 98.6% of its label at the 2{prime}(S) position and 1.5% at 2{prime}(R). The isolated dU had 89.6% of its label at 2{prime}(S) and 1.4% at 2{prime}(R), with the remaining 9% label inferred to be at the 3{prime}-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1,000 mixture of dUTP and 3{prime}-keto-dUTP, where the 3{prime}-hydrogen of C1UTP is retained at 3{prime} during production of dUTP and is transferred to 2{prime}(S) during production of 3{prime}-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin are discussed in terms of reductase being a model for the B{sub 12}-dependent rearrangement reactions.

  19. Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes*

    PubMed Central

    Martinez, Jacobo; Truffault, Vincent; Hothorn, Michael

    2015-01-01

    Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family. PMID:26221030

  20. Theory of Polymer Entrapped Enzyme Ultramicroelectrodes: Application to Glucose and Adenosine Triphosphate Detection

    PubMed Central

    Kottke, Peter A.; Kranz, Christine; Kwon, Yong Koo; Masson, Jean-Francois; Mizaikoff, Boris; Fedorov, Andrei G.

    2010-01-01

    We validate, by comparison with experimental data, a theoretical description of the amperometric response of microbiosensors formed via enzyme entrapment. The utility of the theory is further illustrated with two relevant examples supported by experiments: (1) quantitative detection of glucose and (2) quantitative detection of adenosine triphosphate (ATP). PMID:20445817

  1. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation.

    PubMed

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip

    2016-04-14

    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).

  2. Structural and functional characterization of a noncanonical nucleoside triphosphate pyrophosphatase from Thermotoga maritima

    PubMed Central

    Awwad, Khaldeyah; Desai, Anna; Smith, Clyde; Sommerhalter, Monika

    2013-01-01

    The hyperthermophilic bacterium Thermotoga maritima has a noncanonical nucleoside triphosphatase that catalyzes the conversion of inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) into inosine monophosphate (IMP), deoxyinosine monophosphate (IMP) and xanthosine monophosphate (XMP), respectively. The k cat/K m values determined at 323 and 353 K fall between 1.31 × 104 and 7.80 × 104  M −1 s−1. ITP and dITP are slightly preferred over XTP. Activity towards canonical nucleoside triphosphates (ATP and GTP) was not detected. The enzyme has an absolute requirement for Mg2+ as a cofactor and has a preference for alkaline conditions. A protein X-ray structure of the enzyme with bound IMP was obtained at 2.15 Å resolution. The active site houses a well conserved network of residues that are critical for substrate recognition and catalysis. The crystal structure shows a tetramer with two possible dimer interfaces. One of these interfaces strongly resembles the dimer interface that is found in the structures of other noncanonical nucleoside pyrophosphatases from human (human ITPase) and archaea (Mj0226 and PhNTPase). PMID:23385455

  3. Fluorescence detection of adenosine triphosphate through an aptamer-molecular beacon multiple probe.

    PubMed

    Zeng, Xiaodan; Zhang, Xiaoling; Yang, Wen; Jia, Hongying; Li, Yamin

    2012-05-01

    An aptamer-molecular beacon (MB) multiple fluorescent probe for adenosine triphosphate (ATP) assay is proposed in this article. The ATP aptamer was used as a molecular recognition part, and an oligonucleotide (short strand, SS) partially complementary with the aptamer and an MB was used as the other part. In the presence of ATP, the aptamer bound with it, accompanied by the hybridization of MB and SS and the fluorescence recovering. Wherever there is only very weak fluorescence can be measured in the absence of ATP. Based on the relationship of recovering fluorescence and the concentration of ATP, a method for quantifying ATP has been developed. The fluorescence intensity was proportional to the concentration of ATP in the range of 10 to 500 nM with a detection limit of 0.1 nM. Moreover, this method was able to detect ATP with high selectivity in the presence of guanosine triphosphate (GTP), cytidine triphosphate (CTP), and uridine triphosphate (UTP). This method is proved to be simple with high sensitivity, selectivity, and specificity.

  4. Determination of adenosine triphosphate on marine particulates: synthesis of methods for use on OTEC samples

    SciTech Connect

    Jones, A.T.; Hartwig, E.O.

    1982-08-01

    Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

  5. Determination of Adenosine Triphosphate on Marine Particulates:Synthesis of Methods for Use on OTEC Samples

    SciTech Connect

    Jones, Anthony T.; Hartwig, Eric O.

    1982-08-01

    Adenosine triphosphate (ATP) is an indicator of living biomass in marine particulates. This report details the method used by Lawrence Berkeley Laboratory to analyze particulate ATP in samples taken from oligotrophic, tropical ocean waters. It represents a synthesis of previously published methods.

  6. Structural and functional characterization of a noncanonical nucleoside triphosphate pyrophosphatase from Thermotoga maritima

    SciTech Connect

    Awwad, Khaldeyah; Desai, Anna; Smith, Clyde; Sommerhalter, Monika

    2013-02-01

    A 2.15 Å resolution crystal structure of TM0159 with bound IMP and enzyme-kinetic data are presented. This noncanonical nucleoside triphosphatase from T. maritima helps to maintain a correct pool of DNA and RNA precursor molecules. The hyperthermophilic bacterium Thermotoga maritima has a noncanonical nucleoside triphosphatase that catalyzes the conversion of inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) into inosine monophosphate (IMP), deoxyinosine monophosphate (IMP) and xanthosine monophosphate (XMP), respectively. The k{sub cat}/K{sub m} values determined at 323 and 353 K fall between 1.31 × 10{sup 4} and 7.80 × 10{sup 4} M{sup −1} s{sup −1}. ITP and dITP are slightly preferred over XTP. Activity towards canonical nucleoside triphosphates (ATP and GTP) was not detected. The enzyme has an absolute requirement for Mg{sup 2+} as a cofactor and has a preference for alkaline conditions. A protein X-ray structure of the enzyme with bound IMP was obtained at 2.15 Å resolution. The active site houses a well conserved network of residues that are critical for substrate recognition and catalysis. The crystal structure shows a tetramer with two possible dimer interfaces. One of these interfaces strongly resembles the dimer interface that is found in the structures of other noncanonical nucleoside pyrophosphatases from human (human ITPase) and archaea (Mj0226 and PhNTPase)

  7. Initial binding of 2'-deoxynucleoside 5'-triphosphates to human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Painter, G R; Wright, L L; Hopkins, S; Furman, P A

    1991-10-15

    Human immunodeficiency virus type 1 reverse transcriptase (EC 2.7.7.49), a heterodimer consisting of two polypeptide chains of molecular weights 66,000 and 51,000, fluoresces due to the presence of 36 tryptophan residues with an emission peak centered at 338 nm. The association of 2'-deoxynucleoside 5'-triphosphates with the enzyme results in a decrease in the intensity of the tryptophan emission spectrum, which can be used to calculate apparent dissociation constants. The Kd values determined for binding of the four natural 2'-deoxynucleoside 5'-triphosphates to the free enzyme range from 36.7 +/- 1.8 microM for dTTP to 47.3 +/- 3.9 microM for dATP. The 5'-triphosphate of zidovudine has a Kd of 54.1 +/- 1.3 microM. The enzyme shows no preference for purine or pyrimidine nucleotides. Hill coefficients and the results of dual ligand titration experiments demonstrate that the free enzyme possesses a single dNTP binding site for which the four natural substrates and the 5'-triphosphate of zidovudine compete. The presence of homopolymeric template-primers does not result in selective binding of the complementary 2'-deoxynucleoside 5'-triphosphate, indicating that Watson-Crick base pairing is not involved in the initial binding reaction. The major force driving the association of the ligands with the binding site is hydrophobic. Approximately 14% of the binding energy is derived from electrostatic interactions. Although Mg2+ is required for catalytic activity, it is not absolutely required for initial binding.

  8. Inactivation of the Lactobacillus leichmannii ribonucleoside triphosphate reductase by 2'-chloro-2'-deoxyuridine 5'-triphosphate: stoichiometry of inactivation, site of inactivation, and mechanism of the protein chromophore formation

    SciTech Connect

    Ashley, G.W.; Harris, G.; Stubbe, J.A.

    1988-06-14

    The ribonucleoside triphosphate reductase (RTPR) of Lactobacillus leichmannii is inactivated by the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP). Inactivation is due to alkylation by 2-methylene-3(2H)-furanone, a decomposition product of the enzymic product 3'-keto-2'-deoxyuridine triphosphate. The former has been unambiguously identified as 2-((ethylthio)methyl)-3(2H)-furanone, an ethanethiol trapped adduct, which is identical by /sup 1/H NMR spectroscopy with material synthesized chemically. Subsequent to rapid inactivation, a slow process occurs that results in formation of a new protein-associated chromophore absorbing maximally near 320 nm. The terminal stages of the inactivation have now been investigated in detail. The alkylation and inactivation stoichiometries were studied as a function of the ratio of ClUTP to enzyme. The amount of labeling of RTPR increased with increasing ClUTP concentration up to the maximum of approximately 4 labels/RTPR, yet the degree of inactivation did not increase proportionally. This suggests that (1) RTPR may be inactivated by alkylation of a single site and (2) decomposition of 3'-keto-dUTP is not necessarily enzyme catalyzed. The formation of the new protein chromophore was also monitored during inactivation and found to reach its full extent upon the first alkylation . Thus, out of four alkylation sites, only one appears capable of undergoing the subsequent reaction to form the new chromophore. Model studies suggest that the new chromophore is due to addition of an amino group to the 5-position of enzyme-bound furanone, followed by ring opening and tautomerization to give a ..beta..-aminoenone structure.

  9. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana

    SciTech Connect

    Bajaj, Mamta; Moriyama, Hideaki

    2007-05-01

    The first crystallization of deoxyuridine triphosphate nucleotidohydrolase from plant, Arabidopsis thaliana, has been performed. An additive, taurine, was effective in producing the single crystal. The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Å resolution using Cu Kα radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 69.90, b = 70.86 Å, c = 75.55 Å. Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a V{sub M} of 1.8 Å{sup 3} Da{sup −1}.

  10. Efficient Automated Solid-Phase Synthesis of DNA and RNA 5'-Triphosphates.

    PubMed

    Sarac, Ivo; Meier, Chris

    2015-11-01

    A fast, high-yielding and reliable method for the synthesis of DNA- and RNA 5'-triphosphates is reported. After synthesizing DNA or RNA oligonucleotides by automated oligonucleotide synthesis, 5-chloro-saligenyl-N,N-diisopropylphosphoramidite was coupled to the 5'-end. Oxidation of the formed 5'-phosphite using the same oxidizing reagent used in standard oligonucleotide synthesis led to 5'-cycloSal-oligonucleotides. Reaction of the support-bonded 5'-cycloSal-oligonucleotide with pyrophosphate yielded the corresponding 5'-triphosphates. The 5'-triphosphorylated DNA and RNA oligonucleotides were obtained after cleavage from the support in high purity and excellent yields. The whole reaction sequence was adapted to be used on a standard oligonucleotide synthesizer.

  11. Tubulin sequence region beta 155-174 is involved in binding exchangeable guanosine triphosphate

    SciTech Connect

    Hesse, J.; Thierauf, M.; Ponstingl, H.

    1987-11-15

    Assembly-competent microtubule protein was directly photoaffinity labeled with (alpha-/sup 32/P)guanosine triphosphate by UV irradiation. The labeled tubulin was digested with trypsin. The radioactive fragments were isolated and sequenced, revealing beta-tubulin residues 155-174 to be the major labeled region. An antibody to a synthetic peptide comprising residues beta 154-165 inhibits GTP incorporation and tubulin polymerization.

  12. Microcontroller-Assisted Compensation of Adenosine Triphosphate Levels: Instrument and Method Development

    PubMed Central

    Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L.

    2015-01-01

    In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2–48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme. PMID:25633338

  13. Inhibition of 5′-nucleotidase from Ehrlich ascites-tumour cells by nucleoside triphosphates

    PubMed Central

    Murray, A. W.; Friedrichs, Beverly

    1969-01-01

    1. 5′-Nucleotidase activity was obtained in a soluble form after treatment of a particulate fraction from Ehrlich ascites-tumour cells with deoxycholate. The relative rates of hydrolysis of 6-thioinosine 5′-phosphate, UMP, AMP, CMP, GMP, IMP, xanthosine monophosphate, thymidine monophosphate and 2′,3′-AMP were 180, 129, 100, 93, 83, 79, 46, 41 and 3 respectively. 2. Values found for the Michaelis constant were: AMP, 67±12μm; IMP, 111±8μm; GMP, 93μm. 3. ATP and thymidine triphosphate were competitive inhibitors of AMP hydrolysis (inhibitor constants 0·4 and 4·8μm respectively); UTP, GTP and CTP were mixed competitive and non-competitive inhibitors. Thymidine triphosphate was a competitive inhibitor of IMP hydrolysis (inhibitor constant 14·4μm) and ATP, UTP and GTP showed mixed competitive and non-competitive inhibition. 4. ATP, thymidine triphosphate, UTP, GTP and CTP did not completely inhibit hydrolysis of AMP, IMP and UMP; the concentrations of ATP required to inhibit AMP and IMP hydrolysis by 50% were 12 and 230μm respectively. 5. Non-hyperbolic curves relating activity to UMP concentration were obtained in the presence and absence of triphosphates. 6. After fractionation on Sephadex G-200 columns a single peak of 5′-nucleotidase activity (particle weight 120000–125000) was obtained with AMP, IMP and GMP as substrates. UMP hydrolysis was catalysed by enzyme in this peak and in two slower peaks corresponding to apparent particle weights of 32000 and 16000; a single component (particle weight 120000), reacting with UMP and insensitive to UTP inhibition, was obtained when the column was eluted with buffer containing 1mm-UMP. 7. The possible significance of the results in the regulation of tumour-cell 5′-nucleotidase is discussed. PMID:5775689

  14. Nucleoside triphosphate-dependent DNA-binding properties of mos protein.

    PubMed Central

    Seth, A; Priel, E; Vande Woude, G F

    1987-01-01

    We have previously shown that the mos gene product, p40mos, produced in Escherichia coli binds ATP and has ATPase activity. In the present study, we investigated the DNA-binding properties of p40mos and two mos deletion mutant proteins. Nitrocellulose blot protein-DNA binding assays showed that p40mos binds DNA in the presence of Mg2+-ATP and certain other nucleoside triphosphates. Ninety percent of the p40mos-bound DNA is dissociated if the complex is washed in the presence of 1 M NaCl or in the absence of ATP. p40mos-DNA binding is not observed in the presence of AMP or the nonhydrolyzable ATP analog adenosine 5'-[beta, gamma-methylene]-triphosphate; however, in the presence of ADP, p40mos binds DNA at 20% of the level that is observed with ATP. An N-terminal-deletion mutant protein, p19mos, has no DNA-binding activity, whereas a C-terminal-deletion mutant protein, p25mos, does. p25mos contains the ATP-binding domain, binds DNA in the presence of either ADP or ATP, and shows 5% and 45% binding (relative to that in the presence of ATP) in the presence of AMP and adenosine 5'-[beta, gamma-methylene]triphosphate, respectively. These results suggest that the N-terminal domain of p40mos is responsible for nucleoside triphosphate-mediated DNA binding. We also observed differential histone-DNA binding in the presence and absence of ATP. Images PMID:3035537

  15. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pools to human disease and pharmacogenetics

    PubMed Central

    Simone, Peter D.; Pavlov, Youri I.; Borgstahl, Gloria E.O.

    2013-01-01

    Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients’ response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation. PMID:23969025

  16. Nucleoside triphosphate mimicry: a sugar triazolyl nucleoside as an ATP-competitive inhibitor of B. anthracis pantothenate kinase.

    PubMed

    Rowan, Andrew S; Nicely, Nathan I; Cochrane, Nicola; Wlassoff, Wjatschesslaw A; Claiborne, Al; Hamilton, Chris J

    2009-10-01

    The synthesis of a library of nucleoside triphosphate mimetics is described where the Mg(2+) chelated triphosphate sidechain is replaced by an uncharged methylene-triazole linked monosaccharide sidechain. The compounds have been evaluated as inhibitors of Bacillus anthracis pantothenate kinase and a competitive inhibitor has been identified with a K(i) that is 3-fold lower than the K(m) value of ATP.

  17. Mechanistic characterization of the 5′-triphosphate-dependent activation of PKR: Lack of 5′-end nucleobase specificity, evidence for a distinct triphosphate binding site, and a critical role for the dsRBD

    PubMed Central

    Toroney, Rebecca; Hull, Chelsea M.; Sokoloski, Joshua E.; Bevilacqua, Philip C.

    2012-01-01

    The protein kinase PKR is activated by RNA to phosphorylate eIF-2α, inhibiting translation initiation. Long dsRNA activates PKR via interactions with the dsRNA-binding domain (dsRBD). Weakly structured RNA also activates PKR and does so in a 5′-triphosphate (ppp)–dependent fashion, however relatively little is known about this pathway. We used a mutant T7 RNA polymerase to incorporate all four triphosphate-containing nucleotides into the first position of a largely single-stranded RNA and found absence of selectivity, in that all four transcripts activate PKR. Recognition of 5′-triphosphate, but not the nucleobase at the 5′-most position, makes this RNA-mediated innate immune response sensitive to a broad array of viruses. PKR was neither activated in the presence of γ-GTP nor recognized NTPs other than ATP in activation competition and ITC binding assays. This indicates that the binding site for ATP is selective, which contrasts with the site for the 5′ end of ppp-ssRNA. Activation experiments reveal that short dsRNAs compete with 5′-triphosphate RNAs and heparin for activation, and likewise gel-shift assays reveal that activating 5′-triphosphate RNAs and heparin compete with short dsRNAs for binding to PKR's dsRBD. The dsRBD thus plays a critical role in the activation of PKR by ppp-ssRNA and even heparin. At the same time, cross-linking experiments indicate that ppp-ssRNA interacts with PKR outside of the dsRBD as well. Overall, 5′-triphosphate-containing, weakly structured RNAs activate PKR via interactions with both the dsRBD and a distinct triphosphate binding site that lacks 5′-nucleobase specificity, allowing the innate immune response to provide broad-spectrum protection from pathogens. PMID:22912486

  18. Photoaffinity labeling of DNA-dependent RNA polymerase from Escherichia coli with 8-azidoadenosine 5'-triphosphate.

    PubMed

    Woody, A Y; Vader, C R; Woody, R W; Haley, B E

    1984-06-19

    A photoaffinity analogue of adenosine 5'-triphosphate (ATP), 8-azidoadenosine 5'-triphosphate (8-N3ATP), has been used to elucidate the role of the various subunits involved in forming the active site of Escherichia coli DNA-dependent RNA polymerase. 8-N3ATP was found to be a competitive inhibitor of the enzyme with respect to the incorporation of ATP with Ki = 42 microM, while uridine 5'-triphosphate (UTP) incorporation was not affected. UV irradiation of the reaction mixture containing RNA polymerase and [gamma-32P]-8-N3ATP induced covalent incorporation of radioactive label into the enzyme. Analysis by gel filtration and nitrocellulose filter binding indicated specific binding. Subunit analysis by sodium dodecyl sulfate and sodium tetradecyl sulfate gel electrophoresis and autoradiography of the labeled enzyme showed that the major incorporation of radioactive label was in beta' and sigma, with minor incorporation in beta and alpha. The same pattern was observed in both the presence and absence of poly[d(A-T)] and poly[d(A-T)] plus ApU. Incorporation of radioactive label in all bands was significantly reduced by 100-150 microM ATP, while 100-200 microM UTP did not show a noticeable effect. Our results indicate major involvement of the beta' and sigma subunits in the active site of RNA polymerase. The observation of a small extent of labeling of the beta and alpha subunits, which was prevented by saturating levels of ATP, suggests that these subunits are in close proximity to the catalytic site.

  19. Fluorescent structural DNA nanoballs functionalized with phosphate-linked nucleotide triphosphates.

    PubMed

    Anderson, Jon P; Reynolds, Bambi L; Baum, Kristin; Williams, John G

    2010-03-10

    Highly labeled DNA nanoballs functionalized with phosphate-linked nucleotide triphosphates (dNTPs) were developed as a source of dNTPs for DNA polymerase. The particles were prepared by strand-displacement polymerization from a self-complementary circular template. Imaged by atomic force microscopy, these functionalized particles appear as condensed fuzzy balls with diameters between 50 and 150 nm. They emit a bright fluorescent signal, detected in 2 ms exposures with a signal-to-noise ratio of 25 when imaged using a TIR fluorescence microscope. PMID:20158249

  20. Chloride permeability of rat brain membrane vesicles correlates with thiamine triphosphate content.

    PubMed

    Bettendorff, L; Hennuy, B; De Clerck, A; Wins, P

    1994-07-25

    Incubation of rat brain homogenates with thiamine or thiamine diphosphate (TDP) leads to a synthesis of thiamine triphosphate (TTP). In membrane vesicles subsequently prepared from the homogenates, increased TTP content correlates with increased 36Cl- uptake. A hyperbolic relationship was obtained with a K0.5 of 0.27 nmol TTP/mg protein. In crude mitochondrial fractions from the brains of animals previously treated with thiamine or sulbutiamine, a positive correlation between 36Cl- uptake and TTP content was found. These results, together with other results previously obtained with the patch-clamp technique, suggest that TTP is an activator of chloride channels having a large unit conductance. PMID:7953714

  1. Fluorescent Structural DNA Nanoballs Functionalized With Phosphate-Linked Nucleotide Triphosphates

    PubMed Central

    Anderson, Jon P.; Reynolds, Bambi L.; Baum, Kristin; Williams, John G.

    2010-01-01

    Highly labeled DNA nanoballs functionalized with phosphate-linked nucleotide triphosphates (dNTPs) were developed as a source of dNTPs for DNA polymerase. The particles were prepared by strand-displacement polymerization from a self-complementary circular template. Imaged by atomic force microscopy, these functionalized particles appear as condensed fuzzy balls with diameters between 50–150 nm. They emit a bright fluorescent signal, detected in 2 msec exposures with a signal-to-noise of 25 when imaged using a TIR fluorescence microscope. PMID:20158249

  2. Synthesis of Nucleoside Triphosphates from 2'-3'-Protected Nucleosides Using Trimetaphosphate.

    PubMed

    Mohamady, Samy; Taylor, Scott D

    2016-02-01

    Chemists have been attempting to triphosphorylate nucleosides and other alcohols using trimetaphosphate (TriMP) since the 1960s. However, this route appears to have been abandoned due to poor yields. The first practical syntheses of nucleoside triphosphates (NTPs) are reported using TriMP as the key reagent. This was achieved by reacting the tetrabutylammonium salt of TriMP with mesitylenesulfonyl chloride in the presence of DABCO in pyridine followed by the addition of an appropriately protected nucleoside and phthalimide. Quenching the reaction with aqueous buffer followed by hydrolysis of the OH protecting groups gave the NTPs in good yield. PMID:26759914

  3. Enhanced Diffusion of Molecular Motors in the Presence of Adenosine Triphosphate and External Force

    NASA Astrophysics Data System (ADS)

    Shinagawa, Ryota; Sasaki, Kazuo

    2016-06-01

    The diffusion of a molecular motor in the presence of a constant external force is considered on the basis of a simple theoretical model. The motor is represented by a Brownian particle moving in a series of parabolic potentials placed periodically on a line, and the potential is switched stochastically from one parabola to another by a chemical reaction, which corresponds to the hydrolysis or synthesis of adenosine triphosphate (ATP) in motor proteins. It is found that the diffusion coefficient as a function of the force exhibits peaks. The mechanism of this diffusion enhancement and the possibility of observing it in F1-ATPase, a biological rotary motor, are discussed.

  4. Scope and Limitations of Typical Copper-Free Bioorthogonal Reactions with DNA: Reactive 2'-Deoxyuridine Triphosphates for Postsynthetic Labeling.

    PubMed

    Merkel, Marcus; Arndt, Stefanie; Ploschik, Damian; Cserép, Gergely B; Wenge, Ulrike; Kele, Péter; Wagenknecht, Hans-Achim

    2016-09-01

    Four triphosphates of 2'-deoxyuridine that carried the following bioorthogonally reactive groups were synthesized by organic-chemical methods. Two triphosphates with tetrazines and one with a cyclopropene moiety were designed for Diels-Alder reactions with inverse electron demand, and one triphosphate with a tetrazole core was designed for the "photoclick" cycloaddition. These triphosphates were not only successfully applied for oligonucleotide preparation by standard DNA polymerases, including Hemo KlenTaq, Vent, and Deep Vent, but also bypassed for full length primer extension products. Fluorescent labeling of the primer extension products was achieved by fluorophores with reactive counterparts and analyzed by polyacrylamide gel electrophoresis mobility shifts. The tetrazine-oligonucleotide conjugates were reacted with carboxymethylmonobenzocyclooctyne- and bicyclononyne-modified fluorophores. The yield of these postsynthetic reactions could significantly be improved by a more stable but still reactive nicotinic acid-derived tetrazine and by changing the key experimental conditions, mainly the pH of 7.2 and the temperature of 45-55 °C. The cyclopropene-oligonucleotide conjugate could be successfully labeled with a tetrazine-modified rhodamine in very good yields. The "photoclick" cycloaddition between tetrazole-oligonucleotide conjugates and a maleimide-modified dye worked quantitatively. The combination of primer extension, bypass, and bioorthogonal modification works also for double and triple labeling using the cyclopropene-modified 2'-deoxyuridine triphosphate. PMID:27513089

  5. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase.

    PubMed

    Sangawa, Hidehiro; Komeno, Takashi; Nishikawa, Hiroshi; Yoshida, Atsushi; Takahashi, Kazumi; Nomura, Nobuhiko; Furuta, Yousuke

    2013-11-01

    T-705 (favipiravir; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits replication of the influenza virus in vitro and in vivo. T-705 has been shown to be converted to T-705-4-ribofuranosyl-5-triphosphate (T-705RTP) by intracellular enzymes and then functions as a nucleotide analog to selectively inhibit RNA-dependent RNA polymerase (RdRp) of the influenza virus. To elucidate these inhibitory mechanisms, we analyzed the enzyme kinetics of inhibition using Lineweaver-Burk plots of four natural nucleoside triphosphates and conducted polyacrylamide gel electrophoresis of the primer extension products initiated from (32)P-radiolabeled 5'Cap1 RNA. Enzyme kinetic analysis demonstrated that T-705RTP inhibited the incorporation of ATP and GTP in a competitive manner, which suggests that T-705RTP is recognized as a purine nucleotide by influenza virus RdRp and inhibited the incorporation of UTP and CTP in noncompetitive and mixed-type manners, respectively. Primer extension analysis demonstrated that a single molecule of T-705RTP was incorporated into the nascent RNA strand of the influenza virus and inhibited the subsequent incorporation of nucleotides. These results suggest that a single molecule of T-705RTP is incorporated into the nascent RNA strand as a purine nucleotide analog and inhibits strand extension, even though the natural ribose of T-705RTP has a 3'-OH group, which is essential for forming a covalent bond with the phosphate group.

  6. Inactivation of B/sub 12/-dependent ribonucleotide reductase by 2'-azido-2'-deoxyarabinofuranosyladenine 5'-triphosphate

    SciTech Connect

    Ashley, G.W.; Stubbe, J.

    1986-05-01

    The Coenzyme B/sub 12/-dependent ribonucleotide triphosphate reductase (RTPR) from Lactobacillus leichmannii is rapidly inactivated by the substrate analog 2-azido-2'-deoxy-arabinofuranosyladenine 5'-triphosphate (N/sub 3/araATP). This reaction has been probed using N/sub 2/ araATP specifically radiolabeled in the sugar and base moieties. Unlike the inactivation of this enzyme by 2'-halo nucleotides, reaction of RTPR with N/sub 3/araATP does not result in formation of PPPi, adenine, or azide ion. Instead, the phosphate, sugar, and base moieties remain bound to the protein after gel filtration of the inactive protein. One equivalent of coenzyme is destroyed during the inactivation, producing 5'-deoxyadenosine and cob(II)alamin. No/sup 3/H/sub 2/O is formed when RTPR is inactivated with (3'-/sup 3/H)N/sub 3/araATP. These results suggest that inactivation occurs either through reaction of an enzyme group with the azido moiety or through formation of a tight-binding product.

  7. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates.

    PubMed Central

    Li, Y.; Kong, Y.; Korolev, S.; Waksman, G.

    1998-01-01

    The crystal structures of the Klenow fragment of the Thermus aquaticus DNA polymerase I (Klentaq1) complexed with four deoxyribonucleoside triphosphates (dNTP) have been determined to 2.5 A resolution. The dNTPs bind adjacent to the O helix of Klentaq1. The triphosphate moieties are at nearly identical positions in all four complexes and are anchored by three positively charged residues, Arg659, Lys663, and Arg587, and by two polar residues, His639 and Gln613. The configuration of the base moieties in the Klentaq1/dNTP complexes demonstrates variability suggesting that dNTP binding is primarily determined by recognition and binding of the phosphate moiety. However, when superimposed on the Taq polymerase/blunt end DNA complex structure (Eom et al., 1996), two of the dNTP/Klentaq1 structures demonstrate appropriate stacking of the nucleotide base with the 3' end of the DNA primer strand, suggesting that at least in these two binary complexes, the observed dNTP conformations are functionally relevant. PMID:9605316

  8. Tracking the Dephosphorylation of Resveratrol Triphosphate in Skin by Confocal Raman Microscopy

    PubMed Central

    Zhang, Guojin; Flach, Carol R.; Mendelsohn, Richard

    2007-01-01

    Polyphenolic resveratrol has been identified as a potent antioxidant acting as both a free radical scavenger and an inhibitor of enzyme oxidative activity. However, the reactive propensity of resveratrol also limits its use in topical formulations. A transient derivative of resveratrol, resveratrol triphosphate, has been designed to provide a means for the delayed delivery of the active compound in skin tissue where endogenous enzymes capable of dephosphorylation reside. Confocal Raman microscopy studies of intact pigskin biopsies treated with modified resveratrol provided information about the spatial distribution and time-dependence of permeation and conversion to the native active form. Conversion to the active form was not observed when skin samples were exposed to steam, a procedure that likely inactivates endogenous skin enzymes. In addition, treatment with the triphosphate compared to the parent compound revealed a more homogeneous distribution of resveratrol throughout the stratum corneum and viable epidermis when the former was applied. Thus, the bioavailability of resveratrol in the epidermis appears to be enhanced upon application of the pro-molecule compared to resveratrol. PMID:17826862

  9. Activation of in vitro matured pig oocytes using activators of inositol triphosphate or ryanodine receptors.

    PubMed

    Petr, J; Urbánková, D; Tománek, M; Rozinek, J; Jílek, F

    2002-04-15

    In our study, we observed the activation of in vitro matured pig oocytes and their subsequent parthenogenetic cleavage after stimulation of ryanodine receptors (RyR) using ryanodine (Ry), caffeine or cyclic adenosine diphosphate ribose (cADPri) or after stimulation of inositol triphosphate receptors (IP(3)R) using D-myo-inositol 1,4,5-triphosphate (IP(3)). Heparin, a potent blocker of IP(3)R, prevented the activation of porcine oocytes using IP(3), but blockers of RyR (ruthenium red or procaine) prevented activation after stimulation by RyR and stimulation by IP(3)R using IP(3). The drugs were injected into oocytes matured to the stage of metaphase II and activation was determined by assessment of pronuclear formation. The activity of H1 kinase was determined and our results demonstrated a significant drop in H1 activity in the activated oocytes. The cleavage of parthenogenetic embryos progresses to more advanced stages after stimulation by IP(3)R than after stimulation by RyR. Our results could indicate that, in pig oocytes, the calcium released from IP(3)-sensitive stores triggers the calcium release from ryanodine-sensitive intracellular stores, which is necessary for oocyte activation. The calmodulin inhibitors ophiobolin A and W7 reduce the activation of oocytes induced by stimulation of RyR or IP(3)R.

  10. Obligatory coupling between proton entry and the synthesis of adenosine 5'-triphosphate in Streptococcus lactis.

    PubMed Central

    Maloney, P C

    1977-01-01

    Proton influx was measured after imposition of an electrochemical potential difference for protons (delta muH+) across the cell membrane of the anaerobe, Streptococcus lactis. As delta muH+ was increased, there was an approximately parallel increase in proton entry, until delta muH+ attained 175 to 200 mV. At this point, a new pathway became available for proton entry, allowing an abrupt increase in both the rate and extent of H+ influx. This gated response depended upon the value of delta muH+ itself, and not upon the value of either the membrane potential or the pH gradient. For delta muH+ above 175 to 200 mV, elevated proton entry occurred only in cells having a functional membrane-bound Ca2+-stimulated, Mg2+stimulated adenosine 5'-triphosphatase (EC 3.6.1.3). When present, elevated proton entry coincided with the appearance of net synthesis of adenosine 5'-triphosphate catalyzed by this adenosine 5'-triphosphatase. These observations demonstrate that membrane-bound adenosine 5'-triphosphatase catalyzes an obligatory coupling between the inward movement of protons and synthesis of adenosine 5'-triphosphate. PMID:21165

  11. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages.

    PubMed

    Hillaireau, Hervé; Le Doan, Trung; Appel, Martine; Couvreur, Patrick

    2006-12-01

    One of the main limitations in the use of nucleoside reverse transcriptase inhibitors (NRTIs) such as azidothymidine (AZT) lies in their poor intracellular activation by cellular kinases into their active tri-phosphorylated form. Thus, the direct administration of triphosphate NRTIs like azidothymidine-triphosphate (AZT-TP), has been considered for bypassing this metabolic bottleneck, but these molecules do not diffuse intracellularly, due to their too hydrophilic character. Therefore, poly(iso-butylcyanoacrylate) (PIBCA) aqueous-cored nanocapsules have been tested as carriers to overcome the cellular delivery of AZT-TP. However, encapsulation of AZT-TP remained challenging because this molecule, due to its relatively low molecular weight, rapidly leaked out of the nanocapsules. In this study, we show that association of AZT-TP to a cationic polymer such as poly(ethyleneimine) (PEI) allowed to reach high entrapment efficiency of AZT-TP in PIBCA nanocapsules (up to 90%) as well as gradual in vitro release. The resulting hybrid PIBCA/PEI nanocapsules efficiently delivered AZT-TP in vitro to macrophages: the cellular uptake was increased by 30-fold compared to the free molecule, reaching relevant cellular concentrations for therapeutic purposes.

  12. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules.

    PubMed

    Hillaireau, H; Le Doan, T; Besnard, M; Chacun, H; Janin, J; Couvreur, P

    2006-10-31

    Nucleoside analogues are widely used in the treatment of various viral infections. However, the poor in vivo conversion of the nucleoside analogues like azidothymidine (AZT) into their active triphosphate nucleotide counterpart limits their pharmacological efficacy. This could be overcome by the direct administration of azidothymidine triphosphate (AZT-TP), but it requires an appropriate drug delivery approach. Besides nucleoside analogues, nucleotide analogues like cidofovir (CDV) are also used in the treatment of viral infections. CDV has raised recent interest because of its promising activity against smallpox, but its use is limited by its poor bioavailability and nephrotoxicity. Here again, a proper drug delivery system should address these issues. In this study, we investigated the encapsulation of the nucleotide analogues AZT-TP and CDV into poly(iso-butylcyanoacrylate) aqueous core nanocapsules, known to efficiently entrap oligonucleotides. We show here that the encapsulation of these mono-nucleotides is less efficient than with oligonucleotides and that a rapid release of AZT-TP from the nanocapsules occurred in vitro. This highlights the importance of the molecular weight of the entrapped molecules which, if they are too small, are diffusing through the thin polymer membrane of the nanocapsules. On the other hand, a good protection of the encapsulated AZT-TP was observed.

  13. Use of 8-azidoguanosine 5'-(gamma-/sup 32/P)triphosphate as a probe of the guanosine 5'-triphosphate binding protein subunits in bovine rod outer segments

    SciTech Connect

    Kohnken, R.E.; Mc Connell, D.G.

    1985-07-02

    In an in vitro incubation, 8-azidoguanosine 5'-(gamma-/sup 32/P)triphosphate ( (gamma-/sup 32/P)-8-azido-GTP) labeled bleached rhodopsin independent of ultraviolet light. Characterization of this labeling indicated that rhodopsin was phosphorylated with (gamma-/sup 32/P)-8-azido-GTP as a phosphate donor. At low concentrations, ATP increased this labeling activity 5-fold. In the same incubation, (gamma-/sup 32/P)-8-azido-GTP also labeled G alpha (Mr 40 000). This labeling was ultraviolet light dependent. G beta (Mr 35 000) was also labeled dependent for the most part upon ultraviolet light, but a smaller component of labeling appeared to result from phosphorylation. Differential labeling of G alpha and G beta was found to vary intricately with experimental conditions, especially prebleaching of rhodopsin, tonicity of the medium, and the presence or absence of 2-mercaptoethanol. Affinity labeling of G alpha and G beta by (gamma-/sup 32/P)-8-azido-GTP in competition with ATP or GTP was kinetically complex, consistent with possible multiple binding sites for GTP on both subunits. Independent evidence for two or more binding sites on G alpha has been offered by other laboratories, and recently, at least one binding site on G beta and its analogues among the N proteins of adenylate cyclases has been identified.

  14. Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate.

    PubMed

    Xu, Shicai; Man, Baoyuan; Jiang, Shouzhen; Yue, Weiwei; Yang, Cheng; Liu, Mei; Chen, Chuansong; Zhang, Chao

    2014-04-25

    We demonstrate that continuous, uniform graphene films can be directly synthesized on quartz substrates using a two-temperature-zone chemical vapor deposition system and that their layers can be controlled by adjusting the precursor partial pressure. Raman spectroscopy and transmission electron microscopy confirm the formation of monolayer graphene with a grain size of ∼100 nm. Hall measurements show a room-temperature carrier mobility above 1500 cm2 V(-1) s(-1). The optical transmittance and conductance of the graphene films are comparable to those of transferred metal-catalyzed graphene. The method avoids the complicated and skilled post-growth transfer process and allows the graphene to be directly incorporated into a fully functional biosensor for label-free detection of adenosine triphosphate (ATP). This device shows a fast response time of a few milliseconds and achieves a high sensitivity to ATP molecules over a very wide range from 0.002 to 5 mM. PMID:24671026

  15. Interaction of stannous chloride leads to alteration in DNA, triphosphate nucleotides and isolated bases.

    PubMed

    de Mattos, José C P; Lage, Claudia; Dantas, Flávio J S; Moraes, Milton O; Nunes, Ana P M; Bezerra, Roberto J A C; Faria, Mauro V Castro; Leitão, Alvaro C; Caldeira-de-Araujo, Adriano

    2005-12-01

    Stannous chloride (SnCl2) is a reducing chemical agent used in several man-made products. SnCl2 can generate reactive oxygen species (ROS); therefore, studies have been carried out in order to better understand its damaging action in biological systems. In this work, calf thymus DNA, triphosphate nucleotides and isolated bases were incubated with SnCl2 and the results were analyzed through UV spectrophotometry. The presence of stannous ions altered the absorption spectra of all three isolates. The amount of stannous ions associated to DNA was measured by atomic absorption spectrophotometry. Data showed that more than 40% of the initial SnCl2 concentration was present in the samples. Our results are in accordance with the damaging potential of this salt and present evidence that stannous ions can complex with DNA, inducing ROS in its vicinity, which may be responsible for the observed lesions.

  16. Synthesis of γ-Phosphate-Labeled and Doubly Labeled Adenosine Triphosphate Analogs.

    PubMed

    Hacker, Stephan M; Welter, Moritz; Marx, Andreas

    2015-03-09

    This unit describes the synthesis of γ-phosphate-labeled and doubly labeled adenosine triphosphate (ATP) analogs and their characterization using the phosphodiesterase I from Crotalus adamanteus (snake venom phosphodiesterase; SVPD). In the key step of the synthesis, ATP or an ATP analog, bearing a linker containing a trifluoroacetamide group attached to the nucleoside, are modified with an azide-containing linker at the terminal phosphate using an alkylation reaction. Subsequently, different labels are introduced to the linkers by transformation of one functional group to an amine and coupling to an N-hydroxysuccinimide ester. Specifically, the Staudinger reaction of the azide is employed as a straightforward means to obtain an amine in the presence of various labels. Furthermore, the fluorescence characteristics of a fluorogenic, doubly labeled ATP analog are investigated following enzymatic cleavage by SVPD.

  17. Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling.

    PubMed

    Schorge, Stephanie; van de Leemput, Joyce; Singleton, Andrew; Houlden, Henry; Hardy, John

    2010-05-01

    A persistent mystery about the ataxias has been why mutations in genes--many of which are expressed widely in the brain--primarily cause ataxia, and not, for example, epilepsy or dementia. Why should a polyglutamine stretch in the TATA-binding protein (that is important in all cells) particularly disrupt cerebellar coordination? We propose that advances in the genetics of cerebellar ataxias suggest a rational hypothesis for how so many different genes lead to predominantly cerebellar defects. We argue that the unifying feature of many genes involved in cerebellar ataxias is their impact on the signaling protein ITPR1 (inositiol 1,4,5-triphosphate receptor type 1), that underlies coincidence detection in Purkinje cells and could play an important role in cerebellar coordination.

  18. Effect of cadmium on lake water bacteria as determined by the luciferase assay of adenosine triphosphate

    SciTech Connect

    Seyfried, P.L.; Horgan, C.B.L.

    1981-10-01

    A firefly luciferase assay of bacterial adenosine triphosphate (ATP) was developed to measure the toxic effects of cadmium ions on aquatic organisms. Toxicity was monitored using intracellular (I/C) ATP (in micrograms per litre) as well as plate counts (colony-forming units per millilitre). The bacteria, which belonged mainly to the families Enterobacteriaceae and Pseudomonadaceae, exhibited varying degrees of resistance to up to 100 ppm cadmium when grown in a glucose-salts medium at pH 6.8. Among the organisms tested, cadmium resistance decreased in the following order: Pseudomonas vesicularis > P. aeruginosa > Enterobacter sp. > P. fluorescens > Chromobacter sp. > Serratia sp. A rise in the pH of the growth medium from 5 to 7 resulted in increased toxicity of cadmium.

  19. Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate.

    PubMed

    Xu, Shicai; Man, Baoyuan; Jiang, Shouzhen; Yue, Weiwei; Yang, Cheng; Liu, Mei; Chen, Chuansong; Zhang, Chao

    2014-04-25

    We demonstrate that continuous, uniform graphene films can be directly synthesized on quartz substrates using a two-temperature-zone chemical vapor deposition system and that their layers can be controlled by adjusting the precursor partial pressure. Raman spectroscopy and transmission electron microscopy confirm the formation of monolayer graphene with a grain size of ∼100 nm. Hall measurements show a room-temperature carrier mobility above 1500 cm2 V(-1) s(-1). The optical transmittance and conductance of the graphene films are comparable to those of transferred metal-catalyzed graphene. The method avoids the complicated and skilled post-growth transfer process and allows the graphene to be directly incorporated into a fully functional biosensor for label-free detection of adenosine triphosphate (ATP). This device shows a fast response time of a few milliseconds and achieves a high sensitivity to ATP molecules over a very wide range from 0.002 to 5 mM.

  20. Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals

    PubMed Central

    Gollnest, Tristan; de Oliveira, Thiago Dinis; Schols, Dominique; Balzarini, Jan; Meier, Chris

    2015-01-01

    The antiviral activity of nucleoside reverse transcriptase inhibitors is often limited by ineffective phosphorylation. We report on a nucleoside triphosphate (NTP) prodrug approach in which the γ-phosphate of NTPs is bioreversibly modified. A series of TriPPPro-compounds bearing two lipophilic masking units at the γ-phosphate and d4T as a nucleoside analogue are synthesized. Successful delivery of d4TTP is demonstrated in human CD4+ T-lymphocyte cell extracts by an enzyme-triggered mechanism with high selectivity. In antiviral assays, the compounds are potent inhibitors of HIV-1 and HIV-2 in CD4+ T-cell (CEM) cultures. Highly lipophilic acyl residues lead to higher membrane permeability that results in intracellular delivery of phosphorylated metabolites in thymidine kinase-deficient CEM/TK− cells with higher antiviral activity than the parent nucleoside. PMID:26503889

  1. Universal Labeling of 5′-Triphosphate RNAs by Artificial RNA Ligase Enzyme with Broad Substrate Specificity

    PubMed Central

    Haugner, John C.; Seelig, Burckhard

    2013-01-01

    An artificial RNA ligase specific to RNA with a 5′-triphosphate (PPP-RNA) exhibits broad sequence specificity on model substrates and secondary siRNAs with direct applications in the identification of PPP-RNAs through sequencing. PMID:23851643

  2. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  3. [The dynamics of the domains of the IP3-binding site of the inositol-1,4,5-triphosphate-sensitive calcium channel, induced by inositol-1,4,5-triphosphate and calcium].

    PubMed

    Veresov, V G; Konev, S V

    2005-01-01

    The dynamics of the inositol-1,4,5-triphosphate-sensitive calcium channel after binding of inositol-1,4,5-triphosphate and Ca2+ was analyzed by the Monte Carlo minimization technique. It was shown that the binding of Ca2+ with the unliganded receptor (channel) leads to a turning of the beta-sheet domain relative to the alpha-helical domain with the formation of the receptor conformation that is open for the entry of ions into the cytoplasmic channel vestibule, sterically closed for their passage through the vestibule in the part adjacent to the alpha-helical domains, and unfavourable for subsequent binding of inositol-1,4,5-triphosphate with the receptor. When both co-agonists bind to the receptor, the structure rearrangements induced eliminate both these steric obstacles for the passage of ions through the IP3-binding domain: one at the entrance of the channel cytoplasmic vestibule and the other that is placed deeper in the vestibule near the alpha-domains. The role of the dynamics of the receptor binding core in the IP3-sensitive channel gating is discussed.

  4. Triphosphate residues at the 5' ends of rRNA precursor and 5S RNA from Dictyostelium discoideum.

    PubMed Central

    Batts-Young, B; Lodish, H F

    1978-01-01

    We present here direct evidence for the preservation of a transcriptional initiation sequence in a eukaryotic rRNA precursor: the 5'-end group for precursor to 17S rRNA (p17S RNA) from Dictyostelium discoideum is identified as the triphosphate residue pppA-. We also show that mature 5S RNA form Dictyostelium bears a different triphosphate residue, pppG-. In contrast, we find no evidence for more than one phosphate at the 5' end of the 25S rRNA precursor (p25S RNA). These observations indicate that synthesis of the large ribosomal RNAs of Dictyostelium begins with the 5'-terminal sequence of the p17S RNA, and that 5S RNA transcription must be initiated independently, despite the close association of the 5S and rRNA coding segments. Images PMID:204930

  5. Inhibition of vaccinia mRNA methylation by 2',5'-linked oligo(adenylic acid) triphosphate

    SciTech Connect

    Sharma, O.K.; Goswami, B.B.

    1981-04-01

    Extracts of interferon-treated cells synthesize unique 2',5'-linked oligo(adenylic acid) 5'-phosphates in the presence of ATP and double-stranded RNA. 2',5'-linked oligo(adenylic acid) 5'-triphosphate inhibits protein synthesis at nanomolar concentrations by activating RNase. We have observed that oligo(adenylic acid) 5'-monophosphate and 5'-triphosphate are potent inhibitors of vaccinia mRNA methylation in vitro. Both the methylation of the 5'-terminal guanine at the 7 position and the 2'-O-ribose methylation of the penultimate nucleoside are inhibited. Such inhibition of mRNA methylation is not due to degradation of the mRNA. Inhibition of the requisite modification of the 5' terminus of mRNA by 2',5'-linked oligo(adenylic acids) may be a mechanism of interferon action against both DNA and RNA viruses in which mRNAs derived from them are capped.

  6. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate.

    PubMed

    Kucherenko, I S; Kucherenko, D Yu; Soldatkin, O O; Lagarde, F; Dzyadevych, S V; Soldatkin, A P

    2016-04-01

    The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples. PMID:26838432

  7. Legionella phosphatase hydrolyzes phosphatidylinositol 4,5-bisphosphate and inosital triphosphate in human neutrophils

    SciTech Connect

    Dowling, J.N.; Saha, A.K.; Glew, R.H.

    1987-05-01

    Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP3) was explored. When neutrophil phosphoinositides were labeled with TSP, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP2) over 2 h. Treatment of (TH)inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP2. Following fMLP stimulation, the fractional reduction in PIP2 and the fractional increase in IP3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP3 was reduced by ACP pre-treatment. The reduction in IP3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP2 available for hydrolysis. However, some loss of IP3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP2, the prognitor of IP3, and by hydrolyzing IP3 itself.

  8. Hybrid integrated biological–solid-state system powered with adenosine triphosphate

    PubMed Central

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-01-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm−2) are able to sustain a short-circuit current of 32.6 pA mm−2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm−2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%. PMID:26638983

  9. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase

    PubMed Central

    Crotty, Darragh; Silkstone, Gary; Poddar, Soumya; Ranson, Richard; Prina-Mello, Adriele; Wilson, Michael T.; Coey, J. M. D.

    2012-01-01

    The influence of isotopically enriched magnesium on the creatine kinase catalyzed phosphorylation of adenosine diphosphate is examined in two independent series of experiments where adenosine triphosphate (ATP) concentrations were determined by a luciferase-linked luminescence end-point assay or a real-time spectrophotometric assay. No increase was observed between the rates of ATP production with natural Mg, 24Mg, and 25Mg, nor was any significant magnetic field effect observed in magnetic fields from 3 to 1,000 mT. Our results are in conflict with those reported by Buchachenko et al. [J Am Chem Soc 130:12868–12869 (2008)], and they challenge these authors’ general claims that a large (two- to threefold) magnetic isotope effect is “universally observable” for ATP-producing enzymes [Her Russ Acad Sci 80:22–28 (2010)] and that “enzymatic phosphorylation is an ion-radical, electron-spin-selective process” [Proc Natl Acad Sci USA 101:10793–10796 (2005)]. PMID:22198842

  10. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGES

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; et al

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  11. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    SciTech Connect

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.

  12. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration

    PubMed Central

    Lee, Bora; Lee, Seung-Min; Bahn, Young Jae; Lee, Kwang-Pyo; Kang, Moonkyung; Kim, Yeon-Soo; Woo, Sun-Hee; Lim, Jae-Young; Kim, Eunhee; Kwon, Ki-Sun

    2016-01-01

    Skeletal muscle mass and power decrease with age, leading to impairment of mobility and metabolism in the elderly. Ca2+ signaling is crucial for myoblast differentiation as well as muscle contraction through activation of transcription factors and Ca2+-dependent kinases and phosphatases. Ca2+ channels, such as dihydropyridine receptor (DHPR), two-pore channel (TPC) and inositol 1,4,5-triphosphate receptor (ITPR), function to maintain Ca2+ homeostasis in myoblasts. Here, we observed a significant decrease in expression of type 1 IP3 receptor (ITPR1), but not types 2 and 3, in aged mice skeletal muscle and isolated myoblasts, compared with those of young mice. ITPR1 knockdown using shRNA-expressing viruses in C2C12 myoblasts and tibialis anterior muscle of mice inhibited myotube formation and muscle regeneration after injury, respectively, a typical phenotype of aged muscle. This aging phenotype was associated with repression of muscle-specific genes and activation of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. ERK inhibition by U0126 not only induced recovery of myotube formation in old myoblasts but also facilitated muscle regeneration after injury in aged muscle. The conserved decline in ITPR1 expression in aged human skeletal muscle suggests utility as a potential therapeutic target for sarcopenia, which can be treated using ERK inhibition strategies. PMID:27658230

  13. Aptamer-based electrochemical biosensor for detection of adenosine triphosphate using a nanoporous gold platform.

    PubMed

    Kashefi-Kheyrabadi, Leila; Mehrgardi, Masoud A

    2013-12-01

    In spite of the promising applications of aptamers in the bioassays, the development of aptamer-based electrochemical biosensors with the improved limit of detection has remained a great challenge. A strategy for the amplification of signal, based on application of nanostructures as platforms for the construction of an electrochemical adenosine triphosphate (ATP) aptasensor, is introduced in the present manuscript. A sandwich assay is designed by immobilizing a fragment of aptamer on a nanoporous gold electrode (NPGE) and its association to second fragment in the presence of ATP. Consequently, 3, 4-diaminobenzoic acid (DABA), as a molecular reporter, is covalently attached to the amine-label of the second fragment, and the direct oxidation signal of DABA is followed as the analytical signal. The sensor can detect the concentrations of ATP as low as submicromolar scales. Furthermore, 3.2% decrease in signal is observed by keeping the aptasensor at 4 °C for a week in buffer solution, implying a desirable stability. Moreover, analog nucleotides, including GTP, UTP and CTP, do not show serious interferences and this sensor easily detects its target in deproteinized human blood plasma.

  14. A Graphene and Aptamer Based Liquid Gated FET-Like Electrochemical Biosensor to Detect Adenosine Triphosphate.

    PubMed

    Mukherjee, Souvik; Meshik, Xenia; Choi, Min; Farid, Sidra; Datta, Debopam; Lan, Yi; Poduri, Shripriya; Sarkar, Ketaki; Baterdene, Undarmaa; Huang, Ching-En; Wang, Yung Yu; Burke, Peter; Dutta, Mitra; Stroscio, Michael A

    2015-12-01

    Here we report successful demonstration of a FET-like electrochemical nano-biosensor to accurately detect ultralow concentrations of adenosine triphosphate. As a 2D material, graphene is a promising candidate due to its large surface area, biocompatibility, and demonstrated surface binding chemistries and has been employed as the conducting channel. A short 20-base DNA aptamer is used as the sensing element to ensure that the interaction between the analyte and the aptamer occurs within the Debye length of the electrolyte (PBS). Significant increase in the drain current with progressive addition of ATP is observed whereas for control experiments, no distinct change in the drain current occurs. The sensor is found to be highly sensitive in the nanomolar (nM) to micromolar ( μM) range with a high sensitivity of 2.55 μA (mM) (-1), a detection limit as low as 10 pM, and it has potential application in medical and biological settings to detect low traces of ATP. This simplistic design strategy can be further extended to efficiently detect a broad range of other target analytes.

  15. Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency.

    PubMed Central

    Simmonds, H A; Fairbanks, L D; Morris, G S; Morgan, G; Watson, A R; Timms, P; Singh, B

    1987-01-01

    Developmental retardation was a prominent clinical feature in six infants from three kindreds deficient in the enzyme purine nucleoside phosphorylase (PNP) and was present before development of T cell immunodeficiency. Guanosine triphosphate (GTP) depletion was noted in the erythrocytes of all surviving homozygotes and was of equivalent magnitude to that found in the Lesch-Nyhan syndrome (complete hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency). The similarity between the neurological complications in both disorders indicates that the two major clinical consequences of complete PNP deficiency have differing aetiologies: neurological effects resulting from deficiency of the PNP enzyme products, which are the substrates for HGPRT, leading to functional deficiency of this enzyme. immunodeficiency caused by accumulation of the PNP enzyme substrates, one of which, deoxyguanosine, is toxic to T cells. These studies show the need to consider PNP deficiency (suggested by the finding of hypouricaemia) in patients with neurological dysfunction, as well as in T cell immunodeficiency. They suggest an important role for GTP in normal central nervous system function. PMID:2439024

  16. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    PubMed

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-12-07

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  17. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    PubMed

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-01-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%. PMID:26638983

  18. Vascular CD39/ENTPD1 Directly Promotes Tumor Cell Growth by Scavenging Extracellular Adenosine Triphosphate12

    PubMed Central

    Feng, Lili; Sun, Xiaofeng; Csizmadia, Eva; Han, Lihui; Bian, Shu; Murakami, Takashi; Wang, Xin; Robson, Simon C; Wu, Yan

    2011-01-01

    Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5′-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X7 receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X7 expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management. PMID:21390184

  19. The Inositol 1,4,5-triphosphate kinase1 gene affects olfactory reception in Drosophila melanogaster.

    PubMed

    Gomez-Diaz, Carolina; Martin, Fernando; Alcorta, Esther

    2006-03-01

    The Inositol 1,4,5-triphosphate (IP3) route is one of the two main transduction cascades that mediate olfactory reception in Drosophila melanogaster. The activity of IP3 kinase1 reduces the levels of this substrate by phosphorylation into inositol 1,3,4,5-tetrakiphosphate (IP4). We show here that the gene is expressed in olfactory sensory organs as well as in the rest of the head. To evaluate in vivo the olfactory functional effects of up-regulating IP3K1, individuals with directed genetic changes at the reception level only were generated using the UAS/Gal4 method. In this report, we described the consequences in olfactory perception of overexpressing the IP3Kinase1 gene at eight different olfactory receptor-neuron subsets. Six out of the eight studied Gal-4/UAS-IP3K1 hybrids displayed abnormal behavioral responses to ethyl acetate, acetone, ethanol or propionaldehyde. Specific behavioral defects corresponded to the particular neuronal olfactory profile. These data confirm the role of the IP3kinase1 gene, and consequently the IP3 transduction cascade, in mediating olfactory information at the reception level.

  20. Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression.

    PubMed

    Salinas-Mondragon, Raul E; Kajla, Jyoti D; Perera, Imara Y; Brown, Christopher S; Sederoff, Heike Winter

    2010-12-01

    Plants sense light and gravity to orient their direction of growth. One common component in the early events of both phototropic and gravitropic signal transduction is activation of phospholipase C (PLC), which leads to an increase in inositol 1,4,5-triphosphate (InsP(3)) levels. The InsP(3) signal is terminated by hydrolysis of InsP(3) through inositolpolyphosphate-5-phosphatases (InsP 5-ptases). Arabidopsis plants expressing a heterologous InsP 5-ptase have low basal InsP(3) levels and exhibit reduced gravitropic and phototropic bending. Downstream effects of InsP(3)-mediated signalling are not understood. We used comparative transcript profiling to characterize gene expression changes in gravity- or light-stimulated Arabidopsis root apices that were manipulated in their InsP(3) metabolism either through inhibition of PLC activity or expression of InsP 5-ptase. We identified InsP(3)-dependent and InsP(3)-independent co-regulated gene sets in response to gravity or light stimulation. Inhibition of PLC activity in wild-type plants caused similar changes in transcript abundance in response to gravitropic and phototropic stimulation as in the transgenic lines. Therefore, we conclude that changes in gene expression in response to gravitropic and phototropic stimulation are mediated by two signal transduction pathways that vary in their dependence on changes in InsP(3).

  1. 2-Aminoethoxydiphenyl borate, a inositol 1,4,5-triphosphate receptor inhibitor, prevents atrial fibrillation.

    PubMed

    Xiao, Junjie; Liang, Dandan; Zhao, Hong; Liu, Ying; Zhang, Hong; Lu, Xiaowei; Liu, Yi; Li, Jun; Peng, Luying; Chen, Yi-Han

    2010-07-01

    The expression of the inositol 1,4,5-triphosphate receptor (IP3R) is upregulated and the function of IP3R also increases during atrial fibrillation (AF). 2-Aminoethoxydiphenyl borate (2-APB) is a membrane-permeable inhibitor of IP3R. However, the effect of 2-APB on AF is unknown. The aim of the present study is to explore the effects of 2-APB on AF. In vitro rabbit heart models of ischemia-, stretch- and cholinergic agitation-induced AF were developed. Fura-2-acetoxymethyl (Fura-2-AM) and Mg2+-Fura-2-AM were used to monitor alterations of intracellular Ca2+ and ATP, respectively, in HL-1 cells, an atrial muscle cell line, under chemical ischemia or cholinergic agitation. The results showed that inhibition of IP3R significantly reduced the incidence and its probability of being sustained in all three types of AF. IP3R inhibition ameliorated the cytoplasmic Ca2+ overload and energy compromise resulting from chemical ischemia or cholinergic agitation. Thus, IP3R inhibition may be a novel target for AF treatment, and IP3R may be an important molecule in the context of different kinds of AF.

  2. HLH-29 regulates ovulation in C. elegans by targeting genes in the inositol triphosphate signaling pathway.

    PubMed

    White, Ana; Fearon, Abegail; Johnson, Casonya M

    2012-03-15

    The reproductive cycle in the nematode Caenorhabditis elegans depends in part on the ability of the mature oocyte to ovulate into the spermatheca, fuse with the sperm during fertilization, and then exit the spermatheca as a fertilized egg. This cycle requires the integration of signals between the germ cells and the somatic gonad and relies heavily on the precise control of inositol 1,4,5 triphosphate (IP(3))levels. The HLH-29 protein, one of five Hairy/Enhancer of Split (HES) homologs in C. elegans, was previously shown to affect development of the somatic gonad. Here we show that HLH-29 expression in the adult spermatheca is strongly localized to the distal spermatheca valve and to the spermatheca-uterine valve, and that loss of hlh-29 activity interferes with oocyte entry into and egg exit from the spermatheca. We show that HLH-29 can regulate the transcriptional activity of the IP(3) signaling pathway genes ppk-1, ipp-5, and plc-1 and provide evidence that hlh-29 acts in a genetic pathway with each of these genes. We propose that the HES-like protein HLH-29 acts in the spermatheca of larval and adult animals to effectively increase IP(3) levels during the reproductive cycle.

  3. Application of firefly luciferase assay for adenosine triphosphate (ATP) to antimicrobial drug sensitivity testing

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Tuttle, S. A.; Schrock, C. G.; Deming, J. W.; Barza, M. J.; Wienstein, L.; Chappelle, E. W.

    1977-01-01

    The development of a rapid method for determining microbial susceptibilities to antibiotics using the firefly luciferase assay for adenosine triphosphate (ATP) is documented. The reduction of bacterial ATP by an antimicrobial agent was determined to be a valid measure of drug effect in most cases. The effect of 12 antibiotics on 8 different bacterial species gave a 94 percent correlation with the standard Kirby-Buer-Agar disc diffusion method. A 93 percent correlation was obtained when the ATP assay method was applied directly to 50 urine specimens from patients with urinary tract infections. Urine samples were centrifuged first to that bacterial pellets could be suspended in broth. No primary isolation or subculturing was required. Mixed cultures in which one species was predominant gave accurate results for the most abundant organism. Since the method is based on an increase in bacterial ATP with time, the presence of leukocytes did not interfere with the interpretation of results. Both the incubation procedure and the ATP assays are compatible with automation.

  4. Hybrid integrated biological-solid-state system powered with adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-12-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm-2) are able to sustain a short-circuit current of 32.6 pA mm-2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm-2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  5. Adenosine triphosphate treatment for meconium aspiration-induced pulmonary hypertension in pigs.

    PubMed

    Kääpä, P; Jahnukainen, T; Grönlund, J; Rautanen, M; Halkola, L; Välimäki, I

    1997-07-01

    To investigate the pulmonary haemodynamic effects of meconium aspiration and subsequent adenosine triphosphate (ATP) treatment, 12 anaesthetized and ventilated pigs (wt 24-28 kg) received either ATP or an equal volume of saline into the right heart in doses of 0.02 to 0.80 mumol kg-1 min-1 after intratracheal administration of 2 mL kg-1 of human meconium. Meconium instillation induced significant increases in pulmonary vascular pressures and total and postarterial resistances calculated from pulmonary artery occlusion studies, but did not affect the systemic haemodynamics, except for a fall in heart rate and increase in central venous pressure. Infusion of ATP at the lowest doses (0.02 and 0.08 mumol kg-1 min-1) selectively decreased the pulmonary arterial pressure and vascular resistance and at 0.32 and 0.80 mumol kg-1 min-1 reduced both the pulmonary and systemic resistances. In the lung circulation the increasing doses of ATP reduced preferably the arterial but also the postarterial resistance. Withdrawal of ATP infusion led to a significant rebound effect especially in the postarterial segment of the lung circulation. Meconium aspiration thus induces an acute, predominantly postarterial obstruction in the lung circulation and infusion of ATP at low doses selectively dilates the pulmonary vascular bed and may help to preclude elevation of capillary pressures in meconium aspiration-induced pulmonary hypertension. PMID:9246392

  6. Colorimetric sensor for triphosphates and their application as a viable staining agent for prokaryotes and eukaryotes.

    PubMed

    Ghosh, Amrita; Shrivastav, Anupama; Jose, D Amilan; Mishra, Sanjiv K; Chandrakanth, C K; Mishra, Sandhya; Das, Amitava

    2008-07-15

    The chromogenic complex 1 x Zn (where 1 is (E)-4-(4-dimethylamino-phenylazo)-N,N-bispyridin-2-ylmethyl-benzenesulfonamide) showed high affinity toward the phosphate ion in tetrabutylammonium phosphate in acetonitrile solution and could preferentially bind to adenosine triphosphate (ATP) in aqueous solution at physiological pH. This binding caused a visual change in color, whereas no such change was noticed with other related anions (adenosine monophosphate, adenosine diphosphate, pyrophosphate, and phosphate) of biological significance. Thus, 1 x Zn could be used as a staining agent for different biological cells through binding to the ATP, generated in situ by the mitochondria (in eukaryotes). For prokaryotes (bacteria) the cell membrane takes care of the cells' energy conversion, since they lack mitochondria. ATP is produced in their unique cell structure on the cell membrane, which is not found in any eukaryotes. These stained cells could be viewed with normal light microscopy. This reagent could even be used for distinguishing the gram-positive and the gram-negative bacteria (prokaryotes). This dye was found to be nonlipophilic in nature and nontoxic to living microbes (eukaryotes and prokaryotes). Further, stained cells were found to grow in their respective media, and this confirmed the maintenance of viability of the microbes even after staining, unlike with many other dyes available commercially.

  7. Genetics and complementation of Haemophilus influenzae mutants deficient in adenosine 5'-triphosphate-dependent nuclease.

    PubMed Central

    Kooistra, J; Small, G D; Setlow, J K; Shapanka, R

    1976-01-01

    Eight different mutations in Haemophilus influenzae leading to deficiency in adenosine 5'-triphosphate (ATP)-dependent nuclease have been investigated in strains in which the mutations of the originally mutagenized strains have been transferred into the wild type. Sensitivity to mitomycin C and deoxycholate and complementation between extracts and deoxyribonucleic acid (DNA)-dependent ATPase activity have been measured. Genetic crosses have provided information on the relative position of the mutations on the genome. There are three complementation groups, corresponding to three genetic groups. The strains most sensitive to mitomycin and deoxycholate, derived from mutants originally selected on the basis of sensitivity to mitomycin C or methyl methanesulfonate, are in one group. Apparently all these sensitive strains lack DNA-dependent ATPase activity, as does a strain intermediate in sensitivity to deoxycholate, which is the sole representative of another group. There are four strains that are relatively resistant to deoxycholate and mitomycin C, and all of these contain the ATPase activity. Three of these are in the same genetic and complementation group, whereas the other incongruously belongs in the same group as the sensitive strains. It is postulated that there are three cistrons in H. influenzae that code for the three known subunits of the ATP-dependent nuclease. PMID:177397

  8. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    PubMed Central

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-01-01

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens. PMID:25831519

  9. [Detection of coronary artery disease by adenosine triphosphate stress echocardiography: comparison with adenosine triphosphate stress thallium myocardial scintigraphy and coronary angiography].

    PubMed

    Harada, M; Okura, K; Nishizawa, S; Inoue, T; Sakai, H; Lee, T; Sugiyama, Y; Suzuki, M; Hirai, H; Yamaguchi, T

    1998-09-01

    The clinical feasibility and usefulness of adenosine triphosphate-2Na (ATP) stress echocardiography for the detection of coronary artery disease (CAD) were assessed. Two-dimensional echocardiography and thallium-201 single photon emission computed tomography (SPECT) during ATP infusion were performed simultaneously in 58 consecutive patients (41 men and 17 women; mean age 66 +/- 12 years) with suspected CAD. ATP was infused intravenously at 0.16 mg/kg/min for 5 min and thallium was injected at 4 min. All patients underwent coronary angiography within 2 weeks of ATP echocardiography and ATP SPECT. An ischemic response during ATP infusion was detected by echocardiography as the development or worsening of a wall motion abnormality compared with the baseline and by SPECT as a perfusion defect that filled totally or partially during redistribution. Significant coronary artery stenosis was defined as > or = 75% diameter stenosis in a major epicardial vessel. The severity of the stenosis was classified as follows: Group A, lesions with significant coronary artery stenosis (> or = 75%, < 90%); Group B, lesions with severe coronary artery stenosis (> or = 90%) without collateral circulation; Group C, lesions with severe coronary artery stenosis (> or = 90%) with collateral circulation. Significant CAD was present in 43 of 58 patients. The overall sensitivity, specificity and accuracy of ATP echocardiography for detecting significant CAD were 70%, 100% and 78%, respectively, and those of ATP SPECT were 98%, 87% and 95%, respectively. In patients without previous myocardial infarction, the sensitivity of ATP echocardiography was 67%. The sensitivity of ATP echocardiography and ATP SPECT for detecting myocardial ischemia were 59% and 95% in patients with 1-vessel disease, 75% and 100% in those with 2-vessel disease, and 88% and 100% in those with 3-vessel disease, respectively. The induction of wall motion abnormality by ATP echocardiography was highly concordant with ATP

  10. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5'-triphosphate with unmodified gold nanoparticles.

    PubMed

    Xu, Mingdi; Gao, Zhuangqiang; Zhou, Qian; Lin, Youxiu; Lu, Minghua; Tang, Dianping

    2016-12-15

    This work reports on a novel time-resolved fluorescent aptasensing platform for the quantitative monitoring of adenosine 5'-triphosphate (ATP) by interaction of dispersive/agglomerate gold nanoparticles (AuNPs) with terbium ion-coordinated carbon dots (Tb-CDs). To construct such a fluorescent nanoprobe, Tb-CDs with high-efficient fluorescent intensity are first synthesized by the microwave method with terbium ions (Tb(3+)). The aptasensing system consists of ATP aptamer, AuNP and Tb-CD. The dispersive/agglomerate gold nanoparticles are acquired through the reaction of the aptamer with target ATP. Upon target ATP introduction, the aptamers bind with the analytes to form new aptamer-ATP complexes and coat on the surface of AuNPs to inhibit their aggregation in the high salt solution. In this case, the fluorescent signal of Tb-CDs is quenched by the dispersive AuNPs on the basis of the fluorescence resonance energy transfer (FRET). At the absence of target analyte, gold nanoparticles tend to aggregate in the high salt state even if the aptamers are present. Thus, the added Tb-CDs maintain their intrinsic fluorescent intensity. Experimental results indicated that the aptasensing system exhibited good fluorescent responses toward ATP in the dynamic range from 40nM to 4.0μM with a detection limit of 8.5nM at 3sblank criterion. The repeatability and intermediate precision is less than 9.5% at three concentrations including 0.04, 0.4 and 2.0μM ATP. The selectivity was acceptable toward guanosine 5'-triphosphate, uridine 5'-triphosphate and cytidine 5'-triphosphate. The methodology was applied to evaluate the blank human serum spiked with target ATP, and the recoveries (at 3 concentration levels) ranged between 97.0% and 103.7%. Importantly, this detection scheme is rapid, simple, cost-effective, and does not require extensive sample preparation or separation.

  11. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.

    PubMed

    Bettendorff, Lucien; Wins, Pierre

    2009-06-01

    Prokaryotes, yeasts and plants synthesize thiamin (vitamin B1) via complex pathways. Animal cells capture the vitamin through specific high-affinity transporters essential for internal thiamin homeostasis. Inside the cells, thiamin is phosphorylated to higher phosphate derivatives. Thiamin diphosphate (ThDP) is the best-known thiamin compound because of its role as an enzymatic cofactor. However, in addition to ThDP, at least three other thiamin phosphates occur naturally in most cells: thiamin monophosphate, thiamin triphosphate (ThTP) and the recently discovered adenosine thiamin triphosphate. It has been suggested that ThTP has a specific neurophysiological role, but recent data favor a much more basic metabolic function. During amino acid starvation, Escherichia coli accumulate ThTP, possibly acting as a signal involved in the adaptation of the bacteria to changing nutritional conditions. In animal cells, ThTP can phosphorylate some proteins, but the physiological significance of this mechanism remains unknown. Adenosine thiamin triphosphate, recently discovered in E. coli, accumulates during carbon starvation and might act as an alarmone. Among the proteins involved in thiamin metabolism, thiamin transporters, thiamin pyrophosphokinase and a soluble 25-kDa thiamin triphosphatase have been characterized at the molecular level, in contrast to thiamin mono- and diphosphatases whose specificities remain to be proven. A soluble enzyme catalyzing the synthesis of adenosine thiamin triphosphate from ThDP and ADP or ATP has been partially characterized in E. coli, but the mechanism of ThTP synthesis remains elusive. The data reviewed here illustrate the complexity of thiamin biochemistry, which is not restricted to the cofactor role of ThDP.

  12. Exogenous magnesium chloride-adenosine triphosphate administration during reperfusion reduces the extent of necrosis in previously ischemic skeletal muscle.

    PubMed

    Hayes, P G; Liauw, S; Smith, A; Romaschin, A D; Walker, P M

    1990-03-01

    The lower extremity may be exposed to prolonged periods of ischemia, resulting in depletion of intracellular energy stores in the affected skeletal muscle. The role of adenine nucleotide reduction and failure of resynthesis on reperfusion in determining the extent of muscle necrosis was investigated in this study, in addition to the possible beneficial effects of the addition of exogenous adenosine triphosphate-magnesium chloride during early reperfusion. The isolated paired canine gracilis muscle model was used. After 4 hours of normothermic ischemia in group I, a perfusate Krebs-Henseleit solution plus the gradual reintroduction of oxygenated blood flow was compared to standard reperfusion. In group II, a similar infusion protocol was used, with the addition of 2 mmol/L adenosine triphosphate-magnesium chloride and compared to normal reperfusion. Adenosine triphosphate-magnesium chloride resulted in the salvage of skeletal muscle, 57% +/- 12% versus 44% +/- 14% (p less than 0.05, n = 6 pairs). Reperfusion with the solution alone increased the resulting necrosis (42% +/- 13% vs 60% +/- 20%, n = 6 pairs). Adenine nucleotide stores were not increased, but oxygen consumption was increased by magnesium chloride-adenosine triphosphate (p less than 0.05, analysis of variance [ANOVA]). A clear relationship was demonstrated between the fall in energy stores, as measured by a change in energy charge potential from preischemia to end ischemia levels, and the extent of resulting necrosis (p less than 0.01). In summary, the addition of 2 mmol/L to an infusion of Krebs-Henseleit solution during reperfusion results in significant salvage of skeletal muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A Method to Determine 18O Kinetic Isotope Effects in the Hydrolysis of Nucleotide Triphosphates

    PubMed Central

    Du, Xinlin; Ferguson, Kurt; Sprang, Stephen R.

    2007-01-01

    A method to determine 18O kinetic isotope effects (KIE) in the hydrolysis of GTP is described that is generally applicable to reactions involving other nucleotide triphosphates. Internal competition, wherein the substrate of the reaction is a mixture of 18O-labeled and unlabeled nucleotides, is employed and the change in relative abundance of the two species in the course of the reaction is used to calculate KIE. The nucleotide labeled with 18O at sites of mechanistic interest also contains 13C at all carbon positions, while the 16O-nucleotide is depleted of 13C. The relative abundance of the labeled and unlabeled substrates or products is reflected in the carbon isotope ratio (13C/12C) in GTP or GDP, which is determined by use of a liquid chromatography-coupled isotope ratio mass spectrometer (LC-coupled IRMS). The LC is coupled to the IRMS by an Isolink™ interface (ThermoFinnigan). Carbon isotope ratios can be determined with accuracy and precision greater than 0.04%, and are consistent over an order of magnitude in sample amount. KIE values for Ras/NF1333-catalyzed hydrolysis of [β18O3,13C]GTP were determined by change in the isotope ratio of GTP or GDP or the ratio of the isotope ratio of GDP to that of GTP. KIE values computed in the three ways agree within 0.1%, although the method using the ratio of isotope ratios of GDP and GTP gives superior precision (< 0.1%). A single KIE measurement can be conducted in 25 minutes with less than 5 μg nucleotide reaction product. PMID:17963711

  14. Amperometric biosensor system for simultaneous determination of adenosine-5'-triphosphate and glucose.

    PubMed

    Kucherenko, Ivan S; Didukh, Daria Yu; Soldatkin, Oleksandr O; Soldatkin, Alexei P

    2014-06-01

    The majority of biosensors for adenosine-5'-triphosphate (ATP) determination are based on cascades of enzymatic reactions; therefore, they are sensitive to glucose or glycerol (depending on the enzymatic system) as well as to ATP. The presence of unknown concentrations of these substances in the sample greatly complicates the determination of ATP. To overcome this disadvantage of known biosensors, we developed a biosensor system consisting of two biosensors: the first one is based on glucose oxidase and is intended for measuring glucose concentration, and the second one is based on glucose oxidase and hexokinase and is sensitive toward both glucose and ATP. Using glucose concentration measured by the first biosensor, we can analyze the total response to glucose and ATP obtained by the second biosensor. Platinum disc electrodes were used as amperometric transducers. The polyphenilenediamine membrane was deposited onto the surface of platinum electrodes to avoid the response to electroactive substances. The effect of glucose concentration on biosensor determination of ATP was studied. The reproducibility of biosensor responses to glucose and ATP during a day was tested (relative standard deviation, RSD, of responses to glucose was 3-6% and to ATP was 8-12%) as well as storage stability of the biosensors (no decrease of glucose responses and 43% drop of ATP responses during 50 days). The measurements of ATP and glucose in pharmaceutical vials (including mixtures of ATP and glucose) were carried out. It was shown that the developed biosensor system can be used for simultaneous analysis of glucose and ATP concentrations in water solutions.

  15. The inhibition of muscle contraction by adenosine 5' (beta, gamma-imido) triphosphate and by pyrophosphate.

    PubMed Central

    Pate, E; Cooke, R

    1985-01-01

    We have studied the inhibition of the contraction of glycerinated rabbit psoas muscle caused by ligands that bind to the ATPase site of myosin. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decreased the force and stiffness developed in isometric contractions and the velocity of shortening of isotonic contractions. The force exerted by isometric fibers was measured as a function of MgATP in the presence and absence of a constant concentration of the ligands. As the MgATP concentration decreased, the inhibition of tension caused by the ligand increased, reaching approximately 50% at 25 microM MgATP and either 2 mM MgPPi or 2 mM MgAMPPNP. The maximum velocity of shortening was also measured as a function of MgATP concentration in the presence of 1 and 2 mM MgPPi and 2.5 and 5 mM MgAMPPNP. Both ligands acted as pure competitive inhibitors with Ki = 3.0 mM for PPi and 5.1 mM for MgAMPPNP. These data show that both ligands are weak inhibitors of the contraction of fibers. The results provided information on the energetics of actin-myosin-ligand states that occur in the portion of the cross-bridge cycle where MgATP binds to myosin. A simple analysis of the inhibition of velocity suggests that MgAMPPNP binds to the actomyosin complex at this step of the cycle with an effective affinity constant of approximately 2 X 10(2) M-1. PMID:2990586

  16. Amperometric biosensor system for simultaneous determination of adenosine-5'-triphosphate and glucose.

    PubMed

    Kucherenko, Ivan S; Didukh, Daria Yu; Soldatkin, Oleksandr O; Soldatkin, Alexei P

    2014-06-01

    The majority of biosensors for adenosine-5'-triphosphate (ATP) determination are based on cascades of enzymatic reactions; therefore, they are sensitive to glucose or glycerol (depending on the enzymatic system) as well as to ATP. The presence of unknown concentrations of these substances in the sample greatly complicates the determination of ATP. To overcome this disadvantage of known biosensors, we developed a biosensor system consisting of two biosensors: the first one is based on glucose oxidase and is intended for measuring glucose concentration, and the second one is based on glucose oxidase and hexokinase and is sensitive toward both glucose and ATP. Using glucose concentration measured by the first biosensor, we can analyze the total response to glucose and ATP obtained by the second biosensor. Platinum disc electrodes were used as amperometric transducers. The polyphenilenediamine membrane was deposited onto the surface of platinum electrodes to avoid the response to electroactive substances. The effect of glucose concentration on biosensor determination of ATP was studied. The reproducibility of biosensor responses to glucose and ATP during a day was tested (relative standard deviation, RSD, of responses to glucose was 3-6% and to ATP was 8-12%) as well as storage stability of the biosensors (no decrease of glucose responses and 43% drop of ATP responses during 50 days). The measurements of ATP and glucose in pharmaceutical vials (including mixtures of ATP and glucose) were carried out. It was shown that the developed biosensor system can be used for simultaneous analysis of glucose and ATP concentrations in water solutions. PMID:24810180

  17. A novel fluorescence-based assay for the rapid detection and quantification of cellular deoxyribonucleoside triphosphates

    PubMed Central

    Wilson, Peter M.; LaBonte, Melissa J.; Russell, Jared; Louie, Stan; Ghobrial, Andrew A.; Ladner, Robert D.

    2011-01-01

    Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5–3′ exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R2 > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC–MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation. PMID:21576234

  18. Potentiation of Muscarinic and α -adrenergic Responses by an Analogue of Guanosine 5'-triphosphate

    NASA Astrophysics Data System (ADS)

    Evans, M. G.; Marty, A.

    1986-06-01

    Ca2+-dependent K+ and Cl- currents were recorded in isolated and dialyzed rat lacrimal gland cells by use of the tight-seal whole-cell recording technique. Under control conditions, application of acetylcholine (0.5-1.0 μ M) resulted in the full activation of both types of current. When 50-200 μ M guanosine 5'-[γ -thio]triphosphate (GTP[S], a nonhydrolyzable GTP analogue) was added to the intracellular solution, activation of both currents was seen with 1 nM acetylcholine, a dose 1/100th that needed under control conditions. Dialysis with solutions containing 200 μ M GTP or cAMP had no, or only slight, potentiation effects. The effects of GTP[S] were obtained only when ATP was included in the intracellular solution. The potentiated responses to acetylcholine were blocked by increasing 10-fold the intracellular Ca2+-buffering capacity and were not dependent on external Ca2+. Thus, the potentiated responses appeared to result from a release of Ca2+ from internal stores. GTP[S] also greatly potentiated the Ca2+-dependent adrenergic (norepinephrine) response of this preparation. In addition, GTP[S] elicited in some cells transient responses without application of acetylcholine or norepinephrine. Finally, rapid and sustained responses were seen as soon as the cells were dialyzed with inositol trisphosphate (20 μ M). These findings are discussed in terms of a possible role of a GTP-binding protein as a link between activation of muscarinic or adrenergic receptors and initiation of Ca2+ release by inositol trisphosphate.

  19. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ triphosphate (ATP)

    NASA Astrophysics Data System (ADS)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe

    2016-01-01

    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, …), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m < 1 suggests that the ATP/apatite adsorption process is mostly guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard ΔGads ° was estimated to only -4 kJ/mol, the large value of Nmax led to significantly negative effective ΔGads values down to -33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, …).

  20. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role.

    PubMed

    Bettendorff, Lucien; Lakaye, Bernard; Kohn, Gregory; Wins, Pierre

    2014-12-01

    Thiamine triphosphate (ThTP) was discovered over 60 years ago and it was long thought to be a specifically neuroactive compound. Its presence in most cell types, from bacteria to mammals, would suggest a more general role but this remains undefined. In contrast to thiamine diphosphate (ThDP), ThTP is not a coenzyme. In E. coli cells, ThTP is transiently produced in response to amino acid starvation, while in mammalian cells, it is constitutively produced at a low rate. Though it was long thought that ThTP was synthesized by a ThDP:ATP phosphotransferase, more recent studies indicate that it can be synthesized by two different enzymes: (1) adenylate kinase 1 in the cytosol and (2) FoF1-ATP synthase in brain mitochondria. Both mechanisms are conserved from bacteria to mammals. Thus ThTP synthesis does not seem to require a specific enzyme. In contrast, its hydrolysis is catalyzed, at least in mammalian tissues, by a very specific cytosolic thiamine triphosphatase (ThTPase), controlling the steady-state cellular concentration of ThTP. In some tissues where adenylate kinase activity is high and ThTPase is absent, ThTP accumulates, reaching ≥ 70% of total thiamine, with no obvious physiological consequences. In some animal tissues, ThTP was able to phosphorylate proteins, and activate a high-conductance anion channel in vitro. These observations raise the possibility that ThTP is part of a still uncharacterized cellular signaling pathway. On the other hand, its synthesis by a chemiosmotic mechanism in mitochondria and respiring bacteria might suggest a role in cellular energetics.

  1. Effects of zonisamide on neurotransmitter release associated with inositol triphosphate receptors.

    PubMed

    Yamamura, Satoshi; Saito, Hiromitsu; Suzuki, Noboru; Kashimoto, Sanae; Hamaguchi, Tatsuya; Ohoyama, Keiko; Suzuki, Dai; Kanehara, Shinich; Nakagawa, Masanori; Shiroyama, Takashi; Okada, Motohiro

    2009-04-17

    To clarify the antiepileptic mechanisms of zonisamide (ZNS), we determined the interaction between ZNS and inositol-1,4,5-triphosphate receptor (IP3R) on exocytosis of GABA and glutamate in rat frontal cortex using microdialysis. ZNS increased basal GABA release, but not glutamate, concentration-dependently, and reduced concentration-dependently K(+)-evoked GABA and glutamate releases. Inhibition and activation of IP3R reduced and enhanced basal and K(+)-evoked GABA releases, respectively. The K(+)-evoked glutamate release was reduced and enhanced by IP3R antagonist and agonist, respectively, whereas basal glutamate release was increased by IP3R agonist but not affected by IP3R antagonist. Under extracellular Ca(2+) depletion, IP3R agonist increased basal GABA and glutamate releases. The latter effects of IP3R agonist were weakly enhanced by ZNS, but such stimulatory action of ZNS was abolished by extracellular Ca(2+) depletion. In contrast, ZNS inhibited the stimulatory effect of IP3R agonist on K(+)-evoked release. The stimulatory effect of IP3R agonist on basal release was regulated by N-type voltage-sensitive Ca(2+) channel (VSCC) rather than P- and L-type VSCCs, whereas the stimulatory effect of IP3R agonist on K(+)-evoked release was regulated by P- and L-type VSCCs rather than N-type VSCC. These results suggest that ZNS-activated N-type VSCC enhances IP3R-associated neurotransmitter release during resting stage, whereas ZNS-induced suppression of P- and L-type VSCCs possibly attenuates IP3R-associated neurotransmitter release during neuronal hyperexcitability. Therefore, the combination of both of these two actions of ZNS on IP3R-associated neurotransmitter release mechanism seems to be involved, at least in part, in the mechanisms of antiepileptic and neuroprotective actions of ZNS.

  2. CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors.

    PubMed

    Camors, Emmanuel; Valdivia, Héctor H

    2014-01-01

    Ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs) are structurally related intracellular calcium release channels that participate in multiple primary or secondary amplified Ca(2+) signals, triggering muscle contraction and oscillatory Ca(2+) waves, or activating transcription factors. In the heart, RyRs play an indisputable role in the process of excitation-contraction coupling as the main pathway for Ca(2+) release from sarcoplasmic reticulum (SR), and a less prominent role in the process of excitation-transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only, to contraction of the heart, and in more important ways to regulation of transcription factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening arrhythmogenic and/or remodeling Ca(2+) signals, regulation of their activity is of paramount importance for normal cardiac function. Due to their structural similarity, many regulatory factors, accessory proteins, and post-translational processes are equivalent for RyRs and InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation, but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful modulator of RyR and InsP3R activity but interestingly, some of the complexities and controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects of CaMKII on global cellular activity, such as SR Ca(2+) leak or force-frequency potentiation, appear clear now, and this constrains the limits of the controversies and permits a more tractable approach to elucidate the effects of phosphorylation at the single channel level.

  3. Selective pulmonary vasodilation by low-dose infusion of adenosine triphosphate in newborn lambs.

    PubMed

    Konduri, G G; Woodard, L L

    1991-07-01

    The systemic and pulmonary vascular effects of adenosine 5'-triphosphate (ATP) were investigated in 12 newborn lambs during normoxia and during alveolar hypoxia (10% oxygen, 5% carbon dioxide, and 85% nitrogen). Lambs had catheters in the descending aorta, main pulmonary artery, and were studied after a 3-day recovery. We infused ATP or an equal volume of saline solution (control) into the right atrial line in doses ranging from 0.01 to 2.5 mumol/kg per minute. In normoxic lambs, ATP caused a significant decrease in pulmonary vascular resistance in doses of 0.08 to 2.5 mumol/kg per minute, and in systemic vascular resistance in doses of 0.3 to 2.5 mumol/kg per minute. Infusion of ATP in hypoxic lambs caused decreases in pulmonary artery pressure and pulmonary vascular resistance in all the doses tested. Systemic vascular resistance decreased, and cardiac output and heart rate increased in doses greater than 0.3 mumol/kg per minute in hypoxic lambs during ATP infusion. The effects of ATP in hypoxic lambs were not blocked by propranolol, indomethacin, or theophylline. Plasma ATP levels in left atrial blood samples did not change significantly during the infusion of ATP. We conclude that ATP is a vasodilator in lambs, and its effects are specific for pulmonary circulation at doses of less than or equal to 0.15 mumol/kg per minute. The vasodilator effects of ATP appear to be independent of P1 purinergic and beta-adrenergic mechanisms, and of prostacyclin synthesis. PMID:1906103

  4. Temporal analysis of regional strain rate during adenosine triphosphate stress before and after percutaneous coronary interventions.

    PubMed

    Gunji, Kazue; Takagi, Atsushi; Arai, Kotaro; Ashihara, Kyomi; Hagiwara, Nobuhisa

    2015-05-01

    Regional myocardial ischemia is thought to be characterized by diastolic dysfunction. We aimed to clarify whether temporal analysis of strain rate (SR) index derived from two-dimensional speckle-tracking echocardiography (2DTE) can assess the regional myocardial ischemia or not. Forty-two patients with significant coronary stenoses were referred for percutaneous coronary intervention (PCI). 2DTE was performed before and a day after PCI. Time from aortic valve closure to peak early diastolic longitudinal SR ∆(TAVC-E SR) was measured both at baseline and during adenosine triphosphate (ATP) infusion. TAVC-E SR was calculated as TAVC-E SR during ATP infusion subtracted by TAVC-E SR at baseline. In forty-five target ischemic regions, TAVC-E SR at baseline was significantly longer than that of control regions (166 ± 28 vs. 136 ± 32 ms, P < 0.0001). TAVC-E SR in target ischemic regions significantly prolonged during ATP stress to 221 ± 37 ms (P < 0.0001), while it did not change in control regions. Immediately after PCI, TAVC-E SR in target regions significantly decreased to 135 ± 27 ms, P < 0.0001 without prolongation during ATP stress. Receiver operating characteristic curves demonstrated that ∆TAVC-E SR could assess regional myocardial ischemia by a cutoff criterion of 14 ms with sensitivity of 93% and specificity of 95%. 2DTE-derived TAVC-E SR significantly increased during ATP stress only in ischemic myocardium. This phenomenon disappeared immediately after PCI. Temporal analysis of TAVC-E SR appeared to be useful to assess the regional myocardial ischemia. PMID:24633495

  5. Effect of adenosine triphosphate on left atrial electrogram interval and dominant frequency in human atrial fibrillation☆

    PubMed Central

    Kogawa, Rikitake; Okumura, Yasuo; Watanabe, Ichiro; Kofune, Masayoshi; Nagashima, Koichi; Mano, Hiroaki; Sonoda, Kazumasa; Sasaki, Naoko; Iso, Kazuki; Takahashi, Keiko; Ohkubo, Kimie; Nakai, Toshiko; Hirayama, Atsushi

    2015-01-01

    Background Complex fractionated atrial electrograms (CFAEs) and high dominant frequency (DF) are targets for atrial fibrillation (AF) ablation. Although adenosine triphosphate (ATP) is known to promote AF by shortening the atrial refractory period, its role in the pathogenesis of CFAEs and DF during AF is not fully understood. Methods We recorded electrical activity from a 64-electrode basket catheter placed in the left atrium (LA) of patients with paroxysmal AF (PAF, n=18) or persistent AF (PerAF, n=19) before ablation. Atrial electrogram fractionation intervals (FIs) and DFs were measured from bipolar electrograms of each adjacent electrode pair. Offline mean atrial FIs and DFs were obtained before bolus injection of 30 mg ATP. Peak effect was defined as an R–R interval >3 s. Results With ATP, the mean FI decreased (from 110.4±29.1 ms to 90.5±24.7 ms, P<0.0001) and DF increased (from 6.4±0.6 Hz to 7.1±0.8 Hz, P<0.0001) in all patients. There was no difference in the FI decrease between the two groups (−20.3±20.5 ms vs. −19.6±14.5 ms, P=0.6032), but the increase in DF was significantly greater in PAF patients (1.1±0.8 Hz vs. 0.3±0.6 Hz, P=0.0051). Conclusions ATP shortens atrial FIs and increases DFs in both PAF and PerAF patients. The significant increase in DF in PAF patients suggests that pathophysiologic characteristics related to the frequency of atrial fractionation change as atrial remodeling progresses. PMID:26702319

  6. Distribution of adenosine 5'-triphosphate (ATP)-dependent hexose kinases in microorganisms.

    PubMed

    Delvalle, J A; Asensio, C

    1978-08-01

    A systematic study of adenosine triphosphate (ATP)-dependent hexose kinases among microorganisms has been undertaken. Sixteen hexose kinases of five major types were partially purified from 12 microorganisms and characterized with respect to specificity for sugar and nucleotide substrates and Michaelis constants for the sugar substrates. Glucokinase activities that phosphorylate glucose and glucosamine are inhibited by N-acetyl-glucosamine and xylose, were found to be present in the non-sulphur photosynthetic bacteria Rhodospirillum rubrum, the blue-green algae Anacystis montana, and the protists Chlorella pyrenoidosa and Chlamydomonas reinhardtii (green algae), Hypochytrium catenoides (Hypochytridiomycete) and Saprolegnia Iitoralis (Oomycete). The myxobacteria Stigmatella aurantiaca contains a glucokinase activity with a different specificity pattern. Anacystis and Chlorella, besides their glucokinase activities, contain highly specific fructokinases, although that from Anacystis can also phosphorylate fructosamine; fructokinase from Anacystis has a molecular weight of 20 000, and exhibits a sigmoidal saturation curve for ATP when the Mg2+/ATP ratio is 2; this curve is transformed to a Michaelian one when under the same conditions an excess of Mg2+ (5 mM) is added. Saprolegnia however, besides the glucokinase, contains a mannofructokinase activity that phosphorylates mannose (Km 0.06 mM) and fructose (1 mM). On the other hand, hexokinase, a low specificity enzyme, was detected in the protist Allomyces arbuscula (Chytridiomycete) and in fungi Mucor hiemalis and Phycomyces blakesleeanus (Zygomycetes), and Schizophyllum commune (Basidiomycete). Schizophyllum contains a glucomannokinase activity together with hexokinase activity. The pattern of distribution of ATP-dependent hexose kinases among microorganisms seems to parallel that reported for biosynthetic pathways for lysine. The correlation with other biochemical parameters is also considered.

  7. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition

    PubMed Central

    Kiss, Levente; Deitch, Edwin A; Szabó, Csaba

    2014-01-01

    Aims Hydrogen sulfide (H2S) at low concentrations serves as a physiological endogenous vasodilator molecule, while at higher concentrations it can trigger cytotoxic effects. The aim of our study was to elucidate the potential mechanisms responsible for the effects of H2S on vascular tone. Main methods We measured the vascular tone in vitro in precontracted rat thoracic aortic rings and we have tested the effect of different oxygen levels and a variety of inhibitors affecting known vasodilatory pathways. We have also compared the vascular effect of high concentrations of H2S to those of pharmacological inhibitors of oxidative phosphorylation. Furthermore, we measured adenosine triphosphate (ATP)-levels in the same vascular tissues. Key findings We have found that in rat aortic rings: (1) H2S decreases ATP levels; (2) relaxations to H2S depend on the ambient oxygen concentration; (3) prostaglandins do not take part in the H2S induced relaxations; (4) the 3':5'-cyclic guanosine monophosphate (cGMP) – nitric oxide (NO) pathway does not have a role in the relaxations (5) the role of KATP channels is limited, while Cl−/HCO3− channels have a role in the relaxations. (6): We have observed that high concentrations of H2S relax the aortic rings in a fashion similar to sodium cyanide, and both agents reduce cellular ATP levels to a comparable degree. Significance H2S, a new gasotransmitter of emerging importance, leads to relaxation via Cl−/HCO3− channels and metabolic inhibition and the interactions of these two factors depend on the oxygen levels of the tissue. PMID:18790700

  8. Dual effects of guanosine 5'-[gamma-thio]triphosphate on secretion by electroporated human neutrophils.

    PubMed Central

    Smolen, J E; Stoehr, S J; Kuczynski, B; Koh, E K; Omann, G M

    1991-01-01

    It is generally believed that G-proteins play stimulatory roles on cell activation. In contrast, we found that guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was a potent inhibitor of Ca(2+)-induced secretion from specific granules (as monitored by vitamin B-12-binding protein). GTP[S] inhibition of specific-granule release occurred in the presence or absence of adenine nucleotides, required Mg2+ (1-3 mM), and was half-maximal at 30 microM-GTP[S]. The dual stimulatory and inhibitory effects of GTP[S] could be readily observed and differentiated when degranulation was monitored over a range of Ca2+ concentrations. Inhibition of specific-granule release by GTP[S] was observed at low Ca2+ concentrations and resulted from shifting the Ca2+ dose-response curves to the right. In contrast, GTP[S] promoted azurophil-granule secretion at relatively high concentrations of Ca2+ and appeared to be due to a general enhancement at all Ca2+ concentrations. A series of hydrolysable and non-hydrolysable nucleotides did not mimic GTP[S] or block its action. Inhibition by GTP[S] occurred in cells which were sensitized with a protein kinase C agonist, suggesting that inhibition of secretion took place distal to this enzyme. However, the inhibitory effects of GTP[S] on specific-granule secretion were reversed by cytochalasin D, which prevents new microfilament formation; this compound also enhanced the stimulation of azurophil-granule release by GTP[S]. We also found that GTP[S] greatly increased the F-actin content of permeabilized neutrophils, whereas Ca2+ (to a lesser extent) decreased F-actin. These data are consistent with the hypothesis that at least two G-proteins are involved in regulating secretion: one which has been previously described as stimulating Ca(2+)-induced secretion (particularly from azurophil granules) and a second, possibly involved in promoting microfilament assembly, which inhibits the discharge of specific granules. PMID:1953659

  9. Probing the ATP Site of GRP78 with Nucleotide Triphosphate Analogs

    PubMed Central

    Chen, Yun; Lu, Hua; Pizarro, Juan C.; Park, Hee-Won

    2016-01-01

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATP analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the β-γ bridge position to a carbon atom (AMPPCP), or the removal of the 2’-OH group (2’-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP’s binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2’-deoxyATP’s binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg++. The 2’-deoxyATP structure showed the conformation of the

  10. Probing the ATP site of GRP78 with nucleotide triphosphate analogs

    DOE PAGES

    Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun; Lu, Hua; Pizarro, Juan C.; Park, Hee -Won

    2016-05-04

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATPmore » analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg++. The 2'-deoxyATP structure showed the conformation of

  11. Molecular structure of tetraaqua adenosine 5'-triphosphate aluminium(III) complex: a study involving Raman spectroscopy, theoretical DFT and potentiometry.

    PubMed

    Tenório, Thaís; Silva, Andréa M; Ramos, Joanna Maria; Buarque, Camilla D; Felcman, Judith

    2013-03-15

    The Alzheimer's disease is one of the most common neurodegenerative diseases that affect elderly population, due to the formation of β-amyloid protein aggregate and several symptoms, especially progressive cognitive decline. The result is a decrease in capture of glucose by cells leading to obliteration, meddling in the Krebs cycle, the principal biochemical route to the energy production leading to a decline in the levels of adenosine 5'-triphosphate. Aluminium(III) is connected to Alzheimer's and its ion provides raise fluidity of the plasma membrane, decrease cell viability and aggregation of amyloid plaques. Studies reveal that AlATP complex promotes the formation of reactive fibrils of β-amyloid protein and independent amyloidogenic peptides, suggesting the action of the complex as a chaperone in the role pathogenic process. In this research, one of complexes formed by Al(III) and adenosine 5'-triphosphate in aqueous solution is analyzed by potentiometry, Raman spectroscopy and ab initio calculations. The value of the logK(AlATP) found was 9.21±0.01 and adenosine 5'-triphosphate should act as a bidentate ligand in the complex. Raman spectroscopy and potentiometry indicate that donor atoms are the oxygen of the phosphate β and the oxygen of the phosphate γ, the terminal phosphates. Computational calculations using Density Functional Theory, with hybrid functions B3LYP and 6-311++G(d,p) basis set regarding water solvent effects, have confirmed the results. Frontier molecular orbitals, electrostatic potential contour surface, electrostatic potential mapped and Mulliken charges of the title molecule were also investigated.

  12. Molecular structure of tetraaqua adenosine 5'-triphosphate aluminium(III) complex: A study involving Raman spectroscopy, theoretical DFT and potentiometry

    NASA Astrophysics Data System (ADS)

    Tenório, Thaís; Silva, Andréa M.; Ramos, Joanna Maria; Buarque, Camilla D.; Felcman, Judith

    2013-03-01

    The Alzheimer's disease is one of the most common neurodegenerative diseases that affect elderly population, due to the formation of β-amyloid protein aggregate and several symptoms, especially progressive cognitive decline. The result is a decrease in capture of glucose by cells leading to obliteration, meddling in the Krebs cycle, the principal biochemical route to the energy production leading to a decline in the levels of adenosine 5'-triphosphate. Aluminium(III) is connected to Alzheimer's and its ion provides raise fluidity of the plasma membrane, decrease cell viability and aggregation of amyloid plaques. Studies reveal that AlATP complex promotes the formation of reactive fibrils of β-amyloid protein and independent amyloidogenic peptides, suggesting the action of the complex as a chaperone in the role pathogenic process. In this research, one of complexes formed by Al(III) and adenosine 5'-triphosphate in aqueous solution is analyzed by potentiometry, Raman spectroscopy and ab initio calculations. The value of the log KAlATP found was 9.21 ± 0.01 and adenosine 5'-triphosphate should act as a bidentate ligand in the complex. Raman spectroscopy and potentiometry indicate that donor atoms are the oxygen of the phosphate β and the oxygen of the phosphate γ, the terminal phosphates. Computational calculations using Density Functional Theory, with hybrid functions B3LYP and 6-311++G(d,p) basis set regarding water solvent effects, have confirmed the results. Frontier molecular orbitals, electrostatic potential contour surface, electrostatic potential mapped and Mulliken charges of the title molecule were also investigated.

  13. Cross-linked polymeric nanogel formulations of 5'-triphosphates of nucleoside analogues: role of the cellular membrane in drug release.

    PubMed

    Vinogradov, Serguei V; Kohli, Ekta; Zeman, Arin D

    2005-01-01

    Activation of cytotoxic nucleoside analogues in vivo depends primarily on their cell-specific phosphorylation. Anticancer chemotherapy using nucleoside analogues may be significantly enhanced by intracellular administration of active phosphorylated drugs. However, the cellular transport of anionic compounds is very ineffective and restricted by many drug efflux transporters. Recently developed cationic nanogel carriers can encapsulate large amounts of nucleoside 5'-triphosphates that form polyionic complexes with protonated amino groups on the polyethylenimine backbone of the nanogels. In this paper, the 5'-triphosphate of an antiviral nucleoside analogue, 3'-azido-2',3'-dideoxythymidine (AZT), was efficiently synthesized and its complexes with nanogels were obtained and evaluated as potential cytotoxic drug formulations for treatment of human breast carcinoma cells. A selective phosphorylating reagent, tris-imidazolylphosphate, was used to convert AZT into the nucleoside analogue 5'-triphosphate using a one-pot procedure. The corresponding 3'-azido-2',3'-dideoxythymidine 5'-triphosphate (AZTTP) was isolated with high yield (75%). Nanogels encapsulated up to 30% of AZTTP by weight by mixing solutions of the carrier and the drug. The AZTTP/nanogel formulation showed enhanced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB-231, demonstrating IC50 values 130-200 times lower than those values for AZT alone. The exact mechanism of drug release from nanogels remains unclear. One mechanism could involve interaction with negatively charged counterions. A high affinity of nanogels to isolated cellular membranes has been observed, especially for nanogels made of amphiphilic block copolymer, Pluronic P85. Cellular trafficking of nanogel particles, contrasted by polyethylenimine-coordinated copper(II) ions, was studied by transmission electron microscopy (TEM), which revealed membranotropic properties of nanogels. A substantial release of encapsulated drug was

  14. Assessment of an innovative antimicrobial surface disinfectant in the operating room environment using adenosine triphosphate bioluminescence assay.

    PubMed

    Lewis, Brian D; Spencer, Maureen; Rossi, Peter J; Lee, Cheong J; Brown, Kellie R; Malinowski, Michael; Seabrook, Gary R; Edmiston, Charles E

    2015-03-01

    Terminal cleaning in the operating room is a critical step in preventing the transmission of health care-associated pathogens. The persistent disinfectant activity of a novel isopropyl alcohol/organofunctional silane solution (ISO) was evaluated in 4 operating rooms after terminal cleaning. Adenosine triphosphate bioluminescence documented a significant difference (P < .048) in surface bioburden on IOS-treated surfaces versus controls. RODAC plate cultures revealed a significant (P < .001) reduction in microbial contamination on IOS-treated surfaces compared with controls. Further studies are warranted to validate the persistent disinfectant activity of ISO within selective health care settings. PMID:25728155

  15. Assessment of an innovative antimicrobial surface disinfectant in the operating room environment using adenosine triphosphate bioluminescence assay.

    PubMed

    Lewis, Brian D; Spencer, Maureen; Rossi, Peter J; Lee, Cheong J; Brown, Kellie R; Malinowski, Michael; Seabrook, Gary R; Edmiston, Charles E

    2015-03-01

    Terminal cleaning in the operating room is a critical step in preventing the transmission of health care-associated pathogens. The persistent disinfectant activity of a novel isopropyl alcohol/organofunctional silane solution (ISO) was evaluated in 4 operating rooms after terminal cleaning. Adenosine triphosphate bioluminescence documented a significant difference (P < .048) in surface bioburden on IOS-treated surfaces versus controls. RODAC plate cultures revealed a significant (P < .001) reduction in microbial contamination on IOS-treated surfaces compared with controls. Further studies are warranted to validate the persistent disinfectant activity of ISO within selective health care settings.

  16. Ab initio molecular dynamics studies on HIV-1 reverse transcriptase triphosphate binding site: implications for nucleoside-analog drug resistance.

    PubMed

    Alber, F; Carloni, P

    2000-12-01

    Quantum-chemical methods are used to shed light on the functional role of residues involved in the resistance of HIV-1 reverse transcriptase against nucleoside-analog drugs. Ab initio molecular dynamics simulations are carried out for models representing the adduct between the triphosphate substrate and the nucleoside binding site. The triphosphate is considered either deprotonated or protonated at the gamma-position. Although the protonated form already experiences large rearrangements in the ps time scale, the fully deprotonated state exhibits a previously unrecognized low-barrier hydrogen bond between Lys65 and gamma-phosphate. Absence of this interaction in Lys65-->Arg HIV-1 RT might play a prominent role in the resistance of this mutant for nucleoside analogs (Gu Z et al., 1994b, Antimicrob Agents Chemother 38:275-281; Zhang D et al., 1994, Antimicrob Agents Chemother 38:282-287). Water molecules present in the active site, not detected in the X-ray structure, form a complex H-bond network. Among these waters, one may be crucial for substrate recognition as it bridges Gln151 and Arg72 with the beta-phosphate. Absence of this stabilizing interaction in Gln151-->Met HIV-1 RT mutant may be a key factor for the known drug resistance of this mutant toward dideoxy-type drugs and AZT (Shirasaka T et al., 1995, Proc Natl Acad Sci USA 92:2398-2402: Iversen AK et al., 1996, J Virol 70:1086-1090).

  17. [New furano- and pyrrolo[2,3-d]pyrimidine nucleosides and their 5'-triphosphates: synthesis and biological properties].

    PubMed

    Ivanov, M A; Ivanov, A V; Krasnitskaia, I A; Smirnova, O A; Karpenko, I L; Belanov, E F; Prasolov, V S; Tunitskaia, V L; Aleksandrova, L A

    2008-01-01

    Bicyclic furano[2,3-d]pyrimidine ribonucleosides were synthesized by Pd(0)- and CuI-catalyzed coupling of 5-iodouridine with terminal alkynes. The treatment of the resulting nucleosides with ammonia or methylamine solution in aqueous alcohol resulted in pyrrolo- and N(7)-methylpyrrolo[2,3-d]pyrimidine nucleosides. 5'-O-Triphosphates of bicyclic nucleosides were obtained by the treatment of the nucleosides with POCl3 in the presence of a "proton sponge." The 5'-O-triphosphates are not substrates for HCV RNA-dependent RNA polymerase, but are effective substrates for HCV RNA helicase/NTPase and did not inhibit ATP hydrolysis. Only 3-(beta-D-ribofuranosyl)-6-decyl-2,3-dihydrofuro-[2,3-d]pyrimidin-2-one showed a moderate anti-HCV activity in the HCV replicon system and efficiently inhibited replication of bovine viral diarrhea virus (BVDV) in KCT-cells, other compounds being inactive. None of the compounds were cytotoxic within the tested range of concentrations. PMID:19060941

  18. Overcoming stability challenges in the quantification of tissue nucleotides: determination of 2'-C-methylguanosine triphosphate concentration in mouse liver.

    PubMed

    Rashidzadeh, Hassan; Bhadresa, Sanjeev; Good, Steven Spencer; Larsson Cohen, Marita; Gupta, Kusum Sachdev; Rush, William Roger

    2015-01-01

    A conventional, rapid and high throughput method for tissue extraction and accurate and selective LC-MS/MS quantification of 2'-C-methylguanosine triphosphate (2'-MeGTP) in mouse liver was developed and qualified. Trichloroacetic acid (TCA) was used as the tissue homogenization reagent that overcomes instability challenges of liver tissue nucleotide triphosphates due to instant ischemic degradation to mono- and diphosphate nucleotides. Degradation of 2'-MeGTP was also minimized by harvesting livers using in situ clamp-freezing or snap-freezing techniques. The assay also included a sample clean-up procedure using weak anion exchange solid phase extraction followed by ion exchange chromatography and tandem mass spectrometry detection. The linear assay range was from 50 to 10000 pmol/mL concentration in liver homogenate (250-50000 pmol/g in liver tissue). The method was qualified over three intraday batches for accuracy, precision, selectivity and specificity. The assay was successfully applied to pharmacokinetic studies of 2'-MeGTP in liver tissue samples after single oral doses of IDX184, a nucleotide prodrug inhibitor of the viral polymerase for the treatment of hepatitis C, to mice. The study results suggested that the clamp-freezing liver collection method was marginally more effective in preventing 2'-MeGTP degradation during liver tissue collection compared to the snap-freezing method. PMID:25757919

  19. Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast.

    PubMed

    Tisi, Renata; Belotti, Fiorella; Wera, Stefaan; Winderickx, Joris; Thevelein, Johan M; Martegani, Enzo

    2004-02-01

    The Saccharomyces cerevisiae phospholipase C Plc1 is involved in cytosolic transient glucose-induced calcium increase, which also requires the Gpr1/Gpa2 receptor/G protein complex and glucose hexokinases. Differing from mammalian cells, this increase in cytosolic calcium concentration is mainly due to an influx from the external medium. No inositol triphosphate receptor homologue has been identified in the S. cerevisiae genome; and, therefore, the transduction mechanism from Plc1 activation to calcium flux generation still has to be identified. Inositol triphosphate (IP(3)) in yeast is rapidly transformed into IP(4) and IP(5) by a dual kinase, Arg82. Then another kinase, Ipk1, phosphorylates the IP(5) into IP(6). In mutant cells that do not express either of these kinases, the glucose-induced calcium signal was not only detectable but was even wider than in the wild-type strain. IP(3) accumulation upon glucose addition was completely absent in the plc1Delta strain and was amplified both by deletion of either ARG82 or IPK1 genes and by overexpression of PLC1. These results taken together suggest that Plc1p activation by glucose, leading to cleavage of PIP(2) and generation of IP(3), seems to be sufficient for raising the calcium level in the cytosol. This is the first indication for a physiological role of IP(3) signalling in S. cerevisiae. Many aspects about the signal transduction mechanism and the final effectors require further study.

  20. The Structural Basis of 5′ Triphosphate Double-stranded RNA Recognition by RIG-I C-terminal Domain

    PubMed Central

    Lu, Cheng; Xu, Hengyu; Ranjith-Kumar, C. T.; Brooks, Monica T.; Hou, Tim Y.; Hu, Fuqu; Herr, Andrew B.; Strong, Roland K.; Kao, C. Cheng; Li, Pingwei

    2010-01-01

    SUMMARY RIG-I is a cytosolic sensor of viral RNA that plays crucial roles in the induction of type I interferons. The C-terminal domain (CTD) of RIG-I is responsible for the recognition of viral RNA with 5′ triphosphate (5′ ppp). However, the mechanism of viral RNA recognition by RIG-I is still not fully understood. Here we show that RIG-I CTD binds 5′ ppp dsRNA or ssRNA, as well as blunt-ended dsRNA, and exhibits the highest affinity for 5′ ppp dsRNA. Crystal structures of RIG-I CTD bound to 5′ ppp dsRNA with GC- and AU- rich sequences revealed that RIG-I recognizes the termini of the dsRNA and interacts with the 5′ triphosphate through extensive electrostatic interactions. Mutagenesis and RNA binding studies demonstrated that similar binding surfaces are involved in the recognition of different forms of RNA. Mutations of key residues at the RNA binding surface affected RIG-I signaling in cells. PMID:20637642

  1. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides.

    PubMed Central

    Flitney, F W; Singh, J

    1980-01-01

    1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are

  2. Response of Guanosine 5′-Triphosphate Concentration to Nutritional Changes and Its Significance for Bacillus subtilis Sporulation

    PubMed Central

    Lopez, Juan M.; Dromerick, Alex; Freese, Ernst

    1981-01-01

    We have investigated the changes in the guanosine 5′-triphosphate (GTP) and P-ribosyl-PP pools in stringent and relaxed strains of Bacillus subtilis under conditions frequently used to initiate sporulation. After a shift-down from a Casamino Acids-glutamate to a glutamate medium (Sterlini-Mandelstam shift-down), the pools of adenosine 5′-triphosphate and P-ribosyl-PP increased in both strains; in the stringent strain, ppGpp and pppGpp increased and GTP decreased rapidly, whereas in the relaxed strain, ppGpp and pppGpp increased only slightly and GTP decreased only slowly and less extensively. The stringent strain sporulated well, whereas the relaxed strain sporulated late and poorly. Addition of decoyinine, an inhibitor of guanosine 5′-monophosphate synthetase, caused a further decrease of GTP and initiated good sporulation of the relaxed strain. After a shift-down from a glucose-lactate to a lactate medium (Ramaley-Burden shift-down) the pool of P-ribosyl-PP (and GTP) decreased in both strains, indicating a shortage of purine precursors. This shift-down also caused a stringent response which prevented the consumption of nucleotides, as shown by the maintenance of adenosine 5′-triphosphate at a high concentration in the stringent strain but not in the relaxed strain. After a delay, the relaxed strain, in which GTP decreased as fast as in the stringent strain, sporulated also as efficiently. In nutrient sporulation medium the stringent strain and, less effectively, the relaxed strain accumulated ppGpp and pppGpp transiently towards the end of exponential growth. Eventually, the P-ribosyl-PP pool decreased drastically in both strains. In all cases the initiation of sporulation was correlated with a significant decrease of GTP. Granaticin, an antibiotic which prevents the charging of leucyl-transfer ribonucleic acid, was used to show that the stringent response inhibited the formation of xanthosine monophosphate from inosine monophosphate. It prevented the

  3. Isolated Cerebellar Variant of Adrenoleukodystrophy with a de novo Adenosine Triphosphate-Binding Cassette D1 (ABCD1) Gene Mutation

    PubMed Central

    Kang, Joon Won; Lee, Sang Mi; Koo, Kyo Yeon; Lee, Young-Mock; Nam, Hyo Suk; Quan, Zhejiu

    2014-01-01

    X-linked adrenoleukodystrophy (X-ALD) shows a wide range of phenotypic expression, but clinical presentation as an isolated lesion of the cerebellar white matter and dentate nuclei has not been reported. We report an unusual presentation of X-ALD only with an isolated lesion of the cerebellar white matter and dentate nuclei. The proband, a 37-year-old man presented with bladder incontinence, slurred speech, dysmetria in all limbs, difficulties in balancing, and gait ataxia. Brain magnetic resonance imaging showed an isolated signal change of white matter around the dentate nucleus in cerebellum. With high level of very long chain fatty acid, gene study showed a de novo mutation in exon 1 at nucleotide position c.277_296dup20 (p.Ala100Cysfs*10) of the adenosine triphosphate-binding cassette D1 gene. It is advised to consider X-ALD as a differential diagnosis in patients with isolated cerebellar degeneration symptoms. PMID:24954351

  4. A rapid method for the determination of microbial susceptibility using the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Vellend, H.; Tuttle, S. A.; Barza, M.; Weinstein, L.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was optimized for pure bacteria in broth in order to evaluate if changes in bacterial ATP content could be used as a rapid measure of antibiotic effect on microorganisms. Broth cultures of log phase bacteria were incubated at 310 K (37 C) for 2.5 hours at antimicrobial concentrations which resulted in the best discrimination between sensitive and resistant strains. Eighty-seven strains of 11 bacterial species were studied for their susceptibility to 12 commonly used antimicrobial agents: ampicillin, Penicillin G, nafcillin, carbenicillin, cephalothin, tetracycline, erythromycin, clindamycin, gentamicin, nitrofurantoin, colistin, and chloramplenicol. The major advantage of the ATP system over existing methods of rapid microbial susceptibility testing is that the assay can be made specific for bacterial ATP.

  5. Unique energetic properties of Adenosine Tri-Phosphate in comparison to similar compounds using density functional theory

    NASA Astrophysics Data System (ADS)

    Muraszko, Kevin; Halloran, Thomas; Malinovskaya, Svetlana; Leopold, Philip

    2015-05-01

    Adenosine Tri-Phosphate (ATP) is arguably the most critical compound to all life known on Earth, serving as the main energy transport and storage in cellular biology. Why in particular did nature ``choose'' ATP instead of a similar compound? We are seeking to answer this question by comparing the energetic properties of ATP to similar compounds. We discuss 3-D models for ATP, variants of the molecule based on all of the separate nucleobases, and ATP's twin molecule Adenosine Di-Phosphate. All calculations were done using Density Functional Theory. The results showed that purine compounds like Adenosine and Guanosine produce similar bond angles, making these viable unlike the other nucleobases. We have analyzed the chiral properties of ATP by comparing the ground-state-energies of ATP-cis and ATP-trans and have shown that ATP-cis is the more energetically favorable of the two. This is consistent with observations in nature.

  6. Adenosine Triphosphate-Triggered Release of Macromolecular and Nanoparticle Loads from Aptamer/DNA-Cross-Linked Microcapsules.

    PubMed

    Liao, Wei-Ching; Lu, Chun-Hua; Hartmann, Raimo; Wang, Fuan; Sohn, Yang Sung; Parak, Wolfgang J; Willner, Itamar

    2015-09-22

    The synthesis of stimuli-responsive DNA microcapsules acting as carriers for different payloads, and being dissociated through the formation of aptamer-ligand complexes is described. Specifically, stimuli-responsive anti-adenosine triphosphate (ATP) aptamer-cross-linked DNA-stabilized microcapsules loaded with tetramethylrhodamine-modified dextran (TMR-D), CdSe/ZnS quantum dots (QDs), or microperoxidase-11 (MP-11) are presented. In the presence of ATP as trigger, the microcapsules are dissociated through the formation of aptamer-ATP complexes, resulting in the release of the respective loads. Selective unlocking of the capsules is demonstrated, and CTP, GTP, or TTP do not unlock the pores. The ATP-triggered release of MP-11 from the microcapsules enables the MP-11-catalyzed oxidation of Amplex UltraRed by H2O2 to the fluorescent product resorufin. PMID:26266334

  7. Adenosine triphosphate-binding cassette member A3 gene mutation in children from one family from Saudi Arabia

    PubMed Central

    Mukhtar, Gawahir Mohamed Ahmed; Al Otaibi, Wadha Hilal; Al-Mobaireek, Khalid Fahad Abdullah; Al-Saleh, Suhail

    2016-01-01

    Mutation in ABCA3, which is adenosine triphosphate-binding cassette member A3, a member of protein transporter family for phospholipids into the lamellar bodies during synthesis of surfactant, can cause lung disease related to surfactant dysfunction with autosomal recessive pattern. We reported three cases from same family with ABCA3 mutation, their gene, clinical course, and outcomes mentioning that one patient had successful lung transplantation, one started the process of the lung transplantation while the third one died during infancy. We concluded that the patients with ABCA3 gene mutations are increasing in numbers may be due to the availability of the genetic testing and high index of suspicion among physicians. Lung transplantation is the definitive treatment, but availability is limited in our region. PMID:27512515

  8. [99mTc-MIBI myocardial tomography with intravenous infusion of adenosine triphosphate in the diagnosis of coronary artery disease].

    PubMed

    Kumano, S

    1996-02-01

    To evaluate its feasibility, safety and diagnostic accuracy, 99mTc-MIBI myocardial tomography with adenosine triphosphate (ATP) infusion (0.16 mg/kg/min for 5 min) was performed 100 consecutive patients using the stress/rest one day protocol. None of the patients required treatment with aminophylline during the study. The sensitivity and specificity for detecting patients with coronary artery disease were 97% and 71%, respectively. Those for detecting individual coronary lesion (> or = 75% stenosis) were 92% and 89%, respectively. The high hepatic uptake of 99mTc-MIBI causes artifactual perfusion defects in the inferior myocardial wall, particularly on ATP stress images. In order to reduce this artifactual phenomenon, the interval time between injection and stress imaging must be increased. PMID:8721103

  9. Effects of muscular exercise on erythrocyte adenosine triphosphate concentration in patients with insulin-dependent diabetes mellitus.

    PubMed

    Donatelli, M; Verga, S; Terrizzi, C; Russo, V; Bucalo, M L; Scarpinato, A; Cerasola, G

    1987-01-01

    Type I diabetes mellitus represents a metabolic disorder in which intracellular glycolytic pathway is inhibited by insulin deficiency, with the subsequent decreased availability of energetic substrates such as ATP. Some aspects of the energetic metabolism in response to an intensive demand (muscular exercise) were investigated, in a group of 10 ketotic diabetic patients, by measuring erythrocyte adenosine triphosphate (ATP) and blood glucose, free fatty acids (FFA) and lactate levels. In the diabetic subjects, in comparison with normal subjects, the decreased levels of erythrocyte ATP at rest did not increase after exercise, while the increased levels of FFA at rest did not diminish after exercise. The results show that the impaired erythrocyte glycolysis may produce reduced levels of ATP not only at rest, but also after exercise, when muscular contraction results in a manifold increase in cellular energy requirements. In addition, other metabolic systems providing energy for the exercising muscle, such as FFA utilization, are impaired in the ketotic diabetic patients.

  10. Imbalanced deoxyribonucleoside triphosphate pools and spontaneous mutation rates determined during dCMP deaminase-defective bacteriophage T4 infections.

    PubMed

    Sargent, R G; Mathews, C K

    1987-04-25

    DNA precursor imbalances are known to be mutagenic in both eukaryotic and prokaryotic systems. Almost certainly, such mutagenesis involves competition between correctly and incorrectly base-paired precursors at replication sites. Since other factors may be involved, it is important to identify specific mutations induced by specific pool imbalances. Using bacteriophage T4, we have developed a system for such analysis. We prepare double mutants of T4; one mutation affects a phage-coded enzyme of deoxyribonucleoside triphosphate (dNTP) metabolism, while the second is an rII mutation known to revert along a specific pathway. We determine dNTP pools in infection by such a mutant and measure both the spontaneous reversion rate of the rII mutation and, in some cases, the nucleotide sequence at the mutant site. In this paper we analyze mutations induced by a deficiency of T4-encoded deoxycytidylate deaminase. This causes pools of 5-hydroxymethyl-dCTP to expand some 30-fold, while dTTP pools contract. This specifically stimulates AT-to-GC reversion. One of the four AT-to-GC reverters tested, rIIUV215, increases its reversion rate at least 1000-fold under these pool-imbalance conditions, while the other mutants tested show increases of only about 10-fold. Therefore, factors other than dNTP competition, including local DNA sequence environment, must be invoked to fully explain mechanisms of dNTP pool imbalance-induced mutagenesis. We discuss models for this, and we also report unexpected effects of the dCMP deaminase deficiency upon pools of ribonucleoside triphosphates. PMID:3553179

  11. A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer.

    PubMed

    Zhou, Zi-Ming; Yu, Yong; Zhao, Yuan-Di

    2012-09-21

    We designed an aptasensor for the detection of adenosine triphosphate (ATP) based on chemiluminescence resonance energy transfer (CRET). An adenosine aptamer was cut into two pieces of ssDNA, which were attached to quantum dots (QDs) and horse radish peroxidase (HRP), respectively. They could reassemble into specific structures in the presence of ATP and then decrease the distance of HRP and QDs. ATP detection can be easily realized according to the fluorescent intensity of QDs, which is excited by CRET between luminol and QDs. Results show that the concentration of ATP is linear relation with the fluorescent intensity of the peak of QDs emission and the linear range for the linear equation is from 50 μM to 231 μM and the detection limit was 185 nM. When the concentration of ATP was 2 mM, the efficiency of CRET is 13.6%. Good specificity for ATP had been demonstrated compared to thymidine triphosphate (TTP), cytidine triphosphate (CTP) and guanosine triphosphate (GTP), when 1 mM of each was added, respectively. This method needs no external light source and can avoid autofluorescence and photobleaching, and ATP can be detected selectively, specifically, and sensitively in a low micromolar range, which means that the strategy reported here can be applicable to the detection of several other target molecules. PMID:22832507

  12. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    PubMed

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis. PMID:27354096

  13. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    PubMed

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis.

  14. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2

    PubMed Central

    Peng, Shuang; Gerasimenko, Julia V.; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Gerasimenko, Oleg V.

    2016-01-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377732

  15. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  16. Binding of Mn-deoxyribonucleoside triphosphates to the active site of the DNA polymerase of bacteriophage T7

    PubMed Central

    Akabayov, Barak; Richardson, Charles C.

    2013-01-01

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg2+, as an example, mediates binding of deoxyribonucleoside 5′-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg2+ to an active site because Mg2+ is spectroscopically silent and Mg2+ binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg2+ with Mn2+:Mn2+ that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn2+ is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn2+ that is free in solution and Mn2+ bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor. PMID:23761703

  17. Hydrolysis of Guanosine Triphosphate (GTP) by the Ras·GAP Protein Complex: Reaction Mechanism and Kinetic Scheme.

    PubMed

    Khrenova, Maria G; Grigorenko, Bella L; Kolomeisky, Anatoly B; Nemukhin, Alexander V

    2015-10-01

    Molecular mechanisms of the hydrolysis of guanosine triphosphate (GTP) to guanosine diphosphate (GDP) and inorganic phosphate (Pi) by the Ras·GAP protein complex are fully investigated by using modern modeling tools. The previously hypothesized stages of the cleavage of the phosphorus-oxygen bond in GTP and the formation of the imide form of catalytic Gln61 from Ras upon creation of Pi are confirmed by using the higher-level quantum-based calculations. The steps of the enzyme regeneration are modeled for the first time, providing a comprehensive description of the catalytic cycle. It is found that for the reaction Ras·GAP·GTP·H2O → Ras·GAP·GDP·Pi, the highest barriers correspond to the process of regeneration of the active site but not to the process of substrate cleavage. The specific shape of the energy profile is responsible for an interesting kinetic mechanism of the GTP hydrolysis. The analysis of the process using the first-passage approach and consideration of kinetic equations suggest that the overall reaction rate is a result of the balance between relatively fast transitions and low probability of states from which these transitions are taking place. Our theoretical predictions are in excellent agreement with available experimental observations on GTP hydrolysis rates.

  18. Adenosine triphosphate-competitive mTOR inhibitors: a new class of immunosuppressive agents that inhibit allograft rejection.

    PubMed

    Rosborough, B R; Raïch-Regué, D; Liu, Q; Venkataramanan, R; Turnquist, H R; Thomson, A W

    2014-09-01

    The mechanistic/mammalian target of rapamycin (mTOR) is inhibited clinically to suppress T cell function and prevent allograft rejection. mTOR is the kinase subunit of two mTOR-containing complexes, mTOR complex (mTORC) 1 and 2. Although mTORC1 is inhibited by the macrolide immunosuppressant rapamycin (RAPA), its efficacy may be limited by its inability to block mTORC1 completely and its limited effect on mTORC2. Adenosine triphosphate (ATP)-competitive mTOR inhibitors are an emerging class of mTOR inhibitors that compete with ATP at the mTOR active site and inhibit any mTOR-containing complex. Since this class of compounds has not been investigated for their immunosuppressive potential, our goal was to determine the influence of a prototypic ATP-competitive mTOR inhibitor on allograft survival. AZD8055 proved to be a potent suppressor of T cell proliferation. Moreover, a short, 10-day course of the agent successfully prolonged murine MHC-mismatched, vascularized heart transplant survival. This therapeutic effect was associated with increased graft-infiltrating regulatory T cells and reduced CD4(+) and CD8(+) T cell interferon-γ production. These studies establish for the first time, that ATP-competitive mTOR inhibition can prolong organ allograft survival and warrant further investigation of this next generation mTOR inhibitors.

  19. Controlled injection of a liquid into ultra-high vacuum: Submonolayers of adenosine triphosphate deposited on Cu(110)

    NASA Astrophysics Data System (ADS)

    Sobrado, J. M.; Martín-Gago, J. A.

    2016-10-01

    We have combined a fast-valve device with vacuum technology for implementing a new method that allows introducing liquid solutions in an ultra-high vacuum chamber in the form of very small droplets. This technical development allows the easy deposition of (bio) organic molecules or small nanoparticles on a surface in a fully in-situ process, avoiding possible contamination due to the handle of the material. Moreover, our experimental set-up is suitable for any liquid and does not require any voltage application as in electrospray. We can easily change the operating regime from liquid droplet injection to the formation of a highly dispersive jet of micro-droplets by exclusively adjusting external parameters. Due to the nature of the injection process, the operational protocol makes possible the deposition of delicate molecular species that cannot be thermally sublimated. In particular, we have used this system to study the deposition of adenosine triphosphate on Cu(110). The structure of the layer was analyzed by X-ray photoemission spectroscopy and the evolution of the signal from the deposited molecule with the number of injections indicates that the molecular coverage can be controlled with submonolayer precision.

  20. Spectroscopic and theoretical investigations of adenosine 5'-diphosphate and adenosine 5'-triphosphate dianions in the gas phase.

    PubMed

    Schinle, Florian; Crider, Paul E; Vonderach, Matthias; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M

    2013-05-14

    Doubly deprotonated adenosine 5'-diphosphate ([ADP-2H](2-)) and adenosine 5'-triphosphate ([ATP-2H](2-)) dianions were investigated using infrared multiple photon dissociation (IR-MPD) and photoelectron spectroscopy. Vibrational spectra acquired in the X-H stretch region (X = C, N, O) and augmented by isotope-labelling were compared to density functional theory (DFT) calculations at the B3LYP/TZVPP level. This suggests that in [ATP-2H](2-) the two phosphate groups adjacent to the ribose ring are preferentially deprotonated. Photoelectron spectra recorded at 4.66 and 6.42 eV photon energies revealed adiabatic detachment energies of 1.35 eV for [ADP-2H](2-) and 3.35 eV for [ATP-2H](2-). Repulsive Coulomb barriers were estimated at ~2.2 eV for [ADP-2H](2-) and ~1.9 eV for [ATP-2H](2-). Time-dependent DFT calculations have been used to simulate the photoelectron spectra. Photodetachment occurs primarily from lone pair orbitals on oxygen atoms within the phosphate chain. PMID:23258289

  1. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.

    PubMed

    Iino, Ryota; Noji, Hiroyuki

    2013-03-01

    F(o) F(1) -Adenosine triphosphate (ATP) synthase, a complex of two rotary motor proteins, reversibly converts the electrochemical potential of protons across the cell membrane into phosphate transfer potential of ATP to provide the energy currency of the cell. The water-soluble motor is F(1) -ATPase, which possesses ATP synthesis/hydrolysis catalytic sites. Isolated F(1) hydrolyses ATP to rotate the rotary shaft against the stator ring. The membrane-embedded motor is F(o) , which is driven by proton flow down the proton electrochemical potential. In the F(o) F(1) complex, the direction of mechanical rotation, the chemical reaction, and the proton transport are determined by the relative amplitudes between the Gibbs free energy of the ATP hydrolysis reaction and the electrochemical potential of protons across the membrane. Therefore, F(o) F(1) -ATP synthase is a highly efficient molecular device in which the chemical, mechanical, and potential energies are tightly and reversibly converted. In this critical review, we summarize our latest knowledge about the operation mechanism of this sophisticated nanomachine, revealed by its structure and dynamics.

  2. Activation of the inositol (1,4,5)-triphosphate calcium gate receptor is required for HIV-1 Gag release.

    PubMed

    Ehrlich, Lorna S; Medina, Gisselle N; Khan, Mahfuz B; Powell, Michael D; Mikoshiba, Katsuhiko; Carter, Carol A

    2010-07-01

    The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca(2+) to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca(2+) provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca(2+) stores. Following activation by binding of its ligand, IP3, it releases Ca(2+) from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca(2+) signaling as a potential novel cofactor in viral particle release.

  3. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T

    2013-09-16

    The BTBR T+ tf/J (BTBR) mouse strain is indifferent to exemplars of sweet, Polycose, umami, bitter, and calcium tastes, which share in common transduction by G protein-coupled receptors (GPCRs). To investigate the genetic basis for this taste dysfunction, we screened 610 BTBR×NZW/LacJ F2 hybrids, identified a potent QTL on chromosome 17, and isolated this in a congenic strain. Mice carrying the BTBR/BTBR haplotype in the 0.8-Mb (21-gene) congenic region were indifferent to sweet, Polycose, umami, bitter, and calcium tastes. To assess the contribution of a likely causative culprit, Itpr3, the inositol triphosphate receptor 3 gene, we produced and tested Itpr3 knockout mice. These were also indifferent to GPCR-mediated taste compounds. Sequencing the BTBR form of Itpr3 revealed a unique 12 bp deletion in Exon 23 (Chr 17: 27238069; Build 37). We conclude that a spontaneous mutation of Itpr3 in a progenitor of the BTBR strain produced a heretofore unrecognized dysfunction of GPCR-mediated taste transduction.

  4. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    PubMed

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  5. Effects of adenosine triphosphate (ATP) on somatosensory evoked potentials in humans anesthetized with isoflurane and nitrous oxide.

    PubMed

    Andoh, T; Ohtsuka, T; Okazaki, K; Okutsu, Y; Okumura, F

    1993-08-01

    In order to examine the usefulness of adenosine triphosphate (ATP) as an adjuvant to anesthesia for surgery requiring intraoperative somatosensory evoked potential (SSEP) monitoring, we have studied the effects of ATP on SSEPs in patients anesthetized with isoflurane and nitrous oxide (N2O). A control recording of SSEP was performed while anesthesia was maintained with 0.5% end-tidal concentration of isoflurane in 60% N2O. The recordings were repeated after an ATP infusion had been added to this basal anesthesia at the rates of 100 micrograms.kg bw-1.min-1 and 200 micrograms.kg bw-1.min-1. SSEP was also studied when end-tidal isoflurane concentration was increased to 1.5% after cessation of ATP infusion. An infusion of ATP combined with 0.5% isoflurane and 60% N2O effectively inhibited an increase in blood pressure during surgery. The amplitude of the cortical component of SSEP was lowered by 1.5% isoflurane, which also increased both cortical and spinal latencies as well as central conduction time (CCT). In contrast ATP infusions at both rates induced no significant changes in latencies, amplitude and CCT. The results indicate that ATP infusion combined with 0.5% isoflurane in 60% N2O can be a useful anesthetic technique for intraoperative SSEP monitoring because adequate anesthetic depth can be maintained by a low concentration of anesthetics without further suppression of SSEPs. PMID:8213025

  6. A case of paroxysmal atrial fibrillation with a non-pulmonary vein trigger identified by intravenous adenosine triphosphate infusion

    PubMed Central

    Esato, Masahiro; Nishina, Naoto; Kida, Yoshitomi; Chun, YeongHwa

    2015-01-01

    A 54-year-old woman was referred to our institution with frequent chest discomfort and was diagnosed with drug-refractory paroxysmal atrial fibrillation. Radiofrequency catheter ablation (RFCA) was performed using a three-dimensional electroanatomic mapping system. After completion of left and right circumferential pulmonary vein isolation (CPVI), an intravenous bolus of adenosine triphosphate (ATP, 20 mg) was administered to evaluate the electric reconduction between the pulmonary vein (PV) and left atrium (LA). Although no PV–LA reconduction was observed, atrial fibrillation (AF) was reproducibly induced. As the duration of AF was very short (<20 s), no further RFCA to the LA was performed. One month later, the patient presented with frequent atrial tachyarrhythmias (ATs), and RFCA was repeated. Although no electric reconduction was observed in the left- or right-sided PVs, incessant ATs and AF were induced after an intravenous bolus administration of ATP. The earliest atrial activation site initiating ATs was consistently identified from electrodes positioned in the superior vena cava (SVC), and both ATs and AF were no longer inducible after electric isolation of the SVC. ATP-induced PV/non-PV ectopy may be a marker of increased susceptibility to autonomic triggers of AF and could potentially predict recurrent AF after CPVI. PMID:26550091

  7. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells.

    PubMed

    Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku

    2016-01-01

    Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981

  8. Selective and sensitive turn-on detection of adenosine triphosphate and thrombin based on bifunctional fluorescent oligonucleotide probe.

    PubMed

    Li, Feng; Du, Zongfeng; Yang, Limin; Tang, Bo

    2013-03-15

    A bifunctional fluorescent oligonucleotide probe for small molecules and protein detection has been developed based on turn on fluorescence response via the target induced structure-switching of molecular beacon. The two loops of this molecular beacon are designed in such a manner that they consist of thrombin (Tmb) aptamer sequence and adenosine triphosphate (ATP) aptamer sequence, respectively, which are utilized to sense thrombin and ATP. The oligonucleotide forms double stem-loops in the absence of targets, yielding no fluorescence emission because of the FRET from the excited fluorophore to the proximal quencher. Upon addition of the target, the ATP or Tmb, its specific interaction with loop sequence of the hairpin structure induce the separation of reporter fluorophore and the fluorescence quencher of the molecular beacon, resulting in an increase of fluorescence response. Hence, the separate analysis of ATP and Tmb could be realized through only one designed molecular beacon. The detection limits were estimated to be 25 nM for ATP and 12 nM for Tmb, respectively. The results of this study should substantially broaden the perspective for future development of oligonucleotide probe for analysis of other analytes.

  9. Probing the Interaction at the Nano–Bio Interface Using Raman Spectroscopy: ZnO Nanoparticles and Adenosine Triphosphate Biomolecules

    PubMed Central

    2015-01-01

    With the advent of nanobiotechnology, there will be an increase in the interaction between engineered nanomaterials and biomolecules. Nanoconjugates with cells, organelles, and intracellular structures containing DNA, RNA, and proteins establish sequences of nano–bio boundaries that depend on several intricate complex biophysicochemical reactions. Given the complexity of these interactions, and their import in governing life at the molecular level, it is extremely important to begin to understand such nanoparticle–biomaterial association. Here we report a unique method of probing the kinematics between an energy biomolecule, adenosine triphosphate (ATP), and hydrothermally synthesized ZnO nanostructures using micro Raman spectroscopy, X-ray diffraction, and electron microscopy experiments. For the first time we have shown by Raman spectroscopy analysis that the ZnO nanostructures interact strongly with the nitrogen (N7) atom in the adenine ring of the ATP biomolecule. Raman spectroscopy also confirms the importance of nucleotide base NH2 group hydrogen bonding with water molecules and phosphate group ionization and their pH dependence. Calculation of molecular bond force constants from Raman spectroscopy reinforces our experimental data. These data present convincing evidence of pH-dependent interactions between ATP and zinc oxide nanomaterials. Significantly, Raman spectroscopy is able to probe such difficult to study and subtle nano–bio interactions and may be applied to elegantly elucidate the nano–bio interface more generally. PMID:25152799

  10. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells

    PubMed Central

    Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku

    2016-01-01

    Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981

  11. The Crystal Structure of the Leishmania major Deoxyuridine Triphosphate Nucleotidohydrolase in Complex with Nucleotide Analogues, dUMP, and Deoxyuridine*

    PubMed Central

    Hemsworth, Glyn R.; Moroz, Olga V.; Fogg, Mark J.; Scott, Benjamin; Bosch-Navarrete, Cristina; González-Pacanowska, Dolores; Wilson, Keith S.

    2011-01-01

    Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric β-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds. PMID:21454646

  12. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates.

    PubMed

    Lahouassa, Hichem; Daddacha, Waaqo; Hofmann, Henning; Ayinde, Diana; Logue, Eric C; Dragin, Loïc; Bloch, Nicolin; Maudet, Claire; Bertrand, Matthieu; Gramberg, Thomas; Pancino, Gianfranco; Priet, Stéphane; Canard, Bruno; Laguette, Nadine; Benkirane, Monsef; Transy, Catherine; Landau, Nathaniel R; Kim, Baek; Margottin-Goguet, Florence

    2012-03-01

    SAMHD1 restricts the infection of dendritic and other myeloid cells by human immunodeficiency virus type 1 (HIV-1), but in lentiviruses of the simian immunodeficiency virus of sooty mangabey (SIVsm)-HIV-2 lineage, SAMHD1 is counteracted by the virion-packaged accessory protein Vpx. Here we found that SAMHD1 restricted infection by hydrolyzing intracellular deoxynucleoside triphosphates (dNTPs), lowering their concentrations to below those required for the synthesis of the viral DNA by reverse transcriptase (RT). SAMHD1-mediated restriction was alleviated by the addition of exogenous deoxynucleosides. An HIV-1 with a mutant RT with low affinity for dNTPs was particularly sensitive to SAMHD1-mediated restriction. Vpx prevented the SAMHD1-mediated decrease in dNTP concentration and induced the degradation of human and rhesus macaque SAMHD1 but had no effect on mouse SAMHD1. Nucleotide-pool depletion could be a general mechanism for protecting cells from infectious agents that replicate through a DNA intermediate. PMID:22327569

  13. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique

    USGS Publications Warehouse

    Bushon, R.N.; Brady, A.M.; Likirdopulos, C.A.; Cireddu, J.V.

    2009-01-01

    Aims: The aim of this study was to examine a rapid method for detecting Escherichia coli and enterococci in recreational water. Methods and Results: Water samples were assayed for E. coli and enterococci by traditional and immunomagnetic separation/adenosine triphosphate (IMS/ATP) methods. Three sample treatments were evaluated for the IMS/ATP method: double filtration, single filtration, and direct analysis. Pearson's correlation analysis showed strong, significant, linear relations between IMS/ATP and traditional methods for all sample treatments; strongest linear correlations were with the direct analysis (r = 0.62 and 0.77 for E. coli and enterococci, respectively). Additionally, simple linear regression was used to estimate bacteria concentrations as a function of IMS/ATP results. The correct classification of water-quality criteria was 67% for E. coli and 80% for enterococci. Conclusions: The IMS/ATP method is a viable alternative to traditional methods for faecal-indicator bacteria. Significance and Impact of the Study: The IMS/ATP method addresses critical public health needs for the rapid detection of faecal-indicator contamination and has potential for satisfying US legislative mandates requiring methods to detect bathing water contamination in 2 h or less. Moreover, IMS/ATP equipment is considerably less costly and more portable than that for molecular methods, making the method suitable for field applications. ?? 2009 The Authors.

  14. Influence of Thromboxane A2 on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes

    PubMed Central

    Jeong, In Seok; Cho, Hwa Jin; Cho, Jeong Gwan; Kim, Sang Hyung; Na, Kook Joo

    2016-01-01

    Background and Objectives Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play an important role in myocardial protection. We examined the effects of thromboxane A2 on the regulation of KATP channel activity in single ventricular myocytes. Subjects and Methods Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at −60 mV holding potential during the perfusion of an ATP-free K-5 solution. Results In the excised inside-out patches, the thromboxane A2 analog, U46619, decreased the KATP channel activity in a dose-dependent manner; however, the thromboxane A2 receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced KATP channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced KATP channel activity. Conclusion Thromboxane A2 may inhibit KATP channel activity, and may have a harmful effect on ischemic myocardium. PMID:27482267

  15. Energetics (Adenosine 5′-Triphosphate) of Mycobacterium lepraemurium in Diffusion Chambers Incubated In Vitro and in Mice

    PubMed Central

    Dhople, Arvind M.; Hanks, John H.

    1973-01-01

    Adenosine 5′-triphosphate (ATP) measurements and the processing of samples have been refined to a point where the energetics and growth potential of microscopic samples of unwashed host-grown, host-dependent microbes can be investigated. Mycobacterium lepraemurium, the noncultivated agent of murine leprosy, was employed to examine three reports of the slow microscopic growth of this organism in the absence of host cells. A few million bacterial cells were enclosed in Rightsel- and Ito-type diffusion chambers, which were incubated in vitro and in the peritoneal cavities of mice. In the in vitro experiments, a complex medium containing bovine serum and mouse brain extracts, renewed three times a week, did not sustain the energetics of the bacilli. The microscopic counts declined to 72% and the ATP per culture to 9% of the original values. Very different results were obtained from chambers incubated in the peritoneal cavities of mice. The bacterial biomass increased 2.7-fold and the ATP per culture increased 2.5-fold. Because the ATP per cell was 93% of the original, this system is regarded as the first to permit the extracellular growth of a so-called “obligate intracellular microbe.” The results obtained with only 1 × 106 host-grown cells per assay demonstrate a significant biochemical tool for investigating the growth potential of host-grown microbes during the progression, regression, and therapy of disease. PMID:4594117

  16. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology.

    PubMed

    Hocek, Michal

    2014-11-01

    The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.

  17. Crystal structure of Escherichia coli cytidine triphosphate synthetase, a nucleotide-regulated glutamine amidotransferase/ATP-dependent amidoligase fusion protein and homologue of anticancer and antiparasitic drug targets.

    PubMed

    Endrizzi, James A; Kim, Hanseong; Anderson, Paul M; Baldwin, Enoch P

    2004-06-01

    Cytidine triphosphate synthetases (CTPSs) produce CTP from UTP and glutamine, and regulate intracellular CTP levels through interactions with the four ribonucleotide triphosphates. We solved the 2.3-A resolution crystal structure of Escherichia coli CTPS using Hg-MAD phasing. The structure reveals a nearly symmetric 222 tetramer, in which each bifunctional monomer contains a dethiobiotin synthetase-like amidoligase N-terminal domain and a Type 1 glutamine amidotransferase C-terminal domain. For each amidoligase active site, essential ATP- and UTP-binding surfaces are contributed by three monomers, suggesting that activity requires tetramer formation, and that a nucleotide-dependent dimer-tetramer equilibrium contributes to the observed positive cooperativity. A gated channel that spans 25 A between the glutamine hydrolysis and amidoligase active sites provides a path for ammonia diffusion. The channel is accessible to solvent at the base of a cleft adjoining the glutamine hydrolysis active site, providing an entry point for exogenous ammonia. Guanine nucleotide binding sites of structurally related GTPases superimpose on this cleft, providing insights into allosteric regulation by GTP. Mutations that confer nucleoside drug resistance and release CTP inhibition map to a pocket that neighbors the UTP-binding site and can accommodate a pyrimidine ring. Its location suggests that competitive feedback inhibition is affected via a distinct product/drug binding site that overlaps the substrate triphosphate binding site. Overall, the E. coli structure provides a framework for homology modeling of other CTPSs and structure-based design of anti-CTPS therapeutics. PMID:15157079

  18. Whether proton transition to the triphosphate tail of ATP occurs at protein kinase environment: A Car-Parrinello ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Yong; Zou, Jun; Xiang, Ming-Li; Xie, Guo-Bin; Shi, Bing; Wei, Yu-Quan

    Protonation state of the triphosphate tail of ATP (adenosine triphosphate) in protein environment is a fundamental issue, which has significant impact on the mechanism investigation of biochemical processes with ATP involved. Proton transition from surroundings (water molecule coordinating to magnesium, HW; amino group of Lys, HL) to the ATP tail in the catalytic core of protein kinase found recently disproved the commonly accepted deprotonation state of ATP tail. In this account, Car-Parrinello ab initio molecular dynamics (CP-AIMD) method has been employed to examine whether the proton transition occurs. To provide a comparison basis for the dynamics simulations, static quantum mechanics (QM), and combined quantum mechanics and molecular mechanics (QM/MM) calculations have also been carried out. Consistent results have been obtained that complete transition of hydrogen from the surroundings to the triphosphate tail of ATP is not allowed. The most dominant conformations correspond to the ones with HW bonding to O(W) and H-bonding to O(ATP), [O(W)-HW···O(ATP)], HL bonding to N(Lys) and H-bonding to O(ATP), [N(Lys)-HL···O(ATP)]. Metastable structures with one hydrogen atom bonding with two heavy atoms (hydrogen acceptors) were also located by our dynamic simulations. This bonding mode can satisfy the hungering for hydrogen of the two heavy atoms simultaneously.

  19. Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores.

    PubMed

    Lovett, Jennie L; Marchesini, Norma; Moreno, Silvia N J; Sibley, L David

    2002-07-19

    Calcium-mediated microneme secretion in Toxoplasma gondii is stimulated by contact with host cells, resulting in the discharge of adhesins that mediate attachment. The intracellular source of calcium and the signaling pathway(s) triggering release have not been characterized, prompting our search for mediators of calcium signaling and microneme secretion in T. gondii. We identified two stimuli of microneme secretion, ryanodine and caffeine, which enhanced release of calcium from parasite intracellular stores. Ethanol, a previously characterized trigger of microneme secretion, stimulated an increase in parasite inositol 1,4,5-triphosphate, implying that this second messenger may mediate intracellular calcium release. Consistent with this observation, xestospongin C, an inositol 1,4,5-triphosphate receptor antagonist, inhibited microneme secretion and blocked parasite attachment and invasion of host cells. Collectively, these results suggest that T. gondii possess an intracellular calcium release channel with properties of the inositol 1,4,5-triphosphate/ryanodine receptor superfamily. Intracellular calcium channels, previously studied almost exclusively in multicellular animals, appear to also be critical to the control of parasite calcium during the initial steps of host cell entry.

  20. Inositol 1,4,5-triphosphate receptor-binding protein released with inositol 1,4,5-triphosphate (IRBIT) associates with components of the mRNA 3' processing machinery in a phosphorylation-dependent manner and inhibits polyadenylation.

    PubMed

    Kiefer, Hélène; Mizutani, Akihiro; Iemura, Shun-Ichiro; Natsume, Tohru; Ando, Hideaki; Kuroda, Yukiko; Mikoshiba, Katsuhiko

    2009-04-17

    IRBIT is a recently identified protein that modulates the activities of both inositol 1,4,5-triphosphate receptor and pancreas-type Na(+)/HCO(3)(-) cotransporter 1, and the multisite phosphorylation of IRBIT is required for achieving this modulatory action. Here, we report the identification of the cleavage and polyadenylation specificity factor (CPSF), which is a multi-protein complex involved in 3' processing of mRNA precursors, as an additional binding partner for IRBIT. We found that IRBIT interacted with CPSF and was recruited to an exogenous polyadenylation signal-containing RNA. The main target for IRBIT in CPSF was Fip1 subunit, and the phosphorylation of the serine-rich region of IRBIT was required both for direct association with Fip1 in vitro and for redistribution of Fip1 into the cytoplasm of intact cells. Furthermore, tert-butylhydroquinone (tBHQ), an agent that induces oxidative stress, increased the phosphorylation level of IRBIT in vivo and in parallel enhanced the interaction between IRBIT and CPSF and promoted the cytoplasmic distribution of endogenous Fip1. In addition to CPSF, IRBIT interacted in vitro with poly(A) polymerase (PAP), which is the enzyme recruited by CPSF to elongate the poly(A) tail, and inhibited PAP activity in a phosphorylation-dependent manner. These findings raise the possibility that IRBIT modulates the polyadenylation state of specific mRNAs, both by controlling the cytoplasmic/nuclear partitioning of Fip1 and by inhibiting PAP activity, in response to a stimulus that alters its phosphorylation state.

  1. Molecular Basis for the Selective Inhibition of Respiratory Syncytial Virus RNA Polymerase by 2'-Fluoro-4'-Chloromethyl-Cytidine Triphosphate

    PubMed Central

    Deval, Jerome; Hong, Jin; Wang, Guangyi; Taylor, Josh; Smith, Lucas K.; Fung, Amy; Stevens, Sarah K.; Liu, Hong; Jin, Zhinan; Dyatkina, Natalia; Prhavc, Marija; Stoycheva, Antitsa D.; Serebryany, Vladimir; Liu, Jyanwei; Smith, David B.; Tam, Yuen; Zhang, Qingling; Moore, Martin L.; Fearns, Rachel; Chanda, Sushmita M.; Blatt, Lawrence M.; Symons, Julian A.; Beigelman, Leo

    2015-01-01

    Respiratory syncytial virus (RSV) causes severe lower respiratory tract infections, yet no vaccines or effective therapeutics are available. ALS-8176 is a first-in-class nucleoside analog prodrug effective in RSV-infected adult volunteers, and currently under evaluation in hospitalized infants. Here, we report the mechanism of inhibition and selectivity of ALS-8176 and its parent ALS-8112. ALS-8176 inhibited RSV replication in non-human primates, while ALS-8112 inhibited all strains of RSV in vitro and was specific for paramyxoviruses and rhabdoviruses. The antiviral effect of ALS-8112 was mediated by the intracellular formation of its 5'-triphosphate metabolite (ALS-8112-TP) inhibiting the viral RNA polymerase. ALS-8112 selected for resistance-associated mutations within the region of the L gene of RSV encoding the RNA polymerase. In biochemical assays, ALS-8112-TP was efficiently recognized by the recombinant RSV polymerase complex, causing chain termination of RNA synthesis. ALS-8112-TP did not inhibit polymerases from host or viruses unrelated to RSV such as hepatitis C virus (HCV), whereas structurally related molecules displayed dual RSV/HCV inhibition. The combination of molecular modeling and enzymatic analysis showed that both the 2'F and the 4'ClCH2 groups contributed to the selectivity of ALS-8112-TP. The lack of antiviral effect of ALS-8112-TP against HCV polymerase was caused by Asn291 that is well-conserved within positive-strand RNA viruses. This represents the first comparative study employing recombinant RSV and HCV polymerases to define the selectivity of clinically relevant nucleotide analogs. Understanding nucleotide selectivity towards distant viral RNA polymerases could not only be used to repurpose existing drugs against new viral infections, but also to design novel molecules. PMID:26098424

  2. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes.

  3. Depletion of cellular adenosine triphosphate and hepatocellular damage in rat after subchronic exposure to leachate from anthropogenic recycling site.

    PubMed

    Akintunde, J K; Oboh, G

    2015-11-01

    One of the major hazards arising from recycling sites is the generation of leachate containing mixed metal. This study evaluated the toxic effects of leachate obtained from Elewi Odo municipal auto-battery recycling site (EOMABRSL) on male liver functions using hepatic indices and biomarker of cellular adenosine triphosphate (ATP) in rat via the oral route. Concentrations of heavy metals analysis showed that lead, cadmium, nickel, chromium, manganese, and iron were 1.5-, 2-, 2.5-, 1.36-, 19.61-, and 8.89-folds, respectively, higher than acceptable limits set by regulatory authority World Health Organization. Copper, zinc, and cobalt were 5.9-, 300-, and 1.02-folds, respectively, lower than permissible limits. The EOMABRSL was administered at 20, 40, 60, 80, and 100% concentrations to adult male rats for 60 days. Following exposure, plasma and livers were collected for several biochemistry assays. Exposure of animals to EOMABRSL resulted in 27.51, 28.14, 63.93, 28.42, and 40.16% increase in aspartate aminotransferase activity, whereas it elevated alanine aminotransferase activity by 5.35, 22.33, 88.68, 183.02, and 193.08%, respectively, when compared with the control. Similarly, γ-glutamyl transferase activity increased by 111.22, 114.19, 122.96, 573.14, and 437.02%, respectively, when compared with the control. EOMABRSL administration significantly decreased catalase activity and reduced glutathione level and superoxide dismutase with concomitant increase in malondialdehyde and hydrogen peroxide levels. Also, significant (p < 0.05) decrease in lactate dehydrogenase (LDH) activity (marker of cellular ATP) was observed. Taken together, the hepatotoxicity of EOMABRSL could be due to the depletion of LDH and induction of oxidative damage, which may suggest possible health hazards in subjects with occupational or environmental exposure.

  4. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    PubMed

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-01

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  5. Use of Adenosine 5′-Triphosphate as an Indicator of the Microbiota Biomass in Rumen Contents

    PubMed Central

    Forsberg, C. W.; Lam, K.

    1977-01-01

    A number of techniques were tested for their efficiency in extracting adenosine 5′-triphosphate (ATP) from strained rumen fluid (SRF). Extraction with 0.6 N H2SO4, using a modification of the procedure described by Lee et al. (1971), was the most efficient and was better suited for extracting particulate samples. Neutralized extracts could not be stored frozen before assaying for ATP because large losses were incurred. The inclusion of internal standards was necessary to correct for incomplete recovery of ATP. The ATP concentration in rumen contents from a cow receiving a ration of dried roughage (mainly alfalfa hay) ranged from 31 to 56 μg of ATP per g of contents. Approximately 75% of the ATP was associated with the particulate material. The ATP was primarily of microbial origin, since only traces of ATP were present in the feed and none was found in “cell-free” rumen fluid. Fractionation of the bacterial and protozoal populations in SRF resulted in the isolation of an enriched protozoal fraction with a 10-fold higher ATP concentration than that of the separated rumen bacteria. The ATP pool sizes of nine functionally important rumen bacteria during the exponential phase of growth ranged from 1.1 to 17.6 μg of ATP per mg of dry weight. This information indicates that using ATP as a measure of microbial biomass in rumen contents must be done with caution because of possible variations in the efficiency of extraction of ATP from rumen contents and differences in the concentration of ATP in rumen microbes. PMID:16345203

  6. Structural and functional insights into DR2231 protein, the MazG-like nucleoside triphosphate pyrophosphohydrolase from Deinococcus radiodurans.

    PubMed

    Gonçalves, Ana Maria D; de Sanctis, Daniele; McSweeney, Sean M

    2011-09-01

    Deinococcus radiodurans is among the very few bacterial species extremely resistant to ionizing radiation, UV light, oxidizing agents, and cycles of prolonged desiccation. The proteome of D. radiodurans reflects the evolutionary pressure exerted by chronic exposure to (nonradioactive) forms of DNA and protein damage. A clear example of this adaptation is the overrepresentation of protein families involved in the removal of non-canonical nucleoside triphosphates (NTPs) whose incorporation into nascent DNA would promote mutagenesis and DNA damage. The three-dimensional structure of the DR2231 protein has been solved at 1.80 Å resolution. This protein had been classified as an all-α-helical MazG-like protein. The present study confirms that it holds the basic structural module characteristic of the MazG superfamily; two helices form a rigid domain, and two helices form a mobile domain and connecting loops. Contrary to what is known of MazG proteins, DR2231 protein shows a functional affinity with dUTPases. Enzymatic and isothermal calorimetry assays have demonstrated high specificity toward dUTP but an inability to hydrolyze dTTP, a typical feature of dUTPases. Co-crystallization with the product of hydrolysis, dUMP, in the presence of magnesium or manganese cations, suggests similarities with the dUTP/dUDP hydrolysis mechanism reported for dimeric dUTPases. The genome of D. radiodurans encodes for all enzymes required for dTTP synthesis from dCMP, thus bypassing the need of a dUTPase. We postulate that DR2231 protein is not essential to D. radiodurans and rather performs "house-cleaning" functions within the framework of oxidative stress response. We further propose DR2231 protein as an evolutionary precursor of dimeric dUTPases.

  7. Enhanced hypoxic preconditioning by isoflurane: signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors

    PubMed Central

    Bickler, Philip E.; Fahlman, Christian S.

    2012-01-01

    Neurons preconditioned with non-injurious hypoxia or the anesthetic isoflurane express different genes but are equally protected against severe hypoxia/ischemia. We hypothesized that neuroprotection would be augmented when preconditioning with isoflurane and hypoxic preconditioning are combined. We also tested if preconditioning requires intracellular Ca2+ and the inositol triphosphate receptor, and if gene expression is similar in single agent and combined preconditioning. Hippocampal slice cultures prepared from 9 day-old rats were preconditioned with hypoxia (95% N2, 5% CO2 for 15 min, HPC), 1% isoflurane for 15 min (APC) or their combination (CPC) for 15 min. A day later cultures were deprived of O2 and glucose (OGD) to produce neuronal injury. Cell death was assessed 48 hr after OGD. mRNA encoding 119 signal transduction genes was quantified with cDNA micro arrays. Intracellular Ca2+ in CA1 region was measured with fura-2 during preconditioning. The cell-permeable Ca2+ buffer BAPTA-AM, the IP3 receptor antagonist Xestospongin C and RNA silencing were used to investigate preconditioning mechanisms. CPC decreased CA1, CA3 and dentate region death by 64–86% following OGD, more than HPC or APC alone (P<0.01). Gene expression following CPC was an amalgam of gene expression in HPC and APC, with simultaneous increases in growth/development and survival/apoptosis regulation genes. Intracellular Ca2+ chelation and RNA silencing of IP3 receptors prevented preconditioning neuroprotection and gene responses. We conclude that combined isoflurane-hypoxia preconditioning augments neuroprotection compared to single agents in immature rat hippocampal slice cultures. The mechanism involves genes for growth, development, apoptosis regulation and cell survival as well as IP3 receptors and intracellular Ca2+. PMID:20434434

  8. Analysis of the Endogenous Deoxynucleoside Triphosphate Pool in HIV-Positive and -Negative Individuals Receiving Tenofovir-Emtricitabine.

    PubMed

    Chen, Xinhui; Castillo-Mancilla, Jose R; Seifert, Sharon M; McAllister, Kevin B; Zheng, Jia-Hua; Bushman, Lane R; MaWhinney, Samantha; Anderson, Peter L

    2016-09-01

    Tenofovir (TFV) disoproxil fumarate (TDF) and emtricitabine (FTC), two nucleos(t)ide analogs (NA), are coformulated as an anti-HIV combination tablet for treatment and preexposure prophylaxis (PrEP). TDF/FTC may have effects on the deoxynucleoside triphosphate (dNTP) pool due to their similar structures and similar metabolic pathways. We carried out a comprehensive clinical study to characterize the effects of TDF/FTC on the endogenous dNTP pool, from baseline to 30 days of TDF/FTC therapy, in both treatment-naive HIV-positive and HIV-negative individuals. dATP, dCTP, dGTP, and TTP were quantified in peripheral blood mononuclear cells (PBMC) with a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology. Forty individuals (19 HIV-positive) were enrolled and underwent a baseline visit and then received TDF/FTC for at least 30 days. Longitudinal measurements were analyzed using mixed-model segmented linear regression analysis. The dNTPs were reduced by 14% to 37% relative to the baseline level within 3 days in both HIV-negative and HIV-positive individuals (P ≤ 0.003). These reductions persisted to various degrees at day 30. These findings indicate that dNTP pools are influenced by TDF/FTC therapy. This may alter cellular homeostasis and could increase the antiviral effect through a more favorable analog/dNTP ratio. Further work is needed to elucidate mechanisms, to evaluate the clinical significance of these findings, and to further probe differences between HIV-negative and HIV-positive individuals. (This study has been registered at ClinicalTrials.gov under identifier NCT01040091.). PMID:27353267

  9. Isoflurane Favorably Modulates Guanosine Triphosphate Cyclohydrolase-1 and Endothelial Nitric Oxide Synthase during Myocardial Ischemia and Reperfusion Injury in Rats

    PubMed Central

    Baotic, Ines; Weihrauch, Dorothee; Procknow, Jesse; Vasquez-Vivar, Jeanette; Ge, Zhi-Dong; Sudhakaran, Shaan; Warltier, David C.; Kersten, Judy R.

    2015-01-01

    Background We investigated the hypothesis that isoflurane modulates NO synthesis and protection against myocardial infarction through time-dependent changes in expression of key NO regulatory proteins, guanosine triphosphate cyclohydrolase (GTPCH) -1, the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin and endothelial nitric oxide synthase (eNOS). Methods Myocardial infarct size, NO production (ozone-mediated chemiluminescence), GTPCH-1 and eNOS expression (real-time reverse transcriptase polymerase chain reaction and western blotting), were measured in male Wistar rats with or without APC (1.0 minimum alveolar concentration isoflurane for 30 min) and in the presence or absence of an inhibitor of GTPCH-1, 2,4-diamino-6-hydroxypyrimidine. Results NO−2 production (158±16 and 150±13 pmol/mg protein at baseline in control and APC groups, respectively) was significantly (P<0.05) increased 1.5±0.1 and 1.4±0.1 fold by APC (n=4) at 60 and 90 min of reperfusion, concomitantly, with increased expression of GTPCH-1 (1.3±0.3 fold; n=5) and eNOS (1.3±0.2 fold; n=5). In contrast, total NO (NO−2 and NO−3) was decreased after reperfusion in control experiments. Myocardial infarct size was decreased [43±2% of the area at risk for infarction; n=6] by APC as compared to control experiments (57±1%; n=6). 2, 4-Diamino-6-hydroxypyrimidine decreased total NO production at baseline (221±25 and 175±31 pmol/mg protein at baseline in control and APC groups, respectively), abolished isoflurane-induced increases in NO at reperfusion, and prevented reductions of myocardial infarct size by APC (60±2%; n=6). Conclusions APC favorably modulated a NO biosynthetic pathway by upregulating GTPCH-1 and eNOS, and this action contributed to protection of myocardium against ischemia and reperfusion injury. PMID:26192027

  10. Inhibition of mast cell degranulation by a chimeric toxin containing a novel phosphatidylinositol-3,4,5-triphosphate phosphatase

    PubMed Central

    Shenker, Bruce J.; Boesze-Battaglia, Kathleen; Zekavat, Ali; Walker, Lisa; Besack, Dave; Ali, Hydar

    2010-01-01

    It is well established that many cell functions are controlled by the PI-3K signaling pathway and the signaling lipid, phosphatidylinositol-3,4,5-triphosphate (PIP3). This is particularly true for mast cells which play a key regulatory role in allergy and inflammation through activation via high-affinity IgE receptors (FcεRI ) leading to activation of signaling cascades and subsequent release of histamine and other pro-inflammatory mediators. A pivotal component of this cascade is the activation of PI-3K and a rise in intracellular levels of PIP3. In this study, we developed a novel chimeric toxin that selectively binds to mast cells and which functions as a PIP3 phosphatase. Specifically, the chimeric toxin was composed of the FcεRI binding region of IgE and the active subunit of the cytolethal distending toxin, CdtB, which we have recently demonstrated to function as a PIP3 phosphatase. We demonstrate that the chimeric toxin retains PIP3 phosphatase activity and selectively binds to mast cells. Moreover, the toxin is capable of altering intracellular levels of PIP3, block antigen-induced Akt phosphorylation and degranulation. These studies provide further evidence for the pivotal role of PIP3 in regulating mast cell activation and for this signaling lipid serving as a novel target for therapeutic intervention of mast cell- mediated disease. Moreover, these studies provide evidence for the utilization of CdtB as a novel therapeutic agent for targeting the PI-3K signaling pathway. PMID:20863570

  11. Oxygen increases ductus arteriosus smooth muscle cytosolic calcium via release of calcium from inositol triphosphate-sensitive stores.

    PubMed

    Keck, Maggie; Resnik, Ernesto; Linden, Bradley; Anderson, Franklin; Sukovich, David J; Herron, Jean; Cornfield, David N

    2005-05-01

    In utero, blood shunts away from the lungs via the ductus arteriosus (DA) and the foramen ovale. After birth, the DA closes concomitant with increased oxygen tension. The present experimental series tests the hypothesis that oxygen directly increases DA smooth muscle cell (SMC) cytosolic calcium ([Ca(2+)](i)) through inactivation of a K(+) channel, membrane depolarization, and entry of extracellular calcium. To test the hypothesis, DA SMC were isolated from late-gestation fetal lambs and grown to subconfluence in primary culture in low oxygen tension (25 Torr). DA SMC were loaded with the calcium-sensitive fluorophore fura-2 under low oxygen tension conditions and studied using microfluorimetry while oxygen tension was acutely increased (120 Torr). An acute increase in oxygen tension progressively increased DA SMC [Ca(2+)](i) by 11.7 +/- 1.4% over 40 min. The effect of acute normoxia on DA SMC [Ca(2+)](i) was mimicked by pharmacological blockade of the voltage-sensitive K(+) channel. Neither removal of extracellular calcium nor voltage-operated calcium channel blockade prevented the initial increase in DA SMC [Ca(2+)](i). Manganese quenching experiments demonstrated that acute normoxia initially decreases the rate of extracellular calcium entry. Pharmacological blockade of inositol triphosphate-sensitive, but not ryanodine-sensitive, intracellular calcium stores prevented the oxygen-induced increase in [Ca(2+)](i). Endothelin increased [Ca(2+)](i) in acutely normoxic, but not hypoxic, DA SMC. Thus acute normoxia 1) increases DA SMC [Ca(2+)](i) via release of calcium from intracellular calcium stores, and subsequent entry of extracellular calcium, and 2) potentiates the effect of contractile agonists. Prolonged patency of the DA may result from disordered intracellular calcium homeostasis.

  12. Enhanced hypoxic preconditioning by isoflurane: signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors.

    PubMed

    Bickler, Philip E; Fahlman, Christian S

    2010-06-22

    Neurons preconditioned with non-injurious hypoxia or the anesthetic isoflurane express different genes but are equally protected against severe hypoxia/ischemia. We hypothesized that neuroprotection would be augmented when preconditioning with isoflurane and hypoxic preconditioning are combined. We also tested if preconditioning requires intracellular Ca(2+) and the inositol triphosphate receptor, and if gene expression is similar in single agent and combined preconditioning. Hippocampal slice cultures prepared from 9 day old rats were preconditioned with hypoxia (95% N(2), 5% CO(2) for 15 min, HPC), 1% isoflurane for 15 min (APC) or their combination (CPC) for 15 min. A day later cultures were deprived of O(2) and glucose (OGD) to produce neuronal injury. Cell death was assessed 48 h after OGD. mRNA encoding 119 signal transduction genes was quantified with cDNA micro arrays. Intracellular Ca(2+) in CA1 region was measured with fura-2 during preconditioning. The cell-permeable Ca(2+) buffer BAPTA-AM, the IP(3) receptor antagonist Xestospongin C and RNA silencing were used to investigate preconditioning mechanisms. CPC decreased CA1, CA3 and dentate region death by 64-86% following OGD, more than HPC or APC alone (P<0.01). Gene expression following CPC was an amalgam of gene expression in HPC and APC, with simultaneous increases in growth/development and survival/apoptosis regulation genes. Intracellular Ca(2+) chelation and RNA silencing of IP(3) receptors prevented preconditioning neuroprotection and gene responses. We conclude that combined isoflurane-hypoxia preconditioning augments neuroprotection compared to single agents in immature rat hippocampal slice cultures. The mechanism involves genes for growth, development, apoptosis regulation and cell survival as well as IP(3) receptors and intracellular Ca(2+).

  13. Inositol triphosphate participates in an oestradiol nongenomic signalling pathway involved in accelerated oviductal transport in cycling rats.

    PubMed

    Orihuela, Pedro A; Parada-Bustamante, Alexis; Zuñiga, Lidia M; Croxatto, Horacio B

    2006-03-01

    Oestradiol (E(2)) accelerates oviductal transport of oocytes in cycling rats through a nongenomic pathway that involves the cAMP-PKA signalling cascade. Here we examined the role of the inositol triphosphate (IP3) and mitogen-activated protein kinase (MAPK) signalling cascades in this nongenomic pathway. Oestrous rats were injected with E(2) s.c. and intrabursally (i.b) with the selective inhibitors of phospholipase C (PLC) ET-18-OCH(3) or MAPK PD98059. The number of eggs in the oviduct assessed 24 h later showed that ET-18-OCH(3) blocked E(2)-induced egg transport acceleration, whereas PD98059 had no effect. Other oestrous rats were treated with E(2) s.c. and 1, 3 or 6 h later oviducts were excised and the levels of IP3 and phosphorylated MAPK p44/42 (activated) were determined by radioreceptor assay and western blot, respectively. Oestradiol administration increased IP3 level at 1 and 6 h after treatment, whereas activated MAPK p44/42 level was unchanged. Finally, we explored whether cAMP-PKA and PLC-IP3 signalling cascades are coupled. Inhibition of adenylyl cyclase by i.b. injection of SQ 22536 blocked the increase of IP3 levels induced by E(2), while inhibition of PLC by ET-18-OCH(3) had no effect on E(2)-induced PKA activity. Furthermore, activation of adenylyl cyclase by Forskolin increased oviductal IP3 levels. Thus, activation of PLC-IP3 by E(2) requires previous stimulation of cAMP-PKA. We conclude that the nongenomic pathway utilised by E(2) to accelerate oviductal transport of oocytes in cycling rats involves successive activation of the cAMP-PKA and PLC-IP3 signalling cascades and does not require activation of MAPK. These findings clearly illustrate a non-genomic pathway triggered by E(2) that regulates a complex physiologic process accomplished by an entire organ.

  14. Lack of correlation between Legionella colonization and microbial population quantification using heterotrophic plate count and adenosine triphosphate bioluminescence measurement.

    PubMed

    Duda, Scott; Baron, Julianne L; Wagener, Marilyn M; Vidic, Radisav D; Stout, Janet E

    2015-07-01

    This investigation compared biological quantification of potable and non-potable (cooling) water samples using pour plate heterotrophic plate count (HPC) methods and adenosine triphosphate (ATP) concentration measurement using bioluminescence. The relationship between these measurements and the presence of Legionella spp. was also examined. HPC for potable and non-potable water were cultured on R2A and PCA, respectively. Results indicated a strong correlation between HPC and ATP measurements in potable water (R = 0.90, p < 0.001). In the make-up water and two cooling towers, the correlations between ATP and HPC were much weaker but statistically significant (make-up water: R = 0.37, p = 0.005; cooling tower 1: R = 0.52, p < 0.001; cooling tower 2: R = 0.54, p < 0.001). For potable and non-potable samples, HPC exhibited higher measurement variability than ATP. However, ATP measurements showed higher microbial concentrations than HPC measurements. Following chlorination of the cooling towers, ATP measurements indicated very low bacterial concentrations (<10 colony-forming units (CFU)/mL) despite high HPC concentrations (>1000 CFU/mL) which consisted primarily of non-tuberculous mycobacteria. HPC concentrations have been suggested to be predictive of Legionella presence, although this has not been proven. Our evaluation showed that HPC or ATP demonstrated a fair predictive capacity for Legionella positivity in potable water (HPC: receiver operating characteristic (ROC) = 0.70; ATP: ROC = 0.78; p = 0.003). However, HPC or ATP correctly classified sites as positive only 64 and 62% of the time, respectively. No correlation between HPC or ATP and Legionella colonization in non-potable water samples was found (HPC: ROC = 0.28; ATP: ROC = 0.44; p = 0.193).

  15. Qualitative and Quantitative Assessment of Adenosine Triphosphate Stress Whole-Heart Dynamic Myocardial Perfusion Imaging Using 256-Slice Computed Tomography

    PubMed Central

    Kurata, Akira; Kawaguchi, Naoto; Kido, Teruhito; Inoue, Katsuji; Suzuki, Jun; Ogimoto, Akiyoshi; Funada, Jun-ichi; Higaki, Jitsuo; Miyagawa, Masao; Vembar, Mani; Mochizuki, Teruhito

    2013-01-01

    Background The aim of this study was to investigate the correlation of the qualitative transmural extent of hypoperfusion areas (HPA) using stress dynamic whole-heart computed tomography perfusion (CTP) imaging by 256-slice CT with CTP-derived myocardial blood flow (MBF) for the estimation of the severity of coronary artery stenosis. Methods and Results Eleven patients underwent adenosine triphosphate (0.16 mg/kg/min, 5 min) stress dynamic CTP by 256-slice CT (coverage: 8 cm, 0.27 s/rotation), and 9 of the 11 patients underwent coronary angiography (CAG). Stress dynamic CTP (whole–heart datasets over 30 consecutive heart beats in systole without spatial and temporal gaps) was acquired with prospective ECG gating (effective radiation dose: 10.4 mSv). The extent of HPAs was visually graded using a 3-point score (normal, subendocardial, transmural). MBF (ml/100g/min) was measured by deconvolution. Differences in MBF (mean ± standard error) according to HPA and CAG results were evaluated. In 27 regions (3 major coronary territories in 9 patients), 11 coronary stenoses (> 50% reduction in diameter) were observed. In 353 myocardial segments, HPA was significantly related to MBF (P < 0.05; normal 295 ± 94; subendocardial 186 ± 67; and transmural 80 ± 53). Coronary territory analysis revealed a significant relationship between coronary stenosis severity and MBF (P < 0.05; non-significant stenosis [< 50%], 284 ± 97; moderate stenosis [50–70%], 184 ± 74; and severe stenosis [> 70%], 119 ± 69). Conclusion The qualitative transmural extent of HPA using stress whole-heart dynamic CTP imaging by 256-slice CT exhibits a good correlation with quantitative CTP-derived MBF and may aid in assessing the hemodynamic significance of coronary artery disease. PMID:24376774

  16. Photoaffinity labeling of myosin subfragment-one-with 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate

    SciTech Connect

    Mahmood, R.

    1985-01-01

    The photoaffinity analogue 3'(2')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (Bz/sub 2/ATP) contains the photoreactive benzophenone group esterified at the 2' or 3' hydroxyl groups of ribose. MgBz/sub 2/ADP has a single binding site on skeletal myosin chymotryptic subfragment-one (SF/sub 1/) with a binding constant of 3.2 x 10/sup 5/ M/sup -1/. Bz/sub 2/ATP is also a substrate for the ATPase activity of SF/sub 1/ in the presence of different cations. The irradiation of SF/sub 1/ with (/sup 3/H)Bz/sub 2/ATP photoinactivates the ATPase activity with concomitant incorporation of the analogue into the enzyme. Polyacrylamide gel electrophoresis of photolabeled SF/sub 1/ after milk trypsin digestion shows that all three tryptic peptides, 25 K, 50K, and 20 K, and both light chains are labeled. The presence of ATP during irradiation reduces labeling of the 50 K peptide only indicating that the other peptides are non-specifically labeled. To reduce the non-specific labeling (/sup 3/H)Bz/sub 2/ATP is trapped on SF/sub 1/ by cross-linking the two reactive thiols, SH/sub 1/ and SH/sub 2/, by N,N'-p-phenylene dimaleimide or Co(II)/Co(III) phenanthroline complexes. The Co(II)/Co(III) phenanthroline modified (/sup 14/C)Bz/sub 2/ATP-SF/sub 1/, after proteolytic digestion, yields five labeled peptides which were purified by gel filtration and high performance liquid chromatography.

  17. Depletion of cellular adenosine triphosphate and hepatocellular damage in rat after subchronic exposure to leachate from anthropogenic recycling site.

    PubMed

    Akintunde, J K; Oboh, G

    2015-11-01

    One of the major hazards arising from recycling sites is the generation of leachate containing mixed metal. This study evaluated the toxic effects of leachate obtained from Elewi Odo municipal auto-battery recycling site (EOMABRSL) on male liver functions using hepatic indices and biomarker of cellular adenosine triphosphate (ATP) in rat via the oral route. Concentrations of heavy metals analysis showed that lead, cadmium, nickel, chromium, manganese, and iron were 1.5-, 2-, 2.5-, 1.36-, 19.61-, and 8.89-folds, respectively, higher than acceptable limits set by regulatory authority World Health Organization. Copper, zinc, and cobalt were 5.9-, 300-, and 1.02-folds, respectively, lower than permissible limits. The EOMABRSL was administered at 20, 40, 60, 80, and 100% concentrations to adult male rats for 60 days. Following exposure, plasma and livers were collected for several biochemistry assays. Exposure of animals to EOMABRSL resulted in 27.51, 28.14, 63.93, 28.42, and 40.16% increase in aspartate aminotransferase activity, whereas it elevated alanine aminotransferase activity by 5.35, 22.33, 88.68, 183.02, and 193.08%, respectively, when compared with the control. Similarly, γ-glutamyl transferase activity increased by 111.22, 114.19, 122.96, 573.14, and 437.02%, respectively, when compared with the control. EOMABRSL administration significantly decreased catalase activity and reduced glutathione level and superoxide dismutase with concomitant increase in malondialdehyde and hydrogen peroxide levels. Also, significant (p < 0.05) decrease in lactate dehydrogenase (LDH) activity (marker of cellular ATP) was observed. Taken together, the hepatotoxicity of EOMABRSL could be due to the depletion of LDH and induction of oxidative damage, which may suggest possible health hazards in subjects with occupational or environmental exposure. PMID:25645823

  18. Lack of correlation between Legionella colonization and microbial population quantification using heterotrophic plate count and adenosine triphosphate bioluminescence measurement.

    PubMed

    Duda, Scott; Baron, Julianne L; Wagener, Marilyn M; Vidic, Radisav D; Stout, Janet E

    2015-07-01

    This investigation compared biological quantification of potable and non-potable (cooling) water samples using pour plate heterotrophic plate count (HPC) methods and adenosine triphosphate (ATP) concentration measurement using bioluminescence. The relationship between these measurements and the presence of Legionella spp. was also examined. HPC for potable and non-potable water were cultured on R2A and PCA, respectively. Results indicated a strong correlation between HPC and ATP measurements in potable water (R = 0.90, p < 0.001). In the make-up water and two cooling towers, the correlations between ATP and HPC were much weaker but statistically significant (make-up water: R = 0.37, p = 0.005; cooling tower 1: R = 0.52, p < 0.001; cooling tower 2: R = 0.54, p < 0.001). For potable and non-potable samples, HPC exhibited higher measurement variability than ATP. However, ATP measurements showed higher microbial concentrations than HPC measurements. Following chlorination of the cooling towers, ATP measurements indicated very low bacterial concentrations (<10 colony-forming units (CFU)/mL) despite high HPC concentrations (>1000 CFU/mL) which consisted primarily of non-tuberculous mycobacteria. HPC concentrations have been suggested to be predictive of Legionella presence, although this has not been proven. Our evaluation showed that HPC or ATP demonstrated a fair predictive capacity for Legionella positivity in potable water (HPC: receiver operating characteristic (ROC) = 0.70; ATP: ROC = 0.78; p = 0.003). However, HPC or ATP correctly classified sites as positive only 64 and 62% of the time, respectively. No correlation between HPC or ATP and Legionella colonization in non-potable water samples was found (HPC: ROC = 0.28; ATP: ROC = 0.44; p = 0.193). PMID:26038316

  19. Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters.

    PubMed

    Mueller, Sherry A; Anderson, James E; Kim, Byung R; Ball, James C

    2009-04-01

    Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p < 0.001); (2) Petrifilm counts were significantly lower than nutrient agar or R2A (p = 0.02 and p < 0.001, respectively), but not statistically different from TGE, PCA, and dipslides (p = 0.55, p = 0.69, and p = 0.91, respectively); (3) the dipslide method yielded bacteria counts 1 to 3 log units lower than nutrient agar and R2A (p < 0.001), but was not significantly different from Petrifilm (p = 0.91), PCA (p = 1.00) or TGE (p = 0.07); (4) the differences between dipslides and the other methods became greater with a 6-day incubation time; and (5) the correlation between ATP readings and plate counts varied from system to system, was poor

  20. Oral adenosine-5’-triphosphate (ATP) administration increases blood flow following exercise in animals and humans

    PubMed Central

    2014-01-01

    Introduction Extracellular adenosine triphosphate (ATP) stimulates vasodilation by binding to endothelial ATP-selective P2Y2 receptors; a phenomenon, which is posited to be accelerated during exercise. Herein, we used a rat model to examine how different dosages of acute oral ATP administration affected the femoral blood flow response prior to, during, and after an exercise bout. In addition, we performed a single dose chronic administration pilot study in resistance trained athletes. Methods Animal study: Male Wistar rats were gavage-fed the body surface area, species adjusted human equivalent dose (HED) of either 100 mg (n=4), 400 mg (n=4), 1,000 mg (n=5) or 1,600 mg (n=5) of oral ATP as a disodium salt (Peak ATP®, TSI, Missoula, MT). Rats that were not gavage-fed were used as controls (CTL, n=5). Blood flow was monitored continuously: a) 60 min prior to, b) during and c) 90 min following an electrically-evoked leg-kicking exercise. Human Study: In a pilot study, 12 college-aged resistance-trained subjects were given 400 mg of ATP (Peak ATP®, TSI, Missoula, MT) daily for 12 weeks, and prior to an acute arm exercise bout at weeks 1, 4, 8, and 12. Ultrasonography-determined volumetric blood flow and vessel dilation in the brachial artery was measured at rest, at rest 30 minutes after supplementation, and then at 0, 3, and 6 minutes after the exercise. Results Animal Study: Rats fed 1,000 mg HED demonstrated significantly greater recovery blood flow (p < 0.01) and total blood flow AUC values (p < 0.05) compared to CTL rats. Specifically, blood flow was elevated in rats fed 1,000 mg HED versus CTL rats at 20 to 90 min post exercise when examining 10-min blood flow intervals (p < 0.05). When examining within-group differences relative to baseline values, rats fed the 1,000 mg and 1,600 mg HED exhibited the most robust increases in blood flow during exercise and into the recovery period. Human study: At weeks 1, 8, and 12, ATP supplementation significantly increased

  1. On the use of X-ray absorption spectroscopy to elucidate the structure of lutetium adenosine mono- and triphosphate complexes.

    PubMed

    Mostapha, S; Berthon, C; Fontaine-Vive, F; Gaysinski, M; Guérin, L; Guillaumont, D; Massi, L; Monfardini, I; Solari, P L; Thomas, O P; Charbonnel, M C; Den Auwer, C

    2014-02-01

    Although the physiological impact of the actinide elements as nuclear toxicants has been widely investigated for half a century, a description of their interactions with biological molecules remains limited. It is however of primary importance to better assess the determinants of actinide speciation in cells and more generally in living organisms to unravel the molecular processes underlying actinide transport and deposition in tissues. The biological pathways of this family of elements in case of accidental contamination or chronic natural exposure (in the case of uranium rich soils for instance) are therefore a crucial issue of public health and of societal impact. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, phosphate derivatives are considered as probable targets of these cations. Among them, nucleotides and in particular adenosine mono- (AMP) and triphosphate (ATP) nucleotides occur in more chemical reactions than any other compounds on the earth's surface, except water, and are therefore critical target molecules. In the present study, we are interested in trans-plutonium actinide elements, in particular americium and curium that are more rarely considered in environmental and bioaccumulation studies than early actinides like uranium, neptunium and plutonium. A first step in this strategy is to work with chemical analogues like lanthanides that are not radioactive and therefore allow extended physical chemical characterization to be conducted that are difficult to perform with radioactive materials. We describe herein the interaction of lutetium(III) with adenosine AMP and ATP. With AMP and ATP, insoluble amorphous compounds have been obtained with molar ratios of 1:2 and 1:1, respectively. With an excess of ATP, with 1:2 molar ratio, a soluble complex has been obtained. A combination of spectroscopic techniques (IR, NMR, ESI-MS, EXAFS) together with quantum

  2. Biochemical Evaluation of the Inhibition Properties of Favipiravir and 2'-C-Methyl-Cytidine Triphosphates against Human and Mouse Norovirus RNA Polymerases.

    PubMed

    Jin, Zhinan; Tucker, Kathryn; Lin, Xiaoyan; Kao, C Cheng; Shaw, Ken; Tan, Hua; Symons, Julian; Behera, Ishani; Rajwanshi, Vivek K; Dyatkina, Natalia; Wang, Guangyi; Beigelman, Leo; Deval, Jerome

    2015-12-01

    Norovirus (NoV) is a positive-sense single-stranded RNA virus that causes acute gastroenteritis and is responsible for 200,000 deaths per year worldwide. No effective vaccine or treatment is available. Recent studies have shown that the nucleoside analogs favipiravir (T-705) and 2'-C-methyl-cytidine (2CM-C) inhibit NoV replication in vitro and in animal models, but their precise mechanism of action is unknown. We evaluated the molecular interactions between nucleoside triphosphates and NoV RNA-dependent RNA polymerase (NoVpol), the enzyme responsible for replication and transcription of NoV genomic RNA. We found that T-705 ribonucleoside triphosphate (RTP) and 2CM-C triphosphate (2CM-CTP) equally inhibited human and mouse NoVpol activities at concentrations resulting in 50% of maximum inhibition (IC50s) in the low micromolar range. 2CM-CTP inhibited the viral polymerases by competing directly with natural CTP during primer elongation, whereas T-705 RTP competed mostly with ATP and GTP at the initiation and elongation steps. Incorporation of 2CM-CTP into viral RNA blocked subsequent RNA synthesis, whereas T-705 RTP did not cause immediate chain termination of NoVpol. 2CM-CTP and T-705 RTP displayed low levels of enzyme selectivity, as they were both recognized as substrates by human mitochondrial RNA polymerase. The level of discrimination by the human enzyme was increased with a novel analog of T-705 RTP containing a 2'-C-methyl substitution. Collectively, our data suggest that 2CM-C inhibits replication of NoV by acting as a classic chain terminator, while T-705 may inhibit the virus by multiple mechanisms of action. Understanding the precise mechanism of action of anti-NoV compounds could provide a rational basis for optimizing their inhibition potencies and selectivities.

  3. Biochemical Evaluation of the Inhibition Properties of Favipiravir and 2′-C-Methyl-Cytidine Triphosphates against Human and Mouse Norovirus RNA Polymerases

    PubMed Central

    Tucker, Kathryn; Lin, Xiaoyan; Kao, C. Cheng; Shaw, Ken; Tan, Hua; Symons, Julian; Behera, Ishani; Rajwanshi, Vivek K.; Dyatkina, Natalia; Wang, Guangyi; Beigelman, Leo

    2015-01-01

    Norovirus (NoV) is a positive-sense single-stranded RNA virus that causes acute gastroenteritis and is responsible for 200,000 deaths per year worldwide. No effective vaccine or treatment is available. Recent studies have shown that the nucleoside analogs favipiravir (T-705) and 2′-C-methyl-cytidine (2CM-C) inhibit NoV replication in vitro and in animal models, but their precise mechanism of action is unknown. We evaluated the molecular interactions between nucleoside triphosphates and NoV RNA-dependent RNA polymerase (NoVpol), the enzyme responsible for replication and transcription of NoV genomic RNA. We found that T-705 ribonucleoside triphosphate (RTP) and 2CM-C triphosphate (2CM-CTP) equally inhibited human and mouse NoVpol activities at concentrations resulting in 50% of maximum inhibition (IC50s) in the low micromolar range. 2CM-CTP inhibited the viral polymerases by competing directly with natural CTP during primer elongation, whereas T-705 RTP competed mostly with ATP and GTP at the initiation and elongation steps. Incorporation of 2CM-CTP into viral RNA blocked subsequent RNA synthesis, whereas T-705 RTP did not cause immediate chain termination of NoVpol. 2CM-CTP and T-705 RTP displayed low levels of enzyme selectivity, as they were both recognized as substrates by human mitochondrial RNA polymerase. The level of discrimination by the human enzyme was increased with a novel analog of T-705 RTP containing a 2′-C-methyl substitution. Collectively, our data suggest that 2CM-C inhibits replication of NoV by acting as a classic chain terminator, while T-705 may inhibit the virus by multiple mechanisms of action. Understanding the precise mechanism of action of anti-NoV compounds could provide a rational basis for optimizing their inhibition potencies and selectivities. PMID:26392512

  4. Kinetics of inhibition of polyphenol oxidase mediated browning in apple juice by beta-cyclodextrin and L-ascorbate-2-triphosphate.

    PubMed

    Gacche, R N; Zore, G B; Ghole, V S

    2003-02-01

    Polyphenol Oxidase (PPO) mediated browning in raw fruits and vegetables is a major cause of quality deterioration in fruits and vegetables and derived food products. Here the rate of browning reaction in apple juice treated individually and in combination (1:1) of beta-Cyclodextrin (beta-CD) and L-Ascorbate-2-triphosphate (L-AATP) is described. It was observed that the rate of quinone formation can be minimized using a combination of beta-CD and L-AATP as compared to individual treatment with these agents. Kinetic experiments revealed that both compounds are non-competitive inhibitors of PPO.

  5. The UDP-glucose dehydrogenase of Escherichia coli K-12 displays substrate inhibition by NAD that is relieved by nucleotide triphosphates.

    PubMed

    Mainprize, Iain L; Bean, Jordan D; Bouwman, Catrien; Kimber, Matthew S; Whitfield, Chris

    2013-08-01

    UDP-glucose dehydrogenase (Ugd) generates UDP-glucuronic acid, an important precursor for the production of many hexuronic acid-containing bacterial surface glycostructures. In Escherichia coli K-12, Ugd is important for biosynthesis of the environmentally regulated exopolysaccharide known as colanic acid, whereas in other E. coli isolates, the same enzyme is required for production of the constitutive group 1 capsular polysaccharides, which act as virulence determinants. Recent studies have implicated tyrosine phosphorylation in the activation of Ugd from E. coli K-12, although it is not known if this is a feature shared by bacterial Ugd proteins. The activities of Ugd from E. coli K-12 and from the group 1 capsule prototype (serotype K30) were compared. Surprisingly, for both enzymes, site-directed Tyr → Phe mutants affecting the previously proposed phosphorylation site retained similar kinetic properties to the wild-type protein. Purified Ugd from E. coli K-12 had significant levels of NAD substrate inhibition, which could be alleviated by the addition of ATP and several other nucleotide triphosphates. Mutations in a previously identified UDP-glucuronic acid allosteric binding site decreased the binding affinity of the nucleotide triphosphate. Ugd from E. coli serotype K30 was not inhibited by NAD, but its activity still increased in the presence of ATP.

  6. Synthesis of 1-(β-D-Galactopyranosyl)Thymine-6'-O-Triphosphate - A Potential Probe to Generate Reactive Dialdehyde for DNA-Enzyme Cross-Linking.

    PubMed

    Kore, Anilkumar R; Yang, Bo; Srinivasan, Balasubramanian

    2015-01-01

    Concise, facile, and efficient synthesis of 1-(β-D-galactopyranosyl)thymine-6'-O-triphosphate, a potential probe that can generate reactive dialdehyde for DNA-enzyme cross-linking applications, was described starting from O,O'-bis(trimethylsilyl)thymine. Stannic chloride promoted glycosylation of 1,2,3,4,6-penta-O-acetyl-α-D-galactopyranose with O,O'-bis(trimethylsilyl)thymine, resulting in the formation of 1-(2,3,4,6-O-tetraacetyl-β-D-galactopyranosyl)thymine in 91% yield. Acetyl deprotection using methanolic ammonia afforded 1-(β-D-galactopyranosyl)thymine in 98% yield. The modified one-pot methodology was used to convert 1-(β-D-galactopyranosyl)thymine into 1-(β-D-galactopyranosyl)thymine-6'-O-triphosphate in 72% yield, which involves the formation of 1-(β-D-galactopyranosyl)thymine dichlorophosphoridate using POCl3 as the reagent at the monophosphorylation step followed by reaction with tributylammonium pyrophosphate and hydrolysis of resulting cyclic intermediate.

  7. Diadenosine triphosphate is a novel factor which in combination with cyclodextrins synergistically enhances the biosynthesis of trans-resveratrol in Vitis vinifera cv. Monastrell suspension cultured cells.

    PubMed

    Pietrowska-Borek, Małgorzata; Czekała, Lukasz; Belchí-Navarro, Sarai; Pedreño, María Angeles; Guranowski, Andrzej

    2014-11-01

    Dinucleoside polyphosphates are considered as signal molecules that may evoke response of plant cells to stress. Other compounds whose biological effects have been recognized are cyclodextrins. They are cyclic oligosaccharides that chemically resemble the alkyl-derived pectic oligosaccharides naturally released from the cell walls during fungal attack, and they act as true elicitors, since, when added to plant cell culture, they induce the expression of genes involved in some secondary metabolism pathways. Previously, we demonstrated that some dinucleoside polyphosphates triggered the biosynthesis of enzymes involved in the phenylpropanoid pathway in Arabidopsis thaliana. In Vitis vinifera suspension cultured cells, cyclodextrins were shown to enhance the accumulation of trans-resveratrol, one of the basic units of the stilbenes derived from the phenylpropanoid pathway. Here, we show that diadenosine triphosphate, applied alone or in combination with cyclodextrins to the grapevine suspension-cultured cells, increased the transcript level of genes encoding key phenylpropanoid-pathway enzymes as well as the trans-resveratrol production inside cells and its secretion into the extracellular medium. In the latter case, these two compounds acted synergistically. However, the accumulation of trans-resveratrol and its glucoside trans-piceid inside cells were stimulated much better by diadenosine triphosphate than by cyclodextrins.

  8. Inositol triphosphate and ryanodine receptors in the control of the cholinosensitivity of common snail neurons by the Na,K pump during habituation.

    PubMed

    Nistratova, V L; Pivovarov, A S

    2005-09-01

    The effects of the Na,K pump inhibitor ouabain on habituation of the common snail to tactile stimulation were identical to the ouabain-induced modification of the decrease in the cholinosensitivity of defensive behavior command neurons in the common snail in a cellular model of habituation. Studies addressed the effects of intracellularly delivered ligands of two types of Ca2+ depot receptors--inositol triphosphate (IP3) receptors and ryanodine receptors--on the action of ouabain in the cellular analog of habituation. The IP3 receptor antagonist heparin (0.1 mM), the IP3 receptor agonist inositol triphosphate (0.1 mM), and the ryanodine-dependent Ca2+ mobilization inhibitor dantrolene (0.1 mM) prevented ouabain from modifying the depression of the evoked acetylcholine current. The ryanodine agonist/antagonist ryanodine was used at two concentrations (0.1 and 1 mM) and neither had any effect on the action of ouabain. It is concluded that Ca2+ mobilized from intracellular Ca2+ depots via IP3 receptors is involved in the neuronal mechanism of regulation of the habitation of the common snail to tactile stimulation by the Na,K pump.

  9. Functional importance of inositol-1,4,5-triphosphate-induced intracellular Ca2+ mobilization in galanin-induced microglial migration.

    PubMed

    Ifuku, Masataka; Okuno, Yuko; Yamakawa, Yukiko; Izumi, Kyoko; Seifert, Stefanie; Kettenmann, Helmut; Noda, Mami

    2011-04-01

    Galanin (GAL) is a neuropeptide which is up-regulated following neuronal axotomy or inflammation. One subtype of GAL receptor (GalR2) is reported to be expressed in the brain's immune cell population, microglia. In the present study, we investigated the effect of GAL on microglial migration and compared the mechanism with that of bradykinin (BK). GAL significantly increased the migration of rat cultured microglia at 0.1 pM. The GAL-induced signal cascade was partly similar to that induced by BK. It was not dependent on G(i/o) protein but involved activation of protein kinase C, phosphoinositide 3-kinase and Ca(2+)-dependent K(+) channels. However, reverse-mode activation of the Na(+) /Ca(2+) -exchanger 1 was not involved in GAL-induced microglial migration, unlike BK-induced migration. Likewise, nominally-free extracellular Ca(2+) inhibited BK-induced migration but not GAL-induced migration. An inositol-1,4,5-triphosphate receptor antagonist significantly inhibited GAL-induced migration. GAL-induced Ca(2+) signaling did not induce nitric oxide synthase expression, but up-regulated class II major histocompatibility complex expression. These results indicate that activation of inositol-1,4,5-triphosphate receptor and increase in intracellular Ca(2+) are important for GAL-induced migration and immunoreactivity in microglia. The differences in down-stream signal transduction induced by GAL and BK suggest that GAL and BK may control distinct microglial functions under pathological conditions.

  10. Simple, fast and selective detection of adenosine triphosphate at physiological pH using unmodified gold nanoparticles as colorimetric probes and metal ions as cross-linkers.

    PubMed

    Deng, Dehua; Xia, Ning; Li, Sujuan; Xu, Chunying; Sun, Ting; Pang, Huan; Liu, Lin

    2012-11-06

    We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP) using unmodified gold nanoparticles (AuNPs) as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  11. Adenosine 5'-triphosphate and neuropeptide Y are co-transmitters in conjunction with noradrenaline in the human saphenous vein.

    PubMed

    Racchi, H; Irarrázabal, M J; Howard, M; Morán, S; Zalaquett, R; Huidobro-Toro, J P

    1999-03-01

    1. Human saphenous veins were used to assess the cooperative participation of adenosine 5-triphosphate (ATP), neuropeptide Y (NPY), and noradrenaline (NA) in the vasomotor responses elicited following electrical depolarization of the perivascular nerve terminals. Rings from recently dissected human biopsies were mounted to record isometric muscular contractions; the motor activity elicited in the circular muscle layer following electrical depolarization (2.5-20 Hz, 50 V, 0.5 msec) were recorded. 2. Incubation of the biopsies with either 100 nM tetrodotoxin (TTX) or 1 microM guanethidine abolished the vasomotor response elicited by electrical nerve depolarization. The independent application of either ATP or NA to vein rings induced concentration-dependent contractions. 3. Tissue incubation with 30 microM suramin or 10 nM prazosin produced 10 fold rightward displacements of the alpha,beta-methylene ATP and NA concentration-response curves respectively. NPY contracted a limited number of biopsies, the vasoconstriction elicited was completely blocked by 1 microM BIBP 3226. A 5 min incubation of the biopsies with 10-100 nM NPY synergized, in a concentration-dependent fashion, both the ATP and the ATP analogue-induced contractions. Likewise, tissue preincubation with 10 nM NPY potentiated the vasomotor responses evoked with 20-60 nM NA. 4. Neither suramin, BIBP 3226, nor prazosin was individually able to significantly modify the derived frequency-tension curves. In contrast, the co-application of 30 microM suramin and 10 nM prazosin or 30 microM suramin and 1 microM BIBP 3226, elicited a significant (P<0.01) downward displacement of the respective frequency-tension curves. 5. The simultaneous application of the three antagonists-30 microM suramin, 1 microM BIBP 3226 and 10 nM prazosin-caused a significantly greater displacement of the frequency-tension curve than that achieved in experiments using two of these antagonists. 6. Electrically-evoked vasomotor activity is

  12. Microbial group specific uptake kinetics of inorganic phosphate and adenosine-5'-triphosphate (ATP) in the north pacific subtropical gyre.

    PubMed

    Björkman, Karin; Duhamel, Solange; Karl, David M

    2012-01-01

    We investigated the concentration dependent uptake of inorganic phosphate (Pi) and adenosine-5'-triphosphate (ATP) in microbial populations in the North Pacific Subtropical Gyre (NPSG). We used radiotracers to measure substrate uptake into whole water communities, differentiated microbial size classes, and two flow sorted groups; Prochlorococcus (PRO) and non-pigmented bacteria (NPB). The Pi concentrations, uptake rates, and Pi pool turnover times (Tt) were (mean, ±SD); 54.9 ± 35.0 nmol L(-1) (n = 22), 4.8 ± 1.9 nmol L(-1) day(-1) (n = 19), and 14.7 ± 10.2 days (n = 19), respectively. Pi uptake into >2 μm cells was on average 12 ± 7% (n = 15) of the total uptake. The kinetic response to Pi (10-500 nmol L(-1)) was small, indicating that the microorganisms were close to their maximum uptake velocity (V(max)). V(max) averaged 8.0 ± 3.6 nmol L(-1) day(-1) (n = 19) in the >0.2 μm group, with half saturation constants (K(m)) of 40 ± 28 nmol L(-1) (n = 19). PRO had three times the cell specific Pi uptake rate of NPB, at ambient concentrations, but when adjusted to cells L(-1) the rates were similar, and these two groups were equally competitive for Pi. The Tt of γ-P-ATP in the >0.2 μm group were shorter than for the Pi pool (4.4 ± 1.0 days; n = 6), but this difference diminished in the larger size classes. The kinetic response to ATP was large in the >0.2 μm class with V(max) exceeding the rates at ambient concentrations (mean 62 ± 27 times; n = 6) with a mean V(max) for γ-P-ATP of 2.8 ± 1.0 nmol L(-1) day(-1), and K(m) at 11.5 ± 5.4 nmol L(-1) (n = 6). The NPB contribution to γ-P-ATP uptake was high (95 ± 3%, n = 4) at ambient concentrations but decreased to ∼50% at the highest ATP amendment. PRO had K(m) values 5-10 times greater than NPB. The above indicates that PRO and NPB were in close competition in terms of Pi

  13. Effects of adenosine triphosphate and alkaline phosphatase on solubilized 3,5,3'-triiodothyronine-binding activity.

    PubMed

    Faure, R; Dussault, J H

    1988-09-01

    The T3-binding activity of salt-extractable nuclear proteins from rat liver was affected when ATP (2-10 mM; pH 8.0) was added concomitantly with T3 in the incubation medium. Scatchard analysis revealed that the equilibrium association constant was significantly reduced [5 mM ATP, 0.3 +/- 0.1 (+/- SE) 10(10) M-1; control, 1.1 +/- 0.15 X 10(10) M-1], but the maximum binding capacity remained unchanged. Similar values of inhibition were obtained when unbound receptors were preincubated with ATP. ATP achieved its maximal effect after 45 min of incubation at 30 C. Dilution experiments indicated that the effect of ATP was reversible. The inhibiting potency of nucleoside triphosphates at pH 8.0 was in the following order: ATP = CTP greater than GTP, whereas UTP had no effect. Nonhydrolyzable analogs of ATP were also inhibitory, and HPLC fractionation showed an approximately 98% recovery of ATP after incubation with nuclear extract. The adenine ring with at least two phosphates was essential, since ADP was as potent as ATP, whereas AMP had no effect. When the pH of the incubation medium was lowered to 7.3, the T3-binding activity was inhibited by ATP in the 0.1-1 mM range. Magnesium (3 mM) greatly increases the ATP effect at pH 7.3, but not at pH 8. The T3-binding activity was also drastically reduced when calf intestine alkaline phosphatase was added concomitantly in the incubation medium. Eight micrograms per ml enzyme were necessary to inhibit the T3 specific binding by 50% (30 C for 45 min). Scatchard analysis showed that the receptor affinity for T3 was decreased (control, 1.1 +/- 0.02 x 10(10) M-1; alkaline phosphatase, 0.41 +/- 0.03 x 10(10) M-1; n = 6), whereas the maximum binding capacity remained unchanged. Incubations performed with increasing concentrations of beta-mercaphoethanol (2.5, 5, 10, and 25 mM) revealed that the phosphatase inhibitory effect is thiol dependent. The inhibition was maximal at 2.5 mM and progressively decreased at 5 and 10 mM. No

  14. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  15. Theoretical vibrational spectroscopy of intermediates and the reaction mechanism of the guanosine triphosphate hydrolysis by the protein complex Ras-GAP

    NASA Astrophysics Data System (ADS)

    Khrenova, Maria G.; Grigorenko, Bella L.; Nemukhin, Alexander V.

    2016-09-01

    The structures and vibrational spectra of the reacting species upon guanosine triphosphate (GTP) hydrolysis to guanosine diphosphate and inorganic phosphate (Pi) trapped inside the protein complex Ras-GAP were analyzed following the results of QM/MM simulations. The frequencies of the phosphate vibrations referring to the reactants and to Pi were compared to those observed in the experimental FTIR studies. A good correlation between the theoretical and experimental vibrational data provides a strong support to the reaction mechanism of GTP hydrolysis by the Ras-GAP enzyme system revealed by the recent QM/MM modeling. Evolution of the vibrational bands associated with the inorganic phosphate Pi during the elementary stages of GTP hydrolysis is predicted.

  16. Macroscopic and Fluorescent Discrimination of Adenosine Triphosphate via Selective Metallo-hydrogel Formation: A Visual, Practical, and Reliable Rehearsal toward Cellular Imaging.

    PubMed

    Fang, Weiwei; Liu, Cong; Yu, Fabiao; Liu, Yaoqi; Li, Zhenhua; Chen, Lingxin; Bao, Xiaoling; Tu, Tao

    2016-08-17

    With use of simple terpyridine zinc nitrate complexes, intriguing visual recognition of adenosine triphosphate (ATP) via selective coordination assembly leading to two-component metallo-hydrogel formation has been realized. With intensive fluorescent study and density functional theory calculations, it may be inferred, besides the selective metal-ligand interaction between Zn center and phosphate groups, the intramolecular π-stacking between the planar nucleobases of ATP and the metal-hybrid aromatic ring of pincer complex strongly affected the geometry of the coordinated adducts and possible molecular self-assembly process, which constitute a completely new sensing strategy in comparison with the conventional approaches. Furthermore, in light of extreme sensitivity of pincer zinc complexes toward ATP at micromolar scale (1.85 μM) and remarkable fluorescent enhancement (ca. 44-fold) upon ATP addition, the feasibility of the low cytotoxicity pincer zinc complexes in monitoring ATP in HeLa cells has been fulfilled with confocal fluorescence microscopy. PMID:27420773

  17. The effect of growth phase and medium on the use of the firefly adenosine triphosphate (ATP) assay for the quantitation of bacteria

    NASA Technical Reports Server (NTRS)

    Bush, V. N.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was used as a rapid method to determine the number of bacteria in a urine sample after nonbacterial components were removed. Accurate cellular ATP values, determined when bacteria were grown in an environment similar to that in which they were found, were necessary for the calculation of bacterial titer in urine. Cellular ATP values vary depending on the extraction method, the cell growth phase, and cell growth conditions. ATP per cell values of stationary E. coli grown in urine were two times greater than ATP per cell values of cells grown in trypticase soy broth. Glucose and urea were examined as possible components responsible for the cellular ATP variation.

  18. Prevalence of inositol 1, 4, 5-triphosphate receptor type 1 gene deletion, the mutation for spinocerebellar ataxia type 15, in Japan screened by gene dosage.

    PubMed

    Obayashi, Masato; Ishikawa, Kinya; Izumi, Yuishin; Takahashi, Makoto; Niimi, Yusuke; Sato, Nozomu; Onodera, Osamu; Kaji, Ryuji; Nishizawa, Masatoyo; Mizusawa, Hidehiro

    2012-03-01

    Spinocerebellar ataxia type 15 (SCA15) is an autosomal dominant neurodegenerative disorder clinically characterized by late-onset, slowly progressive pure cerebellar ataxia. This disease is caused by a heterozygous deletion of the inositol 1, 4, 5-triphosphate receptor type 1 (ITPR1) gene, suggesting that haploinsufficiency of the receptor function is the plausible disease mechanism. To clarify the prevalence of SCA15 in Japan, we designed four sets of probes and primers in different regions of ITPR1 and performed TaqMan PCR assay to search for gene deletions in 226 index SCA patients excluded for repeat expansion disorders. Deletion was found in only one patient, in whom gait ataxia started at 51 years of age and progressed to show cerebellar ataxia. This study demonstrates a simple but efficient method for screening ITPR1 deletion. We also conclude that ITPR1 gene deletions are much rare in Japan than in Europe, comprising only 0.3% in all SCAs in Japan.

  19. An efficient signal-on aptamer-based biosensor for adenosine triphosphate detection using graphene oxide both as an electrochemical and electrochemiluminescence signal indicator.

    PubMed

    Huang, Xiang; Li, Yuqin; Zhang, Xiaoshan; Zhang, Xin; Chen, Yaowen; Gao, Wenhua

    2015-09-01

    An efficient aptasensor was developed in which graphene oxide (GO) was employed as an indicator for both electrochemical impedance spectroscopy and electrochemiluminescence (ECL) signal generation. The aptasensor was fabricated by self-assembling the ECL probe of a thiolated adenosine triphosphate binding aptamer (ABA) tagged with a Ru complex (Ru(bpy)3(2+) derivatives) onto the surface of gold nanoparticle (AuNP) modified glassy carbon electrode (GCE). ABA immobilized onto AuNP modified GCE could strongly adsorb GO due to the strong π-π interaction between ABA and graphene oxide; ECL quenching of the Ru complex then takes place because of energy transfer and electron transfer, and a large increase of the electron transfer resistance (Ret) of the electrode. While in the presence of target adenosine triphosphate (ATP), the ABA prefers to form ABA-ATP bioaffinity complexes, which have weak affinity to graphene oxide and keep the graphene oxide away from the electrode surface, thus allowing the ECL signal enhancement, and in conjunction with the decrease of the Ret. Because of the high ECL quenching efficiency, unique structure, and electronic properties of graphene oxide, the Ret and ECL intensity versus the logarithm of ATP concentration was linear in the wide range from 10 pM to 10 nM with an ultra-low detection limit of 6.7 pM to 4.8 pM, respectively. The proposed aptasensor exhibited excellent reproducibility, stability, and outstanding selectivity, and ATP could be effectively distinguished from its analogues. More significantly, this efficient ECL aptasensor strategy based on GO acting both as an electrochemical and ECL signal indicator is general and can be easily extended to other biological binding events.

  20. Challenges and solutions in the bioanalysis of BMS-986094 and its metabolites including a highly polar, active nucleoside triphosphate in plasma and tissues using LC-MS/MS.

    PubMed

    Liu, Ang; Lute, John; Gu, Huidong; Wang, Bonnie; Trouba, Kevin J; Arnold, Mark E; Aubry, Anne-Françoise; Wang, Jian

    2015-09-01

    BMS-986094, a nucleotide polymerase inhibitor of the hepatitis C virus, was withdrawn from clinical trials because of a serious safety issue. To investigate a potential association between drug/metabolite exposure and toxicity in evaluations conducted after the termination of the BMS-986094 development program, it was essential to determine the levels of BMS-986094 and its major metabolites INX-08032, INX-08144 and INX-09054 in circulation and the active nucleoside triphosphate INX-09114 in target and non-target tissues. However, there were many challenges in the bioanalysis of these compounds. The chromatography challenge for the extremely polar nucleoside triphosphate was solved by applying mixed-mode chromatography which combined anion exchange and reversed-phase interactions. The LC conditions provided adequate retention and good peak shape of the analyte and showed good robustness. A strategy using simultaneous extraction but separate LC analysis of the prodrug BMS-986094 and its major circulating metabolites was used to overcome a carryover issue of the hydrophobic prodrug while still achieving good chromatography of the polar metabolites. In addition, the nucleotide analytes were not stable in the presence of endogenous enzymes. Low pH and low temperature were required for blood collection and plasma sample processing. However, the use of phosphatase inhibitor and immediate homogenization and extraction were critical for the quantitative analysis of the active triphosphate, INX-09114, in tissue samples. To alleviate the bioanalytical complexity caused by multiple analytes, different matrices, and various species, a fit-for-purpose approach to assay validation was implemented based on the needs of drug safety assessment in non-clinical (GLP or non-GLP) studies. The assay for INX-08032 was fully validated in plasma of toxicology species. The lower limit of quantification was 1.00ng/mL and the linear curve range was 1.00-500.00ng/mL using a weighted (1/x(2

  1. Challenges and solutions in the bioanalysis of BMS-986094 and its metabolites including a highly polar, active nucleoside triphosphate in plasma and tissues using LC-MS/MS.

    PubMed

    Liu, Ang; Lute, John; Gu, Huidong; Wang, Bonnie; Trouba, Kevin J; Arnold, Mark E; Aubry, Anne-Françoise; Wang, Jian

    2015-09-01

    BMS-986094, a nucleotide polymerase inhibitor of the hepatitis C virus, was withdrawn from clinical trials because of a serious safety issue. To investigate a potential association between drug/metabolite exposure and toxicity in evaluations conducted after the termination of the BMS-986094 development program, it was essential to determine the levels of BMS-986094 and its major metabolites INX-08032, INX-08144 and INX-09054 in circulation and the active nucleoside triphosphate INX-09114 in target and non-target tissues. However, there were many challenges in the bioanalysis of these compounds. The chromatography challenge for the extremely polar nucleoside triphosphate was solved by applying mixed-mode chromatography which combined anion exchange and reversed-phase interactions. The LC conditions provided adequate retention and good peak shape of the analyte and showed good robustness. A strategy using simultaneous extraction but separate LC analysis of the prodrug BMS-986094 and its major circulating metabolites was used to overcome a carryover issue of the hydrophobic prodrug while still achieving good chromatography of the polar metabolites. In addition, the nucleotide analytes were not stable in the presence of endogenous enzymes. Low pH and low temperature were required for blood collection and plasma sample processing. However, the use of phosphatase inhibitor and immediate homogenization and extraction were critical for the quantitative analysis of the active triphosphate, INX-09114, in tissue samples. To alleviate the bioanalytical complexity caused by multiple analytes, different matrices, and various species, a fit-for-purpose approach to assay validation was implemented based on the needs of drug safety assessment in non-clinical (GLP or non-GLP) studies. The assay for INX-08032 was fully validated in plasma of toxicology species. The lower limit of quantification was 1.00ng/mL and the linear curve range was 1.00-500.00ng/mL using a weighted (1/x(2

  2. Mercury promotes catecholamines which potentiate mercurial autoimmunity and vasodilation: implications for inositol 1,4,5-triphosphate 3-kinase C susceptibility in kawasaki syndrome.

    PubMed

    Yeter, Deniz; Deth, Richard; Kuo, Ho-Chang

    2013-09-01

    Previously, we reviewed biological evidence that mercury could induce autoimmunity and coronary arterial wall relaxation as observed in Kawasaki syndrome (KS) through its effects on calcium signaling, and that inositol 1,4,5-triphosphate 3-kinase C (ITPKC) susceptibility in KS would predispose patients to mercury by increasing Ca(2+) release. Hg(2+) sensitizes inositol 1,4,5-triphosphate (IP3) receptors at low doses, which release Ca(2+) from intracellular stores in the sarcoplasmic reticulum, resulting in delayed, repetitive calcium influx. ITPKC prevents IP3 from triggering IP3 receptors to release calcium by converting IP3 to inositol 1,3,4,5-tetrakisphosphate. Defective IP3 phosphorylation resulting from reduced genetic expressions of ITPKC in KS would promote IP3, which increases Ca(2+) release. Hg(2+) increases catecholamine levels through the inhibition of S-adenosylmethionine and subsequently catechol-O-methyltransferase (COMT), while a single nucleotide polymorphism of the COMT gene (rs769224) was recently found to be significantly associated with the development of coronary artery lesions in KS. Accumulation of norepinephrine or epinephrine would potentiate Hg(2+)-induced calcium influx by increasing IP3 production and increasing the permeability of cardiac sarcolemma to Ca(2+). Norepinephrine and epinephrine also promote the secretion of atrial natriuretic peptide, a potent vasodilator that suppresses the release of vasoconstrictors. Elevated catecholamine levels can induce hypertension and tachycardia, while increased arterial pressure and a rapid heart rate would promote arterial vasodilation and subsequent fatal thromboses, particularly in tandem. Genetic risk factors may explain why only a susceptible subset of children develops KS although mercury exposure from methylmercury in fish or thimerosal in pediatric vaccines is nearly ubiquitous. During the infantile acrodynia epidemic, only 1 in 500 children developed acrodynia whereas mercury exposure

  3. Mercury Promotes Catecholamines Which Potentiate Mercurial Autoimmunity and Vasodilation: Implications for Inositol 1,4,5-Triphosphate 3-Kinase C Susceptibility in Kawasaki Syndrome

    PubMed Central

    Yeter, Deniz; Deth, Richard

    2013-01-01

    Previously, we reviewed biological evidence that mercury could induce autoimmunity and coronary arterial wall relaxation as observed in Kawasaki syndrome (KS) through its effects on calcium signaling, and that inositol 1,4,5-triphosphate 3-kinase C (ITPKC) susceptibility in KS would predispose patients to mercury by increasing Ca2+ release. Hg2+ sensitizes inositol 1,4,5-triphosphate (IP3) receptors at low doses, which release Ca2+ from intracellular stores in the sarcoplasmic reticulum, resulting in delayed, repetitive calcium influx. ITPKC prevents IP3 from triggering IP3 receptors to release calcium by converting IP3 to inositol 1,3,4,5-tetrakisphosphate. Defective IP3 phosphorylation resulting from reduced genetic expressions of ITPKC in KS would promote IP3, which increases Ca2+ release. Hg2+ increases catecholamine levels through the inhibition of S-adenosylmethionine and subsequently catechol-O-methyltransferase (COMT), while a single nucleotide polymorphism of the COMT gene (rs769224) was recently found to be significantly associated with the development of coronary artery lesions in KS. Accumulation of norepinephrine or epinephrine would potentiate Hg2+-induced calcium influx by increasing IP3 production and increasing the permeability of cardiac sarcolemma to Ca2+. Norepinephrine and epinephrine also promote the secretion of atrial natriuretic peptide, a potent vasodilator that suppresses the release of vasoconstrictors. Elevated catecholamine levels can induce hypertension and tachycardia, while increased arterial pressure and a rapid heart rate would promote arterial vasodilation and subsequent fatal thromboses, particularly in tandem. Genetic risk factors may explain why only a susceptible subset of children develops KS although mercury exposure from methylmercury in fish or thimerosal in pediatric vaccines is nearly ubiquitous. During the infantile acrodynia epidemic, only 1 in 500 children developed acrodynia whereas mercury exposure was very common

  4. Interaction of Beta-Hydroxy-Beta-Methylbutyrate Free Acid and Adenosine Triphosphate on Muscle Mass, Strength, and Power in Resistance Trained Individuals.

    PubMed

    Lowery, Ryan P; Joy, Jordan M; Rathmacher, John A; Baier, Shawn M; Fuller, John C; Shelley, Mack C; Jäger, Ralf; Purpura, Martin; Wilson, Stephanie M C; Wilson, Jacob M

    2016-07-01

    Lowery, RP, Joy, JM, Rathmacher, JA, Baier, SM, Fuller, JC Jr, Shelley, MC II, Jäger, R, Purpura, M, Wilson, SMC, and Wilson, JM. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res 30(7): 1843-1854, 2016-Adenosine-5'-triphosphate (ATP) supplementation helps maintain performance under high fatiguing contractions and with greater fatigue recovery demands also increase. Current evidence suggests that the free acid form of β-hydroxy-β-methylbutyrate (HMB-FA) acts by speeding regenerative capacity of skeletal muscle after high-intensity or prolonged exercise. Therefore, we investigated the effects of 12 weeks of HMB-FA (3 g) and ATP (400 mg) administration on lean body mass (LBM), strength, and power in trained individuals. A 3-phase double-blind, placebo-, and diet-controlled study was conducted. Phases consisted of an 8-week periodized resistance training program (phase 1), followed by a 2-week overreaching cycle (phase 2), and a 2-week taper (phase 3). Lean body mass was increased by a combination of HMB-FA/ATP by 12.7% (p < 0.001). In a similar fashion, strength gains after training were increased in HMB-FA/ATP-supplemented subjects by 23.5% (p < 0.001). Vertical jump and Wingate power were increased in the HMB-FA/ATP-supplemented group compared with the placebo-supplemented group, and the 12-week increases were 21.5 and 23.7%, respectively. During the overreaching cycle, strength and power declined in the placebo group (4.3-5.7%), whereas supplementation with HMB-FA/ATP resulted in continued strength gains (1.3%). In conclusion, HMB-FA and ATP in combination with resistance exercise training enhanced LBM, power, and strength. In addition, HMB-FA plus ATP blunted the typical response to overreaching, resulting in a further increase in strength during that period. It seems that the combination of HMB-FA/ATP could benefit those who

  5. Intracellular adenosine 5'-triphosphate, adenosine 5'-diphosphate, and adenosine 5'-monophosphate detection by short-end injection capillary electrophoresis using methylcellulose as the effective electroosmostic flow suppressor.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Pasciu, Valeria; Madeddu, Manuela; Leoni, Giovanni Giuseppe; Naitana, Salvatore; Deiana, Luca; Carru, Ciriaco

    2008-07-01

    We present a new rapid CE method to measure adenine nucleotides adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in cells. The short-end injection mode allows a decrease in the analysis time by injecting samples at the outlet end of a silica capillary closest to the detection window, reducing the migration distance. Moreover, the use of methylcellulose (MC) as run buffer additive to suppress EOF permits to further reduce the migration times of analytes. Thus, when a capillary with an effective length of 10.2 cm was used with a 60 mmol/L sodium acetate buffer pH 3.80 in the presence of 0.01% of MC, the migration time of analytes were 1.35 min for ATP, 1.85 min for ADP, and 4.64 min for AMP. These conditions gave a good reproducibility for intra- and interassay (CV <4 and 8%, respectively) and all the procedure demonstrated an excellent analytical recovery (from 98.3 to 99 %). The method suitability was proved both on red blood cells and in spermatozoa. We compared our proposed method to a spectrophotometric assay, by measuring ATP levels in 40 spermatozoa samples. The obtained data were analyzed by the Passing and Bablok regression and Bland-Altman test. PMID:18551716

  6. The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5'-triphosphate towards influenza A virus polymerase.

    PubMed

    Jin, Zhinan; Smith, Lucas K; Rajwanshi, Vivek K; Kim, Baek; Deval, Jerome

    2013-01-01

    T-705 (Favipiravir) is a broad-spectrum antiviral molecule currently in late stage clinical development for the treatment of influenza virus infection. Although it is believed that T-705 potency is mediated by its ribofuranosyl triphosphate (T-705 RTP) metabolite that could be mutagenic, the exact molecular interaction with the polymerase of influenza A virus (IAVpol) has not been elucidated. Here, we developed a biochemical assay to measure the kinetics of nucleotide incorporation by IAVpol in the elongation mode. In this assay, T-705 RTP was recognized by IAVpol as an efficient substrate for incorporation to the RNA both as a guanosine and an adenosine analog. Compared to natural GTP and ATP, the discrimination of T-705 RTP was about 19- and 30-fold, respectively. Although the single incorporation of the ribonucleotide monophosphate form of T-705 did not efficiently block RNA synthesis, two consecutive incorporation events prevented further primer extension. In comparison, 3'-deoxy GTP caused immediate chain termination but was incorporated less efficiently by the enzyme, with a discrimination of 4,900-fold relative to natural GTP. Collectively, these results provide the first detailed biochemical characterization to evaluate the substrate efficiency and the inhibition potency of nucleotide analogs against influenza virus polymerase. The combination of ambiguous base-pairing with low discrimination of T-705 RTP provides a mechanistic basis for the in vitro mutagenic effect of T-705 towards influenza virus.

  7. Flow cytometry and adenosine tri-phosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems.

    PubMed

    Vital, Marius; Dignum, Marco; Magic-Knezev, Aleksandra; Ross, Petra; Rietveld, Luuk; Hammes, Frederik

    2012-10-01

    An ever-growing need exists for rapid, quantitative and meaningful methods to quantify and characterize the effect of different treatment steps on the microbiological processes and events that occur during drinking water treatment and distribution. Here we compared cultivation-independent flow cytometry (FCM) and adenosine tri-phosphate (ATP) analysis with conventional cultivation-based microbiological methods, on water samples from two full-scale treatment and distribution systems. The two systems consist of nearly identical treatment trains, but their raw water quality and pre-treatment differed significantly. All of the drinking water treatment processes affected the microbiological content of the water considerably, but once treated, the finished water remained remarkably stable throughout the distribution system. Both the FCM and ATP data were able to describe the microbiology of the systems accurately, providing meaningful process data when combined with other parameters such as dissolved organic carbon analysis. Importantly, the results highlighted a complimentary value of the two independent methods: while similar trends were mostly observed, variations in ATP-per-cell values between water samples were adequately explained by differences in the FCM fingerprints of the samples. This work demonstrates the value of alternative microbial methods for process/system control, optimization and routine monitoring of the general microbial quality of water during treatment and distribution. PMID:22763289

  8. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.

    PubMed

    Tzika, A Aria; Mintzopoulos, Dionyssios; Padfield, Katie; Wilhelmy, Julie; Mindrinos, Michael N; Yu, Hongue; Cao, Haihui; Zhang, Qunhao; Astrakas, Loukas G; Zhang, Jiangwen; Yu, Yong-Ming; Rahme, Laurence G; Tompkins, Ronald G

    2008-02-01

    Using a mouse model of burn trauma, we tested the hypothesis that severe burn trauma corresponding to 30% of total body surface area (TBSA) causes reduction in adenosine triphosphate (ATP) synthesis in distal skeletal muscle. We employed in vivo 31P nuclear magnetic resonance (NMR) in intact mice to assess the rate of ATP synthesis, and characterized the concomitant gene expression patterns in skeletal muscle in burned (30% TBSA) versus control mice. Our NMR results showed a significantly reduced rate of ATP synthesis and were complemented by genomic results showing downregulation of the ATP synthase mitochondrial F1 F0 complex and PGC-1beta gene expression. Our findings suggest that inflammation and muscle atrophy in burns are due to a reduced ATP synthesis rate that may be regulated upstream by PGC-1beta. These findings implicate mitochondrial dysfunction in distal skeletal muscle following burn injury. That PGC-1beta is a highly inducible factor in most tissues and responds to common calcium and cyclic adenosine monophosphate (cAMP) signaling pathways strongly suggests that it may be possible to develop drugs that can induce PGC-1beta.

  9. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs.

    PubMed

    Ye, Rui; Liu, Jun; Jia, Zhiying; Wang, Hongyang; Wang, YongAn; Sun, Wei; Wu, Xuan; Zhao, Zhifei; Niu, Baolong; Li, Xingqi; Dai, Guanghai; Li, Jianxiong

    2016-01-01

    BACKGROUND There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. MATERIAL AND METHODS Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen's cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. RESULTS ATP (0.1-10 µM) reduced the potassium current (IK+) in the majority of the recorded Hensen's cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 µM to 10 mM), which was reversibly blocked by 100 µM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. CONCLUSIONS Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL). PMID:27292522

  10. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  11. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen’s Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs

    PubMed Central

    Ye, Rui; Liu, Jun; Jia, Zhiying; Wang, Hongyang; Wang, YongAn; Sun, Wei; Wu, Xuan; Zhao, Zhifei; Niu, Baolong; Li, Xingqi; Dai, Guanghai; Li, Jianxiong

    2016-01-01

    Background There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. Material/Methods Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen’s cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. Results ATP (0.1–10 μM) reduced the potassium current (IK+) in the majority of the recorded Hensen’s cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 μM to 10 mM), which was reversibly blocked by 100 μM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. Conclusions Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL). PMID:27292522

  12. Coamplification in tumors of KRAS2, type 2 inositol 1,4,5 triphosphate receptor gene, and a novel human gene, KRAG

    SciTech Connect

    Heighway, J.; Betticher, D.C.; Altermatt, H.J.

    1996-07-01

    Analysis of a region of DNA, coamplified in tumors with KRAS2, resulted in the identification of the human homologue of the mouse KRAG gene. The gene was widely expressed in range of cell lines, tumors, and normal tissue and demonstrated a high degree of alternate splicing. A human KRAG cDNA sequence, with a structure similar to that encoded by the amplified gene in mouse Y1 adrenal carcinoma cells, was isolated by RT-PCR. The predicted amino acid similarity between the two sequences was 91%, and hydrophobicity plots suggested a structure closely resembling that of transmembrane 4 superfamily members. Identification of a PCR-based restriction fragment length polymorphism allele-specific splicing differences in tumors. Northern analysis of mRNA derived from a range of tissues suggested high level expression in muscle and confirmed alternate splicing. To facilitate the analysis of exon junctions, a YAC clone encoding the genomic sequence was identified. This allowed the localization of KRAG to human chromosome 12p11.2. Isolation of one end of this nonchimeric clone demonstrated a perfect match with a 247-bp sequence within the 3{prime} untranslated region of the type 2 1,4,5-inositol triphosphate receptor gene. Multiplex PCR confirmed the inclusion of both genes. Multiplex PCR confirmed the inclusion of both genes in the KRAS2 amplicon in human malignancy, suggesting that either may contribute to the malignant phenotypes. 35 refs., 6 figs., 1 tab.

  13. The role of adenosine triphosphate citrate lyase in the metabolism of acetyl coenzyme a and function of blood platelets in diabetes mellitus.

    PubMed

    Michno, Anna; Skibowska, Anna; Raszeja-Specht, Anna; Cwikowska, Justyna; Szutowicz, Andrzej

    2004-01-01

    Diabetes is known to increase blood platelet activity. Activities of pyruvate dehydrogenase (PDH), adenosine triphosphate (ATP)-citrate lyase (ATPCL), acetyl-coenzyme A (acetyl-CoA) content, malonyl dialdehyde (MDA), synthesis, and platelet aggregation in resting conditions and after activation with thrombin were measured in diabetic subjects and in age- and sex-matched healthy subjects. Activities of ATPCL and PDH, acetyl-CoA content, and thrombin-evoked MDA synthesis as well as platelet aggregation in diabetes were 31%, 51%, 62%, 35%, and 21%, respectively, higher than in healthy subjects. In addition, activation of diabetic platelets caused 2 times greater release of acetyl-CoA from their mitochondria than in controls. Both 1.0 mmol/L (-)hydroxycitrate and 0.1 mmol/L SB-204490 decreased acetyl-CoA content in platelet cytoplasm along with suppression of MDA synthesis and platelet aggregation. These inhibitory effects were about 2 times greater in diabetic than in control platelets. The data presented indicate that the ATPCL pathway is operative in human platelets and may be responsible for provision of about 50% of acetyl units from their mitochondrial to cytoplasmic compartment. Increased acetyl-CoA synthesis in diabetic platelets may be the cause of their excessive activity in the course of the disease. ATPCL may be a target for its specific inhibitors as factors decreasing platelet activity. PMID:14681844

  14. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx. PMID:27283700

  15. Activation of guanine-{beta}-D-arabinofuranoside and deoxyguanosine to triphosphates by a common pathway blocks T lymphoblasts at different checkpoints

    SciTech Connect

    Leanza, Luigi; Miazzi, Cristina; Ferraro, Paola; Reichard, Peter; Bianchi, Vera

    2010-12-10

    The deoxyguanosine (GdR) analog guanine-ss-D-arabinofuranoside (araG) has a specific toxicity for T lymphocytes. Also GdR is toxic for T lymphocytes, provided its degradation by purine nucleoside phosphorylase (PNP) is prevented, by genetic loss of PNP or by enzyme inhibitors. The toxicity of both nucleosides requires their phosphorylation to triphosphates, indicating involvement of DNA replication. In cultured cells we found by isotope-flow experiments with labeled araG a rapid accumulation and turnover of araG phosphates regulated by cytosolic and mitochondrial kinases and deoxynucleotidases. At equilibrium their partition between cytosol and mitochondria depended on the substrate saturation kinetics and cellular abundance of the kinases leading to higher araGTP concentrations in mitochondria. dGTP interfered with the allosteric regulation of ribonucleotide reduction, led to highly imbalanced dNTP pools with gradual inhibition of DNA synthesis and cell-cycle arrest at the G1-S boundary. AraGTP had no effect on ribonucleotide reduction. AraG was in minute amounts incorporated into nuclear DNA and stopped DNA synthesis arresting cells in S-phase. Both nucleosides eventually induced caspases and led to apoptosis. We used high, clinically relevant concentrations of araG, toxic for nuclear DNA synthesis. Our experiments do not exclude an effect on mitochondrial DNA at low araG concentrations when phosphorylation occurs mainly in mitochondria.

  16. Structural features of influenza A virus panhandle RNA enabling the activation of RIG-I independently of 5′-triphosphate

    PubMed Central

    Lee, Mi-Kyung; Kim, Hee-Eun; Park, Eun-Byeol; Lee, Janghyun; Kim, Ki-Hun; Lim, Kyungeun; Yum, Seoyun; Lee, Young-Hoon; Kang, Suk-Jo; Lee, Joon-Hwa; Choi, Byong-Seok

    2016-01-01

    Retinoic acid-inducible gene I (RIG-I) recognizes specific molecular patterns of viral RNAs for inducing type I interferon. The C-terminal domain (CTD) of RIG-I binds to double-stranded RNA (dsRNA) with the 5′-triphosphate (5′-PPP), which induces a conformational change in RIG-I to an active form. It has been suggested that RIG-I detects infection of influenza A virus by recognizing the 5′-triphosphorylated panhandle structure of the viral RNA genome. Influenza panhandle RNA has a unique structure with a sharp helical bending. In spite of extensive studies of how viral RNAs activate RIG-I, whether the structural elements of the influenza panhandle RNA confer the ability to activate RIG-I signaling has been poorly explored. Here, we investigated the dynamics of the influenza panhandle RNA in complex with RIG-I CTD using NMR spectroscopy and showed that the bending structure of the panhandle RNA negates the requirement of a 5′-PPP moiety for RIG-I activation. PMID:27288441

  17. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury.

    PubMed

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-10-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.

  18. The Ambiguous Base-Pairing and High Substrate Efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-Triphosphate towards Influenza A Virus Polymerase

    PubMed Central

    Jin, Zhinan; Smith, Lucas K.; Rajwanshi, Vivek K.; Kim, Baek; Deval, Jerome

    2013-01-01

    T-705 (Favipiravir) is a broad-spectrum antiviral molecule currently in late stage clinical development for the treatment of influenza virus infection. Although it is believed that T-705 potency is mediated by its ribofuranosyl triphosphate (T-705 RTP) metabolite that could be mutagenic, the exact molecular interaction with the polymerase of influenza A virus (IAVpol) has not been elucidated. Here, we developed a biochemical assay to measure the kinetics of nucleotide incorporation by IAVpol in the elongation mode. In this assay, T-705 RTP was recognized by IAVpol as an efficient substrate for incorporation to the RNA both as a guanosine and an adenosine analog. Compared to natural GTP and ATP, the discrimination of T-705 RTP was about 19- and 30-fold, respectively. Although the single incorporation of the ribonucleotide monophosphate form of T-705 did not efficiently block RNA synthesis, two consecutive incorporation events prevented further primer extension. In comparison, 3′-deoxy GTP caused immediate chain termination but was incorporated less efficiently by the enzyme, with a discrimination of 4,900-fold relative to natural GTP. Collectively, these results provide the first detailed biochemical characterization to evaluate the substrate efficiency and the inhibition potency of nucleotide analogs against influenza virus polymerase. The combination of ambiguous base-pairing with low discrimination of T-705 RTP provides a mechanistic basis for the in vitro mutagenic effect of T-705 towards influenza virus. PMID:23874596

  19. Core-shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate: synthesis using adenosine 5'-triphosphate and application in pH-responsive drug delivery.

    PubMed

    Lu, Bing-Qiang; Zhu, Ying-Jie; Chen, Feng; Qi, Chao; Zhao, Xin-Yu; Zhao, Jing

    2014-10-01

    Drug nanocarriers with magnetic targeting and pH-responsive drug-release behavior are promising for applications in controlled drug delivery. Magnetic iron oxides show excellent magnetism, but their application in drug delivery is limited by low drug-loading capacity and poor control over drug release. Herein, core-shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate (MIO@ACP) were prepared and investigated as magnetic, pH-responsive drug nanocarriers. Hollow microspheres of magnetic iron oxide (HMIOs) were prepared by etching solid MIO microspheres in hydrochloric acid/ethanol solution. After loading a drug into the HMIOs, the drug-loaded HMIOs were coated with a protective layer of ACP by using adenosine 5'-triphosphate (ATP) disodium salt (Na2 ATP) as stabilizer, and drug-loaded core-shell hollow microspheres of MIO@ACP (HMIOs/drug/ACP) were obtained. The as-prepared HMIOs/drug/ACP drug-delivery system exhibits superparamagnetism and pH-responsive drug-release behavior. In a medium with pH 7.4, drug release was slow, but it was significantly accelerated at pH 4.5 due to dissolution of the ACP shell. Docetaxel-loaded core-shell hollow microspheres of MIO@ACP exhibited high anticancer activity.

  20. Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate.

    PubMed

    Pires de Sousa, Marcelo Victor; Ferraresi, Cleber; Kawakubo, Masayoshi; Kaippert, Beatriz; Yoshimura, Elisabeth Mateus; Hamblin, Michael R

    2016-01-01

    Photobiomodulation or low-level light therapy has been shown to attenuate both acute and chronic pain, but the mechanism of action is not well understood. In most cases, the light is applied to the painful area, but in the present study we applied light to the head. We found that transcranial laser therapy (TLT) applied to mouse head with specific parameters (810 nm laser, [Formula: see text], 7.2 or [Formula: see text]) decreased the reaction to pain in the foot evoked either by pressure (von Frey filaments), cold, or inflammation (formalin injection) or in the tail (evoked by heat). The pain threshold increasing is maximum around 2 h after TLT, remains up to 6 h, and is finished 24 h after TLT. The mechanisms were investigated by quantification of adenosine triphosphate (ATP), immunofluorescence, and hematoxylin and eosin (H&E) staining of brain tissues. TLT increased ATP and prostatic acid phosphatase (an endogenous analgesic) and reduced the amount of glutamate receptor (mediating a neurotransmitter responsible for conducting nociceptive information). There was no change in the concentration of tubulin, a constituent of the cytoskeleton, and the H&E staining revealed no tissue damage. This is the first study to show inhibition of peripheral pain due to photobiomodulation of the central nervous system. PMID:26835486

  1. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel.

    PubMed

    Yun, Junxian; Shen, Shaochuan; Chen, Fang; Yao, Kejian

    2007-12-01

    Adenosine triphosphate (ATP) is an important high-energy compound widely used in biological and therapeutic fields. It can be produced by phosphorylation of adenosine monophosphate (AMP) with microbial cells in industrial scale and the effective isolation of ATP from microbial fermentation broth is a challenging work. In this work, we develop a novel one-step method to directly separate ATP from fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. The cryogel bed with tertiary amine groups was prepared by grafting N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer chains onto the matrix of a polyacrylamide-based cryogel in a glass column and its properties of liquid dispersion, water permeability, porosity as well as the ligand density were measured. Chromatographic separation of ATP from the fermentation broth by the cryogel was carried out using deionised water and 0.01 M HCl as running buffer, respectively. The breakthrough characteristics and elution performance in the cryogel bed were revealed and analyzed. The purities of the obtained ATP were analyzed quantitatively by high performance liquid chromatography (HPLC). The maximal purity of ATP by the one-step separation method was 95.5% using 0.01 M HCl as running buffer in this work. The corresponding chromatographic behaviors were investigated and analyzed.

  2. A 31P NMR spectroscopy study of Xenopus laevis heart perfused in vitro with creatinol-O-phosphate, phosphocreatine, adenosine triphosphate, fructose diphosphate and ouabain.

    PubMed

    Olsen, J I; Rossini, P; Schweizer, M P; Bernardi, M; Moretti, V; Re, L; Rossini, L

    1993-09-01

    Xenopus laevis heart was studied by 31P NMR using a 200 MHz proton spectrometer; hearts were perfused, at pH 7.35 and room temperature, with normal oxygenated or K(+)-enriched Ringer. Solution was later added with creatinol-O-phosphate (COP), phosphocreatine (PCr), adenosine triphosphate (ATP), fructose-1,6-diphosphate (FDP) and ouabain. NMR spectra of the heart show organic phosphomono- and phosphodi-esters, inorganic phosphate, PCr, overlapping alpha-ATP/ADP and gamma-ATP/beta-ADP, and beta-ATP signals. Their chemical shift positions and areas showed no significant changes in the course of 1.5 h perfusions with either solution, except in a few preparations, whether the heart was beating or reversibly arrested. While COP reduced the signals in beating hearts, the same spectra exhibited no consistent, substantial changes under PCr, ATP and FDP 1 to 10 mM, pH 7.35 perfusion with either solution, nor when ouabain mumol was added. The spectra are briefly discussed in comparison with those observed in the perfused heart of mammals (mostly rat), and particularly with those obtained in the frog (Rana temporaria) heart, both by analysing the bioenergetic equilibria on the basis of total tissue substrate levels measured in extracts of freeze-clamped tissue, and by evaluating cytochrome-b, flavin and pyridine nucleotide in vitro oxido-reduction read-outs in separate, similar experimental settings.

  3. Comparison of immunomagnetic separation/adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater

    USGS Publications Warehouse

    Bushon, R.N.; Likirdopulos, C.A.; Brady, A.M.G.

    2009-01-01

    Untreated wastewater samples from California, North Carolina, and Ohio were analyzed by the immunomagnetic separation/adenosine triphosphate (IMS/ATP) method and the traditional culture-based method for E. coli and enterococci concentrations. The IMS/ATP method concentrates target bacteria by immunomagnetic separation and then quantifies captured bacteria by measuring bioluminescence induced by release of ATP from the bacterial cells. Results from this method are available within 1 h from the start of sample processing. Significant linear correlations were found between the IMS/ATP results and results from traditional culture-based methods for E. coli and enterococci enumeration for one location in California, two locations in North Carolina, and one location in Ohio (r??values ranged from 0.87 to 0.97). No significant linear relation was found for a second location in California that treats a complex mixture of residential and industrial wastewater. With the exception of one location, IMS/ATP showed promise as a rapid method for the quantification of faecal-indicator organisms in wastewater.

  4. Effects of an ATP analogue, adenosine 5'-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation.

    PubMed

    Yukawa, Ayako; Watanabe, Rikiya; Noji, Hiroyuki

    2015-03-13

    F1-ATPase (F1), an important rotary motor protein, converts the chemical energy of ATP hydrolysis into mechanical energy using rotary motion with extremely high efficiency. The energy-conversion mechanism for this molecular motor has been extensively clarified by previous studies, which indicate that the interactions between the catalytic residues and the β- and γ-phosphates of ATP are indispensable for efficient catalysis and torque generation. However, the role of α-phosphate is largely unknown. In this study, we observed the rotation of F1 fuelled with an ATP analogue, adenosine 5'-[α-thio]-triphosphate (ATPαS), in which the oxygen has been substituted with a sulfur ion to perturb the α-phosphate/F1 interactions. In doing so, we have revealed that ATPαS does not appear to have any impact on the kinetic properties of the motor or on torque generation compared to ATP. On the other hand, F1 was observed to lapse into the ADP-inhibited intermediate states when in the presence of ATPαS more severely than in the presence of ATP, suggesting that the α-phosphate group of ATP contributes to the avoidance of ADP-inhibited intermediate formation.

  5. Characterization of the Deoxynucleotide Triphosphate Triphosphohydrolase (dNTPase) Activity of the EF1143 Protein from Enterococcus faecalis and Crystal Structure of the Activator-Substrate Complex

    SciTech Connect

    Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga; Brunzelle, Joseph S.; Shuvalova, Ludmilla; Anderson, Wayne F.

    2012-06-19

    The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed a tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.

  6. Use of a Sampling Area-Adjusted Adenosine Triphosphate Bioluminescence Assay Based on Digital Image Quantification to Assess the Cleanliness of Hospital Surfaces.

    PubMed

    Ho, Yu-Huai; Wang, Lih-Shinn; Jiang, Hui-Li; Chang, Chih-Hui; Hsieh, Chia-Jung; Chang, Dan-Chi; Tu, Hsin-Yu; Chiu, Tan-Yun; Chao, Huei-Jen; Tseng, Chun-Chieh

    2016-01-01

    Contaminated surfaces play an important role in the transmission of pathogens. We sought to establish a criterion that could indicate "cleanliness" using a sampling area-adjusted adenosine triphosphate (ATP) assay. In the first phase of the study, target surfaces were selected for swab sampling before and after daily cleaning; then, an aerobic colony count (ACC) plate assay of bacteria and antibiotic-resistant bacteria was conducted. ATP swabs were also tested, and the ATP readings were reported as relative light units (RLUs). The results of the ACC and ATP assays were adjusted according to the sampling area. During the second phase of the study, a new cleaning process employing sodium dichloroisocyanurate (NaDCC) was implemented for comparison. Using the criterion of 2.5 colony-forming units (CFU)/cm², 45% of the sampled sites were successfully cleaned during phase one of the study. During phase two, the pass rates of the surface samples (64%) were significantly improved, except under stringent (5 RLU/cm²) and lax (500 RLU) ATP criteria. Using receiver-operating characteristic curve analysis, the best cut-off point for an area-adjusted ATP level was 7.34 RLU/cm², which corresponded to culture-assay levels of <2.5 CFU/cm². An area adjustment of the ATP assay improved the degree of correlation with the ACC-assay results from weak to moderate. PMID:27294944

  7. Evaluation of the Relationship between the Adenosine Triphosphate (ATP) Bioluminescence Assay and the Presence of Bacillus anthracis Spores and Vegetative Cells

    PubMed Central

    Gibbs, Shawn G.; Sayles, Harlan; Colbert, Erica M.; Hewlett, Angela; Chaika, Oleg; Smith, Philip W.

    2014-01-01

    Background: The Adenosine triphosphate (ATP) bioluminescence assay was utilized in laboratory evaluations to determine the presence and concentration of vegetative and spore forms of Bacillus anthracis Sterne 34F2. Methods: Seventeen surfaces from the healthcare environment were selected for evaluation. Surfaces were inoculated with 50 µL of organism suspensions at three concentrations of 104, 106, 108 colony forming units per surface (CFU/surface) of B. anthracis. Culture-based methods and ATP based methods were utilized to determine concentrations. Results: When all concentrations were evaluated together, a positive correlation between log-adjusted CFU and Relative Light Units (RLU) for endospores and vegetative cells was established. When concentrations were evaluated separately, a significant correlation was not demonstrated. Conclusions: This study demonstrated a positive correlation for ATP and culture-based methods for the vegetative cells of B. anthracis. When evaluating the endospores and combining both metabolic states, the ATP measurements and CFU recovered did not correspond to the initial concentrations on the evaluated surfaces. The results of our study show that the low ATP signal which does not correlate well to the CFU results would not make the ATP measuring devises effective in confirming contamination residual from a bioterrorist event. PMID:24879485

  8. Proline modulates the effect of bisphosphonate on calcium levels and adenosine triphosphate production in cell lines derived from bovine Echinococcus granulosus protoscoleces.

    PubMed

    Fuchs, A G; Echeverría, C I; Pérez Rojo, F G; Prieto González, E A; Roldán, E J A

    2014-12-01

    Bisphosphonates have been proposed as pharmacological agents against parasite and cancer cell growth. The effect of these compounds on helminthic cell viability and acellular compartment morphology, however, has not yet been studied. The effects of different types of bisphosphonates, namely etidronate (EHDP), pamidronate (APD), alendronate (ABP), ibandronate (IB) and olpadronate (OPD), and their interaction with amiloride, 1,25-dihydroxycholecalciferol (D3) and proline were evaluated on a cell line derived from bovine Echinococcus granulousus protoscoleces (EGPE) that forms cystic colonies in agarose. The EGPE cell line allowed testing the effect of bisphosphonates alone and in association with other compounds that could modulate calcium apposition/deposition, and were useful in measuring the impact of these compounds on cell growth, cystic colony formation and calcium storage. Decreased cell growth and cystic colony formation were found with EHDP, IB and OPD, and increased calcium storage with EHDP only. Calcium storage in EGPE cells appeared to be sensitive to the effect of amiloride, D3 and proline. Proline decreased calcium storage and increased colony formation. Changes in calcium storage may be associated with degenerative changes of the cysts, as shown in the in vitro colony model and linked to an adenosine triphosphate (ATP) decrease. In conclusion, bisphosphonates could be suitable tempering drugs to treat cestode infections.

  9. Increased adenosine triphosphate production by peripheral blood CD4+ cells in patients with hematologic malignancies treated with stem cell mobilization agents.

    PubMed

    Manga, Kiran; Serban, Geo; Schwartz, Joseph; Slotky, Ronit; Patel, Nita; Fan, Jianshe; Bai, Xiaolin; Chari, Ajai; Savage, David; Suciu-Foca, Nicole; Colovai, Adriana I

    2010-07-01

    Hematopoietic stem cell (HSC) transplantation is an important therapeutic option for patients with hematologic malignancies. To explore the immunomodulatory effects of HSC mobilization agents, we studied the function and phenotype of CD4(+) T cells from 16 adult patients with hematologic malignancies undergoing HSC mobilization treatment for autologous transplantation. Immune cell function was determined using the Immuknow (Cylex) assay by measuring the amount of adenosine triphosphate (ATP) produced by CD4(+) cells from whole blood. ATP activity measured in G-CSF-treated patients was significantly higher than that measured in healthy individuals or "nonmobilized" patients. In patients treated with G-CSF, CD4(+) T cells were predominantly CD25(low)FOXP3(low), consistent with an activated phenotype. However, T-cell depletion did not abrogate ATP production in blood samples from G-CSF-treated patients, indicating that CD4(+) myeloid cells contributed to the increased ATP levels observed in these patients. There was a significant correlation between ATP activity and patient survival, suggesting that efficient activation of CD4(+) cells during mobilization treatment predicts a low risk of disease relapse. Monitoring immune cell reactivity using the Immuknow assay may assist in the clinical management of patients with hematologic malignancies and optimization of HSC mobilization protocols.

  10. Use of a Sampling Area-Adjusted Adenosine Triphosphate Bioluminescence Assay Based on Digital Image Quantification to Assess the Cleanliness of Hospital Surfaces

    PubMed Central

    Ho, Yu-Huai; Wang, Lih-Shinn; Jiang, Hui-Li; Chang, Chih-Hui; Hsieh, Chia-Jung; Chang, Dan-Chi; Tu, Hsin-Yu; Chiu, Tan-Yun; Chao, Huei-Jen; Tseng, Chun-Chieh

    2016-01-01

    Contaminated surfaces play an important role in the transmission of pathogens. We sought to establish a criterion that could indicate “cleanliness” using a sampling area–adjusted adenosine triphosphate (ATP) assay. In the first phase of the study, target surfaces were selected for swab sampling before and after daily cleaning; then, an aerobic colony count (ACC) plate assay of bacteria and antibiotic-resistant bacteria was conducted. ATP swabs were also tested, and the ATP readings were reported as relative light units (RLUs). The results of the ACC and ATP assays were adjusted according to the sampling area. During the second phase of the study, a new cleaning process employing sodium dichloroisocyanurate (NaDCC) was implemented for comparison. Using the criterion of 2.5 colony-forming units (CFU)/cm2, 45% of the sampled sites were successfully cleaned during phase one of the study. During phase two, the pass rates of the surface samples (64%) were significantly improved, except under stringent (5 RLU/cm2) and lax (500 RLU) ATP criteria. Using receiver-operating characteristic curve analysis, the best cut-off point for an area-adjusted ATP level was 7.34 RLU/cm2, which corresponded to culture-assay levels of <2.5 CFU/cm2. An area adjustment of the ATP assay improved the degree of correlation with the ACC-assay results from weak to moderate. PMID:27294944

  11. Activation of guanine-β-D-arabinofuranoside and deoxyguanosine to triphosphates by a common pathway blocks T lymphoblasts at different checkpoints.

    PubMed

    Leanza, Luigi; Miazzi, Cristina; Ferraro, Paola; Reichard, Peter; Bianchi, Vera

    2010-12-10

    The deoxyguanosine (GdR) analog guanine-ß-d-arabinofuranoside (araG) has a specific toxicity for T lymphocytes. Also GdR is toxic for T lymphocytes, provided its degradation by purine nucleoside phosphorylase (PNP) is prevented, by genetic loss of PNP or by enzyme inhibitors. The toxicity of both nucleosides requires their phosphorylation to triphosphates, indicating involvement of DNA replication. In cultured cells we found by isotope-flow experiments with labeled araG a rapid accumulation and turnover of araG phosphates regulated by cytosolic and mitochondrial kinases and deoxynucleotidases. At equilibrium their partition between cytosol and mitochondria depended on the substrate saturation kinetics and cellular abundance of the kinases leading to higher araGTP concentrations in mitochondria. dGTP interfered with the allosteric regulation of ribonucleotide reduction, led to highly imbalanced dNTP pools with gradual inhibition of DNA synthesis and cell-cycle arrest at the G1-S boundary. AraGTP had no effect on ribonucleotide reduction. AraG was in minute amounts incorporated into nuclear DNA and stopped DNA synthesis arresting cells in S-phase. Both nucleosides eventually induced caspases and led to apoptosis. We used high, clinically relevant concentrations of araG, toxic for nuclear DNA synthesis. Our experiments do not exclude an effect on mitochondrial DNA at low araG concentrations when phosphorylation occurs mainly in mitochondria. PMID:20603113

  12. Comparison of immunomagnetic separation/adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater.

    PubMed

    Bushon, Rebecca N; Likirdopulos, Christina A; Brady, Amie M G

    2009-11-01

    Untreated wastewater samples from California, North Carolina, and Ohio were analyzed by the immunomagnetic separation/adenosine triphosphate (IMS/ATP) method and the traditional culture-based method for E. coli and enterococci concentrations. The IMS/ATP method concentrates target bacteria by immunomagnetic separation and then quantifies captured bacteria by measuring bioluminescence induced by release of ATP from the bacterial cells. Results from this method are available within 1h from the start of sample processing. Significant linear correlations were found between the IMS/ATP results and results from traditional culture-based methods for E. coli and enterococci enumeration for one location in California, two locations in North Carolina, and one location in Ohio (r values ranged from 0.87 to 0.97). No significant linear relation was found for a second location in California that treats a complex mixture of residential and industrial wastewater. With the exception of one location, IMS/ATP showed promise as a rapid method for the quantification of faecal-indicator organisms in wastewater.

  13. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1.

    PubMed

    Tang, Tie-Shan; Tu, Huiping; Chan, Edmond Y W; Maximov, Anton; Wang, Zhengnan; Wellington, Cheryl L; Hayden, Michael R; Bezprozvanny, Ilya

    2003-07-17

    Huntington's disease (HD) is caused by polyglutamine expansion (exp) in huntingtin (Htt). The type 1 inositol (1,4,5)-triphosphate receptor (InsP3R1) is an intracellular calcium (Ca2+) release channel that plays an important role in neuronal function. In a yeast two-hybrid screen with the InsP3R1 carboxy terminus, we isolated Htt-associated protein-1A (HAP1A). We show that an InsP3R1-HAP1A-Htt ternary complex is formed in vitro and in vivo. In planar lipid bilayer reconstitution experiments, InsP3R1 activation by InsP3 is sensitized by Httexp, but not by normal Htt. Transfection of full-length Httexp or caspase-resistant Httexp, but not normal Htt, into medium spiny striatal neurons faciliates Ca2+ release in response to threshold concentrations of the selective mGluR1/5 agonist 3,5-DHPG. Our findings identify a novel molecular link between Htt and InsP3R1-mediated neuronal Ca2+ signaling and provide an explanation for the derangement of cytosolic Ca2+ signaling in HD patients and mouse models.

  14. Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene.

    PubMed

    Sasaki, Masayuki; Ohba, Chihiro; Iai, Mizue; Hirabayashi, Shinichi; Osaka, Hitoshi; Hiraide, Takuya; Saitsu, Hirotomo; Matsumoto, Naomichi

    2015-05-01

    Mutations in the inositol 1,4,5-triphosphate receptor type 1 gene (ITPR1) have been identified in families with early-onset spinocerebellar ataxia type 29 (SCA29) and late-onset SCA15, but have not been found in sporadic infantile-onset cerebellar ataxia. We examined if mutations of ITPR1 are also involved in sporadic infantile-onset SCA. Sixty patients with childhood-onset cerebellar atrophy of unknown etiology and their families were examined by whole-exome sequencing. We found de novo heterozygous ITPR1 missense mutations in four unrelated patients with sporadic infantile-onset, nonprogressive cerebellar ataxia. Patients displayed nystagmus, tremor, and hypotonia from very early infancy. Nonprogressive ataxia, motor delay, and mild cognitive deficits were common clinical findings. Brain magnetic resonance imaging revealed slowly progressive cerebellar atrophy. ITPR1 missense mutations cause infantile-onset cerebellar ataxia. ITPR1-related SCA includes sporadic infantile-onset cerebellar ataxia as well as SCA15 and SCA29.

  15. Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs.

    PubMed

    Carland, Francine M; Nelson, Timothy

    2004-05-01

    Vein patterns in leaves and cotyledons form in a spatially regulated manner through the progressive recruitment of ground cells into vascular cell fate. To gain insight into venation patterning mechanisms, we have characterized the cotyledon vascular pattern2 (cvp2) mutants, which exhibit an increase in free vein endings and a resulting open vein network. We cloned CVP2 by a map-based cloning strategy and found that it encodes an inositol polyphosphate 5' phosphatase (5PTase). 5PTases regulate inositol (1,4,5) triphosphate (IP(3)) signal transduction by hydrolyzing IP(3) and thus terminate IP(3) signaling. CVP2 gene expression is initially broad and then gradually restricted to incipient vascular cells in several developing organs. Consistent with the inferred enzymatic activity of CVP2, IP(3) levels are elevated in cvp2 mutants. In addition, cvp2 mutants exhibit hypersensitivity to the plant hormone abscisic acid. We propose that elevated IP(3) levels in cvp2 mutants reduce ground cell recruitment into vascular cell fate, resulting in premature vein termination and, thus, in an open reticulum.

  16. Inositol 1,4,5-triphosphate receptors and NAD(P)H mediate Ca2+ signaling required for hypoxic preconditioning of hippocampal neurons.

    PubMed

    Bickler, P E; Fahlman, C S; Gray, J; McKleroy, W

    2009-04-21

    Exposure of neurons to a non-lethal hypoxic stress greatly reduces cell death during subsequent severe ischemia (hypoxic preconditioning, HPC). In organotypic cultures of rat hippocampus, we demonstrate that HPC requires inositol triphosphate (IP3) receptor-dependent Ca2+ release from the endoplasmic reticulum (ER) triggered by increased cytosolic NAD(P)H. Ca2+ chelation with intracellular BAPTA, ER Ca2+ store depletion with thapsigargin, IP3 receptor block with xestospongin, and RNA interference against subtype 1 of the IP3 receptor all blunted the moderate increases in [Ca2+](i) (50-100 nM) required for tolerance induction. Increases in [Ca2+](i) during HPC and neuroprotection following HPC were not prevented with NMDA receptor block or by removing Ca2+ from the bathing medium. Increased NAD(P)H fluorescence in CA1 neurons during hypoxia and demonstration that NADH manipulation increases [Ca2+](i) in an IP3R-dependent manner revealed a primary role of cellular redox state in liberation of Ca2+ from the ER. Blockade of IP3Rs and intracellular Ca2+ chelation prevented phosphorylation of known HPC signaling targets, including MAPK p42/44 (ERK), protein kinase B (Akt) and CREB. We conclude that the endoplasmic reticulum, acting via redox/NADH-dependent intracellular Ca2+ store release, is an important mediator of the neuroprotective response to hypoxic stress.

  17. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Li, Gang; Mongillo, Marco; Chin, King-Tung; Harding, Heather; Ron, David; Marks, Andrew R; Tabas, Ira

    2009-09-21

    Endoplasmic reticulum (ER) stress-induced apoptosis is involved in many diseases, but the mechanisms linking ER stress to apoptosis are incompletely understood. Based on roles for C/EPB homologous protein (CHOP) and ER calcium release in apoptosis, we hypothesized that apoptosis involves the activation of inositol 1,4,5-triphosphate (IP3) receptor (IP3R) via CHOP-induced ERO1-alpha (ER oxidase 1 alpha). In ER-stressed cells, ERO1-alpha is induced by CHOP, and small interfering RNA (siRNA) knockdown of ERO1-alpha suppresses apoptosis. IP3-induced calcium release (IICR) is increased during ER stress, and this response is blocked by siRNA-mediated silencing of ERO1-alpha or IP3R1 and by loss-of-function mutations in Ero1a or Chop. Reconstitution of ERO1-alpha in Chop(-/-) macrophages restores ER stress-induced IICR and apoptosis. In vivo, macrophages from wild-type mice but not Chop(-/-) mice have elevated IICR when the animals are challenged with the ER stressor tunicamycin. Macrophages from insulin-resistant ob/ob mice, another model of ER stress, also have elevated IICR. These data shed new light on how the CHOP pathway of apoptosis triggers calcium-dependent apoptosis through an ERO1-alpha-IP3R pathway.

  18. Activation of protein kinase C and inositol 1,4,5-triphosphate receptors antagonistically modulate voltage-gated sodium channels in striatal neurons.

    PubMed

    Hourez, Raphaël; Azdad, Karima; Vanwalleghem, Gilles; Roussel, Céline; Gall, David; Schiffmann, Serge N

    2005-10-19

    Regulation of voltage-gated sodium channels is crucial to firing patterns that constitute the output of medium spiny neurons (MSN), projecting neurons of the striatum. This modulation is thus critical for the final integration of information processed within the striatum. It has been shown that the adenylate cyclase pathway reduces sodium currents in MSN through channel phosphorylation by cAMP-dependent protein kinase. However, it is unknown whether a phospholipase C (PLC)-mediated signaling cascade could also modulate voltage-gated sodium channels within MSN. Using the whole-cell patch clamp technique, we investigated the effects of activation of two key components in PLC-mediated signaling cascades: protein kinase C (PKC) and inositol-1,4,5-triphosphate (IP(3)) receptors on voltage-dependent sodium current. Cellular dialysis with phorbol 12-myristate 13-acetate, an activator of PKC, significantly reduced peak sodium current amplitude, while adenophostin A, an activator of IP(3) receptors, significantly increased peak sodium current amplitude. This effect of adenophostin was abolished by calcium chelation or by FK506, an inhibitor of calcineurin. These results suggest an antagonistic role of PKC and IP(3) in the modulation of striatal voltage-gated sodium channels, peak current amplitude being decreased through phosphorylation by PKC and increased through dephosphorylation by calcineurin.

  19. NMR investigation of the binding between human profilin I and inositol 1,4,5-triphosphate, the soluble headgroup of phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Richer, Sarah M; Stewart, Nichole K; Tomaszewski, John W; Stone, Martin J; Oakley, Martha G

    2008-12-23

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is involved in the regulation of the actin cytoskeleton through interactions with a number of actin-binding proteins. We present here NMR titration experiments that monitor the interaction between the cytoskeletal protein profilin and inositol 1,4,5-triphosphate (IP(3)), the headgroup of PI(4,5)P(2). These experiments probe the interaction directly, at equilibrium, and with profilin in its native state. We show the binding between profilin and IP(3) can readily be observed at high concentrations, even though profilin does not bind to IP(3) under physiological conditions. Moreover, the titration data using wild-type profilin and an R88L mutant support the existence of at least three headgroup binding sites on profilin, consistent with previous experimentation with intact PI(4,5)P(2). This work suggests that various soluble inositol ligands can serve as effective probes to facilitate in vitro studies of PI-binding proteins that require membrane surfaces for high-affinity binding.

  20. Relation between QT dispersion and adenosine triphosphate stress thallium-201 single-photon emission computed tomographic imaging for detecting myocardial ischemia and scar.

    PubMed

    Teragawa, H; Hirao, H; Muraoka, Y; Yamagata, T; Matsuura, H; Kajiyama, G

    1999-04-15

    It is not known if QT dispersion is useful for detecting coronary artery disease. We investigated whether QT dispersion at baseline and during adenosine triphosphate (ATP) infusion correlate with the imaging patterns obtained from ATP stress thallium-201 single-photon emission computed tomography (ATP-SPECT). QT dispersion was determined in 169 patients who underwent ATP-SPECT from 12-lead electrocardiograms obtained at baseline and 3 minutes after the beginning of ATP infusion. Based on the results of ATP-SPECT, patients were divided into 4 groups: normal (n = 55), ischemia (n = 38), ischemia and scar (n = 42), and scar (n = 34). Baseline QT dispersions (mean +/- SD) in the normal, ischemia, ischemia and scar, and scar groups were 48 +/- 15, 50 +/- 17, 69 +/- 25, and 70 +/- 24 ms, respectively. Baseline QT dispersion was significantly greater in the groups with myocardial scar. QT dispersions during ATP infusion were 43 +/- 16, 63 +/- 20, 76 +/- 20, and 62 +/- 25 ms in the normal, ischemia, ischemia and scar, and scar groups, respectively. QT dispersion increased with ATP infusion in patients with myocardial ischemia. QT dispersion at baseline and during ATP infusion correlated with the ATP-SPECT imaging pattern. These findings suggest that baseline QT dispersion and ATP-induced changes in QT dispersion may help detect the presence of myocardial ischemia and scar. PMID:10215275

  1. Adeno-associated virus Rep78/Rep68 promotes localized melting of the rep binding element in the absence of adenosine triphosphate.

    PubMed

    Lou, Hua Jane; Brister, J Rodney; Li, Jianwei Jeffery; Chen, Weijun; Muzyczka, Nicholas; Tan, Weihong

    2004-03-01

    We have applied fluorescence anisotropy and molecular beacon fluorescence methods to study the interactions between the Adeno-associated virus Rep78/Rep68 protein and the 23-bp Rep binding element (RBE). Rep78/Rep68 stably interacted with both the single- and double-stranded conformations of the RBE, but the interaction mechanisms of single- and double-stranded DNA appeared to be fundamentally different. The stoichiometry of Rep78 association with both the separate top and bottom strands of the RBE was 1:1, and the relative dissociation constant (K(D)) values of these associations were calculated to be 2.3x10(-8) and 3.2x10(-8) M, respectively. In contrast, the stoichiometry of Rep78 association with the double-stranded RBE was 2:1, and the dissociation constant was determined to be 4.2x10(-15) M(2). Moreover, Rep78/Rep68 interaction with the 23-bp duplex RBE appeared to cause localized melting of the double-stranded DNA substrate in the absence of adenosine triphosphate (ATP). This melting activity showed slower kinetics than binding and may contribute to the initiation of ATP-dependent Rep78 helicase activity.

  2. Genetic Mapping at 3-Kilobase Resolution Reveals Inositol 1,4,5-Triphosphate Receptor 3 as a Risk Factor for Type 1 Diabetes in Sweden

    PubMed Central

    Roach, Jared C.; Deutsch, Kerry; Li, Sarah; Siegel, Andrew F.; Bekris, Lynn M.; Einhaus, Derek C.; Sheridan, Colleen M.; Glusman, Gustavo; Hood, Leroy; Lernmark, Åke; Janer, Marta

    2006-01-01

    We mapped the genetic influences for type 1 diabetes (T1D), using 2,360 single-nucleotide polymorphism (SNP) markers in the 4.4-Mb human major histocompatibility complex (MHC) locus and the adjacent 493 kb centromeric to the MHC, initially in a survey of 363 Swedish T1D cases and controls. We confirmed prior studies showing association with T1D in the MHC, most significantly near HLA-DR/DQ. In the region centromeric to the MHC, we identified a peak of association within the inositol 1,4,5-triphosphate receptor 3 gene (ITPR3; formerly IP3R3). The most significant single SNP in this region was at the center of the ITPR3 peak of association (P=1.7×10-4 for the survey study). For validation, we typed an additional 761 Swedish individuals. The P value for association computed from all 1,124 individuals was 1.30×10-6 (recessive odds ratio 2.5; 95% confidence interval [CI] 1.7–3.9). The estimated population-attributable risk of 21.6% (95% CI 10.0%–31.0%) suggests that variation within ITPR3 reflects an important contribution to T1D in Sweden. Two-locus regression analysis supports an influence of ITPR3 variation on T1D that is distinct from that of any MHC class II gene. PMID:16960798

  3. Arabidopsis Triphosphate Tunnel Metalloenzyme2 Is a Negative Regulator of the Salicylic Acid-Mediated Feedback Amplification Loop for Defense Responses1[W][OPEN

    PubMed Central

    Ung, Huoi; Moeder, Wolfgang; Yoshioka, Keiko

    2014-01-01

    The triphosphate tunnel metalloenzyme (TTM) superfamily represents a group of enzymes that is characterized by their ability to hydrolyze a range of tripolyphosphate substrates. Arabidopsis (Arabidopsis thaliana) encodes three TTM genes, AtTTM1, AtTTM2, and AtTTM3. Although AtTTM3 has previously been reported to have tripolyphosphatase activity, recombinantly expressed AtTTM2 unexpectedly exhibited pyrophosphatase activity. AtTTM2 knockout mutant plants exhibit an enhanced hypersensitive response, elevated pathogen resistance against both virulent and avirulent pathogens, and elevated accumulation of salicylic acid (SA) upon infection. In addition, stronger systemic acquired resistance compared with wild-type plants was observed. These enhanced defense responses are dependent on SA, PHYTOALEXIN-DEFICIENT4, and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. Despite their enhanced pathogen resistance, ttm2 plants did not display constitutively active defense responses, suggesting that AtTTM2 is not a conventional negative regulator but a negative regulator of the amplification of defense responses. The transcriptional suppression of AtTTM2 by pathogen infection or treatment with SA or the systemic acquired resistance activator benzothiadiazole further supports this notion. Such transcriptional regulation is conserved among TTM2 orthologs in the crop plants soybean (Glycine max) and canola (Brassica napus), suggesting that TTM2 is involved in immunity in a wide variety of plant species. This indicates the possible usage of TTM2 knockout mutants for agricultural applications to generate pathogen-resistant crop plants. PMID:25185123

  4. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel.

    PubMed

    Yun, Junxian; Shen, Shaochuan; Chen, Fang; Yao, Kejian

    2007-12-01

    Adenosine triphosphate (ATP) is an important high-energy compound widely used in biological and therapeutic fields. It can be produced by phosphorylation of adenosine monophosphate (AMP) with microbial cells in industrial scale and the effective isolation of ATP from microbial fermentation broth is a challenging work. In this work, we develop a novel one-step method to directly separate ATP from fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. The cryogel bed with tertiary amine groups was prepared by grafting N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer chains onto the matrix of a polyacrylamide-based cryogel in a glass column and its properties of liquid dispersion, water permeability, porosity as well as the ligand density were measured. Chromatographic separation of ATP from the fermentation broth by the cryogel was carried out using deionised water and 0.01 M HCl as running buffer, respectively. The breakthrough characteristics and elution performance in the cryogel bed were revealed and analyzed. The purities of the obtained ATP were analyzed quantitatively by high performance liquid chromatography (HPLC). The maximal purity of ATP by the one-step separation method was 95.5% using 0.01 M HCl as running buffer in this work. The corresponding chromatographic behaviors were investigated and analyzed. PMID:18024244

  5. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury

    PubMed Central

    Hwang, Jung Hwan; Kim, Yong-Hoon; Noh, Jung-Ran; Choi, Dong-Hee; Kim, Kyoung-Shim; Lee, Chul-Ho

    2015-01-01

    The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose. PMID:26434492

  6. Determination of nucleoside analog mono-, di-, and tri-phosphates in cellular matrix by solid phase extraction and ultra-sensitive LC-MS/MS detection

    PubMed Central

    Bushman, Lane R.; Kiser, Jennifer J.; Rower, Joseph E.; Klein, Brandon; Zheng, Jia-Hua; Ray, Michelle L.; Anderson, Peter L.

    2011-01-01

    An ultra-sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and validated to facilitate the assessment of clinical pharmacokinetics of nucleotide analogs from lysed intracellular matrix. The method utilized a strong anion exchange isolation of mono-(MP), di-(DP), and tri-phosphates (TP) from intracellular matrix. Each fraction was then dephosphorylated to the parent moiety yielding a molar equivalent to the original nucleotide analog intracellular concentration. The analytical portion of the methodology was optimized in specific nucleoside analog centric modes (i.e. tenofovir (TFV) centric, zidovudine (ZDV) centric), which included desalting/concentration by solid phase extraction and detection by LC-MS/MS. Nucleoside analog MP-, DP-, and TP- determined on the TFV centric mode of analysis include TFV, lamivudine (3TC), and emtricitibine (FTC). The quantifiable linear range for TFV was 2.50 to 2000 fmol/sample, and that for 3TC/FTC was 0.10 to 200 pmol/sample. Nucleoside analog MP-, DP-, and TP- determined on the ZDV centric mode of analysis included 3TC and ZDV. The quantifiable linear range for 3TC was 0.10 to 100 pmol/sample, and 5.00 to 2000 fmol/sample for ZDV. Stable labeled isotopic internal standards facilitated accuracy and precision in alternative cell matrices, which supported the intended use of the method for MP, DP, and TP determinations in various cell types. The method was successfully applied to clinical research samples generating novel intracellular information for TFV, FTC, ZDV, and 3TC nucleotides. This document outlines method development, validation, and application to clinical research. PMID:21715120

  7. The CDM superfamily protein MBC directs myoblast fusion through a mechanism that requires phosphatidylinositol 3,4,5-triphosphate binding but is independent of direct interaction with DCrk.

    PubMed

    Balagopalan, Lakshmi; Chen, Mei-Hui; Geisbrecht, Erika R; Abmayr, Susan M

    2006-12-01

    Myoblast city (mbc), a member of the CDM superfamily, is essential in the Drosophila melanogaster embryo for fusion of myoblasts into multinucleate fibers. Using germ line clones in which both maternal and zygotic contributions were eliminated and rescue of the zygotic loss-of-function phenotype, we established that mbc is required in the fusion-competent subset of myoblasts. Along with its close orthologs Dock180 and CED-5, MBC has an SH3 domain at its N terminus, conserved internal domains termed DHR1 and DHR2 (or "Docker"), and C-terminal proline-rich domains that associate with the adapter protein DCrk. The importance of these domains has been evaluated by the ability of MBC mutations and deletions to rescue the mbc loss-of-function muscle phenotype. We demonstrate that the SH3 and Docker domains are essential. Moreover, ethyl methanesulfonate-induced mutations that change amino acids within the MBC Docker domain to residues that are conserved in other CDM family members nevertheless eliminate MBC function in the embryo, which suggests that these sites may mediate interactions specific to Drosophila MBC. A functional requirement for the conserved DHR1 domain, which binds to phosphatidylinositol 3,4,5-triphosphate, implicates phosphoinositide signaling in myoblast fusion. Finally, the proline-rich C-terminal sites mediate strong interactions with DCrk, as expected. These sites are not required for MBC to rescue the muscle loss-of-function phenotype, however, which suggests that MBC's role in myoblast fusion can be carried out independently of direct DCrk binding.

  8. Effects of insulin and guanosine 5'-[gamma-thio]triphosphate on fatty acid synthesis and lipolysis within electropermeabilized fat-cells.

    PubMed

    Rutter, G A; Denton, R M

    1992-01-15

    1. Exposure to electric fields ('electroporation') has been used to investigate the mechanism of the action of insulin on the regulation of fatty acid synthesis and lipolysis in isolated rat fat-cells. 2. Exposure of the cells to electric fields (six pulses at 2 or 3 kV/cm) permitted the uptake of a number of low-Mr molecules normally excluded from cells, including sucrose (Mr 342), EDTA (Mr 394) and propidium iodide (Mr 668). At least 90% of the cells were found to be permeable to these species. 3. Insulin stimulated the synthesis of fatty acids in electroporated (2 kV/cm) cells to a similar extent (0.68 +/- 0.19 to 6.7 +/- 0.7 micrograms-atoms of glucose carbon/h per g, or 3.3 +/- 0.6 to 11.2 +/- 1.6 micrograms-atoms of H2O hydrogen/h per g) to that observed in non-electroporated cells. Guanosine 5'-[gamma-thio]triphosphate (GTP[S]; 0.5 mM) also stimulated fatty acid synthesis (2-fold) and flux of glucose carbon into triacylglycerol glycerol (3-fold) in these cells, but had no effect on these parameters in non-electroporated cells. 4. Lipolysis in the electroporated cells was stimulated by isoprenaline and also by GTP[S], but only the effects of isoprenaline were inhibited by insulin. 5. Exposure to a higher field strength (3 kV/cm) gave results qualitatively similar to those described above, although the effects of insulin and isoprenaline were diminished. 6. These studies provide evidence against a role for changes in Ca2+, and probably also Na+, K+ or Mg2+, in insulin action on fat-cells, but may support a role for GTP-binding proteins. PMID:1310596

  9. Study of the nucleotide binding site of the yeast Schizosaccharomyces pombe plasma membrane H+-ATPase using formycin triphosphate-terbium complex

    SciTech Connect

    Ronjat, M.; Lacapere, J.J.; Dufour, J.P.; Dupont, Y.

    1987-03-05

    The plasma membrane of yeasts contains an H+-ATPase similar to the other cation transport ATPases of eukaryotic organisms. This enzyme has been purified and shows H+ transport in reconstituted vesicles. In the presence of Mg2+, formycin triphosphate (FTP) is hydrolyzed by the H+-ATPase and supports H+ transport. When combined with terbium ion, FTP (Tb-FTP) and ATP (Tb-ATP) are no longer hydrolyzed. Competition between Mg-ATP and Tb-FTP for ATP hydrolysis indicates that terbium-associated nucleotides bind to the catalytic site of the H+-ATPase. The fluorescent properties of the Tb-FTP complex were used to study the active site of the H+-ATPase. Fluorescence of Tb-FTP is greatly enhanced upon binding into the nucleotide site of H+-ATPase with a dissociation constant of 1 microM. Tb-ATP, Tb-ADP, and Tb-ITP are competitive inhibitors of Tb-FTP binding with Ki = 4.5, 5.0, and 6.0 microM, respectively. Binding of Tb-FTP is observed only in the presence of an excess of Tb3+ with an activation constant Ka = 25 microM for Tb3+. Analysis of the data reveals that the sites for Tb-FTP and Tb3+ binding are independent entities. In standard conditions these sites would be occupied by Mg-ATP and Mg2+, respectively. These findings suggest an important regulatory role of divalent cations on the activity of H+-ATPase. Replacement of H/sub 2/O by D/sub 2/O in the medium suggests the existence of two types of nucleotide binding sites differing by the hydration state of the Tb3+ ion in the bound Tb-FTP complex.

  10. Colonic ornithine decarboxylase in inflammatory bowel disease: ileorectal activity gradient, guanosine triphosphate stimulation, and association with epithelial regeneration but not the degree of inflammation and clinical features.

    PubMed

    Allgayer, Hubert; Roisch, Ulla; Zehnter, Elmar; Ziegenhagen, Dieter J; Dienes, Hans P; Kruis, Wolfgang

    2007-01-01

    The role of colonic mucosal ornithine decarboxylase (ODC) in inflammatory bowel disease (IBD) remains controversial. This study assessed mucosal ODC activity in IBD patients segment by segment with regard to patient characteristics, disease activity/duration, medication, degree of mucosal inflammation, and presence/absence of epithelial regeneration and guanosine triphosphate (GTP) stimulation. Mucosal ODC activity was determined in biopsy specimens from the terminal ileum, cecum/ascending, transverse, and descending colon, and the sigmoid/rectum of 35 patients with IBD (18 with Crohn's disease, 17 with ulcerative colitis) and 29 controls, using the amount of 14CO2 liberated from (carboxyl-14C)ornithine hydrochloride. GTP-stimulatable activity was expressed as the ratio of ODC activity in the presence and absence of GTP (70 micromol/L). Mucosal inflammation was assessed endoscopically/microscopically with previously described criteria. Presence/absence of mucosal regeneration also was determined by predefined criteria. Mucosal ODC-activity did not significantly differ in IBD patients and controls. There was a 4.4-fold activity gradient from the ileum to the rectum. Mucosal ODC activity was significantly higher in areas with epithelial regeneration compared to those without regeneration, and was stimulated by GTP by a factor of 1.42 in Crohn's disease and 1.19 in ulcerative colitis patients compared to controls (p < 0.004). On the other hand, there was no significant association/relationship of mucosal ODC activity with disease activity/duration and the endoscopic/histologic degree of mucosal inflammation. The observation of unchanged mucosal ODC activity in patients with IBD and the absence of a significant relationship with clinical and endoscopic/histologic disease characteristics speaks against a major role of ODC in IBD as a major disease marker. The role of the ileorectal gradient, the enhanced activity in areas with epithelial regeneration, and the GTP

  11. Usefulness of combined CARTO electroanatomical mapping and manifest entrainment in ablating adenosine triphosphate-sensitive atrial tachycardia originating from the atrioventricular node vicinity

    PubMed Central

    Okumura, Ken; Sasaki, Shingo; Kimura, Masaomi; Horiuchi, Daisuke; Sasaki, Kenichi; Itoh, Taihei; Tomita, Hirofumi; Ishida, Yuji; Kinjo, Takahiko

    2016-01-01

    Background By using a noncontact mapping system, adenosine triphosphate (ATP)-sensitive atrial tachycardia (ATP-AT) originating from the atrioventricular (AV) node vicinity was successfully ablated at the entrance to the slow conduction zone indicated by the manifest entrainment technique. We aimed to prospectively validate the efficacy of the combination of CARTO electroanatomical mapping and manifest entrainment in ablating this ATP-AT. Methods Of the 27 AT patients from January 2013 to March 2014, 6 patients with sustained ATP-AT were studied (age, 67±13 years; tachycardia cycle length, 350±95 ms). We first created the CARTO map during AT, and performed rapid pacing from the anterior right atrial wall (ARAW) and cavotricuspid isthmus (CTI) approximately 30 mm remote from the earliest activation site (EAS). We identified the site where manifest entrainment, defined as the orthodromic capture of the EAS with a long conduction time, was observed, and ablated the site approximately 20 mm remote from the EAS, between the pacing site and the EAS. Results Manifest entrainment was demonstrated in all patients paced from the ARAW (four patients) and from the CTI (two patients). Ablation at the prespecified site terminated AT in 6±3 s, and AT became no longer inducible in all patients. At the successful ablation sites, discrete atrial electrograms were recorded; however, low-amplitude, fractionated electrograms suggestive of slow conduction were not observed in all patients. The atrio-His interval during sinus rhythm remained unchanged (from 96±12 to 89±7 ms, p=NS). During 11±6 months, no patients showed AT recurrence and AV conduction abnormality. Conclusion CARTO mapping- and manifest entrainment-guided ablation strategy is effective and safe in the treatment of ATP-AT. PMID:27092195

  12. Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells?

    PubMed Central

    Kam, Wendy R.; Liu, Yang; Ding, Juan; Sullivan, David A.

    2016-01-01

    Purpose Researchers have hypothesized that treatment with cyclosporine A (CyA), interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.g., uridine triphosphate; UTP), and rebamipide may alleviate human meibomian gland dysfunction (MGD) and/or dry eye disease. Investigators have also proposed that prostaglandin analogues (e.g., bimatoprost) may induce MGD. Our goal was to determine whether these compounds directly influence human meibomian gland epithelial cell (HMGEC) function. Methods Multiple concentrations of each compound were tested for effects on immortalized (I) HMGEC morphology and survival. Nontoxic dosages were used for our studies. Immortalized HMGEC were cultured in the presence of vehicle, CyA, IL-1RA, UTP, rebamipide, or bimatoprost for up to 6 days in various media. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract), differentiation (azithromycin), and signaling pathway activation (insulin-like growth factor 1). Cells were analyzed for neutral lipid staining, lysosome accumulation, lipid composition, and phosphatidylinositol-3-kinase/Akt (AKT), phosphorylation. Results Our findings demonstrate that CyA, IL-1RA, UTP, rebamipide, and bimatoprost had no effect on the proliferation; neutral lipid content; lysosome number; or levels of free cholesterol, triglycerides, or phospholipids in IHMGECs. Cylosporine A, IL-1RA, rebamipide, and bimatoprost significantly reduced the phosphorylation of AKT, as compared to control. Of interest, tested doses of CyA above 8 nM killed the IHMGECs. Conclusions Our results show that CyA, IL-1RA, UTP, rebamipide, and bimatoprost do not influence the proliferation or differentiation of IHMGEC. However, with the exception of UTP, these compounds do decrease the activity of the AKT signaling pathway, which is known to promote cell survival. PMID:27552406

  13. Difference Between Dormant Conduction Sites Revealed by Adenosine Triphosphate Provocation and Unipolar Pace-Capture Sites Along the Ablation Line After Pulmonary Vein Isolation.

    PubMed

    Kogawa, Rikitake; Okumura, Yasuo; Watanabe, Ichiro; Sonoda, Kazumasa; Sasaki, Naoko; Takahashi, Keiko; Iso, Kazuki; Nagashima, Koichi; Ohkubo, Kimie; Nakai, Toshiko; Kunimoto, Satoshi; Hirayama, Atsushi

    2016-01-01

    Dormant pulmonary vein (PV) conduction revealed by adenosine/adenosine triphosphate (ATP) provocation test and exit block to the left atrium by pacing from the PV side of the ablation line ("pace and ablate" method) are used to ensure durable pulmonary vein isolation (PVI). However, the mechanistic relation between ATP-provoked PV reconnection and the unexcitable gap along the ablation line is unclear.Forty-five patients with atrial fibrillation (AF) (paroxysmal: 31 patients, persistent: 14 patients; age: 61.1 ± 9.7 years) underwent extensive encircling PVI (EEPVI, 179 PVs). After completion of EEPVI, an ATP provocation test (30 mg, bolus injection) and unipolar pacing (output, 10 mA; pulse width, 2 ms) were performed along the previous EEPVI ablation line to identify excitable gaps. Dormant conduction was revealed in 29 (34 sites) of 179 PVs (16.2%) after EEP-VI (22/45 patients). Pace capture was revealed in 59 (89 sites) of 179 PVs (33.0%) after EEPVI (39/45 patients), and overlapping sites, ie, sites showing both dormant conduction and pace capture, were observed in 22 of 179 (12.3%) PVs (17/45 patients).Some of the ATP-provoked dormant PV reconnection sites were identical to the sites with excitable gaps revealed by pace capture, but most of the PV sites were differently distributed, suggesting that the main underling mechanism differs between these two forms of reconnection. These findings also suggest that performance of the ATP provocation test followed by the "pace and ablate" method can reduce the occurrence of chronic PV reconnections.

  14. Functional Analysis of the Role of Toxoplasma gondii Nucleoside Triphosphate Hydrolases I and II in Acute Mouse Virulence and Immune Suppression.

    PubMed

    Olias, Philipp; Sibley, L David

    2016-07-01

    Bioluminescent reporter assays have been widely used to study the effect of Toxoplasma gondii on host gene expression. In the present study, we extend these studies by engineering novel reporter cell lines containing a gamma-activated sequence (GAS) element driving firefly luciferase (FLUC). In RAW264.7 macrophages, T. gondii type I strain (GT1) infection blocked interferon gamma (IFN-γ)-induced FLUC activity to a significantly greater extent than infection by type II (ME49) and type III (CTG) strains. Quantitative trait locus (QTL) analysis of progeny from a prior genetic cross identified a genomic region on chromosome XII that correlated with the observed strain-dependent phenotype. This QTL region contains two isoforms of the T. gondii enzyme nucleoside triphosphate hydrolase (NTPase) that were the prime candidates for mediating the observed strain-specific effect. Using reverse genetic analysis we show that deletion of NTPase I from a type I strain (RH) background restored the higher luciferase levels seen in the type II (ME49) strain. Rather than an effect on IFN-γ-dependent transcription, our data suggest that NTPase I was responsible for the strain-dependent difference in FLUC activity due to hydrolysis of ATP. We further show that NTPases I and II were not essential for tachyzoite growth in vitro or virulence in mice. Our study reveals that although T. gondii NTPases are not essential for immune evasion, they can affect ATP-dependent reporters. Importantly, this limitation was overcome using an ATP-independent Gaussia luciferase, which provides a more appropriate reporter for use with T. gondii infection studies. PMID:27091930

  15. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.

    PubMed

    Zhou, Qian; Lin, Youxiu; Lin, Yuping; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-01-01

    Biomolecular immobilization and construction of the sensing platform are usually crucial for the successful development of a high-efficiency detection system. Herein we report on a novel and label-free signal-amplified aptasensing for sensitive electrochemical detection of small molecules (adenosine triphosphate, ATP, used in this case) by coupling with target-induced hybridization chain reaction (HCR) and the assembly of electroactive silver nanotags. The system mainly consisted of two alternating hairpin probes, a partial-pairing trigger-aptamer duplex DNA and a capture probe immobilized on the electrode. Upon target ATP introduction, the analyte attacked the aptamer and released the trigger DNA, which was captured by capture DNA immobilized on the electrode to form a newly partial-pairing double-stranded DNA. Thereafter, the exposed domain at trigger DNA could be utilized as the initator strand to open the hairpin probes in sequence, and propagated a chain reaction of hybridization events between two alternating hairpins to form a long nicked double-helix. The electrochemical signal derived from the assembled silver nanotags on the nicked double-helix. Under optimal conditions, the electrochemical aptasensor could exhibit a high sensitivity and a low detection limit, and allowed the detection of ATP at a concentration as low as 0.03 pM. Our design showed a high selectivity for target ATP against its analogs because of the high-specificity ATP-aptamer reaction, and its applicable for monitoring ATP in the spiking serum samples. Improtantly, the distinct advantages of the developed aptasensor make it hold a great potential for the development of simple and robust sensing strategies for the detection of other small molecules by controlling the apatmer sequence.

  16. Alcohol-induced blood-brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release.

    PubMed

    Haorah, James; Knipe, Bryan; Gorantla, Santhi; Zheng, Jialin; Persidsky, Yuri

    2007-01-01

    The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, peptides and leukocytes in and out of the brain. Tight junctions (TJ) composed of TJ proteins (occludin, claudins and zonula occludens) ensure the structural integrity of the BMVEC monolayer. Neuropathologic studies indicated that the BBB was impaired in alcohol abusers; however, the underlying mechanism of BBB dysfunction remains elusive. Using primary human BMVEC, we previously demonstrated that oxidative stress induced by ethanol (EtOH) metabolism in BMVEC activated myosin light chain kinase (MLCK), resulting in the enhanced phosphorylation of either cytoskeletal or TJ proteins, and in BBB impairment. We proposed that EtOH metabolites stimulated inositol 1,4,5-triphosphate receptor (IP(3)R)-operated intracellular calcium (Ca(2+)) release, thereby causing the activation of MLCK in BMVEC. Indeed, treatment of primary human BMVEC with EtOH or its metabolites resulted in the increased expression of IP(3)R protein and IP(3)R-gated intracellular Ca(2+) release. These functional changes paralleled MLCK activation, phosphorylation of cytoskeletal/TJ proteins, loss of BBB integrity, and enhanced leukocyte migration across BMVEC monolayers. Inhibition of either EtOH metabolism or IP(3)R activation prevented BBB impairment. These findings suggest that EtOH metabolites act as signaling molecules for the activation of MLCK via the stimulation of IP(3)R-gated intracellular Ca(2+) release in BMVEC. These putative events can lead to BBB dysfunction in the setting of alcoholism, and to neuro-inflammatory disorders promoting leukocyte migration across the BBB.

  17. Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex.

    PubMed

    Fredericks, Gregory J; Hoffmann, FuKun W; Rose, Aaron H; Osterheld, Hanna J; Hess, Franz M; Mercier, Frederic; Hoffmann, Peter R

    2014-11-18

    Calcium (Ca(2+)) is a secondary messenger in cells and Ca(2+) flux initiated from endoplasmic reticulum (ER) stores via inositol 1,4,5-triphosphate (IP3) binding to the IP3 receptor (IP3R) is particularly important for the activation and function of immune cells. Previous studies demonstrated that genetic deletion of selenoprotein K (Selk) led to decreased Ca(2+) flux in a variety of immune cells and impaired immunity, but the mechanism was unclear. Here we show that Selk deficiency does not affect receptor-induced IP3 production, but Selk deficiency through genetic deletion or low selenium in culture media leads to low expression of the IP3R due to a defect in IP3R palmitoylation. Bioinformatic analysis of the DHHC (letters represent the amino acids aspartic acid, histidine, histidine, and cysteine in the catalytic domain) family of enzymes that catalyze protein palmitoylation revealed that one member, DHHC6, contains a predicted Src-homology 3 (SH3) domain and DHHC6 is localized to the ER membrane. Because Selk is also an ER membrane protein and contains an SH3 binding domain, immunofluorescence and coimmunoprecipitation experiments were conducted and revealed DHHC6/Selk interactions in the ER membrane that depended on SH3/SH3 binding domain interactions. DHHC6 knockdown using shRNA in stably transfected cell lines led to decreased expression of the IP3R and impaired IP3R-dependent Ca(2+) flux. Mass spectrophotometric and bioinformatic analyses of the IP3R protein identified two palmitoylated cysteine residues and another potentially palmitoylated cysteine, and mutation of these three cysteines to alanines resulted in decreased IP3R palmitoylation and function. These findings reveal IP3R palmitoylation as a critical regulator of Ca(2+) flux in immune cells and define a previously unidentified DHHC/Selk complex responsible for this process.

  18. Mechanism of attenuation of protein loss in murine C2C12 myotubes by D-myo-inositol 1,2,6-triphosphate.

    PubMed

    Russell, Steven T; Siren, Pontus M A; Siren, Matti J; Tisdale, Michael J

    2010-01-15

    D-myo-inositol 1,2,6-triphosphate (alpha trinositol, AT) has been shown to attenuate muscle atrophy in a murine cachexia model through an increase in protein synthesis and a decrease in degradation. The mechanism of this effect has been investigated in murine myotubes using a range of catabolic stimuli, including proteolysis-inducing factor (PIF), angiotensin II (Ang II), lipopolysaccharide, and tumor necrosis factor-alpha/interferon-gamma. At a concentration of 100 muM AT was found to attenuate both the induction of protein degradation and depression of protein synthesis in response to all stimuli. The effect on protein degradation was accompanied by attenuation of the increased expression and activity of the ubiquitin-proteasome pathway. This suggests that AT inhibits a signalling step common to all four agents. This target has been shown to be activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) and the subsequent phosphorylation of eukaryotic initiation factor 2 on the alpha-subunit, together with downstream signalling pathways leading to protein degradation. AT also inhibited activation of caspase-3/-8, which is thought to lead to activation of PKR. The mechanism of this effect may be related to the ability of AT to chelate divalent metal ions, since the attenuation of the increased activity of the ubiquitin-proteasome pathway by PIF and Ang II, as well as the depression of protein synthesis by PIF, were reversed by increasing concentrations of Zn(2+). The ability of AT to attenuate muscle atrophy by a range of stimuli suggests that it may be effective in several catabolic conditions.

  19. Extracts from salivary glands stimulate aggression and inositol-1, 4, 5-triphosphate (IP3) production in the vomeronasal organ of mice.

    PubMed

    Taha, Murtada; McMillon, Ronald; Napier, Audrey; Wekesa, Kennedy S

    2009-08-01

    Mammals use chemical cues to coordinate social and reproductive behaviors. Chemical cues are detected by the VNO organ (VNO), which is a cartilage-encased elongated organ associated with the vomer bone in the rostral nasal cavity. The resident intruder paradigm was utilized to examine the ability of saliva and its feeder exocrine glands, the submaxillary, parotid, and sublingual glands to mediate aggression in mice. Saliva and extracts from submaxillary and parotid glands, but not extracts from sublingual glands of male CD-1 mice, induced a greater number of attacks and lower latencies to sniff and attack (p<0.05) and significantly increased IP(3) production (p<0.05) versus vehicle (PBS) in CD-1 male mice VNO. We further show that CD-1 male mouse saliva and submaxillary gland extract induced significantly more attacks and a lower latency to attack in lactating female CD-1 mice and produced significantly more inositol triphosphate (IP(3)), indicative of phospholipase C(beta) signaling which mediates pheromonal activity, in CD-1 female VNO compared to PBS. Castrated CD-1 male mouse saliva, and exocrine gland extracts induced significantly less IP(3) production in male VNO and less aggression by CD-1 males and lactating females compared to responses to normal CD-1 male mouse saliva and gland extracts. Thus, chemical cues present in saliva, submaxillary and parotid glands of CD-1 male mice are capable of stimulating aggression in male and female congenic mice which are correlated with significant production of IP(3) in the VNO. Additionally, these stimulations of aggression and IP(3) production are shown to be androgen-dependent.

  20. Arrhythmogenic coupling between the Na+ -Ca2+ exchanger and inositol 1,4,5-triphosphate receptor in rat pulmonary vein cardiomyocytes.

    PubMed

    Okamoto, Yosuke; Takano, Makoto; Ohba, Takayoshi; Ono, Kyoichi

    2012-05-01

    Atrial fibrillation, the most common sustained arrhythmia, is believed to be triggered by ectopic electrical activity originating in the myocardial sleeves surrounding the pulmonary veins (PVs). It has been reported that myocardial sleeves have the potential to generate automaticity in response to norepinephrine. This study investigated the cellular mechanisms underlying norepinephrine-induced automaticity in PV cardiomyocytes isolated from rats. Application of 10 μM norepinephrine to PV cardiomyocytes induced repetitive and transient increases in intracellular Ca(2+) concentrations. The Ca(2+) transient was accompanied by depolarization, and induced automatic rhythmic action potentials at approximately 4Hz in perforated patch clamp preparations in 27% of myocytes were observed. When the recording mode was switched from current-clamp to voltage-clamp mode during the continuous presence of automaticity, an oscillatory current was observed. The oscillatory current was always inward, irrespective of the membrane potential, indicating that the current was derived mainly from the Na(+)-Ca(2+) exchanger (NCX). The norepinephrine-induced automaticity was suppressed by blocking either the β(1)- or α(1)-adrenoceptor. Additionally, this automaticity was blocked by inhibitors of phospholipase C and the inositol 1,4,5-triphosphate receptor (IP(3)R) but not by a protein kinase C inhibitor. We observed that the transverse-tubule system was enriched in cardiomyocytes in the PV, in contrast to those of the atrium, and that the NCX and IP(3)R were co-localized along transverse tubules. These findings suggest that a functional coupling between the NCX and IP(3)R causes arrhythmic excitability of the PV during the presence of combined β(1)- and α(1)-adrenoceptor stimulation.

  1. Inositol-1,4,5-triphosphate receptors mediate activity-induced synaptic Ca2+ signals in muscle fibers and Ca2+ overload in slow-channel syndrome.

    PubMed

    Zayas, Roberto; Groshong, Jason S; Gomez, Christopher M

    2007-04-01

    Strict control of calcium entry through excitatory synaptic receptors is important for shaping synaptic responses, gene expression, and cell survival. Disruption of this control may lead to pathological accumulation of Ca2+. The slow-channel congenital myasthenic syndrome (SCS), due to mutations in muscle acetylcholine receptor (AChR), perturbs the kinetics of synaptic currents, leading to post-synaptic Ca2+ accumulation. To understand the regulation of calcium signaling at the neuromuscular junction (NMJ) and the etiology of Ca2+ overload in SCS we studied the role of sarcoplasmic Ca2+ stores in SCS. Using fura-2 loaded dissociated fibers activated with acetylcholine puffs, we confirmed that Ca2+ accumulates around wild type NMJ and discovered that Ca2+ accumulates significantly faster around the NMJ of SCS transgenic dissociated muscle fibers. Additionally, we determined that this process is dependant on the activation, altered kinetics, and movement of Ca2+ ions through the AChR, although, surprisingly, depletion of intracellular stores also prevents the accumulation of this cation around the NMJ. Finally, we concluded that the sarcoplasmic reticulum is the main source of Ca2+ and that inositol-1,4,5-triphosphate receptors (IP3R), and to a lesser degree L-type voltage gated Ca2+ channels, are responsible for the efflux of this cation from intracellular stores. These results suggest that a signaling system mediated by the activation of AChR, Ca2+, and IP3R is responsible for localized Ca2+ signals observed in muscle fibers and the Ca2+ overload observed in SCS.

  2. Attenuation by alpha,beta-methylenadenosine-5'-triphosphate of periarterial nerve stimulation-induced renal vasoconstriction is not due to desensitization of purinergic receptors.

    PubMed

    Sehic, E; Ruan, Y; Malik, K U

    1994-11-01

    We investigated in the isolated rat kidney the modulation of vasoconstrictor responses to ATP (0.05-0.5 mumol), renal nerve stimulation (RNS) (0.5-10.0 Hz), norepinephrine (NE) (0.15-0.9 nmol), angiotensin II (2 pmol) and arginine vasopressin (3 pmol) by alpha,beta-methylenadenosine-5'-triphosphate (alpha beta mATP) infused at 6 microM (Procedure I) or for short intervals (5 min) at a low concentration (60 nM) gradually increased to 6 microM to reduce the dramatic initial vasoconstriction (Procedure II). Infusion of alpha beta mATP (Procedure I) produced a marked, transient rise in perfusion pressure of 146 to 198 mm Hg that returned to basal level within 10 min and thereafter inhibited the vasoconstrictor response to ATP, RNS (0.5-6.0 Hz), NE, angiotensin II and arginine vasopressin. Infusion of alpha beta mATP by Procedure II produced a smaller maximal transient increase in perfusion pressure (< 100 mm Hg) and reduced the vasoconstrictor responses to RNS at 0.5 to 2.0 Hz and to the lower dose of NE (0.15 nmol) only. ATP infusion reduced the vasoconstrictor response to both RNS and NE. In animals pretreated with reserpine, the effect of RNS to produce vasoconstriction was inhibited. These data suggest that ATP does not contribute to the renal vasoconstrictor response elicited by RNS, and that attenuation of renal vasoconstrictor responses by alpha beta mATP is not due to desensitization of purinergic receptors. PMID:7965821

  3. [Thallium-201 myocardial scintigraphy after intravenous infusion of adenosine triphosphate disodium: a preliminary study in the diagnosis of coronary artery disease].

    PubMed

    Kinoshita, S; Yamashita, S; Suzuki, T; Muramatsu, T; Ide, M; Dohi, Y; Nishimura, K; Miyamae, T

    1991-12-01

    The feasibility and safety of thallium-201 myocardial scintigraphy after the intravenous infusion of adenosine triphosphate disodium (ATP) (Adetphos, Kowa) were studied in eight patients with angina pectoris and/or old myocardial infarction. Coronary arteriography (CAG) was performed by the conventional method in all patients. ATP was infused for 5 min and thallium was injected at 3 min after the start of ATP infusion. ATP was given at 0.12 mg/min/kg in two patients (group A), 0.16 mg/min/kg in three patients (group B), 0.20 mg/min/kg in one patient (group C) and 0.28 mg/min/kg in two patients (group D). SPECT images were obtained at 10 min and 180 min after thallium injection. No significant hemodynamic changes were observed in group A and B. Severe hypotension was observed in group C and one member of group D. Chest pain was experienced by one patient in group A, two in group B, one in group C, and both of the two in group D. ST depression on the electrocardiogram (ECG) was documented in one patient each of groups B and C. In one group D patient, the study was discontinued because of complete atrioventricular block persistent for 5 beats. The correlation between thallium imaging and CAG was unclear in group A, reasonable in groups B and C, and obscure in group D because of side effects. None of the patients who developed side effects of ATP were administered sublingual nitroglycerin or intravenous aminophylline. Their symptoms or ECG changes improved spontaneously within 2 min and disappeared within 5 min after termination of infusion. In conclusion, the optimal ATP regimen for this purpose was considered to be a 5 min infusion at 0.16 mg/kg/min and this method was found to be feasible and safe. PMID:1784093

  4. Inactivation efficiency of Escherichia coli and autochthonous bacteria during ozonation of municipal wastewater effluents quantified with flow cytometry and adenosine tri-phosphate analyses.

    PubMed

    Lee, Yunho; Imminger, Stefanie; Czekalski, Nadine; von Gunten, Urs; Hammes, Frederik

    2016-09-15

    Inactivation kinetics of autochthonous bacteria during ozonation of wastewater effluents were investigated using cultivation-independent flow cytometry (FCM) with total cell count (TCC) and intact cell count (ICC) and intracellular adenosine triphosphate (ATP) analysis. The principles of the methods including ozone inactivation kinetics were demonstrated with laboratory-cultured Escherichia coli spiked into filtered and sterilized wastewater effluent. Both intracellular ATP and ICC decreased with increasing ozone doses, with ICC being the more conservative parameter. The log-inactivation levels (-log(N/N0) of E. coli reached the method detection limits for FCM (∼3) and ATP (∼1.7) at specific ozone doses of ≥0.5 gO3/gDOC. During ozonation of four real wastewater effluents, the log-inactivation of autochthonous bacteria with FCM ICC was 0.3-1.0 for 0.25 gO3/gDOC and increased to 1.1-2.1 for 0.5 gO3/gDOC, but remained at a similar level of 1.5-2.8 for a further increase of the specific ozone doses to 1.0 and 1.5 gO3/gDOC. The FCM data also showed that autochthonous bacteria were composed of communities with high and low ozone reactivity. The inactivation levels measured with intracellular ATP were reasonably correlated to ICC (r(2) = 0.8). Overall, FCM and ATP measurements were demonstrated to be useful tools to monitor the inactivation of autochthonous bacteria during ozonation of municipal wastewater effluents. PMID:27322566

  5. mu-Opioid receptor-stimulated guanosine-5'-O-(gamma-thio)-triphosphate binding in rat thalamus and cultured cell lines: signal transduction mechanisms underlying agonist efficacy.

    PubMed

    Selley, D E; Sim, L J; Xiao, R; Liu, Q; Childers, S R

    1997-01-01

    G protein activation by different mu-selective opioid agonists was examined in rat thalamus, SK-N-SH cells, and mu-opioid receptor-transfected mMOR-CHO cells using agonist-stimulated guanosine-5'-O-(gamma-thio)-triphosphate ([35S]GTP gamma S) binding to membranes in the presence of excess GDP. [D-Ala2, N-MePhe4, Gly5-ol]Enkephalin (DAMGO) was the most efficacious agonist in rat thalamus and SK-N-SH cells, followed by (in rank order) fentanyl = morphine > > buprenorphine. In mMOR-CHO cells expressing a high density of mu receptors, no differences were observed among DAMGO, morphine or fentanyl, but these agonists were more efficacious than buprenorphine, which was more efficacious than levallorphan. In all three systems, efficacy differences were magnified by increasing GDP concentrations, indicating that the activity state of G proteins can affect agonist efficacy. Scatchard analysis of net agon stimulated [35S]GTP gamma S binding revealed two major components responsible for agonist efficacy differences. First, differences in the KD values of agonist-stimulated [35S]GTP gamma S binding between high efficacy agonists (DAMGO, fentanyl, and morphine) and classic partial agonists (buprenorphine and levallorphan) were observed in all three systems. Second, differences in the Bmax value of agonist-stimulated [35S]GTP gamma S binding were observed between DAMGO and morphine or fentanyl in rat thalamus and SK-N-SH cells and between the high efficacy agonists and buprenorphine or levallorphan in all three systems. These results suggest that mu-opioid agonist efficacy is determined by the magnitude of the receptor-mediated affinity shift in the binding of GTP (or[35S]GTP gamma S) versus GDP to the G protein and by the number of G proteins activated per occupied receptor.

  6. Cysteinyl peptides of rabbit muscle pyruvate kinase labeled by the affinity label 8-((4-bromo-2,3-dioxobutyl)thio)adenosine 5 prime -triphosphate

    SciTech Connect

    Vollmer, S.H.; Colman, R.F. )

    1990-03-13

    The affinity label 8-((4-bromo-2,3-dioxobutyl)thio)adenosine 5{prime}-triphosphate (8-BDB-TA-5{prime}-TP) reacts covalently with rabbit muscle pyruvate kinase, incorporating 2 mol of reagent/mol of enzyme subunit upon complete inactivation. Protection against inactivation is provided by phosphoenolpyruvate, K{sup +}, and Mn{sup 2+} and only 1 mol of reagent/mol of subunit is incorporated. The authors have now identified the resultant modified residues. After reaction with 8-BDB-TA-5{prime}-TP at pH 7.0, modified enzyme was incubated with ({sup 3}H)NaBH{sub 4} to reduce the carbonyl groups of enzyme-bound 8-BDB-TA-5{prime}-TP and to introduce a radioactive tracer into the modified residues. Following carboxymethylation and digestion with trypsin, the radioactive peptides were separated on a phenylboronate agarose column followed by reverse-phase high-performance liquid chromatography in 0.1% trifluoroacetic acid with an acetonitrile gradient. Gas-phase sequencing gave the cysteine-modified peptides Asn{sup 162}-Ile-Cys-Lys{sup 165} and Cys{sup 151}-Asp-Glu-Asn-Ile-Leu-Trp-Leu-Asp-Tyr-Lys{sup 161}, with a smaller amount of Asn{sup 43}-Thr-Gly-Ile-Ile-Cys-Thr-Ile-Gly-Pro-Ala-Ser-Arg{sup 55}. Reaction in the presence of the protectants phosphoenolpyruvate, K{sup +}, and Mn{sup 2+} yielded Asn-Ile-Cys-Lys as the only labeled peptide, indicating that inactivation is caused by modification of Cys{sup 151} and Cys{sup 48}.

  7. Selective Protection of Human Liver Tissue in TNF-Targeting of Cancers of the Liver by Transient Depletion of Adenosine Triphosphate

    PubMed Central

    Weiland, Timo; Klein, Kathrin; Zimmermann, Martina; Speicher, Tobias; Venturelli, Sascha; Berger, Alexander; Bantel, Heike; Königsrainer, Alfred; Schenk, Martin; Weiss, Thomas S.; Wendel, Albrecht; Schwab, Matthias; Bitzer, Michael; Lauer, Ulrich M.

    2012-01-01

    Background Tumor necrosis factor alpha (TNF) is able to kill cancer cells via receptor-mediated cell death requiring adenosine triphosphate (ATP). Clinical usage of TNF so far is largely limited by its profound hepatotoxicity. Recently, it was found in the murine system that specific protection of hepatocytes against TNF's detrimental effects can be achieved by fructose-mediated ATP depletion therein. Before employing this quite attractive selection principle in a first clinical trial, we here comprehensively investigated the interdependence between ATP depletion and TNF hepatotoxicity in both in vitro and ex vivo experiments based on usage of primary patient tissue materials. Methods Primary human hepatocytes, and both non-tumorous and tumorous patient-derived primary liver tissue slices were used to elucidate fructose-induced ATP depletion and TNF-induced cytotoxicity. Results PHH as well as tissue slices prepared from non-malignant human liver specimen undergoing a fructose-mediated ATP depletion were both demonstrated to be protected against TNF-induced cell death. In contrast, due to tumor-specific overexpression of hexokinase II, which imposes a profound bypass on hepatocytic-specific fructose catabolism, this was not the case for human tumorous liver tissues. Conclusion Normal human liver tissues can be protected transiently against TNF-induced cell death by systemic pretreatment with fructose used in non-toxic/physiologic concentrations. Selective TNF-targeting of primary and secondary tumors of the liver by transient and specific depletion of hepatocytic ATP opens up a new clinical avenue for the TNF-based treatment of liver cancers. PMID:23272249

  8. Estimation of intracellular concentration of stavudine triphosphate in HIV-infected children given a reduced dose of 0.5 milligrams per kilogram twice daily.

    PubMed

    Sy, Sherwin K B; Innes, Steve; Derendorf, Hartmut; Cotton, Mark F; Rosenkranz, Bernd

    2014-01-01

    The antiviral efficacy of stavudine depends on the trough concentration of its intracellular metabolite, stavudine-triphosphate (d4T-TP), while the degree of stavudine's mitochondrial toxicity depends on its peak concentration. Rates of mitochondrial toxicity are high when stavudine is used at the current standard pediatric dose (1 mg/kg twice daily [BID]). Evidence from adult work suggests that half of the original standard adult dose (i.e., 20 mg BID) may be equally effective, with markedly less mitochondrial toxicity. We present a population pharmacokinetic model to predict intracellular d4T-TP concentrations in pediatric HIV-infected patients administered a dose of 0.5 mg/kg BID. Our model predicted that the reduced pediatric dose would result in a trough intracellular d4T-TP concentration above that of the reduced 20-mg adult dose and a peak concentration below that of the 20-mg adult dose. The simulated pediatric intracellular d4T-TP at 0.5 mg/kg BID resulted in median peak and trough values of approximately 23.9 fmol/10(6) cells (95% prediction interval [PI], 14.2 to 41 fmol/10(6) cells) and 14.8 fmol/10(6) cells (95% PI, 7.2 to 31 fmol/10(6) cells), respectively. The peak and trough concentrations resulting from a 20-mg BID adult dose were 28.4 fmol/10(6) cells (95% PI, 17.3 to 45.5 fmol/10(6) cells) and 13 fmol/10(6) cells (95% PI, 6.8 to 28.6 fmol/10(6) cells), respectively. Halving the current standard pediatric dose should therefore not compromise antiviral efficacy, while markedly reducing mitochondrial toxicity.

  9. Temperature Dependence of NMR Relaxation Times of Nucleoside Triphosphates and Inorganic Phosphate in the Isolated Perfused Rat Liver. Effect on Pi Compartmentation

    NASA Astrophysics Data System (ADS)

    Dufour, Sylvie; Thiaudière, Eric; Vidal, Giovanni; Gallis, Jean-Louis; Rousse, Nicole; Canioni, Paul

    1996-11-01

    The effect of temperature on31P NMR spectra from isolated perfused rat livers was studied at 9.4 T. Relaxation times (T1andT2) of nucleoside triphosphates (NTP) and inorganic phosphate (Pi) were determined at 37, 25, 15, and 4°C. Under hypothermic conditions, an unexpected apparent line sharpening in the Pi spectral region and a clear emergence of an additional Pi resonance were observed. This additional signal was assigned to mitochondrial Pi.T1values obtained for cytosolic and mitochondrial Pi at 4°C were 1.14 ± 0.24 s (n= 5) and 0.71 ± 0.18 s (n= 5), respectively. No significant mitochondrial contribution to the Pi resonance was observed at 37°C. Quantification of Pi and NTP liver contents at 37 and 4°C was performed by comparing the perfused liver spectrum and the corresponding perchloric acid extract spectrum. Under experimental conditions of low external Pi (0.12 mM), it was concluded that intracellular Pi was completely NMR-visible at 4 and 37°C. The observation of the mitochondrial Pi signal at 4°C was well explained by an increase in the Pi level within the matrix, in response to the mitochondrial swelling induced by hypothermia, as observed by electron microscopy.T2values for the cytosolic Pi at 37 and 4°C were 17 ± 4 ms (n= 8) and 22 ± 4 ms (n= 10), respectively. Comparison with measured linewidths indicated that line broadening for the main phosphorylated metabolites-including matrix Pi-was the result ofB0field inhomogeneity. The additional broadening of the cytosolic Pi resonance at 4 and 37°C was attributed to pH heterogeneity within the liver.

  10. Cardioprotective Benefits of Adenosine Triphosphate: Sensitive Potassium Channel Opener Diazoxide Are Lost with Administration after the Onset of Stress in Mouse and Human Myocytes

    PubMed Central

    Janjua, M Burhan; Makepeace, Carol M; Anastacio, Melissa M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2014-01-01

    Background Adenosine triphosphate - sensitive (KATP) potassium channel opener diazoxide (DZX) maintains myocyte volume and contractility during stress via an unknown mechanism when administered at the onset of stress. This study was performed to investigate the cardioprotective potential of DZX when added after the onset of the stresses of hyperkalemic cardioplegia, metabolic inhibition, and hypo osmotic stress. Study Design Isolated mouse ventricular and human atrial myocytes were exposed to control Tyrode’s solution (TYR) for 10–20 min, test solution for 30 min (hypothermic hyperkalemic cardioplegia (CPG), CPG + 100uM diazoxide (CPG+DZX), metabolic inhibition (MI), MI+DZX, mild hypo osmotic stress (0.9T), or 0.9T + DZX) with DZX added after 10 or 20 min stress, followed by 20 min re-exposure to TYR (+/− DZX). Myocyte volume (human + mouse) and contractility (mouse) were compared. Results Mouse and human myocytes demonstrated significant swelling during exposure to CPG, MI, and hypo osmotic stress that was not prevented by DZX when administered either at 10 or 20 min after the onset of stress. Contractility following the stress of CPG in mouse myocytes significantly declined when DZX was administered 20 min after the onset of stress (p<0.05 vs. TYR). Contractility following hypo osmotic stress in mouse myocytes was not altered by the addition of DZX. Conclusions To maintain myocyte volume homeostasis and contractility during stress (hyperkalemic cardioplegia, metabolic inhibition, and hypo osmotic stress), KATP channel opener diazoxide requires administration at the onset of stress in this isolated myocyte model. These data have potential implications for any future clinical application of diazoxide. PMID:25158912

  11. Sensitivity of the Polymerase of Vesicular Stomatitis Virus to 2′ Substitutions in the Template and Nucleotide Triphosphate during Initiation and Elongation*

    PubMed Central

    Morin, Benjamin; Whelan, Sean P. J.

    2014-01-01

    The RNA synthesis machinery of non-segmented negative-sense RNA viruses comprises a ribonucleoprotein complex of the genomic RNA coated by a nucleocapsid protein (N) and associated with polymerase. Work with vesicular stomatitis virus (VSV), a prototype, supports a model of RNA synthesis whereby N is displaced from the template to allow the catalytic subunit of the polymerase, the large protein (L) to gain access to the RNA. Consistent with that model, purified L can copy synthetic RNA that contains requisite promoter sequences. Full processivity of L requires its phosphoprotein cofactor and the template-associated N. Here we demonstrate the importance of the 2′ position of the RNA template and the substrate nucleotide triphosphates during initiation and elongation by L. The VSV polymerase can initiate on both DNA and RNA and can incorporate dNTPs. During elongation, the polymerase is sensitive to 2′ modifications, although dNTPs can be incorporated, and mixed DNA-RNA templates can function. Modifications to the 2′ position of the NTP, including 2′,3′-ddCTP, arabinose-CTP, and 2′-O-methyl-CTP, inhibit polymerase, whereas 2′-amino-CTP is incorporated. The inhibitory effects of the NTPs were more pronounced on authentic N-RNA with the exception of dGTP, which is incorporated. This work underscores the sensitivity of the VSV polymerase to nucleotide modifications during initiation and elongation and highlights the importance of the 2′-hydroxyl of both template and substrate NTP. Moreover, this study demonstrates a critical role of the template-associated N protein in the architecture of the RNA-dependent RNA polymerase domain of L. PMID:24526687

  12. A simple, fast, and sensitive assay for the detection of DNA, thrombin, and adenosine triphosphate based on Dual-Hairpin DNA structure.

    PubMed

    He, Xiuping; Wang, Guangfeng; Xu, Gang; Zhu, Yanhong; Chen, Ling; Zhang, Xiaojun

    2013-11-19

    In the present study, based on multifunctional Dual-Hairpin DNA structure, a simple, fast and high sensitive assay for the detection of DNA, thrombin and adenosine triphosphate (ATP) was demonstrated. DNA sequence labeled with methylene blue (MB), which was designed as single-stranded DNA (ssDNA) matching with target DNA, thrombin, or ATP aptamer, hybridized to the adjunct probe and formed the dual-hairpin structure on the electrode. With the hybridization of adjunct probe and the hairpin-like capture probe in the stem region, the dual-hairpin was formed with outer and inner hairpins. By the conjugation of the target probe with the adjunct probe in the outer hairpin, the adjunct probe divorced from the dual-hairpin structure. The adjunct probe with signal molecules MB, attaching near or divorcing far from the electrode, produced electrochemical signal change and efficient electron transfer due to the fact that it was in proximity to the electrode. However, upon hybridization with the perfect match target, the redox label with the target probe was forced away from the modified electrode, thus resulting in the change of the Dual-Hairpin DNA conformation, which enables impedance of the efficient electron transfer of MB and, consequently, a detectable change of the electrochemical response. In addition, another highlight of this biosensor is its regenerability and stability owing to the merits of structure. Also, based on this Dual-Hairpin platform, the detection limits of DNA, thrombin, and ATP were 50 nM, 3 pM, and 30 nM, respectively. Moreover, this pattern also demonstrated excellent regenerability, reproducibility, and stability. Additionally, given to its ease-of-use, simplicity in design, easy operations, as well as regenerability and stability, the proposed approach may be applied as an excellent design prompter in the preparation of other molecular sensors.

  13. Effects of wortmannin, sodium nitroprusside, insulin, genistein, and guanosine triphosphate on chemotaxis and cell growth of Entodinium caudatum, Epidinium caudatum, and mixed ruminal protozoa.

    PubMed

    Diaz, H L; Knapp, J R; Karnati, S K R; Dehority, B A; Firkins, J L

    2014-01-01

    The mechanisms by which ruminal protozoa sense and migrate toward nutrients are not fully understood. Chemotaxis by many diverse eukaryotic cells is mediated by phosphatidylinositol-3-kinase, which is highly conserved in receptor tyrosine kinase (RTK) signaling pathways and consistently inhibited by wortmannin. In experiment 1a, increasing the concentration of wortmannin inhibited cell growth nonlinearly at 24h of a culture of the rumen protozoan Entodinium caudatum, but high variability prevented growth inhibition of Epidinium caudatum from reaching significance. In experiment 1b, increasing the insulin concentration recovered 24-h cell counts for both cultures, depending on wortmannin concentration. In experiment 2, addition of sodium nitroprusside (Snp; activator of protein kinase G for cilial beat reversal in nonrumen ciliate models) at 500µM or wortmannin at 200µM in beakers containing rumen fluid decreased random swimming by mixed entodiniomorphids into capillary tubes (inserted into beakers) containing saline. Both Snp and wortmannin increased chemotaxis into tubes containing glucose compared with the beaker control. For isotrichids, beaker treatments had no response. Glucose increased chemotaxis, but peptides decreased chemotaxis even when combined with glucose. In experiment 3, we assessed preincubation of genistein (a purported RTK blocker in nonrumen ciliate models) at 40 or 400µM in beakers and guanosine triphosphate (GTP; a universal chemorepellent in nonrumen ciliate models, perhaps mediated through an RTK) at 10 or 100µM combined with glucose in capillary tubes. Neither genistein nor GTP affected chemotaxis toward glucose for entodiniomorphids. However, GTP at 100µM reduced chemotaxis toward glucose for isotrichids. After the animal is fed, isotrichids that are depleted in glycogen migrate to the dorsal area of the rumen, and the rapid uptake of sugars is enhanced through strong chemotaxis but can be reversed by peptides or GTP. In contrast

  14. Mechanism of Inhibition of HIV-1 Reverse Transcriptase by 4′-Ethynyl-2-fluoro-2′-deoxyadenosine Triphosphate, a Translocation-defective Reverse Transcriptase Inhibitor*

    PubMed Central

    Michailidis, Eleftherios; Marchand, Bruno; Kodama, Eiichi N.; Singh, Kamlendra; Matsuoka, Masao; Kirby, Karen A.; Ryan, Emily M.; Sawani, Ali M.; Nagy, Eva; Ashida, Noriyuki; Mitsuya, Hiroaki; Parniak, Michael A.; Sarafianos, Stefan G.

    2009-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) are employed in first line therapies for the treatment of human immunodeficiency virus (HIV) infection. They generally lack a 3′-hydroxyl group, and thus when incorporated into the nascent DNA they prevent further elongation. In this report we show that 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA), a nucleoside analog that retains a 3′-hydroxyl moiety, inhibited HIV-1 replication in activated peripheral blood mononuclear cells with an EC50 of 0.05 nm, a potency several orders of magnitude better than any of the current clinically used NRTIs. This exceptional antiviral activity stems in part from a mechanism of action that is different from approved NRTIs. Reverse transcriptase (RT) can use EFdA-5′-triphosphate (EFdA-TP) as a substrate more efficiently than the natural substrate, dATP. Importantly, despite the presence of a 3′-hydroxyl, the incorporated EFdA monophosphate (EFdA-MP) acted mainly as a de facto terminator of further RT-catalyzed DNA synthesis because of the difficulty of RT translocation on the nucleic acid primer possessing 3′-terminal EFdA-MP. EFdA-TP is thus a translocation-defective RT inhibitor (TDRTI). This diminished translocation kept the primer 3′-terminal EFdA-MP ideally located to undergo phosphorolytic excision. However, net phosphorolysis was not substantially increased, because of the apparently facile reincorporation of the newly excised EFdA-TP. Our molecular modeling studies suggest that the 4′-ethynyl fits into a hydrophobic pocket defined by RT residues Ala-114, Tyr-115, Phe-160, and Met-184 and the aliphatic chain of Asp-185. These interactions, which contribute to both enhanced RT utilization of EFdA-TP and difficulty in the translocation of 3′-terminal EFdA-MP primers, underlie the mechanism of action of this potent antiviral nucleoside. PMID:19837673

  15. Cross-linking of myosin subfragment 1 and heavy meromyosin by use of vanadate and a bis(adenosine 5'-triphosphate) analogue.

    PubMed

    Munson, K B; Smerdon, M J; Yount, R G

    1986-11-18

    The synthesis of a divalent ATP analogue [3,3'-dithiobis[3'(2')-O-[6-(propionylamino)hexanoyl]adenosine 5'-triphosphate] (bis22ATP)] is described in which two molecules of ATP are linked via esterification of their 3'(2')-hydroxyls to the linear dicarboxylic acid 3,3'-dithiobis[N-(5-carboxypentyl)-propionamide] [[HO2C(CH2)5NHC(O)(CH2)2S-]2]. This linkage introduces 22 atoms (a maximum of approximately 2.8 nm) between the ribose oxygens of two ATP molecules. Myosin subfragment 1 (SF1) or heavy meromyosin (HMM) readily cleave bis22ATP to bis22ADP. Upon subsequent addition of excess vanadate ion, both enzymes are rapidly inactivated by formation of a stable vanadate-bis22ADP complex at the active site. By adjustment of the reaction conditions, dimers of SF1 or HMM, both cross-linked with bis22ADP-vanadate, could be prepared. Dimers of SF1 could be separated from monomers by sucrose gradient centrifugation but not by gel filtration. These observations imply that the average Stokes radius of the dimer approximates that of the monomer, a result predicted only for monomers linked approximately side by side. Conversely, dimers of HMM were separated from HMM monomers by gel filtration, reflecting an increase in their Stokes radii. This increase, however, prevented resolution of HMM dimers from monomers by sucrose gradient centrifugation. These results and the molecular dimensions of bis22ATP suggest that the 3'-(2')-hydroxyl of ATP is no more than 1.3 nm from the surface of myosin and suggest further in the simplest interpretation that the active site is most likely located near the middle of the heads of myosin. Analytical sedimentation velocity experiments were performed in order to compare the sedimentation coefficient (s0(20),w) of the SF1 dimer formed by cross-linking to values predicted from ellipsoidal models of the dimer. The observed s0(20),w of the dimer was much closer to the range predicted for a side-to-side arrangement of SF1 monomers than the range predicted

  16. Adenosine 5′-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    PubMed Central

    2012-01-01

    Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine), or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube) or 7 h (pellets) post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003) and naso-duodenal tube (P = 0.001), but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of ATP in the proximal

  17. Evaluation of the internal thoracic arterial graft patency by the transthoracic Doppler method under continuous intravenous infusion of adenosine triphosphate disodium.

    PubMed

    Fukata, Y; Horike, K; Fujimoto, E; Shimoe, Y; Kanbara, T

    1999-10-01

    Usefulness of the Doppler method under continuous infusion of adenosine triphosphate disodium (ATP) for improvement of accuracy in the diagnosis of the left internal thoracic arterial graft (LITA) patency was examined using transthoracic ultrasonic echocardiography. 1) Influence of ATP on the Doppler velocity in a graft was examined in 7 patients with good LITA grafts using physiological saline as the control. In the ATP group, 80 mg of ATP was dissolved in 20 ml physiological saline and continuously infused at 0.14 mg/kg/min. In the saline group, an equal volume of physiological saline was administered and the blood flow velocity in the LITA was recorded continuously by the transthoracic Doppler method from the supraclavicular fossa approach. Results; ATP administration increased the blood flow velocity in the LITA and the rate of increase was 48.3% for systolic peak velocity, 111% for diastolic peak velocity, 64.4% for systolic time velocity integral and 99% for diastolic time velocity integral indicating particularly high rates of increase in diastolic components. The diastolic/systolic peak velocity ratio or diastolic fraction did not increase significantly. In the saline group, none of the parameters showed a change. 2) Angiographic findings of the LITA were compared with the measurement values of the diastolic components by the Doppler method to examine usefulness of diastolic component measurement with ATP infusion for diagnosis of LITA patency. Subjects were 19 patients with good LITA (group A) and 8 patients with bad LITA (group B). Results; while there were significant differences in the mean baseline diastolic peak velocity, mean diastolic time velocity integral and mean diastolic fraction between the groups, overlapping was seen in individual cases. However, the inter-group differences were more distinct by ATP infusion and the borderline values were 30 cm/sec for diastolic peak velocity and 10 for diastolic time velocity integral. 3) Reliability of the

  18. Transesophageal Doppler echocardiographic assessment of systolic and diastolic coronary blood flow velocities at baseline and during adenosine triphosphate-induced coronary vasodilation in chronic aortic regurgitation.

    PubMed

    Kisanuki, A; Matsushita, R; Murayama, T; Otsuji, Y; Miyazono, Y; Toyonaga, K; Nakao, S; Taira, A; Tanaka, H

    1997-01-01

    Few reports exist on the changes in systolic and diastolic coronary flow velocities (CFVs) at baseline and during coronary vasodilation in patients with chronic aortic regurgitation (AR). We examined the left anterior descending CFVs in 21 patients with AR (11 patients with mild AR and 10 patients with moderate to severe AR), 9 patients without AR (no AR group), and 6 patients who had undergone surgery for moderate to severe AR (postoperation group) with transesophageal Doppler echocardiography. Adenosine triphosphate (ATP) was infused into a peripheral right arm vein at four different doses (35, 70, 100, and 140 micrograms/kg/min). Coronary flow velocity response in systole and diastole was calculated as the ratio of systolic peak and mean and diastolic peak and mean CFVs during maximal ATP infusion to those at baseline. The systolic peak and mean CFVs and the diastolic peak and mean CFVs at baseline were significantly increased in the moderate to severe group compared with those in the other groups (p < 0.05, respectively). Systolic and diastolic CFVs were significantly increased during ATP infusions in the four groups. No significant differences of systolic and diastolic CFVs were observed among the four groups during maximal ATP infusion. The coronary flow velocity response calculated from the peak and mean diastolic CFVs were significantly decreased in the moderate to severe group (1.6 +/- 0.3 and 1.7 +/- 0.4) compared with those in the other three groups (3.6 +/- 0.7 and 3.2 +/- 1.1 in the no AR group, 2.6 +/- 0.6 and 2.5 +/- 0.4 in the mild group, and 2.5 +/- 0.7 and 2.4 +/- 0.6 in the postoperation group) (p < 0.05, respectively). In conclusion, the systolic and diastolic left CFVs at baseline appeared to be significantly increased in patients with moderate to severe chronic AR. However, the velocities during coronary vasodilation by ATP were equal to those in other groups, resulting in a decrease of coronary flow velocity response in systole and diastole

  19. Effects of oral adenosine-5′-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance-trained men

    PubMed Central

    2013-01-01

    Background Currently, there is a lack of studies examining the effects of adenosine-5′-triphosphate (ATP) supplementation utilizing a long-term, periodized resistance-training program (RT) in resistance-trained populations. Therefore, we investigated the effects of 12 weeks of 400 mg per day of oral ATP on muscular adaptations in trained individuals. We also sought to determine the effects of ATP on muscle protein breakdown, cortisol, and performance during an overreaching cycle. Methods The study was a 3-phase randomized, double-blind, and placebo- and diet-controlled intervention. Phase 1 was a periodized resistance-training program. Phase 2 consisted of a two week overreaching cycle in which volume and frequency were increased followed by a 2-week taper (Phase 3). Muscle mass, strength, and power were examined at weeks 0, 4, 8, and 12 to assess the chronic effects of ATP; assessment performance variables also occurred at the end of weeks 9 and 10, corresponding to the mid and endpoints of the overreaching cycle. Results There were time (p < 0.001), and group x time effects for increased total body strength (+55.3 ± 6.0 kg ATP vs. + 22.4 ± 7.1 kg placebo, p < 0.001); increased vertical jump power (+ 796 ± 75 ATP vs. 614 ± 52 watts placebo, p < 0.001); and greater ultrasound determined muscle thickness (+4.9 ± 1.0 ATP vs. (2.5 ± 0.6 mm placebo, p < 0.02) with ATP supplementation. During the overreaching cycle, there were group x time effects for strength and power, which decreased to a greater extent in the placebo group. Protein breakdown was also lower in the ATP group. Conclusions Our results suggest oral ATP supplementation may enhance muscular adaptations following 12-weeks of resistance training, and prevent decrements in performance following overreaching. No statistically or clinically significant changes in blood chemistry or hematology were observed. Trial registration ClinicalTrials.gov NCT01508338 PMID

  20. Dendritic cells phenotype fitting under hypoxia or lipopolysaccharide; adenosine 5′-triphosphate-binding cassette transporters far beyond an efflux pump

    PubMed Central

    Lloberas, N; Rama, I; Llaudó, I; Torras, J; Cerezo, G; Cassis, L; Franquesa, M; Merino, A; Benitez-Ribas, D; Cruzado, J M; Herrero-Fresneda, I; Bestard, O; Grinyó, J M

    2013-01-01

    This study examines adenosine 5′-triphosphate-binding cassette (ABC) transporters as a potential therapeutic target in dendritic cell (DC) modulation under hypoxia and lipopolysaccharide (LPS). Functional capacity of dendritic cells (DCs) (mixed lymphocyte reaction: MLR) and maturation of iDCs were evaluated in the presence or absence of specific ABC-transporter inhibitors. Monocyte-derived DCs were cultured in the presence of interleukin (IL)-4/granulocyte–macrophage colony-stimulating factor (GM-CSF). Their maturation under hypoxia or LPS conditions was evaluated by assessing the expression of maturation phenotypes using flow cytometry. The effect of ABC transporters on DC maturation was determined using specific inhibitors for multi-drug resistance (MDR1) and multi-drug resistance proteins (MRPs). Depending on their maturation status to elicit T cell alloresponses, the functional capacity of DCs was studied by MLR. Mature DCs showed higher P-glycoprotein (Pgp) expression with confocal microscopy. Up-regulation of maturation markers was observed in hypoxia and LPS-DC, defining two different DC subpopulation profiles, plasmacytoid versus conventional-like, respectively, and different cytokine release T helper type 2 (Th2) versus Th1, depending on the stimuli. Furthermore, hypoxia-DCs induced more B lymphocyte proliferation than control-iDC (56% versus 9%), while LPS-DCs induced more CD8-lymphocyte proliferation (67% versus 16%). ABC transporter-inhibitors strongly abrogated DC maturation [half maximal inhibitory concentration (IC50): P-glycoprotein inhibition using valspodar (PSC833) 5 μM, CAS 115104-28-4 (MK571) 50 μM and probenecid 2·5 μM], induced significantly less lymphocyte proliferation and reduced cytokine release compared with stimulated-DCs without inhibitors. We conclude that diverse stimuli, hypoxia or LPS induce different profiles in the maturation and functionality of DC. Pgp appears to play a role in these DC events. Thus, ABC

  1. Simultaneous measurement of intracellular triphosphate metabolites of zidovudine, lamivudine and abacavir (carbovir) in human peripheral blood mononuclear cells by combined anion exchange solid phase extraction and LC-MS/MS.

    PubMed

    Robbins, Brian L; Poston, Philip A; Neal, Erin F; Slaughter, Clive; Rodman, John H

    2007-05-01

    All nucleoside reverse transcriptase inhibitors (NRTI) must first be metabolized to their triphosphate forms in order to be active against HIV. Zidovudine (ZDV), abacavir (ABC) and lamivudine (3TC) have proven to be an efficacious combination. In order simultaneously to measure intracellular levels of the triphosphates (-TP) of ZDV, ABC (carbovir, CBV) and 3TC, either together or individually, we have developed a cartridge-LC-MS/MS method. The quantitation range was 2.5-250 pg/microl for 3TC-TP, 0.1-10.0 pg/microl for ZDV-TP and 0.05-5.00 pg/microl for CBV-TP. This corresponds to 0.1-11.0 pmol 3TC-TP per million cells, 4-375 fmol ZDV-TP per million cells and 2-200 fmol CBV-TP per million cells, extracted from 10 million cells. Patient samples demonstrated measured levels in the middle regions of our standard curves both at pre-dose and 4h post-dose times. PMID:17197254

  2. Microbial Group Specific Uptake Kinetics of Inorganic Phosphate and Adenosine-5′-Triphosphate (ATP) in the North Pacific Subtropical Gyre

    PubMed Central

    Björkman, Karin; Duhamel, Solange; Karl, David M.

    2012-01-01

    We investigated the concentration dependent uptake of inorganic phosphate (Pi) and adenosine-5′-triphosphate (ATP) in microbial populations in the North Pacific Subtropical Gyre (NPSG). We used radiotracers to measure substrate uptake into whole water communities, differentiated microbial size classes, and two flow sorted groups; Prochlorococcus (PRO) and non-pigmented bacteria (NPB). The Pi concentrations, uptake rates, and Pi pool turnover times (Tt) were (mean, ±SD); 54.9 ± 35.0 nmol L−1 (n = 22), 4.8 ± 1.9 nmol L−1 day−1 (n = 19), and 14.7 ± 10.2 days (n = 19), respectively. Pi uptake into >2 μm cells was on average 12 ± 7% (n = 15) of the total uptake. The kinetic response to Pi (10–500 nmol L−1) was small, indicating that the microorganisms were close to their maximum uptake velocity (Vmax). Vmax averaged 8.0 ± 3.6 nmol L−1 day−1 (n = 19) in the >0.2 μm group, with half saturation constants (Km) of 40 ± 28 nmol L−1 (n = 19). PRO had three times the cell specific Pi uptake rate of NPB, at ambient concentrations, but when adjusted to cells L−1 the rates were similar, and these two groups were equally competitive for Pi. The Tt of γ-P-ATP in the >0.2 μm group were shorter than for the Pi pool (4.4 ± 1.0 days; n = 6), but this difference diminished in the larger size classes. The kinetic response to ATP was large in the >0.2 μm class with Vmax exceeding the rates at ambient concentrations (mean 62 ± 27 times; n = 6) with a mean Vmax for γ-P-ATP of 2.8 ± 1.0 nmol L−1 day−1, and Km at 11.5 ± 5.4 nmol L−1 (n = 6). The NPB contribution to γ-P-ATP uptake was high (95 ± 3%, n = 4) at ambient concentrations but decreased to ∼50% at the highest ATP amendment. PRO had Km values 5–10 times greater than NPB. The above indicates that PRO and NPB were in close competition in terms of Pi acquisition

  3. Spatial and Temporal Variability in the Concentration and Turnover of the Inorganic Phosphate and Adenosine-5'-triphosphate pools in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Björkman, Karin; Church, Matthew; Karl, David

    2015-04-01

    The microbial community's utilization of inorganic phosphate (Pi) and adenosine-5'-triphosphate (ATP) as a function of the Pi pool concentration was studied over a multi-year period at Station ALOHA (22.75˚N, 158˚W) in the North Pacific Subtropical Gyre (NPSG). Additionally, the spatial variability in these same properties was investigated along an east-west transect from California to Hawaii in the Fall of 2014. We used radiotracer techniques to determine the turnover times of the Pi or ATP pools respectively, and assessed the net production of dissolved organic phosphorus, and Pi hydrolysis rate from ATP. Pi concentrations in the upper water column at Station ALOHA are temporally highly dynamic, with periods of <10 nM-P to near 200 nM-P recorded within the top 50 m over the past decades of observations. During the California to Hawaii transect Pi concentrations showed a similarly large range (<10 to >200 nM-P), emphasizing the spatially and temporally mosaic nature of the upper ocean of this large biome. The Pi-pool turnover time ranged from a few hours to several weeks, and was strongly correlated with measured Pi pool concentrations (r2=0.8; n=30 Station ALOHA; n=15 transect). The calculated Pi uptake rates at Station ALOHA averaged 3.7±1.3 nM-P d-1 (n=30), reflecting the typically low maximum Pi uptake rates of the Prochlorococcus dominated community and the predominantly non-limiting Pi conditions. The Pi uptake rates along the transect were more variable than Station ALOHA (averaging 9.2±4.7 nM=P d-1, n=15), possibly due to a more diverse planktonic community structure, including stations with elevated concentrations of chlorophyll and primary productivity. The turnover time of the dissolved ATP pool was typically substantially shorter than for the Pi-pool (2-5 days at Station ALOHA; 0.3-2.5 days along the transect), likely reflecting its low nanomolar to picomolar ambient pool concentrations. However, at stations with the lowest SRP concentrations the

  4. Adenosine 5′-triphosphate and neuropeptide Y are co-transmitters in conjunction with noradrenaline in the human saphenous vein

    PubMed Central

    Racchi, Héctor; Irarrázabal, Manuel J; Howard, Michel; Morán, Sergio; Zalaquett, Ricardo; Huidobro-Toro, J Pablo

    1999-01-01

    Human saphenous veins were used to assess the cooperative participation of adenosine 5-triphosphate (ATP), neuropeptide Y (NPY), and noradrenaline (NA) in the vasomotor responses elicited following electrical depolarization of the perivascular nerve terminals. Rings from recently dissected human biopsies were mounted to record isometric muscular contractions; the motor activity elicited in the circular muscle layer following electrical depolarization (2.5–20 Hz, 50 V, 0.5 msec) were recorded. Incubation of the biopsies with either 100 nM tetrodotoxin (TTX) or 1 μM guanethidine abolished the vasomotor response elicited by electrical nerve depolarization. The independent application of either ATP or NA to vein rings induced concentration-dependent contractions. Tissue incubation with 30 μM suramin or 10 nM prazosin produced 10 fold rightward displacements of the α,β-methylene ATP and NA concentration-response curves respectively. NPY contracted a limited number of biopsies, the vasoconstriction elicited was completely blocked by 1 μM BIBP 3226. A 5 min incubation of the biopsies with 10–100 nM NPY synergized, in a concentration-dependent fashion, both the ATP and the ATP analogue-induced contractions. Likewise, tissue preincubation with 10 nM NPY potentiated the vasomotor responses evoked with 20–60 nM NA. Neither suramin, BIBP 3226, nor prazosin was individually able to significantly modify the derived frequency-tension curves. In contrast, the co-application of 30 μM suramin and 10 nM prazosin or 30 μM suramin and 1 μM BIBP 3226, elicited a significant (P<0.01) downward displacement of the respective frequency-tension curves. The simultaneous application of the three antagonists–30 μM suramin, 1 μM BIBP 3226 and 10 nM prazosin–caused a significantly greater displacement of the frequency-tension curve than that achieved in experiments using two of these antagonists. Electrically-evoked vasomotor activity is

  5. Inositol tetrakisphosphate (IP4)- and inositol triphosphate (IP3)-dependent Ca2+ influx in cortical neuronal nuclei of newborn piglets following graded hypoxia.

    PubMed

    Mishra, Om Prakash; Delivoria-Papadopoulos, Maria

    2004-02-01

    Previous studies have shown that hypoxia results in a modification of the binding characteristics of the neuronal nuclear membrane inositol tetrakisphosphate (IP4) and inositol triphosphate (IP3) receptors. The present study tests the hypothesis that hypoxia-induced modification of the IP4 and IP3 receptors results in increased IP4 and IP3 dependent Ca2+ influx in neuronal nuclei as a function of the degree of cerebral tissue hypoxia in newborn piglets. Studies were performed in piglets, 3-5 days old, divided into normoxic (N = 5) and hypoxic (N = 6) groups. The hypoxic group was exposed to decreased FiO2 ranging from 0.15 to 0.05 for 1 h. Brain tissue hypoxia was documented biochemically by determining ATP and phosphocreatine (PCr) levels. Neuronal nuclei were isolated and 45Ca2+ influx was determined in a medium containing 50 mM Tris buffer (pH 7.4), neuronal nuclei (150 microg protein), 1 microM 45Ca2+, with or without 10 microM IP4 or IP3. In normoxic and hypoxic groups, ATP levels were 4.27 +/- 0.80 and 1.40 +/- 0.69 micromoles/g brain, respectively, P < .001 (ranging from 4.78 to 0.82). PCr levels were 3.40 +/- 0.99 and 0.91 +/- 0.57 micromoles/g brain, respectively, P < .001 (raning from 4.07 to 0.60). During hypoxia, IP4-dependent intranuclear 45Ca2+ influx increased from 3.39 +/- 0.64 in normoxic nuclei to 13.30 +/- 2.18 pM/mg protein in hypoxic nuclei (P < .01). There was an inverse correlation between the 45Ca2+ influx in neuronal nuclei and the levels of cerebral tissue ATP (r = 0.83) and PCr (r = 0.85). Similarly, IP3-dependent intranuclear 45Ca2+ influx increased from 2.26 +/- 0.38 pmoles/mg protein in normoxic nuclei to 11.12 +/- 1.65 pmoles/mg protein in hypoxic nuclei and showed an inverse correlation between 45Ca2+ influx in neuronal nuclei and the levels of cerebral tissue ATP (r = 0.86) and PCr (r = 0.71). The data demonstrate that there is an IP4- as well as IP3-dependent increase in nuclear Ca2+ influx with increasing cerebral tissue hypoxia

  6. Comparison of the Immunomagnetic Separation/Adenosine Triphosphate Rapid Method and the Modified mTEC Membrane-Filtration Method for Enumeration of Escherichia coli

    USGS Publications Warehouse

    Brady, Amie M.G.; Bushon, Rebecca N.; Bertke, Erin E.

    2009-01-01

    Water quality at beaches is monitored for fecal indicator bacteria by traditional, culture-based methods that can take 18 to 24 hours to obtain results. A rapid detection method that provides estimated concentrations of fecal indicator bacteria within 1 hour from the start of sample processing would allow beach managers to post advisories or close the beach when the conditions are actually considered unsafe instead of a day later, when conditions may have changed. A rapid method that couples immunomagnetic separation with adenosine triphosphate detection (IMS/ATP rapid method) was evaluated through monitoring of Escherichia coli (E. coli) at three Lake Erie beaches in Ohio (Edgewater and Villa Angela in Cleveland and Huntington in Bay Village). Beach water samples were collected between 4 and 5 days per week during the recreational seasons (May through September) of 2006 and 2007. Composite samples were created in the lab from two point samples collected at each beach and were shown to be comparable substitutes for analysis of two individual samples. E. coli concentrations in composite samples, as determined by the culture-based method, ranged from 4 to 24,000 colony-forming units per 100 milliliters during this study across all beaches. Turbidity also was measured for each sample and ranged from 0.8 to 260 neophelometric turbidity ratio units. Environmental variables were noted at the time of sampling, including number of birds at the beach and wave height. Rainfall amounts were measured at National Weather Service stations at local airports. Turbidity, rainfall, and wave height were significantly related to the culture-based method results each year and for both years combined at each beach. The number of birds at the beach was significantly related to the culture-based method results only at Edgewater during 2006 and during both years combined. Results of the IMS/ATP method were compared to results of the culture-based method for samples by year for each beach

  7. Activation of Na+/H+ exchanger NHE3 by angiotensin II is mediated by inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3 (IRBIT) and Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    He, Peijian; Klein, Janet; Yun, C Chris

    2010-09-01

    Angiotensin II (ANG II) stimulates renal tubular reabsorption of NaCl by targeting Na(+)/H(+) exchanger NHE3. We have shown previously that inositol 1,4,5-triphosphate receptor-binding protein released with inositol 1,4,5-triphosphate (IRBIT) plays a critical role in stimulation of NHE3 in response to elevated intracellular Ca(2+) concentration ([Ca(2+)](i)). In this study, we investigated the role of IRBIT in mediating NHE3 activation by ANG II. IRBIT is abundantly expressed in the proximal tubules where NHE3 is located. ANG II at physiological concentrations stimulates NHE3 transport activity in a model proximal tubule cell line. ANG II-induced activation of NHE3 was abrogated by knockdown of IRBIT, whereas overexpression of IRBIT enhanced the effect of ANG II on NHE3. ANG II transiently increased binding of IRBIT to NHE3 at 5 min but became dissociated by 45 min. In comparison, it took at least 15 min of ANG II treatment for an increase in NHE3 activity and NHE3 surface expression. The stimulation of NHE3 by ANG II was dependent on changes in [Ca(2+)](i) and Ca(2+)/calmodulin-dependent protein kinases II. Inhibition of CaMKII completely blocked the ANG II-induced binding of IRBIT to NHE3 and the increase in NHE3 surface abundance. Several serine residues of IRBIT are thought to be important for IRBIT binding. Mutations of Ser-68, Ser-71, and Ser-74 of IRBIT decreased binding of IRBIT to NHE3 and its effect on NHE3 activity. In conclusion, our current findings demonstrate that IRBIT is critically involved in mediating activation of NHE3 by ANG II via a Ca(2+)/calmodulin-dependent protein kinases II-dependent pathway.

  8. E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone.

    PubMed

    Barreto-Chaves, Maria Luiza M; Carneiro-Ramos, Marcela Sorelli; Cotomacci, Guilherme; Júnior, Marconi Barbosa Coutinho; Sarkis, João José Freitas

    2006-06-01

    Degradation of adenine nucleotides by myocardial cells occurs, in part, by a cascade of surface-located enzymes converting ATP into adenosine that has important implications for the regulation of the nucleotide/nucleoside ratio modulating the cardiac functions. Thyroid hormones have profound effects on cardiovascular system, as observed in hypo- and hyperthyroidism. Combined biochemical parameters and gene expression analysis approaches were used to investigate the influence of tri-iodothyronine (T3) on ATP and ADP hydrolysis by isolated myocytes. Cultures of cardiomyocytes were submitted to increasing doses of T3 for 24h. Enzymatic activity and expression were evaluated. T3 (0.1 nM) caused an increase in ATP and ADP hydrolysis. Experiments with specific inhibitors suggest the involvement of an NTPDase, which was confirmed by an increase in NTPDase 3 messenger RNA (mRNA) levels. Since T3 promotes an increase in the contractile protein, leading to cardiac hypertrophy, it is tempting to postulate that the increase in ATP hydrolysis and the decrease in the extracellular levels signify an important factor for prevention of excessive contractility. PMID:16584835

  9. A simple, post-additional antioxidant capacity assay using adenosine triphosphate-stabilized 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation in a G-quadruplex DNAzyme catalyzed ABTS-H2O2 system.

    PubMed

    Jia, Shu-Min; Liu, Xiao-Fei; Kong, De-Ming; Shen, Han-Xi

    2012-05-15

    The scavenging of 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation (ABTS(+)) by antioxidants has been widely used in antioxidant capacity assay. Because of ABTS(+) disproportionation, however, this radical cannot be prepared on a large scale and stored long-term, making it unsuitable for high-throughput detection and screening of antioxidants. We developed a modified "post-additional" antioxidant capacity assay. This method possessed two remarkable features: First, instead of natural peroxidases, an artificial enzyme, G-quadruplex DNAzyme, was used for the preparation of ABTS(+), thus greatly reducing the cost of the assay, and eliminating the strict demand for the storage of enzymes. Second, an ABTS(+) stabilizer, adenosine triphosphate (ATP), was used. In the presence of ATP, the disproportionation of ABTS(+) was effectively inhibited, and the lifetime of this radical cation was prolonged about 6-fold (12 days versus 2 days), making the large-scale preparation of ABTS(+) possible. Utilizing this method, the antioxidant capacities of individual antioxidants and real samples can be quantified and compared easily. In addition, this method can be developed as a high-throughput screening method for antioxidants. The screening results could even be judged by the naked eye, eliminating the need for expensive instruments.

  10. Simultaneous determination of 2',3'-dideoxyinosine and the active metabolite, 2',3'-dideoxyadenosine-5'-triphosphate in human peripheral-blood mononuclear cell by HPLC-MS/MS and the application to cell pharmacokinetics.

    PubMed

    Lan, Xu; Mingdao, Lei; Huilin, Guo; Wei, Gan; Lvjiang, Hu; Yan, Zhou; Gang, Li

    2015-10-01

    A specific and reliable HPLC-MS/MS method was developed and validated for the simultaneous determination of 2',3'-dideoxyinosine (ddI) and the active metabolites, 2',3'-dideoxyadenosine-5'-triphosphate (ddA-TP) in human peripheral-blood mononuclear cell for the first time. The analytes were separated on a HILIC column (100mm×2.1mm, 1.7μm) and a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source was used for detection. The cell homogenates sample was prepared by the solid phase extraction. The calibration curves were linear over a concentration range of 0.5-200.0ng/mL for ddI and 0.25-100.0ng/mL for ddA-TP. The intra-day and inter-day precision was less than 15% and the relative error (RE) were all within ±15%. The validated method was successfully applied to assess the disposition characteristics of ddI and support cell pharmacokinetics after the patients with AIDS were orally administrated with ddI and tenofovir disoproxyl fumarate (TDF).

  11. Kinetic analysis of the activation of transducin by photoexcited rhodopsin. Influence of the lateral diffusion of transducin and competition of guanosine diphosphate and guanosine triphosphate for the nucleotide site.

    PubMed Central

    Bruckert, F; Chabre, M; Vuong, T M

    1992-01-01

    The activation of transducin (T) by photoexcited rhodopsin (R*) is kinetically dissected within the framework of Michaelis-Menten enzymology, taking transducin as substrate of the enzyme R*. The light scattering "release" signal (Vuong, T.M., M. Chabre, and L. Stryer, 1984, Nature (Lond.). 311:659-661) was used to monitor the kinetics of transducin activation at 20 degrees C. In addition, the influence of nonuniform distributions of R* on these activation kinetics is also explored. Sinusoidal patterns of R* were created with interference fringes from two crossed laser beams. Two characteristic times were extracted from the Michaelis-Menten analysis: t(form), the diffusion-related time needed to form the enzyme-substrate R*-transducin is 0.25 +/- 0.1 ms, and T(cat), the time taken by R* to perform the chemistry of catalysis on transducin is 1.2 +/- 0.2 ms, in the absence of added guanosine diphosphate (GDP) and at saturating levels of guanosine triphosphate (GTP). With t(form) being but 20% of the total activation time t(form) + t(cat), transducin activation by R* is not limited by lateral diffusion. This is further borne out by the observation that uniform and sinusoidal patterns of R* elicited release signals of indistinguishable kinetics. When (GDP) = (GTP) = 500 microM, t(cat) is lengthened twofold. As the in vivo GDP and GTP levels are comparable, the exchange of nucleotides may well be the rate-limiting process. PMID:1420903

  12. Structures of bacterial polynucleotide kinase in a michaelis complex with nucleoside triphosphate (NTP)-Mg2+ and 5'-OH RNA and a mixed substrate-product complex with NTP-Mg2+ and a 5'-phosphorylated oligonucleotide.

    PubMed

    Das, Ushati; Wang, Li Kai; Smith, Paul; Munir, Annum; Shuman, Stewart

    2014-12-01

    Clostridium thermocellum polynucleotide kinase (CthPnk), the 5'-end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from a nucleoside triphosphate (NTP) donor to a 5'-OH polynucleotide acceptor, either DNA or RNA. Here we report the 1.5-Å crystal structure of CthPnk-D38N in a Michaelis complex with GTP-Mg(2+) and a 5'-OH RNA oligonucleotide. The RNA-binding mode of CthPnk is different from that of the metazoan RNA kinase Clp1. CthPnk makes hydrogen bonds to the ribose 2'-hydroxyls of the 5' terminal nucleoside, via Gln51, and the penultimate nucleoside, via Gln83. The 5'-terminal nucleobase is sandwiched by Gln51 and Val129. Mutating Gln51 or Val129 to alanine reduced kinase specific activity 3-fold. Ser37 and Thr80 donate functionally redundant hydrogen bonds to the terminal phosphodiester; a S37A-T80A double mutation reduced kinase activity 50-fold. Crystallization of catalytically active CthPnk with GTP-Mg(2+) and a 5'-OH DNA yielded a mixed substrate-product complex with GTP-Mg(2+) and 5'-PO4 DNA, wherein the product 5' phosphate group is displaced by the NTP γ phosphate and the local architecture of the acceptor site is perturbed. PMID:25266383

  13. Effect of the Concentration Difference between Magnesium Ions and Total Ribonucleotide Triphosphates in Governing the Specificity of T7 RNA Polymerase-Based Rolling Circle Transcription for Quantitative Detection.

    PubMed

    Li, Zhiyan; Lau, Choiwan; Lu, Jianzhong

    2016-06-01

    T7 RNA polymerase-based rolling circle transcription (RCT) is a more powerful tool than universal runoff transcription and traditional DNA polymerase-based rolling circle amplification (RCA). However, RCT is rarely employed in quantitative detection due to its poor specificity for small single-stranded DNA (ssDNA), which can be transcribed efficiently by T7 RNA polymerase even without a promoter. Herein we show that the concentration difference between Mg(2+) and total ribonucleotide triphosphates (rNTPs) radically governs the specificity of T7 RNA polymerase. Only when the total rNTP concentration is 9 mM greater than the Mg(2+) concentration can T7 RNA polymerase transcribe ssDNA specifically and efficiently. This knowledge improves our traditional understanding of T7 RNA polymerase and makes convenient application of RCT in quantitative detection possible. Subsequently, an RCT-based label-free chemiluminescence method for microRNA detection was designed to test the capability of this sensing platform. Using this simple method, microRNA as low as 20 amol could be quantitatively detected. The results reveal that the developed sensing platform holds great potential for further applications in the quantitative detection of a variety of targets. PMID:27167591

  14. Strong Correlation Between Concentrations of Tenofovir (TFV) Emtricitabine (FTC) in Hair and TFV Diphosphate and FTC Triphosphate in Dried Blood Spots in the iPrEx Open Label Extension: Implications for Pre-exposure Prophylaxis Adherence Monitoring

    PubMed Central

    Gandhi, Monica; Glidden, David V.; Liu, Albert; Anderson, Peter L.; Horng, Howard; Defechereux, Patricia; Guanira, Juan V.; Grinsztejn, Beatriz; Chariyalertsak, Suwat; Bekker, Linda-Gail; Grant, Robert M.

    2015-01-01

    Self-reported adherence to pre-exposure prophylaxis (PrEP) has limitations, raising interest in pharmacologic monitoring. Drug concentrations in hair and dried blood spots (DBS) are used to assess long-term-exposure; hair shipment/storage occurs at room temperature. The iPrEx Open Label Extension collected DBS routinely, with opt-in hair collection; concentrations were measured with liquid chromatography/tandem mass spectrometry. In 806 hair-DBS pairs, tenofovir (TFV) hair levels and TFV diphosphate (DP) in DBS were strongly correlated (Spearman coefficient r = 0.734; P < .001), as were hair TFV/DBS emtricitabine (FTC) triphosphate (TP) (r = 0.781; P < .001); hair FTC/DBS TFV-DP (r = 0.74; P < .001); hair FTC/DBS FTC-TP (r = 0.587; P < .001). Drug detectability was generally concordant by matrix. Hair TFV/FTC concentrations correlate strongly with DBS levels, which are predictive of PrEP outcomes. PMID:25895984

  15. Inhibition of insulin release by synthetic peptides shows that the H3 region at the C-terminal domain of syntaxin-1 is crucial for Ca(2+)- but not for guanosine 5'-[gamma-thio]triphosphate-induced secretion.

    PubMed Central

    Martin, F; Salinas, E; Vazquez, J; Soria, B; Reig, J A

    1996-01-01

    Recently, we have described the presence and possible role of syntaxin in pancreatic beta-cells by using monoclonal antibodies [F. Martin, F. Moya, L. M. Gutierrez, J.A. Reig, B. Soria (1995) Diabetologia 38, 860-863]. In order to characterize further the importance of specific domains of this protein, the functional role of a particular region of the syntaxin-1 molecule has now been investigated by using two synthetic peptides, SynA and SynB, corresponding to two portions of the H3 region at the C-terminal domain of the protein, residues 229-251 and 197-219 respectively. Functional experiments carried out in permeabilized pancreatic beta-cells demonstrate that these peptides inhibit Ca(2+)-dependent insulin release in a dose-dependent manner. This effect is specific because peptides of the same composition but random sequence do not show the same effect. In contrast with this inhibitory effect on Ca(2+)-induced secretion, both peptides increase basal release. However, under the same conditions, SynA and SynB do not affect guanosine 5'-[gamma-thio]triphosphate-induced insulin release. These results demonstrate that specific portions of the H3 region of syntaxin-1 are involved in critical protein-protein interactions specifically during Ca(2+)-induced insulin secretion. PMID:8947488

  16. Simultaneous determination of 1-β-d-Arabinofuranosylcytosine and two metabolites, 1-β-d-Arabinofuranosyluracil and 1-β-d-Arabinofuranosylcytosine triphosphate in leukemic cell by HPLC-MS/MS and the application to cell pharmacokinetics.

    PubMed

    Liang, Di; Wang, Wei; Jiang, Xuechun; Yin, Shiliang

    2014-07-01

    A specific and reliable HPLC-MS/MS method was developed and validated for the simultaneous determination of 1-β-d-Arabinofuranosylcytosine (ara-C), 1-β-d-Arabinofuranosyluracil (ara-U) and 1-β-d-Arabinofuranosylcytosine triphosphate (ara-CTP) in the leukemic cells for the first time. The analytes were separated on a C18 column (100mm×2.1mm, 1.8μm) and a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source was used for detection. The ion-pairing reagent, NFPA, was added to the mobile phase to retain the analytes in the column. The cell homogenates sample was prepared by the simple protein precipitation. The calibration curves were linear over a concentration range of 3.45-3450.0ng/mL for ara-C, 1.12-1120.0ng/mL for ara-U and 4.13-4130.0ng/mL for ara-CTP. The intra-day and inter-day precision was less than 15% and the relative error (RE) were all within ±15%. The validated method was successfully applied to assess the disposition characteristics of ara-C and support cell pharmacokinetics after the patients with leukemia were intravenously infused with SDAC and HiDAC. The result of the present study would provide the valuable information for the ara-C therapy. PMID:24880220

  17. Adenosine 5'-(gamma-thio) triphosphate (ATPgammaS) stimulates both P2Y receptors linked to inositol phosphates production and cAMP accumulation in bovine adrenocortical fasciculata cells.

    PubMed

    Nishi, Haruhisa; Hori, Seiji; Niitsu, Akiyoshi; Kawamura, Masahiro

    2004-01-16

    The study was aimed to investigate the existence of at least two kinds of P2Y receptors linked to steroidogenesis in bovine adrenocortical fasciculata cells (BAFCs). Extracellular nucleotides facilitated steroidogenesis in BAFCs. The potency order was UTP > adenosine 5'-(gamma-thio) triphosphate (ATPgammaS) > ATP > 2-methylthio ATP (2MeSATP) > adenosine 5'-(beta-thio) diphosphate (ADPbetaS) > alpha,beta-methylene ATP (alpha,beta-me-ATP), beta,gamma-methylene ATP (beta,gamma -me-ATP). ATPgammaS (10-100 microM) remarkably stimulated both total inositol phosphates (IPs) production and cyclic AMP (cAMP) accumulation. Competitive displacement experiments by using [35S]ATPgammaS as a radioactive ligand in BAFCs showed that the potency under these unlabelled ligands was ATPgammaS > ATP > ADPbetaS > 2MeSATP > UTP > alpha,beta-me-ATP, beta,gamma-me-ATP. These suggest that two different binding sites of [35S]ATPgammaS, namely P2Y receptors, exist in BAFCs, and that these receptors are linked to steroidogenesis via distinct second messenger systems in the cells.

  18. Intracellular secretory leukoprotease inhibitor modulates inositol 1,4,5-triphosphate generation and exerts an anti-inflammatory effect on neutrophils of individuals with cystic fibrosis and chronic obstructive pulmonary disease.

    PubMed

    Reeves, Emer P; Banville, Nessa; Ryan, Dorothy M; O'Reilly, Niamh; Bergin, David A; Pohl, Kerstin; Molloy, Kevin; McElvaney, Oliver J; Alsaleh, Khalifah; Aljorfi, Ahmed; Kandalaft, Osama; O'Flynn, Eimear; Geraghty, Patrick; O'Neill, Shane J; McElvaney, Noel G

    2013-01-01

    Secretory leukoprotease inhibitor (SLPI) is an anti-inflammatory protein present in respiratory secretions. Whilst epithelial cell SLPI is extensively studied, neutrophil associated SLPI is poorly characterised. Neutrophil function including chemotaxis and degranulation of proteolytic enzymes involves changes in cytosolic calcium (Ca(2+)) levels which is mediated by production of inositol 1,4,5-triphosphate (IP3) in response to G-protein-coupled receptor (GPCR) stimuli. The aim of this study was to investigate the intracellular function of SLPI and the mechanism-based modulation of neutrophil function by this antiprotease. Neutrophils were isolated from healthy controls (n = 10), individuals with cystic fibrosis (CF) (n = 5) or chronic obstructive pulmonary disease (COPD) (n = 5). Recombinant human SLPI significantly inhibited fMet-Leu-Phe (fMLP) and interleukin(IL)-8 induced neutrophil chemotaxis (P < 0.05) and decreased degranulation of matrix metalloprotease-9 (MMP-9), hCAP-18, and myeloperoxidase (MPO) (P < 0.05). The mechanism of inhibition involved modulation of cytosolic IP3 production and downstream Ca(2+) flux. The described attenuation of Ca(2+) flux was overcome by inclusion of exogenous IP3 in electropermeabilized cells. Inhibition of IP3 generation and Ca(2+) flux by SLPI may represent a novel anti-inflammatory mechanism, thus strengthening the attractiveness of SLPI as a potential therapeutic molecule in inflammatory airway disease associated with excessive neutrophil influx including CF, non-CF bronchiectasis, and COPD.

  19. Assessment of myocardial perfusion by harmonic power doppler imaging at rest and during adenosine triphosphate stress: comparison with coronary flow velocity reserve in the left anterior descending coronary arter.

    PubMed

    Takeuchi, Masaaki; Yoshitani, Hidetoshi; Miyazaki, Chinami; Otani, Shinichiro; Sakamoto, Kazuo; Yoshikawa, Junichi

    2002-02-01

    To clarify whether the myocardial perfusion abnormalities observed on harmonic power Doppler imaging (HPDI) during hyperemia are related to a decrease in coronary flow velocity reserve (CFVR), HPDI and CFVR were measured in the left anterior descending coronary artery (LAD) territory of 75 patients. During continuous infusion of Levovist, dual-frame triggered apical 4-chamber views were obtained at rest and during adenosine triphosphate (ATP) infusion. The persistence of perfusion defects during ATP infusion or stress-induced defects in the LAD territory was defined as abnormal. Both HPDI and coronary flow velocity recordings of adequate quality were successfully obtained in 73 patients, and 37 patients showed abnormal myocardial perfusion. CFVR was significantly lower in patients with abnormal perfusion than in patients who had normal findings (1.38+/-0.38 vs 2.60+/-0.76, p<0.001). A CFVR less than 1.9 had a sensitivity of 89% (33/37) and a specificity of 89% (32/36) for predicting the presence of abnormal myocardial perfusion. This study demonstrates that myocardial perfusion abnormalities observed during HPDI using ATP stress are closely correlated to a decrease in CFVR and may reflect significant stenosis or microvascular damage in the LAD territory. PMID:11999642

  20. Strong Correlation Between Concentrations of Tenofovir (TFV) Emtricitabine (FTC) in Hair and TFV Diphosphate and FTC Triphosphate in Dried Blood Spots in the iPrEx Open Label Extension: Implications for Pre-exposure Prophylaxis Adherence Monitoring.

    PubMed

    Gandhi, Monica; Glidden, David V; Liu, Albert; Anderson, Peter L; Horng, Howard; Defechereux, Patricia; Guanira, Juan V; Grinsztejn, Beatriz; Chariyalertsak, Suwat; Bekker, Linda-Gail; Grant, Robert M

    2015-11-01

    Self-reported adherence to pre-exposure prophylaxis (PrEP) has limitations, raising interest in pharmacologic monitoring. Drug concentrations in hair and dried blood spots (DBS) are used to assess long-term-exposure; hair shipment/storage occurs at room temperature. The iPrEx Open Label Extension collected DBS routinely, with opt-in hair collection; concentrations were measured with liquid chromatography/tandem mass spectrometry. In 806 hair-DBS pairs, tenofovir (TFV) hair levels and TFV diphosphate (DP) in DBS were strongly correlated (Spearman coefficient r = 0.734; P < .001), as were hair TFV/DBS emtricitabine (FTC) triphosphate (TP) (r = 0.781; P < .001); hair FTC/DBS TFV-DP (r = 0.74; P < .001); hair FTC/DBS FTC-TP (r = 0.587; P < .001). Drug detectability was generally concordant by matrix. Hair TFV/FTC concentrations correlate strongly with DBS levels, which are predictive of PrEP outcomes.

  1. 4-Alkyloxyimino Derivatives of Uridine-5′-triphosphate: Distal Modification of Potent Agonists as a Strategy for Molecular Probes of P2Y2, P2Y4, and P2Y6 Receptors

    PubMed Central

    2015-01-01

    Extended N4-(3-arylpropyl)oxy derivatives of uridine-5′-triphosphate were synthesized and potently stimulated phospholipase C stimulation in astrocytoma cells expressing G protein-coupled human (h) P2Y receptors (P2YRs) activated by UTP (P2Y2/4R) or UDP (P2Y6R). The potent P2Y4R-selective N4-(3-phenylpropyl)oxy agonist was phenyl ring-substituted or replaced with terminal heterocyclic or naphthyl rings with retention of P2YR potency. This broad tolerance for steric bulk in a distal region was not observed for dinucleoside tetraphosphate agonists with both nucleobases substituted. The potent N4-(3-(4-methoxyphenyl)-propyl)oxy analogue 19 (EC50: P2Y2R, 47 nM; P2Y4R, 23 nM) was functionalized for chain extension using click tethering of fluorophores as prosthetic groups. The BODIPY 630/650 conjugate 28 (MRS4162) exhibited EC50 values of 70, 66, and 23 nM at the hP2Y2/4/6Rs, respectively, and specifically labeled cells expressing the P2Y6R. Thus, an extended N4-(3-arylpropyl)oxy group accessed a structurally permissive region on three Gq-coupled P2YRs, and potency and selectivity were modulated by distal structural changes. This freedom of substitution was utilized to design of a pan-agonist fluorescent probe of a subset of uracil nucleotide-activated hP2YRs. PMID:24712832

  2. Oral administration of amino acidic supplements improves protein and energy profiles in skeletal muscle of aged rats: elongation of functional performance and acceleration of mitochondrial recovery in adenosine triphosphate after exhaustive exertion.

    PubMed

    Chen Scarabelli, Carol; McCauley, Roy B; Yuan, Zhaokan; Di Rezze, Justin; Patel, David; Putt, Jeff; Raddino, Riccardo; Allebban, Zuhair; Abboud, John; Scarabelli, Gabriele M; Chilukuri, Karuna; Gardin, Julius; Saravolatz, Louis; Faggian, Giuseppe; Mazzucco, Alessandro; Scarabelli, Tiziano M

    2008-06-01

    Sarcopenia is an inevitable age-related degenerative process chiefly characterized by decreased synthesis of muscle proteins and impaired mitochondrial function, leading to progressive loss of muscle mass. Here, we sought to probe whether long-term administration of oral amino acids (AAs) can increase protein and adenosine triphosphate (ATP) content in the gastrocnemius muscle of aged rats, enhancing functional performance. To this end, 6- and 24-month-old male Fisher 344 rats were divided into 3 groups: group A (6-month-old rats) and group B (24-month-old rats) were used as adult and senescent control group, respectively, while group C (24-month-old rats) was used as senescent treated group and underwent 1-month oral treatment with a mixture of mainly essential AAs. Untreated senescent animals exhibited a 30% reduction in total and fractional protein content, as well as a 50% reduction in ATP content and production, compared with adult control rats (p <0.001). Long-term supplementation with mixed AAs significantly improved protein and high-energy phosphate content, as well as the rate of mitochondrial ATP production, conforming their values to those of adult control animals (p <0.001). The improved availability of protein and high-energy substrates in the gastrocnemius muscle of treated aged rats paralleled a significant enhancement in functional performance assessed by swim test, with dramatic elongation of maximal exertion times compared with untreated senescent rats (p <0.001). In line with these findings, we observed that, after 6 hours of rest following exhaustive swimming, the recovery in mitochondrial ATP content was approximately 70% in adult control rats, approximately 60% in senescent control rats, and normalized in treated rats as compared with animals of the same age unexposed to maximal exertion (p <0.001). In conclusion, nutritional supplementation with oral AAs improved protein and energy profiles in the gastrocnemius of treated rats, enhancing

  3. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside triphosphate (4PyTP), a novel NAD metabolite accumulating in erythrocytes of uremic children: a biomarker for a toxic NAD analogue in other tissues?

    PubMed

    Synesiou, Elena; Fairbanks, Lynnette D; Simmonds, H Anne; Slominska, Ewa M; Smolenski, Ryszard T; Carrey, Elizabeth A

    2011-06-01

    We have identified a novel nucleotide, 4-pyridone 3/5-carboxamide ribonucleoside triphosphate (4PyTP), which accumulates in human erythrocytes during renal failure. Using plasma and erythrocyte extracts obtained from children with chronic renal failure we show that the concentration of 4PyTP is increased, as well as other soluble NAD(+) metabolites (nicotinamide, N(1)-methylnicotinamide and 4Py-riboside) and the major nicotinamide metabolite N(1)-methyl-2-pyridone-5-carboxamide (2PY), with increasing degrees of renal failure. We noted that 2PY concentration was highest in the plasma of haemodialysis patients, while 4PyTP was highest in erythrocytes of children undergoing peritoneal dialysis: its concentration correlated closely with 4Py-riboside, an authentic precursor of 4PyTP, in the plasma. In the dialysis patients, GTP concentration was elevated: similar accumulation was noted previously, as a paradoxical effect in erythrocytes during treatment with immunosuppressants such as ribavirin and mycophenolate mofetil, which deplete GTP through inhibition of IMP dehydrogenase in nucleated cells such as lymphocytes. We predict that 4Py-riboside and 4Py-nucleotides bind to this enzyme and alter its activity. The enzymes that regenerate NAD(+) from nicotinamide riboside also convert the drugs tiazofurin and benzamide riboside into NAD(+) analogues that inhibit IMP dehydrogenase more effectively than the related ribosides: we therefore propose that the accumulation of 4PyTP in erythrocytes during renal failure is a marker for the accumulation of a related toxic NAD(+) analogue that inhibits IMP dehydrogenase in other cells. PMID:22069723

  4. Spatial association of prolyl oligopeptidase, inositol 1,4,5-triphosphate type 1 receptor, substance P and its neurokinin-1 receptor in the rat brain: an immunohistochemical colocalization study.

    PubMed

    Myöhänen, T T; Venäläinen, J I; Garcia-Horsman, J A; Männistö, P T

    2008-06-01

    Prolyl oligopeptidase (POP) is a serine endopeptidase which hydrolyzes proline-containing peptides shorter than 30 amino acids. It has been suggested that POP is associated with cognitive functions, possibly via the cleavage of neuropeptides such as substance P (SP). Recently, several studies have also linked POP to the inositol 1,4,5-triphosphate (IP(3)) signaling. However, the neuroanatomical interactions between these substances are not known. We used double-labeled immunofluorescence to determine the POP colocalization with SP, SP receptor (neurokinin-1 receptor, NK-1R) and IP(3) type 1 receptor (IP(3)R1) in the rat brain. Furthermore, since striatal and cortical GABAergic neurons are involved in SP neurotransmission, we studied the coexpression of POP, SP and GABA by triple-labeled immunofluorescence. POP was moderately present in IP(3)R1-containing cells in cortex; the colocalization was particularly high in the thalamus, hippocampal CA1 field and cerebellar Purkinje cells. Colocalization of POP with SP and NK1-receptor was infrequent throughout the brain, though some POP and SP coexpression was observed in cerebellar Purkinje cells. We also found that POP partially colocalized with SP-containing GABAergic neurons in striatum and cortex. Our findings support the view that POP is at least spatially associated with the IP(3)-signaling in the thalamus, hippocampus and cerebellar Purkinje cells. This might point to a role for POP in the regulation of long-term potentiation and/or depression. Moreover, the low degree of colocalization of POP, SP and its NK-1R suggests that a transport system is needed either for POP or SP to make hydrolysis possible and that POP may act both intra- and extracellularly.

  5. Docosahexaenoic acid induces increases in [Ca2+]i via inositol 1,4,5-triphosphate production and activates protein kinase C gamma and -delta via phosphatidylserine binding site: implication in apoptosis in U937 cells.

    PubMed

    Aires, Virginie; Hichami, Aziz; Filomenko, Rodolphe; Plé, Aude; Rébé, Cédric; Bettaieb, Ali; Khan, Naim Akhtar

    2007-12-01

    We investigated, in monocytic leukemia U937 cells, the effects of docosahexaenoic acid (DHA; 22:6 n-3) on calcium signaling and determined the implication of phospholipase C (PLC) and protein kinase C (PKC) in this pathway. DHA induced dose-dependent increases in [Ca2+]i, which were contributed by intracellular pool, via the production of inositol-1,4,5-triphosphate (IP3) and store-operated Ca2+ (SOC) influx, via opening of Ca2+ release-activated Ca2+ (CRAC) channels. Chemical inhibition of PLC, PKCgamma, and PKCdelta, but not of PKCbeta I/II, PKCalpha, or PKCbetaI, significantly diminished DHA-induced increases in [Ca2+]i. In vitro PKC assays revealed that DHA induced a approximately 2-fold increase in PKCgamma and -delta activities, which were temporally correlated with the DHA-induced increases in [Ca2+]i. In cell-free assays, DHA, but not other structural analogs of fatty acids, activated these PKC isoforms. Competition experiments revealed that DHA-induced activation of both the PKCs was dose-dependently inhibited by phosphatidylserine (PS). Furthermore, DHA induced apoptosis via reactive oxygen species (ROS) production, followed by caspase-3 activation. Chemical inhibition of PKCgamma/delta and of SOC/CRAC channels significantly attenuated both DHA-stimulated ROS production and caspase-3 activity. Our study suggests that DHA-induced activation of PLC/IP3 pathway and activation of PKCgamma/delta, via its action on PS binding site, may be involved in apoptosis in U937 cells.

  6. Adenosine A1( )receptors are selectively coupled to Gα(i-3) in postmortem human brain cortex: Guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding/immunoprecipitation study.

    PubMed

    Odagaki, Yuji; Kinoshita, Masakazu; Ota, Toshio; Meana, J Javier; Callado, Luis F; García-Sevilla, Jesús A

    2015-10-01

    By means of guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding assay combined with immunoprecipitation using anti-Gα subunit antibody, we recently reported 5-HT2A receptor- and M1 muscarinic acetylcholine receptor-mediated Gαq activation in rat cerebral cortical membranes (Odagaki et al., 2014). In the present study, this method has been applied to postmortem human brains, with focusing on adenosine receptor-mediated G-protein activation. In the exploratory experiments using a series of agonists and the antibodies specific to each Gα subtypes in the presence of low (10 nM) or high (50 μM) concentration of GDP, the most prominent increases in specific [(35)S]GTPγS binding in the membranes prepared from human prefrontal cortex were obtained for the combinations of adenosine (1mM)/anti-Gαi-3 in the presence of 50 μM GDP as well as 5-HT (100 μM)/anti-Gαq and carbachol (1mM)/anti-Gαq in the presence of 10nM GDP. Adenosine-induced activation of Gαi-3 emerged only when GDP concentrations were increased higher than 10 μM, and the following experiments were performed in the presence of 300 μM GDP. Adenosine increased specific [(35)S]GTPγS binding to Gαi-3 in a concentration-dependent manner to 251.4% of the basal unstimulated binding, with an EC50 of 1.77 μM. The involvement of adenosine A1 receptor was verified by the experiments using selective agonists and antagonists at adenosine A1 or A3 receptor. Among the α subunits of Gi/o class (Gαi-1, Gαi-2, Gαi-3, and Gαo.), only Gαi-3 was activated by 1mM adenosine, indicating that human brain adenosine A1 receptor is coupled preferentially, if not exclusively, to Gαi-3.

  7. Inositol 1,4,5-triphosphate-mediated shuttling between intracellular stores and the cytosol contributes to the sustained elevation in cytosolic calcium in FMLP-activated human neutrophils.

    PubMed

    Anderson, Ronald; Steel, Helen C; Tintinger, Gregory R

    2005-06-01

    The current study was designed to probe Ca2+ shuttling between intracellular stores and the cytosol as a potential mechanism contributing to the prolongation of elevated Ca2+ transients in N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils. Cytosolic Ca2+ concentrations and transmembrane fluxes of the cation were measured using spectrofluorimetric and radiometric procedures, respectively, while inositol 1,4,5-triphosphate (IP3) was measured using a radioreceptor assay. The Ca2+-chelating agent, ethylene glycol-bis (beta-aminoethyl ether) N,N,N'N'-tetraacetic acid (EGTA; 10mM), was used to exclude store-operated influx of Ca2+ into neutrophils, while the IP3 receptor antagonist, 2-aminoethoxydiphenyl borate (2-APB, 100 microM), added to the cells 10s after FMLP (0.01 and 1 microM), at which time the increases in IP3 and cytosolic Ca2+ were maximal, was used to eliminate both sustained release from stores and influx of Ca2+. Addition of FMLP at 0.01 or 1 microM resulted in equivalent peak increases in cytosolic Ca2+, while the increase in IP3 was greater and the rate of clearance of Ca2+ from the cytosol slower, in cells activated with 1 microM FMLP. Treatment of the cells with either EGTA or 2-APB following addition of 1 microM FMLP, completely (EGTA) or almost completely (2-APB) abolished the influx of Ca2+ and accelerated the rate of clearance of the cation from the cytosol. Post-peak cytosolic Ca2+ concentrations were lower, and the Ca2+ content of the stores higher, in cells treated with 2-APB. The involvement of IP3 was confirmed by similar findings in cells treated with U-73122 (1 microM), a selective inhibitor of phospholipase C. Taken together, these observations are compatible with IP3-mediated Ca2+ shuttling in neutrophils activated with FMLP.

  8. Adenosine A1( )receptors are selectively coupled to Gα(i-3) in postmortem human brain cortex: Guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding/immunoprecipitation study.

    PubMed

    Odagaki, Yuji; Kinoshita, Masakazu; Ota, Toshio; Meana, J Javier; Callado, Luis F; García-Sevilla, Jesús A

    2015-10-01

    By means of guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding assay combined with immunoprecipitation using anti-Gα subunit antibody, we recently reported 5-HT2A receptor- and M1 muscarinic acetylcholine receptor-mediated Gαq activation in rat cerebral cortical membranes (Odagaki et al., 2014). In the present study, this method has been applied to postmortem human brains, with focusing on adenosine receptor-mediated G-protein activation. In the exploratory experiments using a series of agonists and the antibodies specific to each Gα subtypes in the presence of low (10 nM) or high (50 μM) concentration of GDP, the most prominent increases in specific [(35)S]GTPγS binding in the membranes prepared from human prefrontal cortex were obtained for the combinations of adenosine (1mM)/anti-Gαi-3 in the presence of 50 μM GDP as well as 5-HT (100 μM)/anti-Gαq and carbachol (1mM)/anti-Gαq in the presence of 10nM GDP. Adenosine-induced activation of Gαi-3 emerged only when GDP concentrations were increased higher than 10 μM, and the following experiments were performed in the presence of 300 μM GDP. Adenosine increased specific [(35)S]GTPγS binding to Gαi-3 in a concentration-dependent manner to 251.4% of the basal unstimulated binding, with an EC50 of 1.77 μM. The involvement of adenosine A1 receptor was verified by the experiments using selective agonists and antagonists at adenosine A1 or A3 receptor. Among the α subunits of Gi/o class (Gαi-1, Gαi-2, Gαi-3, and Gαo.), only Gαi-3 was activated by 1mM adenosine, indicating that human brain adenosine A1 receptor is coupled preferentially, if not exclusively, to Gαi-3. PMID:26213104

  9. Effects of oral adenosine 5'-triphosphate and adenosine in enteric-coated capsules on indomethacin-induced permeability changes in the human small intestine: a randomized cross-over study

    PubMed Central

    Bours, Martijn JL; Bos, Hilde J; Meddings, Jon B; Brummer, Robert-Jan M; van den Brandt, Piet A; Dagnelie, Pieter C

    2007-01-01

    Background It is well-known that nonsteroidal anti-inflammatory drugs (NSAIDs) can cause damage to the small bowel associated with disruption of mucosal barrier function. In healthy human volunteers, we showed previously that topical administration of adenosine 5'-triphosphate (ATP) by naso-intestinal tube attenuated a rise in small intestinal permeability induced by short-term challenge with the NSAID indomethacin. This finding suggested that ATP may be involved in the preservation of intestinal barrier function. Our current objective was to corroborate the favourable effect of ATP on indomethacin-induced permeability changes in healthy human volunteers when ATP is administered via enteric-coated capsules, which is a more practically feasible mode of administration. Since ATP effects may have been partly mediated through its breakdown to adenosine, effects of encapsulated adenosine were tested also. Methods By ingesting a test drink containing 5 g lactulose and 0.5 g L-rhamnose followed by five-hour collection of total urine, small intestinal permeability was assessed in 33 healthy human volunteers by measuring the urinary lactulose/rhamnose excretion ratio. Urinary excretion of lactulose and L-rhamnose was determined by fluorescent detection high-pressure liquid chromatography (HPLC). Basal permeability of the small intestine was assessed as a control condition (no indomethacin, no ATP/adenosine). As a model of increased small intestinal permeability, two dosages of indomethacin were ingested at 10 h (75 mg) and 1 h (50 mg) before ingesting the lactulose/rhamnose test drink. At 1.5 h before indomethacin ingestion, two dosages of placebo, ATP (2 g per dosage) or adenosine (1 g per dosage) were administered via enteric-coated hydroxypropyl methylcellulose (HPMC) capsules with Eudragit© L30D-55. Results Median urinary lactulose/rhamnose excretion ratio (g/g) in the control condition was 0.032 (interquartile range: 0.022–0.044). Compared to the control condition

  10. New crystal forms of NTPDase1 from the bacterium Legionella pneumophila

    PubMed Central

    Zebisch, Matthias; Schäfer, Petra; Lauble, Peter; Sträter, Norbert

    2013-01-01

    Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/β)- and (β/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5 Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map. PMID:23519799

  11. Biochemical brain markers and purinergic parameters in rat CSF after seizure induced by pentylenetetrazol.

    PubMed

    Oses, Jean Pierre; Leke, Renata; Portela, Luis Valmor; Lara, Diogo R; Schmidt, André P; Casali, Emerson André; Wofchuk, Susana; Souza, Diogo O; Sarkis, João José Freitas

    2004-09-30

    Cellular and molecular mechanisms involved in the generation of seizures and the magnitude of neural cells injury are not fully understood. We evaluated astrocyte and/or neuronal injury in rats in the pentylenetetrazol model of acute seizures by measuring S100B and NSE levels in cerebrospinal fluid. Additionally, we determined ADP and GDP hydrolysis by soluble nucleoside triphosphate diphosphohydrolase in the cerebrospinal fluid, and the concentration of nucleosides adenosine, inosine and guanosine as putative markers of brain injury. After pentylenetetrazol-induced seizures: (i) S100B values increased from 10 to 30 min, returning to control levels at 24 h; NSE levels presented a biphasic increase: an increase at 10 to 30 min returning to control levels, and again at 240 min followed by a decline at 24 h; (ii) nucleotidase activities increased from 10 min, returning to control levels at 240 min; (iii) guanosine and inosine levels increased exclusively after 30 min. In summary, this study showed biochemical changes in the cerebrospinal fluid occurring after seizures induced by pentylenetetrazol. Such events may have a modulating effect upon seizure expression, particularly nucleoside triphosphate diphosphohydrolase activities and nucleoside concentrations, but are nevertheless followed by neural death as evidenced by the increase in NSE and S100B levels.

  12. A luminescence sensor of inositol 1,4,5-triphosphate and its model compound by ruthenium-templated assembly of a bis(Zn2+-cyclen) complex having a 2,2'-bipyridyl linker (cyclen = 1,4,7,10-tetraazacyclododecane).

    PubMed

    Aoki, Shin; Zulkefeli, Mohd; Shiro, Motoo; Kohsako, Masanori; Takeda, Kei; Kimura, Eiichi

    2005-06-29

    A new supramolecular complex (Ru(Zn2L4)3) was designed and synthesized as a luminescence sensor for inositol 1,4,5-triphosphate (IP3), which is one of the important second messengers in intracellular signal transduction, and its achiral model compound, cis,cis-1,3,5-cyclohexanetriol triphosphate (CTP3), by a ruthenium(II)-templated assembly of three molecules of a bis(Zn2+-cyclen) complex having a 2,2-bipyridyl linker (Zn2L4). Single-crystal X-ray diffraction analysis of a racemic mixture of Ru(Zn2L4)3 showed that three of the six Zn2+-cyclen units are orientated to face the opposite side of the molecule with three apical ligands (Zn2+-bound HO-) of each of the three Zn2+ located on the same face. 1H NMR and UV titrations of Ru(Zn2L4)3 with CTP3 indicated that Ru(Zn2L4)3 forms a 1:2 complex with CTP3, (Ru(Zn2L4)3)-((CTP3)6-)2, in aqueous solution at neutral pH. In the absence of guest molecules, Ru(Zn2L4)3 (10 microM) has an emission maximum at 610 nm at pH 7.4 (10 mM HEPES with I = 0.1 (NaNO3)) and 25 degrees C (excitation at 300 nm). An addition of 2 equiv of CTP3 induced a 4.2-fold enhancement in the emission of Ru(Zn2L4)3 at 584 nm. In this article, we describe that Ru(Zn2L4)3 is the first chemical sensor that directly responds to CTP3 and IP3 and discriminates these triphosphates from monophosphates and diphosphates. The photodecomposition of Ru(Zn2L4)3, which is inhibited upon complexation with CTP3, and the stereoselective complexation of chiral IP3 by Ru(Zn2L4)3 are also described.

  13. Extracellular ATP protects endothelial cells against DNA damage.

    PubMed

    Aho, Joonas; Helenius, Mikko; Vattulainen-Collanus, Sanna; Alastalo, Tero-Pekka; Koskenvuo, Juha

    2016-09-01

    Cell damage can lead to rapid release of ATP to extracellular space resulting in dramatic change in local ATP concentration. Evolutionary, this has been considered as a danger signal leading to adaptive responses in adjacent cells. Our aim was to demonstrate that elevated extracellular ATP or inhibition of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39) activity could be used to increase tolerance against DNA-damaging conditions. Human endothelial cells, with increased extracellular ATP concentration in cell proximity, were more resistant to irradiation or chemically induced DNA damage evaluated with the DNA damage markers γH2AX and phosphorylated p53. In our rat models of DNA damage, inhibiting CD39-driven ATP hydrolysis with POM-1 protected the heart and lung tissues against chemically induced DNA damage. Interestingly, the phenomenon could not be replicated in cancer cells. Our results show that transient increase in extracellular ATP can promote resistance to DNA damage.

  14. Direct photoaffinity labeling of tubulin with guanosine 5'-triphosphate

    SciTech Connect

    Nath, J.P.; Eagle, G.R.; Himes, R.H.

    1985-03-12

    Irradiation of tubulin in the presence of (/sup 3/H)GTP or (/sup 3/H)GDP at 254 nm led to the covalent incorporation of nucleotide into the protein. The specific nature of the labeling was shown in the following manner: with tubulin depleted of exchangeable nucleotide, the amount of labeling increased to a plateau value as the (/sup 3/H)GTP concentration was increased, with saturation being reached at a ratio of approximately 1.5; the same amount of labeling was obtained with GTP/tubulin ratios of 1 and 100; (/sup 3/H)GMP was not incorporated into the dimer, nor did GMP inhibit the incorporation of (/sup 3/H)GTP; (/sup 3/H)ATP was not incorporated; (/sup 3/H)GTP incorporation did not occur into denatured tubulin or into serum albumin. When (alpha-/sup 32/P)GTP was used in the irradiation experiments, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the carboxymethylated protein demonstrated that the incorporated label was associated with the beta subunit. The radiation treatment did cause changes in the tubulin molecule resulting in a decrease in assembly competence and in sulfhydryl groups, but these effects were minimized when a large excess of GTP was present during irradiation. Labeling of tubulin in the assembled state was much less than that observed in the free state.

  15. Bacterial adenosine triphosphate as a measure of urinary tract infection

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1971-01-01

    Procedure detects and counts bacteria present in urine samples. Method also determines bacterial levels in other aqueous body fluids including lymph fluid, plasma, blood, spinal fluid, saliva and mucous.

  16. Rapid, quantitative determination of bacteria in water. [adenosine triphosphate

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Thomas, R. R.; Jeffers, E. L.; Deming, J. W. (Inventor)

    1978-01-01

    A bioluminescent assay for ATP in water borne bacteria is made by adding nitric acid to a water sample with concentrated bacteria to rupture the bacterial cells. The sample is diluted with sterile, deionized water, then mixed with a luciferase-luciferin mixture and the resulting light output of the bioluminescent reaction is measured and correlated with bacteria present. A standard and a blank also are presented so that the light output can be correlated to bacteria in the sample and system noise can be substracted from the readings. A chemiluminescent assay for iron porphyrins in water borne bacteria is made by adding luminol reagent to a water sample with concentrated bacteria and measuring the resulting light output of the chemiluminescent reaction.

  17. Inositol hexakisphosphate kinase products contain diphosphate and triphosphate groups.

    PubMed

    Draskovic, Petra; Saiardi, Adolfo; Bhandari, Rashna; Burton, Adam; Ilc, Gregor; Kovacevic, Miroslav; Snyder, Solomon H; Podobnik, Marjetka

    2008-03-01

    Eukaryotic cells produce a family of diverse inositol polyphosphates (IPs) containing pyrophosphate bonds. Inositol pyrophosphates have been linked to a wide range of cellular functions, and there is growing evidence that they act as second messengers. Inositol hexakisphosphate kinase (IP6K) is able to convert the natural substrates inositol pentakisphosphate (IP 5) and inositol hexakisphosphate (IP 6) to several products with an increasing number of phospho-anhydride bonds. In this study, we structurally analyzed IPs synthesized by three mammalian isoforms of IP6K from IP 5 and IP 6. The NMR and mass analyses showed a number of products with diverse, yet specific, stereochemistry, defined by the architecture of IP6K's active site. We now report that IP6K synthesizes both pyrophosphate (diphospho) as well as triphospho groups on the inositol ring. All three IP6K isoforms share the same activities both in vitro and in vivo.

  18. Interaction of progesterone receptor with immobilized adenosine triphosphate.

    PubMed

    Moudgil, V K; Toft, D O

    1977-02-22

    Affinity chromatography has been used to study the binding of ATP to cyto-plasmic progesterone receptors of hen oviduct. A resin which selectively binds the receptor protein was prepared by linking ATP covalently to Sepharose 4B through a 6-carbon bridge of adipic acid dihydrazide. Receptor bound to the affinity resin was recovered in a single peak upon gradient elution with KCl (0.2-1 M) or ATP (0-0.1 M). While affinity chromatography was normally accomplished using the [3H]progesterone receptor complex, the hormone was not necessary for ATP binding under the conditions employed. The chromatography of crude receptor preparations allowed up to 100-fold purification with greater than 80% recovery of the receptor. The semipurified receptor appeared intact when analysed by sucrose gradient centrifugation, polyacrylamide gel electrophoresis, and DEAE-cellulose chromatography. The latter procedure separated the receptor into two components, A and B, both of which were capable of binding ATP. Although a specific biochemical role of ATP in hormone receptor action has not been demonstrated, the present studies support this possibility and, in addition, offer a convenient and reliable step for the purification of progesterone receptors. PMID:836885

  19. Prolonged adenosine triphosphate infusion and exercise hyperemia in humans.

    PubMed

    Shepherd, John R A; Joyner, Michael J; Dinenno, Frank A; Curry, Timothy B; Ranadive, Sushant M

    2016-09-01

    In humans, intra-arterial ATP infusion in limbs mimics many features of exercise hyperemia. However, it remains unknown whether ATP can evoke the prolonged vasodilation seen during exercise. Therefore, we addressed two questions during a continuous 3-h brachial artery infusion of ATP [20 μg·100 ml forearm volume (FAV)(-1)·min(-1)]: 1) would skeletal muscle blood flow remain robust or wane over time (tachyphylaxis); and 2) would the hyperemic response to moderate-intensity exercise performed during the ATP administration be blunted compared with that during control (saline) infusion. Nine participants (25 ± 1 yr) performed one trial consisting of seven bouts of rhythmic handgrip exercise (20 contractions/min at 20% of maximum), two bouts during saline (control), and five bouts during 180 min of continuous ATP infusion. Five minutes of ATP infusion resulted in a 710% increase in forearm vascular conductance (FVC) from control (4.8 ± 0.77 vs. 35.0 ± 5.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1), P < 0.05). Contrary to our expectations, FVC did not wane over time with values of 35.0 ± 5.7 and 36.0 ± 7.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) (P > 0.05), seen prior to the exercise bouts at 5 vs. 150 min, respectively. During superimposed exercise, FVC increased from 35.0 ± 5.7 to 49.6 ± 5.4 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) at 5 min and 36.0 ± 7.7 to 54.5 ± 5.0 at 150 min (P < 0.05). Our findings demonstrate ATP vasodilation is prolonged over time without tachyphylaxis; however, exercise hyperemia responses remain intact. Our results challenge the metabolic theory of exercise hyperemia, suggesting a disconnect between matching of blood flow and metabolic demand. PMID:27445304

  20. Alpha-carboxy nucleoside phosphonates as universal nucleoside triphosphate mimics.

    PubMed

    Balzarini, Jan; Das, Kalyan; Bernatchez, Jean A; Martinez, Sergio E; Ngure, Marianne; Keane, Sarah; Ford, Alan; Maguire, Nuala; Mullins, Niki; John, Jubi; Kim, Youngju; Dehaen, Wim; Vande Voorde, Johan; Liekens, Sandra; Naesens, Lieve; Götte, Matthias; Maguire, Anita R; Arnold, Eddy

    2015-03-17

    Polymerases have a structurally highly conserved negatively charged amino acid motif that is strictly required for Mg(2+) cation-dependent catalytic incorporation of (d)NTP nucleotides into nucleic acids. Based on these characteristics, a nucleoside monophosphonate scaffold, α-carboxy nucleoside phosphonate (α-CNP), was designed that is recognized by a variety of polymerases. Kinetic, biochemical, and crystallographic studies with HIV-1 reverse transcriptase revealed that α-CNPs mimic the dNTP binding through a carboxylate oxygen, two phosphonate oxygens, and base-pairing with the template. In particular, the carboxyl oxygen of the α-CNP acts as the potential equivalent of the α-phosphate oxygen of dNTPs and two oxygens of the phosphonate group of the α-CNP chelate Mg(2+), mimicking the chelation by the β- and γ-phosphate oxygens of dNTPs. α-CNPs (i) do not require metabolic activation (phosphorylation), (ii) bind directly to the substrate-binding site, (iii) chelate one of the two active site Mg(2+) ions, and (iv) reversibly inhibit the polymerase catalytic activity without being incorporated into nucleic acids. In addition, α-CNPs were also found to selectively interact with regulatory (i.e., allosteric) Mg(2+)-dNTP-binding sites of nucleos(t)ide-metabolizing enzymes susceptible to metabolic regulation. α-CNPs represent an entirely novel and broad technological platform for the development of specific substrate active- or regulatory-site inhibitors with therapeutic potential. PMID:25733891

  1. Immunostimulatory property of a synthetic peptide belonging to the soluble ATP diphosphohydrolase isoform (SmATPDase 2) and immunolocalisation of this protein in the Schistosoma mansoni egg.

    PubMed

    Mendes, Rita Gabriela Pedrosa Ribeiro; Gusmão, Michélia Antônia do Nascimento; Maia, Ana Carolina Ribeiro Gomes; Detoni, Michelle de Lima; Porcino, Gabriane Nascimento; Soares, Thais Vieira; Juliano, Maria Aparecida; Juliano, Luiz; Coelho, Paulo Marcos Zech; Lenzi, Henrique Leonel; Faria-Pinto, Priscila; Vasconcelos, Eveline Gomes

    2011-11-01

    A peptide (SmB2LJ; r175-194) that belongs to a conserved domain from Schistosoma mansoni SmATPDase 2 and is shared with potato apyrase, as predicted by in silico analysis as antigenic, was synthesised and its immunostimulatory property was analysed. When inoculated in BALB/c mice, this peptide induced high levels of SmB2LJ-specific IgG1 and IgG2a subtypes, as detected by enzyme linked immunosorbent assay. In addition, dot blots were found to be positive for immune sera against potato apyrase and SmB2LJ. These results suggest that the conserved domain r175-194 from the S. mansoni SmATPDase 2 is antigenic. Western blots were performed and the anti-SmB2LJ antibody recognised in adult worm (soluble worm antigen preparation) or soluble egg antigen antigenic preparations two bands of approximately 63 and 55 kDa, molecular masses similar to those predicted for adult worm SmATPDase 2. This finding strongly suggests the expression of this same isoform in S. mansoni eggs. To assess localisation of SmATPDase 2, confocal fluorescence microscopy was performed using cryostat sections of infected mouse liver and polyclonal antiserum against SmB2LJ. Positive reactions were identified on the external surface from the miracidium in von Lichtenberg's envelope and, in the outer side of the egg-shell, showing that this soluble isoform is secreted from the S. mansoni eggs. PMID:22124552

  2. Chaperones are necessary for the expression of catalytically active potato apyrases in prokaryotic cells.

    PubMed

    Porowińska, Dorota; Czarnecka, Joanna; Komoszyński, Michał

    2014-07-01

    NTPDases (nucleoside triphosphate diphosphohydrolases) (also called in plants apyrases) hydrolyze nucleoside 5'-tri- and/or diphosphate bonds producing nucleosides di or monophosphate and inorganic phosphate. For years, studies have been carried out to use both plant and animal enzymes for medicine. Therefore, there is a need to develop an efficient method for the quick production of large amounts of homogeneous proteins with high catalytic activity. Expression of proteins in prokaryotic cells is the most common way for the protein production. The aim of our study was to develop a method of expression of potato apyrase (StAPY4, 5, and 6) genes in bacterial cells under conditions that allowed the production of catalytically active form of these enzymes. Apyrase 4 and 6 were overexpressed in BL21-CodonPlus (DE3) bacteria strain but they were accumulated in inclusion bodies, regardless of the culture conditions and induction method. Co-expression of potato apyrases with molecular chaperones allowed the expression of catalytically active apyrase 5. However, its high nucleotidase activity could be toxic for bacteria and is therefore synthesized in small amounts in cells. Our studies show that each protein requires other conditions for maturation and even small differences in amino acid sequence can essentially affect protein folding regardless of presence of chaperones.

  3. Biochemical characterization of Arabidopsis APYRASE family reveals their roles in regulating endomembrane NDP/NMP homoeostasis.

    PubMed

    Chiu, Tsan-Yu; Lao, Jeemeng; Manalansan, Bianca; Loqué, Dominique; Roux, Stanley J; Heazlewood, Joshua L

    2015-11-15

    Plant apyrases are nucleoside triphosphate (NTP) diphosphohydrolases (NTPDases) and have been implicated in an array of functions within the plant including the regulation of extracellular ATP. Arabidopsis encodes a family of seven membrane bound apyrases (AtAPY1-7) that comprise three distinct clades, all of which contain the five conserved apyrase domains. With the exception of AtAPY1 and AtAPY2, the biochemical and the sub-cellular characterization of the other members are currently unavailable. In this research, we have shown all seven Arabidopsis apyrases localize to internal membranes comprising the cis-Golgi, endoplasmic reticulum (ER) and endosome, indicating an endo-apyrase classification for the entire family. In addition, all members, with the exception of AtAPY7, can function as endo-apyrases by complementing a yeast double mutant (Δynd1Δgda1) which lacks apyrase activity. Interestingly, complementation of the mutant yeast using well characterized human apyrases could only be accomplished by using a functional ER endo-apyrase (NTPDase6), but not the ecto-apyrase (NTPDase1). Furthermore, the substrate specificity analysis for the Arabidopsis apyrases AtAPY1-6 indicated that each member has a distinct set of preferred substrates covering various NDPs (nucleoside diphosphates) and NTPs. Combining the biochemical analysis and sub-cellular localization of the Arabidopsis apyrases family, the data suggest their possible roles in regulating endomembrane NDP/NMP (nucleoside monophosphate) homoeostasis.

  4. Analysis of the NTPDase and ecto-5'-nucleotidase profiles in serum-limited Trichomonas vaginalis.

    PubMed

    Frasson, Amanda Piccoli; Charão, Mariele Feiffer; Rosemberg, Denis Broock; de Souza, Ana Paula; Garcia, Solange Cristina; Bonorino, Cristina; Bogo, Maurício Reis; De Carli, Geraldo Attilio; Tasca, Tiana

    2012-03-01

    Trichomonas vaginalis is a parasite of the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. Ectonucleoside triphosphate diphosphohydrolase (NTPDase) family members, which hydrolyse extracellular ATP and ADP and ecto-5'-nucleotidase, which hydrolyses AMP, have been characterised in T. vaginalis. For trichomonad culture, the growth medium is supplemented with 10% serum, which is an important source of nutrients, such as adenosine. Here, we investigated the ATP metabolism of T. vaginalis trophozoites from long-term cultures and clinical isolates under limited bovine serum conditions (1% serum). The specific enzymatic activities were expressed as nmol inorganic phosphate (Pi) released/min/mg protein, the gene expression patterns were determined by reverse transcriptase-polymerase chain reaction, the extracellular adenine nucleotide hydrolysis was analysed by high performance liquid chromatography and the cell cycle analysis was assessed by flow cytometry. Serum limitation led to the profound activation of NTPDase and ecto-5'-nucleotidase activities. Furthermore, the levels of NTPDase A and B transcripts increased and extracellular ATP metabolism was activated, which led to enhanced ATP hydrolysis and the formation of ADP and AMP. Moreover, the cell cycle was arrested at the G0/G1 stage, which suggested adenosine uptake. Our data suggest that under conditions of serum limitation, NTPDase and ecto-5'-nucleotidase play a role in providing the adenosine required for T. vaginalis growth and that this process contributes to the establishment of parasitism. PMID:22415254

  5. Heterogeneity in extracellular nucleotide hydrolysis among clinical isolates of Trichomonas vaginalis.

    PubMed

    Tasca, T; Bonan, C D; De Carli, G A; Sarkis, J J F; Alderete, J F

    2005-07-01

    Trichomonas vaginalis is a parasitic protozoan that causes trichomonosis, a sexually-transmitted disease, with serious sequelae to women and men. As the host-parasite relationship is complex, it is important to investigate biochemical aspects of the parasite that contribute to our understanding of trichomonal biology and pathogenesis. Nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1), which hydrolyses extracellular ATP and ADP, and ecto-5'-nucleotidase, which hyrolyses AMP, have been characterized in laboratory isolates of T. vaginalis. Here we show that the extracellular ATP: ADP hydrolysis ratio varies among fresh clinical isolates, which presented higher ATPase and ADPase activities than long-term-grown isolates. Growth of parasites in iron-replete and iron-depleted medium resulted in different, albeit minor, patterns in extracellular ATP and ADP hydrolysis among isolates. Importantly, some isolates had low or absent ecto-5'-nucleotidase activity, regardless of environmental conditions tested. For isolates with ecto-5'-nucleotidase activity, high- and low-iron trichomonads had increased and decreased levels of activity, respectively, compared to organisms grown in normal TYM-serum medium. This suggests a regulation in expression of either the enzyme amounts and/or activity under the control of iron. Finally, we found no correlation between the presence or absence of dsRNA virus infection among trichomonad isolates and NTPDase and ecto-5'-nucleotidase activities. PMID:16038398

  6. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    PubMed

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system.

  7. Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish

    PubMed Central

    Huitema, Leonie F. A.; Apschner, Alexander; Logister, Ive; Spoorendonk, Kirsten M.; Bussmann, Jeroen; Hammond, Chrissy L.; Schulte-Merker, Stefan

    2012-01-01

    Bone mineralization is an essential step during the embryonic development of vertebrates, and bone serves vital functions in human physiology. To systematically identify unique gene functions essential for osteogenesis, we performed a forward genetic screen in zebrafish and isolated a mutant, no bone (nob), that does not form any mineralized bone. Positional cloning of nob identified the causative gene to encode ectonucleoside triphosphate/diphosphohydrolase 5 (entpd5); analysis of its expression pattern demonstrates that entpd5 is specifically expressed in osteoblasts. An additional mutant, dragonfish (dgf), exhibits ectopic mineralization in the craniofacial and axial skeleton and encodes a loss-of-function allele of ectonucleotide pyrophosphatase phosphodiesterase 1 (enpp1). Intriguingly, generation of double-mutant nob/dgf embryos restored skeletal mineralization in nob mutants, indicating that mechanistically, Entpd5 and Enpp1 act as reciprocal regulators of phosphate/pyrophosphate homeostasis in vivo. Consistent with this, entpd5 mutant embryos can be rescued by high levels of inorganic phosphate, and phosphate-regulating factors, such as fgf23 and npt2a, are significantly affected in entpd5 mutant embryos. Our study demonstrates that Entpd5 represents a previously unappreciated essential player in phosphate homeostasis and skeletal mineralization. PMID:23236130

  8. Involvement of purinergic signaling on nitric oxide production by neutrophils stimulated with Trichomonas vaginalis.

    PubMed

    Frasson, Amanda Piccoli; De Carli, Geraldo Attilio; Bonan, Carla Denise; Tasca, Tiana

    2012-03-01

    Trichomonas vaginalis is a parasite from the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. The neutrophil infiltration has been considered to be primarily responsible for cytological changes observed at infection site, and the chemoattractants can play an important role in this leukocytic recruitment. Nitric oxide (NO) is one of the most widespread mediator compounds, and it is implicated in modulation of immunological mechanisms. Extracellular nucleotides and nucleosides are signaling molecules involved in several processes, including immune responses and control of leukocyte trafficking. Ectonucleoside triphosphate diphosphohydrolase members, ecto-5'-nucleotidase, and adenosine deaminase (ectoADA) have been characterized in T. vaginalis. Herein, we investigated the effects of purinergic system on NO production by neutrophils stimulated with T. vaginalis. The trophozoites were able to induce a high NO synthesis by neutrophils through iNOS pathway. The extracellular nucleotides ATP, ADP, and ATPγS (a non-hydrolyzable ATP analog) showed no significant change in NO secretion. In contrast, adenosine and its degradation product, inosine, promoted a low production of the compound. The immunosuppressive effect of adenosine upon NO release by neutrophils occurred due to adenosine A(2A) receptor activation. The ecto-5'-nucleotidase activity displayed by T. vaginalis was shown to be important in adenosine generation, indicating the efficiency of purinergic cascade. Our data suggest the influence of purinergic signaling, specifically adenosinergic system, on NO production by neutrophils in T. vaginalis infection, contributing to the immunological aspects of disease.

  9. Optimizing human apyrase to treat arterial thrombosis and limit reperfusion injury without increasing bleeding risk.

    PubMed

    Moeckel, Douglas; Jeong, Soon Soeg; Sun, Xiaofeng; Broekman, M Johan; Nguyen, Annie; Drosopoulos, Joan H F; Marcus, Aaron J; Robson, Simon C; Chen, Ridong; Abendschein, Dana

    2014-08-01

    In patients with acute myocardial infarction undergoing reperfusion therapy to restore blood flow through blocked arteries, simultaneous inhibition of platelet P2Y12 receptors with the current standard of care neither completely prevents recurrent thrombosis nor provides satisfactory protection against reperfusion injury. Additionally, these antiplatelet drugs increase the risk of bleeding. To devise a different strategy, we engineered and optimized the apyrase activity of human nucleoside triphosphate diphosphohydrolase-3 (CD39L3) to enhance scavenging of extracellular adenosine diphosphate, a predominant ligand of P2Y12 receptors. The resulting recombinant protein, APT102, exhibited greater than four times higher adenosine diphosphatase activity and a 50 times longer plasma half-life than did native apyrase. Treatment with APT102 before coronary fibrinolysis with intravenous recombinant human tissue-type plasminogen activator in conscious dogs completely prevented thrombotic reocclusion and significantly decreased infarction size by 81% without increasing bleeding time. In contrast, clopidogrel did not prevent coronary reocclusion and increased bleeding time. In a murine model of myocardial reperfusion injury caused by transient coronary artery occlusion, APT102 also decreased infarct size by 51%, whereas clopidogrel was not effective. These preclinical data suggest that APT102 should be tested for its ability to safely and effectively maximize the benefits of myocardial reperfusion therapy in patients with arterial thrombosis.

  10. Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells.

    PubMed

    Gwak, HyeRan; Kim, Soochi; Dhanasekaran, Danny N; Song, Yong Sang

    2016-02-28

    Malignant tumors have a high glucose demand and alter cellular metabolism to survive. Herein, focusing on the utility of glucose metabolism as a therapeutic target, we found that resveratrol induced endoplasmic reticulum (ER) stress-mediated apoptosis by interrupting protein glycosylation in a cancer-specific manner. Our results indicated that resveratrol suppressed the hexosamine biosynthetic pathway and interrupted protein glycosylation through GSK3β activation. Application of either biochemical intermediates of the hexosamine pathway or small molecular inhibitors of GSK3β reversed the effects of resveratrol on the disruption of protein glycosylation. Additionally, an ER UDPase, ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), modulated protein glycosylation by Akt attenuation in response to resveratrol. By inhibition or overexpression of Akt functions, we confirmed that the glycosylation activities were dependent on ENTPD5 expression and regulated by the action of Akt in ovarian cancer cells. Resveratrol-mediated disruption of protein glycosylation induced cellular apoptosis as indicated by the up-regulation of GADD153, followed by the activation of ER-stress sensors (PERK and ATF6α). Thus, our results provide novel insight into cancer cell metabolism and protein glycosylation as a therapeutic target for cancers.

  11. 5'-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation.

    PubMed

    Zielinski, Mark R; Taishi, Ping; Clinton, James M; Krueger, James M

    2012-06-01

    Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73-knockout (KO) mice than in C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73-KO mice. Interleukin-1 beta (IL1β) enhanced NREMS in both strains, indicating that the CD73-KO mice were capable of sleep responses. Electroencephalographic power spectra during NREMS in the 1.0-2.5 Hz frequency range was significantly enhanced after SD in both CD73-KO and WT mice; the increases were significantly greater in the WT mice than in the CD73-KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in the two strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73.

  12. Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro.

    PubMed

    Coskuner, Orkid; Murray, Ian V J

    2014-01-01

    Alzheimer's disease (AD) is a devastating disease of aging that initiates decades prior to clinical manifestation and represents an impending epidemic. Two early features of AD are metabolic dysfunction and changes in amyloid-β protein (Aβ) levels. Since levels of ATP decrease over the course of the disease and Aβ is an early biomarker of AD, we sought to uncover novel linkages between the two. First and remarkably, a GxxxG motif is common between both Aβ (oligomerization motif) and nucleotide binding proteins (Rossmann fold). Second, ATP was demonstrated to protect against Aβ mediated cytotoxicity. Last, there is structural similarity between ATP and amyloid binding/inhibitory compounds such as ThioT, melatonin, and indoles. Thus, we investigated whether ATP alters misfolding of the pathologically relevant Aβ42. To test this hypothesis, we performed computational and biochemical studies. Our computational studies demonstrate that ATP interacts strongly with Tyr10 and Ser26 of Aβ fibrils in solution. Experimentally, both ATP and ADP reduced Aβ misfolding at physiological intracellular concentrations, with thresholds at ~500 μM and 1 mM respectively. This inhibition of Aβ misfolding is specific; requiring Tyr10 of Aβ and is enhanced by magnesium. Last, cerebrospinal fluid ATP levels are in the nanomolar range and decreased with AD pathology. This initial and novel finding regarding the ATP interaction with Aβ and reduction of Aβ misfolding has potential significance to the AD field. It provides an underlying mechanism for published links between metabolic dysfunction and AD. It also suggests a potential role of ATP in AD pathology, as the occurrence of misfolded extracellular Aβ mirrors lowered extracellular ATP levels. Last, the findings suggest that Aβ conformation change may be a sensor of metabolic dysfunction.

  13. Studies on adenosine triphosphate transphosphorylases. Amino acid sequence of rabbit muscle ATP-AMP transphosphorylase.

    PubMed

    Kuby, S A; Palmieri, R H; Frischat, A; Fischer, A H; Wu, L H; Maland, L; Manship, M

    1984-05-22

    The total amino acid sequence of rabbit muscle adenylate kinase has been determined, and the single polypeptide chain of 194 amino acid residues starts with N-acetylmethionine and ends with leucyllysine at its carboxyl terminus, in agreement with the earlier data on its amino acid composition [Mahowald, T. A., Noltmann, E. A., & Kuby, S. A. (1962) J. Biol. Chem. 237, 1138-1145] and its carboxyl-terminus sequence [Olson, O. E., & Kuby, S. A. (1964) J. Biol. Chem. 239, 460-467]. Elucidation of the primary structure was based on tryptic and chymotryptic cleavages of the performic acid oxidized protein, cyanogen bromide cleavages of the 14C-labeled S-carboxymethylated protein at its five methionine sites (followed by maleylation of peptide fragments), and tryptic cleavages at its 12 arginine sites of the maleylated 14C-labeled S-carboxymethylated protein. Calf muscle myokinase, whose sequence has also been established, differs primarily from the rabbit muscle myokinase's sequence in the following: His-30 is replaced by Gln-30; Lys-56 is replaced by Met-56; Ala-84 and Asp 85 are replaced by Val-84 and Asn-85. A comparison of the four muscle-type adenylate kinases, whose covalent structures have now been determined, viz., rabbit, calf, porcine, and human [for the latter two sequences see Heil, A., Müller, G., Noda, L., Pinder, T., Schirmer, H., Schirmer, I., & Von Zabern, I. (1974) Eur. J. Biochem. 43, 131-144, and Von Zabern, I., Wittmann-Liebold, B., Untucht-Grau, R., Schirmer, R. H., & Pai, E. F. (1976) Eur. J. Biochem. 68, 281-290], demonstrates an extraordinary degree of homology.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird.

    PubMed

    Bennison, Clair; Hemmings, Nicola; Brookes, Lola; Slate, Jon; Birkhead, Tim

    2016-08-31

    The relationship between sperm energetics and sperm function is poorly known, but is central to our understanding of the evolution of sperm traits. The aim of this study was to examine how sperm morphology and ATP content affect sperm swimming velocity in the zebra finch Taeniopygia guttata We exploited the high inter-male variation in this species and created extra experimental power by increasing the number of individuals with very long or short sperm through artificial selection. We found a pronounced quadratic relationship between total sperm length and swimming velocity, with velocity increasing with length up to a point, but declining in the very longest sperm. We also found an unexpected negative association between midpiece length and ATP content: sperm with a short midpiece generally contained the highest concentration of ATP. Low intracellular ATP is therefore unlikely to explain reduced swimming velocity among the very longest sperm (which tend to have a shorter midpiece). PMID:27559067

  15. The rapid estimation of microbial contamination of raw meat by measurement of adenosine triphosphate (ATP).

    PubMed

    Stannard, C J; Wood, J M

    1983-12-01

    Bacteria were separated from raw meat homogenate by a simple three-stage process. Centrifugation (10 s at 2000 g) removed coarse particles; stirring with the cation exchange resin Bio-Rex 70 removed smaller particles and filtration through 0.22 micron membranes removed soluble materials. By this process 70-80% of the microbial populations of meat homogenates were consistently isolated on the filters. A linear relationship was found between log10 microbial ATP and log10 colony count of meat over the range 10(5)-10(9) cfu/g. The value of ATP/cfu for meat samples was within the range previously reported for pure cultures. These data indicated that ATP extracted from the filters originated from bacteria in the meat samples. Several samples can be analysed simultaneously in an elapsed time of 20-25 min. The variability associated with estimates of both colony counts and ATP levels has been determined. PMID:6662830

  16. Beneficial effects of adenosine triphosphate-sensitive K+ channel opener on liver ischemia/reperfusion injury

    PubMed Central

    Nogueira, Mateus Antunes; Coelho, Ana Maria Mendonça; Sampietre, Sandra Nassa; Patzina, Rosely Antunes; Pinheiro da Silva, Fabiano; D'Albuquerque, Luiz Augusto Carneiro; Machado, Marcel Cerqueira Cesar

    2014-01-01

    AIM: To investigate the effect of diazoxide administration on liver ischemia/reperfusion injury. METHODS: Wistar male rats underwent partial liver ischemia performed by clamping the pedicle from the medium and left anterior lateral segments for 1 h under mechanical ventilation. They were divided into 3 groups: Control Group, rats submitted to liver manipulation, Saline Group, rats received saline, and Diazoxide Group, rats received intravenous injection diazoxide (3.5 mg/kg) 15 min before liver reperfusion. 4 h and 24 h after reperfusion, blood was collected for determination of aspartate transaminase (AST), alanine transaminase (ALT), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), nitrite/nitrate, creatinine and tumor growth factor-β1 (TGF-β1). Liver tissues were assembled for mitochondrial oxidation and phosphorylation, malondialdehyde (MDA) content, and histologic analysis. Pulmonary vascular permeability and myeloperoxidase (MPO) were also determined. RESULTS: Four hours after reperfusion the diazoxide group presented with significant reduction of AST (2009 ± 257 U/L vs 3523 ± 424 U/L, P = 0.005); ALT (1794 ± 295 U/L vs 3316 ± 413 U/L, P = 0.005); TNF-α (17 ± 9 pg/mL vs 152 ± 43 pg/mL, P = 0.013; IL-6 (62 ± 18 pg/mL vs 281 ± 92 pg/mL); IL-10 (40 ± 9 pg/mL vs 78 ± 10 pg/mL P = 0.03), and nitrite/nitrate (3.8 ± 0.9 μmol/L vs 10.2 ± 2.4 μmol/L, P = 0.025) when compared to the saline group. A significant reduction in liver mitochondrial dysfunction was observed in the diazoxide group compared to the saline group (P < 0.05). No differences in liver MDA content, serum creatinine, pulmonary vascular permeability and MPO activity were observed between groups. Twenty four hours after reperfusion the diazoxide group showed a reduction of AST (495 ± 78 U/L vs 978 ± 192 U/L, P = 0.032); ALT (335 ± 59 U/L vs 742 ± 182 U/L, P = 0.048), and TGF-β1 (11 ± 1 ng/mL vs 17 ± 0.5 ng/mL, P = 0.004) serum levels when compared to the saline group. The control group did not present alterations when compared to the diazoxide and saline groups. CONCLUSION: Diazoxide maintains liver mitochondrial function, increases liver tolerance to ischemia/reperfusion injury, and reduces the systemic inflammatory response. These effects require further evaluation for using in a clinical setting. PMID:25386080

  17. Sodium- and adenosine-triphosphate-dependent calcium movements in membrane vesicles prepared from dog erythrocytes.

    PubMed Central

    Ortiz, O E; Sjodin, R A

    1984-01-01

    Inside-out vesicles from the membranes of dog erythrocytes were obtained by the method of Lew & Seymour (1982) for study of Ca movements. In the absence of ATP, 45Ca accumulation by the vesicles was inhibited by external Na and stimulated by internal Na. The presence of either MgCl2, quinidine sulphate, or LaCl3 in the incubation medium inhibited 45Ca accumulation in the absence of ATP. The release of 45Ca from 45Ca-loaded vesicles was specifically promoted by Na+ in the absence as well as in the presence of ATP. The accumulation of 45Ca by vesicles was stimulated by ATP and the effect of ATP was entirely dependent on the presence of Mg. The Mg- and ATP-dependent 45Ca accumulation was stimulated by the presence of either K or Na in the medium, was hyperbolically activated by increasing the Ca2+ concentration in the medium, was stimulated by calmodulin and inhibited by orthovanadate (10(-4) M) or LaCl3 (10(-3) M). The data demonstrate the presence of two mechanisms for controlling Ca movements in inside-out vesicles from dog erythrocyte membranes, a Na-dependent one similar to the Na-Ca exchange described for squid axons and cardiac muscle and a Ca pump utilizing ATP with characteristics similar to those described for human erythrocytes and squid axons. PMID:6090650

  18. Ultrasensitive bioluminescent determinations of adenosine triphosphate (ATP) for investigating the energetics of host-grown microbes

    NASA Technical Reports Server (NTRS)

    Hanks, J. H.; Dhople, A. M.

    1975-01-01

    Stability and optimal concentrations of reagents were studied in bioluminescence assay of ATP levels. Luciferase enzyme was prepared and purified using Sephadex G-100. Interdependencies between enzyme and luciferin concentrations in presence of optimal Mg are illustrated. Optimal ionic strength was confirmed to be 0.05 M for the four buffers tested. Adapted features of the R- and H-systems are summarized, as well as the percentages of ATP pools released from representative microbes by heat and chloroform.

  19. Adenosine triphosphate hydrolysis in rat dental tissues. A histochemical study to differentiate the enzymes involved.

    PubMed

    Mörnstad, H; Sundström, B

    1976-07-19

    The purpose of this study was to try to differentiate histochemically between the various enzymes which may catalyze the hydrolysis of ATP in developing rat dental tissues. Freeze cut and freeze dried sections of molar and incisor teeth were incubated in lead capture-based media at pH 5.0, 7.2 or 9.4 with one of the following substrates: beta-glycerophosphate, AMP, ADP, ATP, AMP-PNP and tetrasodium pyrophosphate. To establish the enzymatic nature of the hydrolysis parallel sections were incubated after prior fixation in either formaldehyde or glutaraldehyde. By comparing the enzymatic stainings obtained with the various substrates and at the different pH:s, it was concluded that ATP can be visibly hydrolyzed in rat dental tissues by alkaline phosphatase (stratum intermedium, apical part of maturation ameloblasts, basal part of all ameloblasts, odontoblasts and subodontoblastic layer), specific ATPase (apical and basal parts of secretory ameloblasts) and ATP pyrophosphatase and/or adenylate cyclase (stratum intermedium, odontoblasts). Acid phosphatase, specific ADPase, 5'-nucleotidase, inorganic pyrophosphatase, 3':5'-cyclic-AMP-phosphodiesterase and adenylate kinase on the other hand, seem not to be engaged in the ATP hydrolysis to such a degree as to complicate the interpretation of the histochemical staining. The alkaline phosphatase part of the ATP hydrolysis appeared to be rather insensitive to aldehyde fixation, while the hydrolysis effected by specific ATPase and ATP pyrophosphatase and/or adenylate cyclase was extinguished after fixation with formaldehyde for 4 h or glutaraldehyde for 10 min.

  20. Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide

    PubMed Central

    Henn, Matthew C; Janjua, M Burhan; Kanter, Evelyn M; Makepeace, Carol M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2015-01-01

    Background ATP-sensitive potassium (KATP) channel openers provide cardioprotection in multiple models. Ion flux at an unidentified mitochondrial KATP channel has been proposed as the mechanism. The renal outer medullary kidney potassium channel subunit, potassium inward rectifying (Kir)1.1, has been implicated as a mitochondrial channel pore-forming subunit. We hypothesized that subunit Kir1.1 is involved in cardioprotection (maintenance of volume homeostasis and contractility) of the KATP channel opener diazoxide (DZX) during stress (exposure to hyperkalemic cardioplegia [CPG]) at the myocyte and mitochondrial levels. Methods and Results Kir subunit inhibitor Tertiapin Q (TPN-Q) was utilized to evaluate response to stress. Mouse ventricular mitochondrial volume was measured in the following groups: isolation buffer; 200 μmol/L of ATP; 100 μmol/L of DZX+200 μmol/L of ATP; or 100 μmol/L of DZX+200 μmol/L of ATP+TPN-Q (500 or 100 nmol/L). Myocytes were exposed to Tyrode’s solution (5 minutes), test solution (Tyrode’s, cardioplegia [CPG], CPG+DZX, CPG+DZX+TPN-Q, Tyrode’s+TPN-Q, or CPG+TPN-Q), N=12 for all (10 minutes); followed by Tyrode’s (5 minutes). Volumes were compared. TPN-Q, with or without DZX, did not alter mitochondrial or myocyte volume. Stress (CPG) resulted in myocyte swelling and reduced contractility that was prevented by DZX. TPN-Q prevented the cardioprotection afforded by DZX (volume homeostasis and maintenance of contractility). Conclusions TPN-Q inhibited myocyte cardioprotection provided by DZX during stress; however, it did not alter mitochondrial volume. Because TPN-Q inhibits Kir1.1, Kir3.1, and Kir3.4, these data support that any of these Kir subunits could be involved in the cardioprotection afforded by diazoxide. However, these data suggest that mitochondrial swelling by diazoxide does not involve Kir1.1, 3.1, or 3.4. PMID:26304939

  1. Quantitative determination of 2'-deoxycytidine-5'-triphosphate in cell extracts by radioimmunoassay

    SciTech Connect

    Piall, E.M.; Aherne, G.W.; Marks, V.

    1986-04-01

    A radioimmunoassay (RIA) capable of quantitating dCTP in femtomolar amounts in cell extracts has been developed, and applied to human fibroblast cells lines and L5178Y mouse lymphoma lines. Cross reactivity of the antibody with CTP, though low (2.7%) has necessitated pre-RIA removal of CTP by either boronate affinity gel chromatography or sodium periodate oxidation. Fractions from the boronate gel column or aliquots of NaIO/sub 4/-treated cell extract are quantitated directly by the RIA. Recovery of extracted dCTP standard taken through the entire procedure is quantitative and results are reproductive. Due to the high sensitivity of the quantitation step, dCTP can be accurately measured in relatively small numbers of cells-about 10/sup 4/ cells.

  2. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).

    PubMed

    Zhang, Su; Chaput, John C

    2013-03-01

    Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural ribose sugar found in RNA has been replaced with an unnatural threose sugar. TNA can be synthesized enzymatically using Therminator DNA polymerase to copy DNA templates into TNA. Here, we expand the substrate repertoire of Therminator DNA polymerase to include threofuranosyl adenine 3'-triphsophate (tATP). We chemically synthesized tATP by two different methods from the 2'-O-acetyl derivative. Enzyme-mediated polymerization reveals that tATP functions as an efficient substrate for Therminator DNA polymerase, indicating that tATP can replace the diaminopurine analogue (tDTP) in TNA transcription reactions. PMID:23352269

  3. Adenosine triphosphate sulfurylase from penicillium chrysogenum. Steady state kinetics of the forward and reverse reactions.

    PubMed

    Farley, J R; Cryns, D F; Yang, Y H; Segel, I H

    1976-07-25

    The kinetic mechanism of ATP sulfurylase was established from initial velocity, product inhibition, and dead-end inhibition studies. In the forward direction, the reaction is steady state ordered, with MgATP=A, sulfate=B, MgPP1=P, and APS=Q.KmA=0.38 mM, Kia=0.71 mM, KmB=0.50 mM. Nitrate and chlorate are competive with sulfate and uncompetitive with MgATP. KiNO3-=0.25 mM; KiC1O3-= 0.15 mM. AMP and various MgATP analogs are competitive with MgATP and mixed-type inhibitors with respect to SO42-. The Ki for AMP is 0.55 mM. The reaction is rapid equilibrium ordered in the reverse direction with Kiq=0.3 to 1.0 muM and Kmp=0.65 muM. Adenosine 5'-phosphosulfate (APS) exhibits competitive substrate inhibition (KIQ=0.3 mM). The ratio Vmaxf/Vmaxr is 0.018. In the forward direction the ratio VmaxMoO42-/VmaxSO42- is 20. The Keq at pH 8.0 and 30 degrees calculated from the Haldane equation is 6 X 10(-9) to 3.3 X 10(-8) (depending on the Kiq value chosen). The experimental Keq is about 2.5 X 10(-9). The fact that Vmax/Vmaxr is about 1 million times greater than Keq is consistent with the assumed physiological role of the enzyme (APS synthesis). The mechanistic basis of the ordered binding sequence was probed by multiple inhibition analysis. Dead-end inhibitors competitive with MgATP (such as free ATP, Mg alpha,beta-methylene ATP, CrATP, and CaATP) do not induce substrate inhibition by sulfate or alter the inhibition patterns displayed by nitrate. This result suggests (but does not prove) that catalytic action on MgATP must precede the formation of the sulfate binding site. PMID:819440

  4. Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis.

    PubMed

    Son, Aran; Kim, Min Seuk; Jo, Hae; Byun, Hae Mi; Shin, Dong Min

    2012-02-01

    The receptor activator of NF-κB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-κB and other signal transduction pathways essential for osteoclastogenesis, such as Ca(2+) signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP(3)) and IP(3)-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of IP(3) and evaluated IP(3)-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of Ca(2+) signaling proteins such as IP(3) receptors (IP(3)Rs), plasma membrane Ca(2+) ATPase, and sarco/endoplasmic reticulum Ca(2+) ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of IP(3) was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) δ, a probe specifically detecting intracellular IP(3) levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)] and of IP(3)Rs with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of IP(3)Rs) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular IP(3) levels and the IP(3)-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

  5. Prefrontal inositol triphosphate is molecular correlate of working memory in nonhuman primates.

    PubMed

    López-Téllez, Juan F; López-Aranda, Manuel F; Navarro-Lobato, Irene; Masmudi-Martín, Mariam; Montañez, Elisa Martín; Calvo, Eduardo Blanco; Khan, Zafar U

    2010-02-24

    Working memory (WM) is a process of actively maintaining information in the mind for a relatively short period of time, and prefrontal cortex (PFC) has been thought to play a central role in its function. However, our understanding of underlying molecular events that translate into WM behavior remains elusive. To shed light on this issue, we have used three distinct nonhuman primate models of WM where each model represents three WM conditions: normal control, WM-deficient, and recuperated to normal from WM deficiency. Based on the hypothesis that there is a common molecular substrate for the coding of WM behavior, we have studied the relationship of these animals' performance on a WM task with their PFC levels of molecular components associated with Gq-phospholipase C and cAMP pathways, with the idea of identifying the footprints of such biomolecules. We observed that in all of the primate models WM deficiency was strongly related to the reduced concentration of IP(3) in PFC, whereas recuperation of WM-deficient animals to normal condition was associated with the normalization in IP(3) level. However, this correlation was absent or weak for cAMP, active protein kinase A, dopamine D(1) receptor, and Gq protein. In addition, WM deficiency related not only to pharmacological conditions but also to aging. Thus, it is suggested that optimal IP(3) activity is essential for normal WM function and the maintenance of intracellular IP(3)-mediated Ca(2+) level in PFC may serve as biochemical substrate for the expression of WM behavior.

  6. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird

    PubMed Central

    Bennison, Clair; Brookes, Lola; Slate, Jon; Birkhead, Tim

    2016-01-01

    The relationship between sperm energetics and sperm function is poorly known, but is central to our understanding of the evolution of sperm traits. The aim of this study was to examine how sperm morphology and ATP content affect sperm swimming velocity in the zebra finch Taeniopygia guttata. We exploited the high inter-male variation in this species and created extra experimental power by increasing the number of individuals with very long or short sperm through artificial selection. We found a pronounced quadratic relationship between total sperm length and swimming velocity, with velocity increasing with length up to a point, but declining in the very longest sperm. We also found an unexpected negative association between midpiece length and ATP content: sperm with a short midpiece generally contained the highest concentration of ATP. Low intracellular ATP is therefore unlikely to explain reduced swimming velocity among the very longest sperm (which tend to have a shorter midpiece). PMID:27559067

  7. Quantification of adenosine triphosphate, adenosine diphosphate, and creatine phosphate in sterlet spermatozoa during maturation.

    PubMed

    Fedorov, P; Dzyuba, B; Fedorova, G; Grabic, R; Cosson, J; Rodina, M

    2015-11-01

    Sturgeon spermatozoa maturation during their passage through the kidney is a prerequisite for initiation of motility. Samples of sterlet () testicular sperm (TS) were matured in vitro by incubation in seminal fluid (SF) or in SF supplemented with carbonyl cyanide -chlorophenyl hydrazone (CCCP; a respiration uncoupling agent). Sperm was diluted in activation medium (AM) containing 10 m Tris-HCl buffer (pH 8.5) and 0.25% Pluronic, and spermatozoon motility was assessed. Samples were taken and fixed in 3 perchloric acid at 3 points in the incubation process. Quantification of ATP, ADP, and creatine phosphate (CrP) was conducted using liquid chromatography/high-resolution mass spectrometry. We observed a significant decrease in CrP during artificial maturation of TS in SF. In contrast, ATP and ADP were not significantly affected. Addition of CCCP to SF halted maturation and led to significantly lower CrP whereas ADP significantly increased and ATP was unaffected. Dilution of matured and immature TS with AM led to a significant decrease of ATP and CrP and an increase of ADP compared with their levels before dilution, although immature TS were not motile. Energy dependency of TS maturation in sturgeon was confirmed, which suggests that mitochondrial oxidative phosphorylation is needed for maturation of sturgeon TS. PMID:26641041

  8. The ability to accumulate deoxyuridine triphosphate and cellular response to thymidylate synthase (TS) inhibition

    PubMed Central

    Webley, S D; Welsh, S J; Jackman, A L; Aherne, G W

    2001-01-01

    Thymidylate synthase (TS) is an important enzyme catalysing the reductive methylation of dUMP to dTMP that is further metabolized to dTTP for DNA synthesis. Loss of viability following TS inhibition occurs as a consequence of depleted dTTP pools and at least in some cell lines, accumulation of dUTP and subsequent misincorporation of uracil into DNA. The expansion in dUTP pools is largely determined by the expression of the pyrophosphatase, dUTPase. Our previous work has shown that following TS inhibition the ability to accumulate dUTP was associated with an earlier growth inhibitory effect. 3 human lung tumour cell lines and HT29 human colon tumour cells transfected with dUTPase have been used to investigate the relationship between loss of viability following TS inhibition and dUTP accumulation. Cell cycle arrest typical of TS inhibition was an early event in all cell lines and occurred irrespective of the ability to accumulate dUTP or p53 function. However, a large expansion of dUTP pools was associated with mature DNA damage (4 h) and an earlier loss of viability following TS inhibition compared to cells in which dUTP pools were not expanded. In A549 cells damage to mature DNA may have been exacerbated by significantly higher activity of the excision repair enzyme, uracil-DNA glycosylase. Consistent with results using different inhibitors of TS, transfection of dUTPase into HT29 cells significantly reduced the cytotoxicity of a 24 h but not 48 h exposure to ZD9331. Although loss of viability can be mediated through dTTP deprivation alone, the uracil misincorporation pathway resulted in an earlier commitment to cell death. The relevance of this latter pathway in the clinical response to TS inhibitors deserves further investigation. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11487279

  9. P2 purinoceptor saturation by adenosine triphosphate impairs renal autoregulation in dogs.

    PubMed

    Majid, D S; Inscho, E W; Navar, L G

    1999-03-01

    Recent studies have suggested a role for P2 purinoceptors on vascular smooth muscle cells in the mechanism of renal autoregulation. Experiments were performed in anesthetized dogs (n = 9) to examine renal blood flow (RBF) autoregulatory efficiency before and after saturation of P2 purinoceptors with acute intra-arterial administration of ATP (1 mg/kg per min). Dogs were pretreated with the nitric oxide synthase inhibitor nitro-L-arginine (NLA) (50 microg/kg per min), to avoid endothelial P2 receptor-mediated effects on nitric oxide release caused by the intra-arterial ATP infusions. NLA treatment decreased RBF (5.3+/-0.3 to 3.6+/-0.2 ml/min per g) and sodium excretion (3.6+/-0.4 to 0.9+/-0.2 ml/min per g) without producing significant changes in GFR (0.92+/-0.04 to 0.90+/-0.06 ml/min per g) or RBF autoregulatory efficiency. ATP administration to NLA-treated dogs resulted in further decreases in RBF (2.8+/-0.2 ml/min per g), GFR (0.58+/-0.05 ml/min per g), and sodium excretion (0.6+/-0.2 micromol/min per g). In addition, there was marked impairment of RBF autoregulatory efficiency during ATP infusion. The slopes of the arterial pressure-blood flow relationships at renal arterial pressures of >75 mmHg were significantly altered, from 0.003+/-0.001 to 0.2+/-0.002 ml/min per g per mmHg. Discontinuation of ATP infusion restored RBF autoregulatory efficiency. Norepinephrine (5 microg/kg per min) administration in these NLA-treated dogs decreased RBF (2.5+/-0.3 ml/min per g; n = 4) to a similar extent, compared with ATP, but did not impair RBF autoregulation. These results support the hypothesis that P2 purinoceptors may be involved in mediating autoregulatory adjustments in renal vascular resistance. PMID:10073599

  10. Adenosine triphosphate attenuates renal sympathetic nerve activity through left ventricular chemosensitive receptors.

    PubMed

    Taneyama, C; Benson, K T; Hild, P G; Goto, H

    1997-02-01

    We previously reported that ATP, but not adenosine, administered i.v. attenuates the baroreflex-mediated increase in sympathetic nerve activity in response to arterial hypotension by a vagal afferent mechanism. It was not elucidated in that study which vagal afferent endings are involved. Mongrel dogs were anesthetized with alpha-chloralose, thoracotomy was performed and a 27-gauge hypodermic needle was inserted into the left circumflex coronary artery. The left renal sympathetic nerves were isolated and placed on a bipolar silver electrode for measurement of renal sympathetic nerve activity (RSNA). Dose-response effects of intracoronary or i.v. infusion of ATP (100, 200 or 400 microg/kg/min) on RSNA and mean arterial pressure were studied in neuraxis-intact and cervically vagotomized dogs. RSNA was increased dose-dependently with decreasing mean arterial pressure during the i.v. ATP infusion. Elevation of RSNA was attenuated by higher intracoronary ATP infusion rates, despite the fact that mean arterial pressure was decreased dose-dependently. Left ventricular end-diastolic pressure, however, remained unchanged. This suppression of RSNA by the intracoronary ATP infusion was completely abolished by bilateral cervical vagotomy. Our data suggest that ATP attenuates reflex increases in sympathetic nerve activity by possibly stimulating ventricular chemoreceptors with cardiac vagal afferents. PMID:9023265

  11. Adenosine triphosphate-dependent copper transport in isolated rat liver plasma membranes.

    PubMed Central

    Dijkstra, M; In 't Veld, G; van den Berg, G J; Müller, M; Kuipers, F; Vonk, R J

    1995-01-01

    The process of hepatobiliary copper (Cu) secretion is still poorly understood: Cu secretion as a complex with glutathione and transport via a lysosomal pathway have been proposed. The recent cloning and sequencing of the gene for Wilson disease indicates that Cu transport in liver cells may be mediated by a Cu transporting P-type ATPase. Biochemical evidence for ATP-dependent Cu transport in mammalian systems, however, has not been reported so far. We have investigated Cu transport in rat liver plasma membrane vesicles enriched in canalicular or basolateral membranes in the presence and absence of ATP (4 mM) and an ATP-regenerating system. The presence of ATP clearly stimulated uptake of radiolabeled Cu (64Cu, 10 microM) into canalicular plasma membrane vesicles and, to a lesser extent, also into basolateral plasma membrane vesicles. ATP-dependent Cu transport was dose-dependently inhibited by the P-type ATPase inhibitor vanadate, and showed saturation kinetics with an estimated Km of 8.6 microM and a Vmax of 6.9 nmol/min/mg protein. ATP-stimulated Cu uptake was similar in canalicular membrane vesicles of normal Wistar rats and those of mutant GY rats, expressing a congenital defect in the activity of the ATP-dependent canalicular glutathione-conjugate transporter (cMOAT). These studies demonstrate the presence of an ATP-dependent Cu transporting system in isolated plasma membrane fractions of rat liver distinct from cMOAT. PMID:7814642

  12. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.

    PubMed

    Bachelard, H S

    1971-11-01

    1. Substrate-saturation curves of brain hexokinase for MgATP(2-) were sigmoidal at sub-saturating concentrations of glucose when the Mg(2+)/ATP ratio was maintained at 1:1. Under identical conditions, except that Mg(2+) was present in excess, hyperbolic curves were observed. 2. The number of binding sites (calculated from Hill plots) is 1.8 at a Mg(2+)/ATP ratio 1:1, and 1.0 with excess of Mg(2+). The apparent K(m) for MgATP(2-) is 6.5x10(-4)m at a Mg(2+)/ATP ratio 1:1, and 3.5x10(-4)m with excess of Mg(2+). 3. Interdependence between substrate-binding sites was indicated by the effects of varying the concentration of glucose. The sigmoidality and deviation from Michaelis-Menten kinetics at a Mg(2+)/ATP ratio 1:1 became less pronounced with increasing glucose concentration. Also, although substrate-saturation curves for glucose were hyperbolic when the Mg(2+)/ATP ratio was 1:1, reciprocal plots were non-linear. These were linear with excess of Mg(2+). 4. High concentrations of Mg(2+) (Mg(2+)/ATP ratios above 5:1) were inhibitory. 5. The results are taken to indicate homotropic co-operative binding of MgATP(2-) and that Mg(2+) is an allosteric activator. Possible implications in regulation are discussed.

  13. Importance of adenosine triphosphate in phospholipase A2-induced rabbit renal proximal tubule cell injury.

    PubMed Central

    Nguyen, V D; Cieslinski, D A; Humes, H D

    1988-01-01

    The pathogenesis of ischemic renal tubular cell injury involves a complex interaction of different processes, including membrane phospholipid alterations and depletion of high-energy phosphate stores. To assess the role of membrane phospholipid changes due to activation of phospholipases in renal tubule cell injury, suspensions enriched in rabbit renal proximal tubule segments were incubated with exogenous phospholipase A2 (PLA2). Exogenous PLA2 did not produce any significant change in various metabolic parameters reflective of cell injury in control nonhypoxic preparations despite a significant decrease in phosphatidylethanolamine (PE) and moderate increases in lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). In contrast, exogenous PLA2 treatment of hypoxic tubules resulted in a severe degree of cell injury, as demonstrated by marked declines in tubule K+ and ATP contents and significant decreases in tubule uncoupled respiratory rates, and was associated with significant phospholipid alterations, including marked declines in phosphatidylcholine (PC) and PE and significant rises in LPC, LPE, and free fatty acids (FFA). The injurious metabolic effects of exogenous PLA2 on hypoxic tubules were reversed by addition of ATP-MgCl2 to the tubules. The protective effect of ATP-MgCl2 was associated with increases in tubule PC and PE contents and declines in LPC, LPE, and FFA contents. These experiments thus indicate that an increase in exogenous PLA2 activity produces renal proximal tubule cell injury when cell ATP levels decline, at which point phospholipid resynthesis cannot keep pace with phospholipid degradation with resulting depletion of phospholipids and accumulation of lipid by-products. High-energy phosphate store depletion appears to be an important condition for exogenous PLA2 activity to induce renal tubule cell injury. PMID:3417866

  14. The concentration of amino acids by yeast cells depleted of adenosine triphosphate

    PubMed Central

    Eddy, A. A.; Backen, K.; Watson, G.

    1970-01-01

    1. The ATP content of preparations of a strain of Saccharomyces carlsbergensis was lowered below 0.3nmol/mg of yeast by starving the yeast cells in the presence of both antimycin and 5mm-deoxyglucose. 2. When the depleted cells were put at pH4.5 with glycine up to about 20nmol of the amino acid/mg of yeast was absorbed without being chemically modified. The mechanism did not depend on an exchange with endogenous amino acids. 3. The concentration of the absorbed glycine could apparently reach 100–200 times that outside the cells. 4. Replacement of the cellular K+ by Na+ almost stopped amino acid absorption in the presence of antimycin and deoxyglucose, but not in their absence. 5. It is suggested that, when energy metabolism itself had stopped, a purely physical process, namely the movements of H+ and K+ into and out of the yeast respectively, served to concentrate the amino acids in the cells. Both ionic species appear to be co-substrates of the system transporting amino acids. PMID:5495157

  15. Tension in mechanically disrupted mammalian cardiac cells: effects of magnesium adenosine triphosphate.

    PubMed Central

    Best, P M; Donaldson, S K; Kerrick, W G

    1977-01-01

    1. Maximum and submaximum Ca-activated tension in mechanically disrupted rat ventricular fibres was examined in solutions containing 30 micron, 100 micron and 4 mM-MgATP and either 50 micron or 1 mM ionized Mg. 2. In the absence of added Ca, significant amounts of base-line tension (up to 50% of maximum) develop in solutions containing less than 30 micron-MgATP. This effect is Mg-dependent; more tension is produced with 50 micron-Mg than with 1 mM. 3. Increasing the MgATP concentration shifts the pCa-% maximum tension relationship in the direction of increasing Ca required for activation. At 50 micron-Mg the pCa which produces 50% maximum tension is 5-8, 5-3 and 5-5 for the 30 micron, 100 micron and 4 mM-MgATP solutions. The effect of MgATP on position is relatively independent of the Mg concentration. 4. The steepness of the pCa-% maximum tension curve increases as MgATP is elevated to the millimolar range. The Hill coefficients for the different MgATP curves at 50 micron-Mg are 1-1, 1-3 and 3-0. This change in steepness accounts for the slightly lower Ca concentration needed for half-maximum tension as the MgATP concentration is increased to millimolar levels. Raising the Mg concentration to 1 mM greatly diminishes the effect of MgATP on the slope of the pCa-tension relationship. 5. The maximum tnesion a fibre bundle can produce decreases as the amount of MgATP is raised from micromolar to millimolar levels. For 50 muM-Mg, maximum tension drops about 35% as MgATP is raised from 30 micronM to 4 mM. For any concentraiton of MgATP, maximum tension is higher at 1 mM-Mg than at 50 micron-Mg. 6. Existing theories of interaction between myosin heads and the thin filament are sufficient to account for the effects of MgATP on the position of the pCa-tension curves and on maximum tension. The effects on slope are less satisfactorily explained. PMID:850150

  16. Release of adenosine triphosphate by adenosine diphosphate in whole blood and in erythrocyte suspensions.

    PubMed

    Knöfler, R; Weissbach, G; Kuhlisch, E

    1997-12-01

    In whole blood samples from thrombocytopenic patients, large amounts of ATP were released by ADP, exceeding the level obtained with samples from normal persons by far. Because we suspected that the high potential of ATP in erythrocytes would be the main source for this phenomenon, the release of ATP by ADP was measured in whole blood samples from normal, thrombocytopenic, and leukocytopenic persons and in suspensions of washed erythrocytes. The release was recorded by a Whole Blood Lumi-Aggregometer type 500 VS (Chrono-Log Corporation, Havertown, PA) using the luciferin-luciferase system. Not only in samples from thrombocytopenic persons but also with normal platelet count, increasing amounts of ATP were released with increasing ADP concentrations, finally exceeding the ATP releasable from thrombocytes by thrombin. The amounts of ADP required to match the ATP release of thrombin were closely correlated with the platelet counts in the samples. With lower platelet counts, the release mechanism from erythrocytes could be stimulated more easily by low concentrations of ADP. The binding of ADP to platelets occurred with ostensibly higher affinity. The phenomenon of overshooting ATP release was also observed in samples from extremely leukocytopenic patients. A very large release of ATP was also achieved in suspensions of washed erythrocytes. In this way our hypothesis of ATP release from erythrocytes by ADP was confirmed again. The mechanism of the release from erythrocytes remains unclear. We speculate that its purpose is to regulate extracellular nucleotides in the circulating blood.

  17. Biosynthesis of thiamine triphosphate and identification of thiamine diphosphate-binding proteins of rat liver hyaloplasm

    SciTech Connect

    Voskoboev, A.I.; Chernikevich, I.P.

    1986-03-10

    The nature of the proteins of rat liver hyaloplasm that bind ThDP* was studied. When injection of (/sup 14/C)thiamine was used as the marker, an electrophoretically homogeneous protein preparations, containing (/sup 14/C)ThDP, identified as transketolase, was isolated from the soluble fraction of the liver. No other nonenzymatic proteins that bind ThDP and might serve as the substrate in the synthesis of ThTP were detected in the hyaloplasm. It was shown that transfer of the phosphate group by rat liver ThDP kinase occurs to the free ThDP, and not to protein-bound ThDP, as was previously asserted.

  18. Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

    PubMed Central

    Son, Aran; Kim, Min Seuk; Jo, Hae; Byun, Hae Mi

    2012-01-01

    The receptor activator of NF-κB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-κB and other signal transduction pathways essential for osteoclastogenesis, such as Ca2+ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP3) and IP3-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of IP3 and evaluated IP3-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of Ca2+ signaling proteins such as IP3 receptors (IP3Rs), plasma membrane Ca2+ ATPase, and sarco/endoplasmic reticulum Ca2+ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of IP3 was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) δ, a probe specifically detecting intracellular IP3 levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)] and of IP3Rs with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of IP3Rs) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular IP3 levels and the IP3-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis. PMID:22416217

  19. Golgi-located NTPDase1 of Leishmania major is required for lipophosphoglycan elongation and normal lesion development whereas secreted NTPDase2 is dispensable for virulence.

    PubMed

    Sansom, Fiona M; Ralton, Julie E; Sernee, M Fleur; Cohen, Alice M; Hooker, David J; Hartland, Elizabeth L; Naderer, Thomas; McConville, Malcolm J

    2014-12-01

    Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host.

  20. Golgi-Located NTPDase1 of Leishmania major Is Required for Lipophosphoglycan Elongation and Normal Lesion Development whereas Secreted NTPDase2 Is Dispensable for Virulence

    PubMed Central

    Sansom, Fiona M.; Ralton, Julie E.; Sernee, M. Fleur; Cohen, Alice M.; Hooker, David J.; Hartland, Elizabeth L.; Naderer, Thomas; McConville, Malcolm J.

    2014-01-01

    Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host. PMID:25521752

  1. Role for Apyrases in Polar Auxin Transport in Arabidopsis1[C][W][OA

    PubMed Central

    Liu, Xing; Wu, Jian; Clark, Greg; Lundy, Stacey; Lim, Minhui; Arnold, David; Chan, Jing; Tang, Wenqiang; Muday, Gloria K.; Gardner, Gary; Roux, Stanley J.

    2012-01-01

    Recent evidence indicates that extracellular nucleotides regulate plant growth. Exogenous ATP has been shown to block auxin transport and gravitropic growth in primary roots of Arabidopsis (Arabidopsis thaliana). Cells limit the concentration of extracellular ATP in part through the activity of ectoapyrases (ectonucleoside triphosphate diphosphohydrolases), and two nearly identical Arabidopsis apyrases, APY1 and APY2, appear to share this function. These findings, plus the fact that suppression of APY1 and APY2 blocks growth in Arabidopsis, suggested that the expression of these apyrases could influence auxin transport. This report tests that hypothesis. The polar movement of [3H]indole-3-acetic acid in both hypocotyl sections and primary roots of Arabidopsis seedlings was measured. In both tissues, polar auxin transport was significantly reduced in apy2 null mutants when they were induced by estradiol to suppress the expression of APY1 by RNA interference. In the hypocotyl assays, the basal halves of APY-suppressed hypocotyls contained considerably lower free indole-3-acetic acid levels when compared with wild-type plants, and disrupted auxin transport in the APY-suppressed roots was reflected by their significant morphological abnormalities. When a green fluorescent protein fluorescence signal encoded by a DR5:green fluorescent protein construct was measured in primary roots whose apyrase expression was suppressed either genetically or chemically, the roots showed no signal asymmetry following gravistimulation, and both their growth and gravitropic curvature were inhibited. Chemicals that suppress apyrase activity also inhibit gravitropic curvature and, to a lesser extent, growth. Taken together, these results indicate that a critical step connecting apyrase suppression to growth suppression is the inhibition of polar auxin transport. PMID:23071251

  2. Defective renal water handling in transgenic mice over-expressing human CD39/NTPDase1.

    PubMed

    Zhang, Yue; Morris, Kaiya L; Sparrow, Shannon K; Dwyer, Karen M; Enjyoji, Keiichi; Robson, Simon C; Kishore, Bellamkonda K

    2012-08-01

    Ectonucleoside triphosphate diphosphohydrolase-1 hydrolyzes extracellular ATP and ADP to AMP. Previously, we showed that CD39 is expressed at several sites within the kidney and thus may impact the availability of type 2 purinergic receptor (P2-R) ligands. Because P2-Rs appear to regulate urinary concentrating ability, we have evaluated renal water handling in transgenic mice (TG) globally overexpressing hCD39. Under basal conditions, TG mice exhibited significantly impaired urinary concentration and decreased protein abundance of AQP2 in the kidney compared with wild-type (WT) mice. Urinary excretion of total nitrates/nitrites was significantly higher in TG mice, but the excretion of AVP or PGE(2) was equivalent to control WT mice. There were no significant differences in electrolyte-free water clearance or fractional excretion of sodium. Under stable hydrated conditions (gelled diet feeding), the differences between the WT and TG mice were negated, but the decrease in urine osmolality persisted. When water deprived, TG mice failed to adequately concentrate urine and exhibited impaired AVP responses. However, the increases in urinary osmolalities in response to subacute dDAVP or chronic AVP treatment were similar in TG and WT mice. These observations suggest that TG mice have impaired urinary concentrating ability despite normal AVP levels. We also note impaired AVP release in response to water deprivation but that TG kidneys are responsive to exogenous dDAVP or AVP. We infer that heightened nucleotide scavenging by increased levels of CD39 altered the release of endogenous AVP in response to dehydration. We propose that ectonucleotidases and modulated purinergic signaling impact urinary concentration and indicate potential utility of targeted therapy for the treatment of water balance disorders.

  3. Highly Potent and Selective Ectonucleotide Pyrophosphatase/Phosphodiesterase I Inhibitors Based on an Adenosine 5′-(α or γ)- Thio-(α,β- or β,γ)-methylenetriphosphate Scaffold

    PubMed Central

    Nadel, Yael; Lecka, Joanna; Gilad, Yocheved; Ben-David, Gal; Förster, Daniel; Reiser, Georg; Kenigsberg, Sarah; Camden, Jean; Weisman, Gary A.; Senderowitz, Hanoch; Sévigny, Jean; Fischer, Bilha

    2015-01-01

    Aberrant nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) activity is associated with chondrocalcinosis, osteoarthritis, and type 2 diabetes. The potential of NPP1 inhibitors as therapeutic agents, and the scarceness of their structure–activity relationship, encouraged us to develop new NPP1 inhibitors. Specifically, we synthesized ATP-α-thio-β,γ- CH2 (1), ATP-α-thio-β,γ-CCl2 (2), ATP-α-CH2-γ-thio (3), and 8-SH-ATP (4) and established their resistance to hydrolysis by NPP1,3 and NTPDase1,2,3,8 (<5% hydrolysis) (NTPDase = ectonucleoside triphosphate diphosphohydrolase). Analogues 1–3 at 100 μM inhibited thymidine 5′-monophosphate p-nitrophenyl ester hydrolysis by NPP1 and NPP3 by >90% and 23–43%, respectively, and only slightly affected (0–40%) hydrolysis of ATP by NTPDase1,2,3,8. Analogue 3 is the most potent NPP1 inhibitor currently known, Ki = 20 nM and IC50 = 0.39 μM. Analogue 2a is a selective NPP1 inhibitor with Ki = 685 nM and IC50 = 0.57 μM. Analogues 1–3 were found mostly to be nonagonists of P2Y1/P2Y2/P2Y11 receptors. Docking analogues 1–3 into the NPP1 model suggested that activity correlates with the number of H-bonds with binding site residues. In conclusion, we propose analogues 2a and 3 as highly promising NPP1 inhibitors. PMID:24846781

  4. Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila.

    PubMed

    Fiene, Amelie; Baqi, Younis; Malik, Enas M; Newton, Patrice; Li, Wenjin; Lee, Sang-Yong; Hartland, Elizabeth L; Müller, Christa E

    2016-09-15

    Legionella pneumophila is an aerobic, Gram-negative bacterium of the genus Legionella, which constitutes the major causative agent of Legionnaires' disease. Recently a nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila was identified and termed Lp1NTPDase; it was found to be a structural and functional homolog of mammalian NTPDases catalyzing the hydrolysis of ATP to ADP and ADP to AMP. Its activity is believed to contribute to the virulence of Legionella pneumophila. Therefore Lp1NTPDase inhibitors are considered as novel antibacterial drugs. However, only weakly potent compounds are available so far. In the present study, a capillary electrophoresis (CE)-based enzyme assay for monitoring the Lp1NTPDase activity was established. The enzymatic reaction was performed in a test tube followed by separation of substrate and products by CE and subsequent quantification by UV analysis. After kinetic characterization of the enzyme, a series of 1-amino-4-ar(alk)ylamino-2-sulfoanthraquinone derivatives structurally related to the anthraquinone dye Reactive Blue 2, a non-selective ecto-NTPDase inhibitor, was investigated for inhibitory activity on Lp1NTPDase using the CE-based enzyme assay. Derivatives bearing a large lipophilic substituent (e.g., fused aromatic rings) in the 4-position of the 1-amino-2-sulfoanthraquinone showed the highest inhibitory activity. Compounds with IC50 values in the low micromolar range were identified. The most potent inhibitor was 1-amino-4-[phenanthrene-9-yl-amino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (28, PSB-16131), with an IC50-value of 4.24μM. It represents the most potent Lp1NTPDase inhibitor described to date. These findings may serve as a starting point for further optimization. Lp1NTPDase inhibition provides a novel approach for the (immuno)therapy of Legionella infections. PMID:27522579

  5. Release of ATP induced by hypertonic solutions in Xenopus oocytes

    PubMed Central

    Aleu, Jordi; Martín-Satué, Mireia; Navarro, Piedad; de Lara, Ivanna Pérez; Bahima, Laia; Marsal, Jordi; Solsona, Carles

    2003-01-01

    ATP mediates intercellular communication. Mechanical stress and changes in cell volume induce ATP release from various cell types, both secretory and non-secretory. In the present study, we stressed Xenopus oocytes with a hypertonic solution enriched in mannitol (300 mm). We measured simultaneously ATP release and ionic currents from a single oocyte. A decrease in cell volume, the activation of an inward current and ATP release were coincident. We found two components of ATP release: the first was associated with granule or vesicle exocytosis, because it was inhibited by tetanus neurotoxin, and the second was related to the inward current. A single exponential described the correlation between ATP release and the hypertonic-activated current. Gadolinium ions, which block mechanically activated ionic channels, inhibited the ATP release and the inward current but did not affect the decrease in volume. Oocytes expressing CFTR (cystic fibrosis transmembrane regulator) released ATP under hypertonic shock, but ATP release was significantly inhibited in the first component: that related to granule exocytosis. Since the ATP measured is the balance between ATP release and ATP degradation by ecto-enzymes, we measured the nucleoside triphosphate diphosphohydrolase (NTPDase) activity of the oocyte surface during osmotic stress, as the calcium-dependent hydrolysis of ATP, which was inhibited by more than 50 % in hypertonic conditions. The best-characterized membrane protein showing NTPDase activity is CD39. Oocytes injected with an antisense oligonucleotide complementary to CD39 mRNA released less ATP and showed a lower amplitude in the inward current than those oocytes injected with water. PMID:12562935

  6. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo.

    PubMed

    Ren, Wenwen; Lewandowski, Brian C; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A; Margolskee, Robert F; Jiang, Peihua

    2014-11-18

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.

  7. Vascular stasis, intestinal hemorrhage, and heightened vascular permeability complicate acute portal hypertension in cd39-null mice

    PubMed Central

    Sun, Xiaofeng; Cárdenas, Andrés; Wu, Yan; Enjyoji, Keichi; Robson, Simon C.

    2009-01-01

    Vasoactive factors that regulate splanchnic hemodynamics include nitric oxide, catecholamines, and possibly extracellular nucleosides/nucleotides (adenosine, ATP). CD39/ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1) is the major vascular ectonucleotidase that hydrolyzes extracellular nucleotides. CD39 activity may be modulated by vascular injury, inflammation, and altered oxygen tension. Altered Cd39 expression by the murine hepatosplanchnic vasculature may impact hemodynamics and portal hypertension (PHT) in vivo. We noted that basal portal pressures (PPs) were comparable in wild-type and Cd39-null mice (n = 9). ATP infusions resulted in increments in PP in wild-type mice, but, in contrast, this significantly decreased in Cd39-null mice (n = 9) post-ATP in a nitric oxide-dependent manner. We then studied Cd39/NTPDase1 deletion in the regulation of portal hemodynamics, vascular integrity, and intestinal permeability in a murine model of PHT. Partial portal vein ligation (PPVL) was performed in Cd39-null (n = 44) and wild-type (n = 23) mice. Sequential measurements obtained after PPVL were indicative of comparable levels of PHT (ranges 14–29 mmHg) in both groups. There was one death in the wild-type group and eight in the Cd39-null group from intestinal bleeding (P = 0.024). Circulatory stasis in the absence of overt portal vein thrombosis, portal congestion, intestinal hemorrhage, and increased permeability were evident in all surviving Cd39-null mice. Deletion of Cd39 results in deleterious outcomes post-PPVL that are associated with significant microcirculatory derangements and major intestinal congestion with hemorrhage mimicking acute mesenteric occlusion. Absent Cd39/NTPDase1 and decreased generation of adenosine in the splanchnic circulation cause heightened vascular permeability and gastrointestinal hemorrhage in PPVL. PMID:19520738

  8. Loss of survival factors and activation of inflammatory cascades in brain sympathetic centers in type 1 diabetic mice

    PubMed Central

    Hu, Ping; Thinschmidt, Jeffrey S.; Caballero, Sergio; Adamson, Samuel; Cole, Louise; Chan-Ling, Tailoi

    2015-01-01

    Neuroinflammation and neurodegeneration have been observed in the brain in type 1 diabetes (T1D). However, little is known about the mediators of these effects. In T1D mice with 12- and 35-wk duration of diabetes we examined two mechanisms of neurodegeneration, loss of the neuroprotective factors insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) and changes in indoleamine 2,3-dioxygenase (IDO) expression in the brain, and compared the response to age-matched controls. Furthermore, levels of matrix metalloproteinase-2 (MMP-2), nucleoside triphosphate diphosphohydrolase-1 (CD39), and ionized calcium-binding adaptor molecule 1 (Iba-1) were utilized to assess inflammatory changes in astrocytes, microglia, and blood vessels. In the diabetic hypothalamus (HYPO), we observed 20% reduction in neuronal soma diameter (P < 0.05) and reduced neuronal expression of IGFBP-3 (−32%, P < 0.05) and IGF-I (−15%, P < 0.05) compared with controls at 35 wk. In diabetic HYPO, MMP-2 expression was increased in astrocytes (46%, P < 0.01), and IDO+ cell density rose by (62%, P < 0.05). CD39 expression dropped by 30% (P < 0.05) in microglia and blood vessels. With 10 wk of systemic treatment using minocycline, an anti-inflammatory agent that crosses the blood-brain barrier, MMP-2, IDO, and CD39 levels normalized (P < 0.05). Our results suggest that increased IDO and early loss of CD39+ protective cells lead to activation of inflammation in sympathetic centers of the CNS. As a downstream effect, the loss of the neuronal survival factors IGFBP-3 and IGF-I and the neurotoxic products of the kynurenine pathway contribute to the loss of neuronal density observed in the HYPO in T1D. PMID:25714673

  9. Oxygen-glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood-brain barrier.

    PubMed

    Ceruti, Stefania; Colombo, Laura; Magni, Giulia; Viganò, Francesca; Boccazzi, Marta; Deli, Mária A; Sperlágh, Beáta; Abbracchio, Maria P; Kittel, Agnes

    2011-08-01

    The blood-brain barrier (BBB), the dynamic interface between the nervous tissue and the blood, is composed by endothelial cells, pericytes and astrocytes. Extracellular nucleotides and nucleosides and their receptors (the purinergic system) constitute a widely diffused signaling system involved in many pathophysiological processes. However, the role of this system in controlling BBB functions is still largely unknown. By using cultures of these three cell types grown separately and a BBB in vitro model consisting of triple co-cultures, we studied for the first time the expression and distribution of the ecto-enzymes nucleoside triphosphate diphosphohydrolases (NTPDases, the enzymes which hydrolyze extracellular nucleotides) under control and ischemic (oxygen-glucose deprivation in vitro; OGD) conditions. NTPDase1 was detected in all three cell types, whereas NTPDase2 was expressed by astrocytes and pericytes and, to a lesser extent, by endothelial cells. Endothelial cells were extremely susceptible to cell death when OGD was applied to mimic in vitro the cytotoxicity induced by ischemia, whereas astrocytes and pericytes were more resistant. A semi-quantitative assay highlighted markedly increased e-ATPase activity following exposure to OGD in all three cell types, either when grown separately or when co-cultured together to resemble the composition of the BBB. Moreover, electron microscopy analysis showed that both endothelial cells and astrocytes shed microvesicles containing NTPDases from their membrane, which may suggest a novel mechanism to increase the breakdown of ATP released to toxic levels by damaged BBB cells. We hypothesize that this phenomenon could have a protective and/or modulatory effect for brain parenchymal cells. This in vitro model is therefore useful to study the role of extracellular nucleotides in modulating BBB responses to ischemic events, and to develop new effective purinergic-based approaches for brain ischemia.

  10. Comparison of Activities and Properties of Pyrophosphate and Adenosine Triphosphate-Dependent Phosphofructokinases of Black Gram (Phaseolus mungo) Seeds.

    PubMed

    Ashihara, H; Stupavska, S

    1984-09-01

    Both pyrophosphate-dependent phosphofructokinase (PPi-PFKase, EC 2.7.1.90) and ATPdependent phosphofructokinase (ATP-PFKase, EC 2.7. 1.11) were present in dry and germinated black gram seeds. In the absence of fructose-2,6-biphosphate (F2,6BP), the activity of PPi-PFKase expressed as nmol · min(-1) · (pair of cotyledons)(-1) was much lower than that of ATP-PFKase in both dry and germinated seeds. However, PPi-PFKase was activated by F2,6BP and its activity reached the same level as ATP-PFKase activity. ATP-PFKase showed sigmoidal kinetics respective to fructose-6-phosphate (F6P), while PPi-PFKase exhibited hyperbolic kinetics in the presence of F2,6BP. The F6P concentration for half maximal activity of ATP-PFKase (1.5 mM) was nearly 5 times lower than that of PPi-PFKase (7.1 mM). The apparent Km values of PPi-PFKase for PPi and that of ATP-PFKase for ATP were 0.29 mM and 0.23 mM, respectively. Phosphoenolpyruvate (PEP) and citrate inhibited ATP-PFKase activity, but they did not affect PPi-PFKase activity. The activity of PPi-PFKase was inhibited by Pi, while only a little Pi inhibition was observed in the case of ATP-PFKase. These results suggest that the control mechanism of PPi-PFKase and that of ATP-PFKase are quite different. In contrast to pineapple leaves (Carnal, N. W. and C. C. Black, Biochem. Biophys. Res. Commun. 86, 20-26, 1979) and caster bean seedlings (Krugar et al., FEBS Lett. 153, 409-412, 1983), PPi-PFKase is not the predominant PFKase activity in black gram seeds.

  11. Effect of freezing rate on motility, adenosine triphosphate content and fertilizability in beluga sturgeon (Huso huso) spermatozoa.

    PubMed

    Aramli, Mohammad Sadegh; Golshahi, Karim; Nazari, Rajab Mohammad; Aramli, Salim

    2015-04-01

    Broodstock selection programs are currently underway for sturgeon species. To complement and further these selection programs we need to develop sperm cryopreservation procedures. In the present study, we describe the effects of freezing rate (-10°C, -15°C, -20°C, -30°C and -40°C/min) on gamete quality characteristics (i.e., duration of motility (s), motility percentage (%), ATP content (nmol/10(8) cells), fertilization rate (%), and hatching rate (%)) in beluga sturgeon, Huso huso. After sampling, beluga sturgeon sperm were diluted in an extender composed of 23.4mM sucrose, 0.25 mM KCl, and 30 mM Tris-HCl, pH 8.0 containing 10% methanol and subsequently frozen in a programmable freezer. Sperm frozen at -40°C/min resulted in means for duration of motility (134 s), motility percentage (69%), ATP concentration (4.8 nmol/10(8) cells), fertilization rate (72%) and hatching rate (65%) that were higher (P<0.05) than those for slower cooling rates. Based on our results, -40°C/min was the best freezing rate (among those tested) for cryopreservation of beluga sturgeon sperm.

  12. The adenosine triphosphate inhibition of the pyruvate kinase reaction and its dependence on the total magnesium ion concentration

    PubMed Central

    Holmsen, Holm; Storm, Eva

    1969-01-01

    1. The effects of ATP, PPi and EDTA on the skeletal-muscle pyruvate kinase reaction at various concentrations of magnesium (where `magnesium' refers to total Mg2+, both free and in the form of complexes) were investigated. The reaction rate was determined as the amount of pyruvate formed in a recorded time of incubation. 2. At 44mm-magnesium the Km values for ADP and phosphoenolpyruvate were unaltered by the presence of ATP up to 6·8mm in systems buffered with either tris–hydrochloric acid or glycylglycine–sodium hydroxide, but the Km values were different in these systems. The Km for one substrate was independent of the concentration of the second substrate. 3. At 10mm-magnesium in the tris–hydrochloric acid system ATP inhibited the reaction competitively with respect to ADP and phosphoenolpyruvate. In the glycylglycine–sodium hydroxide system the inhibition appeared to be non-competitive. At 10mm-magnesium the Km values were lower than at 44mm-magnesium and dependent on the system used. 4. In the tris–hydrochloric acid system the reaction rate rose with increasing magnesium concentration up to a maximum at a concentration 10–20 times that of ADP. Further increase inhibited the reaction and at 44mm-magnesium the rate was 25–50% of its maximum. This inhibition paralleled that produced by increasing trimethylammonium chloride concentrations and was not due to a specific effect of the Mg2+ ion. 5. In the presence of 6·8mm-ATP no reaction occurred below 4–6mm-magnesium, and further increase apparently abolished the inhibition as the reaction rate increased and became equal to those obtained in the absence of ATP at 10–25mm-magnesium. Further increase in magnesium concentration gave reaction rates that were slightly higher in the presence of ATP than in its absence. The maximal rate in the presence of ATP was distinctly lower than in its absence. When 6·8mm-PPi or 6·8mm-EDTA was present the variations in reaction rate with rising magnesium concentration were similar to that obtained in the presence of ATP below 6–8mm-magnesium but further increase in the magnesium concentration resulted in an increase in the rate up to a maximum comparable with that of the control. The effect of pure chelation was thus a displacement of the reaction maximum to higher magnesium concentrations without changing the maximal rate. When correction had been made for this effect, ATP gave inhibition at 44mm-magnesium that was competitive with respect to ADP (Ki 2·1×10−2m). This degree of inhibition is far less than was reported earlier and its importance for the mechanism of the pyruvate kinase reaction is discussed. PMID:4308294

  13. Physicochemical properties and supernucleophilicity of oxime-functionalized surfactants: hydrolytic catalysts toward dephosphorylation of di- and triphosphate esters.

    PubMed

    Singh, Namrata; Karpichev, Yevgen; Gupta, Bhanushree; Satnami, Manmohan L; Marek, Jan; Kuca, Kamil; Ghosh, Kallol K

    2013-04-11

    Aggregation and kinetic studies have been performed to understand the hydrolytic potencies of the series of oxime-functionalized surfactants, viz., 3- hydroxyiminomethyl-1-alkylpyridinium bromide (alkyl = CnH2n+1, n = 10, 12, 14, 16, 18) in the cleavage of phosphate esters, p-nitrophenyl diphenyl phosphate (PNPDPP) and bis(2,4-dinitrophenyl) phosphate (BNDPP), in mixed micelles with cetylpyridinium bromide (CPB). Micellization and surface properties of mixed micelles functional surfactants with CPB were studied by conductivity and surface tension measurements. Acid dissociation constants (pKa) were determined, the effect of functional surfactant alkyl chain length and pH on the observed rate constant (kobs) for phosphate ester cleavage has been discussed, and the effect of substrate on the supernucleophilicities of the studied oximes was monitored. Functionalized oxime-based surfactants were proved to be supernucleophiles to attack on the P═O center of tri- and diphosphate esters. Oximes with hexadecyl alkyl chain length (3-C16) showed maximum micellar effect on the rate constants toward PNPDPP. Micellar effects were analyzed in terms of the pseudophase model.

  14. Potassium and sodium ions in the glycerinated skeletal muscle. Distribution changes induced by adenosine triphosphate and nondissociable anesthetic substances.

    PubMed

    Dragomir, C T; Barbier, A; Ungureanu, D; Ionescu, V; Pausescu, E; Chirvasie, R; Ghitescu, D; Filipescu, G

    1975-01-01

    Investigation of the ionic behavior of glycerinated muscle fibers showed that the residual structures of this biologic cellular material, lacking functional membranes, are able to discriminate between alkaline ions. The characteristics of the ionic selectivity of the glycerinated fibers change with their functional state and with the presence in the medium of certain nonionic substances. Among the more important features of ionic distribution between the membrane-free fibers and the medium are the following: (1) There is evident adsorption of potassium on the fibers, in the absence of ATP. (2) This adsorption increases in contraction and decreases in relaxation. (3) At high ionic concentrations, in contrast to what occurs at low potassium concentrations, the glycerinated muscle prefers sodium to potassium, but even under these conditions both ions are accumulated in the fibers to far greater levels than in the medium. This strongly suggests a Donnan ionic equilibrium developing parallel to the adsorption process. (4) Nonionic substances of the general anesthetic group markedly alter the ionic selectivity of the glycerinated fibers, probably by their action on the water's physical state. A mechanism is proposed for the observed ionic adsorption specific of the muscle-a mechanism in which actin-myosin coupling plays the cardinal adsorption role. In the general interpretation of the data a synthetic concept is advanced according to which an entire set of processes and factors concurs with the distribution of ions between the muscle and the medium.

  15. Adenosine triphosphate released from HIV-infected macrophages regulates glutamatergic tone and dendritic spine density on neurons

    PubMed Central

    Tovar-y-Romo, Luis B.; Kolson, Dennis L.; Bandaru, Veera Venkata Ratnam; Drewes, Julia; Graham, David R.; Haughey, Norman J.

    2013-01-01

    Despite wide spread use of combination antiretroviral therapy (cART) in developed countries, approximately half of HIV-infected patients will develop impairments in cognitive function. Accumulating evidence suggests that neuronal dysfunction can be precipitated by HIV-infection of macrophages by mechanisms that involve alterations in innate and adaptive immune responses. HIV-infection of macrophages is known to increase the release of soluble neurotoxins. However, the composition of products released from infected macrophages is complex and not fully known. In this study we provide evidence that ATP and other immuno-/neuromodulatory nucleotides are exported from HIV-infected macrophages and modify neuronal structure. Supernatants collected from HIV-infected macrophages (HIV/MDM) contained large amounts of ATP, ADP, AMP and small amounts of adenosine, in addition to glutamate. Dilutions of these supernatants that were sub-threshold for glutamate receptor activation evoked rapid calcium flux in neurons that were completely inhibited by the enzymatic degradation of ATP, or by blockade of calcium permeable purinergic receptors. Applications of these high-dilution HIV/MDM onto neuronal cultures increased the amount of extracellular glutamate by mechanisms dependent on purinergic receptor activation, and downregulated spine density on neurons by mechanisms dependent on purinergic and glutamate receptor activation. We conclude from these data that ATP released from HIV-infected macrophages downregulates dendritic spine density on neurons by a mechanism that involves purinergic receptor mediated modulation of glutamatergic tone. These data suggest that neuronal function may be depressed in HIV infected individuals by mechanisms that involve macrophage release of ATP that triggers secondary effects on glutamate handling. PMID:23686368

  16. Synthesis of acyclothymidine triphosphate and alpha-P-boranotriphosphate and their substrate properties with retroviral reverse transcriptase.

    PubMed

    Li, Ping; Dobrikov, Mikhail; Liu, Hongyan; Shaw, Barbara Ramsay

    2003-07-10

    [reaction: see text] The first example of an acyclonucleoside alpha-P-boranotriphosphate has been synthesized via a phosphoramidite approach in a one-pot reaction with good yield. The presence of the alpha-P-BH(3) in 5b results in a 9-fold increase in efficiency of incorporation by MMLV retroviral reverse transcriptase relative to non-boronated 5a in pre-steady-state conditions. The preliminary results indicate that acyclonucleoside alpha-P-boranotriphosphates may have promising applications as a probe of enzyme mechanisms and in the design of new antiviral drugs.

  17. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate.

    PubMed

    Tyagi, R K; Amazit, L; Lescop, P; Milgrom, E; Guiochon-Mantel, A

    1998-11-01

    Steroid hormone receptors are, in most cases, mainly nuclear proteins that undergo a continuous nucleocytoplasmic shuttling. The mechanism of the nuclear export of these proteins remains largely unknown. To approach this problem experimentally in vivo, we have prepared cell lines permanently coexpressing the wild-type nuclear progesterone receptor (PR) and a cytoplasmic receptor mutant deleted of its nuclear localization signal (NLS) [(deltaNLS)PR]. Each receptor species was deleted from the epitope recognized by a specific monoclonal antibody, thus allowing separated observation of the two receptor forms in the same cells. Administration of hormone provoked formation of heterodimers during nucleocytoplasmic shuttling and import of (deltaNLS)PR into the nucleus. Washing out of the hormone allowed us to follow the export of (deltaNLS)PR into the cytoplasm. Microinjection of BSA coupled to a NLS inhibited the export of (deltaNLS)PR. On the contrary, microinjection of BSA coupled to a nuclear export signal (NES) was without effect. Moreover, leptomycin B, which inhibits NES-mediated export, was also without effect. tsBN2 cells contain a thermosensitive RCC1 protein (Ran GTP exchange protein). At the nonpermissive temperature, the nuclear export of (deltaNLS)PR could be observed, whereas the export of NES-BSA was suppressed. Microinjection of GTPgammaS confirmed that the export of (deltaNLS)PR was not dependent on GTP hydrolysis. These experiments show that the nuclear export of PR is not NES mediated but probably involves the NLS. It does not involve Ran GTP, and it is not dependent on the hydrolysis of GTP. The nucleocytoplasmic shuttling of steroid hormone receptors thus appears to utilize mechanisms different from those previously described for some viral, regulatory, and heterogeneous ribonuclear proteins. PMID:9817595

  18. Nuclear Overhauser effect studies on the conformation of magnesium adenosine 5'-triphosphate bound to rabbit muscle creatine kinase

    SciTech Connect

    Rosevear, P.R.; Powers, V.M.; Dowhan, D.; Mildvan, A.S.; Kenyon, G.L.

    1987-08-25

    Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (X = 78 +/- 10/sup 0/) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH/sub 3/)/sub 4/ ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides. Distance geometry calculations also suggest that upper limit distances, when low enough (less than or equal to 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker.

  19. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains

    PubMed Central

    Miao, Benchun; Skidan, Igor; Yang, Jinsheng; Lugovskoy, Alexey; Reibarkh, Mikhail; Long, Kai; Brazell, Tres; Durugkar, Kulbhushan A.; Maki, Jenny; Ramana, C. V.; Schaffhausen, Brian; Wagner, Gerhard; Torchilin, Vladimir; Yuan, Junying; Degterev, Alexei

    2010-01-01

    The PI3-kinase (PI3K) pathway regulates many cellular processes, especially cell metabolism, cell survival, and apoptosis. Phosphatidylinositol-3,4,5-trisphosphate (PIP3), the product of PI3K activity and a key signaling molecule, acts by recruiting pleckstrin-homology (PH) domain-containing proteins to cell membranes. Here, we describe a new structural class of nonphosphoinositide small molecule antagonists (PITenins, PITs) of PIP3–PH domain interactions (IC50 ranges from 13.4 to 31 μM in PIP3/Akt PH domain binding assay). PITs inhibit interactions of a number of PIP3-binding PH domains, including those of Akt and PDK1, without affecting several PIP2-selective PH domains. As a result, PITs suppress the PI3K-PDK1-Akt pathway and trigger metabolic stress and apoptosis. A PIT-1 analog displayed significant antitumor activity in vivo, including inhibition of tumor growth and induction of apoptosis. Overall, our studies demonstrate the feasibility of developing specific small molecule antagonists of PIP3 signaling. PMID:21041639

  20. Differential expression of guanosine triphosphate binding proteins in men at high and low risk for the future development of alcoholism.

    PubMed Central

    Wand, G S; Waltman, C; Martin, C S; McCaul, M E; Levine, M A; Wolfgang, D

    1994-01-01

    We evaluated G-proteins that are components of adenylyl cyclase (AC) signal transduction in erythrocyte and lymphocyte membranes from 26 family history positive (FHP) non-alcoholic and 26 family history negative (FHN) nonalcoholic subjects. Subjects were classified as FHP if their father met criteria for alcohol dependence; as FHN, if there was no history of alcoholism in any first or second degree relatives. Immunoblot analysis indicated that levels of erythrocyte membrane Gs alpha from FHP subjects were greater than levels in FHN subjects (171 +/- 11 vs 100 +/- 6, P < 0.001). To confirm the results of the immunoblot analysis, Gs alpha was quantitated by cholera toxin-dependent [32P]ADP-ribosylation. Levels of erythrocyte [32P]ADP-ribose-Gs alpha from FHP subjects were greater than levels in FHN subjects (236 +/- 28 vs 100 +/- 14, P < 0.001). Gs alpha levels did not correlate with age or alcohol consumption. By contrast to differences in Gs alpha, immunoblot analysis showed similar levels of Gi(2)alpha and Gi(3)alpha in erythrocyte membranes of FHP and FHN subjects. Pertussis toxin-catalyzed [32P]ADP-ribosylation of Gi-like G-proteins confirmed the immunoblot observations. Lastly, compared to FHN subjects, FHP subjects had enhanced Gs alpha expression in lymphocyte membranes as well (138 +/- 11 vs 100 +/- 5.5; P < 0.02). In summary, compared to FHN nonalcoholic men, FHP nonalcoholic men had greater levels of the stimulatory G-protein, Gs alpha, in erythrocyte and lymphocyte membranes. Enhanced expression of Gs alpha may be a marker of increased risk for the future development of alcoholism. Images PMID:8083341

  1. Characterization of a multiple endogenously expressed adenosine triphosphate-binding cassette transporters using nuclear and cellular membrane affinity chromatography columns.

    PubMed

    Habicht, K-L; Singh, N S; Khadeer, M A; Shimmo, R; Wainer, I W; Moaddel, R

    2014-04-25

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP-Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN-229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN-229)) and (CMAC(LN-229)), respectively. Pgp, MRP1 and BCRP transporters co-immobilized on both columns were characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs. 3.7μM), verapamil (0.6 vs. 0.7μM) and prazosin (0.099 vs. 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of eight compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN-229) column and decreased it (-5%) on the NMAC(LN-229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences.

  2. Regulation of type 1 inositol 1,4,5-triphosphate receptor by dopamine receptors in cocaine-induced place conditioning.

    PubMed

    Kurokawa, Kazuhiro; Mizuno, Koji; Shibasaki, Masahiro; Ohkuma, Seitaro

    2012-02-01

    Recent study shows that type 1 inositol-1,4,5-triphosohate receptors (IP(3) Rs) may be involved in amphetamine-induced conditioned preference, but little is known about its role in psychological dependence on cocaine. This study investigated the role and regulation of IP(3) R-1 in mice with cocaine-induced place preference. The cocaine-induced place preference was dose-dependently inhibited by intracerebroventricular pretreatment with IP(3) R antagonists, 2-aminophenoxyethane-borate (2-APB), and xestospongin C. The levels of IP(3) R-1 in the frontal cortex and nucleus accumbens of cocaine-conditioned mice significantly increased, which was completely abolished by SCH23390 and sulpiride, selective dopamine D1 and D2 receptor antagonists, respectively. These findings suggest that IP(3) R-1-mediated intracellular signaling pathway may play an important role in the development of cocaine-induced place preference and that the expression of IP(3) R-1 is controlled by both dopamine D1 and D2 receptors in the frontal cortex and nucleus accumbens of mice with cocaine-induced place preference.

  3. Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytes.

    PubMed

    Ito, Junya; Yoshida, Tomoko; Kasai, Yasushi; Wakai, Takuya; Parys, Jan B; Fissore, Rafael A; Kashiwazaki, Naomi

    2010-02-01

    During fertilization in mammalian species, a sperm-induced intracellular Ca(2+) signal ([Ca(2+)](i)) mediates both exit of meiosis and oocyte activation. Recently, we demonstrated in mouse oocytes that the phosphorylation levels of inositol 1,4,5 trisphosphate receptor type1 (IP(3)R1), the channel responsible for Ca(2+) release and oscillations during fertilization, changed during maturation and fertilization. Therefore, we examined the expression and phosphorylation of IP(3)R1 during in vitro maturation of pig oocytes. Here, our present study shows that expression of IP(3)R1 protein did not change during maturation, although the phosphorylation status of the receptor, specifically at an MPM-2 epitope, did. We found that while at the beginning of maturation IP(3)R1 lacked MPM-2 immunoreactivity, it became MPM-2 reactive by 24 h and reached maximal reactivity by 36 h. Interestingly, the acquisition of MPM-2 reactivity coincided with the activation of p34(cdc2) kinase and mitogen-activated protein kinase (MAPK), which are involved in meiotic progression. Following completion of maturation, inactivation of MAPK by U0126 did not affect IP(3)R1 phosphorylation, although inactivation of p34(cdc2) kinase by roscovitine dramatically reduced IP(3)R1 phosphorylation. Neither inhibitor affected total expression of IP(3)R1. Altogether, our results show that IP(3)R1 undergoes dynamic phosphorylation during maturation and this might underlie the generation of oscillations at fertilization.

  4. Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels.

    PubMed

    Zaika, Oleg; Tolstykh, Gleb P; Jaffe, David B; Shapiro, Mark S

    2007-08-15

    Purinergic P2Y receptors are one of four types of G(q/11)-coupled receptors in rat superior cervical ganglia (SCG) sympathetic neurons. In cultured SCG neurons, purinergic and bradykinin suppression of I(M) were similar in magnitude and somewhat less than that by muscarinic agonists. The effects of the P2Y receptor agonist UTP on neuronal excitability and discharge properties were studied. Under current clamp, UTP increased action potential (AP) firing in response to depolarizing current steps, depolarized the resting potential, decreased the threshold current required to fire an AP, and decreased spike-frequency adaptation. These effects were very similar to those resulting from bradykinin stimulation and not as profound as from muscarinic stimulation or full M-current blockade. We then examined the P2Y mechanism of action. Like bradykinin, but unlike muscarinic, purinergic stimulation induced rises in intracellular [Ca(2+)](i). Tests using expression of IP(3)"sponge" or IP(3) phosphatase constructs implicated IP(3) accumulation as necessary for purinergic suppression of I(M). Overexpression of wild-type or dominant-negative calmodulin (CaM) implicated Ca(2+)/CaM in the purinergic action. Both sets of results were similar to bradykinin, and opposite to muscarinic, suppression. We also examined modulation of Ca(2+) channels. As for bradykinin, purinergic stimulation did not suppress I(Ca), unless neuronal calcium sensor-1 (NCS-1) activity was blocked by a dominant-negative NCS-1 construct. Our results indicate that P2Y receptors modulate M-type channels in SCG cells via IP(3)-mediated [Ca(2+)](i) signals in concert with CaM and not by depletion of phosphatidylinositol-4, 5-biphosphate. We group purinergic P2Y and bradykinin B(2) receptors together as having a common mode of action.

  5. Astrocyte inositol triphosphate receptor type 2 and cytosolic phospholipase A2 alpha regulate arteriole responses in mouse neocortical brain slices.

    PubMed

    He, Lihua; Linden, David J; Sapirstein, Adam

    2012-01-01

    Functional hyperemia of the cerebral vascular system matches regional blood flow to the metabolic demands of the brain. One current model of neurovascular control holds that glutamate released by neurons activates group I metabotropic glutamate receptors (mGluRs) on astrocytes, resulting in the production of diffusible messengers that act to regulate smooth muscle cells surrounding cerebral arterioles. The acute mouse brain slice is an experimental system in which changes in arteriole diameter can precisely measured with light microscopy. Stimulation of the brain slice triggers specific cellular responses that can be correlated to changes in arteriole diameter. Here we used inositol trisphosphate receptor type 2 (IP(3)R2) and cytosolic phospholipase A(2) alpha (cPLA(2)α) deficient mice to determine if astrocyte mGluR activation coupled to IP(3)R2-mediated Ca(2+) release and subsequent cPLA(2)α activation is required for arteriole regulation. We measured changes in astrocyte cytosolic free Ca(2+) and arteriole diameters in response to mGluR agonist or electrical field stimulation in acute neocortical mouse brain slices maintained in 95% or 20% O(2). Astrocyte Ca(2+) and arteriole responses to mGluR activation were absent in IP(3)R2(-/-) slices. Astrocyte Ca(2+) responses to mGluR activation were unchanged by deletion of cPLA(2)α but arteriole responses to either mGluR agonist or electrical stimulation were ablated. The valence of changes in arteriole diameter (dilation/constriction) was dependent upon both stimulus and O(2) concentration. Neuron-derived NO and activation of the group I mGluRs are required for responses to electrical stimulation. These findings indicate that an mGluR/IP(3)R2/cPLA(2)α signaling cascade in astrocytes is required to transduce neuronal glutamate release into arteriole responses.

  6. Inositol 1,4,5-triphosphate drives glutamatergic and cholinergic inhibition selectively in spiny projection neurons in the striatum.

    PubMed

    Clements, Michael A; Swapna, Immani; Morikawa, Hitoshi

    2013-02-01

    The striatum is critically involved in the selection of appropriate actions in a constantly changing environment. The spiking activity of striatal spiny projection neurons (SPNs), driven by extrinsic glutamatergic inputs, is shaped by local GABAergic and cholinergic networks. For example, it is well established that different types of GABAergic interneurons, activated by extrinsic glutamatergic and local cholinergic inputs, mediate powerful feedforward inhibition of SPN activity. In this study, using mouse striatal slices, we show that glutamatergic and cholinergic inputs exert direct inhibitory regulation of SPN activity via activation of metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors. While pressure ejection of the group I mGluR (mGluR1/5) agonist DHPG [(S)-3,5-dihydroxyphenylglycine] equally engages both mGluR1 and mGluR5 subtypes, the mGluR-dependent component of IPSCs elicited by intrastriatal electrical stimulation is almost exclusively mediated by the mGluR1 subtype. Ca(2+) release from intracellular stores specifically through inositol 1,4,5-triphospahte receptors (IP(3)Rs) and not ryanodine receptors (RyRs) mediates this form of inhibition by gating two types of Ca(2+)-activated K(+) channels (i.e., small-conductance SK channels and large-conductance BK channels). Conversely, spike-evoked Ca(2+) influx triggers Ca(2+) release solely through RyRs to generate SK-dependent slow afterhyperpolarizations, demonstrating functional segregation of IP(3)Rs and RyRs. Finally, IP(3)-induced Ca(2+) release is uniquely observed in SPNs and not in different types of interneurons in the striatum. These results demonstrate that IP(3)-mediated activation of SK and BK channels provides a robust mechanism for glutamatergic and cholinergic inputs to selectively suppress striatal output neuron activity.

  7. Sinus slowing caused by adenosine-5'-triphosphate in patients with and without sick sinus syndrome under various autonomic states.

    PubMed

    Tan, Bi-Hua; Shimizu, Hiroki; Furukawa, Yoshio; Kanemori, Tetsuzou; Ohyanagi, Mitsumasa

    2004-10-01

    Adenosine infusion can potentially be used as a diagnostic test for sick sinus syndrome (SSS) based on its negative chronotropic effects. Whether autonomic tone underlies adenosine's negative chronotropic effects remains unknown. This study was to investigate the bradycardiac response of sinus node to ATP in patients with and without clinical SSS by measuring atrial cycle length (ACL) before and after bolus of ATP in different states of autonomic tone. The negative chronotropic effect of ATP was assessed by comparing the mean ACL before ATP administration with the longest ACL after a bolus of ATP infusion (Delta ACL). Our results showed that Delta ACL in patients with SSS were significantly greater than that without SSS (P<.001) in all 4 states, and IHR in patients with SSS were significantly lower than calculated IHR (P<.0001). Moreover, there was no significant difference in Delta ACL between the 4 states in patients with SSS (P = .99). However, Delta ACL was significantly greater during isoproterenol infusion and after propranolol administration in patients without sinus node dysfunction, comparing with baseline state (P<.01), but not after combination of atropine (P = .33). Our results indicate that the negative chronotropic effect of ATP on sinus node is much more dramatic in patients with SSS, in which the intrinsic disease of sinus node is responsible for the abnormal adenosine-mediated sinus arrest, and this effect is influenced by autonomic tone in patients without sinus node dysfunction but not in patients with SSS. PMID:15484159

  8. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    PubMed Central

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  9. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation.

    PubMed

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2016-08-15

    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent. PMID:27372838

  10. Characterization of a multiple endogenously expressed Adenosine triphosphate-Binding Cassette transporters using nuclear and cellular membrane affinity chromatography columns

    PubMed Central

    Khadeer, M.A.; Shimmo, R.; Wainer, I.W.; Moaddel, R.

    2014-01-01

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN229)) and (CMAC(LN229)), respectively. Pgp, MRP1and BCRP transporters co-immobilized on both columns was characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs 3.7μM), verapamil (0.6 vs 0.7μM) and prazosin (0.099 vs 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of 8 compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN229) column and decreased it (−5%) on the NMAC(LN229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences. PMID:24642394

  11. Inositol 1,4,5-Triphosphate Drives Glutamatergic and Cholinergic Inhibition Selectively in Spiny Projection Neurons in the Striatum

    PubMed Central

    Clements, Michael A.; Swapna, Immani; Morikawa, Hitoshi

    2013-01-01

    The striatum is critically involved in the selection of appropriate actions in a constantly changing environment. The spiking activity of striatal spiny projection neurons (SPNs), driven by extrinsic glutamatergic inputs, is shaped by local GABAergic and cholinergic networks. For example, it is well established that different types of GABAergic interneurons, activated by extrinsic glutamatergic and local cholinergic inputs, mediate powerful feedforward inhibition of SPN activity. In this study, using mouse striatal slices, we show that glutamatergic and cholinergic inputs exert direct inhibitory regulation of SPN activity via activation of metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors. While pressure ejection of the group I mGluR (mGluR1/5) agonist DHPG [(S)-3,5-dihydroxyphenylglycine] equally engages both mGluR1 and mGluR5 subtypes, the mGluR-dependent component of IPSCs elicited by intrastriatal electrical stimulation is almost exclusively mediated by the mGluR1 subtype. Ca2+ release from intracellular stores specifically through inositol 1,4,5-triphospahte receptors (IP3Rs) and not ryanodine receptors (RyRs) mediates this form of inhibition by gating two types of Ca2+ -activated K+ channels (i.e., small-conductance SK channels and large-conductance BK channels). Conversely, spike-evoked Ca2+ influx triggers Ca2+ release solely through RyRs to generate SK-dependent slow afterhyperpolarizations, demonstrating functional segregation of IP3Rs and RyRs. Finally, IP3-induced Ca2+ release is uniquely observed in SPNs and not in different types of interneurons in the striatum. These results demonstrate that IP3-mediated activation of SK and BK channels provides a robust mechanism for glutamatergic and cholinergic inputs to selectively suppress striatal output neuron activity. PMID:23392696

  12. Rate of phosphate release after photoliberation of adenosine 5'-triphosphate in slow and fast skeletal muscle fibers.

    PubMed

    He, Z; Stienen, G J; Barends, J P; Ferenczi, M A

    1998-11-01

    Inorganic phosphate (Pi) release was determined by means of a fluorescent Pi-probe in single permeabilized rabbit soleus and psoas muscle fibers. Measurements of Pi release followed photoliberation of approximately 1.5 mM ATP by flash photolysis of NPE-caged ATP in the absence and presence of Ca2+ at 15 degrees C. In the absence of Ca2+, Pi release occurred with a slow rate of 11 +/- 3 microM . s-1 (n = 3) in soleus fibers and 23 +/- 1 microM . s-1 (n = 10) in psoas fibers. At saturating Ca2+ concentrations (pCa 4.5), photoliberation of ATP was followed by rapid force development. The initial rate of Pi release was 0.57 +/- 0.05 mM . s-1 in soleus (n = 13) and 4.7 +/- 0.2 mM . s-1 in psoas (n = 23), corresponding to a rate of Pi release per myosin head of 3.8 s-1 in soleus and 31.5 s-1 in psoas. Pi release declined at a rate of 0.48 s-1 in soleus and of 5.2 s-1 in psoas. Pi release in soleus was slightly faster in the presence of an ATP regenerating system but slower when 0.5 mM ADP was added. The reduction in the rate of Pi release results from an initial redistribution of cross-bridges over different states and a subsequent ADP-sensitive slowing of cross-bridge detachment.

  13. The phage T4-coded DNA replication helicase (gp41) forms a hexamer upon activation by nucleoside triphosphate.

    PubMed

    Dong, F; Gogol, E P; von Hippel, P H

    1995-03-31

    Sedimentation and high performance liquid chromatography studies show that the functional DNA replication helicase of bacteriophage T4 (gp41) exists primarily as a dimer at physiological protein concentrations, assembling from gp41 monomers with an association constant of approximately 10(6) M-1. Cryoelectron microscopy, analytical ultracentrifugation, and protein-protein cross-linking studies demonstrate that the binding of ATP or GTP drives the assembly of these dimers into monodisperse hexameric complexes, which redissociate following depletion of the purine nucleotide triphosphatase (PuTP) substrates by the DNA-stimulated PuTPase activity of the helicase. The hexameric state of gp41 can be stabilized for detailed study by the addition of the nonhydrolyzable PuTP analogs ATP gamma S and GTP gamma S and is not significantly affected by the presence of ADP, GDP, or single-stranded or forked DNA template constructs, although some structural details of the hexameric complex may be altered by DNA binding. Our results also indicate that the active gp41 helicase exists as a hexagonal trimer of asymmetric dimers, and that the hexamer is probably characterized by D3 symmetry. The assembly pathway of the gp41 helicase has been analyzed, and its structure and properties compared with those of other helicases involved in a variety of cellular processes. Functional implications of such structural organization are also considered. PMID:7706292

  14. Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2',4'-bridged nucleosides.

    PubMed

    Kuwahara, Masayasu; Obika, Satoshi; Nagashima, Jun-ichi; Ohta, Yuki; Suto, Yoshiyuki; Ozaki, Hiroaki; Sawai, Hiroaki; Imanishi, Takeshi

    2008-08-01

    In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2',4'-bridged nucleotides and three types of 2',4'-bridged nucleoside-5'-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2'-O,4'-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2',4'-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2',4'-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2',4'-bridged nucleotides into extending strands using 2',4'-bridged nucleoside-5'-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification. PMID:18583360

  15. Effect of sodium selenite on the ciliary activity, adenosine triphosphate, and protein synthesis in mouse trachea organ cultures

    SciTech Connect

    Lag, M.; Paulsen, G.; Jonsen, J.

    1984-01-01

    Trachea from albino mice were cut transversely into nearly identical rings and incubated in medium 199 with Hanks salts and HEPES buffer at 37/sup 0/C. Sodium selenite at 0.5-5 mM depressed the ciliary activity. With 1 and 5 mM sodium selenite, a 50% reduction in the activity index was observed after approximately 5 and 1.5 h, respectively. The ATP content in trachea rings was reduced with 0.05-5 mM sodium selenite, and increasing concentrations gave decreasing amount of ATP after incubation for 4 and 21 h. The rate of protein synthesis as determined by incorporation of radioactive leucine was reduced with 0.5 and 2 mM sodium selenite. The synthesis was reduced quickly by 2 mM sodium selenite, which gave a 30% reduction after incubation for 1 h. 16 references, 2 figures, 3 tables.

  16. Overexpression of CD39 in hepatocellular carcinoma is an independent indicator of poor outcome after radical resection

    PubMed Central

    Cai, Xiao-Yan; Ni, Xiao-Chun; Yi, Yong; He, Hong-Wei; Wang, Jia-Xing; Fu, Yi-Peng; Sun, Jian; Zhou, Jian; Cheng, Yun-Feng; Jin, Jian-Jun; Fan, Jia; Qiu, Shuang-Jian

    2016-01-01

    Abstract Nucleoside triphosphate diphosphohydrolase-1 (ENTPD1/CD39) is the rate-limiting enzyme in a cascade leading to the generation of immunosuppressive adenosine and plays an important role in tumor progression. This study aimed to evaluate the expression of CD39 and CD39+Foxp3+ regulatory T cells (Tregs) and to determine their prognostic role in patients with hepatocellular carcinoma (HCC) after radical resection. Immunohistochemistry (IHC) and double IHC were used to analyze CD39 expression or the expression of CD39 and Foxp3 in a cohort of 324 HCC patients who underwent curative resection. The quantification of CD39 expression levels was determined using a computerized image analysis system and was evaluated by mean optical density (MOD), which corresponded to the positive staining intensity of CD39. The number of positive Foxp3 cells and both CD39 and Foxp3 positive cells in each 1-mm-diameter cylinder were counted under high-power magnification (×400). The “minimum P value” approach was used to obtain the optimal cutoff value for the best separation between groups of patients in relation to time to recurrence (TTR) or overall survival (OS). The expression of CD39 in HCC cell lines with stepwise metastatic potential and in human umbilical vein endothelial cells was determined by reverse transcription-polymerase chain reaction, Western blotting, and immunofluorescence. The SPSS 17.0 statistical package was used for statistics. CD39 was principally expressed on vascular endothelial cells, macrophagocytes, Tregs, and tumor cells in HCC. Compared with paired peritumoral tissues, tumoral tissues had a significantly higher expression level of CD39 (P < 0.0001). Overexpression of tumoral CD39 was related to increased tumor recurrence and shortened overall survival. Furthermore, the expression level of peritumoral CD39 showed a prognostic role in TTR and OS. Double IHC showed that tumoral tissues had significantly higher Foxp3+Tregs and CD39+Foxp3+Tregs

  17. Endotoxemia alters nucleotide hydrolysis in platelets of rats.

    PubMed

    Vuaden, Fernanda Cenci; Furstenau, Cristina Ribas; Savio, Luiz Eduardo Baggio; Sarkis, João José Freitas; Bonan, Carla Denise

    2009-03-01

    Platelets play a critical role in homeostasis and blood clotting at sites of vascular injury, and also in various ways in innate immunity and inflammation. Platelets are one of the first cells to accumulate at an injured site, and local release of their secretome at some point initiate an inflammatory cascade that attracts leukocytes, activates target cells, stimulates vessel growth and repair. The level of exogenous ATP in the body may be increased in various inflammatory and shock conditions, primarily as a consequence of nucleotide release from platelets, endothelium and blood vessel cells. An increase of ATP release has been described during inflammation and this compound presents proinflammatory properties. ADP is a nucleotide known to induce changes in platelets shape and aggregation, to promote the exposure of fibrinogen-binding sites and to inhibit the stimulation of adenylate cyclase. Adenosine, the final product of the nucleotide hydrolysis, is a vasodilator and an inhibitor of platelet aggregation. There is a group of ecto-enzymes responsible for extracellular nucleotide hydrolysis named ectonucleotidases, which includes the NTPDase (nucleoside triphosphate diphosphohydrolase) family, the NPP (nucleoside pyrophosphatase/phosphodiesterase) family and an ecto-5'-nucleotidase. Therefore, we have aimed to investigate the effect of lipopolysaccharide endotoxin from Escherichia coli on ectonucleotidases in platelets from adult rats in order to better understand the role of extracellular adenine nucleotides and nucleosides in the maintenance of blood homeostasis in inflammatory processes. LPS administered in vitro was not able to alter the ATP, ADP, AMP and rho-Nph-5'-TMP hydrolysis of platelets from untreated rats in all concentrations tested (25-100 microg/ml). There was a significant decrease in ATP, ADP, AMP and rho-Nph-5'-TMP hydrolysis in rat platelets after 48 hours of LPS exposure (2 mg/Kg, i.p.). ATP and ADP hydrolysis has been reduced about 28

  18. Conservation of complete trimethylation of lysine-43 in the rotor ring of c-subunits of metazoan adenosine triphosphate (ATP) synthases.

    PubMed

    Walpole, Thomas B; Palmer, David N; Jiang, Huibing; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2015-04-01

    The rotors of ATP synthases turn about 100 times every second. One essential component of the rotor is a ring of hydrophobic c-subunits in the membrane domain of the enzyme. The rotation of these c-rings is driven by a transmembrane proton-motive force, and they turn against a surface provided by another membrane protein, known as subunit a. Together, the rotating c-ring and the static subunit a provide a pathway for protons through the membrane in which the c-ring and subunit a are embedded. Vertebrate and invertebrate c-subunits are well conserved. In the structure of the bovine F1-ATPase-c-ring subcomplex, the 75 amino acid c-subunit is folded into two transmembrane α-helices linked by a short loop. Each bovine rotor-ring consists of eight c-subunits with the N- and C-terminal α-helices forming concentric inner and outer rings, with the loop regions exposed to the phospholipid head-group region on the matrix side of the inner membrane. Lysine-43 is in the loop region and its ε-amino group is completely trimethylated. The role of this modification is unknown. If the trimethylated lysine-43 plays some important role in the functioning, assembly or degradation of the c-ring, it would be expected to persist throughout vertebrates and possibly invertebrates also. Therefore, we have carried out a proteomic analysis of c-subunits across representative species from different classes of vertebrates and from invertebrate phyla. In the twenty-nine metazoan species that have been examined, the complete methylation of lysine-43 is conserved, and it is likely to be conserved throughout the more than two million extant metazoan species. In unicellular eukaryotes and prokaryotes, when the lysine is conserved it is unmethylated, and the stoichiometries of c-subunits vary from 9-15. One possible role for the trimethylated residue is to provide a site for the specific binding of cardiolipin, an essential component of ATP synthases in mitochondria.

  19. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex

    PubMed Central

    Goldfarb, P. S. G.; Rodnight, R.

    1970-01-01

    1. The intrinsic Na+, K+, Mg2+ and Ca2+ contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na+ from 90±20 to 24±12, the bound K+ from 27±3 to 7±2, the bound Mg2+ from 20±2 to 3±1 and the bound calcium from 8±1 to <1nmol/mg of protein. 3. The activities of the Na++K++Mg2+-stimulated adenosine triphosphatase and the Na+-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5μm (ATP/protein ratio 12.5pmol/μg). 4. The Na+-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5μm-magnesium chloride and 2μm-potassium chloride. Addition of 2.5μm-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na+-dependent ATP hydrolysis was partly restored with 2.5μm-magnesium chloride; addition of K+ in the range 2–10μm-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0°C with 0.5nmol of K+/mg of protein so that the final added K+ in the reaction mixture was 0.1μm restored the Na+-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [42K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K+/mg of protein was linear over a period of 20min and was inhibited by Na+. Half-maximal inhibition of 42K+-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na+-dependent hydrolysis of ATP observed in the unwashed preparation is due to activation by bound K+ and Mg2+ of the Na++K++Mg2+-stimulated adenosine triphosphatase system and (b) that the enzyme system is able to bind K+ from a solution of 0.5μm-potassium chloride. PMID:4250237

  20. Bis-Halogen-Anthraniloyl-Substituted Nucleoside 5′-Triphosphates as Potent and Selective Inhibitors of Bordetella pertussis Adenylyl Cyclase Toxin

    PubMed Central

    Geduhn, Jens; Dove, Stefan; Shen, Yuequan; Tang, Wei-Jen; König, Burkhard

    2011-01-01

    Whooping cough is caused by Bordetella pertussis and still constitutes one of the top five causes of death in young children, particularly in developing countries. The calmodulin-activated adenylyl cyclase (AC) toxin CyaA substantially contributes to disease development. Thus, potent and selective CyaA inhibitors would be valuable drugs for the treatment of whooping cough. However, it has been difficult to obtain potent CyaA inhibitors with selectivity relative to mammalian ACs. Selectivity is important for reducing potential toxic effects. In a previous study we serendipitously found that bis-methylanthraniloyl (bis-MANT)-IMP is a more potent CyaA inhibitor than MANT-IMP (Mol Pharmacol 72:526–535, 2007). These data prompted us to study the effects of a series of 32 bulky mono- and bis-anthraniloyl (ANT)-substituted nucleotides on CyaA and mammalian ACs. The novel nucleotides differentially inhibited CyaA and ACs 1, 2, and 5. Bis-ANT nucleotides inhibited CyaA competitively. Most strikingly, bis-Cl-ANT-ATP inhibited CyaA with a potency ≥100-fold higher than ACs 1, 2, and 5. In contrast to MANT-ATP, bis-MANT-ATP exhibited low intrinsic fluorescence, thereby substantially enhancing the signal-to noise ratio for the analysis of nucleotide binding to CyaA. The high sensitivity of the fluorescence assay revealed that bis-MANT-ATP binds to CyaA already in the absence of calmodulin. Molecular modeling showed that the catalytic site of CyaA is sufficiently spacious to accommodate both MANT substituents. Collectively, we have identified the first potent CyaA inhibitor with high selectivity relative to mammalian ACs. The fluorescence properties of bis-ANT nucleotides facilitate development of a high-throughput screening assay. PMID:20962032

  1. Dual effect of curcumin targets reactive oxygen species, adenosine triphosphate contents and intermediate steps of mitochondria-mediated apoptosis in lung cancer cell lines.

    PubMed

    Hosseinzadehdehkordi, Mahshid; Adelinik, Armin; Tashakor, Amin

    2015-12-15

    Exposure to arsenic is one of the major causes of lung cancer due to production of Reactive Oxygen Species (ROS). Herbal medicine is a new approach used for prevention or treatment of cancers. Among various herbal compounds, a lot of attention has been paid to curcumin, as antioxidant, anti-proliferative, anti-carcinogenic and anti-tumor and pro-apoptotic properties of curcumin have been well studied. In the present study, we investigated the effects of curcumin on lung cancer cell lines and arsenic-treated lung cancer cell lines, originated from different stages of lung cancer development. Here, we measured ROS generation and caspase 3/7 activity for both curcumin-treated cell lines and those co-treated with arsenic and curcumin. Then, we studied lipid peroxidation, intracellular ATP content, and cytochrome c release to further investigate how ROS generation and curcumin exert synergistic effects and direct cells toward apoptosis. According to our data, curcumin has a dual effect on ROS generation which is dependent on specific concentration as a threshold and seems to induce apoptosis by two different mechanisms. Moreover, for the first time we report that curcumin delays the drop in ATP levels in these cell lines and hence provides required energy for apoptosis process. Furthermore, western blot analysis reveals that release of cytochrome c is highest when ATP begins to drop in the presence of curcumin. To sum it up, it seems that curcumin is strong candidate for prevention or treatment of lung cancer, especially at stage 2.

  2. Regulation of hamster carbamoyl-phosphate synthase II by 5-phospho-alpha-D-ribosyl 1-diphosphate and uridine 5'-triphosphate.

    PubMed

    Lyons, S D; Christopherson, R I

    1985-03-15

    In mammals, carbamoyl phosphate for utilization in pyrimidine biosynthesis is synthesized by a glutamine-dependent carbamoyl-phosphate synthase II which is subject to regulation by 5-phospho-alpha-D-ribosyl 1-diphosphate (PRib-PP), a positive effector, and MgUTP, a negative effector [Mori, M., Ishida, H. and Tatibana, M. (1975) Biochemistry 14, 2622-2630]. We have found that Lineweaver-Burk plots of carbamoyl phosphate synthase activity versus 1/[MgATP] are described by a velocity equation which is a ratio of quadratic polynomials, consistent with a positive homotropic interaction between two catalytic sites for the binding of MgATP (Ks = 16.6 +/- 3.1 mM, interaction factor a = 0.00538 +/- 0.00245). The activating effect of PRib-PP upon carbamoyl-phosphate synthase is consistent with PRib-PP binding at an allosteric site (Ka = 31.4 +/- 6.4 microM) and promoting the binding of a first molecule of MgATP as substrate (interaction factor l = 0.0437 +/- 0.0063). Thus MgATP and PRib-PP bind to the E X MgATP complex with respective dissociation constants of a X Ks = 0.089 mM and l X Ka = 1.4 microM while MgATP binds to the E X PRib-PP complex with a dissociation constant of l X Ks = 0.73 mM. Data for the inhibitory effect of MgUTP upon carbamoyl-phosphate synthase indicate that MgUTP competes with MgATP for binding at the catalytic site (Ki = 0.203 +/- 0.016 mM). A computer model has recently been developed which enables quantitative stimulation of the time-dependent effects of blockade of the pyrimidine pathway by a tight-binding enzyme inhibitor [Duggleby, R.G. and Christopherson, R.I. (1984) Eur. J. Biochem. 143, 221-226]. The velocity equation derived in the present paper provides a quantitative basis for predicting changes in the flux through the de novo pyrimidine pathway in growing cells. PMID:2579811

  3. Studies on yeast nucleoside triphosphate-nucleoside diphosphate transphosphorylase (nucleoside diphosphokinase). IV. Steady-state kinetic properties with thymidine nucleotides (including 3'-azido-3'-deoxythymidine analogues).

    PubMed

    Kuby, S A; Fleming, G; Alber, T; Richardson, D; Takenaka, H; Hamada, M

    1991-01-01

    A study of the steady-state kinetics of the crystalline brewer's yeast (Saccharomyces carlsbergensis) nucleoside diphosphokinase, with the magnesium complexes of the adenine and thymidine nucleotides as reactants, has led to a postulated kinetic mechanism which proceeds through a substituted enzyme. This agrees with the earlier conclusions of Garces and Cleland [Biochemistry 1969; 8:633-640] who characterized a reaction between the magnesium complexes of the adenine and uridine nucleotides. An advantage of using thymidine nucleotides as reactants is that they permit accurate, rapid and continuous assays of the enzymatic activity in coupled-enzymatic tests. Through measurements of the initial velocities and product inhibition studies, the Michaelis constants, maximum velocities, and inhibition constants could be evaluated for the individual substrates. Competitive substrate inhibition was encountered at relatively high substrate concentrations, which also permitted an evaluation of their ability to act as 'dead-end' inhibitors. The Michaelis constants for the 3'-azido-3'-deoxythymidine (AzT) analogues were also evaluated and, although these values were only somewhat higher than those of their natural substrates, the Km's for the adenine nucleotides as paired substrates were lower and the Vmax's were drastically reduced. The pharmacological implications of these observations are touched upon and extrapolated to the cases where therapeutic doses of AzT may be employed.

  4. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    PubMed

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  5. Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774

    SciTech Connect

    Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José

    2008-07-01

    Native zinc-containing ATP sulfurylase from D. desulfuricans ATCC 27774 was purified to homogeneity and crystallized. Diffraction data were collected to 2.5 Å resolution. Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

  6. Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH

    PubMed Central

    Su, Wei; Slepenkov, Sergey; Grudzien-Nogalska, Ewa; Kowalska, Joanna; Kulis, Marta; Zuberek, Joanna; Lukaszewicz, Maciej; Darzynkiewicz, Edward; Jemielity, Jacek; Rhoads, Robert E.

    2011-01-01

    Decapping is an essential step in multiple pathways of mRNA degradation. Previously, we synthesized mRNAs containing caps that were resistant to decapping, both to dissect the various pathways for mRNA degradation and to stabilize mRNA for more sustained protein expression. mRNAs containing an α-β CH2 group are resistant to in vitro cleavage by the decapping enzyme hDcp2 but poorly translated. mRNAs containing an S substitution at the β-phosphate are well translated but only partially resistant to hDcp2. We now describe seven new cap analogs substituted at the β-phosphate with BH3 or Se, or substituted at either the α-β or β-γ O with NH. The analogs differ in affinity for eIF4E and efficiency of in vitro incorporation into mRNA by T7 RNA polymerase. Luciferase mRNAs capped with these analogs differ in resistance to hDcp2 hydrolysis in vitro, translational efficiency in rabbit reticulocyte lysate and in HeLa cells, and stability in HeLa cells. Whereas mRNAs capped with m27,2′-OGppSpG were previously found to have the most favorable properties of translational efficiency and stability in mammalian cells, mRNAs capped with m7GppBH3pm7G are translated with the same efficiency but are more stable. Interestingly, some mRNAs exhibit a lag of up to 60 min before undergoing first-order decay (t1/2 ≅ 25 min). Only mRNAs that are efficiently capped, resistant to decapping in vitro, and actively translated have long lag phases. PMID:21447710

  7. A comparison of certain extracting agents for extraction of adenosine triphosphate (ATP) from microorganisms for use in the firefly luciferase ATP assay

    NASA Technical Reports Server (NTRS)

    Knust, E. A.; Chappelle, E. W.; Picciolo, G. L.

    1975-01-01

    Firefly luciferase ATP assay is used in clinical and industrial applications, such as determination of urinary infection levels, microbial susceptibility testing, and monitoring of yeast levels in beverages. Three categories of extractants were investigated for their extracting efficiency. They were ionizing organic solvents, nonionizing organic solvents, and inorganic acids. Dimethylsulfoxide and formamide represented the ionizing organic solvents, while n-butanol, chloroform, ethanol, acetone, and methylene chloride were used for the nonionizing organic solvents. Nitric acid and perchloric acid were chosen for the inorganic acids category. Pathogens were tested with each solvent. They included: Saccharomyces carlsbergensis, E. coli, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter species, Proteus mirabilis, Proteus vulgaris, Staphylococcus epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. These results are shown in graphic representations.

  8. Application of the luciferin-luciferase enzyme system for determination of adenosine triphosphate (ATP) to studies on the mechanisms of herbicide action

    NASA Technical Reports Server (NTRS)

    St.john, J. B.

    1975-01-01

    The luciferin-luciferase enzyme system for determination of ATP is valuable for studies on the mechanisms of herbicide action. Investigations using this system have shown that certain herbicides may act by interfering with ATP production or by blocking ATP use, or by both mechanisms.

  9. PTH stimulated growth and decreased Col-X deposition are phosphotidylinositol-3,4,5 triphosphate kinase and mitogen activating protein kinase dependent in avian sterna.

    PubMed

    Harrington, Erik Kern; Coon, David J; Kern, Matthew F; Svoboda, Kathy K H

    2010-02-01

    Type X collagen (Col-X) deposition is a marker of terminal differentiation during chondrogenesis, in addition to appositional growth and apoptosis. The parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) receptor, or PPR, is a G-Protein coupled receptor (GPCR), which activates several downstream pathways, moderating chondrocyte differentiation, including suppression of Col-X deposition. An Avian sterna model was used to analyze the PPR GPCR downstream kinase role in growth rate and extracellular matrix (ECM) including Col-II, IX, and X. Phosphatidylinositol kinase (PI3K), mitogen activating protein kinase (MAPK) and protein kinase A (PKA) were inhibited with specific established inhibitors LY294002, PD98059, and H89, respectively to test the hypothesis that they could reverse/inhibit the PTH/PTHrP pathway. Excised E14 chick sterna were PTH treated with or without an inhibitor and compared to controls. Sternal length was measured every 24 hr. Cultured sterna were immuno-stained using specific antibodies for Col-II, IX, or X and examined via confocal microscopy. Increased growth in PTH-treated sterna was MAPK, PI3K, and PKA dose dependent, suggesting growth was regulated through multiple pathways. Col-X deposition was rescued in PTH-treated sterna in the presence of PI3K or MAPK inhibitors, but not with the PKA inhibitor. All three inhibitors moderately disrupted Col-II and Col-IX deposition. These results suggest that PTH can activate multiple pathways during chondrocyte differentiation.

  10. Conservation of Complete Trimethylation of Lysine-43 in the Rotor Ring of c-Subunits of Metazoan Adenosine Triphosphate (ATP) Synthases*

    PubMed Central

    Walpole, Thomas B.; Palmer, David N.; Jiang, Huibing; Ding, Shujing; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The rotors of ATP synthases turn about 100 times every second. One essential component of the rotor is a ring of hydrophobic c-subunits in the membrane domain of the enzyme. The rotation of these c-rings is driven by a transmembrane proton-motive force, and they turn against a surface provided by another membrane protein, known as subunit a. Together, the rotating c-ring and the static subunit a provide a pathway for protons through the membrane in which the c-ring and subunit a are embedded. Vertebrate and invertebrate c-subunits are well conserved. In the structure of the bovine F1-ATPase-c-ring subcomplex, the 75 amino acid c-subunit is folded into two transmembrane α-helices linked by a short loop. Each bovine rotor-ring consists of eight c-subunits with the N- and C-terminal α-helices forming concentric inner and outer rings, with the loop regions exposed to the phospholipid head-group region on the matrix side of the inner membrane. Lysine-43 is in the loop region and its ε-amino group is completely trimethylated. The role of this modification is unknown. If the trimethylated lysine-43 plays some important role in the functioning, assembly or degradation of the c-ring, it would be expected to persist throughout vertebrates and possibly invertebrates also. Therefore, we have carried out a proteomic analysis of c-subunits across representative species from different classes of vertebrates and from invertebrate phyla. In the twenty-nine metazoan species that have been examined, the complete methylation of lysine-43 is conserved, and it is likely to be conserved throughout the more than two million extant metazoan species. In unicellular eukaryotes and prokaryotes, when the lysine is conserved it is unmethylated, and the stoichiometries of c-subunits vary from 9–15. One possible role for the trimethylated residue is to provide a site for the specific binding of cardiolipin, an essential component of ATP synthases in mitochondria. PMID:25608518

  11. A Real-Time and Hands-On Research Course in Protein Purification and Characterization: Purification and Crystal Growth of Human Inosine Triphosphate Pyrophosphatase

    ERIC Educational Resources Information Center

    Kreiling, Jodi L.; Brader, Kerry; Kolar, Carol; Borgstahl, Gloria E. O.

    2011-01-01

    A new lecture/laboratory course to offer advanced biochemical training for undergraduate and early graduate students has been developed in the Department of Chemistry at the University of Nebraska at Omaha. This unique course offers students an opportunity to work hands-on with modern instrumentation not normally found in a predominately…

  12. Ablation of the cholesterol transporter adenosine triphosphate-binding cassette transporter G1 reduces adipose cell size and protects against diet-induced obesity.

    PubMed

    Buchmann, Jana; Meyer, Christoph; Neschen, Susanne; Augustin, Robert; Schmolz, Katja; Kluge, Reinhart; Al-Hasani, Hadi; Jürgens, Hella; Eulenberg, Karsten; Wehr, Roland; Dohrmann, Cord; Joost, Hans-Georg; Schürmann, Annette

    2007-04-01

    The ATP-binding cassette transporter G1 (ABCG1) catalyzes export of cellular cholesterol from macrophages and hepatocytes. Here we identify an additional function of ABCG1 in the regulation of adiposity in screens of the Drosophila melanogaster and the New Zealand obese (NZO) mouse genomes. Insertion of modified transposable elements of the P-family upstream of CG17646, the Drosophila ortholog of Abcg1, generated lines of flies with increased triglyceride stores. In NZO mice, an Abcg1 variant was identified in a suggestive adiposity quantitative trait locus and was associated with higher expression of the gene in white adipose tissue. Targeted disruption of Abcg1 in mice resulted in reduced body weight gain (8.42+/-0.6 g in Abcg1-/- vs. 13.07+/-1.1 g in Abcg1+/+ mice) and adipose tissue mass gain (3.78+/-1.3 g in Abcg1-/- vs. 9.39+/-1.6 g in Abcg1+/+ mice) detected over a period of 12 wk. The reduction of adipose tissue mass in Abcg1-/- mice was associated with markedly decreased size of the adipocytes. In contrast to their wild-type littermates, male Abcg1-/- mice exhibited no high-fat diet-induced impairment of glucose tolerance and fatty liver. Furthermore, Abcg1-/- mice possess decreased food intake and elevated total energy expenditure (Abcg1-/- mice, 748.1+/-5.4 kJ/kg metabolic body mass; Abcg1+/+ mice, 684.3+/-5.0 kJ/kg metabolic body mass; P=0.011), body temperature (Abcg1-/- mice, 37.82+/-0.29 C; Abcg1+/+ mice, 36.83+/-0.24 C; P<0.05), and locomotor activity (Abcg1-/- mice, 3655+/-189 counts/12 h during dark phase; Abcg1+/+ mice, 2445+/-235 counts/12 h during dark phase; P<0.01). Our data indicate a previously unrecognized role of ABCG1 in the regulation of energy balance and triglyceride storage.

  13. Elevated carbon dioxide blunts mammalian cAMP signaling dependent on inositol 1,4,5-triphosphate receptor-mediated Ca2+ release.

    PubMed

    Cook, Zara C; Gray, Michael A; Cann, Martin J

    2012-07-27

    Elevated CO(2) is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO(2) blunts G protein-activated cAMP signaling. The effect of CO(2) is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO(2) on cAMP levels required the activity of the IP(3) receptor. Consistent with these findings, CO(2) caused an increase in steady state cytoplasmic Ca(2+) concentrations not observed in the absence of the IP(3) receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na(+)/H(+) antiporter (NHE3) to demonstrate a functional relevance for CO(2)-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO(2) abrogated the inhibitory effect of cAMP on NHE3 function via an IP(3) receptor-dependent mechanism.

  14. High-content RNAi screening identifies the Type 1 inositol triphosphate receptor as a modifier of TDP-43 localization and neurotoxicity.

    PubMed

    Kim, Sang Hwa; Zhan, Lihong; Hanson, Keith A; Tibbetts, Randal S

    2012-11-15

    Cytosolic aggregation of the nuclear RNA-binding protein (RBP) TDP-43 (43 kDa TAR DNA-binding domain protein) is a suspected direct or indirect cause of motor neuron deterioration in amyotrophic lateral sclerosis (ALS). In this study, we implemented a high-content, genome-wide RNAi screen to identify pathways controlling TDP-43 nucleocytoplasmic shuttling. We identified ∼60 genes whose silencing increased the cytosolic localization of TDP-43, including nuclear pore complex components and regulators of G2/M cell cycle transition. In addition, we identified the type 1 inositol-1,4,5-trisphosphate (IP3) receptor (ITPR1), an IP3-gated, endoplasmic reticulum (ER)-resident Ca(2+) channel, as a strong modulator of TDP-43 nucleocytoplasmic shuttling. Knockdown or chemical inhibition of ITPR1 induced TDP-43 nuclear export in immortalized cells and primary neurons and strongly potentiated the recruitment of TDP-43 to Ubiquilin-positive autophagosomes, suggesting that diminished ITPR1 function leads to autophagosomal clearance of TDP-43. The functional significance of the TDP-43-ITPR1 genetic interaction was tested in Drosophila, where mutant alleles of ITPR1 were found to significantly extended lifespan and mobility of flies expressing TDP-43 under a motor neuron driver. These combined findings implicate IP3-gated Ca(2+) as a key regulator of TDP-43 nucleoplasmic shuttling and proteostasis and suggest pharmacologic inhibition of ITPR1 as a strategy to combat TDP-43-induced neurodegeneration in vivo.

  15. G-protein-coupled receptor kinase-interacting proteins inhibit apoptosis by inositol 1,4,5-triphosphate receptor-mediated Ca2+ signal regulation.

    PubMed

    Zhang, Songbai; Hisatsune, Chihiro; Matsu-Ura, Toru; Mikoshiba, Katsuhiko

    2009-10-16

    The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) is an intracellular IP(3)-gated calcium (Ca(2+)) release channel and plays important roles in regulation of numerous Ca(2+)-dependent cellular responses. Many intracellular modulators and IP(3)R-binding proteins regulate the IP(3)R channel function. Here we identified G-protein-coupled receptor kinase-interacting proteins (GIT), GIT1 and GIT2, as novel IP(3)R-binding proteins. We found that both GIT1 and GIT2 directly bind to all three subtypes of IP(3)R. The interaction was favored by the cytosolic Ca(2+) concentration and it functionally inhibited IP(3)R activity. Knockdown of GIT induced and accelerated caspase-dependent apoptosis in both unstimulated and staurosporine-treated cells, which was attenuated by wild-type GIT1 overexpression or pharmacological inhibitors of IP(3)R, but not by a mutant form of GIT1 that abrogates the interaction. Thus, we conclude that GIT inhibits apoptosis by modulating the IP(3)R-mediated Ca(2+) signal through a direct interaction with IP(3)R in a cytosolic Ca(2+)-dependent manner.

  16. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice.

    PubMed

    Kasumu, Adebimpe W; Liang, Xia; Egorova, Polina; Vorontsova, Daria; Bezprozvanny, Ilya

    2012-09-12

    Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder characterized by progressive ataxia. SCA2 results from a poly(Q) (polyglutamine) expansion in the cytosolic protein ataxin-2 (Atx2). Cerebellar Purkinje cells (PCs) are primarily affected in SCA2, but the cause of PC dysfunction and death in SCA2 is poorly understood. In previous studies, we reported that mutant but not wild-type Atx2 specifically binds the inositol 1,4,5-trisphosphate receptor (InsP(3)R) and increases its sensitivity to activation by InsP3. We further proposed that the resulting supranormal calcium (Ca2+) release from the PC endoplasmic reticulum plays a key role in the development of SCA2 pathology. To test this hypothesis, we achieved a chronic suppression of InsP(3)R-mediated Ca2+ signaling by adenoassociated virus-mediated expression of the inositol 1,4,5-phosphatase (Inpp5a) enzyme (5PP) in PCs of a SCA2 transgenic mouse model. We determined that recombinant 5PP overexpression alleviated age-dependent dysfunction in the firing pattern of SCA2 PCs. We further discovered that chronic 5PP overexpression also rescued age-dependent motor incoordination and PC death in SCA2 mice. Our findings further support the important role of supranormal Ca2+ signaling in SCA2 pathogenesis and suggest that partial inhibition of InsP3-mediated Ca2+ signaling could provide therapeutic benefit for the patients afflicted with SCA2 and possibly other SCAs.

  17. An inositol 1,4,5-triphosphate (IP3)-IP3 receptor pathway is required for insulin-stimulated glucose transporter 4 translocation and glucose uptake in cardiomyocytes.

    PubMed

    Contreras-Ferrat, A E; Toro, B; Bravo, R; Parra, V; Vásquez, C; Ibarra, C; Mears, D; Chiong, M; Jaimovich, E; Klip, A; Lavandero, S

    2010-10-01

    Intracellular calcium levels ([Ca2+]i) and glucose uptake are central to cardiomyocyte physiology, yet connections between them have not been studied. We investigated whether insulin regulates [Ca2+]i in cultured cardiomyocytes, the participating mechanisms, and their influence on glucose uptake via SLC2 family of facilitative glucose transporter 4 (GLUT4). Primary neonatal rat cardiomyocytes were preloaded with the Ca2+ fluorescent dye fluo3-acetoxymethyl ester compound (AM) and visualized by confocal microscopy. Ca2+ transport pathways were selectively targeted by chemical and molecular inhibition. Glucose uptake was assessed using [3H]2-deoxyglucose, and surface GLUT4 levels were quantified in nonpermeabilized cardiomyocytes transfected with GLUT4-myc-enhanced green fluorescent protein. Insulin elicited a fast, two-component, transient increase in [Ca2+]i. Nifedipine and ryanodine prevented only the first component. The second one was reduced by inositol-1,4,5-trisphosphate (IP3)-receptor-selective inhibitors (xestospongin C, 2 amino-ethoxydiphenylborate), by type 2 IP3 receptor knockdown via small interfering RNA or by transfected Gβγ peptidic inhibitor βARKct. Insulin-stimulated glucose uptake was prevented by bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid-AM, 2-amino-ethoxydiphenylborate, and βARK-ct but not by nifedipine or ryanodine. Similarly, insulin-dependent exofacial exposure of GLUT4-myc-enhanced green fluorescent protein was inhibited by bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid-AM and xestospongin C but not by nifedipine. Phosphatidylinositol 3-kinase and Akt were also required for the second phase of Ca2+ release and GLUT4 translocation. Transfected dominant-negative phosphatidylinositol 3-kinase γ inhibited the latter. In conclusion, in primary neonatal cardiomyocytes, insulin induces an important component of Ca2+ release via IP3 receptor. This component signals to glucose uptake via GLUT4, revealing a so-far unrealized contribution of IP3-sensitive Ca2+ stores to insulin action. This pathway may influence cardiac metabolism in conditions yet to be explored in adult myocardium.

  18. ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action.

    PubMed

    Betzenhauser, Matthew J; Wagner, Larry E; Iwai, Miwako; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Yule, David I

    2008-08-01

    ATP enhances Ca(2+) release from inositol (1,4,5)-trisphosphate receptors (InsP(3)R). However, the three isoforms of InsP(3)R are reported to respond to ATP with differing sensitivities. Ca(2+) release through InsP(3)R1 is positively regulated at lower ATP concentrations than InsP(3)R3, and InsP(3)R2 has been reported to be insensitive to ATP modulation. We have reexamined these differences by studying the effects of ATP on InsP(3)R2 and InsP(3)R3 expressed in isolation on a null background in DT40 InsP(3)R knockout cells. We report that the Ca(2+)-releasing activity as well as the single channel open probability of InsP(3)R2 was enhanced by ATP, but only at submaximal InsP(3) levels. Further, InsP(3)R2 was more sensitive to ATP modulation than InsP(3)R3 under similar experimental conditions. Mutations in the ATPB sites of InsP(3)R2 and InsP(3)R3 were generated, and the functional consequences of these mutations were tested. Surprisingly, mutation of the ATPB site in InsP(3)R3 had no effect on ATP modulation, suggesting an additional locus for the effects of ATP on this isoform. In contrast, ablation of the ATPB site of InsP(3)R2 eliminated the enhancing effects of ATP. Furthermore, this mutation had profound effects on the patterns of intracellular calcium signals, providing evidence for the physiological significance of ATP binding to InsP(3)R2.

  19. Targeted expression of the inositol 1,4,5-triphosphate receptor (IP3R) ligand-binding domain releases Ca2+ via endogenous IP3R channels.

    PubMed