Science.gov

Sample records for ectopic granule cells

  1. Ectopic Granule Cells of the Rat Dentate Gyrus

    PubMed Central

    Scharfman, Helen; Goodman, Jeffrey; McCloskey, Daniel

    2007-01-01

    Granule cells of the mammalian dentate gyrus normally form a discrete layer, and virtually all granule cells migrate to this location. Exceptional granule cells that are positioned incorrectly, in ‘ectopic’ locations, are rare. Although the characteristics of such ectopic granule cells appear similar in many respects to granule cells located in the granule cell layer, their rare occurrence has limited a full evaluation of their structure and function. More information about ectopic granule cells has been obtained by studying those that develop after experimental manipulations that increase their number. For example, after severe seizures, the number of ectopic granule cells located in the hilus increases dramatically. These experimentally induced ectopic granule cells may not be equivalent to normal ectopic granule cells necessarily, but the vastly increased numbers have allowed much more information to be obtained. Remarkably, the granule cells that are positioned ectopically develop intrinsic properties and an axonal projection that are similar to granule cells that are located normally, i.e., in the granule cell layer. However, dendritic structure and synaptic structure/function appear to differ. These studies have provided new insight into a rare type of granule cell in the dentate gyrus, and the plastic characteristics of dentate granule cells that appear to depend on the location of the cell body. PMID:17148946

  2. Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model

    PubMed Central

    Althaus, A. L.; Sagher, O.; Parent, J. M.

    2014-01-01

    Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2–4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model. PMID:25429123

  3. New insights into the role of hilar ectopic granule cells in the dentate gyrus based on quantitative anatomic analysis and three-dimensional reconstruction

    PubMed Central

    Scharfman, Helen E.; Pierce, Joseph P.

    2014-01-01

    SUMMARY The dentate gyrus is one of two main areas of the mammalian brain where neurons are born throughout adulthood, a phenomenon called postnatal neurogenesis. Most of the neurons that are generated are granule cells (GCs), the major principal cell type in the dentate gyrus. Some adult-born granule cells develop in ectopic locations, such as the dentate hilus. The generation of hilar ectopic granule cells (HEGCs) is greatly increased in several animal models of epilepsy and has also been demonstrated in surgical specimens from patients with intractable temporal lobe epilepsy (TLE). Herein we review the results of our quantitative neuroanatomic analysis of HEGCs that were filled with Neurobiotin following electrophysiologic characterization in hippocampal slices. The data suggest that two types of HEGCs exist, based on a proximal or distal location of the cell body relative to the granule cell layer, and based on the location of most of the dendrites, in the molecular layer or hilus. Three-dimensional reconstruction revealed that the dendrites of distal HEGCs can extend along the transverse and longitudinal axis of the hippocampus. Analysis of axons demonstrated that HEGCs have projections that contribute to the normal mossy fiber innervation of CA3 as well as the abnormal sprouted fibers in the inner molecular layer of epileptic rodents (mossy fiber sprouting). These data support the idea that HEGCs could function as a “hub” cell in the dentate gyrus and play a critical role in network excitability. PMID:22612815

  4. The Influence of Ectopic Migration of Granule Cells into the Hilus on Dentate Gyrus-CA3 Function

    PubMed Central

    Myers, Catherine E.; Bermudez-Hernandez, Keria; Scharfman, Helen E.

    2013-01-01

    Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX-/- mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX-/- mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to “backprojections” of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function. PMID:23840835

  5. Hippocampal granule cells opt for early retirement.

    PubMed

    Alme, C B; Buzzetti, R A; Marrone, D F; Leutgeb, J K; Chawla, M K; Schaner, M J; Bohanick, J D; Khoboko, T; Leutgeb, S; Moser, E I; Moser, M-B; McNaughton, B L; Barnes, C A

    2010-10-01

    Increased excitability and plasticity of adult-generated hippocampal granule cells during a critical period suggests that they may "orthogonalize" memories according to time. One version of this "temporal tag" hypothesis suggests that young granule cells are particularly responsive during a specific time period after their genesis, allowing them to play a significant role in sculpting CA3 representations, after which they become much less responsive to any input. An alternative possibility is that the granule cells active during their window of increased plasticity, and excitability become selectively tuned to events that occurred during that time and participate in later reinstatement of those experiences, to the exclusion of other cells. To discriminate between these possibilities, rats were exposed to different environments at different times over many weeks, and cell activation was subsequently assessed during a single session in which all environments were revisited. Dispersing the initial experiences in time did not lead to the increase in total recruitment at reinstatement time predicted by the selective tuning hypothesis. The data indicate that, during a given time frame, only a very small number of granule cells participate in many experiences, with most not participating significantly in any. Based on these and previous data, the small excitable population of granule cells probably correspond to the most recently generated cells. It appears that, rather than contributing to the recollection of long past events, most granule cells, possibly 90-95%, are effectively "retired." If granule cells indeed sculpt CA3 representations (which remains to be shown), then a possible consequence of having a new set of granule cells participate when old memories are reinstated is that new representations of these experiences might be generated in CA3. Whatever the case, the present data may be interpreted to undermine the standard "orthogonalizer" theory of the role of

  6. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  7. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure

    PubMed Central

    LaSarge, Candi L.; Santos, Victor R; Danzer, Steve C.

    2015-01-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offset the reduction in boutons per axon length. These morphological changes predicts a net increase in granule cell >> CA3 innervation. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell >> CA3 communication. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. PMID:25600212

  8. Single Granule Cells Excite Golgi Cells and Evoke Feedback Inhibition in the Cochlear Nucleus

    PubMed Central

    Yaeger, Daniel B.

    2015-01-01

    In cerebellum-like circuits, synapses from thousands of granule cells converge onto principal cells. This fact, combined with theoretical considerations, has led to the concept that granule cells encode afferent input as a population and that spiking in individual granule cells is relatively unimportant. However, granule cells also provide excitatory input to Golgi cells, each of which provide inhibition to hundreds of granule cells. We investigated whether spiking in individual granule cells could recruit Golgi cells and thereby trigger widespread inhibition in slices of mouse cochlear nucleus. Using paired whole-cell patch-clamp recordings, trains of action potentials at 100 Hz in single granule cells was sufficient to evoke spikes in Golgi cells in ∼40% of paired granule-to-Golgi cell recordings. High-frequency spiking in single granule cells evoked IPSCs in ∼5% of neighboring granule cells, indicating that bursts of activity in single granule cells can recruit feedback inhibition from Golgi cells. Moreover, IPSPs mediated by single Golgi cell action potentials paused granule cell firing, suggesting that inhibitory events recruited by activity in single granule cells were able to control granule cell firing. These results suggest a previously unappreciated relationship between population coding and bursting in single granule cells by which spiking in a small number of granule cells may have an impact on the activity of a much larger number of granule cells. PMID:25788690

  9. MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.

    PubMed

    Constantin, Lena; Wainwright, Brandon J

    2015-12-01

    MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.

  10. Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis.

    PubMed

    Lavado, Alfonso; Lagutin, Oleg V; Chow, Lionel M L; Baker, Suzanne J; Oliver, Guillermo

    2010-08-17

    The dentate gyrus has an important role in learning and memory, and adult neurogenesis in the subgranular zone of the dentate gyrus may play a role in the acquisition of new memories. The homeobox gene Prox1 is expressed in the dentate gyrus during embryonic development and adult neurogenesis. Here we show that Prox1 is necessary for the maturation of granule cells in the dentate gyrus during development and for the maintenance of intermediate progenitors during adult neurogenesis. We also demonstrate that Prox1-expressing intermediate progenitors are required for adult neural stem cell self-maintenance in the subgranular zone; thus, we have identified a previously unknown non-cell autonomous regulatory feedback mechanism that controls adult neurogenesis in this region of the mammalian brain. Finally, we show that the ectopic expression of Prox1 induces premature differentiation of neural stem cells.

  11. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis

    PubMed Central

    Ostrowski, Stephen M.; Wright, Margaret C.; Bolock, Alexa M.; Geng, Xuehui; Maricich, Stephen M.

    2015-01-01

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression. PMID:26138479

  12. Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis.

    PubMed

    Ostrowski, Stephen M; Wright, Margaret C; Bolock, Alexa M; Geng, Xuehui; Maricich, Stephen M

    2015-07-15

    Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression.

  13. Somatically expressed germ-granule components, PGL-1 and PGL-3, repress programmed cell death in C. elegans

    PubMed Central

    Al-Amin, Mohammad; Min, Hyemin; Shim, Yhong-Hee; Kawasaki, Ichiro

    2016-01-01

    We previously reported that germline apoptosis in C. elegans increased by loss of PGL-1 and PGL-3, members of a family of constitutive germ-granule components, from germ cells in adult hermaphrodite gonads. In this study, we found that somatic apoptosis was reduced in synthetic multivulva class B (synMuv B) mutants due to ectopic expression of PGL-1 and PGL-3 in the soma. In synMuv B-mutant somatic cells, CED-4 expression level was reduced due to ectopic expression of PGL-1. Furthermore, in contrast to wild type, somatic apoptosis in synMuv B mutants increased following DNA damage in a SIR-2.1-dependent manner. Intriguingly, somatic apoptosis was repressed not only in synMuv B mutants but also by ectopically expressing pgl-1 and/or pgl-3 transgenes in wild-type somatic cells. Our study demonstrates that germ-granule components, PGL-1 and PGL-3, can serve as negative regulators of apoptosis not only in the germline but also in the soma in C. elegans. PMID:27650246

  14. Integration of quanta in cerebellar granule cells during sensory processing.

    PubMed

    Chadderton, Paul; Margrie, Troy W; Häusser, Michael

    2004-04-22

    To understand the computations performed by the input layers of cortical structures, it is essential to determine the relationship between sensory-evoked synaptic input and the resulting pattern of output spikes. In the cerebellum, granule cells constitute the input layer, translating mossy fibre signals into parallel fibre input to Purkinje cells. Until now, their small size and dense packing have precluded recordings from individual granule cells in vivo. Here we use whole-cell patch-clamp recordings to show the relationship between mossy fibre synaptic currents evoked by somatosensory stimulation and the resulting granule cell output patterns. Granule cells exhibited a low ongoing firing rate, due in part to dampening of excitability by a tonic inhibitory conductance mediated by GABA(A) (gamma-aminobutyric acid type A) receptors. Sensory stimulation produced bursts of mossy fibre excitatory postsynaptic currents (EPSCs) that summate to trigger bursts of spikes. Notably, these spike bursts were evoked by only a few quantal EPSCs, and yet spontaneous mossy fibre inputs triggered spikes only when inhibition was reduced. Our results reveal that the input layer of the cerebellum balances exquisite sensitivity with a high signal-to-noise ratio. Granule cell bursts are optimally suited to trigger glutamate receptor activation and plasticity at parallel fibre synapses, providing a link between input representation and memory storage in the cerebellum.

  15. Event-driven simulation of cerebellar granule cells.

    PubMed

    Carrillo, Richard R; Ros, Eduardo; Tolu, Silvia; Nieus, Thierry; D'Angelo, Egidio

    2008-01-01

    Around half of the neurons of a human brain are granule cells (approximately 10(11)granule neurons) [Kandel, E.R., Schwartz, J.H., Jessell, T.M., 2000. Principles of Neural Science. McGraw-Hill Professional Publishing, New York]. In order to study in detail the functional role of the intrinsic features of this cell we have developed a pre-compiled behavioural model based on the simplified granule-cell model of Bezzi et al. [Bezzi, M., Nieus, T., Arleo, A., D'Angelo, E., Coenen, O.J.-M.D., 2004. Information transfer at the mossy fiber-granule cell synapse of the cerebellum. 34th Annual Meeting. Society for Neuroscience, San Diego, CA, USA]. We can use an efficient event-driven simulation scheme based on lookup tables (EDLUT) [Ros, E., Carrillo, R.R., Ortigosa, E.M., Barbour, B., Ags, R., 2006. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Computation 18 (12), 2959-2993]. For this purpose it is necessary to compile into tables the data obtained through a massive numerical calculation of the simplified cell model. This allows network simulations requiring minimal numerical calculation. There are three major features that are considered functionally relevant in the simplified granule cell model: bursting, subthreshold oscillations and resonance. In this work we describe how the cell model is compiled into tables keeping these key properties of the neuron model.

  16. Platelet Granule Exocytosis: A Comparison with Chromaffin Cells

    PubMed Central

    Fitch-Tewfik, Jennifer L.; Flaumenhaft, Robert

    2013-01-01

    The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli. PMID:23805129

  17. B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue

    PubMed Central

    Lehmann-Horn, Klaus; Wang, Sheng-zhi; Sagan, Sharon A.; Zamvil, Scott S.

    2016-01-01

    Ectopic lymphoid tissues (ELT) can be found in multiple sclerosis (MS) and other organ-specific inflammatory conditions. Whether ELT in the meninges of central nervous system (CNS) autoimmune disease exhibit local germinal center (GC) activity remains unknown. In an experimental autoimmune encephalomyelitis model of CNS autoimmunity, we found activation-induced cytidine deaminase, a GC-defining enzyme, in meningeal ELT (mELT) densely populated by B and T cells. To determine GC activity in mELT, we excised meningeal lymphoid aggregates using laser capture microscopy and evaluated B cell repertoires in mELT and secondary lymphoid organs by next-generation immune repertoire sequencing. We found immunoglobulin heavy chain variable region sequences that were unique to mELT and had accumulated functionally relevant somatic mutations, together indicating localized antigen-driven affinity maturation. Our results suggest that B cells in mELT actively participate in CNS autoimmunity, which may be relevant to mELT in MS and ELT in other chronic inflammatory conditions. PMID:27942581

  18. Characterization of mast cell secretory granules and their cell biology.

    PubMed

    Azouz, Nurit Pereg; Hammel, Ilan; Sagi-Eisenberg, Ronit

    2014-10-01

    Exocytosis and secretion of secretory granule (SG) contained inflammatory mediators is the primary mechanism by which mast cells exert their protective immune responses in host defense, as well as their pathological functions in allergic reactions and anaphylaxis. Despite their central role in mast cell function, the molecular mechanisms underlying the biogenesis and secretion of mast cell SGs remain largely unresolved. Early studies have established the lysosomal nature of the mast cell SGs and implicated SG homotypic fusion as an important step occurring during both their biogenesis and compound secretion. However, the molecular mechanisms that account for key features of this process largely remain to be defined. A novel high-resolution imaging based methodology allowed us to screen Rab GTPases for their phenotypic and functional impact and identify Rab networks that regulate mast cell secretion. This screen has identified Rab5 as a novel regulator of homotypic fusion of the mast cell SGs that thereby regulates their size and cargo composition.

  19. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development.

    PubMed

    Dengler, Christopher G; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A

    2017-02-20

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses.

  20. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development

    PubMed Central

    Dengler, Christopher G.; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A.

    2017-01-01

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses. PMID:28218241

  1. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN

    PubMed Central

    Rebocho, Alexandra B.

    2016-01-01

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356

  2. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity.

    PubMed

    Richardson, Annis Elizabeth; Rebocho, Alexandra B; Coen, Enrico S

    2016-08-23

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth.

  3. Isolating stromal stem cells from periodontal granulation tissues.

    PubMed

    Hung, Tzu-Yuan; Lin, Hsiang-Chun; Chan, Ying-Jen; Yuan, Kuo

    2012-08-01

    Stem cell therapy is a promising area in regenerative medicine. Periodontal granulation tissues are often discarded during conventional surgery. If stromal stem cells can be isolated from these tissues, they can be used for subsequent surgery on the same patient. Fifteen human periodontal granulation tissue samples were obtained from intrabony defects during surgery. Immunohistochemistry (IHC) was carried out on five of the samples to identify STRO-1, a marker of mesenchymal stem cells. Five samples underwent flow cytometry analysis for the same marker. The remaining five samples were characterized by "colony formation unit-fibroblast" (CFU-f) assay and selected for proliferation assay, flow cytometry of stem cell markers, immunocytochemistry (ICC), multipotent differentiation assays, and repairing critical-size defects in mice. The ratio of STRO-1(+) cells detected by IHC was 5.91 ± 1.50%. The analysis of flow cytometry for STRO-1 was 6.70 ± 0.81%. Approximately two thirds of the CFU-f colonies had a strong reaction to STRO-1 in ICC staining. The cells were multipotent both in vitro and in vivo. Mice given bone grafts and stem cells showed significantly better bone healing than those without stem cells. Multipotent stromal stem cells can be isolated from human periodontal granulation tissues. These cells improve new bone formation when transplanted in mouse calvarial defects. Isolating stem cells from relatively accessible sites without extra procedures is clinically advantageous. This study demonstrated that human periodontal granulation tissues contain isolatable multipotent stem cells. The cells may be a good source for autotransplantation in subsequent treatment.

  4. Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens

    PubMed Central

    Ogbomo, Henry; Mody, Christopher H.

    2017-01-01

    Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed. PMID:28123389

  5. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    SciTech Connect

    Baconnais, S.; Delavoie, F. |; Zahm, J.M.; Milliot, M.; Castillon, N.; Terryn, C.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E. , E-Mail: edith.puchelle@univ-reims.fr; Balossier, G.

    2005-10-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.

  6. Ectopic overexpression of engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions.

    PubMed

    Baader, S L; Sanlioglu, S; Berrebi, A S; Parker-Thornburg, J; Oberdick, J

    1998-03-01

    Members of the En and Wnt gene families seem to play a key role in the early specification of the brain territory that gives rise to the cerebellum, the midhindbrain junction. To analyze the possible continuous role of the En and Wnt signaling pathway in later cerebellar patterning and function, we expressed En-2 ectopically in Purkinje cells during late embryonic and postnatal cerebellar development. As a result of this expression, the cerebellum is greatly reduced in size, and Purkinje cell numbers throughout the cerebellum are reduced by more than one-third relative to normal animals. Detailed analysis of both adult and developing cerebella reveals a pattern of selectivity to the loss of Purkinje cells and other cerebellar neurons. This is observed as a general loss of prominence of cerebellar fissures that is highlighted by a total loss of sublobular fissures. In contrast, mediolateral patterning is generally only subtly affected. That En-2 overexpression selectively affects Purkinje cells in the transition zone between lobules is evidenced by direct observation of selective Purkinje cell loss in certain fissures and by the observation that growth and migration of the external germinal layer (EGL) is selectively retarded in the deep fissures during early postnatal development. Thus, in addition to demonstrating the critical role of Purkinje cells in the generation and migration of granule cells, the heterogeneous distribution of cellular effects induced by ectopic En expression suggests a relatively late morphogenetic role for this and other segment polarity proteins, mainly oriented at lobule junctions.

  7. Newborn granule cells in the ageing dentate gyrus

    PubMed Central

    Morgenstern, Nicolás A; Lombardi, Gabriela; Schinder, Alejandro F

    2008-01-01

    The dentate gyrus of the hippocampus generates neurons throughout life, but adult neurogenesis exhibits a marked age-dependent decline. Although the decrease in the rate of neurogenesis has been extensively documented in the ageing hippocampus, the specific characteristics of dentate granule cells born in such a continuously changing environment have received little attention. We have used retroviral labelling of neural progenitor cells of the adult mouse dentate gyrus to study morphological properties of neurons born at different ages. Dendritic spine density was measured to estimate glutamatergic afferent connectivity. Fully mature neurons born at the age of 2 months display ∼2.3 spines μm−1 and maintain their overall morphology and spine density in 1-year-old mice. Surprisingly, granule cells born in 10-month-old mice, at which time the rate of neurogenesis has decreased by ∼40-fold, reach a density of dendritic spines similar to that of neurons born in young adulthood. Therefore, in spite of the sharp decline in cell proliferation, differentiation and overall neuronal number, the ageing hippocampus presents a suitable environment for new surviving neurons to reach a high level of complexity, comparable to that of all other dentate granule cells. PMID:18565998

  8. Neuroligin-1 Overexpression in Newborn Granule Cells In Vivo

    PubMed Central

    Schnell, Eric; Bensen, AeSoon L.; Washburn, Eric K.; Westbrook, Gary L.

    2012-01-01

    Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons. PMID:23110172

  9. Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus.

    PubMed

    GoodSmith, Douglas; Chen, Xiaojing; Wang, Cheng; Kim, Sang Hoon; Song, Hongjun; Burgalossi, Andrea; Christian, Kimberly M; Knierim, James J

    2017-02-08

    Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells.

  10. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers.

    PubMed

    Tamura, Makoto; Tamura, Naohiro; Ikeda, Takamitsu; Koyama, Ryuta; Ikegaya, Yuji; Matsuki, Norio; Yamada, Maki K

    2009-01-31

    Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  11. FIB/SEM cell sectioning for intracellular metal granules characterization

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Brundu, Claudia; Santisi, Grazia; Savoia, Claudio; Tatti, Francesco

    2009-05-01

    Focused Ion Beams (FIBs) provide a cross-sectioning tool for submicron dissection of cells and subcellular structures. In combination with Scanning Electron Microscope (SEM), FIB provides complementary morphological information, that can be further completed by EDX (Energy Dispersive X-ray Spectroscopy). This study focus onto intracellular microstructures, particularly onto metal granules (typically Zn, Cu and Fe) and on the possibility of sectioning digestive gland cells of the terrestrial isopod P. scaber making the granules available for a compositional analysis with EDX. Qualitative and quantitative analysis of metal granules size, amount and distribution are performed. Information is made available of the cellular storing pattern and, indirectly, metal metabolism. The extension to human level is of utmost interest since some pathologies of relevance are metal related. Apart from the common metal-overload-diseases (hereditary hemochromatosis, Wilson's and Menkes disease) it has been demonstrated that metal in excess can influence carcinogenesis in liver, kidney and breast. Therefore protocols will be established for the observation of mammal cells to improve our knowledge about the intracellular metal amount and distribution both in healthy cells and in those affected by primary or secondary metal overload or depletion.

  12. Ectopic Pregnancy

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Ectopic Pregnancy KidsHealth > For Parents > Ectopic Pregnancy Print A A ... lower back pain continue What Causes an Ectopic Pregnancy? An ectopic pregnancy usually happens because a fertilized ...

  13. Ectopic Pregnancy

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Ectopic Pregnancy KidsHealth > For Parents > Ectopic Pregnancy A A A ... lower back pain continue What Causes an Ectopic Pregnancy? An ectopic pregnancy usually happens because a fertilized ...

  14. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.

    PubMed

    Santodomingo, Jaime; Vay, Laura; Camacho, Marcial; Hernández-Sanmiguel, Esther; Fonteriz, Rosalba I; Lobatón, Carmen D; Montero, Mayte; Moreno, Alfredo; Alvarez, Javier

    2008-10-01

    The secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in the present work an aequorin chimera targeted to the granules to investigate [Ca2+]SG homeostasis in bovine adrenal chromaffin cells. We found that most of the intracellular aequorin chimera is present in a compartment with 50-100 microM Ca2+. Ca2+ accumulation into this compartment takes place mainly through an ATP-dependent mechanism, namely, a thapsigargin-sensitive Ca2+-ATPase. In addition, fast Ca2+ release was observed in permeabilized cells after addition of inositol 1,4,5-trisphosphate (InsP3) or caffeine, suggesting the presence of InsP3 and ryanodine receptors in the vesicular membrane. Stimulation of intact cells with the InsP3-producing agonist histamine or with caffeine also induced Ca2+ release from the vesicles, whereas acetylcholine or high-[K+] depolarization induced biphasic changes in vesicular[Ca2+], suggesting heterogeneous responses of different vesicle populations, some of them releasing and some taking up Ca2+during stimulation. In conclusion, our data show that chromaffin cell secretory granules have the machinery required for rapid uptake and release of Ca2+, and this strongly supports the hypothesis that granular Ca2+ may contribute to its own secretion.

  15. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo.

    PubMed

    Henze, Darrell A; Wittner, Lucia; Buzsáki, György

    2002-08-01

    Processing of neuronal information depends on interactions between the anatomical connectivity and cellular properties of single cells. We examined how these computational building blocks work together in the intact rat hippocampus. Single spikes in dentate granule cells, controlled intracellularly, generally failed to discharge either interneurons or CA3 pyramidal cells. In contrast, trains of spikes effectively discharged both CA3 cell types. Increasing the discharge rate of the granule cell increased the discharge probability of its target neuron and decreased the delay between the onset of a granule cell train and evoked firing in postsynaptic targets. Thus, we conclude that the granule cell to CA3 synapses are 'conditional detonators,' dependent on granule cell firing pattern. In addition, we suggest that information in single granule cells is converted into a temporal delay code in target CA3 pyramidal cells and interneurons. These data demonstrate how a neural circuit of the CNS may process information.

  16. Ectopic Expression of WUS in Hypocotyl Promotes Cell Division via GRP23 in Arabidopsis

    PubMed Central

    Wang, Min; Li, Junhua; Guo, Xiaoyu; Chong, Kang; Xu, Yunyuan

    2013-01-01

    WUSCHEL (WUS) is essential for preventing stem cell differentiation in Arabidopsis. Here we report that in addition to its functions in meristematic stem cell maintenance, WUS is involved in the regulation of cell division. The WUS gain-of-function mutant, stem ectopic flowers (sef), displayed elongated hypocotyls, whereas the loss-of-function wus-1 mutant had shortened hypocotyls. The long hypocotyl in sef was due to the presence of more cells, rather than increased cell elongation. Microscopic observation, flow cytometry assays, quantitative RT-PCR (qRT-PCR), and histochemical staining of CycB1;1::GUS supported the hypothesis that ectopic cell division occurred in the sef hypocotyls after germination. Both immunoblot and qRT-PCR results showed that WUS was ectopically expressed in sef hypocotyls. Luciferase activity, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) showed that GLUTAMINE-RICH PROTEIN 23 (GRP23) expression can be activated by WUS and that GRP23 is a direct target gene of WUS. The phenotypes of 35S::GRP23 plants and GRP23 knockdown lines supported the notion that GRP23 mediates the effects of WUS on hypocotyl length. Together, our data suggest that ectopic expression of WUS in hypocotyl controls cell division through its target gene GRP23. PMID:24086632

  17. Ectopic Purkinje cells in the cerebellar white matter of normal adult rodents: a Golgi study.

    PubMed

    Lafarga, M; Berciano, M T; Blanco, M

    1986-01-01

    In Golgi/Río-Hortega preparations of rat and rabbit cerebellar vermis we have occasionally found isolated ectopic Purkinje cells in the white matter. They were located beneath the bases of the folia and their dendritic branches extended within the confines of the white matter without penetrating into the overlying cortical layers. The general morphology of these ectopic cells was variable, particularly in the extension and shape of the dendritic trees, but all of them exhibited a lower density of dendritic branches than normal Purkinje cells. The less-developed ectopic neurons had multipolar dendritic trees with nonplanar branches irregularly studded with spines. The well-developed ones displayed a more extensive arborization of their processes and they usually preserved some morphological features of normal cortical Purkinje cells: distal dendritic branches studded with numerous spines, a pear-shaped soma, clearly defined morphological polarity and a tendency to display planar arrangement of the dendritic arbors. In semithin sections these neurons also showed cytological features of normal Purkinje cells, such as the Nissl substance forming a nuclear cap oriented toward the dendritic pole. We suggest that the abnormal location of the neurons results from a disorder of Purkinje cell migration which occurs naturally during the prenatal development of the cerebellum. The possible morphogenetic mechanisms involved in the migration and differentiation of these ectopic neurons are also discussed.

  18. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning.

    PubMed

    Giovannucci, Andrea; Badura, Aleksandra; Deverett, Ben; Najafi, Farzaneh; Pereira, Talmo D; Gao, Zhenyu; Ozden, Ilker; Kloth, Alexander D; Pnevmatikakis, Eftychios; Paninski, Liam; De Zeeuw, Chris I; Medina, Javier F; Wang, Samuel S-H

    2017-03-20

    Cerebellar granule cells, which constitute half the brain's neurons, supply Purkinje cells with contextual information necessary for motor learning, but how they encode this information is unknown. Here we show, using two-photon microscopy to track neural activity over multiple days of cerebellum-dependent eyeblink conditioning in mice, that granule cell populations acquire a dense representation of the anticipatory eyelid movement. Initially, granule cells responded to neutral visual and somatosensory stimuli as well as periorbital airpuffs used for training. As learning progressed, two-thirds of monitored granule cells acquired a conditional response whose timing matched or preceded the learned eyelid movements. Granule cell activity covaried trial by trial to form a redundant code. Many granule cells were also active during movements of nearby body structures. Thus, a predictive signal about the upcoming movement is widely available at the input stage of the cerebellar cortex, as required by forward models of cerebellar control.

  19. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    PubMed Central

    Strasser, Markus J; Mackenzie, Natalia C; Dumstrei, Karin; Nakkrasae, La-Iad; Stebler, Jürg; Raz, Erez

    2008-01-01

    Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. PMID:18507824

  20. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model.

    PubMed

    Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2011-06-01

    Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering.

  1. LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration

    PubMed Central

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang

    2015-01-01

    The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1Atoh1 CKO) to investigate the function of LKB1 in cerebellar development. The LKB1Atoh1 CKO mice displayed motor dysfunction. In the LKB1Atoh1 CKO cerebellum, the overall structure had a larger volume and morelobules. LKB1 inactivationled to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1Atoh1 CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development. PMID:26549569

  2. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  3. Automated insulin granule segmentation from electron photomicrographs of rat pancreatic β-cells

    NASA Astrophysics Data System (ADS)

    McClanahan, Timothy P.; Straub, Susanne G.; Sharp, Geoffrey W. G.; Loew, Murray

    2005-04-01

    Increased blood glucose stimulates pancreatic β-cells and induces an exocytotic release of insulin. The β-cell, which contains ~10^4 insulin-containing granules, releases only a few percent of the granules during a given stimulus such as a meal. The temporal response function to a square wave increase in the concentration of glucose is characteristically biphasic. It is not known whether the granules exhibit random or directed migration patterns as a function of phase. Directed migration would suggest the development of an intracellular gradient directing the path and velocity of insulin granule movement. Our ongoing research investigates this process using manual morphometric analysis of electron micrographs of rat pancreatic β-cells. This is a tedious and time-consuming stereological process. Consequently, we have developed an automated algorithm for accurately segmenting and deriving granule counts, areas, and measuring distance to the plasma membrane. The method is a data-driven image processing approach that implements Mahalanobis classifiers to hierarchically classify pixel candidates and subsequently pixel aggregates as insulin granules. Granule cores and halos are classified independently and fused by intersecting the convex difference of granule halos with core candidates. Once fused, total and individual granule areas and distance metrics to the β-cell plasma membrane are obtained. This algorithm provides a rapid and accurate method for the determination of granule numbers, location, and potential gradients in the pancreatic β-cell under different experimental conditions.

  4. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    PubMed

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  5. Thrombopoietin-induced Dami cells as a model for alpha-granule biogenesis.

    PubMed

    Briquet-Laugier, Véronique; El Golli, Nargès; Nurden, Paquita; Lavenu-Bombled, Cécile; Dubart-Kupperschmitt, Anne; Nurden, Alan; Rosa, Jean-Philippe

    2004-09-01

    Megakaryocytic alpha-granules contain secretory proteins relevant to megakaryocyte and platelet functions. Understanding alpha-granule biogenesis is hampered because human primary megakaryocytes are difficult to manipulate. Existing promegakaryocytic cell lines do not spontaneously exhibit mature alpha-granules. Dami cells, transfected with the megakaryocytic platelet factor 4, fused to GFP (PF4-GFP), were induced in the presence of thrombopoietin (TPO), a megakaryocyte cytokine and PMA. Using confocal microscopy, PF4-GFP colocalized with von Willebrand Factor (vWF) in newly formed storage granules. Immunoelectron microscopy demonstrated alpha-granule-like features, including a dense core or parallel tubules and colocalization of PF4-GFP and vWF. Hence, TPO-treated Dami cells are a suitable model to study alpha-granules and their biogenesis.

  6. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo

    PubMed Central

    McDole, Brittnee; Isgor, Ceylan; Pare, Christopher; Guthrie, Kathleen

    2015-01-01

    Olfactory bulb granule cells are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on granule cell spines. These contacts are established in the distal apical dendritic compartment, while granule cell basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong granule cell neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb granule cell spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF produces a marked increase in granule cell spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on granule cells, suggesting a role for this factor in modulating granule cell functional connectivity within adult olfactory circuitry. PMID:26211445

  7. Biochemical and microscopic evidence for the internalization and degradation of heparin-containing mast cell granules by bovine endothelial cells

    SciTech Connect

    Atkins, F.M.; Friedman, M.M.; Metcalfe, D.D.

    1985-03-01

    Incubation of (/sup 35/S)heparin-containing mast cell granules with cultured bovine endothelial cells was followed by the appearance of /sup 35/S-granule-associated radioactivity within the endothelial cells and a decrease in radioactivity in the extracellular fluid. These changes occurred during the first 24 hours of incubation and suggested ingestion of the mast cell granules by the endothelial cells. Periodic electron microscopic examination of the monolayers confirmed this hypothesis by demonstrating apposition of the granules to the plasmalemma of endothelial cells, which was followed by the engulfment of the granules by cytoplasmic projections. Under light microscopic examination, mast cell granules within endothelial cells then appeared to undergo degradation. The degradation of (/sup 35/S)heparin in mast cell granules was demonstrated by a decrease in the amount of intracellular (/sup 35/S)heparin proteoglycan after 24 hours and the appearance of free (/sup 35/S)sulfate in the extracellular compartment. Intact endothelial cells were more efficient at degrading (/sup 35/S)heparin than were cell lysates or cell supernatants. These data provide evidence of the ability of endothelial cells to ingest mast cell granules and degrade native heparin that is presented as a part of the mast cell granule.

  8. Three-Dimensional Tracking of Single Granules in Living PC-12 Cells Employing TIRFM and WFFM.

    PubMed

    Xiong, Jun; Li, Dongdong; Zhu, Dan; Qu, Anlian

    2005-01-01

    A comparative study was carried out on evaluating the performance of total internal reflection fluorescence microscopy (TIRFM) and deconvolution wide-field fluorescence microscopy (WFFM) in tracking single secretory granules. Both techniques have been applied to follow the three-dimensional mobility of single secretory granules in living neuroendocrine PC-12 cells. Both techniques return the similar result that most acridine orange-labeled granules were found to travel in random and caged diffusion, and only a small fraction of granules traveled in directed diffusion. Furthermore, the size and 3-D diffusion coefficient of secretory granules, obtained by these two imaging techniques, yield the same value. Together, our results demonstrate the potential of the combination TIRFM and WFFM in tracking long-termed motion of granules throughout live whole cells.

  9. Enhanced CREB phosphorylation in immature dentate gyrus granule cells precedes neurotrophin expression and indicates a specific role of CREB in granule cell differentiation

    PubMed Central

    Bender, R. A.; Lauterborn, J. C.; Gall, C. M.; Cariaga, W.; Baram, T. Z.

    2011-01-01

    Differentiation and maturation of dentate gyrus granule cells requires coordinated interactions of numerous processes. These must be regulated by protein factors capable of integrating signals mediated through diverse signalling pathways. Such integrators of inter and intracellular physiological stimuli include the cAMP-response element binding protein (CREB), a leucine-zipper class transcription factor that is activated through phosphorylation. Neuronal activity and neurotrophic factors, known to be involved in granule cell differentiation, are major physiologic regulators of CREB function. To examine whether CREB may play a role in governing coordinated gene transcription during granule cell differentiation, we determined the spatial and temporal profiles of phosphorylated (activated) CREB throughout postnatal development in immature rat hippocampus. We demonstrate that CREB activation is confined to discrete, early stages of granule cell differentiation. In addition, CREB phosphorylation occurs prior to expression of the neurotrophins BDNF and NT-3. These data indicate that in a signal transduction cascade connecting CREB and neurotrophins in the process of granule cell maturation, CREB is located upstream of neurotrophins. Importantly, CREB may be a critical component of the machinery regulating the coordinated transcription of genes contributing to the differentiation of granule cells and their integration into the dentate gyrus network. PMID:11207803

  10. Synthesis of Prostaglandins and Eicosanoids by the Mast Cell Secretory Granule

    DTIC Science & Technology

    1988-01-01

    various lipid-derived mediators during exocytosis. MATERIALS AND METHODS The procedure for granule preparation is similar to that which has been described...Press, Inc. Printed in U.S.A. SYNTHESIS OF PROSTACLANDINS AND KICOSANOIDS BY THE M&ST CELL SECRETORY GRANULE Stephen P. Chock and Elsa A. Schmauder-Chock...SCISNTIFIC XeiOT Received September 30, 1988 SR88-32 The identification of a non-bilayer phospholipid storage in the secretory granule and the linking of

  11. Nanoimaging granule dynamics and subcellular structures in activated mast cells using soft X-ray tomography

    PubMed Central

    Chen, Huan-Yuan; Chiang, Dapi Meng-Lin; Lin, Zi-Jing; Hsieh, Chia-Chun; Yin, Gung-Chian; Weng, I.-Chun; Guttermann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Lai, Lee-Jene; Liu, Fu-Tong

    2016-01-01

    Mast cells play an important role in allergic responses. During activation, these cells undergo degranulation, a process by which various kinds of mediators stored in the granules are released. Granule homeostasis in mast cells has mainly been studied by electron microscopy (EM), where the fine structures of subcellular organelles are partially destroyed during sample preparation. Migration and fusion of granules have not been studied in detail in three dimensions (3D) in unmodified samples. Here, we utilized soft X-ray tomography (SXT) coupled with fluorescence microscopy to study the detailed structures of organelles during mast cell activation. We observed granule fission, granule fusion to plasma membranes, and small vesicles budding from granules. We also detected lipid droplets, which became larger and more numerous as mast cells were activated. We observed dramatic morphological changes of mitochondria in activated mast cells and 3D-reconstruction revealed the highly folded cristae inner membrane, features of functionally active mitochondria. We also observed giant vesicles containing granules, mitochondria, and lipid droplets, which we designated as granule-containing vesicles (GCVs) and verified their presence by EM in samples prepared by cryo-substitution, albeit with a less clear morphology. Thus, our studies using SXT provide significant insights into mast cell activation at the organelle level. PMID:27748356

  12. Role of the actin-binding protein profilin1 in radial migration and glial cell adhesion of granule neurons in the cerebellum.

    PubMed

    Rust, Marco B; Kullmann, Jan A; Witke, Walter

    2012-01-01

    Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.

  13. Sparse activity of identified dentate granule cells during spatial exploration

    PubMed Central

    Diamantaki, Maria; Frey, Markus; Berens, Philipp; Preston-Ferrer, Patricia; Burgalossi, Andrea

    2016-01-01

    In the dentate gyrus – a key component of spatial memory circuits – granule cells (GCs) are known to be morphologically diverse and to display heterogeneous activity profiles during behavior. To resolve structure–function relationships, we juxtacellularly recorded and labeled single GCs in freely moving rats. We found that the vast majority of neurons were silent during exploration. Most active GCs displayed a characteristic spike waveform, fired at low rates and showed spatial activity. Primary dendritic parameters were sufficient for classifying neurons as active or silent with high accuracy. Our data thus support a sparse coding scheme in the dentate gyrus and provide a possible link between structural and functional heterogeneity among the GC population. DOI: http://dx.doi.org/10.7554/eLife.20252.001 PMID:27692065

  14. Ultrastructure and cytochemistry of lipid granules in the many-celled magnetotactic prokaryote, 'Candidatus Magnetoglobus multicellularis'.

    PubMed

    Silva, Karen Tavares; Abreu, Fernanda; Keim, Carolina N; Farina, Marcos; Lins, Ulysses

    2008-12-01

    Conspicuous cytoplasmic granules are reported in a magnetotactic multicellular prokaryote named 'Candidatus Magnetoglobus multicellularis'. Unfortunately, this microorganism, which consists of an assembly of gram-negative bacterial cells, cannot yet be cultivated, limiting the biochemical analysis of the granules and preventing in vitro studies with starvation/excess of nutrients. In this scenario, light and electron microscopy techniques were used to partially address the nature of the granules. Besides magnetosomes, three types of inclusions were observed: small (mean diameter=124 nm) polyhydroxyalkanoate-like (PHA) granules, large (diameters ranging from 0.11 to 2.5 microm) non-PHA lipid granules, and rare phosphorus-rich granules, which probably correspond to polyphosphate bodies. The PHA granules were rounded in projection, non-reactive with OsO(4), and suffered the typical plastic deformation of PHAs after freeze fracturing. The nature of the large granules, consisting of round globular structures (mean diameter=0.76 microm), was classified as non-PHA based on the following data: (a) multilayered structure in freeze-fracture electron microscopy, typical of non-PHA lipids; (b) Nile blue fluorescence imaging detected non-PHA lipids; (c) imidazole buffered osmium tetroxide and ruthenium red cytochemistry stained the globules, which appeared as electron-dense granules instead of electron lucent as PHAs do. Most likely, 'Candidatus Magnetoglobus multicellularis' stores carbon mainly as unusual lipid granules, together with smaller amounts of PHAs.

  15. Delayed release of neurotransmitter from cerebellar granule cells.

    PubMed

    Atluri, P P; Regehr, W G

    1998-10-15

    At fast chemical synapses the rapid release of neurotransmitter that occurs within a few milliseconds of an action potential is followed by a more sustained elevation of release probability, known as delayed release. Here we characterize the role of calcium in delayed release and test the hypothesis that facilitation and delayed release share a common mechanism. Synapses between cerebellar granule cells and their postsynaptic targets, stellate cells and Purkinje cells, were studied in rat brain slices. Presynaptic calcium transients were measured with calcium-sensitive fluorophores, and delayed release was detected with whole-cell recordings. Calcium influx, presynaptic calcium dynamics, and the number of stimulus pulses were altered to assess their effect on delayed release and facilitation. Following single stimuli, delayed release can be separated into two components: one lasting for tens of milliseconds that is steeply calcium-dependent, the other lasting for hundreds of milliseconds that is driven by low levels of calcium with a nearly linear calcium dependence. The amplitude, calcium dependence, and magnitude of delayed release do not correspond to those of facilitation, indicating that these processes are not simple reflections of a shared mechanism. The steep calcium dependence of delayed release, combined with the large calcium transients observed in these presynaptic terminals, suggests that for physiological conditions delayed release provides a way for cells to influence their postsynaptic targets long after their own action potential activity has subsided.

  16. Giant cytoplasmic granules in Langerhans cells of Chediak-Higashi syndrome.

    PubMed

    Carrillo-Farga, J; Gutiérrez-Palomera, G; Ruiz-Maldonado, R; Rondán, A; Antuna, S

    1990-02-01

    Giant membrane-bound cytoplasmic granules were found in the epidermal Langerhans cells of a patient with the Chediak-Higashi syndrome. These cells also contained normal-appearing Birbeck granules. The giant granules had a granular or sometimes globular internal structure; they are believed to derive from fusion of lysosomes or some portion of Birbeck granules. It is unclear whether this morphologic change in Langerhans cell interferes with their antigen-presenting function; it may be, in part, responsible for the frequent infections seen in patients with Chediak-Higashi syndrome that are otherwise more clearly related to the abnormalities in neutrophils and lymphocytes. The Langerhans cell is another cellular type in Chediak-Higashi syndrome in which giant cytoplasmic granules are found.

  17. Differentiated cytoplasmic granule formation in quiescent and non-quiescent cells upon chronological aging

    PubMed Central

    Lee, Hsin-Yi; Cheng, Kuo-Yu; Chao, Jung-Chi; Leu, Jun-Yi

    2016-01-01

    Stationary phase cultures represent a complicated cell population comprising at least two different cell types, quiescent (Q) and non-quiescent (NQ) cells. Q and NQ cells have different lifespans and cell physiologies. However, less is known about the organization of cytosolic protein structures in these two cell types. In this study, we examined Q and NQ cells for the formation of several stationary phase-prevalent granule structures including actin bodies, proteasome storage granules, stress granules, P-bodies, the compartment for unconventional protein secretion (CUPS), and Hsp42-associated stationary phase granules (Hsp42-SPGs). Most of these structures preferentially form in NQ cells, except for Hsp42-SPGs, which are enriched in Q cells. When nutrients are provided, NQ cells enter mitosis less efficiently than Q cells, likely due to the time requirement for reorganizing some granule structures. We observed that heat shock-induced misfolded proteins often colocalize to Hsp42-SPGs, and Q cells clear these protein aggregates more efficiently, suggesting that Hsp42-SPGs may play an important role in the stress resistance of Q cells. Finally, we show that the cell fate of NQ cells is largely irreversible even if they are allowed to reenter mitosis. Our results reveal that the formation of different granule structures may represent the early stage of cell type differentiation in yeast stationary phase cultures. PMID:28357341

  18. The stealthy nano-machine behind mast cell granule size distribution.

    PubMed

    Hammel, Ilan; Meilijson, Isaac

    2015-01-01

    The classical model of mast cell secretory granule formation suggests that newly synthesized secretory mediators, transported from the rough endoplasmic reticulum to the Golgi complex, undergo post-transitional modification and are packaged for secretion by condensation within membrane-bound granules of unit size. These unit granules may fuse with other granules to form larger granules that reside in the cytoplasm until secreted. A novel stochastic model for mast cell granule growth and elimination (G&E) as well as inventory management is presented. Resorting to a statistical mechanics approach in which SNAP (Soluble NSF Attachment Protein) REceptor (SNARE) components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation that can perform granule growth and secretion. Granule stock is maintained as a buffer to meet uncertainty in demand by the extracellular environment and to serve as source of supply during the lead time to produce granules of adaptive content. Experimental work, mathematical calculations, statistical modeling and a rationale for the emergence of nearly last-in, first out inventory management, are discussed.

  19. Clones of ectopic stem cells in the regeneration of muscle defects in vivo.

    PubMed

    Yang, Rujing; Chen, Mo; Lee, Chang Hun; Yoon, Richard; Lal, Shan; Mao, Jeremy J

    2010-10-20

    Little is known about whether clones of ectopic, non-muscle stem cells contribute to muscle regeneration. Stem/progenitor cells that are isolated for experimental research or therapeutics are typically heterogeneous. Non-myogenic lineages in a heterogeneous population conceptually may compromise tissue repair. In this study, we discovered that clones of mononucleated stem cells of human tooth pulp fused into multinucleated myotubes that robustly expressed myosin heavy chain in vitro with or without co-culture with mouse skeletal myoblasts (C2C12 cells). Cloned cells were sustainably Oct4+, Nanog+ and Stro1+. The fusion indices of myogenic clones were approximately 16-17 folds greater than their parent, heterogeneous stem cells. Upon infusion into cardio-toxin induced tibialis anterior muscle defects, undifferentiated clonal progenies not only engrafted and colonized host muscle, but also expressed human dystrophin and myosin heavy chain more efficaciously than their parent heterogeneous stem cell populations. Strikingly, clonal progenies yielded ∼9 times more human myosin heavy chain mRNA in regenerating muscles than those infused with their parent, heterogeneous stem cells. The number of human dystrophin positive cells in regenerating muscles infused with clonal progenies was more than ∼3 times greater than muscles infused with heterogeneous stem cells from which clonal progenies were derived. These findings suggest the therapeutic potential of ectopic myogenic clones in muscle regeneration.

  20. Analysis of Spine Motility of Newborn Granule Cells in Acute Brain Slices.

    PubMed

    Tashiro, Ayumu; Zhao, Chunmei; Suh, Hoonkyo; Gage, Fred H

    2015-10-01

    In this protocol, acute brain slices are prepared from mice in which newborn granule cells have been labeled using retroviral vector technology. Using a live-cell imaging stage and confocal microscopy coupled to imaging software, dendritic spines are analyzed.

  1. Studies on the pH gradient and histamine uptake of isolated mast cell granules

    SciTech Connect

    De Young, M.B.; Nemeth, E.F.; Scarpa, A.

    1986-05-01

    A purified preparation of mast cell granules with intact perigranular membranes was obtained using a method involving probe sonication of rat serosal mast cells followed by differential centrifugation and Percoll gradient separation of the granules. Purification was assessed with histamine and mast cell granule protease assays. Granule integrity was demonstrated by light and electron microscopy and quantitated with a ruthenium red binding assay. The low yield of granules (20 ..mu..g protein/4 rats) necessitated the development of two microanalytical techniques to demonstrate the existence of a pH gradient across the membrane: 9-aminoacridine fluorescence studies in a cuvet with 50 ..mu..l capacity and /sup 14/C-methylamine distribution studies on microgram quantities of granule protein. Quantitation of results from isotope studies were confounded by the presence of oil used for separating granules from the aqueous phase. Nonetheless, an extrapolation procedure calibrated by external pH yielded an internal pH value of 5.46 +/- .03 (n = 4), consistent with values observed in granules obtained from other secretory cells. Collapse of the pH gradient by NH/sub 4//sup +/ or nigericin/KCl was demonstrated using either technique. Addition of histamine depressed intragranular pH, suggesting that histamine transport may utilize the ..delta..pH as a driving force.

  2. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

    PubMed

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-03-19

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.

  3. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus

    PubMed Central

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-01-01

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7⁎nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7⁎nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2–3 week-old Wistar rats, and 2–9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7⁎nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7⁎nicotinic receptor modulator, which were blocked by a specific α7⁎nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7⁎nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7⁎nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain. PMID:25553616

  4. Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules

    PubMed Central

    Brunello, Cecilia A.; Yan, Xu; Huttunen, Henri J.

    2016-01-01

    Stress granules are membrane-less RNA- and RNA-binding protein-containing complexes that are transiently assembled in stressful conditions to promote cell survival. Several stress granule-associated RNA-binding proteins have been associated with neurodegenerative diseases. In addition, a close link was recently identified between the stress granule core-nucleating protein TIA-1 and Tau. Tau is a central pathological protein in Alzheimer’s disease and other tauopathies, and misfolded, aggregated Tau is capable of propagating pathology via cell-to-cell transmission. Here we show that following internalization hyperphosphorylated extracellular Tau associates with stress granules in a TIA-1 dependent manner. Cytosolic Tau normally only weakly interacts with TIA-1 but mutations mimicking abnormal phosphorylation promote this interaction. We show that internalized Tau significantly delays normal clearance of stress granules in the recipient cells sensitizing them to secondary stress. These results suggest that secreted Tau species may have properties, likely related to its hyperphosphorylation and oligomerization, which promote pathological association of internalized Tau with stress granules altering their dynamics and reducing cell viability. We suggest that stress granules and TIA-1 play a central role in the cell-to-cell transmission of Tau pathology. PMID:27460788

  5. Three-dimensional tracking of single secretory granules in live PC12 cells.

    PubMed

    Li, Dongdong; Xiong, Jun; Qu, Anlian; Xu, Tao

    2004-09-01

    Deconvolution wide-field fluorescence microscopy and single-particle tracking were used to study the three-dimensional mobility of single secretory granules in live PC12 cells. Acridine orange-labeled granules were found to travel primarily in random and caged diffusion, whereas only a small fraction of granules traveled in directed fashion. High K(+) stimulation increased significantly the percentage of granules traveling in directed fashion. By dividing granules into the near-membrane group (within 1 microm from the plasma membrane) and cytosolic group, we have revealed significant differences between these two groups of granules in their mobility. The mobility of these two groups of granules is also differentially affected by disruption of F-actin, suggesting different mechanisms are involved in the motion of the two groups of granules. Our results demonstrate that combined deconvolution and single-particle tracking may find its application in three-dimensional tracking of long-term motion of granules and elucidating the underlying mechanisms.

  6. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    SciTech Connect

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  7. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles.

    PubMed

    Shan, Tizhong; Zhang, Pengpeng; Bi, Pengpeng; Kuang, Shihuan

    2015-05-01

    Excessive intramyocellular triglycerides (muscle lipids) are associated with reduced contractile function, insulin resistance, and Type 2 diabetes, but what governs lipid accumulation in muscle is unclear. Here we report a role of Lkb1 in regulating lipid metabolism in muscle stem cells and their descendent mature muscles. We used Myod(Cre) and Lkb1(flox/flox) mice to specifically delete Lkb1 in myogenic cells including stem and differentiated cells, and examined the lipid accumulation and gene expression of myoblasts cultured from muscle stem cells (satellite cells). Genetic deletion of Lkb1 in myogenic progenitors led to elevated expression of lipogenic genes and ectopic lipid accumulation in proliferating myoblasts. Interestingly, the Lkb1-deficient myoblasts differentiated into adipocyte-like cells upon adipogenic induction. However, these adipocyte-like cells maintained myogenic gene expression with reduced ability to form myotubes efficiently. Activation of AMPK by AICAR prevented ectopic lipid formation in the Lkb1-null myoblasts. Notably, Lkb1-deficient muscles accumulated excessive lipids in vivo in response to high-fat diet feeding. These results demonstrate that Lkb1 acts through AMPK to limit lipid deposition in muscle stem cells and their derivative mature muscles, and point to the possibility of controlling muscle lipid content using AMPK activating drugs.

  8. Syntaxin clusters assemble reversibly at sites of secretory granules in live cells.

    PubMed

    Barg, S; Knowles, M K; Chen, X; Midorikawa, M; Almers, Wolfhard

    2010-11-30

    Syntaxin resides in the plasma membrane, where it helps to catalyze membrane fusion during exocytosis. The protein also forms clusters in cell-free and granule-free plasma-membrane sheets. We imaged the interaction between syntaxin and single secretory granules by two-color total internal reflection microscopy in PC12 cells. Syntaxin-GFP assembled in clusters at sites where single granules had docked at the plasma membrane. Clusters were intermittently present at granule sites, as syntaxin molecules assembled and disassembled in a coordinated fashion. Recruitment to granules required the N-terminal domain of syntaxin, but not the entry of syntaxin into SNARE complexes. Clusters facilitated exocytosis and disassembled once exocytosis was complete. Syntaxin cluster formation defines an intermediate step in exocytosis.

  9. Ectopic TBX1 suppresses thymic epithelial cell differentiation and proliferation during thymus organogenesis.

    PubMed

    Reeh, Kaitlin A G; Cardenas, Kim T; Bain, Virginia E; Liu, Zhijie; Laurent, Micheline; Manley, Nancy R; Richie, Ellen R

    2014-08-01

    The thymus and parathyroid glands arise from a shared endodermal primordium in the third pharyngeal pouch (3rd pp). Thymus fate is specified in the ventral 3rd pp between E9.5 and E11, whereas parathyroid fate is specified in the dorsal domain. The molecular mechanisms that specify fate and regulate thymus and parathyroid development are not fully delineated. Previous reports suggested that Tbx1 is required for thymus organogenesis because loss of Tbx1 in individuals with DiGeorge syndrome and in experimental Tbx1 deletion mutants is associated with thymus aplasia or hypoplasia. However, the thymus phenotype is likely to be secondary to defects in pharyngeal pouch formation. Furthermore, the absence of Tbx1 expression in the thymus-fated domain of the wild-type 3rd pp suggested that Tbx1 is instead a negative regulator of thymus organogenesis. To test this hypothesis, we generated a novel mouse strain in which expression of a conditional Tbx1 allele was ectopically activated in the thymus-fated domain of the 3rd pp. Ectopic Tbx1 expression severely repressed expression of Foxn1, a transcription factor that marks the thymus-fated domain and is required for differentiation and proliferation of thymic epithelial cell (TEC) progenitors. By contrast, ectopic Tbx1 did not alter the expression pattern of Gcm2, a transcription factor restricted to the parathyroid-fated domain and required for parathyroid development. Ectopic Tbx1 expression impaired TEC proliferation and arrested TEC differentiation at an early progenitor stage. The results support the hypothesis that Tbx1 negatively regulates TEC growth and differentiation, and that extinction of Tbx1 expression in 3rd pp endoderm is a prerequisite for thymus organogenesis.

  10. Ectopic photoreceptors and cone bipolar cells in the developing and mature retina.

    PubMed

    Günhan, Emine; van der List, Deborah; Chalupa, Leo M

    2003-02-15

    An antibody against recoverin, the calcium-binding protein, labels photoreceptors, cone bipolar cells, and a subpopulation of cells in the ganglion cell layer. In the present study, we sought to establish the origin and identity of the cells expressing recoverin in the ganglion cell layer of the rat retina. By double labeling with rhodopsin, we demonstrate that early in development some of the recoverin-positive cells in the ganglion cell layer are photoreceptors. During the first postnatal week, these rhodopsin-positive cells are eliminated from the ganglion cell layer, but such neurons remain in the inner nuclear layer well into the first postnatal month. Another contingent of recoverin-positive cells, with morphological features equivalent to those of bipolar cells, is present in the postnatal retina, and approximately 50% of these neurons survive to maturity. The incidence of such cells in the ganglion cell layer was not affected by early transection of the optic nerve, a manipulation that causes rapid loss of retinal ganglion cells. These recoverin-positive cells were not double-labeled by cell-specific markers expressed by photoreceptors, rod bipolar cells, or horizontal and amacrine cells. Based on their staining with recoverin and salient morphological features, these ectopic profiles in the ganglion cell layer are most likely cone bipolar cells. Collectively, the results provide evidence for photoreceptors in the ganglion cell and inner nuclear layers of the developing retina, and a more permanent subpopulation of cone bipolar cells displaced to the ganglion cell layer.

  11. Somatic translocation: a novel mechanism of granule cell dendritic dysmorphogenesis and dispersion

    PubMed Central

    Murphy, Brian L.; Danzer, Steve C.

    2011-01-01

    Pronounced neuronal remodeling is a hallmark of temporal lobe epilepsy. Here, we use real-time confocal imaging of tissue from mouse brain to demonstrate that remodeling can involve fully-differentiated granule cells following translocation of the soma into an existing apical dendrite. Somatic translocation converts dendritic branches into primary dendrites and shifts adjacent apical dendrites to the basal pole of the cell. Moreover, somatic translocation contributes to the dispersion of the granule cell body layer in vitro, and when granule cell dispersion is induced in vivo, the dispersed cells exhibit virtually identical derangements of their dendritic structures. Together, these findings identify novel forms of neuronal plasticity which contribute to granule cell dysmorphogenesis in the epileptic brain. PMID:21414917

  12. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    SciTech Connect

    Gianotti, A.J.; Clark, D.T.; Dash, J. )

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  13. Ectopic Pregnancy

    MedlinePlus

    ... woman is pregnant. If you have an ectopic pregnancy, the fertilized egg grows in the wrong place, ... tubes. The result is usually a miscarriage. Ectopic pregnancy can be a medical emergency if it ruptures. ...

  14. Potassium currents in acutely isolated human hippocampal dentate granule cells.

    PubMed Central

    Beck, H; Clusmann, H; Kral, T; Schramm, J; Heinemann, U; Elger, C E

    1997-01-01

    1. Properties of voltage- and Ca(2+)-dependent K+ currents were investigated in thirty-four dentate granule cells acutely isolated from the resected hippocampus of eleven patients with therapy-refractory temporal lobe epilepsy (TLE). 2. When intracellular Ca2+ was strongly buffered with 11.5 mM EGTA-1 mM Ca2+ in the recording pipette, K+ currents (IK) with a slow activation and biexponential time-dependent decay could be elicited, which showed a threshold for activation around -30 mV. 3. A contribution of Ca(2+)-dependent K+ currents became apparent with intracellular solution containing 1 mM BAPTA-0.1 mM Ca2+. Superfusion of low-Ca2+ extracellular solution blocked 43% of outward currents in this recording configuration. Outward current components could also be blocked by substituting 5 mM Ba2+ for extracellular Ca2+ (78%), or by application of 100 microM Cd2+ (25%). 4. The Ca(2+)-dependent K+ currents could be pharmacologically subdivided into two components. One component was sensitive to 500 microM tetraethylammmonium (TEA; 41%) and 10 nM charybdotoxin (CTX; 47.2%). The blocking effects of 10 nM CTX and 500 microM TEA were not additive, suggesting that both agents block the same conductance. A second, smaller outward current component was blocked by 50 nM apamin (13%). 5. A transient A-type K+ current could be observed in six neurones and showed a fast monoexponential time-dependent inactivation with a steady-state voltage dependence that was distinct from that of IK. The A-type current was blocked by 4-aminopyridine (4-AP) but not by TEA or low-Ca2+ solution. 6. We conclude that outward currents in human hippocampal dentate granule cells can be separated into at least four types by their kinetic and pharmacological properties. These include at least one voltage-dependent current similar to those observed in mammalian hippocampal neurones, and two Ca(2+)-dependent K+ currents that most probably correspond to SK- and BK-type currents. A classical A-type current

  15. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells

    PubMed Central

    Linster, Christiane

    2015-01-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function. PMID:26334007

  16. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.

    PubMed

    Li, Guoshi; Linster, Christiane; Cleland, Thomas A

    2015-12-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.

  17. Granulated peripolar epithelial cells in the renal corpuscle of marine elasmobranch fish.

    PubMed

    Lacy, E R; Reale, E

    1989-07-01

    Granulated epithelial cells at the vascular pole of the renal corpuscle, peripolar cells, have been found in the kidneys of five species of elasmobranchs, the little skate (Raja erinacea), the smooth dogfish shark (Mustelus canis), the Atlantic sharpnose shark (Rhizoprionodon terraenovae), the scalloped hammerhead shark (Sphyrna lewini), and the cow-nosed ray (Rhinoptera bonasus). In a sixth elasmobranch, the spiny dogfish shark (Squalus acanthias), the peripolar cells could not be identified among numerous other granulated epithelial cells. The peripolar cells are located at the transition between the parietal epithelium of Bowman's capsule and the visceral epithelium (podocytes) of the glomerulus, thus forming a cuff-like arrangement surrounding the hilar vessels of the renal corpuscle. These cells may have granules and/or vacuoles. Electron microscopy shows that the granules are membrane-bounded, and contain either a homogeneous material or a paracrystalline structure with a repeating period of about 18 nm. The vacuoles are electron lucent or may contain remnants of a granule. These epithelial cells lie close to the granulated cells of the glomerular afferent arteriole. They correspond to the granular peripolar cells of the mammalian, avian and amphibian kidney. The present study is the first reported occurrence of peripolar cells in a marine organism or in either bony or cartilagenous fish.

  18. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    PubMed Central

    Nielsen, Aaraby Yoheswaran; Gjerstorff, Morten Frier

    2016-01-01

    Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies. PMID:27275820

  19. Formation of tRNA granules in the nucleus of heat-induced human cells

    SciTech Connect

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  20. Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus.

    PubMed

    Iwano, Tomohiko; Masuda, Aki; Kiyonari, Hiroshi; Enomoto, Hideki; Matsuzaki, Fumio

    2012-08-01

    The brain is composed of diverse types of neurons that fulfill distinct roles in neuronal circuits, as manifested by the hippocampus, where pyramidal neurons and granule cells constitute functionally distinct domains: cornu ammonis (CA) and dentate gyrus (DG), respectively. Little is known about how these two types of neuron differentiate during hippocampal development, although a set of transcription factors that is expressed in progenitor cells is known to be required for the survival of granule cells. Here, we demonstrate in mice that Prox1, a transcription factor constitutively expressed in the granule cell lineage, postmitotically functions to specify DG granule cell identity. Postmitotic elimination of Prox1 caused immature DG neurons to lose the granule cell identity and in turn terminally differentiate into the pyramidal cell type manifesting CA3 neuronal identity. By contrast, Prox1 overexpression caused opposing effects on presumptive hippocampal pyramidal cells. These results indicate that the immature DG cell has the potential to become a granule cell or a pyramidal cell, and Prox1 defines the granule cell identity. This bi-potency is lost in mature DG cells, although Prox1 is still required for correct gene expression in DG granule cells. Thus, our data indicate that Prox1 acts as a postmitotic cell fate determinant for DG granule cells over the CA3 pyramidal cell fate and is crucial for maintenance of the granule cell identity throughout the life.

  1. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors

    PubMed Central

    Grotewold, E; Chamberlin, M; Snook, M; Siame, B; Butler, L; Swenson, J; Maddock, S; Clair, GS; Bowen, B

    1998-01-01

    Manipulation of plant natural product biosynthesis through genetic engineering is an attractive but technically challenging goal. Here, we demonstrate that different secondary metabolites can be produced in cultured maize cells by ectopic expression of the appropriate regulatory genes. Cell lines engineered to express the maize transcriptional activators C1 and R accumulate two cyanidin derivatives, which are similar to the predominant anthocyanin found in differentiated plant tissues. In contrast, cell lines that express P accumulate various 3-deoxy flavonoids. Unexpectedly, P-expressing cells in culture also accumulate phenylpropanoids and green fluorescent compounds that are targeted to different subcellular compartments. Two endogenous biosynthetic genes (c2 and a1, encoding chalcone synthase and flavanone/dihydroflavonol reductase, respectively) are independently activated by ectopic expression of either P or C1/R, and there is a dose-response relationship between the transcript level of P and the degree to which c2 or a1 is expressed. Our results support a simple model showing how the gene encoding P may act as a quantitative trait locus controlling insecticidal C-glycosyl flavone level in maize silks, and they suggest how p1 might confer a selective advantage against insect predation in maize. PMID:9596632

  2. Persistent Mullerian Duct Syndrome with Embryonal Cell Carcinoma along with Ectopic Cross Fused Kidney

    PubMed Central

    Bharath, NR Manju; Narayana, V; Raja, V Om Pramod Kumar; Jambula, Pranav Reddy

    2016-01-01

    Persistent Mullerian Duct Syndrome (PMDS) is a form of internal male pseudohermaphroditism, where there is normal development of male secondary sexual characters, along with the presence of bilateral fallopian tubes and uterus. Majority of these cases go undetected and some cases are accidentally diagnosed while investigating for other problems. Cross fused renal ectopia is a condition where one kidney lies in the opposite side, fused to the other kidney. We present an extremely rare case of a phenotypical male presenting with mass per abdomen and bilateral cryptorchidism, turned out to have uterus with bilateral fallopian tubes, ectopic cross fused right kidney and Embryonal cell carcinoma of left undescended testis. PMID:26894123

  3. Neuroligin-2 accelerates GABAergic synapse maturation in cerebellar granule cells

    PubMed Central

    Fu, Zhanyan; Vicini, Stefano

    2009-01-01

    Neuroligins (NLGs) are postsynaptic cell adhesion molecules that are thought to function in synaptogenesis. To investigate the role of NLGs on synaptic transmission once the synapse is formed, we transfected neuroligin-2(NLG2) in cultured mouse cerebellar granule cells (CGCs), and recorded GABAA (γ-aminobutyric acid) receptor mediated miniature postsynaptic currents (mISPCs). NLG2 transfected cells had mIPSCs with faster decay than matching GFP expressing controls at young culture ages (days in vitro, DIV 7-8). Down-regulation of NLG2 by the isoform specific shRNA-NLG2 resulted in an opposite effect. We and others have shown that the switch of α subunits of GABAA Rs from α2/3 to α1 underlies developmental speeding of the IPSC decay in various CNS regions, including the cerebellum. To assess whether the reduced decay time of mIPSCs by NLG2 is due to the recruitment of more α1 containing GABAARs at the synapses, we examined the prolongation of current decay by the zolpidem, which has been shown to preferentially enhance the activity of α1 subunit containing GABA channel. The application of zolpidem resulted in a significantly greater prolongation kinetics of synaptic currents in NLG2 over-expressing cells than control cells, suggesting that NLG2 over-expression accelerates synapse maturation by promoting incorporation of the α1 subunit-containing GABAARs at postsynaptic sites in immature cells. In addition, the effect of NLG2 on the speeding of decay time course of synaptic currents was abolished when we used CGC cultures from α1-/- mice. Lastly, to exclude the possibility that the fast decay of mIPSCs induced by NLG2 could be also due to the impacts of NLG2 on the GABA transient in synaptic cleft, we measured the sensitivity of mIPSCs to the fast-off competitive antagonists TPMPA. We found that TPMPA similarly inhibits mIPSCs in control and NLG2 over-expressing CGCs both at young age (DIV8) and old age (DIV14) of cultures. However, we confirm our previous

  4. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy.

    PubMed

    Kobayashi, Masayuki; Buckmaster, Paul S

    2003-03-15

    Patients and models of temporal lobe epilepsy have fewer inhibitory interneurons in the dentate gyrus than controls, but it is unclear whether granule cell inhibition is reduced. We report the loss of GABAergic inhibition of granule cells in the temporal dentate gyrus of pilocarpine-induced epileptic rats. In situ hybridization for GAD65 mRNA and immunocytochemistry for parvalbumin and somatostatin confirmed the loss of inhibitory interneurons. In epileptic rats, granule cells had prolonged EPSPs, and they discharged more action potentials than controls. Although the conductances of evoked IPSPs recorded in normal ACSF were not significantly reduced and paired-pulse responses showed enhanced inhibition of granule cells from epileptic rats, more direct measures of granule cell inhibition revealed significant deficiencies. In granule cells from epileptic rats, evoked monosynaptic IPSP conductances were <40% of controls, and the frequency of GABA(A) receptor-mediated spontaneous and miniature IPSCs (mIPSCs) was <50% of controls. Within 3-7 d after pilocarpine-induced status epilepticus, miniature IPSC frequency had decreased, and it remained low, without functional evidence of compensatory synaptogenesis by GABAergic axons in chronically epileptic rats. Both parvalbumin- and somatostatin-immunoreactive interneuron numbers and the frequency of both fast- and slow-rising GABA(A) receptor-mediated mIPSCs were reduced, suggesting that loss of inhibitory synaptic input to granule cells occurred at both proximal/somatic and distal/dendritic sites. Reduced granule cell inhibition in the temporal dentate gyrus preceded the onset of spontaneous recurrent seizures by days to weeks, so it may contribute, but is insufficient, to cause epilepsy.

  5. Two modes of lytic granule fusion during degranulation by natural killer cells.

    PubMed

    Liu, Dongfang; Martina, Jose A; Wu, Xufeng S; Hammer, John A; Long, Eric O

    2011-08-01

    Lytic granules in cytotoxic lymphocytes, which include T cells and natural killer (NK) cells, are secretory lysosomes that release their content upon fusion with the plasma membrane (PM), a process known as degranulation. Although vesicle exocytosis has been extensively studied in endocrine and neuronal cells, much less is known about the fusion of lytic granules in cytotoxic lymphocytes. Here, we used total internal reflection fluorescence microscopy to examine lytic granules labeled with fluorescently tagged Fas ligand (FasL) in the NK cell line NKL stimulated with phorbol ester and ionomycin and in primary NK cells activated by physiological receptor-ligand interactions. Two fusion modes were observed: complete fusion, characterized by loss of granule content and rapid diffusion of FasL at the PM; and incomplete fusion, characterized by transient fusion pore opening and retention of FasL at the fusion site. The pH-sensitive green fluorescence protein (pHluorin) fused to the lumenal domain of FasL was used to visualize fusion pore opening with a time resolution of 30 ms. Upon incomplete fusion, pHluorin emission lasted several seconds in the absence of noticeable diffusion. Thus, we conclude that lytic granules in NK cells undergo both complete and incomplete fusion with the PM, and propose that incomplete fusion may promote efficient recycling of lytic granule membrane after the release of cytotoxic effector molecules.

  6. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression.

    PubMed

    Sangan, Caroline B; Jover, Ramiro; Heimberg, Harry; Tosh, David

    2015-01-05

    There is currently a shortage of organ donors available for pancreatic beta cell transplantation into diabetic patients. An alternative source of beta cells is pre-existing pancreatic cells. While we know that beta cells can arise directly from alpha cells during pancreatic regeneration we do not understand the molecular basis for the switch in phenotype. The aim of the present study was to investigate if hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor essential for a normal beta cell phenotype, could induce the reprogramming of alpha cells towards potential beta cells. We utilised an in vitro model of pancreatic alpha cells, the murine αTC1-9 cell line. We initially characterised the αTC1-9 cell line before and following adenovirus-mediated ectopic expression of HNF4α. We analysed the phenotype at transcript and protein level and assessed its glucose-responsiveness. Ectopic HNF4α expression in the αTC1-9 cell line induced a change in morphology (1.7-fold increase in size), suppressed glucagon expression, induced key beta cell-specific markers (insulin, C-peptide, glucokinase, GLUT2 and Pax4) and pancreatic polypeptide (PP) and enabled the cells to secrete insulin in a glucose-regulated manner. In conclusion, HNF4α reprograms alpha cells to beta-like cells.

  7. Secretory granules of mast cells accumulate mature and immature MHC class II molecules.

    PubMed

    Vincent-Schneider, H; Théry, C; Mazzeo, D; Tenza, D; Raposo, G; Bonnerot, C

    2001-01-01

    Bone marrow-derived mast cells as well as dendritic cells, macrophages and B lymphocytes express major histocompatibility complex (MHC) class II molecules. In mast cells, the majority of MHC class II molecules reside in intracellular cell type-specific compartments, secretory granules. To understand the molecular basis for the localisation of MHC class II molecules in secretory granules, MHC class II molecules were expressed, together with the invariant chain, in the mast cell line, RBL-2H3. Using electron and confocal microscopy, we observed that in RBL-2H3 cells, mature and immature class II molecules accumulate in secretory granules. Two particular features of class II transport accounted for this intracellular localization: first, a large fraction of newly synthesized MHC class II molecules remained associated with invariant chain fragments. This defect, resulting in a slower rate of MHC class II maturation, was ascribed to a low cathepsin S activity. Second, although a small fraction of class II dimers matured (i.e. became free of invariant chain), allowing their association with antigenic peptides, they were retained in secretory granules. As a consequence of this intracellular localization, cell surface expression of class II molecules was strongly increased by cell activation stimuli which induced the release of the contents of secretory granules. Our results suggest that antigen presentation, and thereby antigen specific T cell stimulation, are regulated in mast cells by stimuli which induce mast cell activation.

  8. A hypothesis for temporal coding of young and mature granule cells

    PubMed Central

    Rangel, Lara M.; Quinn, Laleh K.; Chiba, Andrea A.; Gage, Fred H.; Aimone, James B.

    2013-01-01

    While it has been hypothesized that adult neurogenesis (NG) plays a role in the encoding of temporal information at long time-scales, the temporal relationship of immature cells to the highly rhythmic network activity of the hippocampus has been largely unexplored. Here, we present a theory for how the activity of immature adult-born granule cells relates to hippocampal oscillations. Our hypothesis is that theta rhythmic (5–10 Hz) excitatory and inhibitory inputs into the hippocampus could differentially affect young and mature granule cells due to differences in intrinsic physiology and synaptic inhibition between the two cell populations. Consequently, immature cell activity may occur at broader ranges of theta phase than the activity of their mature counterparts. We describe how this differential influence on young and mature granule cells could separate the activity of differently aged neurons in a temporal coding regime. Notably, this process could have considerable implications on how the downstream CA3 region interprets the information conveyed by young and mature granule cells. To begin to investigate the phasic behavior of granule cells, we analyzed in vivo recordings of the rat dentate gyrus (DG), observing that the temporal behavior of granule cells with respect to the theta rhythm is different between rats with normal and impaired levels of NG. Specifically, in control animals, granule cells exhibit both strong and weak coupling to the phase of the theta rhythm. In contrast, the distribution of phase relationships in NG-impaired rats is shifted such that they are significantly stronger. These preliminary data support our hypothesis that immature neurons could distinctly affect the temporal dynamics of hippocampal encoding. PMID:23717259

  9. The transcription factor Cux1 in cerebellar granule cell development and medulloblastoma pathogenesis.

    PubMed

    Topka, Sabine; Glassmann, Alexander; Weisheit, Gunnar; Schüller, Ulrich; Schilling, Karl

    2014-12-01

    Cux1, also known as Cutl1, CDP or Cut is a homeodomain transcription factor implicated in the regulation of normal and oncogenic development in diverse peripheral tissues and organs. We studied the expression and functional role of Cux1 in cerebellar granule cells and medulloblastoma. Cux1 is robustly expressed in proliferating granule cell precursors and in postmitotic, migrating granule cells. Expression is lost as postmigratory granule cells mature. Moreover, Cux1 is also strongly expressed in a well-established mouse model of medulloblastoma. In contrast, expression of CUX1 in human medulloblastoma tissue samples is lower than in normal fetal cerebellum. In these tumors, CUX1 expression tightly correlates with a set of genes which, when mapped on a global protein-protein interaction dataset, yields a tight network that constitutes a cell cycle control signature and may be related to p53 and the DNA damage response pathway. Antisense-mediated reduction of CUX1 levels in two human medulloblastoma cell lines led to a decrease in proliferation and altered motility. The developmental expression of Cux1 in the cerebellum and its action in cell lines support a role in granule cell and medulloblastoma proliferation. Its expression in human medulloblastoma shifts that perspective, suggesting that CUX1 is part of a network involved in cell cycle control and maintenance of DNA integrity. The constituents of this network may be rational targets to therapeutically approach medulloblastomas.

  10. Calsyntenins are secretory granule proteins in anterior pituitary gland and pancreatic islet alpha cells.

    PubMed

    Rindler, Michael J; Xu, Chong-Feng; Gumper, Iwona; Cen, Chuan; Sonderegger, Peter; Neubert, Thomas A

    2008-04-01

    Calsyntenins are members of the cadherin superfamily of cell adhesion molecules. They are present in postsynaptic membranes of excitatory neurons and in vesicles in transit to neuronal growth cones. In the current study, calsyntenin-1 (CST-1) and calsyntenin-3 (CST-3) were identified by mass spectrometric analysis (LC-MS/MS) of integral membrane proteins from highly enriched secretory granule preparations from bovine anterior pituitary gland. Immunofluorescence microscopy on thin frozen sections of rat pituitary revealed that CST-1 was present only in gonadotropes where it colocalized with follicle-stimulating hormone in secretory granules. In contrast, CST-3 was present not only in gonadotrope secretory granules but also in those of somatotropes and thyrotropes. Neither protein was detected in mammatropes. In addition, CST-1 was also localized to the glucagon-containing secretory granules of alpha cells in the pancreatic islets of Langerhans. Results indicate that calsyntenins function outside the nervous system and potentially are modulators of endocrine function.

  11. Ectopic Cushing syndrome in small cell lung cancer: A case report and literature review

    PubMed Central

    Zhang, Hang‐yu

    2016-01-01

    Small cell lung cancer (SCLC) is a neuroendocrine tumor with the potential to secrete various peptides or hormones that can lead to paraneoplastic syndromes, such as Ectopic Cushing syndrome (ECS). Because of the aggressive nature of the syndrome and its atypical features, ECS in small‐cell lung cancer is difficult to diagnose and has a poor prognosis. We report a case of a 74‐year‐old male patient who presented with severe hypokalemia, proximal muscle weakness, peripheral edema, metabolic alkalosis, and worsening hyperglycemia. The patient was eventually diagnosed with stage IV primary small‐cell lung cancer and survived three months after diagnosis. We reviewed published articles to determine any new diagnostic techniques or advantages in the treatment regimen. PMID:28102935

  12. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques

    SciTech Connect

    De Young, M.B.; Nemeth, E.F.; Scarpa, A.

    1987-04-01

    The intragranular pH of isolated mast cell granules was measured. Because of the minute amounts of isolated granules available, two techniques were developed by modifying aminoacridine fluorescence and (/sup 14/C)methylamine accumulation techniques to permit measurements with microliter sample volumes. Granule purity was demonstrated by electron microscopy, ruthenium red exclusion, and biochemical (histamine, mast cell granule protease) analysis. The internal pH was determined to be 5.55 +/- 0.06, indicating that the pH environment within mast cell granules is not significantly different from that of previously studied granule types (i.e., chromaffin, platelet, pancreatic islet, and pituitary granules). Collapse of the pH gradient by NH+4 was demonstrated with both techniques. No evidence of Cl-/OH- or specific cation/H+ transport was found, and major chloride permeability could not be unequivocably demonstrated. Ca/sup 2 +/ and Cl- at concentrations normally present extracellularly destabilized granules in the presence of NH+4, but this phenomenon does not necessarily indicate a role for these ions in the exocytotic release of granule contents from intact cells. The pH measurement techniques developed for investigating the properties of granules in mast cells may be useful for studying other granules that can be obtained only in limited quantities.

  13. Intracisternal granules in the adipokinetic cells of locusts are not degraded and apparently function as supplementary stores of secretory material.

    PubMed

    Harthoorn, L F; Diederen, J H; Oudejans, R C; Verstegen, M M; Vullings, H G; Van der Horst, D J

    2000-01-01

    The intracisternal granules in locust adipokinetic cells appear to represent accumulations of secretory material within cisternae of the rough endoplasmic reticulum. An important question is whether these granules are destined for degradation or represent stores of (pro)hormones. Two strategies were used to answer this question. First, cytochemistry was applied to elucidate the properties of intracisternal granules. The endocytic tracers horseradish peroxidase and wheat-germ agglutinin-conjugated horseradish peroxidase were used to facilitate the identification of endocytic, autophagic, and lysosomal organelles, which may be involved in the degradation of intracisternal granules. No intracisternal granules could be found within autophagosomes, and granules fused with endocytic and lysosomal organelles were not observed, nor could tracer be found within the granules. The lysosomal enzyme acid phosphatase was absent from the granules. Second, biochemical analysis of the content of intracisternal granules revealed that these granules contain prohormones as well as hormones. Prohormones were present in relatively higher amounts compared with ordinary secretory granules. Since the intracisternal granules in locust adipokinetic cells are not degraded and contain intact (pro)hormones it is concluded that they function as supplementary stores of secretory material.

  14. Disrupted Dentate Granule Cell Chloride Regulation Enhances Synaptic Excitability during Development of Temporal Lobe Epilepsy

    PubMed Central

    Pathak, Hemal R.; Weissinger, Florian; Terunuma, Miho; Carlson, Gregory C.; Hsu, Fu-Chun; Moss, Stephen J.; Coulter, Douglas A.

    2008-01-01

    GABAA receptor-mediated inhibition depends on the maintenance of intracellular Cl− concentration ([Cl−]in ) at low levels. In neurons in the developing CNS, [Cl−]in is elevated, EGABA is depolarizing, and GABA consequently is excitatory. Depolarizing GABAergic synaptic responses may be recapitulated in various neuropathological conditions, including epilepsy. In the present study, rat hippocampal dentate granule cells were recorded using gramicidin perforated patch techniques at varying times (1–60 d) after an epileptogenic injury, pilocarpine-induced status epilepticus (STEP). In normal, non-epileptic animals, these strongly inhibited dentate granule cells act as a gate, regulating hippocampal excitation, controlling seizure initiation and/or propagation. For 2 weeks after STEP, we found that EGABA was positively shifted in granule cells. This shift in EGABA altered synaptic integration, increased granule cell excitability, and resulted in compromised “gate” function of the dentate gyrus. EGABA recovered to control values at longer latencies post-STEP (2–8 weeks), when animals had developed epilepsy. During this period of shifted EGABA, expression of the Cl− extruding K+/Cl− cotransporter, KCC2 was decreased. Application of the KCC2 blocker, furosemide, to control neurons mimicked EGABA shifts evident in granule cells post-STEP. Furthermore, post-STEP and furosemide effects interacted occlusively, both on EGABA in granule cells, and on gatekeeper function of the dentate gyrus. This suggests a shared mechanism, reduced KCC2 function. These findings demonstrate that decreased expression of KCC2 persists for weeks after an epileptogenic injury, reducing inhibitory efficacy and enhancing dentate granule cell excitability. This pathophysiological process may constitute a significant mechanism linking injury to the subsequent development of epilepsy. PMID:18094240

  15. Distinct kainate receptor phenotypes in immature and mature mouse cerebellar granule cells

    PubMed Central

    Smith, T Caitlin; Wang, Lu-Yang; Howe, James R

    1999-01-01

    Although glutamate receptors have been shown to be involved in neuronal maturation, a developmental role for kainate-type receptors has not been described. In addition, the single-channel properties of native kainate receptors have not been studied in situ. We have characterized the electrophysiological properties of native kainate receptors of granule cell neurons at two distinct stages in postnatal development, using whole-cell and outside-out patch-clamp recordings in acute cerebellar slices. Kainate-type currents were detected in both immature and mature granule cells. However, noise analysis showed that the apparent unitary conductance of kainate-type channels is significantly higher in proliferating than post-migratory granule cells. The conductance and rectification behaviour of the channels in immature granule cells indicate that they contain unedited GluR5 and GluR6 subunits and are likely to be calcium permeable. Single-channel kainate-type currents were observed in outside-out patches from proliferating granule cells in the external germinal layer. The kinetic behaviour of kainate receptors in immature cells was complex. Openings to multiple conductance levels were observed, although our analysis indicates that the channels spend most of their open time in a 4 pS state. PMID:10226148

  16. Depletion of primary cilia from mature dentate granule cells impairs hippocampus-dependent contextual memory

    PubMed Central

    Rhee, Soyoung; Kirschen, Gregory W.; Gu, Yan; Ge, Shaoyu

    2016-01-01

    The primary cilium, a sensory organelle, regulates cell proliferation and neuronal development of dentate granule cells in the hippocampus. However, its role in the function of mature dentate granule cells remains unknown. Here we specifically depleted and disrupted ciliary proteins IFT20 and Kif3A (respectively) in mature dentate granule cells and investigated hippocampus-dependent contextual memory and long-term plasticity at mossy fiber synapses. We found that depletion of IFT20 in these cells significantly impaired context-dependent fear-related memory. Furthermore, we tested synaptic plasticity of mossy fiber synapses in area CA3 and found increased long-term potentiation upon depletion of IFT20 or disruption of Kif3A. Our findings suggest a role of primary cilia in the memory function of mature dentate granule cells, which may result from abnormal mossy fiber synaptic plasticity. A direct link between the primary cilia of mature dentate granule cells and behavior will require further investigation using independent approaches to manipulate primary cilia. PMID:27678193

  17. Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB.

    PubMed

    Danzer, Steve C; Kotloski, Robert J; Walter, Cynthia; Hughes, Maya; McNamara, James O

    2008-01-01

    Dentate granule cells play a critical role in the function of the entorhinal-hippocampal circuitry in health and disease. Dentate granule cells are situated to regulate the flow of information into the hippocampus, a structure required for normal learning and memory. Correspondingly, impaired granule cell function leads to memory deficits, and, interestingly, altered granule cell connectivity may contribute to the hyperexcitability of limbic epilepsy. It is important, therefore, to understand the molecular determinants of synaptic connectivity of these neurons. Brain-derived neurotrophic factor and its receptor TrkB are expressed at high levels in the dentate gyrus (DG) of the hippocampus, and are implicated in regulating neuronal development, neuronal plasticity, learning, and the development of epilepsy. Whether and how TrkB regulates granule cell structure, however, is incompletely understood. To begin to elucidate the role of TrkB in regulating granule cell morphology, here we examine conditional TrkB knockout mice crossed to mice expressing green fluorescent protein in subsets of dentate granule cells. In stratum lucidum, where granule cell mossy fiber axons project, the density of giant mossy fiber boutons was unchanged, suggesting similar output to CA3 pyramidal cell targets. However, filopodial extensions of giant boutons, which contact inhibitory interneurons, were increased in number in TrkB knockout mice relative to wildtype controls, predicting enhanced feedforward inhibition of CA3 pyramidal cells. In knockout animals, dentate granule cells possessed fewer primary dendrites and enlarged dendritic spines, indicative of disrupted excitatory synaptic input to the granule cells. Together, these findings demonstrate that TrkB is required for development and/or maintenance of normal synaptic connectivity of the granule cells, thereby implying an important role for TrkB in the function of the granule cells and hippocampal circuitry.

  18. Ectopic ependymal cells in striatum accompany neurogenesis in a rat model of stroke.

    PubMed

    Danilov, A I; Kokaia, Z; Lindvall, O

    2012-07-12

    Stroke-induced neurogenesis originates from a neural stem cell (NSC) niche in subventricular zone (SVZ). In mice, NSCs are concentrated in a so-called "neurogenic spot" in the lateral angle area of SVZ. We aimed to identify the "neurogenic spot" in the rat SVZ and to characterize the cellular changes in the ependymal cell compartment in this area at different time points after middle cerebral artery occlusion. The majority of ependymal cells outlining the ventricular wall did not proliferate, and their numbers in the "neurogenic spot" declined at 6 and 16weeks after stroke. Cells with the ultrastructural properties of ependymal cells were detected in the adjacent striatum. The number of these ectopic ependymal cells (EE cells) correlated positively with the magnitude of lateral ventricular enlargement and negatively with the ependymal cell number in the "neurogenic spot". EE cells were found along blood vessels, accumulated in the pericyst regions, and participated in scar formation but did not incorporate BrdU. We provide the first evidence for the occurrence of EE cells in the ischemic striatum following stroke.

  19. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    SciTech Connect

    Otsuru, Satoru; Tamai, Katsuto . E-mail: tamai@gts.med.osaka-u.ac.jp; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-03-09

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood.

  20. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells.

    PubMed

    Siddiqui, Tabrez J; Tari, Parisa Karimi; Connor, Steven A; Zhang, Peng; Dobie, Frederick A; She, Kevin; Kawabe, Hiroshi; Wang, Yu Tian; Brose, Nils; Craig, Ann Marie

    2013-08-21

    Selective synapse development determines how complex neuronal networks in the brain are formed. Complexes of postsynaptic neuroligins and LRRTMs with presynaptic neurexins contribute widely to excitatory synapse development, and mutations in these gene families increase the risk of developing psychiatric disorders. We find that LRRTM4 has distinct presynaptic binding partners, heparan sulfate proteoglycans (HSPGs). HSPGs are required to mediate the synaptogenic activity of LRRTM4. LRRTM4 shows highly selective expression in the brain. Within the hippocampus, we detected LRRTM4 specifically at excitatory postsynaptic sites on dentate gyrus granule cells. LRRTM4(-/-) dentate gyrus granule cells, but not CA1 pyramidal cells, exhibit reductions in excitatory synapse density and function. Furthermore, LRRTM4(-/-) dentate gyrus granule cells show impaired activity-regulated AMPA receptor trafficking. These results identifying cell-type-specific functions and multiple presynaptic binding partners for different LRRTM family members reveal an unexpected complexity in the design and function of synapse-organizing proteins.

  1. Olfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo

    PubMed Central

    Zhang, Li; Huang, Yubin; Hu, Bing

    2016-01-01

    Granule cells, rich in dendrites with densely punctated dendritic spines, are the most abundant inhibitory interneurons in the olfactory bulb. The dendritic spines of granule cells undergo remodeling during the development of the nervous system. The morphological plasticity of the spines’ response to different olfactory experiences in vivo is not fully known. In initial studies, a single granule cell in Xenopus tadpoles was labeled with GFP plasmids via cell electroporation; then, morphologic changes of the granule cell spines were visualized by in vivo confocal time-lapse imaging. With the help of long-term imaging, the total spine density, dynamics, and stability of four types of dendritic spines (mushroom, stubby, thin and filopodia) were obtained. Morphological analysis demonstrated that odor enrichment produced a remarkable increase in the spine density and stability of large mushroom spine. Then, with the help of short-term imaging, we analyzed the morphological transitions among different spines. We found that transitions between small spines (thin and filopodia) were more easily influenced by odor stimulation or olfactory deprivation. These results indicate that different olfactory experiences can regulate the morphological plasticity of different dendritic spines in the granule cell. PMID:27713557

  2. Cortical granule exocytosis in C. elegans is regulated by cell cycle components including separase.

    PubMed

    Bembenek, Joshua N; Richie, Christopher T; Squirrell, Jayne M; Campbell, Jay M; Eliceiri, Kevin W; Poteryaev, Dmitry; Spang, Anne; Golden, Andy; White, John G

    2007-11-01

    In many organisms, cortical granules undergo exocytosis following fertilization, releasing cargo proteins that modify the extracellular covering of the zygote. We identified cortical granules in Caenorhabditis elegans and have found that degranulation occurs in a wave that initiates in the vicinity of the meiotic spindle during anaphase I. Previous studies identified genes that confer an embryonic osmotic sensitivity phenotype, thought to result from abnormal eggshell formation. Many of these genes are components of the cell cycle machinery. When we suppressed expression of several of these genes by RNAi, we observed that cortical granule trafficking was disrupted and the eggshell did not form properly. We conclude that osmotic sensitivity phenotypes occur because of defects in trafficking of cortical granules and the subsequent formation of an impermeable eggshell. We identified separase as a key cell cycle component that is required for degranulation. Separase localized to cortically located filamentous structures in prometaphase I upon oocyte maturation. After fertilization, separase disappeared from these structures and appeared on cortical granules by anaphase I. RNAi of sep-1 inhibited degranulation in addition to causing extensive chromosomal segregation failures. Although the temperature-sensitive sep-1(e2406) allele exhibited similar inhibition of degranulation, it had minimal effects on chromosome segregation. These observations lead us to speculate that SEP-1 has two separable yet coordinated functions: to regulate cortical granule exocytosis and to mediate chromosome separation.

  3. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.

    PubMed

    Ohashi, Ryo; Sakata, Shin-ichi; Naito, Asami; Hirashima, Naohide; Tanaka, Masahiko

    2014-04-01

    Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca(2+) release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single-cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain-derived neurotrophic factor (BDNF) in the culture medium. The ryanodine-induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells.

  4. Culturing of cerebellar granule cells to study neuronal migration: gradient and local perfusion assays.

    PubMed

    Guijarro, Patricia; Jiang, Jian; Yuan, Xiao-bing

    2012-07-01

    Cultures of cerebellar granule cells are a suitable model to analyze the mechanisms governing neuronal migration. In this unit, we describe a protocol to obtain cultures of dissociated granule cells at a low density, where individual cells can be easily observed. In addition, we include a protocol for studying neuronal migration in these cultures, using single, actively migrating cerebellar granule cells. Following this protocol, a factor of interest can be applied either in a gradient concentration by means of a micropipet located near the neuron, or in a homogeneous concentration by locally perfusing a certain region of the neuron. Time-lapse images are taken to analyze changes in the speed and/or directionality of the observed neuron. Overall, the two protocols take more or less a day and a half to perform, and are a useful way to evaluate a certain factor/drug for its chemotactic activity or its capacity to alter migration speed.

  5. Ectopic micronodular thymoma with lymphoid stroma in the cervical region: a rare case associated with Langerhans cells proliferation

    PubMed Central

    Yu, Min; Meng, Yuan; Xu, Bin; Zhao, Lin; Zhang, Qingfu

    2016-01-01

    Micronodular thymoma (MNT) with lymphoid stroma is a rare thymic epithelial neoplasm with the characteristics of multiple nodules separated by abundant lymphoid stroma. MNTs mainly arise in the anterior mediastinum and thymus, while ectopic MNTs are extremely rarely seen. Here, we report an ectopic MNT that occurred in the neck of a 62-year-old woman. There were also scattered eosinophilic granulocytes and S100+/CD1a+ Langerhans cells within the tumor. This case provides a better understanding of such rare, poorly understood cases. PMID:27486334

  6. Identification of miRNAs differentially expressed in human epilepsy with or without granule cell pathology.

    PubMed

    Zucchini, Silvia; Marucci, Gianluca; Paradiso, Beatrice; Lanza, Giovanni; Roncon, Paolo; Cifelli, Pierangelo; Ferracin, Manuela; Giulioni, Marco; Michelucci, Roberto; Rubboli, Guido; Simonato, Michele

    2014-01-01

    The microRNAs (miRNAs) are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. However, this kind of studies are difficult in the brain because of the cellular heterogeneity of the tissue and of the limited access to fresh tissue. Here, we focused on a pathology affecting specific cells in a subpopulation of epileptic brains (hippocampal granule cells), an approach that bypasses the above problems. All patients underwent surgery for intractable temporal lobe epilepsy and had hippocampal sclerosis associated with no granule cell pathology in half of the cases and with type-2 granule cell pathology (granule cell layer dispersion or bilamination) in the other half. The expression of more than 1000 miRNAs was examined in the laser-microdissected dentate granule cell layer. Twelve miRNAs were differentially expressed in the two groups. One of these, miR487a, was confirmed to be expressed at highly differential levels in an extended cohort of patients, using RT-qPCR. Bioinformatics searches and RT-qPCR verification identified ANTXR1 as a possible target of miR487a. ANTXR1 may be directly implicated in granule cell dispersion because it is an adhesion molecule that favors cell spreading. Thus, miR487a could be the first identified element of a miRNA signature that may be useful for prognostic evaluation of post-surgical epilepsy and may drive mechanistic studies leading to the identification of therapeutic targets.

  7. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma

    PubMed Central

    Finkin, Shlomi; Yuan, Detian; Stein, Ilan; Taniguchi, Koji; Weber, Achim; Unger, Kristian; Browning, Jeffrey L.; Goossens, Nicolas; Nakagawa, Shigeki; Gunasekaran, Ganesh; Schwartz, Myron E.; Kobayashi, Masahiro; Kumada, Hiromitsu; Berger, Michael; Pappo, Orit; Rajewsky, Klaus; Hoshida, Yujin; Karin, Michael; Heikenwalder, Mathias; Ben-Neriah, Yinon; Pikarsky, Eli

    2015-01-01

    Ectopic lymphoid-like structures (ELS) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicate poor prognosis in hepatocellular carcinoma (HCC). We studied an HCC mouse model, displaying abundant ELSs and found that they constitute immunopathological microniches, wherein progenitor malignant hepatocytes appear and thrive in a complex cellular and cytokine milieu until gaining self-sufficiency. Progenitor egression and tumor formation is associated with autocrine production of cytokines previously provided by the niche. ELSs develop upon cooperation between the innate and adaptive immune system which is facilitated by NF-κB activation and abolished by T cell depletion. These aberrant immune foci could be new targets for cancer therapy. PMID:26502405

  8. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc

    PubMed Central

    Giorgetti, Alessandra; Marchetto, Maria C. N.; Yu, Diana; Fazzina, Raffaella; Mu, Yangling; Adamo, Antonio; Paramonov, Ida; Cardoso, Julio Castaño; Monasterio, Montserrat Barragan; Bardy, Cedric; Cassiani-Ingoni, Riccardo; Liu, Guang-Hui; Gage, Fred H.; Izpisua Belmonte, Juan Carlos

    2012-01-01

    The finding that certain somatic cells can be directly converted into cells of other lineages by the delivery of specific sets of transcription factors paves the way to novel therapeutic applications. Here we show that human cord blood (CB) CD133+ cells lose their hematopoietic signature and are converted into CB-induced neuronal-like cells (CB-iNCs) by the ectopic expression of the transcription factor Sox2, a process that is further augmented by the combination of Sox2 and c-Myc. Gene-expression analysis, immunophenotyping, and electrophysiological analysis show that CB-iNCs acquire a distinct neuronal phenotype characterized by the expression of multiple neuronal markers. CB-iNCs show the ability to fire action potentials after in vitro maturation as well as after in vivo transplantation into the mouse hippocampus. This system highlights the potential of CB cells and offers an alternative means to the study of cellular plasticity, possibly in the context of drug screening research and of future cell-replacement therapies. PMID:22814375

  9. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc.

    PubMed

    Giorgetti, Alessandra; Marchetto, Maria C N; Li, Mo; Yu, Diana; Fazzina, Raffaella; Mu, Yangling; Adamo, Antonio; Paramonov, Ida; Cardoso, Julio Castaño; Monasterio, Montserrat Barragan; Bardy, Cedric; Cassiani-Ingoni, Riccardo; Liu, Guang-Hui; Gage, Fred H; Izpisua Belmonte, Juan Carlos

    2012-07-31

    The finding that certain somatic cells can be directly converted into cells of other lineages by the delivery of specific sets of transcription factors paves the way to novel therapeutic applications. Here we show that human cord blood (CB) CD133(+) cells lose their hematopoietic signature and are converted into CB-induced neuronal-like cells (CB-iNCs) by the ectopic expression of the transcription factor Sox2, a process that is further augmented by the combination of Sox2 and c-Myc. Gene-expression analysis, immunophenotyping, and electrophysiological analysis show that CB-iNCs acquire a distinct neuronal phenotype characterized by the expression of multiple neuronal markers. CB-iNCs show the ability to fire action potentials after in vitro maturation as well as after in vivo transplantation into the mouse hippocampus. This system highlights the potential of CB cells and offers an alternative means to the study of cellular plasticity, possibly in the context of drug screening research and of future cell-replacement therapies.

  10. Seizure-Induced Motility of Differentiated Dentate Granule Cells Is Prevented by the Central Reelin Fragment

    PubMed Central

    Orcinha, Catarina; Münzner, Gert; Gerlach, Johannes; Kilias, Antje; Follo, Marie; Egert, Ulrich; Haas, Carola A.

    2016-01-01

    Granule cell dispersion (GCD) represents a pathological widening of the granule cell layer in the dentate gyrus and it is frequently observed in patients with mesial temporal lobe epilepsy (MTLE). Recent studies in human MTLE specimens and in animal epilepsy models have shown that a decreased expression and functional inactivation of the extracellular matrix protein Reelin correlates with GCD formation, but causal evidence is still lacking. Here, we used unilateral kainate (KA) injection into the mouse hippocampus, an established MTLE animal model, to precisely map the loss of reelin mRNA-synthesizing neurons in relation to GCD along the septotemporal axis of the epileptic hippocampus. We show that reelin mRNA-producing neurons are mainly lost in the hilus and that this loss precisely correlates with the occurrence of GCD. To monitor GCD formation in real time, we used organotypic hippocampal slice cultures (OHSCs) prepared from mice which express enhanced green fluorescent protein (eGFP) primarily in differentiated dentate granule cells. Using life cell microscopy we observed that increasing doses of KA resulted in an enhanced motility of eGFP-positive granule cells. Moreover, KA treatment of OHSC resulted in a rapid loss of Reelin-producing interneurons mainly in the hilus, as observed in vivo. A detailed analysis of the migration behavior of individual eGFP-positive granule cells revealed that the majority of these neurons actively migrate toward the hilar region, where Reelin-producing neurons are lost. Treatment with KA and subsequent addition of the recombinant R3–6 Reelin fragment significantly prevented the movement of eGFP-positive granule cells. Together, these findings suggest that GCD formation is indeed triggered by a loss of Reelin in hilar interneurons. PMID:27516734

  11. Ectopic ATP synthase facilitates transfer of HIV-1 from antigen-presenting cells to CD4+ target cells

    PubMed Central

    Yavlovich, Amichai; Viard, Mathias; Zhou, Ming; Veenstra, Timothy D.; Wang, Ji Ming; Gong, Wanghua; Heldman, Eliahu; Blumenthal, Robert

    2012-01-01

    Antigen-presenting cells (APCs) act as vehicles that transfer HIV to their target CD4+ cells through an intercellular junction, termed the virologic synapse. The molecules that are involved in this process remain largely unidentified. In this study, we used photoaffinity labeling and a proteomic approach to identify new proteins that facilitate HIV-1 transfer. We identified ectopic mitochondrial ATP synthase as a factor that mediates HIV-1 transfer between APCs and CD4+ target cells. Monoclonal antibodies against the β-subunit of ATP synthase inhibited APC-mediated transfer of multiple strains HIV-1 to CD4+ target cells. Likewise, the specific inhibitors of ATPase, citreoviridin and IF1, completely blocked APC-mediated transfer of HIV-1 at the APC-target cell interaction step. Confocal fluorescent microscopy showed localization of extracellular ATP synthase at junctions between APC and CD4+ target cells. We conclude that ectopic ATP synthase could be an accessible molecular target for inhibiting HIV-1 proliferation in vivo. PMID:22753871

  12. CD8 T Cells Are Required for the Formation of Ectopic Germinal Centers in Rheumatoid Synovitis

    PubMed Central

    Kang, Young Mo; Zhang, Xiaoyu; Wagner, Ulf G.; Yang, Hongyu; Beckenbaugh, Robert D.; Kurtin, Paul J.; Goronzy, Jörg J.; Weyand, Cornelia M.

    2002-01-01

    The assembly of inflammatory lesions in rheumatoid arthritis is highly regulated and typically leads to the formation of lymphoid follicles with germinal center (GC) reactions. We used microdissection of such extranodal follicles to analyze the colonizing T cells. Although the repertoire of follicular T cells was diverse, a subset of T cell receptor (TCR) sequences was detected in multiple independent follicles and not in interfollicular zones, suggesting recognition of a common antigen. Unexpectedly, the majority of shared TCR sequences were from CD8 T cells that were highly enriched in the synovium and present in low numbers in the periphery. To examine their role in extranodal GC reactions, CD8 T cells were depleted in human synovium-SCID mouse chimeras. Depletion of synovial CD8 T cells caused disintegration of the GC-containing follicles. In the absence of CD8 T cells, follicular dendritic cells disappeared, production of lymphotoxin-α1β2 markedly decreased, and immunoglobulin (Ig) secretion ceased. Immunohistochemical studies demonstrated that these CD8 T cells accumulated at the edge of the mantle zone. Besides their unique localization, they were characterized by the production of interferon (IFN)-γ, lack of the pore-forming enzyme perforin, and expression of CD40 ligand. Perifollicular IFN-γ+ CD8 T cells were rare in secondary lymphoid tissues but accounted for the majority of IFN-γ+ cells in synovial infiltrates. We propose that CD8+ T cells regulate the structural integrity and functional activity of GCs in ectopic lymphoid follicles. PMID:12021312

  13. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein

    SciTech Connect

    Kokkonen, J.O.; Kovanen, P.T.

    1987-04-01

    The uptake of low density lipoprotein (LDL) by cultured mouse macrophages was markedly promoted by isolated rat mast cell granules present in the culture medium. The granule-mediated uptake of /sup 125/I-LDL enhanced the rate of cholesteryl ester synthesis in the macrophages, the result being accumulation of cholesteryl esters in these cells. Binding of LDL to the granules was essential for the granule-mediated uptake of LDL by macrophages, for the uptake process was prevented by treating the granules with avidin or protamine chloride or by treating LDL with 1,2-cyclohexanedione, all of which inhibit the binding of LDL to the granules. Inhibition of granule phagocytosis by the macrophages with cytochalasin B also abolished the granule-mediated uptake of LDL. Finally, mouse macrophage monolayers and LDL were incubated in the presence of isolated rat serosal mast cells. Stimulation of the mast cells with compound 48/80, a degranulating agent, resulted in dose-dependent release of secretory granules from the mast cells and a parallel increase in /sup 14/C cholesteryl ester synthesis in the macrophages. The results show that, in this in vitro model, the sequence of events leading to accumulation of cholesteryl esters in macrophages involves initial stimulation of mast cells, subsequent release of their secretory granules, binding of LDL to the exocytosed granules, and, finally, phagocytosis of the LDL-containing granules by macrophages.

  14. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication.

    PubMed

    Jiang, Bo; Liu, Yu

    2013-06-01

    Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3',4',5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules.

  15. Avian minor salivary glands: an ultrastructural study of the secretory granules in mucous and seromucous cells.

    PubMed

    Olmedo, L A; Samar, M E; Avila, R E; de Crosa, M G; Dettin, L

    2000-01-01

    Ultrastructural descriptions in birds are scarce thus, in this study we have characterized the secretory granules of mucous and seromucous cells from the palatine and lingual salivary glands of birds with different diets. The samples were taken from the tongue and palatine mucosa of chicken (Gallus gallus), quail (Coturnix coturnix), chimango (Milvago chimango) and white heron (Egretta thula). The samples were processed for observation by transmission electron microscopy (TEM) employing 4% Karnovsky solution for fixation. The most noteworthy finding was the heterogeneous ultrastructural appearance of the secretory granules. Differences in substructure were found between the four species, between the palatine and lingual glands in the same species and even within the same acinus and the same cell. At variance with other authors, these differences cannot be attributed to the type of fixative solution used taking into account that all the samples were processed in the same way. Previous histochemical studies have shown the presence of sulfated and non sulfated glycoconjugates in these glands which can be associated to the maturation of the granules. These granules are probably representative of peculiar storage of the secretory products that would give rise to a heterogeneous and complex ultrastructural pattern of granules in the mucosa and seromucosa cells of these avian species.

  16. The econobiology of pancreatic acinar cells granule inventory and the stealthy nano-machine behind it.

    PubMed

    Hammel, Ilan; Meilijson, Isaac

    2016-03-01

    The pancreatic gland secretes most of the enzymes and many other macromolecules needed for food digestion in the gastrointestinal tract. These molecules play an important role in digestion, host defense and lubrication. The secretion of pancreatic proteins ensures the availability of the correct mix of proteins when needed. This review describes model systems available for the study of the econobiology of secretory granule content. The secretory pancreatic molecules are stored in large dense-core secretory granules that may undergo either constitutive or evoked secretion, and constitute the granule inventory of the cell. It is proposed that the Golgi complex functions as a distribution center for secretory proteins in pancreatic acinar cells, packing the newly formed secretory molecules into maturing secretory granules, also known functionally as condensing vacuoles. Mathematical modelling brings forward a process underlying granule inventory maintenance at various physiological states of condensation and aggregation by homotypic fusion. These models suggest unique but simple mechanisms accountable for inventory buildup and size, as well as for the distribution of secretory molecules into different secretory pathways in pancreatic acinar cells.

  17. Mast cell differentiation depends on T cells and granule synthesis on fibroblasts.

    PubMed Central

    Davidson, S; Mansour, A; Gallily, R; Smolarski, M; Rofolovitch, M; Ginsburg, H

    1983-01-01

    Mast cell differentiation was generated in the following three experimental situations: (i) infection of mice with Schistosoma Mansoni or with Nippostrongylus brasiliensis and growth of the lymph node cells in the presence of the corresponding helminth antigen; (ii) immunization with horse serum and growth of blood and lymph node cells in the presence of the horse serum; (iii) exposure of T-cell-depleted suspensions of lymph node cells from unimmunized mice to T-cell factor (TCF) released into medium of the young cultures of (i) and (ii). This differentiation was also obtained when lymph node cells from athymic nude mice were exposed to TCF. The cell suspensions were plated on X-irradiated fibroblast monolayers prepared from embryonic mouse skin. Screening of the suspensions before plating on the fibroblasts in culture revealed no young forms of mast cells, and none were present in culture of nude mice lymph node cells maintained without TCF. Primordial appearance of metachromatic granules generally in the golgi zone was first seen in many 'large lymphoid cells' as early as 18 hr after plating. This was followed by increase in the cytoplasm volume, increase in granule number and mitosis, ending at 10-18 days with homogeneous populations of mature mast cells. When the mesenteric lymph node cells from mice infected with the helminths were grown in the absence of fibroblasts but in the presence of the antigen, homogeneous populations of cells with extended cytoplasm, filled with unstained vacuoles developed during days 7-13. These cells did not contain histamine (or at most 0.2 microgram per 10(6) vacuolated cells). When these cells were plated on fibroblast monolayers clear granule formation in all the vacuoles was seen 2 days later. It increased progressively in size and staining intensity, until the vacuoles transformed into typical mast cell granules. By the fourth day the vacuolated cells attained the typical mast cell morphology and the histamine content greatly

  18. [Basic proteins in the granules of mast cells. Demonstration of masked proteins, acidophilic staining of the granules].

    PubMed

    Anikó, K; Lajos, K

    1976-07-01

    Basic proteins of the granules of mast cells in nativ, formalin-, alcohol- and aceton fixed preparations without any preliminary treatment, when stained with acidic dye at the pH 9 cytochemically seem to be masked. After various preliminary treatment (treatment with acid, with cetylpiridinumchlorid, CPC) mast-cell granula stained with acidic-dye at pH 9 appear intensively acidophile. This phenomenon can be explained by the presence of basic proteins in the mast cell granula. Preliminary treatment with CPC inhibits acid radicals of the heparin. This may lead to the disintegration of the linkage between proteins of the heparin, thus amino-group of the basic proteins become reactivated and can be identified by acidic dyes. It can not be excluded as well, that CPC linked to the heparin with free positive radicals reveals acidic-dye-binding capacity. In cases of preliminary treatment with various acids this mechanism does not seem possible to lay on the base of changing of the dye binding capacity.

  19. Cytocompatibility of porous biphasic calcium phosphate granules with human mesenchymal cells by a multiparametric assay.

    PubMed

    Mitri, Fabio; Alves, Gutemberg; Fernandes, Gustavo; König, Bruno; Rossi, Alexandre J R; Granjeiro, Jose

    2012-06-01

    This work aims to evaluate the cytocompatibility of injectable and moldable restorative biomaterials based on granules of dense or porous biphasic calcium phosphates (BCPs) with human primary mesenchymal cells, in order to validate them as tools for stem cell-induced bone regeneration. Porous hydroxyapatite (HA) and HA/beta-tricalcium phosphate (β-TCP) (60:40) granules were obtained by the addition of wax spheres and pressing at 20 MPa, while dense materials were compacted by pressing at 100 MPa, followed by thermal treatment (1100°C), grinding, and sieving. Extracts were prepared by 24-h incubation of granules on culture media, with subsequent exposition of human primary mesenchymal cells. Three different cell viability parameters were evaluated on the same samples. Scanning electron microscopy analysis of the granules revealed distinct dense and porous surfaces. After cell exposition to extracts, no significant differences on mitochondrial activity (2,3-bis(2-methoxy-4-nitro-5-sulfophenly)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) or cell density (Crystal Violet Dye Elution) were observed among groups. However, Neutral Red assay revealed that dense materials extracts induced lower levels of total viable cells to porous HA/β-TCP (P < 0.01). Calcium ion content was also significantly lower on the extracts of dense samples. Porogenic treatments on BCP composites do not affect cytocompatibility, as measured by three different parameters, indicating that these ceramics are well suited for further studies on future bioengineering applications.

  20. Ectopic pregnancy

    MedlinePlus

    Tubal pregnancy; Cervical pregnancy; Tubal ligation - ectopic pregnancy ... In most pregnancies, the fertilized egg travels through the fallopian tube to the womb (uterus). If the movement of the egg ...

  1. Role of the planar cell polarity pathway in regulating ectopic hair cell-like cells induced by Math1 and testosterone treatment.

    PubMed

    Yang, Xiao-Yu; Jin, Kai; Ma, Rui; Yang, Juan-Mei; Luo, Wen-Wei; Han, Zhao; Cong, Ning; Ren, Dong-Dong; Chi, Fang-Lu

    2015-07-30

    Planar cell polarity (PCP) signaling regulates cochlear extension and coordinates orientation of sensory hair cells in the inner ear. Retroviral-mediated introduction of the Math1 transcription factor leads to the transdifferentiation of some mature supporting cells into hair cells. Testosterone, a gonadal sex steroid hormone, is associated with neuroprotection and regeneration in Central Nervous System (CNS) development. Experiments were performed in vitro using Ad5-EGFP-Math1/Ad5-Math1 in neonatal mouse cochleas. Establishment of ectopic hair-cell like cell(HCLC) polarity in the lesser epithelial ridge (LER) with or without testosterone-3-(O-carboxymethyl) oxime bovine serum albumin (testosterone-BSA) treatment was investigated to determine the role of the PCP pathway in regulating ectopic regenerated (HCLCs) through induction by Math1 and testosterone treatment. After Math1 infection, new ectopic regenerated HCLCs were detected in the LER. After the HCLCs developed actin-rich stereocilia, the basal bodies moved from the center to the distal side. Moreover, the narrower, non-sensory LER region meant that the convergent extension (CE) was also established after transfection with Math1. After 9 days of in vitro testosterone-BSA treatment, more Edu(+), Sox2(+), and HCLC cells were observed in the LER with an accompanying downregulation of E-cadherin. Interestingly, the CE of the Ad5-EGFP-math1 treated LER is altered, but the intrinsic cellular polarity of the HCLCs is not obviously changed. In summary, our results indicate that PCP signaling is involved in the development of ectopic HCLCs and the CE of the ectopic sensory region is altered by testosterone-BSA through downregulation of cell-cell adhesion. Testosterone-BSA and Math1 treatment could promote an increase in HCLCs in the LER through proliferation and transdifferentiation.

  2. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells.

    PubMed Central

    Lang, T; Wacker, I; Wunderlich, I; Rohrbach, A; Giese, G; Soldati, T; Almers, W

    2000-01-01

    In neuroendocrine PC-12 cells, evanescent-field fluorescence microscopy was used to track motions of green fluorescent protein (GFP)-labeled actin or GFP-labeled secretory granules in a thin layer of cytoplasm where cells adhered to glass. The layer contained abundant filamentous actin (F-actin) locally condensed into stress fibers. More than 90% of the granules imaged lay within the F-actin layer. One-third of the granules did not move detectably, while two-thirds moved randomly; the average diffusion coefficient was 23 x 10(-4) microm(2)/s. A small minority (<3%) moved rapidly and in a directed fashion over distances more than a micron. Staining of F-actin suggests that such movement occurred along actin bundles. The seemingly random movement of most other granules was not due to diffusion since it was diminished by the myosin inhibitor butanedione monoxime, and blocked by chelating intracellular Mg(2+) and replacing ATP with AMP-PNP. Mobility was blocked also when F-actin was stabilized with phalloidin, and was diminished when the actin cortex was degraded with latrunculin B. We conclude that the movement of granules requires metabolic energy, and that it is mediated as well as limited by the actin cortex. Opposing actions of the actin cortex on mobility may explain why its degradation has variable effects on secretion. PMID:10827968

  3. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells

    PubMed Central

    Huang, Cheng-Chiu; Sugino, Ken; Shima, Yasuyuki; Guo, Caiying; Bai, Suxia; Mensh, Brett D; Nelson, Sacha B; Hantman, Adam W

    2013-01-01

    Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 PMID:23467508

  4. Mechanisms of granule membrane recapture following exocytosis in intact mast cells.

    PubMed

    Cabeza, Jose M; Acosta, Jorge; Alés, Eva

    2013-07-12

    In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified "large-capacitance flickers" that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent "compound cavicapture," most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event.

  5. Mechanisms of Granule Membrane Recapture following Exocytosis in Intact Mast Cells*

    PubMed Central

    Cabeza, Jose M.; Acosta, Jorge; Alés, Eva

    2013-01-01

    In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified “large-capacitance flickers” that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent “compound cavicapture,” most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event. PMID:23709219

  6. Mouse granulated metrial gland cells require contact with stromal cells to maintain viability

    PubMed Central

    STEWART, I. J.

    2000-01-01

    Granulated metrial gland (GMG) cells differentiate in the uterine wall in pregnancy in mice but the mechanisms which control their differentiation and maintenance are unknown. In vivo, GMG cells share an intimate association with fibroblast-like stromal cells. The importance of this association has been assessed by examining the effects of withdrawal of stromal cell contact on GMG cell maintenance in vitro. When single cell suspensions of cells were prepared from mouse metrial glands there was a steady decline in numbers with days of culture but usually some remained at 7 d of culture. The ability of metrial gland cells to kill Wehi 164 target cells in 51Cr-release cytotoxicity assays was retained by cells cultured for at least 3 d. When explants of metrial gland were maintained in culture to allow GMG cell migration onto the culture flask, the attached GMG cells were lost by 1 d later. Overall, these results suggest that a juxtacrine regulatory mechanism maintains GMG cells. The rapid loss of unsupported GMG cells in culture has major implications in the design of assays to examine GMG cell function. PMID:11117633

  7. Isolation of rice dwarf mutants with ectopic deposition of phenolic components including lignin in parenchyma cell walls of internodes.

    PubMed

    Sato, Kanna; Kawamura, Asuka; Obara, Tsukasa; Kawai, Shinya; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro

    2011-12-01

    Rice internodes must have the proper shape to support high-yielding panicles. The shape of internodes is controlled by various factors involved in their formation, such as developmental patterns, cell division, cell elongation, and cell wall biosynthesis. To understand the regulation of internode development, we screened dwarf mutants to identify those with a phenotype of ectopic deposits of phenolic components in parenchyma cell walls of internodes. We named these mutants ectopic deposition of phenolic components1 (edp1). Two alleles were identified, edp1-1 and edp1-2. Furthermore, these mutants showed disordered cell files in internode parenchyma. These abnormal phenotypes were very similar to that of a previously reported dwarf50 (d50) mutant. Genetic analyses of edp1 mutants revealed that the edp1 loci are distinct from d50. Our results indicate that analyses of edp1 mutants as well as the d50 mutant will be useful for understanding the molecular mechanisms behind ectopic deposition of cell wall phenolic components in internode parenchyma cells and the regulation of internode development.

  8. Ectopic expression of the chemokine CXCL17 in colon cancer cells

    PubMed Central

    Ohlsson, Lina; Hammarström, Marie-Louise; Lindmark, Gudrun; Hammarström, Sten; Sitohy, Basel

    2016-01-01

    Background: The novel chemokine CXCL17 acts as chemoattractant for monocytes, macrophages and dendritic cells. CXCL17 also has a role in angiogenesis of importance for tumour development. Methods: Expression of CXCL17, CXCL10, CXCL9 and CCL2 was assessed in primary colon cancer tumours, colon carcinoma cell lines and normal colon tissue at mRNA and protein levels by real-time qRT–PCR, immunohistochemistry, two-colour immunofluorescence and immunomorphometry. Results: CXCL17 mRNA was expressed at 8000 times higher levels in primary tumours than in normal colon (P<0.0001). CXCL17 protein was seen in 17.2% of cells in tumours as compared with 0.07% in normal colon (P=0.0002). CXCL10, CXCL9 and CCL2 mRNAs were elevated in tumours but did not reach the levels of CXCL17. CXCL17 and CCL2 mRNA levels were significantly correlated in tumours. Concordant with the mRNA results, CXCL10- and CXCL9-positive cells were detected in tumour tissue, but at significantly lower numbers than CXCL17. Two-colour immunofluorescence and single-colour staining of consecutive sections for CXCL17 and the epithelial cell markers carcinoembryonic antigen and BerEP4 demonstrated that colon carcinoma tumour cells indeed expressed CXCL17. Conclusions: CXCL17 is ectopically expressed in primary colon cancer tumours. As CXCL17 enhances angiogenesis and attracts immune cells, its expression could be informative for prognosis in colon cancer patients. PMID:26889977

  9. Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype.

    PubMed

    Malosio, Maria Luisa; Giordano, Tiziana; Laslop, Andrea; Meldolesi, Jacopo

    2004-02-15

    Expression of dense-core granules, a typical exocytic organelle, is widely believed to be controlled by coordinate gene expression mechanisms specific to neurones and neurosecretory cells. Recent studies in PC12 cells, however, have suggested the number of granules/cells depends on the levels of only one of their cargo proteins, chromogranin A, regulating the metabolism of the other proteins, and thus the composition of the organelles, by an on/off switch mechanism. In addition, transfection of chromogranin A was reported to induce appearance of dense-core granules in the non-neurosecretory fibroblasts of the CV-1 line. Here the role of chromogranin A has been reinvestigated using not the heterogeneous PC12 line but several clones isolated therefrom. In these clones, investigated as such or after transfection with chromogranin A antisense sequences, the ratio between chromogranin A and its secretory protein mate, chromogranin B, was not constant but highly and apparently randomly variable. Variability of the chromogranin A/chromogranin B ratio was seen by confocal immunofluorescence also among the cells of single clones and subclones and among the granules of single cells. Moreover, stable and transient transfections of chromogranin A in a PC12 clone characterised by a low number of dense-core granules (one fifth of the reference clone) failed to modify significantly the number of the organelles, despite the several-fold increase of the granin. Finally, in three types of non-neurosecretory cells (CV-1, adenocarcinoma TS/A and a clone of PC12 incompetent for secretion) the transfected chromogranin A accumulated mostly in the Golgi/transGolgi area and was released rapidly from resting cells (constitutive secretion) as revealed by both immunofluorescence during cycloheximide treatment and pulse-chase experiments. Only a minor fraction was sorted to discrete organelles that were not dense-core granules, but primarily lysosomes because they contained no chromogranin B

  10. Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination.

    PubMed

    Strowbridge, Ben W

    2010-02-11

    In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks.

  11. Morphological changes among hippocampal dentate granule cells exposed to early kindling-epileptogenesis

    PubMed Central

    Singh, Shatrunjai P.; He, Xiaoping; McNamara, James O.; Danzer, Steve C.

    2013-01-01

    Temporal lobe epilepsy is associated with changes in the morphology of hippocampal dentate granule cells. These changes are evident in numerous models that are associated with substantial neuron loss and spontaneous recurrent seizures. By contrast, previous studies have shown that in the kindling model, it is possible to administer a limited number of stimulations sufficient to produce a lifelong enhanced sensitivity to stimulus evoked seizures without associated spontaneous seizures and minimal neuronal loss. Here we examined whether stimulation of the amygdala sufficient to evoke five convulsive seizures (class IV or greater on Racine’s scale) produce morphological changes similar to those observed in models of epilepsy associated with substantial cell loss. The morphology of GFP-expressing granule cells from Thy-1 GFP mice was examined either one day or one month after the last evoked seizure. Interestingly, significant reductions in dendritic spine density were evident one day after the last seizure, the magnitude of which had diminished by one month. Further, there was an increase in the thickness of the granule cell layer one day after the last evoked seizure, which was absent a month later. We also observed an increase in the area of the proximal axon, which again returned to control levels a month later. No differences in the number of basal dendrites were detected at either time point. These findings demonstrate that the early stages of kindling epileptogenesis produce transient changes in the granule cell body layer thickness, molecular layer spine density and axon proximal area, but do not produce striking rearrangements of granule cell structure. PMID:23893783

  12. Recruitment of an inhibitory hippocampal network after bursting in a single granule cell.

    PubMed

    Mori, Masahiro; Gähwiler, Beat H; Gerber, Urs

    2007-05-01

    The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz. In recordings from functionally connected pairs of neurons, burst firing of a granule cell increased the probability of glutamate release onto both CA3 pyramidal cells and inhibitory interneurons, such that subsequent low-frequency stimulation evoked biphasic excitatory/inhibitory responses in a CA3 pyramidal cell, an effect lasting for minutes. Analysis of the unitary connections in the circuit revealed that granule cell bursting caused powerful activation of an inhibitory network, thereby transiently suppressing excitatory input to CA3 pyramidal cells. This phenomenon reflects the high incidence of spike-to-spike transmission at granule cell to interneuron synapses, the numerically much greater targeting by mossy fibers of inhibitory interneurons versus principal cells, and the extensively divergent output of interneurons targeting CA3 pyramidal cells. Thus, mossy-fiber input to CA3 pyramidal cells appears to function in three distinct modes: a resting mode, in which synaptic transmission is ineffectual because of high failure rates; a bursting mode, in which excitation predominates; and a postbursting mode, in which inhibitory input to the CA3 pyramidal cells is greatly enhanced. A mechanism allowing the transient recruitment of inhibitory input may be important for controlling network activity in the highly interconnected CA3 pyramidal cell region.

  13. Hedgehog antagonist REN(KCTD11) regulates proliferation and apoptosis of developing granule cell progenitors.

    PubMed

    Argenti, Beatrice; Gallo, Rita; Di Marcotullio, Lucia; Ferretti, Elisabetta; Napolitano, Maddalena; Canterini, Sonia; De Smaele, Enrico; Greco, Azzura; Fiorenza, Maria Teresa; Maroder, Marella; Screpanti, Isabella; Alesse, Edoardo; Gulino, Alberto

    2005-09-07

    During the early development of the cerebellum, a burst of granule cell progenitor (GCP) proliferation occurs in the outer external granule layer (EGL), which is sustained mainly by Purkinje cell-derived Sonic Hedgehog (Shh). Shh response is interrupted once GCPs move into the inner EGL, where granule progenitors withdraw proliferation and start differentiating and migrating toward the internal granule layer (IGL). Failure to interrupt Shh signals results in uncoordinated proliferation and differentiation of GCPs and eventually leads to malignancy (i.e., medulloblastoma). The Shh inhibitory mechanisms that are responsible for GCP growth arrest and differentiation remain unclear. Here we report that REN, a putative tumor suppressor frequently deleted in human medulloblastoma, is expressed to a higher extent in nonproliferating inner EGL and IGL granule cells than in highly proliferating outer EGL cells. Accordingly, upregulated REN expression occurs along GCP differentiation in vitro, and, in turn, REN overexpression promotes growth arrest and increases the proportion of p27/Kip1+ GCPs. REN also impairs both Gli2-dependent gene transcription and Shh-enhanced expression of the target Gli1 mRNA, thus antagonizing the Shh-induced effects on the proliferation and differentiation of cultured GCPs. Conversely, REN functional knock-down impairs Hedgehog antagonism and differentiation and sustains the proliferation of GCPs. Finally, REN enhances caspase-3 activation and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling apoptotic GCP numbers; therefore, the pattern of REN expression, its activity, and its antagonism on the Hedgehog pathway suggest that this gene may represent a restraint of Shh signaling at the outer to inner EGL GCP transitions. Medulloblastoma-associated REN loss of function might withdraw such a limiting signal for immature cell expansion, thus favoring tumorigenesis.

  14. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis.

    PubMed

    Donelan, Matthew J; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A; Molkentin, Jeffery D; Brady, Scott T; Rhodes, Christopher J

    2002-07-05

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  15. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis

    NASA Technical Reports Server (NTRS)

    Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.; Rhodes, Christopher J.

    2002-01-01

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  16. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus.

    PubMed

    Wittner, L; Maglóczky, Z; Borhegyi, Z; Halász, P; Tóth, S; Eross, L; Szabó, Z; Freund, T F

    2001-01-01

    Temporal lobe epilepsy is known to be associated with hyperactivity that is likely to be generated or amplified in the hippocampal formation. The majority of granule cells, the principal cells of the dentate gyrus, are found to be resistant to damage in epilepsy, and may serve as generators of seizures if their inhibition is impaired. Therefore, the parvalbumin-containing subset of interneurons, known to provide the most powerful inhibitory input to granule cell somata and axon initial segments, were examined in human control and epileptic dentate gyrus. A strong reduction in the number of parvalbumin-containing cells was found in the epileptic samples especially in the hilar region, although in some patches of the granule cell layer parvalbumin-positive terminals that form vertical clusters characteristic of axo-axonic cells were more numerous than in controls. Analysis of the postsynaptic target elements of parvalbumin-positive axon terminals showed that they form symmetric synapses with somata, dendrites, axon initial segments and spines as in the control, but the ratio of axon initial segment synapses was increased in the epileptic tissue (control: 15.9%, epileptic: 31.3%). Furthermore, the synaptic coverage of granule cell axon initial segments increased more than three times (control: 0.52, epileptic: 2.10 microm synaptic length/100 microm axon initial segment membrane) in the epileptic samples, whereas the amount of somatic symmetric synapses did not change significantly. Although the number of parvalbumin-positive interneurons is decreased, the perisomatic inhibitory input of dentate granule cells is preserved in temporal lobe epilepsy. Basket and axo-axonic cell terminals - whether positive or negative for parvalbumin - are present, moreover, the axon collaterals targeting axon initial segments sprout in the epileptic dentate gyrus. We suggest that perisomatic inhibitory interneurons survive in epilepsy, but their somadendritic compartment and partly the

  17. Active dentate granule cells encode experience to promote the addition of adult-born hippocampal neurons.

    PubMed

    Kirschen, Gregory W; Shen, Jia; Tian, Mu; Schroeder, Bryce; Wang, Jia; Man, Guoming; Wu, Song; Ge, Shaoyu

    2017-04-03

    The continuous addition of new dentate granule cells, exquisitely regulated by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to impact the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca(2+) imaging to track the real-time activity of individual dentate granule cells in freely-behaving mice. For the first time, we found that active dentate granule cells responded to a novel experience by preferentially increasing their Ca(2+) event frequency. This elevated activity, which we found to be associated with object exploration, returned to baseline by one hour in the same environment, but could be dishabituated via introduction to a novel environment. To seamlessly transition between environments, we next established a freely-controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences accumulatively increased the number of newborn neurons when compared to a single experience. Finally, optogenetic silencing of existing dentate granule cells during novel environmental exploration perturbed experience-induced neuronal addition. Together, our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active dentate granule cells.SIGNIFICANCE STATEMENTAdult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca(2+) imaging of dentate granule neurons with a novel unrestrained virtual reality system for rodents, we discovered that a new experience rapidly

  18. Ectopic over-expression of oncogene Pim-2 induce malignant transformation of nontumorous human liver cell line L02.

    PubMed

    Ren, Ke; Duan, Wentao; Shi, Yujun; Li, Bo; Liu, Zuojin; Gong, Jiangping

    2010-07-01

    In order to prove that ectopic over-expression of Pim-2 could induce malignant transformation of human liver cell line L02, three groups of cells were set up including human liver cell line L02 (L02), L02 cells transfected with Pim-2 gene (L02/Pim-2) and L02 cells transfected with empty-vector (L02/Vector). Pim-2 expression levels were detected. The morphology, proliferation level, apoptosis rate and migration ability of the cells were detected respectively. Then the cells were subcutaneously inoculated into athymic mice and the microstructures of the neoplasm were observed. Compared with the controls, Pim-2 expression levels were significantly higher in L02/Pim-2 cells (P<0.05), and their morphology had obvious malignant changes. They also showed a significantly increased proliferation rate (P<0.05) and migration capacity (P<0.05), as well as a significantly decreased apoptosis rate (P<0.05). Only the athymic mice inoculated with L02/Pim-2 cells could generate neoplasm, and the morphology of the neoplasm coincided with that of the hepatoma. The results manifest that ectopic Pim-2 gene could be stably expressed in L02/Pim-2 cells. Both the morphological and biological changes of L02/Pim-2 cells demonstrate the trend of malignant transformation. L02/Pim-2 cells could generate hepatoma in athymic mice. In conclusion, Pim-2 could induce malignant transformation of human liver cell line L02.

  19. Possible link between ectopic pancreas and holoprosencephaly.

    PubMed

    Kin, Tatsuya; Korbutt, Gregory S; Shapiro, A M James

    2012-01-01

    We report on the incidental observation of ectopic pancreas in a donor for islet cell transplantation. The donor's clinical and imaging presentation was definitive for holoprosencephaly. This case report discusses a possible link between ectopic pancreas and holoprosencephaly.

  20. Mechanisms and benefits of granule cell latency coding in the mouse olfactory bulb

    PubMed Central

    Giridhar, Sonya; Urban, Nathaniel N.

    2012-01-01

    Inhibitory circuits are critical for shaping odor representations in the olfactory bulb. There, individual granule cells can respond to brief stimulation with extremely long (up to 1000 ms), input-specific latencies that are highly reliable. However, the mechanism and function of this long timescale activity remain unknown. We sought to elucidate the mechanism responsible for long-latency activity, and to understand the impact of widely distributed interneuron latencies on olfactory coding. We used a combination of electrophysiological, optical, and pharmacological techniques to show that long-latency inhibition is driven by late onset synaptic excitation to granule cells. This late excitation originates from tufted cells, which have intrinsic properties that favor longer latency spiking than mitral cells. Using computational modeling, we show that widely distributed interneuron latency increases the discriminability of similar stimuli. Thus, long-latency inhibition in the olfactory bulb requires a combination of circuit- and cellular-level mechanisms that function to improve stimulus representations. PMID:22754503

  1. Homotypic Fusion of Immature Secretory Granules during Maturation in a Cell-free Assay

    PubMed Central

    Urbé, Sylvie; Page, Lesley J.; Tooze, Sharon A.

    1998-01-01

    The biogenesis of secretory granules embodies several morphological and biochemical changes. In particular, in neuroendocrine cells maturation of secretory granules is characterized by an increase in size which has been proposed to reflect homotypic fusion of immature secretory granules (ISGs). Here we describe an assay that provides the first biochemical evidence for such a fusion event and allows us to analyze its regulation. The assay reconstitutes homotypic fusion between one population of ISGs containing a [35S]sulfate-labeled substrate, secretogranin II (SgII), and a second population containing the prohormone convertase PC2. Both substrate and enzyme are targeted exclusively to ISGs. Fusion is measured by quantification of a cleavage product of SgII produced by PC2. With this assay we show that fusion only occurs between ISGs and not between ISGs and MSGs, is temperature dependent, and requires ATP and GTP and cytosolic proteins. NSF (N-ethylmaleimide–sensitive fusion protein) is amongst the cytosolic proteins required, whereas we could not detect a requirement for p97. The ability to reconstitute ISG fusion in a cell-free assay is an important advance towards the identification of molecules involved in the maturation of secretory granules and will increase our understanding of this process. PMID:9864358

  2. Recurrent mossy fibers preferentially innervate parvalbumin-immunoreactive interneurons in the granule cell layer of the rat dentate gyrus.

    PubMed

    Blasco-Ibáñez, J M; Martínez-Guijarro, F J; Freund, T F

    2000-09-28

    Detection of vesicular zinc and immunohistochemistry against markers for different interneuron subsets were combined to study the postsynaptic target selection of zinc-containing recurrent mossy fiber collaterals in the dentate gyrus. Mossy fiber collaterals in the granule cell layer selectively innervated parvalbumin-containing cells, with numerous contacts per cell, whereas the granule cells were avoided. Under the electron microscope, those boutons made asymmetrical contacts on dendrites and somata. These findings suggest that, in addition to the hilar perforant path-associated (HIPP) interneurons, the basket and chandelier cells also receive a powerful feed-back drive from the granule cells, and thereby are able to control population synchrony in the dentate gyrus. On the other hand, the amount of monosynaptic excitatory feed-back among granule cells is shown to be negligible.

  3. On the origins of the universal dynamics of endogenous granules in mammalian cells.

    PubMed

    Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G

    2009-12-01

    Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.

  4. Pasteurella multocida toxin: Targeting mast cell secretory granules during kiss-and-run secretion.

    PubMed

    Danielsen, Elisabeth M; Christiansen, Nina; Danielsen, E Michael

    2016-02-01

    Pasteurella multocida toxin (PMT), a virulence factor of the pathogenic Gram-negative bacterium P. multocida, is a 146 kDa protein belonging to the A-B class of toxins. Once inside a target cell, the A domain deamidates the α-subunit of heterotrimeric G-proteins, thereby activating downstream signaling cascades. However, little is known about how PMT selects and enters its cellular targets. We therefore studied PMT binding and uptake in porcine cultured intestinal mucosal explants to identify susceptible cells in the epithelium and underlying lamina propria. In comparison with Vibrio cholera B-subunit, a well-known enterotoxin taken up by receptor-mediated endocytosis, PMT binding to the epithelial brush border was scarce, and no uptake into enterocytes was detected by 2h, implying that none of the glycolipids in the brush border are a functional receptor for PMT. However, in the lamina propria, PMT distinctly accumulated in the secretory granules of mast cells. This also occurred at 4 °C, ruling out endocytosis, but suggestive of uptake via pores that connect the granules to the cell surface. Mast cell granules are known to secrete their contents by a "kiss-and-run" mechanism, and we propose that PMT may exploit this secretory mechanism to gain entry into this particular cell type.

  5. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    PubMed

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage.

  6. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells

    PubMed Central

    Madroñal, Noelia; Delgado-García, José M.; Fernández-Guizán, Azahara; Chatterjee, Jayanta; Köhn, Maja; Mattucci, Camilla; Jain, Apar; Tsetsenis, Theodoros; Illarionova, Anna; Grinevich, Valery; Gross, Cornelius T.; Gruart, Agnès

    2016-01-01

    The hippocampus is critical for the acquisition and retrieval of episodic and contextual memories. Lesions of the dentate gyrus, a principal input of the hippocampus, block memory acquisition, but it remains unclear whether this region also plays a role in memory retrieval. Here we combine cell-type specific neural inhibition with electrophysiological measurements of learning-associated plasticity in behaving mice to demonstrate that dentate gyrus granule cells are not required for memory retrieval, but instead have an unexpected role in memory maintenance. Furthermore, we demonstrate the translational potential of our findings by showing that pharmacological activation of an endogenous inhibitory receptor expressed selectively in dentate gyrus granule cells can induce a rapid loss of hippocampal memory. These findings open a new avenue for the targeted erasure of episodic and contextual memories. PMID:26988806

  7. Cerebellar cortical degeneration with selective granule cell loss in Bavarian mountain dogs.

    PubMed

    Flegel, T; Matiasek, K; Henke, D; Grevel, V

    2007-08-01

    Three Bavarian mountain dogs aged between 18 and 20 months, not related to each other, were presented with chronic signs of cerebellar dysfunction. On sagittal T2-weighted magnetic resonance imaging brain images, the tentative diagnosis of cerebellar hypoplasia was established based on an enlarged cerebrospinal fluid space around the cerebellum and an increased cerebrospinal fluid signal between the folia. Post-mortem examination was performed in one dog and did show an overall reduction of cerebellar size. On histopathologic examination, a selective loss of cerebellar granule cells with sparing of Purkinje cells was evident. Therefore, the Bavarian mountain dog is a breed where cerebellar cortical degeneration caused by the rather exceptional selective granule cell loss can be seen as cause of chronic, slowly progressive cerebellar dysfunction starting at an age of several months.

  8. Granule cargo release from bone marrow-derived cells sustains cardiac hypertrophy.

    PubMed

    Yang, Fanmuyi; Dong, Anping; Ahamed, Jasimuddin; Sunkara, Manjula; Smyth, Susan S

    2014-11-15

    Bone marrow-derived inflammatory cells, including platelets, may contribute to the progression of pressure overload-induced left ventricular hypertrophy (LVH). However, the underlying mechanisms for this are still unclear. One potential mechanism is through release of granule cargo. Unc13-d(Jinx) (Jinx) mice, which lack Munc13-4, a limiting factor in vesicular priming and fusion, have granule secretion defects in a variety of hematopoietic cells, including platelets. In the current study, we investigated the role of granule secretion in the development of LVH and cardiac remodeling using chimeric mice specifically lacking Munc13-4 in marrow-derived cells. Pressure overload was elicited by transverse aortic constriction (TAC). Chimeric mice were created by bone marrow transplantation. Echocardiography, histology staining, immunohistochemistry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and mass spectrometry were used to study LVH progression and inflammatory responses. Wild-type (WT) mice that were transplanted with WT bone marrow (WT→WT) and WT mice that received Jinx bone marrow (Jinx→WT) developed LVH and a classic fetal reprogramming response early (7 days) after TAC. However, at late times (5 wk), mice lacking Munc13-4 in bone marrow-derived cells (Jinx→WT) failed to sustain the cardiac hypertrophy observed in WT chimeric mice. No difference in cardiac fibrosis was observed at early or late time points. Reinjection of WT platelets or platelet releasate partially restored cardiac hypertrophy in Jinx chimeric mice. These results suggest that sustained LVH in the setting of pressure overload depends on one or more factors secreted from bone marrow-derived cells, possibly from platelets. Inhibiting granule cargo release may represent a novel target for preventing sustained LVH.

  9. Elemental levels in mast cell granules differ in sections from normal and diabetic rats: an X-ray microanalysis study

    SciTech Connect

    Kendall, M.D.

    1988-03-01

    Mast cells around the thymus of rats stain red with alcian blue and safranin indicating that the mast cells are probably of the peritoneal (connective tissue) type. After the onset of streptozotocin induced diabetes some cells contain both red and blue granules and blue staining cells may appear. X-ray microanalysis of frozen freeze-dried sections from diabetic male CSE Wistar rats showed electron dense granules to have similar amounts of S to normal rat mast cell granules but reduced levels of Na, Mg, P, Cl and K. Two cells also had electron lucent granules with very high levels of Na, Cl, K and Ca and reduced concentrations of S. The differences in elemental composition suggest that the mast cells from diabetic rats are not immature, but are related to the condition of induced diabetes, and that granules of very different composition can occur within a single cell. X-ray microanalysis has given an insight into mast cell granule elemental content which was not possible by conventional biochemical methods.

  10. Secretory granule biogenesis and neuropeptide sorting to the regulated secretory pathway in neuroendocrine cells.

    PubMed

    Loh, Y Peng; Kim, Taeyoon; Rodriguez, Yazmin M; Cawley, Niamh X

    2004-01-01

    Neuropeptide precursors synthesized at the rough endoplasmic reticulum are transported and sorted at the trans-Golgi network (TGN) to the granules of the regulated secretory pathway (RSP) of neuroendocrine cells. They are then processed into active peptides and stored in large dense-core granules (LDCGs) until secreted upon stimulation. We have studied the regulation of biogenesis of the LDCGs and the mechanism by which neuropeptide precursors, such as pro-opiomelanocortin (POMC), are sorted into these LDCGs of the RSP in neuroendocrine and endocrine cells. We provide evidence that chromogranin A (CgA), one of the most abundant acidic glycoproteins ubiquitously present in neuroendocrine/endocrine cells, plays an important role in the regulation of LDCG biogenesis. Specific depletion of CgA expression by antisense RNAs in PC12 cells led to a profound loss of secretory granule formation. Exogenously expressed POMC was neither stored nor secreted in a regulated manner in these CgA-deficient PC12 cells. Overexpression of CgA in a CgA- and LDCG-deficient endocrine cell line, 6T3, restored regulated secretion of transfected POMC and the presence of immunoreactive CgA at the tips of the processes of these cells. Unlike CgA, CgB, another granin protein, could not substitute for the role of CgA in regulating LDCG biogenesis. Thus, we conclude that CgA is a key player in the regulation of the biogenesis of LDCGs in neuroendocrine cells. To examine the mechanism of sorting POMC to the LDCGs, we carried out site-directed mutagenesis, transfected the POMC mutants into PC12 cells, and assayed for regulated secretion. Our previous molecular modeling studies predicted a three-dimensional sorting motif in POMC that can bind to a sorting receptor, membrane carboxypeptidase E (CPE). The sorting signal consists of four conserved residues at the N-terminal loop structure of POMC: two acidic residues and two hydrophobic residues. The two acidic residues were predicted to bind to a

  11. Structural Plasticity of Dentate Granule Cell Mossy Fibers During the Development of Limbic Epilepsy

    PubMed Central

    Danzer, Steve C.; He, Xiaoping; Loepke, Andreas W.; McNamara, James O.

    2009-01-01

    Altered granule cell≫CA3 pyramidal cell synaptic connectivity may contribute to the development of limbic epilepsy. To explore this possibility, granule cell giant mossy fiber bouton plasticity was examined in the kindling and pilocarpine models of epilepsy using green fluorescent protein-expressing transgenic mice. These studies revealed significant increases in the frequency of giant boutons with satellite boutons 2 days and 1 month after pilocarpine status epilepticus, and increases in giant bouton area at 1 month. Similar increases in giant bouton area were observed shortly after kindling. Finally, both models exhibited plasticity of mossy fiber giant bouton filopodia, which contact GABAergic interneurons mediating feedforward inhibition of CA3 pyramids. In the kindling model, however, all changes were fleeting, having resolved by 1 month after the last evoked seizure. Together, these findings demonstrate striking structural plasticity of granule cell mossy fiber synaptic terminal structure in two distinct models of adult limbic epileptogenesis. We suggest that these plasticities modify local connectivities between individual mossy fiber terminals and their targets, inhibitory interneurons, and CA3 pyramidal cells potentially altering the balance of excitation and inhibition during the development of epilepsy. PMID:19294647

  12. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells.

    PubMed

    Dinh, Phat X; Beura, Lalit K; Das, Phani B; Panda, Debasis; Das, Anshuman; Pattnaik, Asit K

    2013-01-01

    Previous studies from our laboratory revealed that cellular poly(C) binding protein 2 (PCBP2) downregulates vesicular stomatitis virus (VSV) gene expression. We show here that VSV infection induces the formation of granular structures in the cytoplasm containing cellular RNA-binding proteins, including PCBP2, T-cell-restricted intracellular antigen 1 (TIA1), and TIA1-related protein (TIAR). Depletion of TIA1 via small interfering RNAs (siRNAs), but not depletion of TIAR, results in enhanced VSV growth and gene expression. The VSV-induced granules appear to be similar to the stress granules (SGs) generated in cells triggered by heat shock or oxidative stress but do not contain some of the bona fide SG markers, such as eukaryotic initiation factor 3 (eIF3) or eIF4A, or the processing body (PB) markers, such as mRNA-decapping enzyme 1A (DCP1a), and thus may not represent canonical SGs or PBs. Our results revealed that the VSV-induced granules, called SG-like structures here, contain the viral replicative proteins and RNAs. The formation and maintenance of the SG-like structures required viral replication and ongoing protein synthesis, but an intact cytoskeletal network was not necessary. These results suggest that cells respond to VSV infection by aggregating the antiviral proteins, such as PCBP2 and TIA1, to form SG-like structures. The functional significance of these SG-like structures in VSV-infected cells is currently under investigation.

  13. Selective nucleotide-release from dense-core granules in insulin-secreting cells.

    PubMed

    Obermüller, Stefanie; Lindqvist, Anders; Karanauskaite, Jovita; Galvanovskis, Juris; Rorsman, Patrik; Barg, Sebastian

    2005-09-15

    Secretory granules of insulin-secreting cells are used to store and release peptide hormones as well as low-molecular-weight compounds such as nucleotides. Here we have compared the rate of exocytosis with the time courses of nucleotide and peptide release by a combination of capacitance measurements, electrophysiological detection of ATP release and single-granule imaging. We demonstrate that the release of nucleotides and peptides is delayed by approximately 0.1 and approximately 2 seconds with respect to membrane fusion, respectively. We further show that in up to 70% of the cases exocytosis does not result in significant release of the peptide cargo, likely because of a mechanism that leads to premature closure of the fusion pore. Release of nucleotides and protons occurred regardless of whether peptides were secreted or not. These observations suggest that insulin-secreting cells are able to use the same secretory vesicles to release small molecules either alone or together with the peptide hormone.

  14. Activation of basophil and mast cell histamine release by eosinophil granule major basic protein

    PubMed Central

    1983-01-01

    Major basic protein (MBP) is a primary constituent of eosinophil granules. In this report, we demonstrate that MBP from human eosinophil granules initiates a nonlytic histamine release from human leukocytes. A direct effect of MBP on basophils was confirmed using purified human basophils. The kinetics of release were similar to those reported for poly-L-arginine, although MBP was less potent than poly-L-arginine of similar molecular weight. Reduction and alkylation of MBP diminished both the potency and efficacy of the molecule. Native MBP also stimulated histamine secretion from purified rat peritoneal mast cells in a manner characteristic of other polycations. These results emphasize the bidirectional nature of the basophil/mast cell-eosinophil regulatory axis. PMID:6854212

  15. Characterization of ectopically-expressed ets1 in human colon-cancer cells - induction of putative ets1-target gene.

    PubMed

    Suzuki, H; Romanospica, V; Georgiou, P; Fisher, R; Papas, T; Bhat, N

    1993-10-01

    We have previously shown that the ETS1 gene is expressed in a tissue-specific manner, and encodes a transcription factor, that may be involved in lymphocyte development, activation and proliferation. To understand the ETS1 function in non-lymphoid cells, we have ectopically expressed ETS1 protein in a human colon cancer cell line, and studied its biochemical properties. The 51 kDa ETS1 protein expressed in transfected cells localized in both the nucleus and the cytoplasm, has similar biochemical properties compared to ETS1 protein expressed in lymphoid cells. The ectopically expressed ETS1 binds to the DNA in sequence-specific manner and the binding activity is affected by the flanking sequences outside the 'GGA' core. Our results also demonstrate that the DNA-binding activity of full-length ETS1 is similar in lymphoid and non-lymphoid cells. The ETS1 expressed in DLD-1 cells is biologically active since it induces a 54.5 kDa polypeptide, whose expression level correlates with the expression of ETS1 in DLD-1 cells.

  16. Dentate granule cell modulation in freely moving rats: vigilance state effects.

    PubMed

    Bronzino, J D; Blaise, J H; Mokler, D J; Morgane, P J

    1999-04-12

    Dentate granule cell population responses to paired-pulse stimulation applied to the perforant pathway across a range of interpulse intervals (IPIs) were examined during different vigilance states-quiet waking (QW), slow-wave sleep (SWS), and rapid-eye movement (REM) sleep-in freely moving rats at 15, 30 and 90 days of age. Using these evoked field potentials, the paired-pulse index (PPI), a measure of the type and degree of modulation of dentate granule cell excitability, was computed and shown to be altered as a function of age. Animals, 15 days old, showed significantly lower levels of early inhibition (20-40 ms IPIs), i.e., greater PPI values, during all three vigilance states when compared to both the 30- and 90-day old animals. Adult, i.e, 90-day old animals, on the other hand, showed significantly greater levels of late inhibition (300-1000 ms IPIs), i.e., lower PPI values, than the younger animals (15- and 30-day old) during QW and SWS. These results indicate that as the dentate field of the hippocampal formation matures there are significant alterations in the modulation of dentate granule cell activity.

  17. Epithelial Cell Transforming 2 and Aurora Kinase B Modulate Formation of Stress Granule-Containing Transcripts from Diverse Cellular Pathways in Astrocytoma Cells.

    PubMed

    Weeks, Adrienne; Agnihotri, Sameer; Lymer, Jennifer; Chalil, Alan; Diaz, Roberto; Isik, Semra; Smith, Christian; Rutka, James T

    2016-06-01

    Stress granules are small RNA-protein granules that modify the translational landscape during cellular stress to promote survival. The RhoGTPase RhoA is implicated in the formation of RNA stress granules. Our data demonstrate that the cytokinetic proteins epithelial cell transforming 2 and Aurora kinase B (AurkB) are localized to stress granules in human astrocytoma cells. AurkB and its downstream target histone-3 are phosphorylated during arsenite-induced stress. Chemical (AZD1152-HQPA) and siRNA inhibition of AurkB results in fewer and smaller stress granules when analyzed using high-throughput fluorescent-based cellomics assays. RNA immunoprecipitation with the known stress granule aggregates TIAR and G3BP1 was performed on astrocytoma cells, and subsequent analysis revealed that astrocytoma stress granules harbor unique mRNAs for various cellular pathways, including cellular migration, metabolism, translation, and transcriptional regulation. Human astrocytoma cell stress granules contain mRNAs that are known to be involved in glioma signaling and the mammalian target of rapamycin pathway. These data provide evidence that RNA stress granules are a novel form of epigenetic regulation in astrocytoma cells, which may be targetable by chemical inhibitors and enhance astrocytoma susceptibility to conventional therapy, such as radiation and chemotherapy.

  18. Aquaporin 5 Plays a Role in Estrogen-Induced Ectopic Implantation of Endometrial Stromal Cells in Endometriosis.

    PubMed

    Jiang, Xiu Xiu; Fei, Xiang Wei; Zhao, Li; Ye, Xiao Lei; Xin, Liao Bin; Qu, Yang; Xu, Kai Hong; Wu, Rui Jin; Lin, Jun

    2015-01-01

    Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium.

  19. Studies of dentate granule cell modulation: paired-pulse responses in freely moving rats at three ages.

    PubMed

    Bronzino, J D; Blaise, J H; Austin-LaFrance, R J; Morgane, P J

    1996-10-23

    Dentate granule cell population responses to paired-pulse stimulations applied to the perforant pathway across a range of interpulse intervals (IPI) were examined in freely moving rats at 15, 30, and 90 days of age. The profile of the paired-pulse index (PPI), a measure of the type and degree of modulation of dentate granule cell excitability, was shown to change significantly as a function of age.

  20. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division

    PubMed Central

    Anderson-Furgeson, James C.; Zupan, John R.; Grangeon, Romain

    2016-01-01

    ABSTRACT Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. IMPORTANCE How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs

  1. High-frequency stimulation induces gradual immediate early gene expression in maturing adult-generated hippocampal granule cells.

    PubMed

    Jungenitz, Tassilo; Radic, Tijana; Jedlicka, Peter; Schwarzacher, Stephan W

    2014-07-01

    Increasing evidence shows that adult neurogenesis of hippocampal granule cells is advantageous for learning and memory. We examined at which stage of structural maturation and age new granule cells can be activated by strong synaptic stimulation. High-frequency stimulation of the perforant pathway in urethane-anesthetized rats elicited expression of the immediate early genes c-fos, Arc, zif268 and pCREB133 in almost 100% of mature, calbindin-positive granule cells. In contrast, it failed to induce immediate early gene expression in immature doublecortin-positive granule cells. Furthermore, doublecortin-positive neurons did not react with c-fos or Arc expression to mild theta-burst stimulation or novel environment exposure. Endogenous expression of pCREB133 was increasingly present in young cells with more elaborated dendrites, revealing a close correlation to structural maturation. Labeling with bromodeoxyuridine revealed cell age dependence of stimulation-induced c-fos, Arc and zif268 expression, with only a few cells reacting at 21 days, but with up to 75% of cells activated at 35-77 days of cell age. Our results indicate an increasing synaptic integration of maturing granule cells, starting at 21 days of cell age, but suggest a lack of ability to respond to activation with synaptic potentiation on the transcriptional level as long as immature cells express doublecortin.

  2. Effects of prenatal protein malnutrition on kindling-induced alterations in dentate granule cell excitability. II. Paired-pulse measures.

    PubMed

    Bronzino, J D; Austin-LaFrance, R J; Morgane, P J; Galler, J R

    1991-05-01

    The effects of prenatal protein malnutrition on kindling-induced changes in inhibitory modulation of dentate granule cell activity were examined by analysis of extracellular field potentials recorded from the granule cell layer of the dentate gyrus in response to paired-pulse stimulation of the perforant pathway in freely-moving rats. Since we have shown that kindling results in enhanced synaptic transmission at the level of the perforant path/granule cell synapse (see preceding paper), we sought to determine if the kindling process might induce changes in inhibitory modulation of granule cell excitability which could be involved in the slower acquisition of the kindled state we have previously reported in malnourished animals. Beginning at 120-150 days of age, the response of dentate granule cells to paired-pulse stimulation of the perforant path was examined at interpulse intervals (IPIs) ranging from 20-1000 ms. A paired-pulse index (PPI) was constructed based on the mean percent change in population spike amplitudes of the two responses resulting from application of the pulse pair. PPI measures obtained during the kindling process were compared with individual prekindling measures to determine the mean percent change in excitatory/inhibitory modulation of granule cell activity. Significant inhibition of the second population response was apparent at all IPIs tested for both diet groups following the first kindled afterdischarge.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Study of Mast Cells and Granules from Primo Nodes Using Scanning Ionic Conductance Microscopy.

    PubMed

    Yoo, Yeong-Yung; Jung, Goo-Eun; Kwon, Hee-Min; Bae, Kyoung-Hee; Cho, Sang-Joon; Soh, Kwang-Sup

    2015-12-01

    Acupuncture points have a notable characteristic in that they have a higher density of mast cells (MCs) compared with nonacupoints in the skin, which is consistent with the augmentation of the immune function by acupuncture treatment. The primo vascular system, which was proposed as the anatomical structure of the acupuncture points and meridians, also has a high density of MCs. We isolated the primo nodes from the surfaces of internal abdominal organs, and the harvested primo nodes were stained with toluidine blue. The MCs were easily recognized by their stained color and their characteristic granules. The MCs were classified into four stages according to the degranulation of histamine granules in the MCs. Using conventional optical microscopes details of the degranulation state of MCs in each stage were not observable. However, we were able to investigate the distribution of the granules on the surfaces of the MCs in each stage, and to demonstrate the height profiles and three-dimensional structures of the MCs without disturbance of the cell membrane by using the scanning ion conductance microscopy.

  4. Use of granzyme B-based fluorescent protein reporters to monitor granzyme distribution and granule integrity in live cells.

    PubMed

    Bird, Catherina H; Rizzitelli, Alexandra; Harper, Ian; Prescott, Mark; Bird, Phillip I

    2010-08-01

    Reporter proteins comprising granzyme B (GrB) fused to eGFP, ecliptic pHluorin or mCherry, were generated and used to study granule (lysosome) distribution and properties in COS-1 cells and natural killer cells. The reporters resembled native GrB in biosynthesis and localization, and accumulated in granules. In live cells both the eGFP and pHluorin reporters were dark in lysosomes, but fluoresced when the granule integrity or pH was perturbed by Leu-Leu methyl ester, hydrogen peroxide, naphthazarin, or sphingosine treatment. By contrast, fluorescence of the mCherry reporter was not pH-dependent. The quenching of eGFP within granules indicates that this commonly-used fluorescent protein is not appropriate as a vital intra-lysosomal marker.

  5. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes

    NASA Astrophysics Data System (ADS)

    St. John, Ashley L.; Chan, Cheryl Y.; Staats, Herman F.; Leong, Kam W.; Abraham, Soman N.

    2012-03-01

    Granules of mast cells (MCs) enhance adaptive immunity when, on activation, they are released as stable particles. Here we show that submicrometre particles modelled after MC granules augment immunity when used as adjuvants in vaccines. The synthetic particles, which consist of a carbohydrate backbone with encapsulated inflammatory mediators such as tumour necrosis factor, replicate attributes of MCs in vivo including the targeting of draining lymph nodes and the timed release of the encapsulated mediators. When used as an adjuvant during vaccination of mice with haemagglutinin from the influenza virus, the particles enhanced adaptive immune responses and increased survival of mice on lethal challenge. Furthermore, differential loading of the particles with the cytokine IL-12 directed the character of the response towards Th1 lymphocytes. The synthetic MC adjuvants replicate and enhance the functions of MCs during vaccination, and can be extended to polarize the resulting immunity.

  6. Primary ectopic frontotemporal craniopharyngioma

    PubMed Central

    Ortega-Porcayo, Luis Alberto; Ponce-Gómez, Juan Antonio; Martínez-Moreno, Mauricio; Portocarrero-Ortíz, Lesly; Tena-Suck, Martha Lilia; Gómez-Amador, Juan Luis

    2015-01-01

    Introduction Primary ectopic craniopharyngiomas have only rarely been reported. Craniopharyngiomas involve usually the sellar and suprasellar region, but can be originated from cell remnants of the obliterated craniopharyngeal duct or metaplastic change of andenohypophyseal cells. We present the first case of a primary ectopic frontotemporal craniopharyngioma. Presentation of case A 35-year old woman presented with a one-year history of headache and diplopia. MRI showed a large frontotemporal cystic lesion. Tumor resection was performed with a keyhole endoscopic frontal lateral approach. The pathological features showed an adamantinomatous craniopharyngioma with a cholesterol granuloma reaction. Discussion There have been reported different localizations for primary ectopic craniopharyngioma. Our case presented a lobulated frontotemporal cystic mass formed by a dense eosinophilic proteinaceous material dystrophic calcifications and cholesterol crystals, with epithelial remnants. No tumor regrowth was observed in the magnetic resonance image 27 months postoperatively. Conclusion Primary ectopic craniopharyngioma is a rare entity with a pathogenesis that remains uncertain. This is an unusual anatomic location associated with unique clinical findings. PMID:25725331

  7. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    PubMed

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  8. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    SciTech Connect

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro; Nakamichi, Yoko; Nishiwaki, Chiyono; Kawakami, Hayato; Nagamatsu, Shinya

    2009-12-04

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  9. Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis.

    PubMed

    Santhakumar, V; Bender, R; Frotscher, M; Ross, S T; Hollrigel, G S; Toth, Z; Soltesz, I

    2000-04-01

    1. Cytochemical and in vitro whole-cell patch clamp techniques were used to investigate granule cell hyperexcitability in the dentate gyrus 1 week after fluid percussion head trauma. 2. The percentage decrease in the number of hilar interneurones labelled with either GAD67 or parvalbumin mRNA probes following trauma was not different from the decrease in the total population of hilar cells, indicating no preferential survival of interneurones with respect to the non-GABAergic hilar cells, i.e. the mossy cells. 3. Dentate granule cells following trauma showed enhanced action potential discharges, and longer-lasting depolarizations, in response to perforant path stimulation, in the presence of the GABAA receptor antagonist bicuculline. 4. There was no post-traumatic alteration in the perforant path-evoked monosynaptic excitatory postsynaptic currents (EPSCs), or in the intrinsic properties of granule cells. However, after trauma, the monosynaptic EPSC was followed by late, polysynaptic EPSCs, which were not present in controls. 5. The late EPSCs in granule cells from fluid percussion-injured rats were not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were eliminated by both the non-NMDA glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the AMPA receptor antagonist GYKI 53655. 6. In addition, the late EPSCs were not present in low (0.5 mM) extracellular calcium, and they were also eliminated by the removal of the dentate hilus from the slice. 7. Mossy hilar cells in the traumatic dentate gyrus responded with significantly enhanced, prolonged trains of action potential discharges to perforant path stimulation. 8. These data indicate that surviving mossy cells play a crucial role in the hyperexcitable responses of the post-traumatic dentate gyrus.

  10. Differential dendritic Ca2+ signalling in young and mature hippocampal granule cells

    PubMed Central

    Stocca, Gabriella; Schmidt-Hieber, Christoph; Bischofberger, Josef

    2008-01-01

    Neuronal activity is critically important for development and plasticity of dendrites, axons and synaptic connections. Although Ca2+ is an important signal molecule for these processes, not much is known about the regulation of the dendritic Ca2+ concentration in developing neurons. Here we used confocal Ca2+ imaging to investigate dendritic Ca2+ signalling in young and mature hippocampal granule cells, identified by the expression of the immature neuronal marker polysialated neural cell adhesion molecule (PSA-NCAM). Using the Ca2+-sensitive fluorescent dye OGB-5N, we found that both young and mature granule cells showed large action-potential evoked dendritic Ca2+ transients with similar amplitude of ∼200 nm, indicating active backpropagation of action potentials. However, the decay of the dendritic Ca2+ concentration back to baseline values was substantially different with a decay time constant of 550 ms in young versus 130 ms in mature cells, leading to a more efficient temporal summation of Ca2+ signals during theta-frequency stimulation in the young neurons. Comparison of the peak Ca2+ concentration and the decay measured with different Ca2+ indicators (OGB-5N, OGB-1) in the two populations of neurons revealed that the young cells had an ∼3 times smaller endogenous Ca2+-binding ratio (∼75 versus∼220) and an ∼10 times slower Ca2+ extrusion rate (∼170 s−1versus∼1800 s−1). These data suggest that the large dendritic Ca2+ signals due to low buffer capacity and slow extrusion rates in young granule cells may contribute to the activity-dependent growth and plasticity of dendrites and new synaptic connections. This will finally support differentiation and integration of young neurons into the hippocampal network. PMID:18591186

  11. Excitability changes within transverse lamellae of dentate granule cells and their longitudinal spread following orthodromic or antidromic activation.

    PubMed

    Lømo, Terje

    2009-07-01

    The functional organization of the perforant path input to the dentate gyrus of the exposed hippocampus was studied in adult rabbits anesthetized with urethane and chloralose. Electrical stimulation of perforant path fibers caused excitation of granule cells along narrow, nearly transverse strips (lamellae) of tissue. Stimulation of granule cell axons (mossy fibers) in CA3 caused antidromic activation of granule cells along similar strips. Paired-pulse stimulation revealed marked changes in granule cell excitability both within a lamella (on-line) and for several mm off-line along the septo-temporal axis of the dentate gyrus. After the first pulse, granule cells were inhibited for up to about 100 ms and then facilitated for up to hundreds of ms. Feedback activity along mossy fiber collaterals exciting local inhibitory and excitatory neurons appeared to dominate in producing on- and off-line inhibition and facilitation. Neurons mediating these effects could be inhibitory basket cells and other inhibitory interneurons targeting granule cells on- and off-line. In addition, excitatory mossy cells with far reaching, longitudinally running axons could affect off-line granule cells by exciting them directly or inhibit them indirectly by exciting local inhibitory interneurons. A scheme for dentate gyrus function is proposed whereby information to the dentate gyrus becomes split into interacting transverse strips of neuronal assemblies along which temporal processing occurs. A matrix of neuronal assemblies thus arises within which fragments of events and experiences is stored through the plasticity of synapses within and between the assemblies. Similar fragments may then be recognized at later times allowing memories of the whole to be created by pattern completion at subsequent computational stages in the hippocampus.

  12. Transient fusion ensures granule replenishment to enable repeated release after IgE-mediated mast cell degranulation.

    PubMed

    Balseiro-Gomez, Santiago; Flores, Juan A; Acosta, Jorge; Ramirez-Ponce, M Pilar; Ales, Eva

    2016-11-01

    To ensure normal immune function, mast cells employ different pathways to release mediators. Here, we report a thus far unknown capacity of mast cells to recycle and reuse secretory granules after an antigen-evoked degranulation process under physiological conditions; this phenomenon involves the existence of a recycling secretory granule pool that is available for release in a short time scale. Rapid endocytic modes contributed to the recycling of ∼60% of the total secretory granule population, which involved kiss-and-run and cavicapture mechanisms, causing retention of the intragranular matrix. We found the presence of normal-size granules and giant actomyosin- and dynamin-dependent granules, which were characterized by large quantal content. These large structures allowed the recovered mast cells to release a large amount of 5-HT, compensating for the decrease in the number of exocytosed secretory granules. This work uncovers a new physiological role of the exo-endocytosis cycle in the immunological plasticity of mast cells and reveals a new property of their biological secretion.

  13. Mefloquine, an anti-malaria agent, causes reactive oxygen species-dependent cell death in mast cells via a secretory granule-mediated pathway

    PubMed Central

    Paivandy, Aida; Calounova, Gabriela; Zarnegar, Behdad; Öhrvik, Helena; Melo, Fabio R; Pejler, Gunnar

    2014-01-01

    Mast cells are known to have a detrimental impact on a variety of pathological conditions. There is therefore an urgent need of developing strategies that limit their harmful effects. The aim of this study was to accomplish this by developing a means of inducing mast cell apoptosis. The strategy was to identify novel compounds that induce mast cell apoptosis by permeabilization of their secretory lysosomes (granules). As a candidate, we assessed mefloquine, an anti-malarial drug that has been proposed to have lysosome-permeabilizing activity. Mefloquine was added to mast cells and administered in vivo, followed by assessment of the extent and mechanisms of mast cell death. Mefloquine was cytotoxic to murine and human mast cells. Mefloquine induced apoptotic cell death of wild-type mast cells whereas cells lacking the granule compounds serglycin proteoglycan or tryptase were shown to undergo necrotic cell death, the latter finding indicating a role of the mast cell granules in mefloquine-induced cell death. In support of this, mefloquine was shown to cause compromised granule integrity and to induce leakage of granule components into the cytosol. Mefloquine-induced cell death was refractory to caspase inhibitors but was completely abrogated by reactive oxygen species inhibition. These findings identify mefloquine as a novel anti-mast cell agent, which induces mast cell death through a granule-mediated pathway. Mefloquine may thus become useful in therapy aiming at limiting harmful effects of mast cells. PMID:25505612

  14. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules

    PubMed Central

    Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon

    2015-01-01

    RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190

  15. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    PubMed

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  16. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    PubMed Central

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  17. Subcellular glucose exposure biases the spatial distribution of insulin granules in single pancreatic beta cells

    NASA Astrophysics Data System (ADS)

    Terao, Kyohei; Gel, Murat; Okonogi, Atsuhito; Fuke, Ariko; Okitsu, Teru; Tada, Takashi; Suzuki, Takaaki; Nagamatsu, Shinya; Washizu, Masao; Kotera, Hidetoshi

    2014-02-01

    In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca2+] change in the β-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of β-cells.

  18. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    SciTech Connect

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J.; Wang Ya

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  19. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients

    PubMed Central

    Ravel-Chapuis, Aymeric; Klein Gunnewiek, Amanda; Bélanger, Guy; Crawford Parks, Tara E.; Côté, Jocelyn; Jasmin, Bernard J.

    2016-01-01

    Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUGexp) in the DMPK mRNA 3′UTR. CUGexp-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1– and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type–specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUGexp mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1. PMID:27030674

  20. Serine proteinases of mast cell and leukocyte granules. A league of their own.

    PubMed

    Caughey, G H

    1994-12-01

    Serine proteinases are hydrolases that use serine's side chain hydroxyl group to attack and cleave internal peptide bonds in peptides and proteins. They reside in all mammalian tissues, including the lung and airway. As a group, they vary tremendously in form and target specificity and have a vast repertoire of functions, many of which are critical for life. A subset of these proteinases is expressed primarily in the cytosolic granules of leukocytes from bone marrow, including mast cells. Examples are elastase-related proteinases and cathepsin G of monocytes and neutrophils, the many "granzymes" of cytotoxic T lymphocytes and natural killer (NK) cells, and the tryptases and chymases of mast cells. The pace of discovery and characterization of these granule-associated serine proteinases, fueled by technical advances in molecular biology, has accelerated rapidly in the past few years. Progress has been made in assigning possible functions to individual proteinases. However, the burgeoning numbers of these enzymes; their cell, tissue and species-dependent differences in expression; and their variety of action in vitro (despite, in many cases, shared modes of activation and recent divergence in protein evolution) have vexed and challenged those of us who are anxious to establish their roles in mammalian biology. Certainly, much remains to be discovered and clarified. The purpose of this overview is to capture the state of the art in this field, stressing the similarities as well as the differences among individual granule-associated proteinases and focusing particularly on those enzymes likely to be important in the human lung and airways.

  1. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain.

    PubMed

    Busser, J; Geldmacher, D S; Herrup, K

    1998-04-15

    Alzheimer's disease (AD) is a major dementing illness characterized by regional concentrations of senile plaques, neurofibrillary tangles, and extensive neuronal cell death. Although cell and synaptic loss is most directly linked to the severity of symptoms, the mechanisms leading to the neuronal death remain unclear. Based on evidence linking neuronal death during development to unexpected reappearance of cell cycle events, we investigated the brains of 12 neuropathologically verified cases of Alzheimer's disease and eight age-matched, disease-free controls for the presence of cell cycle proteins. Aberrant expression of cyclin D, cdk4, proliferating cell nuclear antigen, and cyclin B1 were identified in the hippocampus, subiculum, locus coeruleus, and dorsal raphe nuclei, but not inferotemporal cortex or cerebellum of AD cases. With only one exception, control subjects showed no significant expression of cell cycle markers in any of the six regions. We propose that disregulation of various components of the cell cycle is a significant contributor to regionally specific neuronal death in AD.

  2. BACE2 is stored in secretory granules of mouse and rat pancreatic beta cells.

    PubMed

    Finzi, Giovanna; Franzi, Francesca; Placidi, Claudia; Acquati, Francesco; Palumbo, Elisa; Russo, Antonella; Taramelli, Roberto; Sessa, Fausto; La Rosa, Stefano

    2008-01-01

    BACE2 is a protease homologous to BACE1 protein, an enzyme involved in the amyloid formation of Alzheimer disease (AD). However, despite the high homology between these two proteins, the biological role of BACE2 is still controversial, even though a few studies have suggested a pathogenetic role in sporadic inclusion-body myositis and hereditary inclusion-body myopathy, which are characterized by vacuolization of muscular fibers with intracellular deposits of proteins similar to those found in the brain of AD patients. Although BACE2 has also been identified in the pancreas, its function remains unknown and its specific localization in different pancreatic cell types has not been definitively ascertained. For these reasons, the authors have investigated the cellular and subcellular localization of BACE2 in normal rodent pancreases. BACE2 immunoreactivity was found in secretory granules of beta cells, co-stored with insulin and IAPP, while it was lacking in the other endocrine and exocrine cell types. The presence of BACE2 in secretory granules of beta cells suggests that it may play a role in diabetes-associated amyloidogenesis.

  3. Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics' Impaired Healing

    PubMed Central

    Berlanga-Acosta, Jorge; Schultz, Gregory S.; López-Mola, Ernesto; Guillen-Nieto, Gerardo; García-Siverio, Marianela; Herrera-Martínez, Luis

    2013-01-01

    Type 2 diabetes mellitus is a metabolic noncommunicable disease with an expanding pandemic magnitude. Diabetes predisposes to lower extremities ulceration and impairs the healing process leading to wound chronification. Diabetes also dismantles innate immunity favoring wound infection. Amputation is therefore acknowledged as one of the disease's complications. Hyperglycemia is the proximal detonator of systemic and local toxic effectors including proinflammation, acute-phase proteins elevation, and spillover of reactive oxygen and nitrogen species. Insulin axis deficiency weakens wounds' anabolism and predisposes to inflammation. The systemic accumulation of advanced glycation end-products irreversibly impairs the entire physiology from cells-to-organs. These factors in concert hamper fibroblasts and endothelial cells proliferation, migration, homing, secretion, and organization of a productive granulation tissue. Diabetic wound bed may turn chronically inflammed, procatabolic, and an additional source of circulating pro-inflammatory cytokines, establishing a self-perpetuating loop. Diabetic fibroblasts and endothelial cells may bear mitochondrial damages becoming prone to apoptosis, which impairs granulation tissue cellularity and perfusion. Endothelial progenitor cells recruitment and tubulogenesis are also impaired. Failure of wound reepithelialization remains a clinical challenge while it appears to be biologically multifactorial. Ulcer prevention by primary care surveillance, education, and attention programs is of outmost importance to reduce worldwide amputation figures. PMID:23484099

  4. Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.

    PubMed

    Tauber, Simone C; Stadelmann, Christine; Spreer, Annette; Brück, Wolfgang; Nau, Roland; Gerber, Joachim

    2005-09-01

    Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.

  5. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  6. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element

    SciTech Connect

    Arsenio Nunes, M.L.; Sotelo, C.; Wehrle, R.

    1988-07-01

    The organization of the spinocerebellar projection was analysed by the anterograde axonal WGA-HRP (horseradish peroxidase-wheat germ agglutinin conjugate) tracing method in three different types of agranular cerebellar cortex either induced experimentally by X-irradiation or occurring spontaneously in weaver (wv/wv) and staggerer (sg/sg) mutant mice. The results of this study show that in the X-irradiated rat and weaver mouse, in both of which the granule cells are directly affected and die early in development, the spinal axons reproduce, with few differences, the normal spinocerebellar pattern. Conversely, in staggerer mouse, in which the Purkinje cells are intrinsically affected and granule neurons do not seem to be primarily perturbed by the staggerer gene action, the spinocerebellar organization is severely modified. These findings appear somewhat paradoxical because if granule cells, the synaptic targets of mossy spinocerebellar fibers, were necessary for the organization of spinocerebellar projection, the staggerer cerebellum would exhibit a much more normal projectional map than the weaver and the X-irradiated cerebella. It is, therefore, obvious that granule cells, and even specific synaptogenesis, are not essential for the establishment of the normal spinocerebellar topography. On the other hand, the fact that the Purkinje cells are primarily affected in the unique agranular cortex in which the spinocerebellar organization is severely modified suggests that these neurons could be the main element in the organization of the spinocerebellar projection map. This hypothesis is discussed in correlation with already-reported findings on the zonation of the cerebellar cortex by biochemically different clusters of Purkinje cells.

  7. Altered patterning of dentate granule cell mossy fiber inputs onto CA3 pyramidal cells in limbic epilepsy

    PubMed Central

    McAuliffe, John J.; Bronson, Stefanie L.; Hester, Michael S.; Murphy, Brian L.; Dahlquist-Topalá, Renée; Richards, David A.; Danzer, Steve C.

    2009-01-01

    Impaired gating by hippocampal dentate granule cells may promote the development of limbic epilepsy by facilitating seizure spread through the hippocampal trisynaptic circuit. The second synapse in this circuit, the dentate granule cell≫CA3 pyramidal cell connection, may be of particular importance because pathological changes occurring within the dentate likely exert their principal effect on downstream CA3 pyramids. Here, we utilized GFP-expressing mice and immunolabeling for the zinc transporter ZnT-3 to reveal the pre- and postsynaptic components of granule cell≫CA3 pyramidal cell synapses following pilocarpine-epileptogenesis. Confocal analyses of these terminals revealed that while granule cell presynaptic giant boutons increased in size and complexity one month after status epilepticus, individual thorns making up the postsynaptic thorny excrescences of the CA3 pyramidal cells were reduced in number. This reduction, however, was transient, and three months after status, thorn density recovered. This recovery was accompanied by a significant change in the distribution of thorns along pyramidal cells dendrites. While thorns in control animals tended to be tightly clustered, thorns in epileptic animals were more evenly distributed. Computational modeling of thorn distributions predicted an increase in the number of boutons required to cover equivalent numbers of thorns in epileptic vs. control mice. Confirming this prediction, ZnT-3 labeling of presynaptic giant boutons apposed to GFP-expressing thorns revealed a near doubling in bouton density, while the number of individual thorns per bouton was reduced by half. Together, these data provide clear evidence of novel plastic changes occurring within the epileptic hippocampus. PMID:20014385

  8. High-pressure potato starch granule gelatinization: synchrotron radiation micro-SAXS/WAXS using a diamond anvil cell.

    PubMed

    Gebhardt, R; Hanfland, M; Mezouar, M; Riekel, C

    2007-07-01

    Potato starch granules have been examined by synchrotron radiation small- and wide-angle scattering in a diamond anvil cell (DAC) up to 750 MPa. Use of a 1 microm synchrotron radiation beam allowed the mapping of individual granules at several pressure levels. The data collected at 183 MPa show an increase in the a axis and lamellar period from the edge to the center of the granule, probably due to a gradient in water content of the crystalline and amorphous lamellae. The average granules radius increases up to the onset of gelatinization at about 500 MPa, but the a axis and the lamellar periodicity remain constant or even show a decrease, suggesting an initial hydration of amorphous growth rings. The onset of gelatinization is accompanied by (i) an increase in the average a axis and lamellar periodicity, (ii) the appearance of an equatorial SAXS streak, and (iii) additional short-range order peaks.

  9. The paired-pulse index: a measure of hippocampal dentate granule cell modulation.

    PubMed

    Bronzino, J D; Blaise, J H; Morgane, P J

    1997-01-01

    This study was undertaken to assess whether the paired-pulse index (PPI) is an effective measure of the modulation of dentate granule cell excitability during normal development. Paired-pulse stimulations of the perforant path were, therefore, used to construct a PPI for 15-, 30-, and 90-day old, freely moving male rats. Significant age-dependent differences in the PPI were obtained. Fifteen-day old rats showed significantly less inhibition at short interpulse intervals [interpulse interval (IPI): 20 to 30 msec), a lack of facilitation at intermediate IPIs (50 to 150 msec), and significantly less inhibition at longer IPIs (300 to 1,000 msec) than adults.

  10. Enhanced acoustic startle responding in rats with radiation-induced hippocampal granule cell hypoplasia

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.

    1989-01-01

    Irradiation of the neonatal rat hippocampus reduces the proliferation of granule cells in the dentate gyrus and results in locomotor hyperactivity, behavioral preservation, and deficits on some learned tasks. In order to address the role of changes in stimulus salience and behavioral inhibition in animals with this type of brain damage, irradiated and normal rats were compared in their startle reactions to an acoustic stimulus. Irradiated rats startled with a consistently higher amplitude than control and were more likely to exhibit startle responses. These animals with hippocampal damage also failed to habituate to the startle stimulus and, under certain circumstances, showed potentiated startle responses after many tone presentations.

  11. MMP-13 Regulates Growth of Wound Granulation Tissue and Modulates Gene Expression Signatures Involved in Inflammation, Proteolysis, and Cell Viability

    PubMed Central

    Toriseva, Mervi; Laato, Matti; Carpén, Olli; Ruohonen, Suvi T.; Savontaus, Eriika; Inada, Masaki; Krane, Stephen M.; Kähäri, Veli-Matti

    2012-01-01

    Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13) in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13−/−) and wild type (WT) mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42%) at day 21 in Mmp13−/− mice. Granulation tissue in Mmp13−/− mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13−/− mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13−/− mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13−/− granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13−/− mice compared to WT mice. Mmp13−/− mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis. PMID:22880047

  12. MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts.

    PubMed

    Bonifacio, Laura N; Jarstfer, Michael B

    2010-09-01

    Senescence is a highly regulated process that limits cellular replication by enforcing a G1 arrest in response to various stimuli. Replicative senescence occurs in response to telomeric DNA erosion, and telomerase expression can offset replicative senescence leading to immortalization of many human cells. Limited data exists regarding changes of microRNA (miRNA) expression during senescence in human cells and no reports correlate telomerase expression with regulation of senescence-related miRNAs. We used miRNA microarrays to provide a detailed account of miRNA profiles for early passage and senescent human foreskin (BJ) fibroblasts as well as early and late passage immortalized fibroblasts (BJ-hTERT) that stably express the human telomerase reverse transcriptase subunit hTERT. Selected miRNAs that were differentially expressed in senescence were assayed for expression in quiescent cells to identify miRNAs that are specifically associated with senescence-associated growth arrest. From this group of senescence-associated miRNAs, we confirmed the ability of miR-143 to induce growth arrest after ectopic expression in young fibroblasts. Remarkably, miR-143 failed to induce growth arrest in BJ-hTERT cells. Importantly, the comparison of late passage immortalized fibroblasts to senescent wild type fibroblasts reveals that miR-146a, a miRNA with a validated role in regulating the senescence associated secretory pathway, is also regulated during extended cell culture independently of senescence. The discovery that miRNA expression is impacted by expression of ectopic hTERT as well as extended passaging in immortalized fibroblasts contributes to a comprehensive understanding of the connections between telomerase expression, senescence and processes of cellular aging.

  13. Dense-core granules in neuroendocrine cells and neurons release their secretory constituents by piecemeal degranulation (review).

    PubMed

    Crivellato, Enrico; Nico, Beatrice; Bertelli, Eugenio; Nussdorfer, Gastone G; Ribatti, Domenico

    2006-12-01

    The term piecemeal degranulation (PMD) refers to a slow releasing process mediated by vesicular transport of stored secretory granule contents. This form of cell secretion was first proposed for basophils, mast cells and eosinophils, but evidence has begun to accumulate that PMD also occurs in dense-core granules of neuroendocrine cells and neurons. This review summarizes the electron-microscopic evidence that has been gathered in support of this view and also discusses the possible physiological significance of PMD in this class of secretory organelles in comparison with 'full fusion' and 'kiss-and-run' exocytosis.

  14. Increased excitatory synaptic input to granule cells from hilar and CA3 regions in a rat model of temporal lobe epilepsy

    PubMed Central

    Zhang, Wei; Huguenard, John R.; Buckmaster, Paul S.

    2012-01-01

    One potential mechanism of temporal lobe epilepsy is recurrent excitation of dentate granule cells through aberrant sprouting of their axons (mossy fibers), which is found in many patients and animal models. However, correlations between the extent of mossy fiber sprouting and seizure frequency are weak. Additional potential sources of granule cell recurrent excitation that would not have been detected by markers of mossy fiber sprouting in previous studies include surviving mossy cells and proximal CA3 pyramidal cells. To test those possibilities in hippocampal slices from epileptic pilocarpine-treated rats, laser scanning glutamate uncaging was used to randomly and focally activate neurons in the granule cell layer, hilus, and proximal CA3 pyramidal cell layer while measuring evoked excitatory postsynaptic currents (EPSCs) in normotopic granule cells. Consistent with mossy fiber sprouting, a higher proportion of glutamate-uncaging spots in the granule cell layer evoked EPSCs in epileptic rats compared to controls. In addition, stimulation spots in the hilus and proximal CA3 pyramidal cell layer were more likely to evoke EPSCs in epileptic rats, despite significant neuron loss in those regions. Furthermore, synaptic strength of recurrent excitatory inputs to granule cells from CA3 pyramidal cells and other granule cells was increased in epileptic rats. These findings reveal substantial levels of excessive, recurrent, excitatory synaptic input to granule cells from neurons in the hilus and proximal CA3 field. The aberrant development of these additional positive-feedback circuits might contribute to epileptogenesis in temporal lobe epilepsy. PMID:22279204

  15. Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus.

    PubMed

    Abrahám, Hajnalka; Veszprémi, Béla; Kravják, András; Kovács, Krisztina; Gömöri, Eva; Seress, László

    2009-04-01

    Calbindin (CB) is a calcium-binding protein that is present in principal cells as well as in interneurons of the hippocampal formation of various species including humans. Studies with transgenic mice revealed that CB is essential for long-term potentiation and synaptic plasticity which are the cellular basis of learning and memory. In a previous study we have shown that CB expression in granule cells of the dentate gyrus correlates with the functional maturation of the hippocampal formation in the rat. In the present study we examined the ontogeny of CB using immunohistochemistry in the human hippocampal formation paying special attention to the granule cells of the dentate gyrus. As early as the 14(th) week of gestation (GW), CB was being expressed by pyramidal cells of CA1-3 regions in the deepest cell rows of the pyramidal layer towards the ventricular zone. Later, CB sequentially appears in more superficial cell rows. After midgestation, CB disappears from CA3 pyramidal neurons. Expression of CB by granule cells starts at the 22(nd)-23(rd) GW, first by the most superficial neurons of the ectal end of the dorsal blade. At the 24(th) GW, CB is expressed by granule cells of the crest and medial portion of the ventral blade whereas later the entire ventral blade revealed CB immunoreactivity. At term, and in the first few postnatal months, CB-immunoreaction is detected in granule cells of both blades except for those neurons in the deepest cell rows at the hilar border. At around 2-3 years of age, all granule cells of the entire cell layer are CB-immunoreactive. Axons of granule cells, the mossy fibers, start to express CB around the 30(th) GW in stratum lucidum of CA3a. With further development, CB is expressed in CA3b and c, as well as in the hilus. An adult-like pattern of CB-immunoreactivity could be observed at 11 years of age. Our results indicate that (i) CB is expressed by hippocampal pyramidal cells a few weeks before midgestation; (ii) similarly to

  16. Accumulation of Major Histocompatibility Complex Class II Molecules in Mast Cell Secretory Granules and Their Release upon Degranulation

    PubMed Central

    Raposo, Graça; Tenza, Danielle; Mecheri, Salahedine; Peronet, Roger; Bonnerot, Christian; Desaymard, Catherine

    1997-01-01

    To investigate the relationship between major histocompatibility complex (MHC) class II compartments, secretory granules, and secretory lysosomes, we analyzed the localization and fate of MHC class II molecules in mast cells. In bone marrow-derived mast cells, the bulk of MHC class II molecules is contained in two distinct compartments, with features of both lysosomal compartments and secretory granules defined by their protein content and their accessibility to endocytic tracers. Type I granules display internal membrane vesicles and are accessed by exogenous molecules after a time lag of 20 min; type II granules are reached by the endocytic tracer later and possess a serotonin-rich electron-dense core surrounded by a multivesicular domain. In these type I and type II granules, MHC class II molecules, mannose-6-phosphate receptors and lysosomal membrane proteins (lamp1 and lamp2) localize to small intralumenal vesicles. These 60–80-nm vesicles are released along with inflammatory mediators during mast cell degranulation triggered by IgE-antigen complexes. These observations emphasize the intimate connection between the endocytic and secretory pathways in cells of the hematopoietic lineage which allows regulated secretion of the contents of secretory lysosomes, including membrane proteins associated with small vesicles. PMID:9398681

  17. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation.

    PubMed

    Raposo, G; Tenza, D; Mecheri, S; Peronet, R; Bonnerot, C; Desaymard, C

    1997-12-01

    To investigate the relationship between major histocompatibility complex (MHC) class II compartments, secretory granules, and secretory lysosomes, we analyzed the localization and fate of MHC class II molecules in mast cells. In bone marrow-derived mast cells, the bulk of MHC class II molecules is contained in two distinct compartments, with features of both lysosomal compartments and secretory granules defined by their protein content and their accessibility to endocytic tracers. Type I granules display internal membrane vesicles and are accessed by exogenous molecules after a time lag of 20 min; type II granules are reached by the endocytic tracer later and possess a serotonin-rich electron-dense core surrounded by a multivesicular domain. In these type I and type II granules, MHC class II molecules, mannose-6-phosphate receptors and lysosomal membrane proteins (lamp1 and lamp2) localize to small intralumenal vesicles. These 60-80-nm vesicles are released along with inflammatory mediators during mast cell degranulation triggered by IgE-antigen complexes. These observations emphasize the intimate connection between the endocytic and secretory pathways in cells of the hematopoietic lineage which allows regulated secretion of the contents of secretory lysosomes, including membrane proteins associated with small vesicles.

  18. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination

    PubMed Central

    Weisenhaus, Michael; Sanford, Christina A; Slack, Margaret C; Chin, Jenesa; Nachmanson, Daniela; McKennon, Alex; Castillo, Pablo E; McKnight, G Stanley

    2016-01-01

    Protein Kinase A (PKA) mediates synaptic plasticity and is widely implicated in learning and memory. The hippocampal dentate gyrus (DG) is thought to be responsible for processing and encoding distinct contextual associations in response to highly similar inputs. The mossy fiber (MF) axons of the dentate granule cells convey strong excitatory drive to CA3 pyramidal neurons and express presynaptic, PKA-dependent forms of plasticity. Here, we demonstrate an essential role for the PKA anchoring protein, AKAP7, in mouse MF axons and terminals. Genetic ablation of AKAP7 specifically from dentate granule cells results in disruption of MF-CA3 LTP directly initiated by cAMP, and the AKAP7 mutant mice are selectively deficient in pattern separation behaviors. Our results suggest that the AKAP7/PKA complex in the MF projections plays an essential role in synaptic plasticity and contextual memory formation. DOI: http://dx.doi.org/10.7554/eLife.20695.001 PMID:27911261

  19. Interleukin-1 mediates long-term hippocampal dentate granule cell loss following postnatal viral infection.

    PubMed

    Orr, Anna G; Sharma, Anup; Binder, Nikolaus B; Miller, Andrew H; Pearce, Bradley D

    2010-05-01

    Viral infections of the developing CNS can cause long-term neuropathological sequela through undefined mechanisms. Proinflammatory cytokines such as IL-1beta have gained attention in mediating neurodegeneration in corticohippocampal structures due to a variety of insults in adults, though there is less information on the developing brain. Little is known concerning the spatial-temporal pattern of IL-1beta induction in the developing hippocampus following live virus infection, and there are few studies addressing the long-term consequences of this cytokine induction. We report that infection of rats with lymphocytic choriomeningitis virus on postnatal day 4 induces IL-1beta protein in select regions of the hippocampus on 6, 15, 21, and 45 days after infection. This infection resulted in a 71% reduction of dentate granule cell neurons by the time the rats reached mid-adulthood. We further investigated the causative role of IL-1 in this dentate granule cell loss by blocking IL-1 activity using an IL-1ra-expressing adenoviral vector administered at the time of infection. Blockade of IL-1 abrogated the infection-associated neuron loss in this vivo model. Considering that IL-1 can be triggered by multiple perinatal insults, our findings suggest that early therapy with anti-inflammatory agents that block IL-1 may be effective for reducing adulthood neuropathology.

  20. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens

    PubMed Central

    Berditsch, Marina; Trapp, Mareike; Afonin, Sergii; Weber, Christian; Misiewicz, Julia; Turkson, Joana; Ulrich, Anne S.

    2017-01-01

    Many antimicrobial peptides are synthesized non-ribosomally in bacteria, but little is known about their subcellular route of biosynthesis, their mode of intracellular accumulation, or their role in the physiology of the producer cells. Here, we present a comprehensive view on the biosynthesis of gramicidin S (GS) in Aneurinibacillus migulanus, having observed a peripheral membrane localization of its synthetases. The peptide gets accumulated in nano-globules, which mature by fusion into larger granules and end up within vacuolar structures. These granules serve as energy storage devices, as they contain GS molecules that are non-covalently attached to alkyl phosphates and protect them from dephosphorylation and premature release of energy. This finding of a fundamentally new type of high-energy phosphate storage mechanism can explain the curious role of GS biosynthesis in the physiology of the bacterial producer cells. The unknown role of the GrsT protein, which is part of the non-ribosomal GS synthetase operon, can thus be assumed to be responsible for the biosynthesis of alkyl phosphates. GS binding to alkyl phosphates may suggest its general affinity to phosphagens such as ATP and GTP, which can represent the important intracellular targets in pathogenic bacteria. PMID:28295017

  1. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    SciTech Connect

    Rowe, Alexander M.; Brundage, Kathleen M.; Barnett, John B. . E-mail: jbarnett@hsc.wvu.edu

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.

  2. Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction.

    PubMed

    Brocher, J; Janicki, P; Voltz, P; Seebach, E; Neumann, E; Mueller-Ladner, U; Richter, W

    2013-11-01

    Human mesenchymal stromal cells derived from bone marrow (BMSC) and adipose tissue (ATSC) represent a valuable source of progenitor cells for cell therapy and tissue engineering. While ectopic bone formation is a standard activity of human BMSC on calcium phosphate ceramics, the bone formation capacity of human ATSC has so far been unclear. The objectives of this study were to assess the therapeutic potency of ATSC for bone formation in an ectopic mouse model and determine molecular differences by standardized comparison with BMSC. Although ATSC contained less CD146(+) cells, exhibited better proliferation and displayed similar alkaline phosphatase activity upon osteogenic in vitro differentiation, cells did not develop into bone-depositing osteoblasts on β-TCP after 8weeks in vivo. Additionally, ATSC expressed less BMP-2, BMP-4, VEGF, angiopoietin and IL-6 and more adiponectin mRNA, altogether suggesting insufficient osteochondral commitment and reduced proangiogenic activity. Chondrogenic pre-induction of ATSC/β-TCP constructs with TGF-β and BMP-6 initiated ectopic bone formation in >75% of samples. Both chondrogenic pre-induction and the osteoconductive microenvironment of β-TCP were necessary for ectopic bone formation by ATSC pointing towards a need for inductive conditions/biomaterials to make this more easily accessible cell source attractive for future applications in bone regeneration.

  3. The immunomodulatory properties of periodontal ligament stem cells isolated from inflamed periodontal granulation.

    PubMed

    Li, Chenghua; Wang, Xinwen; Tan, Jun; Wang, Tao; Wang, Qintao

    2014-01-01

    Periodontitis is currently the main cause of tooth loss and as yet there is no appropriate method for establishing a functional and predictable periodontal regeneration. Tissue engineering involving seed cells provides a new prospect for periodontal regeneration. While periodontal ligament stem cells (PDLSCs) are a good choice for seed cells, it is not always possible to obtain the patients' own PDLSCs. We and others have found a type of stromal cells from inflamed periodontal granulation. These cells displayed similar differentiation properties to PDLSCs. Inflammation has a profound influence on the immunomodulatory properties of mesenchymal stem cells, which may affect therapeutic outcome. In this study, we assessed the immunomodulatory characteristics of these inflamed human (ih)PDLSCs. Along with the similarity in cell surface marker expressions, they also displayed immunomodulatory properties comparable to those in healthy human (hh)PDLSCs. Both hhPDLSCs and ihPDLSCs can suppress the proliferation and secretion of IFN-γ in peripheral blood mononuclear cells by indirect soluble mediators and direct cell-cell contact. Albeit with some quantitative variances, the gene expressions of inducible nitric oxide synthases, indoleamine 2,3 dioxygenase, cyclooxygenase-2, TNF-α-induced protein 6 and IL-10 in ihPDLSCs displayed similar patterns as those in hhPDLSCs. Taken together, our results suggest that ihPDLSCs can provide a promising alternative to hhPDLSCs in terms of evident similarities in immunomodulatory properties as well as their easier accessibility and availability.

  4. The chemokine growth-related gene product β protects rat cerebellar granule cells from apoptotic cell death through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors

    PubMed Central

    Limatola, Cristina; Ciotti, Maria Teresa; Mercanti, Delio; Vacca, Fabrizio; Ragozzino, Davide; Giovannelli, Aldo; Santoni, Angela; Eusebi, Fabrizio; Miledi, Ricardo

    2000-01-01

    Cultured cerebellar granule neurons are widely used as a cellular model to study mechanisms of neuronal cell death because they undergo programmed cell death when switched from a culture medium containing 25 mM to one containing 5 mM K+. We have found that the growth-related gene product β (GROβ) partially prevents the K+-depletion-induced cell death, and that the neuroprotective action of GROβ on granule cells is mediated through the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type of ionotropic glutamate receptors. GROβ-induced survival was suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, which is a specific antagonist of AMPA/kainate receptors; it was not affected by the inhibitor of N-methyl-d-aspartate receptors, 2-amino-5-phosphonopentanoic acid, and was comparable to the survival of granule cells induced by AMPA (10 μM) treatment. Moreover, GROβ-induced neuroprotection was abolished when granule cells were treated with antisense oligonucleotides specific for the AMPA receptor subunits, which significantly reduced receptor expression, as verified by Western blot analysis with subunit-specific antibodies and by granule cell electrophysiological sensitivity to AMPA. Our data demonstrate that GROβ is neurotrophic for cerebellar granule cells, and that this activity depends on AMPA receptors. PMID:10811878

  5. Noise-induced ectopic activity in a simple cardiac cell model

    NASA Astrophysics Data System (ADS)

    Hastings, Harold

    2005-03-01

    Ectopic activity in the form of premature ventricular contractions (PVCs) is relatively common in the normal heart. Although PVCs are normally harmless, sometimes but rarely PVCs can generate spiral waves of activation through interaction with other waves of activation, potentially progressing to ventricular tachycardia, followed by ventricular fibrillation and sudden cardiac death. Clusters of PVCs have been found to be significantly more dangerous than isolated PVCs. We model PVC generation by applying triggers (noise) to the generic FitzHugh-Nagumo model as substrate, and study the effects the noise level and excitability. We find: exponential waiting time behavior at fixed parameter levels; no evidence of clustering at fixed parameter levels; and a sharp increase in PVCs as excitability approaches the auto-oscillatory threshold or noise increases beyond a similar threshold. This produces sharp increases in theoretical rates of PVC-induced fibrillation, consistent with results of A Gelzer et al. in animal models. Partially supported by the NSF and NIH.

  6. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy.

    PubMed

    Brown, Alice C N; Oddos, Stephane; Dobbie, Ian M; Alakoskela, Juha-Matti; Parton, Richard M; Eissmann, Philipp; Neil, Mark A A; Dunsby, Christopher; French, Paul M W; Davis, Ilan; Davis, Daniel M

    2011-09-01

    Natural Killer (NK) cells are innate immune cells that secrete lytic granules to directly kill virus-infected or transformed cells across an immune synapse. However, a major gap in understanding this process is in establishing how lytic granules pass through the mesh of cortical actin known to underlie the NK cell membrane. Research has been hampered by the resolution of conventional light microscopy, which is too low to resolve cortical actin during lytic granule secretion. Here we use two high-resolution imaging techniques to probe the synaptic organisation of NK cell receptors and filamentous (F)-actin. A combination of optical tweezers and live cell confocal microscopy reveals that microclusters of NKG2D assemble into a ring-shaped structure at the centre of intercellular synapses, where Vav1 and Grb2 also accumulate. Within this ring-shaped organisation of NK cell proteins, lytic granules accumulate for secretion. Using 3D-structured illumination microscopy (3D-SIM) to gain super-resolution of ~100 nm, cortical actin was detected in a central region of the NK cell synapse irrespective of whether activating or inhibitory signals dominate. Strikingly, the periodicity of the cortical actin mesh increased in specific domains at the synapse when the NK cell was activated. Two-colour super-resolution imaging revealed that lytic granules docked precisely in these domains which were also proximal to where the microtubule-organising centre (MTOC) polarised. Together, these data demonstrate that remodelling of the cortical actin mesh occurs at the central region of the cytolytic NK cell immune synapse. This is likely to occur for other types of cell secretion and also emphasises the importance of emerging super-resolution imaging technology for revealing new biology.

  7. Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus.

    PubMed

    Liu, Y B; Lio, P A; Pasternak, J F; Trommer, B L

    1996-08-01

    1. Whole cell patch-clamp recordings were used to study dentate gyrus granule cells in hippocampal slices from juvenile rats (postnatal days 8-32). Membrane properties were measured with the use of current-clamp recordings and were correlated with the morphology of a subgroup of neurons filled with biocytin. The components of the postsynaptic currents (PSCs) induced by medial perforant path stimulation were characterized with the use of specific receptor antagonists in voltage-clamp recordings. 2. Granule cells located in the middle third of the superior blade of stratum granulosum from the rostral third of hippocampus were divided into three groups according to their input resistance (IR). Neurons with low IR (206 +/- 182 M omega, mean +/- SD) had hyperpolarized resting membrane potentials (-82 +/- 7 mV) and high-amplitude action potentials (108 +/- 23 mV). Neurons were high IR (1,259 +/- 204 M omega) had more depolarized resting membrane potentials (-54 +/- 6 mV) and lower-amplitude action potentials (71 +/- 10 mV). Neurons with intermediate IR (619 +/- 166 M omega) also had intermediate resting membrane potentials (-63 +/- 7 mV) and action potential amplitudes (86 +/- 14 mV). Low-IR neurons became increasingly prevalent with advancing postnatal age, but neurons from each group could be found throughout the entire period under study. 3. Morphological studies of low-IR neurons revealed an extensive dendritic arborization that traversed the entire molecular layer and was characteristic of mature granule cells. High-IR cells had smaller somata and short, simple dendritic arborization that incompletely penetrated the molecular layer and were classified as immature. Intermediate-IR cells had morphological features of intermediate maturity. 4. The initial phase of the PSC evoked at -80 mV was a fast inward current that was comparable with respect to latency to peak, latency to onset, and 10-90% rise time in neurons of all maturities held at -80 mV. This current was 6

  8. The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions.

    PubMed

    Komuro, Yutaro; Galas, Ludovic; Lebon, Alexis; Raoult, Emilie; Fahrion, Jennifer K; Tilot, Amanda; Kumada, Tasturo; Ohno, Nobuhiko; Vaudry, David; Komuro, Hitoshi

    2015-04-01

    In the developing brain, immature neurons migrate from their sites of origin to their final destination, where they reside for the rest of their lives. This active movement of immature neurons is essential for the formation of normal neuronal cytoarchitecture and proper differentiation. Deficits in migration result in the abnormal development of the brain, leading to a variety of neurological disorders. A myriad of extracellular guidance molecules and intracellular effector molecules is involved in controlling the migration of immature neurons in a cell type, cortical layer and birth-date-specific manner. To date, little is known about how extracellular guidance molecules transfer their information to the intracellular effector molecules, which regulate the migration of immature neurons. In this article, to fill the gap between extracellular guidance molecules and intracellular effector molecules, using the migration of cerebellar granule cells as a model system of neuronal cell migration, we explore the role of second messenger signaling (specifically Ca(2+) and cyclic nucleotide signaling) in the regulation of neuronal cell migration. We will, first, describe the cortical layer-specific changes in granule cell migration. Second, we will discuss the roles of Ca(2+) and cyclic nucleotide signaling in controlling granule cell migration. Third, we will present recent studies showing the roles of Ca(2+) and cyclic nucleotide signaling in the deficits in granule cell migration in mouse models of fetal alcohol spectrum disorders and fetal Minamata disease.

  9. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells

    PubMed Central

    Wakabayashi, Shunichi; Soma, Atsumi; Sato, Saeko; Nakatake, Yuhki; Oda, Mayumi; Murakami, Miyako; Sakota, Miki; Chikazawa-Nohtomi, Nana

    2016-01-01

    Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings. PMID:27802135

  10. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    PubMed

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process.

  11. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously.

    PubMed

    Kunasundari, Balakrishnan; Murugaiyah, Vikneswaran; Kaur, Gurjeet; Maurer, Frans H J; Sudesh, Kumar

    2013-01-01

    Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha) was famous as a potential single cell protein (SCP) in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB) storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.

  12. Dissecting the molecular mechanisms that impair stress granule formation in aging cells.

    PubMed

    Moujaber, Ossama; Mahboubi, Hicham; Kodiha, Mohamed; Bouttier, Manuella; Bednarz, Klaudia; Bakshi, Ragini; White, John; Larose, Louise; Colmegna, Inés; Stochaj, Ursula

    2017-03-01

    Aging affects numerous aspects of cell biology, but the senescence-associated changes in the stress response are only beginning to emerge. To obtain mechanistic insights into these events, we examined the formation of canonical and non-canonical stress granules (SGs) in the cytoplasm. SG generation is a key event after exposure to physiological or environmental stressors. It requires the SG-nucleating proteins G3BP1 and TIA-1/TIAR and stress-related signaling events. To analyze SG formation, we used two independent models of somatic cell aging. In both model systems, cellular senescence impaired the assembly of two SG classes: (i) it compromised the formation of canonical SGs, and (ii) skewed the production of non-canonical SGs. We dissected the mechanisms underlying these senescence-dependent changes in granule biogenesis and identified several specific targets that were modulated by aging. Thus, we demonstrate a depletion of G3BP1 and TIA-1/TIAR in senescent cells and show that the loss of G3BP1 contributed to impaired SG formation. We further reveal that aging reduced Sp1 levels; this transcription factor regulated G3BP1 and TIA-1/TIAR abundance. The assembly of canonical SGs relies on the phosphorylation of translation initiation factor eIF2α. We show that senescence can cause eIF2α hyperphosphorylation. CReP is a subunit of protein phosphatase 1 and critical to reverse the stress-dependent phosphorylation of eIF2α. We demonstrate that the loss of CReP correlated with the aging-related hyperphosphorylation of eIF2α. Together, we have identified significant changes in the stress response of aging cells and provide mechanistic insights. Based on our work, we propose that the decline in SG formation can provide a new biomarker to evaluate cellular aging.

  13. Demonstration of Birbeck (Langerhans cells) granules in the normal chicken epidermis

    PubMed Central

    PÉREZ-TORRES, ARMANDO; USTARROZ-CANO, MARTHA

    2001-01-01

    Mammalian Langerhans cells (LC) are epidermal dendritic cells which originate in bone marrow and migrate toward the T cell area of lymph nodes, where they act as professional antigen-presenting cells. A variety of cell surface markers, such as the ectoenzyme adenosine triphosphatase (ATPase), Ia and CD1a antigens, have been used extensively to identify LC. Ultrastructural identification of this cell type in the mammalian epidermis is made by the demonstration of a typical and unique cytoplasmic organelle, the Birbeck granule (BG). Although we had earlier demonstrated the coexpression of ATPase and Ia antigens on epidermal dendritic cells of the chicken epidermis, the presence of the BG has not previously been documented. The aim of the present study was to investigate whether chicken epidermal LC-like cells possess an organelle similar to the BG, and thus to complete their identification. Our findings are the first demonstration of characteristic rod-shaped, racket-shaped and disc-shaped intracytoplasmic organelles, morphologically similar to the mammalian BG, in avian LC. PMID:11693310

  14. Transgenic Expression of Ad4BP/SF-1 in Fetal Adrenal Progenitor Cells Leads to Ectopic Adrenal Formation

    PubMed Central

    Zubair, Mohamad; Oka, Sanae; Parker, Keith L.; Morohashi, Ken-ichirou

    2009-01-01

    Deficiency of adrenal 4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1; NR5A1) impairs adrenal development in a dose-dependent manner, whereas overexpression of Ad4BP/SF-1 is associated with adrenocortical tumorigenesis. Despite its essential roles in adrenal development, the mechanism(s) by which Ad4BP/SF-1 regulates this process remain incompletely understood. We previously identified a fetal adrenal enhancer (FAdE) that stimulates Ad4BP/SF-1 expression in the fetal adrenal gland by a two-step mechanism in which homeobox proteins initiate Ad4BP/SF-1 expression, which then maintains FAdE activity in an autoregulatory loop. In the present study, we examined the effect of transgenic expression of Ad4BP/SF-1 controlled by FAdE on adrenal development. When Ad4BP/SF-1 was overexpressed using a FAdE-Ad4BP/SF-1 transgene, FAdE activity expanded outside of its normal field, resulting in increased adrenal size and the formation of ectopic adrenal tissue in the thorax. The increased size of the adrenal gland did not result from a corresponding increase in cell proliferation, suggesting rather that the increased levels of Ad4BP/SF-1 may divert uncommitted precursors to the steroidogenic lineage. The effects of FAdE-controlled Ad4BP/SF-1 overexpression in mice provide a novel model of ectopic adrenal formation that further supports the critical role of Ad4BP/SF-1 in the determination of steroidogenic cell fate in vivo. PMID:19628584

  15. Pretranslational regulation of ectopic hCG alpha production in ChaGo lung cancer cells by sodium butyrate.

    PubMed

    Nagelberg, S B; Burnside, J; Maniatis, A; Lippman, S S; Weintraub, B D

    1985-12-31

    Ectopic production of hCG and its free alpha subunit by ChaGo lung cancer cells is stimulated by sodium butyrate. To investigate pretranslational regulation in this system, we examined the response of the hCG alpha and beta subunit mRNAs in ChaGo-K1 cells, a clone that produces free hCG alpha but no hCG or hCG beta in the basal state. When a Northern blot of total RNA from ChaGo cells was hybridized to a [32P]- labeled hCG alpha cDNA probe, a single band was detected that was identical in size (approximately 850 bases) to placental hCG alpha mRNA. RNA from butyrate-stimulated (5 mM, 24 h) ChaGo cells contained 7.7 times as much hCG alpha mRNA as RNA from control ChaGo cells. This increase appeared to be relatively selective since no difference in total polyA-containing mRNA levels was detected between butyrate-treated and control cells by [32P]oligo(dT) hybridization. In addition, no hCG beta mRNA was detected when Northern and dot blots were hybridized to an hCG beta cDNA probe. In a time course experiment, hCG alpha mRNA accumulation in butyrate-treated cells increased significantly by 8 h with a maximum increase of 6.1-fold at 24 h compared to control values. Major differences in immunoactive hCG alpha accumulation were not apparent, however, until after 24 h. These studies show that stimulation of ChaGo hCG alpha production by butyrate can be completely accounted for by pretranslational events and that failure to detect hCG or free hCG beta production by these cells is not due to poorly translatable RNA or post-translational protein degradation. Thus, exclusive ectopic production of only one of the hCG subunits is likely to be due to selective genomic expression.

  16. Regional development of Langerhans cells and formation of Birbeck granules in human embryonic and fetal skin.

    PubMed

    Fujita, M; Furukawa, F; Horiguchi, Y; Ueda, M; Kashihara-Sawami, M; Imamura, S

    1991-07-01

    The regional development of Langerhans cells (LC) and the formation of Birbeck granules (BG) were examined in human embryonic and fetal skin. Samples were obtained from multiple anatomic sites and stained with anti-CD36, anti-CD1a, and anti-HLA-DR antibody as well as Lag antibody specifically reactive to BG and some vacuoles of human LC. In the first trimester, CD36+ dendritic epidermal cells were identified before the appearance of CD1a+ cells and Lag+ cells. Some of the former co-expressed HLA-DR antigens but not CD1a antigens. In the second trimester, regional variations in LC development were observed. Epidermal LC of palms and soles reached a peak in number in the first trimester but were rarely detected after 18 weeks estimated gestation age (EGA), whereas, in other regions, their number increased with age. In the second trimester, CD1a+ cells and Lag+ cells were also identified in the epidermis, although Lag+ cells appeared later than CD1a+ cells. The Lag+ cells until 17 weeks EGA showed a variety of staining intensities and immunoelectron microscopy revealed that they contained various amounts of Lag-reactive BG. Flow cytometric analysis showed that relative amounts of Lag antigens in LC increased during the second trimester and that fetal LC of 18 weeks EGA expressed the same amounts of HLA-DR, CD1a, and Lag antigens as did adult human LC. In the dermis, in the second trimester, numerous CD36+ cells and HLA-DR+ cells were found, whereas CD1a+ cells and Lag+ cells were rarely detected. Taken together, it is suggested that HLA-DR+ dendritic cells acquire CD1a+ antigens first and then form BG after migration to the epidermis and that fetal LC are phenotypically mature in the second trimester.

  17. Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease

    PubMed Central

    Ghosh, Soumitra; Geahlen, Robert L.

    2015-01-01

    Microglial cells in the brains of Alzheimer's patients are known to be recruited to amyloid-beta (Aβ) plaques where they exhibit an activated phenotype, but are defective for plaque removal by phagocytosis. In this study, we show that microglia stressed by exposure to sodium arsenite or Aβ(1–42) peptides or fibrils form extensive stress granules (SGs) to which the tyrosine kinase, SYK, is recruited. SYK enhances the formation of SGs, is active within the resulting SGs and stimulates the production of reactive oxygen and nitrogen species that are toxic to neuronal cells. This sequestration of SYK inhibits the ability of microglial cells to phagocytose Escherichia coli or Aβ fibrils. We find that aged microglial cells are more susceptible to the formation of SGs; and SGs containing SYK and phosphotyrosine are prevalent in the brains of patients with severe Alzheimer's disease. Phagocytic activity can be restored to stressed microglial cells by treatment with IgG, suggesting a mechanism to explain the therapeutic efficacy of intravenous IgG. These studies describe a mechanism by which stress, including exposure to Aβ, compromises the function of microglial cells in Alzheimer's disease and suggest approaches to restore activity to dysfunctional microglial cells. PMID:26870803

  18. Expression of the AMPA Receptor Subunits GluR1 and GluR2 is Associated with Granule Cell Maturation in the Dentate Gyrus

    PubMed Central

    Hagihara, Hideo; Ohira, Koji; Toyama, Keiko; Miyakawa, Tsuyoshi

    2011-01-01

    The dentate gyrus produces new granule neurons throughout adulthood in mammals from rodents to humans. During granule cell maturation, defined markers are expressed in a highly regulated sequential process, which is necessary for directed neuronal differentiation. In the present study, we show that α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) receptor subunits GluR1 and GluR2 are expressed in differentiated granule cells, but not in stem cells, in neonatal, and adult dentate gyrus. Using markers for neural progenitors, immature and mature granule cells, we found that GluR1 and GluR2 were expressed mainly in mature cells and in some immature cells. A time-course analysis of 5-bromo-2′-deoxyuridine staining revealed that granule cells express GluR1 around 3 weeks after being generated. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, a putative animal model of schizophrenia and bipolar disorder in which dentate gyrus granule cells fail to mature normally, GluR1 and GluR2 immunoreactivities were substantially downregulated in the dentate gyrus granule cells. In the granule cells of mutant mice, the expression of both presynaptic and postsynaptic markers was decreased, suggesting that GluR1 and GluR2 are also associated with synaptic maturation. Moreover, GluR1 and GluR2 were also expressed in mature granule cells of the neonatal dentate gyrus. Taken together, these findings indicate that GluR1 and GluR2 expression closely correlates with the neuronal maturation state, and that GluR1 and GluR2 are useful markers for mature granule cells in the dentate gyrus. PMID:21927594

  19. Differentiation of osteoblast‑like cells and ectopic bone formation induced by bone marrow stem cells transfected with chitosan nanoparticles containing plasmid‑BMP2 sequences.

    PubMed

    Hong, Zhang Qing; Tao, Liu Meng; Bin, Zhang Xiao

    2017-03-01

    The present study investigated the efficiency of the use of chitosan nanoparticles containing plasmid‑bone morphogenetic protein 2 (pBMP2) sequences (CNPBs) to induce the differentiation of bone marrow stem cells (BMSCs) into osteoblast‑like cells that may be able to promote ectopic bone formation. pBMP2s were constructed, and chitosan nanoparticles were incubated with 50, 100 or 200 µg/ml pBMP2. BMSCs were collected from the tibiae and femurs of 6‑week old rats, cultured and treated with the CNPBs or 200 µg/ml pBMP2 as a positive control. Transfection efficiency was confirmed using the green fluorescent protein assay. Histological staining methods, including alkaline phosphatase, Wright's and von Kasso staining, were used to identify features of osteoblast‑like cells differentiated from BMSCs. Expression levels of the markers of osteoblasts, such as alkaline phosphatase, osteoprotegerin, osteocalcin and osteopontin, were determined to verify the differentiation of BMSCs into osteoblast‑like cells. Ectopic bone formation was observed following the integration of polyglycolic acid (PGA) scaffolds with CNPBs and BMSCs, which were implanted into the dorsal muscles of Sprague‑Dawley rats. Exposure to CNPBs led to the transfection of BMSCs with BMP2. The transfected BMSCs possessed the characteristic phenotypes of osteoblasts. The expression levels of alkaline phosphatase, osteoprotegerin, osteocalcin and osteopontin were significantly higher in the transfected cells compared with the control group, particularly the CBP200 group. PGA scaffolds integrated with BMSCs and CNPBs induced ectopic bone formation, as changes in the morphology of cells were observed using histological staining. Therefore, CNPBs may be a promising method of promoting the formation of novel bone tissue.

  20. Granulator Selection

    SciTech Connect

    Gould, T H; Armantrout, G

    1999-08-02

    Following our detailed review of the granulation reports and additional conversations with process and development personnel, we have reached a consensus position regarding granulator selection. At this time, we recommend going forward with implementation of the tumbling granulator approach (GEMCO) based on our assessment of the tested granulation techniques using the established criteria. The basis for this selection is summarized in the following sections, followed by our recommendations for proceeding with implementation of the tumbling granulation approach. All five granulation technologies produced granulated products that can be made into acceptable sintered pucks. A possible exception is the product from the fluidized bed granulator. This material has been more difficult to press into uniform pucks without subsequent cracking of the puck during the sintering cycle for the pucks in this series of tests. This problem may be an artifact of the conditions of the particular granulation demonstration run involved, but earlier results have also been mixed. All granulators made acceptable granulated feed from the standpoint of transfer and press feeding, though the roller compactor and fluidized bed products were dustier than the rest. There was also differentiation among the granulators in the operational areas of (1) potential for process upset, (2) plant implementation and operational complexity, and (3) maintenance concerns. These considerations will be discussed further in the next section. Note that concerns also exist regarding the extension of the granulation processes to powders containing actinides. Only the method that involves tumbling and moisture addition has been tested with uranium, and in that instance, significant differences were found in the granulation behavior of the powders.

  1. SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models.

    PubMed

    Meng, Ronghua; Wang, Yuhuan; Yao, Yu; Zhang, Zhe; Harper, Dawn C; Heijnen, Harry F G; Sitaram, Anand; Li, Wei; Raposo, Graça; Weiss, Mitchell J; Poncz, Mortimer; Marks, Michael S

    2012-07-12

    Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.

  2. Increased number of cerebellar granule cells and astrocytes in the internal granule layer in sheep following prenatal intra-amniotic injection of lipopolysaccharide.

    PubMed

    Strackx, Eveline; Gantert, Markus; Moers, Veronique; van Kooten, Imke A J; Rieke, Rebecca; Hürter, Hanna; Lemmens, Marijke A M; Steinbusch, Harry W M; Zimmermann, L J I; Vles, Johannes S H; Garnier, Yves; Gavilanes, Antonio W D; Kramer, Boris W

    2012-03-01

    Chorioamnionitis is an important problem in perinatology today, leading to brain injury and neurological handicaps. However, there are almost no data available regarding chorioamnionitis and a specific damage of the cerebellum. Therefore, this study aimed at determining if chorioamnionitis causes cerebellar morphological alterations. Chorioamnionitis was induced in sheep by the intra-amniotic injection of lipopolysaccharide (LPS) at a gestational age (GA) of 110 days. At a GA of 140 days, we assessed the mean total and layer-specific volume and the mean total granule cell (GCs) and Purkinje cell (PC) number in the cerebelli of LPS-exposed and control animals using high-precision design-based stereology. Astrogliosis was assessed in the gray and white matter (WM) using a glial fibrillary acidic protein staining combined with gray value image analysis. The present study showed an unchanged volume of the total cerebellum as well as the molecular layer, outer and inner granular cell layers (OGL and IGL, respectively), and WM. Interestingly, compared with controls, the LPS-exposed brains showed a statistically significant increase (+20.4%) in the mean total number of GCs, whereas the number of PCs did not show any difference between the two groups. In addition, LPS-exposed animals showed signs of astrogliosis specifically affecting the IGL. Intra-amniotic injection of LPS causes morphological changes in the cerebellum of fetal sheep still detectable at full-term birth. In this study, changes were restricted to the inner granule layer. These cerebellar changes might correspond to some of the motor or non-motor deficits seen in neonates from compromised pregnancies.

  3. Stress Granules contribute to α-globin homeostasis in differentiating erythroid cells

    PubMed Central

    Ghisolfi, Laura; Dutt, Shilpee; McConkey, Marie E.; Ebert, Benjamin L.; Anderson, Paul

    2012-01-01

    Hemoglobin is the major biosynthetic product of developing erythroid cells. Assembly of hemoglobin requires the balanced production of globin protein and the oxygen-carrying heme moiety. The heme-regulated inhibitor kinase (HRI) participates in this process by phosphorylating eIF2α and inhibiting the translation of globin protein when levels of free heme are limiting. HRI is also activated in erythroid cells subjected to oxidative stress. Phospho-eIF2α-mediated translational repression induces the assembly of stress granules (SG), cytoplasmic foci that harbor untranslated mRNAs and promote the survival of cells subjected to adverse environmental conditions. We have found that differentiating erythroid, but not myelomonocytic or megakaryocytic, murine and human progenitor cells assemble SGs, in vitro and in vivo. Targeted knockdown of HRI or G3BP, a protein required for SG assembly, inhibits spontaneous and arsenite-induced assembly of SGs in erythroid progenitor cells. This is accompanied by reduced globin production and increased apoptosis suggesting that G3BP+ SGs facilitate the survival of developing erythroid cells. PMID:22452989

  4. Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity

    PubMed Central

    Chavlis, Spyridon; Petrantonakis, Panagiotis C.

    2016-01-01

    ABSTRACT The hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, nonverlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in diseases associated with pattern separation deficits, suggesting a possible role for dendrites in this phenomenon. To investigate whether and how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically relevant, computational model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern separation efficiency while their atrophy leads to increased excitability and performance impairments. These impairments can be rescued by restoring GC sparsity to control levels through various manipulations. We predict that dendrites contribute to pattern separation as a mechanism for controlling sparsity. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27784124

  5. FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon

    PubMed Central

    Dover, Katarzyna; Marra, Christopher; Solinas, Sergio; Popovic, Marko; Subramaniyam, Sathyaa; Zecevic, Dejan; D'Angelo, Egidio; Goldfarb, Mitchell

    2016-01-01

    Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Nav inactivation, distal axonal Navs show little FHF association or FHF requirement for high-frequency transmission, velocity and waveforms of conducting action potentials. In addition, leak conductance density along the distal axon is estimated as <1% that of somatodendritic membrane. The faster inactivation rate of FHF-free Navs together with very low axonal leak conductance serves to minimize ionic fluxes and energetic demand during repetitive spike conduction and at rest. The absence of FHFs from Navs at nodes of Ranvier in the central nervous system suggests a similar mechanism of current flux minimization along myelinated axons. PMID:27666389

  6. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    PubMed Central

    Zhou, Xinhua; Zhu, Longjun; Wang, Liang; Guo, Baojian; Zhang, Gaoxiao; Sun, Yewei; Zhang, Zaijun; Lee, Simon Ming-Yuen; Yu, Pei; Wang, Yuqiang

    2015-01-01

    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities. PMID:26557222

  7. Object/Context-Specific Memory Deficits Associated with Loss of Hippocampal Granule Cells after Adrenalectomy in Rats

    ERIC Educational Resources Information Center

    Spanswick, Simon C.; Sutherland, Robert J.

    2010-01-01

    Chronic adrenalectomy (ADX) causes a gradual and selective loss of granule cells in the dentate gyrus (DG) of the rat. Here, we administered replacement corticosterone to rats beginning 10 wk after ADX. We then tested them in three discrimination tasks based on object novelty, location, or object/context association. Only during testing of the…

  8. Palmitoylethanolamide protects dentate gyrus granule cells via peroxisome proliferator-activated receptor-α.

    PubMed

    Koch, Marco; Kreutz, Susanne; Böttger, Charlotte; Benz, Alexander; Maronde, Erik; Ghadban, Chalid; Korf, Horst-Werner; Dehghani, Faramarz

    2011-02-01

    Endocannabinoids like 2-arachidonoylglycerol strongly modulate the complex machinery of secondary neuronal damage and are shown to improve neuronal survival after excitotoxic lesion. Palmitoylethanolamide (PEA), the naturally occurring fatty acid amide of ethanolamine and palmitic acid, is an endogenous lipid known to mimic several effects of endocannabinoids even without binding to cannabinoid receptors. Here we show that PEA (0.001-1 μM) and the synthetic peroxisome proliferator-activated receptor (PPAR)-alpha agonist 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (Wy-14,643; 0.1-1 μM) reduced the number of microglial cells and protected dentate gyrus granule cells in excitotoxically lesioned organotypic hippocampal slice cultures (OHSCs). Treatment with the PPAR-alpha antagonist N-((2S)-2-(((1Z)-1-Methyl-3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-enyl)amino)-3-(4-(2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy)phenyl)propyl)propanamide (GW6471; 0.05-5 μM) blocked PEA-mediated neuroprotection and reduction of microglial cell numbers whereas the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenyl-benzamide (GW9662; 0.01-1 μM) showed no effects. Immunocytochemistry and Western blot analyses revealed a strong PPAR-alpha immunoreaction in BV-2 microglial cells and in HT22 hippocampal cells. Intensity and location of PPAR-alpha immunoreaction remained constant during stimulation with PEA (0.01 μM; 1-36 h). In conclusion our data provide evidence that (1) PEA counteracted excitotoxically induced secondary neuronal damage of dentate gyrus granule cells, (2) PPAR-alpha but not PPAR-gamma is the endogenous binding site for PEA-mediated neuroprotection, and (3) PEA may activate PPAR-alpha in microglial cells and hippocampal neurons to exert its neuroprotective effects. In addition to classical endocannabinoids, PEA-mediated PPAR-alpha activation represents a possible target for therapeutic interventions to mitigate symptoms of secondary neuronal damage.

  9. Clonal analysis reveals granule cell behaviors and compartmentalization that determine the folded morphology of the cerebellum.

    PubMed

    Legué, Emilie; Riedel, Elyn; Joyner, Alexandra L

    2015-05-01

    The mammalian cerebellum consists of folds of different sizes and shapes that house distinct neural circuits. A crucial factor underlying foliation is the generation of granule cells (gcs), the most numerous neuron type in the brain. We used clonal analysis to uncover global as well as folium size-specific cellular behaviors that underlie cerebellar morphogenesis. Unlike most neural precursors, gc precursors divide symmetrically, accounting for their massive expansion. We found that oriented cell divisions underlie an overall anteroposteriorly polarized growth of the cerebellum and gc clone geometry. Clone geometry is further refined by mediolateral oriented migration and passive dispersion of differentiating gcs. Most strikingly, the base of each fissure acts as a boundary for gc precursor dispersion, which we propose allows each folium to be regulated as a developmental unit. Indeed, the geometry and size of clones in long and short folia are distinct. Moreover, in engrailed 1/2 mutants with shorter folia, clone cell number and geometry are most similar to clones in short folia of wild-type mice. Thus, the cerebellum has a modular mode of development that allows the plane of cell division and number of divisions to be differentially regulated to ensure that the appropriate number of cells are partitioned into each folium.

  10. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis.

    PubMed

    Ho, Yeung; Li, Xiting; Jamison, Stephanie; Harding, Heather P; McKinnon, Peter J; Ron, David; Lin, Wensheng

    2016-07-01

    Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation.

  11. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    PubMed Central

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  12. Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition.

    PubMed

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-11-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply.

  13. Identification of a Chromogranin A Domain That Mediates Binding to Secretogranin III and Targeting to Secretory Granules in Pituitary Cells and Pancreatic β-Cells

    PubMed Central

    Hosaka, Masahiro; Watanabe, Tsuyoshi; Sakai, Yuko; Uchiyama, Yasuo; Takeuchi, Toshiyuki

    2002-01-01

    Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca2+-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48–111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214–373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells. PMID:12388744

  14. Formation of secretory granules by chromogranins.

    PubMed

    Inomoto, Chie; Osamura, Robert Yoshiyuki

    2009-12-01

    This review article covers the molecular mechanisms of secretory granule formation by chromogranin transfection. Recently, a few investigators have reported that the transfection of chromogranin A and B produces the structures of secretory granules. We used the GFP-chromogranin A transfection method to nonendocrine cells, COS-7 cells, which are not equipped with secretory granules. Despite the absence of endogenous secretory granules in nontransfected COS-7 cells, COS-7 cells transfected with chromogranin A contained granule-like structures in electron micrographs. The granules were composed of an outer limiting membrane with core structures that were interpreted as secretory granules. Human chromogranin A (CgA) labeled with 5-nm gold particles was present in several dense-core granules in our previous electron microscopy study. This review depicts the role of chromogranin A in the formation of secretory granules. It emphasizes the application of recently developed new technologies and the genesis of secretory granules.

  15. Deorphanization and characterization of the ectopically expressed olfactory receptor OR51B5 in myelogenous leukemia cells

    PubMed Central

    Manteniotis, S; Wojcik, S; Göthert, J R; Dürig, J; Dührsen, U; Gisselmann, G; Hatt, H

    2016-01-01

    The ectopic expression of olfactory receptors (ORs) in the human body has been of major interest in the past decade. Several studies have reported the expression of ORs not only in healthy tissues such as heart, sperm or skin cells, but also in cancerous tissues of the liver, prostate or intestine. In the present study, we detected the expression of OR51B5 in the chronic myelogenous leukemia (CML) cell line K562 and in white blood cell samples of clinically diagnosed acute myelogenous leukemia (AML) patients by reverse transcription-PCR and immunocytochemical staining. The known OR51B5 ligand isononyl alcohol increased the levels of intracellular Ca2+ in both AML patient blood cells and K562 cells. With calcium imaging experiments, we characterized in greater detail the OR51B5-mediated signaling pathway. Here, we observed an involvement of adenylate cyclase and the downstream L-type and T-type calcium channels. In addition, the activation of OR51B5 leads to an inhibition of cell proliferation in K562 cells. In western blot experiments, we found that incubation with isononyl alcohol led to a reduction in p38-MAPK (mitogen-activated protein kinase) phosphorylation that might be responsible for the decreased cell proliferation. In the present study, we characterized the OR51B5-mediated signaling pathway downstream of the activation with isononyl alcohol, which leads to reduced proliferation and therefore provide a novel pharmacological target for CML and AML, the latter of which remains difficult to treat. PMID:27551504

  16. Cytoskeletal Dependence of Insulin Granule Movement Dynamics in INS-1 Beta-Cells in Response to Glucose

    PubMed Central

    Heaslip, Aoife T.; Nelson, Shane R.; Lombardo, Andrew T.; Beck Previs, Samantha; Armstrong, Jessica; Warshaw, David M.

    2014-01-01

    For pancreatic β-cells to secrete insulin in response to elevated blood glucose, insulin granules retained within the subplasmalemmal space must be transported to sites of secretion on the plasma membrane. Using a combination of super-resolution STORM imaging and live cell TIRF microscopy we investigate how the organization and dynamics of the actin and microtubule cytoskeletons in INS-1 β-cells contribute to this process. GFP-labeled insulin granules display 3 different modes of motion (stationary, diffusive-like, and directed). Diffusive-like motion dominates in basal, low glucose conditions. Upon glucose stimulation no gross rearrangement of the actin cytoskeleton is observed but there are increases in the 1) rate of microtubule polymerization; 2) rate of diffusive-like motion; and 3) proportion of granules undergoing microtubule-based directed motion. By pharmacologically perturbing the actin and microtubule cytoskeletons, we determine that microtubule-dependent granule transport occurs within the subplasmalemmal space and that the actin cytoskeleton limits this transport in basal conditions, when insulin secretion needs to be inhibited. PMID:25310693

  17. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules

    PubMed Central

    Da Ros, Matteo; Lehtiniemi, Tiina; Olotu, Opeyemi; Fischer, Daniel; Zhang, Fu-Ping; Vihinen, Helena; Jokitalo, Eija; Sironen, Anu; Toppari, Jorma; Kotaja, Noora

    2017-01-01

    ABSTRACT Ribonucleoprotein (RNP) granules play a major role in compartmentalizing cytoplasmic RNA regulation. Haploid round spermatids that have exceptionally diverse transcriptomes are characterized by a unique germ cell-specific RNP granule, the chromatoid body (CB). The CB shares many characteristics with somatic RNP granules but also has germline-specific features. The CB appears to be a central structure in PIWI-interacting RNA (piRNA)-targeted RNA regulation. Here, we identified a novel CB component, FYCO1, which is involved in the intracellular transport of autophagic vesicles in somatic cells. We demonstrated that the CB is associated with autophagic activity. Induction of autophagy leads to the recruitment of lysosomal vesicles onto the CB in a FYCO1-dependent manner as demonstrated by the analysis of a germ cell-specific Fyco1 conditional knockout mouse model. Furthermore, in the absence of FYCO1, the integrity of the CB was affected and the CB was fragmented. Our results suggest that RNP granule homeostasis is regulated by FYCO1-mediated autophagy. PMID:27929729

  18. Ectopic pregnancy (image)

    MedlinePlus

    An ectopic pregnancy is one in which the fertilized egg implants in tissue outside of the uterus and the placenta ... common site is within a Fallopian tube, however, ectopic pregnancies can occur in the ovary, the abdomen, and ...

  19. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia

    PubMed Central

    Zhang, Qifeng; Smethurst, Elizabeth; Segonds-Pichon, Anne; Schrewe, Heinrich; Wakelam, Michael J. O.

    2016-01-01

    Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA), a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO) mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA) regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction. PMID:27658289

  20. Inhibition of SRY-calmodulin complex formation induces ectopic expression of ovarian cell markers in developing XY gonads.

    PubMed

    Sim, Helena; Argentaro, Anthony; Czech, Daniel P; Bagheri-Fam, Stefan; Sinclair, Andrew H; Koopman, Peter; Boizet-Bonhoure, Brigitte; Poulat, Francis; Harley, Vincent R

    2011-07-01

    The transcription factor sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, because mutations in SRY cause disorders of sex development in XY individuals. During gonadal development, Sry in pre-Sertoli cells activates Sox9 gene transcription, committing the fate of the bipotential gonad to become a testis rather than an ovary. The high-mobility group domain of human SRY contains two independent nuclear localization signals, one bound by calmodulin (CaM) and the other by importin-β. Although XY females carry SRY mutations in these nuclear localization signals that affect SRY nuclear import in transfected cells, it is not known whether these transport mechanisms are essential for gonadal development and sex determination. Here, we show that mouse Sry protein binds CaM and that a CaM antagonist reduces CaM binding, nuclear accumulation, and transcriptional activity of Sry in transfected cells. CaM antagonist treatment of cultured, sexually indifferent XY mouse fetal gonads led to reduced expression of the Sry target gene Sox9, defects in testicular cord formation, and ectopic expression of the ovarian markers Rspondin1 and forkhead box L2. These results indicate the importance of CaM for SRY nuclear import, transcriptional activity, testis differentiation, and sex determination.

  1. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  2. P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells

    PubMed Central

    1992-01-01

    P-selectin (PADGEM, GMP-140, CD62) is a transmembrane protein specific to alpha granules of platelets and Weibel-Palade bodies of endotheial cells. Upon stimulation of these cells, P-selectin is translocated to the plasma membrane where it functions as a receptor for monocytes and neutrophils. To investigate whether the mechanism of targeting of P- selectin to granules is specific for megakaryocytes and endothelial cells and/or dependent on von Willebrand factor, a soluble adhesive protein that is stored in the same granules, we have expressed the cDNA for P-selectin in AtT-20 cells. AtT-20 cells are a mouse pituitary cell line that can store proteins in a regulated fashion. By double-label immunofluorescence, P-selectin was visible as a punctate pattern at the tips of cell processes. This pattern closely resembled the localization of ACTH, the endogenous hormone produced and stored by the AtT-20 cells. Fractionation of the transfected cells resulted in the codistribution of P-selectin and ACTH in cellular compartments of the same density. Immunoelectron microscopy using a polyclonal anti-P- selectin antibody demonstrated immunogold localization in dense granules, morphologically indistinguishable from the ACTH granules. Binding experiments with radiolabeled monoclonal antibody to P-selectin indicated that there was also surface expression of P-selectin on the AtT-20 cells. After stimulation with the secretagogue 8-Bromo-cAMP the surface expression increased twofold, concomitant with the release of ACTH. In contrast, the surface expression of P-selectin transfected into CHO cells, which do not have a regulated pathway of secretion, did not change with 8-Br-cAMP treatment. In conclusion, we provide evidence for the regulated secretion of a transmembrane protein (P-selectin) in a heterologous cell line, which indicates that P-selectin contains an independent sorting signal directing it to storage granules. PMID:1370497

  3. Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the ‘irritable mossy cell’ hypothesis

    PubMed Central

    Santhakumar, Vijayalakshmi; Bender, Roland; Frotscher, Michael; Ross, Stephen T; Hollrigel, Greg S; Toth, Zsolt; Soltesz, Ivan

    2000-01-01

    Cytochemical and in vitro whole-cell patch clamp techniques were used to investigate granule cell hyperexcitability in the dentate gyrus 1 week after fluid percussion head trauma. The percentage decrease in the number of hilar interneurones labelled with either GAD67 or parvalbumin mRNA probes following trauma was not different from the decrease in the total population of hilar cells, indicating no preferential survival of interneurones with respect to the non-GABAergic hilar cells, i.e. the mossy cells. Dentate granule cells following trauma showed enhanced action potential discharges, and longer-lasting depolarizations, in response to perforant path stimulation, in the presence of the GABAA receptor antagonist bicuculline. There was no post-traumatic alteration in the perforant path-evoked monosynaptic excitatory postsynaptic currents (EPSCs), or in the intrinsic properties of granule cells. However, after trauma, the monosynaptic EPSC was followed by late, polysynaptic EPSCs, which were not present in controls. The late EPSCs in granule cells from fluid percussion-injured rats were not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were eliminated by both the non-NMDA glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the AMPA receptor antagonist GYKI 53655. In addition, the late EPSCs were not present in low (0·5 mM) extracellular calcium, and they were also eliminated by the removal of the dentate hilus from the slice. Mossy hilar cells in the traumatic dentate gyrus responded with significantly enhanced, prolonged trains of action potential discharges to perforant path stimulation. These data indicate that surviving mossy cells play a crucial role in the hyperexcitable responses of the post-traumatic dentate gyrus. PMID:10747187

  4. Potential implications of a monosynaptic pathway from mossy cells to adult-born granule cells of the dentate gyrus

    PubMed Central

    Scharfman, Helen E.; Bernstein, Hannah L.

    2015-01-01

    The dentate gyrus (DG) is important to many aspects of hippocampal function, but there are many aspects of the DG that are incompletely understood. One example is the role of mossy cells (MCs), a major DG cell type that is glutamatergic and innervates the primary output cells of the DG, the granule cells (GCs). MCs innervate the GCs as well as local circuit neurons that make GABAergic synapses on GCs, so the net effect of MCs on GCs – and therefore the output of the DG – is unclear. Here we first review fundamental information about MCs and the current hypotheses for their role in the normal DG and in diseases that involve the DG. Then we review previously published data which suggest that MCs are a source of input to a subset of GCs that are born in adulthood (adult-born GCs). In addition, we discuss the evidence that adult-born GCs may support the normal inhibitory ‘gate’ functions of the DG, where the GCs are a filter or gate for information from the entorhinal cortical input to area CA3. The implications are then discussed in the context of seizures and temporal lobe epilepsy (TLE). In TLE, it has been suggested that the DG inhibitory gate is weak or broken and MC loss leads to insufficient activation of inhibitory neurons, causing hyperexcitability. That idea was called the “dormant basket cell hypothesis.” Recent data suggest that loss of normal adult-born GCs may also cause disinhibition, and seizure susceptibility. Therefore, we propose a reconsideration of the dormant basket cell hypothesis with an intervening adult-born GC between the MC and basket cell and call this hypothesis the “dormant immature granule cell hypothesis.” PMID:26347618

  5. Spontaneous proliferative lesions of the adrenal medulla in aging Long-Evans rats. Comparison to PC12 cells, small granule-containing cells, and human adrenal medullary hyperplasia.

    PubMed

    Tischler, A S; DeLellis, R A; Perlman, R L; Allen, J M; Costopoulos, D; Lee, Y C; Nunnemacher, G; Wolfe, H J; Bloom, S R

    1985-10-01

    Aging rats of the Long-Evans strain spontaneously develop diffuse and nodular hyperplasia of the adrenal medulla in association with other abnormalities commonly encountered in human multiple endocrine neoplasia syndromes. The cells which comprise the adrenal nodules resemble those in the parent tumor of the rat PC12 pheochromocytoma cell line in that they show varying degrees of spontaneous or nerve growth factor-induced neurite outgrowth in culture and they contain little or no epinephrine. In addition, cells from at least some of the nodules contain immunoreactive neurotensin and neuropeptide-Y, which are also found in PC12 cells. There are a number of striking resemblances between the cells in adrenal nodules and the small granule-containing cells in the normal rodent adrenal. The findings suggest that spontaneous rat adrenal medullary nodules and PC12 cells might be derived from small granule-containing cells, or that cells within the nodules might regain properties of immature chromaffin cells and acquire characteristics of small granule-containing cells and of PC12 cells in the course of neoplastic progression. They further suggest a possible relationship between proliferative capacity and neurotransmitter phenotype in the adult rat adrenal medulla. By virtue of their sparse epinephrine content and their small granules, the cells in adrenal medullary nodules of Long-Evans rats differ from those in adrenal medullary nodules of humans with multiple endocrine neoplasia syndromes.

  6. Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis.

    PubMed

    Berrih-Aknin, Sonia; Ragheb, Samia; Le Panse, Rozen; Lisak, Robert P

    2013-07-01

    Myasthenia gravis (MG) is an autoimmune disease mediated by antibodies directed to molecules of the endplate of the neuromuscular junction. B cells play a major role in MG disease since they produce the pathogenic antibodies and therapies targeting B cells are effective. The aim of this article was to review the role of B cells in myasthenia gravis. We will first describe what we know about B cells in this disease and examine the involvement of the B cells in the thymus of MG patients. We will detail the role of factors associated with B-cell function such as BAFF. Finally, we will discuss the effects of therapy targeting B cells.

  7. Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil.

    PubMed

    Martino, Lucrezia; Cruz, Madalena V; Scoma, Alberto; Freitas, Filomena; Bertin, Lorenzo; Scandola, Mariastella; Reis, Maria A M

    2014-11-01

    Used cooking oil (UCO) was employed as the sole carbon source for the production of polyhydroxybutyrate (PHB) by cultivation in batch mode of Cupriavidus necator DSM 428. The produced biomass was used for extraction of the PHB granules with a solvent-free approach using sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), and the enzyme Alcalase in an aqueous medium. The recovered PHB granules showed a degree of purity higher than 90% and no crystallization (i.e., granules were recovered in their 'native' amorphous state) as demonstrated by wide angle X-ray diffraction (WAXS). Granules were characterized according to their thermal properties and stability by differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Results show that UCO can be used as a renewable resource to produce amorphous PHB granules with excellent properties in a biocompatible manner.

  8. Differential inhibition onto developing and mature granule cells generates high-frequency filters with variable gain

    PubMed Central

    Pardi, María Belén; Ogando, Mora Belén; Schinder, Alejandro F; Marin-Burgin, Antonia

    2015-01-01

    Adult hippocampal neurogenesis provides the dentate gyrus with heterogeneous populations of granule cells (GC) originated at different times. The contribution of these cells to information encoding is under current investigation. Here, we show that incoming spike trains activate different populations of GC determined by the stimulation frequency and GC age. Immature GC respond to a wider range of stimulus frequencies, whereas mature GC are less responsive at high frequencies. This difference is dictated by feedforward inhibition, which restricts mature GC activation. Yet, the stronger inhibition of mature GC results in a higher temporal fidelity compared to that of immature GC. Thus, hippocampal inputs activate two populations of neurons with variable frequency filters: immature cells, with wide‐range responses, that are reliable transmitters of the incoming frequency, and mature neurons, with narrow frequency response, that are precise at informing the beginning of the stimulus, but with a sparse activity. DOI: http://dx.doi.org/10.7554/eLife.08764.001 PMID:26163657

  9. Cell type-dependent trafficking of neuropeptide Y-containing dense core granules in CNS neurons.

    PubMed

    Ramamoorthy, Prabhu; Wang, Qian; Whim, Matthew D

    2011-10-12

    Neuropeptide transmitters are synthesized throughout the CNS and play important modulatory roles. After synthesis in the neuronal cell body, it is generally assumed that peptides are transported to nonspecialized sites of release. However, apart from a few cases, this scenario has not been thoroughly examined. Using wild-type and NPY(GFP) transgenic mice, we have studied the subcellular distribution of neuropeptide Y (NPY), a prototypical and broadly expressed neuropeptide. NPY puncta were found in the dendrites and axons of hippocampal GABAergic interneurons in situ. In contrast in hypothalamic GABAergic interneurons, NPY was restricted to the axon. Surprisingly this differential trafficking was preserved when the neurons were maintained in vitro. When hippocampal and hypothalamic neurons were transfected with NPY-Venus, the distribution of the fluorescent puncta replicated the cell type-specific distribution of endogenous neuropeptide Y. The NPY puncta in the axons of hippocampal and hypothalamic neurons colocalized with the sites of classical transmitter release (identified by staining for synapsin and the vesicular GABAergic transporter, VGAT). In hippocampal neurons, most of the postsynaptic NPY puncta were clustered opposite synapsin-containing varicosities. When neurons were stained for a second neuropeptide, agouti-related protein, immunoreactivity was found in the axon and dendrites of hippocampal neurons but only in the axons of hypothalamic neurons, thus mimicking the polarized distribution of NPY. These results indicate that the trafficking of neuropeptide-containing dense core granules is markedly cell type specific and is not determined entirely by the characteristics of the particular peptide per se.

  10. Brefeldin A sensitive mechanisms contribute to endocytotic membrane retrieval and vesicle recycling in cerebellar granule cells.

    PubMed

    Rampérez, Alberto; Sánchez-Prieto, José; Torres, Magdalena

    2017-03-11

    The recycling of synaptic vesicle (SV) proteins and transmitter release both occur at multiple sites along the axon. These processes are sensitive to inhibition of the small GTP binding protein ARF1, which regulates the AP-1/AP-3 complex. As the axon matures, SV recycling becomes restricted to the presynaptic bouton, and its machinery undergoes a complex process of maturation. We used the styryl dye FM1-43 to highlight differences in the efficiency of membrane recycling at different sites in cerebellar granule cells cultured for 7 days in vitro. We used Brefeldin A (BFA) to inhibit AP-1/AP-3-mediated recycling and to test the contribution of this pathway to the heterogeneity of the responses when these cells are strongly stimulated. Combining imaging techniques and ultrastructural analyses, we found a significant decrease in the density of functional boutons and an increase in the presence of endosome-like structures within the boutons of cells incubated with BFA prior to FM1-43 loading. Such effects were not observed when BFA was added 5 minutes after the end of the loading step, when endocytosis was almost fully completed. In this situation, vesicles were found closer to the active zone (AZ) in boutons exposed to BFA. Together, these data suggest that the AP-1/AP-3 pathway contributes to SV recycling, affecting different steps in all boutons but not equally, and thus being partly responsible for the heterogeneity of the different recycling efficiencies. This article is protected by copyright. All rights reserved.

  11. Regulation of Dense-Core Granule Replenishment by Autocrine BMP Signalling in Drosophila Secondary Cells

    PubMed Central

    Redhai, Siamak; Hellberg, Josephine E. E. U.; Wainwright, Mark; Perera, Sumeth W.; Castellanos, Felix; Kroeger, Benjamin; Gandy, Carina; Leiblich, Aaron; Corrigan, Laura; Hilton, Thomas; Patel, Benjamin; Fan, Shih-Jung; Hamdy, Freddie; Goberdhan, Deborah C. I.

    2016-01-01

    Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion. PMID:27727275

  12. Regulation of Dense-Core Granule Replenishment by Autocrine BMP Signalling in Drosophila Secondary Cells.

    PubMed

    Redhai, Siamak; Hellberg, Josephine E E U; Wainwright, Mark; Perera, Sumeth W; Castellanos, Felix; Kroeger, Benjamin; Gandy, Carina; Leiblich, Aaron; Corrigan, Laura; Hilton, Thomas; Patel, Benjamin; Fan, Shih-Jung; Hamdy, Freddie; Goberdhan, Deborah C I; Wilson, Clive

    2016-10-01

    Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion.

  13. Changes in the Paneth cell population of human small intestine assessed by image analysis of the secretory granule area.

    PubMed Central

    Elmes, M E; Jones, J G; Stanton, M R

    1983-01-01

    Estimates of the Paneth cell population in human jejunum and ileum were made using measurement of the granule area in micron2 by image analysis in a defined number of crypts. This figure was preferable to granule area per mm as there was a significant difference in crypts per mm between biopsies and surgical samples. In the jejunum no significant difference was found between normal children and adults with and without peptic ulcer. In adults with subtotal or partial villous atrophy the decrease in area was not statistically significant and there was no decrease in area in children with partial villous atrophy and coeliac disease. There was a marked increase in granule area in the jejunum of patients who had had a previous partial gastrectomy which was statistically significant. In the ileum patients with carcinoma of the caecum had higher values than patients with non-inflammatory non-malignant conditions but this was not statistically significant and two patients with Crohn's disease had an increased granule area. Paneth cell populations are affected by alterations in the intestinal luminal environment due to previous surgery or neoplastic or inflammatory disease. Images PMID:6875016

  14. Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility

    PubMed Central

    2010-01-01

    Introduction Metastatic breast cancer cells frequently and ectopically express the transcription factor RUNX2, which normally attenuates proliferation and promotes maturation of osteoblasts. RUNX2 expression is inversely regulated with respect to cell growth in osteoblasts and deregulated in osteosarcoma cells. Methods Here, we addressed whether the functional relationship between cell growth and RUNX2 gene expression is maintained in breast cancer cells. We also investigated whether the aberrant expression of RUNX2 is linked to phenotypic parameters that could provide a selective advantage to cells during breast cancer progression. Results We find that, similar to its regulation in osteoblasts, RUNX2 expression in MDA-MB-231 breast adenocarcinoma cells is enhanced upon growth factor deprivation, as well as upon deactivation of the mitogen-dependent MEK-Erk pathway or EGFR signaling. Reduction of RUNX2 levels by RNAi has only marginal effects on cell growth and expression of proliferation markers in MDA-MB-231 breast cancer cells. Thus, RUNX2 is not a critical regulator of cell proliferation in this cell type. However, siRNA depletion of RUNX2 in MDA-MB-231 cells reduces cell motility, while forced exogenous expression of RUNX2 in MCF7 cells increases cell motility. Conclusions Our results support the emerging concept that the osteogenic transcription factor RUNX2 functions as a metastasis-related oncoprotein in non-osseous cancer cells. PMID:21029421

  15. Incoming synapses and size of small granule-containing cells in a rat sympathetic ganglion after post-ganglionic axotomy.

    PubMed Central

    Case, C P; Matthews, M R

    1986-01-01

    A quantitative ultrastructural study has been made of the reaction of the incoming synapses of small granule-containing cells after axotomy of the major post-ganglionic branches of the superior cervical ganglion of the young adult rat. These cells are intrinsic and interneurone-like in this ganglion, receiving a preganglionic input and giving outgoing synapses to principal post-ganglionic neurones. Unlike their outgoing synapses, which are lost after post-ganglionic axotomy (Case & Matthews, 1986), the incoming synapses of the small granule-containing cells in axotomized ganglia increased in incidence post-operatively. The increase first became clearly evident 5-7 days post-operatively and was greater, being both more sustained and progressive, after bilateral than after unilateral axotomy. After bilateral axotomy the incidence of incoming synapses rose to more than four times that of normal ganglia and was still elevated at 128 days post-operatively, but was within normal limits at 390 days. After a unilateral lesion, increases of similar extent and time course to those in the axotomized ganglia were seen in the incoming synapses of small granule-containing cells in the uninjured contralateral ganglia. The incoming synapses of the small granule-containing cells are multifocal, i.e. show several points or active foci of synaptic specialization. The increase in synapses expressed itself both through an increased incidence of these synaptic active foci per nerve terminal and through an increase in the number of presynaptic nerve terminal profiles associated with the cells. Control observations indicated that the increase in synapses was not due to surgical stress, nor was it attributable solely to post-operative ageing. The nerve terminals which were presynaptic to the small granule-containing cells post-operatively were all of preganglionic origin: no incoming synapses or presynaptic nerve terminals remained at 2 days after a preganglionic denervation of axotomized

  16. Fibroblasts from the inner granulation tissue of the pseudocapsule in hips at revision arthroplasty induce osteoclast differentiation, as do stromal cells

    PubMed Central

    Sakai, H; Jingushi, S; Shuto, T; Urabe, K; Ikenoue, T; Okazaki, K; Kukita, T; Kukita, A; Iwamoto, Y

    2002-01-01

    Background: It has previously been shown that many osteoclast precursors are included in the granulation tissue within the pseudocapsule obtained at revision arthroplasty from hips with osteolysis. In vitro culture of only cells isolated from the granulation tissue has been previously shown to generate many mature osteoclasts. Objective: To investigate the presence or otherwise of supporting cells, similar to stromal cells, which differentiate osteoclasts within the granulation tissue. Methods: Cells isolated from the granulation tissue were cultured alone, and after four weeks fibroblast-like cells (granulation fibroblasts) remained. Rat non-adherent bone marrow cells (NA-BMCs) were co-cultured with the granulation fibroblasts with or without 1α,25(OH)2D3 (10-8 M) or heat treated ROS 17/2.8 cell conditioned medium (ht ROSCM), or both. Multinucleated cells (MNCs), which formed, were assessed by biochemical and functional characterisation of osteoclasts. Receptor activator of NFκB ligand (RANKL) was investigated by immunohistochemistry. Results: Co-culture of NA-BMCs and granulation fibroblasts caused the formation of tartrate resistant acid phosphatase (TRAP) positive MNCs, which had the calcitonin receptor (CTR), the Kat-1 antigen, which is specific to the surface of rat osteoclasts, and the ability to form pits in the presence of both 1α,25(OH)2D3 and ht ROSCM or in the presence of just ht ROSCM. RANKL was detected in fibroblast-like cells in the granulation tissue. Conclusion: These data suggest that granulation fibroblasts support osteoclast differentiation, as do osteoblasts/stromal cells, and may play a part in aseptic loosening. PMID:11796394

  17. Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development

    PubMed Central

    Zhang, Peter; Ha, Thomas; Larouche, Matt; Swanson, Douglas; Goldowitz, Dan

    2015-01-01

    Kruppel-like factor 4 (Klf4) is a transcription factor that regulates many important cellular processes in stem cell biology, cancer, and development. We used histological and molecular methods to study the expression of Klf4 in embryonic development of the normal and Klf4 knockout cerebellum. We find that Klf4 is expressed strongly in early granule cell progenitor development but tails-off considerably by the end of embryonic development. Klf4 is also co-expressed with Pax6 in these cells. In the Klf4-null mouse, which is perinatal lethal, Klf4 positively regulates Pax6 expression and regulates the proliferation of neuronal progenitors in the rhombic lip, external granular layer and the neuroepithelium. This paper is the first to describe a role for Klf4 in the cerebellum and provides insight into this gene’s function in neuronal development. PMID:26226504

  18. Simulated Responses of Cerebellar Purkinje Cells are Independent of the Dendritic Location of Granule Cell Synaptic Inputs

    NASA Astrophysics Data System (ADS)

    de Schutter, Erik; Bower, James M.

    1994-05-01

    Cerebellar Purkinje cell responses to granule cell synaptic inputs were examined with a computer model including active dendritic conductances. Dendritic P-type Ca2+ channels amplified postsynaptic responses when the model was firing at a physiological rate. Small synchronous excitatory inputs applied distally on the large dendritic tree resulted in somatic responses of similar size to those generated by more proximal inputs. In contrast, in a passive model the somatic postsynaptic potentials to distal inputs were 76% smaller. The model predicts that the somatic firing response of Purkinje cells is relatively insensitive to the exact dendritic location of synaptic inputs. We describe a mechanism of Ca2+-mediated synaptic amplification, based on the subspiking threshold recruitment of P-type Ca2+ channels in the dendritic branches surrounding the input site.

  19. MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis

    PubMed Central

    Kazanaviciute, Vaiva; Magyar, Zoltan; Ayatollahi, Zahra; Unterwurzacher, Verena; Choopayak, Chonnanit; Boniecka, Justyna; Murray, James A. H.; Bogre, Laszlo; Meskiene, Irute

    2010-01-01

    In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells. PMID:21203456

  20. Urethral Reconstruction Using Mesothelial Cell-Seeded Autogenous Granulation Tissue Tube: An Experimental Study in Male Rabbits

    PubMed Central

    Jiang, Shiwei; Xu, Zhonghua; Zhao, Yuanyuan; Yan, Lei; Zhou, Zunlin

    2017-01-01

    Objective. This study was to evaluate the utility of the compound graft for tubularized urethroplasty by seeding mesothelial cells onto autogenous granulation tissue. Methods. Silastic tubes were implanted subcutaneously in 18 male rabbits, of which nine underwent omentum biopsies simultaneously for in vitro expansion of mesothelial cells. The granulation tissue covering the tubes was harvested 2 weeks after operation. Mesothelial cells were seeded onto and cocultured with the tissue for 7 days. A pendulous urethral segment of 1.5 cm was totally excised. Urethroplasty was performed with mesothelial cell-seeded tissue tubes in an end-to-end fashion in nine rabbits and with unseeded grafts in others as controls. Serial urethrograms were performed at 1, 2, and 6 months postoperatively. Meanwhile, the neourethra was harvested and analyzed grossly and histologically. Results. Urethrograms showed cell-seeded grafts maintained wide at each time point, while strictures formation was found in unseeded grafts. Histologically, layers of urothelium surrounded by increasingly organized smooth muscles were observed in seeded grafts. In contrast, myofibroblasts accumulation and extensive scarring occurred in unseeded grafts. Conclusions. Mesothelial cell-seeded granulation tissue tube can be successfully used for tubularized urethroplasty in male rabbits. PMID:28337443

  1. Quantification of endocrine cells and ultrastructural study of insulin granules in the large intestine of opossum Didelphis aurita (Wied-Neuwied, 1826).

    PubMed

    dos Santos, Daiane Cristina Marques; Cupertino, Marli do Carmo; Fialho, Maria do Carmo Queiroz; Barbosa, Alfredo Jose Afonso; Fonseca, Cláudio Cesar; Sartori, Sirlene Souza Rodrigues; da Matta, Sérgio Luis Pinto

    2014-02-01

    This study aimed to investigate the distribution of argyrophil, argentaffin, and insulin-immunoreactive endocrine cells in the large intestine of opossums (Didelphis aurita) and to describe the ultrastructure of the secretory granules of insulin-immunoreactive endocrine cells. Fragments of the large intestine of 10 male specimens of D. aurita were collected, processed, and subjected to staining, immunohistochemistry, and transmission electron microscopy. The argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells were sparsely distributed in the intestinal glands of the mucous layer, among other cell types of the epithelium in all regions studied. Proportionally, the argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells represented 62.75%, 36.26%, and 0.99% of the total determined endocrine cells of the large intestine, respectively. Quantitatively, there was no difference between the argyrophil and the argentaffin endocrine cells, whereas insulin-immunoreactive endocrine cells were less numerous. The insulin-immunoreactive endocrine cells were elongated or pyramidal, with rounded nuclei of irregularly contoured, and large amounts of secretory granules distributed throughout the cytoplasm. The granules have different sizes and electron densities and are classified as immature and mature, with the mature granules in predominant form in the overall granular population. In general, the granule is shown with an external electron-lucent halo and electron-dense core. The ultrastructure pattern in the granules of the insulin-immunoreactive endocrine cells was similar to that of the B cells of pancreatic islets in rats.

  2. Cancer metastasis-suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells.

    PubMed

    Arai, Amy C; Xia, Yan-Fang; Suzuki, Erika; Kessler, Markus; Civelli, Olivier; Nothacker, Hans-Peter

    2005-11-01

    Metastin is an antimetastatic peptide encoded by the KiSS-1 gene in cancer cells. Recent studies found that metastin is a ligand for the orphan G-protein-coupled receptor GPR54, which is highly expressed in specific brain regions such as the hypothalamus and parts of the hippocampus. This study shows that activation of GPR54 by submicromolar concentrations of metastin reversibly enhances excitatory synaptic transmission in hippocampal dentate granule cells in a mitogen-activated protein (MAP) kinase-dependent manner. Synaptic enhancement by metastin was suppressed by intracellular application of the G-protein inhibitor GDP-beta-S and the calcium chelator BAPTA. Analysis of miniature excitatory postsynaptic currents (mEPSCs) revealed an increase in the mean amplitude but no change in event frequency. This indicates that GPR54 and the mechanism responsible for the increase in EPSCs are postsynaptic. Metastin-induced synaptic potentiation was abolished by 50 microM PD98059 and 20 microM U0126, two inhibitors of the MAP kinases ERK1 and ERK2. The effect was also blocked by inhibitors of calcium/calmodulin-dependent kinases and tyrosine kinases. RT-PCR experiments showed that both KiSS-1 and GPR54 are expressed in the hippocampal dentate gyrus. Metastin is thus a novel endogenous factor that modulates synaptic excitability in the dentate gyrus through mechanisms involving MAP kinases, which in turn may be controlled upstream by calcium-activated kinases and tyrosine kinases.

  3. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells

    PubMed Central

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-01-01

    Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A−/− GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A−/− mutants, PlexinA2−/− mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A−/− mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders. DOI: http://dx.doi.org/10.7554/eLife.04390.001 PMID:25313870

  4. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    PubMed

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  5. Electrophysiological characterization of granule cells in the dentate gyrus immediately after birth

    PubMed Central

    Pedroni, Andrea; Minh, Do Duc; Mallamaci, Antonello; Cherubini, Enrico

    2014-01-01

    Granule cells (GCs) in the dentate gyrus are generated mainly postnatally. Between embryonic day 10 and 14, neural precursors migrate from the primary dentate matrix to the dentate gyrus where they differentiate into neurons. Neurogenesis reaches a peak at the end of the first postnatal week and it is completed at the end of the first postnatal month. This process continues at a reduced rate throughout life. Interestingly, immediately after birth, GCs exhibit a clear GABAergic phenotype. Only later they integrate the classical glutamatergic trisynaptic hippocampal circuit. Here, whole cell patch clamp recordings, in current clamp mode, were performed from immature GCs, intracellularly loaded with biocytin (in hippocampal slices from P0 to P3 old rats) in order to compare their morphological characteristics with their electrophysiological properties. The vast majority of GCs were very immature with small somata, few dendritic branches terminating with small varicosities and growth cones. In spite of their immaturity their axons reached often the cornu ammonis 3 area. Immature GCs generated, upon membrane depolarization, either rudimentary sodium spikes or more clear overshooting action potentials that fired repetitively. They exhibited also low threshold calcium spikes. In addition, most spiking neurons showed spontaneous synchronized network activity, reminiscent of giant depolarizing potentials (GDPs) generated in the hippocampus by the synergistic action of glutamate and GABA, both depolarizing and excitatory. This early synchronized activity, absent during adult neurogenesis, may play a crucial role in the refinement of local neuronal circuits within the developing dentate gyrus. PMID:24592213

  6. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    PubMed

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma.

  7. Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells.

    PubMed

    Masoli, Stefano; Rizza, Martina F; Sgritta, Martina; Van Geit, Werner; Schürmann, Felix; D'Angelo, Egidio

    2017-01-01

    In realistic neuronal modeling, once the ionic channel complement has been defined, the maximum ionic conductance (Gi-max) values need to be tuned in order to match the firing pattern revealed by electrophysiological recordings. Recently, selection/mutation genetic algorithms have been proposed to efficiently and automatically tune these parameters. Nonetheless, since similar firing patterns can be achieved through different combinations of Gi-max values, it is not clear how well these algorithms approximate the corresponding properties of real cells. Here we have evaluated the issue by exploiting a unique opportunity offered by the cerebellar granule cell (GrC), which is electrotonically compact and has therefore allowed the direct experimental measurement of ionic currents. Previous models were constructed using empirical tuning of Gi-max values to match the original data set. Here, by using repetitive discharge patterns as a template, the optimization procedure yielded models that closely approximated the experimental Gi-max values. These models, in addition to repetitive firing, captured additional features, including inward rectification, near-threshold oscillations, and resonance, which were not used as features. Thus, parameter optimization using genetic algorithms provided an efficient modeling strategy for reconstructing the biophysical properties of neurons and for the subsequent reconstruction of large-scale neuronal network models.

  8. Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells

    PubMed Central

    Masoli, Stefano; Rizza, Martina F.; Sgritta, Martina; Van Geit, Werner; Schürmann, Felix; D'Angelo, Egidio

    2017-01-01

    In realistic neuronal modeling, once the ionic channel complement has been defined, the maximum ionic conductance (Gi-max) values need to be tuned in order to match the firing pattern revealed by electrophysiological recordings. Recently, selection/mutation genetic algorithms have been proposed to efficiently and automatically tune these parameters. Nonetheless, since similar firing patterns can be achieved through different combinations of Gi-max values, it is not clear how well these algorithms approximate the corresponding properties of real cells. Here we have evaluated the issue by exploiting a unique opportunity offered by the cerebellar granule cell (GrC), which is electrotonically compact and has therefore allowed the direct experimental measurement of ionic currents. Previous models were constructed using empirical tuning of Gi-max values to match the original data set. Here, by using repetitive discharge patterns as a template, the optimization procedure yielded models that closely approximated the experimental Gi-max values. These models, in addition to repetitive firing, captured additional features, including inward rectification, near-threshold oscillations, and resonance, which were not used as features. Thus, parameter optimization using genetic algorithms provided an efficient modeling strategy for reconstructing the biophysical properties of neurons and for the subsequent reconstruction of large-scale neuronal network models. PMID:28360841

  9. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells.

    PubMed

    Jiménez, Andrés; Jordà, Elvira G; Verdaguer, Ester; Pubill, David; Sureda, Francesc X; Canudas, Anna M; Escubedo, Elena; Camarasa, Jordi; Camins, Antoni; Pallàs, Mercè

    2004-04-15

    The neurotoxic action of the abuse drugs methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) on cerebellar granule neurones (CGNs) culture was examined. Treatment for 48 h with METH or MDMA (1-5 mM) induced a higher decrease in viability than 24 h treatment. z.VAD.fmk (100 microM) but not MK-801 nor NBQX recovered control viability values. In both cases, cell death was characterised as apoptotic rather than necrotic by morphology cell observation. Apoptosis measured by flow cytometry indicated an increase in the hypodiploid population after 48 h treatment with METH and MDMA. Apoptosis was reverted by the presence of z.VAD.fmk (100 microM) but not by 10 microM MK-801 or NBQX. Similar results were obtained by analysing nuclear chromatine condensation. These results ruled out excitotoxic participation in amphetamine derivative-induced neurotoxicity in CGNs. Participation of radical oxygen species (ROS) was evaluated using alpha-tocopherol (1-15 microM) and cytometric studies. The co-treatment with 4 mM METH or MDMA for 48 h partially reverted neurotoxic action and apoptotic features, indicating ROS implication in CGNs death by amphetamine derivatives. Alteration of mitochondrial function induced cytochrome C (Cyt C) release after 48-h treatment with METH and MDMA (4 mM). There was also indication of caspase-3-like activation, measured by immunoanalysis and biochemically. Finally, neurodegenerative action caused by amphetamine derivatives may be prevented by using caspase inhibitors.

  10. Ultra-structural study of insulin granules in pancreatic β-cells of db/db mouse by scanning transmission electron microscopy tomography.

    PubMed

    Xue, Yanhong; Zhao, Wei; Du, Wen; Zhang, Xiang; Ji, Gang; Ying, Wang; Xu, Tao

    2012-07-01

    Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.

  11. Wnt activation downregulates olfactomedin-1 in Fallopian tubal epithelial cells: a microenvironment predisposed to tubal ectopic pregnancy.

    PubMed

    Kodithuwakku, Suranga P; Pang, Ronald T K; Ng, Ernest H Y; Cheung, Annie N Y; Horne, Andrew W; Ho, Pak-Chung; Yeung, William S B; Lee, Kai-Fai

    2012-02-01

    Ectopic pregnancy (EP) occurs when the embryo fails to transit to the uterus and attach to the luminal epithelium of the Fallopian tube (FT). Tubal EP is a common gynecological emergency and more than 95% of EP occurs in the ampullary region of the FT. In humans, Wnt activation and downregulation of olfactomedin-1 (Olfm-1) occur in the receptive endometrium and coincided with embryo implantation in vivo. Whether similar molecular changes happen in the FT leading to EP remains unclear. We hypothesized that activation of Wnt signaling downregulates Olfm-1 expression predisposes to EP. We investigated the spatiotemporal expression of Olfm-1 in FT from non-pregnant women and women with EP, and used a novel trophoblastic spheroid (embryo surrogate)-FT epithelial cell co-culture model (JAr and OE-E6/E7 cells) to study the role of Olfm-1 on spheroid attachment. Olfm-1 mRNA expression in the ampullary region of non-pregnant FT was higher (P<0.05) in the follicular phase than in the luteal phase. Ampullary tubal Olfm-1 expression was lower in FT from women with EP compared to normal controls at the luteal phase (histological scoring (H-SCORE)=1.3±0.2 vs 2.4±0.5; P<0.05). Treatment of OE-E6/E7 with recombinant Olfm-1 (0.2-5 μg/ml) suppressed spheroid attachment to OE-E6/E7 cells, while activation of Wnt-signaling pathway by Wnt3a or LiCl reduced endogenous Olfm-1 expression and increased spheroid attachment. Conversely, suppression of Olfm-1 expression by RNAi increased spheroid attachment to OE-E6/E7 cells. Taken together, Wnt activation suppresses Olfm-1 expression, and this may predispose a favorable microenvironment of the retained embryo in the FT, leading to EP in humans.

  12. Intrathymic Tfh/B Cells Interaction Leads to Ectopic GCs Formation and Anti-AChR Antibody Production: Central Role in Triggering MG Occurrence.

    PubMed

    Zhang, Xiaoyan; Liu, Shasha; Chang, Ting; Xu, Jiang; Zhang, Chunmei; Tian, Feng; Sun, Yuanjie; Song, Chaojun; Yi, Wei; Lin, Hong; Li, Zhuyi; Yang, Kun

    2016-01-01

    Myasthenia gravis is a typical acetylcholine receptor (AChR) antibody-mediated autoimmune disease in which thymus frequently presents follicular hyperplasia or thymoma. It is now widely accepted that the thymus is probably the site of AChR autosensitization and autoantibody production. However, the exact mechanism that triggers intrathymic AChR antibody production is still unknown. T follicular helper cells, recently identified responsible for B cell maturation and antibody production in the secondary lymphoid organs, were involved in many autoimmune diseases. Newly studies found T follicular helper (Tfh) cells increased in the peripheral blood of myasthenia gravis (MG). Whether it appears in the thymus of MG and its role in the intrathymic B cells help and autoantibody production is unclear. Therefore, this study aims to determine in more detail whether Tfh/B cell interaction exist in MG thymus and to address its role in the ectopic germinal centers (GCs) formation and AChR antibody production. We observed the frequency of Tfh cells and its associated transcription factor Bcl-6, key cytokine IL-21 enhanced both in the thymocytes and peripheral blood mononuclear cells (PBMCs) of MG patients. In parallel, we also showed increased B cells and autoantibody titers in MG peripheral blood and thymus. Confocal microscope results demonstrated Tfh and B cells co-localized within the ectopic GCs in MG thymus, suggesting putative existence of Tfh/B cells interaction. In vitro studies further showed dynamic behavior of Tfh/B cells interaction and Tfh cells induced autoantibody secretion might through its effector cytokine IL-21. Altogether, our data demonstrated that intrathymic Tfh/B cells interaction played a key role in thymic ectopic GCs formation and anti-AChR antibody production, which might trigger MG occurrence.

  13. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts.

    PubMed

    Bernhardt, A; Dittrich, R; Lode, A; Despang, F; Gelinsky, M

    2013-07-01

    Conventionally sintered hydroxyapatite-based materials for bone repair show poor resorbability due to the loss of nanocrystallinity. The present study describes a method to establish nanocrystalline hydroxyapatite granules. The material was prepared by ionotropic gelation of an alginate sol containing hydroxyapatite (HA) powder. Subsequent thermal elimination of alginate at 650 °C yielded non-sintered, but unexpectedly stable hydroxyapatite granules. By adding stearic acid as an organic filler to the alginate/HA suspension, the granules exhibited macropores after thermal treatment. A third type of material was achieved by additional coating of the granules with silica particles. Microstructure and specific surface area of the different materials were characterized in comparison to the already established granular calcium phosphate material Cerasorb M(®). Cytocompatibility and potential for bone regeneration of the materials was evaluated by in vitro examinations with osteosarcoma cells and osteoclasts. Osteoblast-like SaOS-2 cells proliferated on all examined materials and showed the typical increase of alkaline phosphatase (ALP) activity during cultivation. Expression of bone-related genes coding for ALP, osteonectin, osteopontin, osteocalcin and bone sialoprotein II on the materials was proven by RT-PCR. Human monocytes were seeded onto the different granules and osteoclastogenesis was examined by activity measurement of tartrate-specific acid phosphatase (TRAP). Gene expression analysis after 23 days of cultivation revealed an increased expression of osteoclast-related genes TRAP, vitronectin receptor and cathepsin K, which was on the same level for all examined materials. These results indicate, that the nanocrystalline granular materials are of clinical interest, especially for bone regeneration.

  14. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells

    PubMed Central

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M.; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-01-01

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic

  15. Differentiation of Vascular Stem Cells Contributes to Ectopic Calcification of Atherosclerotic Plaque.

    PubMed

    Leszczynska, Aleksandra; O'Doherty, Aideen; Farrell, Eric; Pindjakova, Jana; O'Brien, Fergal J; O'Brien, Timothy; Barry, Frank; Murphy, Mary

    2016-04-01

    The cellular and molecular basis of vascular calcification (VC) in atherosclerosis is not fully understood. Here, we investigate role of resident/circulating progenitor cells in VC and contribution of inflammatory plaque environment to this process. Vessel-derived stem/progenitor cells (VSCs) and mesenchymal stem cells (MSCs) isolated from atherosclerotic ApoE(-/-) mice showed significantly more in vitro osteogenesis and chondrogenesis than cells generated from control C57BL/6 mice. To assess their ability to form bone in vivo, cells were primed chondrogenically or cultured in control medium on collagen glycosaminoglycan scaffolds in vitro prior to subcutaneous implantation in ApoE(-/-) and C57BL/6 mice using a crossover study design. Atherosclerotic ApoE(-/-) MSCs and VSCs formed bone when implanted in C57BL/6 mice. In ApoE(-/-) mice, these cells generated more mature bone than C57BL/6 cells. The atherosclerotic in vivo environment alone promoted bone formation by implanted C57BL/6 cells. Un-primed C57BL/6 VSCs were unable to form bone in either mouse strain. Treatment of ApoE(-/-) VSC chondrogenic cultures with interleukin (IL)-6 resulted in significantly increased glycosaminoglycan deposition and expression of characteristic chondrogenic genes at 21 days. In conclusion, resident vascular cells from atherosclerotic environment respond to the inflammatory milieu and undergo calcification. IL-6 may have a role in aberrant differentiation of VSCs contributing to vascular calcification in atherosclerosis.

  16. Tracing CD34+ Stromal Fibroblasts in Palatal Mucosa and Periodontal Granulation Tissue as a Possible Cell Reservoir for Periodontal Regeneration.

    PubMed

    Roman, Alexandra; Páll, Emőke; Mihu, Carmen M; Petruţiu, Adrian S; Barbu-Tudoran, Lucian; Câmpian, Radu S; Florea, Adrian; Georgiu, Carmen

    2015-08-01

    The aim of the present research was to trace CD34+ stromal fibroblastic cells (CD34+ SFCs) in the palatal connective tissue harvested for muco-gingival surgical procedures and in granulation tissues from periodontal pockets using immunohistochemical and transmission electron microscopy. Immunohistochemical analysis targeted the presence of three antigens: CD31, α-smooth muscle actin (α-SMA), and CD34. In the palate, CD31 staining revealed a colored inner ring of the vessels representing the endothelium, α-SMA+ was located in the medial layer of the vasculature, and CD34 was intensely expressed by endothelial cells and artery adventitial cells (considered to be CD34+ SFCs). Granulation tissue showed the same pattern for CD31+ and α-SMA, but a different staining pattern for CD34. Ultrastructural examination of the palatal tissue highlighted perivascular cells with fibroblast-like characteristics and pericytes in close spatial relationship to endothelial cells. The ultrastructural evaluation of granulation tissue sections confirmed the presence of neovasculature and the inflammatory nature of this tissue. The present study traced the presence of CD34+ SFCs and of pericytes in the palatal connective tissue thus highlighting once more its intrinsic regenerative capabilities. The clinical and systemic factors triggering mobilization and influencing the fate of local CD34+SCFs and other progenitors are issues to be further investigated.

  17. Titania and titania-silica coatings for titanium: comparison of ectopic bone formation within cell-seeded scaffolds.

    PubMed

    Meretoja, Ville V; Tirri, Teemu; Aäritalo, Virpi; Walboomers, X Frank; Jansen, John A; Närhi, Timo O

    2007-04-01

    The aim of this study was to compare titania (TiO(2))-coated, titania-silica (TiSi)-coated, and uncoated (cpTi) titanium fiber meshes as scaffolds for bone engineering. The scaffolds were loaded with bone marrow stromal cells and implanted subcutaneously in rats. Ectopic bone formation after 1, 4, and 12 weeks of implantation was evaluated using histology and histomorphometry. After 1 week of implantation, multiple patches of unorganized mineralizing tissue were seen in all implants. The amount of this bone-like tissue clearly increased from 1 to 4 weeks. Bone apposition occurred in direct contact with coated meshes, while a thin layer of unmineralized fibrous tissue was often observed surrounding cpTi mesh fibers. After 12 weeks, the structure of bone, with bone marrow-like tissue, was further matured and mesh fibers were embedded in lamellar bone. No statistical differences in the amount of mineralized bone were observed between scaffold types at any point of time. Only TiSi scaffolds showed further increase in bone area from 4 to 12 weeks (p < 0.01). A notable difference was that the sol-gel coatings resulted in enhanced initial bone contact and distribution of bone tissue, whereas uncoated implants showed bone formation mainly in the center of the scaffolds. In conclusion, TiO(2)-based sol-gel coatings may be used in tissue engineering to gain more uniform distribution of bone throughout titanium fiber mesh scaffolds.

  18. Three-dimensional ultrastructural analyses of anterior pituitary gland expose spatial relationships between endocrine cell secretory granule localization and capillary distribution.

    PubMed

    Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-Ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-Ichiro

    2016-10-31

    Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules.

  19. Three-dimensional ultrastructural analyses of anterior pituitary gland expose spatial relationships between endocrine cell secretory granule localization and capillary distribution

    PubMed Central

    Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-ichiro

    2016-01-01

    Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules. PMID:27796315

  20. Scleraxis-Lineage Cells Contribute to Ectopic Bone Formation in Muscle and Tendon.

    PubMed

    Agarwal, Shailesh; Loder, Shawn J; Cholok, David; Peterson, Joshua; Li, John; Breuler, Christopher; Cameron Brownley, R; Hsin Sung, Hsiao; Chung, Michael T; Kamiya, Nobuhiro; Li, Shuli; Zhao, Bin; Kaartinen, Vesa; Davis, Thomas A; Qureshi, Ammar T; Schipani, Ernestina; Mishina, Yuji; Levi, Benjamin

    2017-03-01

    The pathologic development of heterotopic ossification (HO) is well described in patients with extensive trauma or with hyperactivating mutations of the bone morphogenetic protein (BMP) receptor ACVR1. However, identification of progenitor cells contributing to this process remains elusive. Here we show that connective tissue cells contribute to a substantial amount of HO anlagen caused by trauma using postnatal, tamoxifen-inducible, scleraxis-lineage restricted reporter mice (Scx-creERT2/tdTomato(fl/fl) ). When the scleraxis-lineage is restricted specifically to adults prior to injury marked cells contribute to each stage of the developing HO anlagen and coexpress markers of endochondral ossification (Osterix, SOX9). Furthermore, these adult preinjury restricted cells coexpressed mesenchymal stem cell markers including PDGFRα, Sca1, and S100A4 in HO. When constitutively active ACVR1 (caACVR1) was expressed in scx-cre cells in the absence of injury (Scx-cre/caACVR1(fl/fl) ), tendons and joints formed HO. Postnatal lineage-restricted, tamoxifen-inducible caACVR1 expression (Scx-creERT2/caACVR1(fl/fl) ) was sufficient to form HO after directed cardiotoxin-induced muscle injury. These findings suggest that cells expressing scleraxis within muscle or tendon contribute to HO in the setting of both trauma or hyperactive BMP receptor (e.g., caACVR1) activity. Stem Cells 2017;35:705-710.

  1. Colocalization of heparin and histamine in the intracellular granules of test cells from the invertebrate Styela plicata (Chordata-Tunicata).

    PubMed

    Cavalcante, Moisés C M; de Andrade, Leonardo R; Du Bocage Santos-Pinto, Claudia; Straus, Anita H; Takahashi, Hélio K; Allodi, Silvana; Pavão, Mauro S G

    2002-03-01

    In most ascidian species the oocytes are surrounded by two types of accessory cells called follicle cells and test cells. Test cells are located on the periphery of oocytes and remain in the perivitelline space during egg development until hatching. Heparin and histamine were previously described in the test cells of the ascidian Styela plicata. In the present study, electron microscopy techniques were used to characterize the ultrastructure of the S. plicata test cells and to localize heparin and histamine in these cells. Test cells contain several intracellular granules with unique ultrastructural features. They are formed by elongated filaments composed of serial globules with an electron-lucent circle, containing a central electron-dense spot. Immunocytochemistry showed that heparin and histamine colocalize at the border of granule filaments in the test cell. Compound 48/80, a potent secretagogue of heparin-containing mast cells, also induced degranulation of test cells. According to these results, we suggest that test cells represent ancient effector cells of the innate immunity in primitive chordates.

  2. Defective angiogenesis in the inflammatory granulation tissue in histidine decarboxylase-deficient mice but not in mast cell-deficient mice.

    PubMed

    Ghosh, Ajoy Kumar; Hirasawa, Noriyasu; Ohtsu, Hiroshi; Watanabe, Takehiko; Ohuchi, Kazuo

    2002-04-15

    We have analyzed the role of histamine in the angiogenesis of the granulation tissue in histidine decarboxylase-deficient (HDC(-/-)) mice, mast cell-deficient mice (WBB6F1-W/W(V)), and their corresponding wild-type mice (HDC(+/+) and WBB6F(1)(+/+)). In HDC(+/+) mice, subcutaneous implantation of a cotton thread in the dorsum induced granulation tissue formation with angiogenesis, while the topical injection of anti-vascular endothelial growth factor (VEGF) IgG strongly suppressed them. In HDC(-/-) mice which showed lower VEGF levels in the granulation tissue, there was notably less angiogenesis and granulation tissue formation than in HDC(+/+) mice. The topical injection of histamine or the H(2) agonist dimaprit rescued the defective angiogenesis and granulation tissue formation in HDC(-/-) mice. There was no significant difference in the granulation tissue formation and angiogenesis between WBB6F1-W/W(V) and WBB6F1(+/+) mice. In addition, macrophages in the granulation tissue were found to express HDC. Our findings indicate that histamine derived from non-mast cells plays a significant role in the angiogenesis of the inflammatory granulation tissue.

  3. Elements of the nitric oxide/cGMP pathway expressed in cerebellar granule cells: biochemical and functional characterisation.

    PubMed

    Jurado, Sandra; Sánchez-Prieto, José; Torres, Magdalena

    2004-11-01

    It is known that the nitric oxide (NO)/cGMP pathway affects neuronal development and the expression of the different proteins is developmentally dependent in several brain areas. However, so far there are no data on the expression of the proteins involved in this signalling system during the development of the cerebellar granule cell, one of the most widely used models of neuronal development. This study was accordingly designed to analyse the developmental regulation of neuronal nitric oxide synthase (nNOS), soluble guanylyl cyclase subunits (alpha1, alpha2 and beta1) and cGMP-dependent protein kinases (cGK I and cGK II) in cerebellar granule cells through real time-polymerase chain reaction (RT-PCR) and Western blotting. We were able to detect guanylyl cyclase subunits and cGK I and cGK II in cerebellar granule cells at every stage of development examined (cells freshly isolated from 7-day-old rat pups, and cells cultured for 7 days or 14 days). Expression levels, nevertheless, varied significantly at each stage. nNOS, alpha2 and beta1 and cGK II levels increased during granule cell development, while alpha1 and cGK I showed an opposite behaviour pattern; the levels of these latter proteins diminished as the cells matured. The functionality of this pathway was assessed by stimulating cells kept in culture for 7 days with DEA/NO or with N-methyl-D-aspartate (NMDA). Cells responded by increasing intracellular cGMP and activating cGMP-dependent protein kinase activity, which effectively phosphorylated two well-known substrates of this activity, the vasodilator stimulated phosphoprotein (VASP) and the cAMP response element binding protein (CREB). In summary, through both functional and biochemical tests, this is the first demonstration of a complete NO/cGMP signalling transduction pathway in cerebellar granule cells. Our results also indicate the developmental regulation of the proteins in this system.

  4. Posttranslational regulation of BCL2 levels in cerebellar granule cells: A mechanism of neuronal survival.

    PubMed

    Lossi, Laura; Gambino, Graziana; Ferrini, Francesco; Alasia, Silvia; Merighi, Adalberto

    2009-11-01

    Apoptosis can be modulated by K(+) and Ca(2+) inside the cell and/or in the extracellular milieu. In murine organotypic cultures, membrane potential-regulated Ca(2+) signaling through calcineurin phosphatase has a pivotal role in development and maturation of cerebellar granule cells (CGCs). P8 cultures were used to analyze the levels of expression of B cell lymphoma 2 (BCL2) protein, and, after particle-mediated gene transfer in CGCs, to study the posttranslational modifications of BCL2 fused to a fluorescent tag in response to a perturbation of K(+)/Ca(2+) homeostasis. There are no changes in Bcl2 mRNA after real time PCR, whereas the levels of the fusion protein (monitored by calculating the density of transfected CGCs under the fluorescence microscope) and of BCL2 (inWestern blotting) are increased. After using a series of agonists/antagonists for ion channels at the cell membrane or the endoplasmic reticulum (ER), and drugs affecting protein synthesis/degradation, accumulation of BCL2 was related to a reduction in posttranslational cleavage by macroautophagy. The ER functionally links the [K(+)](e) and [Ca(2+)](i) to the BCL2 content in CGCs along two different pathways. The first, triggered by elevated [K(+)](e) under conditions of immaturity, is independent of extracellular Ca(2+) and operates via IP3 channels. The second leads to influx of extracellular Ca(2+) following activation of ryanodine channels in the presence of physiological [K(+)](e), when CGCs are maintained in mature status. This study identifies novel mechanisms of neuroprotection in immature and mature CGCs involving the posttranslational regulation of BCL2.

  5. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells

    PubMed Central

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  6. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus.

    PubMed

    Katoh-Semba, Ritsuko; Asano, Tomiko; Ueda, Hiroshi; Morishita, Rika; Takeuchi, Ikuo K; Inaguma, Yutaka; Kato, Kanefusa

    2002-08-01

    The dentate gyrus of the hippocampus, generating new cells throughout life, is essential for normal recognition memory performance. Reduction of brain-derived neurotrophic factor (BDNF) in this structure impairs its functions. To elucidate the association between BDNF levels and hippocampal neurogenesis, we first conducted a search for compounds that stimulate endogenous BDNF production in hippocampal granule neurons. Among ion channel modulators tested, riluzole, a neuroprotective agent with anticonvulsant properties that is approved for treatment of amyotrophic lateral sclerosis, was highly effective as a single dose by an intraperitoneal injection, causing a rise in BDNF localized in dentate granule neurons, the hilus, and the stratum radiatum of the CA3 region. Repeated, but not single, injections resulted in prolonged elevation of hippocampal BDNF and were associated with increased numbers of newly generated cells in the granule cell layer. This appeared due to promoted proliferation rather than survival of precursor cells, many of which differentiated into neurons. Intraventricular administration of BDNF-specific antibodies blocked such riluzole effects, suggesting that BDNF increase is necessary for the promotion of precursor proliferation. Our results suggest the basis for a new strategy for treatment of memory dysfunction.

  7. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    PubMed

    Jiao, Jianwei; Nakajima, Akira; Janssen, William G M; Bindokas, Vytautas P; Xiong, Xiaoli; Morrison, John H; Brorson, James R; Tang, Ya-Ping

    2008-02-27

    It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s) that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.

  8. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells.

    PubMed

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-09-13

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated.

  9. Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.; Bower, J. M.

    2001-01-01

    We recorded activity from the granule cell layer (GCL) of cerebellar folium Crus IIa as freely moving rats engaged in a variety of natural behaviors, including grooming, eating, and free tactile exploration. Multiunit responses in the 1000-4500 Hz range were found to be strongly correlated with tactile stimulation of lip and whisker (perioral) regions. These responses occurred regardless of whether the stimulus was externally or self-generated and during both active and passive touch. In contrast, perioral movements that did not tactually stimulate this region of the face (e.g., chewing) produced no detectable increases in GCL activity. In addition, GCL responses were not correlated with movement extremes. When rats used their lips actively for palpation and exploration, the tactile responses in the GCL were not detectably modulated by ongoing jaw movements. However, active palpation and exploratory behaviors did result in the largest and most continuous bursts of GCL activity: responses were on average 10% larger and 50% longer during palpation and exploration than during grooming or passive stimulation. Although activity levels differed between behaviors, the position and spatial extent of the peripheral receptive field was similar over all behaviors that resulted in tactile input. Overall, our data suggest that the 1000-4500 Hz multiunit responses in the Crus IIa GCL of awake rats are correlated with tactile input rather than with movement or any movement parameter and that these responses are likely to be of particular importance during the acquisition of sensory information by perioral structures.

  10. Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-dong; Zhao, Qing-liang; Jiao, Yan; Zhang, Jin-na; Jiang, Jun-qiu; Ren, Nanqi; Kim, Byung Hong

    2011-08-01

    The efficiency and sustainability of microbial fuel cell (MFC) are heavily dependent on the cathode performance. We show here that the use of graphite fiber brush (GBF) together with graphite granules (GGs) as a basal material for biocathode (MFC reactor type R1) significantly improve the performance of a MFC compared with MFCs using GGs (MFC reactor type R2) or GFB (MFC reactor type R3) individually. Compared with R3, the use of the combination biocathode (R1) can shorten the start-up time by 53.75%, improve coulombic efficiencies (CEs) by 21.0 ± 2.7% at external resistance (REX) of 500 Ω, and increase maximum power densities by 38.2 ± 12.6%. Though the start-up time and open circuit voltage (OCV) of the reactor R2 are similar to R1, the CE (REX = 500 Ω) and maximum power density of R2 are 21.4 ± 1.7% and 38.2 ± 15.6% lower than that of R1. Fluorescence in situ hybridization (FISH) analyses indicate the bacteria on cathodes of R1 and R2 are richer than that of R3. Molecular taxonomic analyses reveal that the biofilm formed on the biocathode surface is dominated by strains belonging to Nitrobacter, Achromobacter, Acinetobacter, and Bacteroidetes. Combination of GFB and GGs as biocathode material in MFC is more efficient and can achieve sustainable electricity recovery from organic substances, which substantially increases the viability and sustainability of MFCs.

  11. Ectopic expression of HLA-DO in mouse dendritic cells diminishes MHC class II antigen presentation.

    PubMed

    Fallas, Jennifer L; Tobin, Helen M; Lou, Olivia; Guo, Donglin; Sant'Angelo, Derek B; Denzin, Lisa K

    2004-08-01

    The MHC class II-like molecule HLA-DM (DM) (H-2M in mice) catalyzes the exchange of CLIP for antigenic peptides in the endosomes of APCs. HLA-DO (DO) (H-2O in mice) is another class II-like molecule that is expressed in B cells, but not in other APCs. Studies have shown that DO impairs or modifies the peptide exchange activity of DM. To further evaluate the role of DO in Ag processing and presentation, we generated transgenic mice that expressed the human HLA-DOA and HLA-DOB genes under the control of a dendritic cell (DC)-specific promoter. Our analyses of DCs from these mice showed that as DO levels increased, cell surface levels of A(b)-CLIP also increased while class II-peptide levels decreased. The presentation of some, but not all, exogenous Ags to T cells or T hybridomas was significantly inhibited by DO. Surprisingly, H-2M accumulated in DO-expressing DCs and B cells, suggesting that H-2O/DO prolongs the half-life of H-2M. Overall, our studies showed that DO expression impaired H-2M function, resulting in Ag-specific down-modulation of class II Ag processing and presentation.

  12. Hyperpolarization-Activated Currents and Subthreshold Resonance in Granule Cells of the Olfactory Bulb

    PubMed Central

    Hu, Ruilong; Ferguson, Katie A.; Meijer, Dimphna H.

    2016-01-01

    Abstract An important contribution to neural circuit oscillatory dynamics is the ongoing activation and inactivation of hyperpolarization-activated currents (Ih). Network synchrony dynamics play an important role in the initial processing of odor signals by the main olfactory bulb (MOB) and accessory olfactory bulb (AOB). In the mouse olfactory bulb, we show that Ih is present in granule cells (GCs), the most prominent inhibitory neuron in the olfactory bulb, and that Ih underlies subthreshold resonance in GCs. In accord with the properties of Ih, the currents exhibited sensitivity to changes in extracellular K+ concentration and ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidin chloride), a blocker of Ih. ZD7288 also caused GCs to hyperpolarize and increase their input resistance, suggesting that Ih is active at rest in GCs. The inclusion of cAMP in the intracellular solution shifted the activation of Ih to less negative potentials in the MOB, but not in the AOB, suggesting that channels with different subunit composition mediate Ih in these regions. Furthermore, we show that mature GCs exhibit Ih-dependent subthreshold resonance in the theta frequency range (4–12 Hz). Another inhibitory subtype in the MOB, the periglomerular cells, exhibited Ih-dependent subthreshold resonance in the delta range (1–4 Hz), while principal neurons, the mitral cells, do not exhibit Ih-dependent subthreshold resonance. Importantly, Ih size, as well as the strength and frequency of resonance in GCs, exhibited a postnatal developmental progression, suggesting that this development of Ih in GCs may differentially contribute to their integration of sensory input and contribution to oscillatory circuit dynamics. PMID:27844056

  13. Early B-cell-specific inactivation of ATM synergizes with ectopic CyclinD1 expression to promote pre-germinal center B-cell lymphomas in mice.

    PubMed

    Yamamoto, K; Lee, B J; Li, C; Dubois, R L; Hobeika, E; Bhagat, G; Zha, S

    2015-06-01

    Ataxia telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin lymphomas, including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B cells causes cell autonomous, clonal mature B-cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly, naive B-cell-specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. Although EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increases the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas toward pre-GC-derived small lymphocytic neoplasms, sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naive B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.e. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL.

  14. Activation of the Hedgehog Pathway in the Mouse Fetal Ovary Leads to Ectopic Appearance of Fetal Leydig Cells and Female Pseudohermaphroditism

    PubMed Central

    Barsoum, Ivraym B.; Bingham, Nathan C.; Parker, Keith L.; Jorgensen, Joan S.; Yao, Humphrey H-C

    2009-01-01

    Proper cell fate determination in mammalian gonads is critical for the establishment of sexual identity. The Hedgehog (Hh) pathway has been implicated in cell fate decision for various organs, including gonads. Desert Hedgehog (Dhh), one of the three mammalian Hh genes, has been implicated with other genes in the establishment of mouse fetal Leydig cells. To investigate whether Hh alone is sufficient to induce fetal Leydig cell differentiation, we ectopically activated the Hh pathway in Steroidogenic factor 1 (SF1)-positive somatic cell precursors of fetal ovaries. Hh activation transformed SF1-positive somatic ovarian cells into functional fetal Leydig cells. These ectopic fetal Leydig cells produced androgens and insulin-like growth factor 3 (INLS3) that cause virilization of female embryos and ovarian descent. However, the female reproductive system remained intact, indicating a typical example of female pseudohermaphroditism. The appearance of fetal Leydig cells was a direct consequence of Hh activation as evident by the absence of other testicular components in the affected ovary. This study provides not only insights into mechanisms of cell lineage specification in gonads, but also a model to understand defects in sexual differentiation. PMID:19268447

  15. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis.

    PubMed

    Chen, Su-Fen; Liang, Ke; Yin, Dong-Mei; Ni, Di-An; Zhang, Zhi-Guo; Ruan, Yong-Ling

    2016-12-01

    There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch-sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance.

  16. Exocytosis from pancreatic β-cells: mathematical modelling of the exit of low-molecular-weight granule content.

    PubMed

    Galvanovskis, Juris; Braun, Matthias; Rorsman, Patrik

    2011-02-06

    Pancreatic β-cells use Ca(2+)-dependent exocytosis of large dense core vesicles to release insulin. Exocytosis in β-cells has been studied biochemically, biophysically and optically. We have previously developed a biophysical method to monitor release of endogenous intragranular constituents that are co-released with insulin. This technique involves the expression of ionotropic membrane receptors in the β-cell plasma membrane and enables measurements of exocytosis of individual vesicles with sub-millisecond resolution. Like carbon fibre amperometry, this method allows fine details of the release process, like the expansion of the fusion pore (the narrow connection between the granule lumen and the extracellular space), to be monitored. Here, we discuss experimental data obtained with this method within the framework of a simple mathematical model that describes the release of low-molecular constituents during exocytosis of the insulin granules. Our findings suggest that the fusion pore functions as a molecular sieve, allowing differential release of low- and high-molecular-weight granule constituents.

  17. Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells.

    PubMed

    Furukawa, Mari T; Sakamoto, Hiroshi; Inoue, Kunio

    2015-04-01

    HERMES, also called RBPMS, is a conserved RNA binding protein with a single RNA recognition motif (RRM) that is abundantly expressed in retinal ganglion cells (RGCs) and in the heart in vertebrates. Here, we identified NonO and PSF as the interacting proteins of HERMES only when the neuronal differentiation of the retinal cell line RGC-5 was induced. Although NonO and PSF are nuclear paraspeckle components, these proteins formed cytoplasmic granules with HERMES in the neurites. G3BP1, a component of stress granules, was also colocalized to the granules, interacting with NonO and HERMES even in the absence of cellular stress. Consistent with a previous report that KIF5 interacts with neuronal granules, the localization of KIF5A overlapped with the cytoplasmic granules in differentiated RGC-5 cells. Thus, our study strongly suggests that the cytoplasmic granule containing HERMES, NonO, PSF, and G3BP1 is a neuronal RNA-protein granule that is transported in neurites during retinal differentiation.

  18. BDNF-Mediated Cerebellar Granule Cell Development is Impaired in Mice Null for CaMKK2 or CaMKIV

    PubMed Central

    Kokubo, Manabu; Nishio, Masahiro; Ribar, Thomas J.; Anderson, Kristin A.; West, Anne E.; Means, Anthony R.

    2009-01-01

    The Ca2+/calmodulin-activated kinases CamKK2 and CaMKIV are highly expressed in the brain where they play important roles in activating intracellular responses to elevated Ca2+. To address the biological functions of Ca2+ signaling via these kinases during brain development we have examined cerebellar development in mice null for CaMKK2 or CaMKIV. Here we demonstrate that CaMKK2/CaMKIV-dependent phosphorylation of CREB correlates with Bdnf transcription, which is required for normal development of cerebellar granule cell neurons. We show in vivo and in vitro that the absence of either CaMKK2 or CaMKIV disrupts the ability of developing cerebellar granule cells in the external granule cell layer to cease proliferation and begin migration to the internal granule cell layer. Further, loss of CaMKK2 or CaMKIV results in decreased pCREB, Bdnf exon I and IV-containing mRNAs and BDNF protein in cerebellar granule cell neurons. Re-expression of CaMKK2 or CaMKIV in granule cells that lack CaMKK2 or CaMKIV, respectively, restores pCREB and BDNF to wild type levels and addition of BDNF rescues granule cell migration in vitro. These results reveal a previously undefined role for a CaMKK2/CaMKIV cascade involved in cerebellar granule cell development and show specifically that Ca2+-dependent regulation of BDNF through CaMKK2/CaMKIV is required for this process. PMID:19605628

  19. Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL).

    PubMed Central

    Tabilio, A; Rosa, J P; Testa, U; Kieffer, N; Nurden, A T; Del Canizo, M C; Breton-Gorius, J; Vainchenker, W

    1984-01-01

    We demonstrate that HEL, a human erythroleukemic cell line, has numerous megakaryocytic markers which were markedly enhanced following the addition of the inducers dimethyl sulfoxide or 12-O-tetradecanoylphorbol-13-acetate to the culture medium. Ultrastructural and cytochemical studies showed: (i) the presence of organelles morphologically resembling the platelet alpha-granules; and (ii) a peroxidase activity with the same characteristics as that specifically found in platelets. The platelet alpha-granule proteins (von Willebrand factor, platelet factor-4 and beta-thromboglobulin) were immunologically detected in the HEL cell cytoplasm and their amounts increased after induction. Of particular interest was the presence of platelet membrane proteins. A monoclonal antibody specific for glycoprotein Ib bound to HEL cells. Platelet membrane glycoproteins IIb and IIIa were identified on intact cells using specific antibodies in a binding assay or in cell lysates using either crossed immunoelectrophoresis or an immunoblotting procedure following SDS-polyacrylamide gel electrophoresis. Most HEL cells also expressed the platelet alloantigen PIA1. All of the platelet membrane proteins were present in higher amounts after induction. Glycophorin A, specific for the erythroid lineage, was also detected on HEL cells. Thus, while confirming the presence of erythroid markers, our studies provide evidence that the HEL cell line also expresses platelet antigens. As such, HEL cells represent a unique system with which to study the biosynthesis of platelet-specific proteins and glycoproteins. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6201359

  20. Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture.

    PubMed

    Simão, Ana Maria S; Beloti, Márcio M; Cezarino, Rodrigo M; Rosa, Adalberto Luiz; Pizauro, João M; Ciancaglini, Pietro

    2007-04-01

    Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.

  1. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy

    PubMed Central

    Yamawaki, Ruth; Thind, Khushdev; Buckmaster, Paul S.

    2014-01-01

    Inhibiting the mTOR signaling pathway with rapamycin blocks granule cell axon (mossy fiber) sprouting after epileptogenic injuries, including pilocarpine-induced status epilepticus. However, it remains unclear whether axons from other types of neurons sprout into the inner molecular layer and synapse with granule cell dendrites despite rapamycin treatment. If so, other aberrant positive-feedback networks might develop. To test this possibility stereological electron microscopy was used to estimate numbers of excitatory synapses in the inner molecular layer per hippocampus in pilocarpine-treated control mice, in mice 5 d after pilocarpine-induced status epilepticus, and after status epilepticus and daily treatment beginning 24 h later with rapamycin or vehicle for 2 months. The optical fractionator method was used to estimate numbers of granule cells in Nissl-stained sections so that numbers of excitatory synapses in the inner molecular layer per granule cell could be calculated. Control mice had an average of 2280 asymmetric synapses in the inner molecular layer per granule cell, which was reduced to 63% of controls 5 d after status epilepticus, recovered to 93% of controls in vehicle-treated mice 2 months after status epilepticus, but remained at only 63% of controls in rapamycin-treated mice. These findings reveal that rapamycin prevented excitatory axons from synapsing with proximal dendrites of granule cells and raise questions about the recurrent excitation hypothesis of temporal lobe epilepsy. PMID:25234294

  2. Brain-derived neurotrophic factor (BDNF) ameliorates the suppression of thyroid hormone-induced granule cell neurite extension by hexabromocyclododecane (HBCD).

    PubMed

    Ibhazehiebo, Kingsley; Iwasaki, Toshiharu; Xu, Ming; Shimokawa, Noriaki; Koibuchi, Noriyuki

    2011-04-08

    Thyroid hormone (TH) plays an essential role in growth and differentiation of the central nervous system. Deficiency of TH during perinatal period results in abnormal brain development known as cretinism in human. We recently reported that an environmental chemical 1,2,5,6,9,10-α-hexabromocyclododecane (HBCD) suppressed TH receptor (TR)-mediated transcription. To examine the effect of HBCD on cerebellar granule cells, we used purified rat cerebellar granule cells in reaggregate culture. Low dose HBCD (10(-10)M) significantly suppressed TH-induced neurite extension of granule cell aggregate. To clarify further the mechanisms of such suppression, we added brain-derived neurotrophic factor (BDNF) into culture medium, since BDNF plays a critical role in promoting granule cell development and is regulated by TH. BDNF completely rescued HBCD-induced suppression of granule cell neurite extension in the presence of T3. These results indicate that HBCD may disrupt TH-mediated brain development at least in part due to a disruption of the T3 stimulated increase in BDNF and BDNF may possess ability to ameliorate the effect of HBCD in granule cells.

  3. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    PubMed

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function.

  4. Platelets can neutralize hydrogen peroxide in an acute toxicity model with cells involved in granulation tissue formation.

    PubMed

    Kandler, Barbara; Maitz, Philipp; Fischer, Michael B; Watzek, Georg; Gruber, Reinhard

    2005-04-01

    Platelets play a key role in the replacement of the blood clot with granulation tissue during the early steps of bone regeneration. We hypothesized that activated platelets can neutralize locally produced reactive oxygen species, thereby protecting cells involved in granulation tissue formation. The potential of platelet-released supernatant (PRS) to neutralize hydrogen peroxide (H(2)O(2)) was tested in an acute toxicity model with osteogenic, inflammatory, and endothelial cells. In the human fetal osteoblastic cell line 1.19 (hFOB), considerable morphological changes, cell shedding, and dysfunction of the respiratory chain were observed when cells were exposed to 3 mM H(2)O(2). Caspase-3 and poly-(ADP-ribose)-polymerase were not activated, suggesting that cell death occurred by necrosis. Preincubation of osteogenic cells, leukocytes, or endothelial cells with PRS decreased the acute toxicity of H(2)O(2). The capacity of platelets to release H(2)O(2)-detoxifying activity was retained for up to 72 h. Aminotriazole, an inhibitor of catalase, decreased the cytoprotective activity of PRS, whereas blocking of glutathione peroxidase by mercaptosuccinate had no effect. These results suggest that platelet-released catalase can rapidly neutralize cytotoxic amounts of H(2)O(2), a process that may play a role during the early stages of bone regeneration.

  5. The Flexibility of Ectopic Lipids.

    PubMed

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-09-14

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  6. The Flexibility of Ectopic Lipids

    PubMed Central

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-01-01

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations. PMID:27649157

  7. Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice

    PubMed Central

    2013-01-01

    Background Synaptosomal-associated protein, 25 kDa (SNAP-25) regulates the exocytosis of neurotransmitters. Growing evidence suggests that SNAP-25 is involved in neuropsychiatric disorders, such as schizophrenia, attention-deficit/hyperactivity disorder, and epilepsy. Recently, increases in anxiety-related behaviors and epilepsy have been observed in SNAP-25 knock-in (KI) mice, which have a single amino acid substitution of Ala for Ser187. However, the molecular and cellular mechanisms underlying the abnormalities in this mutant remain unknown. Results In this study, we found that a significant number of dentate gyrus (DG) granule cells was histologically and electrophysiologically similar to immature DG neurons in the dentate gyrus of the adult mutants, a phenomenon termed the “immature DG” (iDG). SNAP-25 KI mice and other mice possessing the iDG phenotype, i.e., alpha-calcium/calmodulin-dependent protein kinase II heterozygous mice, Schnurri-2 knockout mice, and mice treated with the antidepressant fluoxetine, showed similar molecular expression patterns, with over 100 genes similarly altered. A working memory deficit was also identified in mutant mice during a spontaneous forced alternation task using a modified T-maze, a behavioral task known to be dependent on hippocampal function. Chronic treatments with the antiepileptic drug valproate abolished the iDG phenotype and the working memory deficit in mutants. Conclusions These findings suggest that the substitution of Ala for Ser187 in SNAP-25 induces the iDG phenotype, which can also be caused by epilepsy, and led to a severe working memory deficit. In addition, the iDG phenotype in adulthood is likely an endophenotype for at least a part of some common psychiatric disorders. PMID:23497716

  8. In vivo 7 Tesla imaging of the dentate granule cell layer in Schizophrenia

    PubMed Central

    Kirov, Ivan I.; Hardy, Caitlin J.; Matsuda, Kant; Messinger, Julie; Cankurtaran, Ceylan Z.; Warren, Melina; Wiggins, Graham C.; Perry, Nissa N.; Babb, James S.; Goetz, Raymond R.; George, Ajax; Malaspina, Dolores; Gonen, Oded

    2013-01-01

    PURPOSE The hippocampus is central to the pathophysiology of schizophrenia. Histology shows abnormalities in the dentate granule cell layer (DGCL), but its small size (~100 micron thickness) has precluded in vivo human studies. We used ultra high field magnetic resonance imaging (MRI) to compare DGCL morphology of schizophrenic patients to matched controls’. METHOD Bilateral hippocampi of 16 schizophrenia patients (10 male) 40.7±10.6 years old (mean ±standard deviation) were imaged at 7 Tesla MRI with heavily T2*-weighted gradient-echo sequence at 232 micron in-plane resolution (0.08 μL image voxels). Fifteen matched controls (8 male, 35.6±9.4 years old) and one ex vivo post mortem hippocampus (that also underwent histopathology) were scanned with same protocol. Three blinded neuroradiologists rated each DGCL on a qualitative scale of 1 to 6 (from “not discernible” to “easily visible, appearing dark gray or black”) and mean left and right DGCL scores were compared using a non-parametric Mann-Whitney test. RESULTS MRI identification of the DGCL was validated with histopathology. Mean right and left DGCL ratings in patients (3.2±1.0 and 3.5±1.2) were not statistically different from controls’ (3.9±1.1 and 3.8±0.8), but patients’ had a trend for lower right DGCL score (p=0.07), which was significantly associated with patient diagnosis (p=0.05). The optimal 48% sensitivity and 80% specificity for schizophrenia was achieved with a DGCL rating of ≤2. CONCLUSION Decreased contrast in the right DGCL in schizophrenia was predictive of schizophrenia diagnosis. Better utility of this metric as a schizophrenia biomarker may be achieved in future studies of patients with homogeneous disease subtypes and progression rates. PMID:23664589

  9. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K; Arias, Cintia L; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E; González, María de la Cruz; Hernández, Jose A; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-02-01

    Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the

  10. Membrane properties of the granule cells of the islands of Calleja of the rat studied in vitro.

    PubMed Central

    Halliwell, J V; Horne, A L

    1995-01-01

    1. Using patch-clamp techniques, we have studied granule neurones from the islands of Calleja in vitro: as isolated cells or as groups of varying numbers following enzymic digestion, or within untreated slices of approximately 100 microns thickness. 2. Recordings were made with patch pipettes in conventional or nystatin-perforated whole-cell mode. Current-clamp recordings indicated that these granule cells are excitable and at resting potential produce irregular spontaneous activity. In voltage clamp the transient inward current underlying these action potentials could be evoked. This current had a threshold for activation of about -50 mV and was sensitive to TTX. In some cells a TTX-resistant transient inward current was observed with a threshold for activation of about -70 mV. 3. Island of Calleja granule cells also exhibited outward currents. A rapidly activating transient current was observed that was resistant to TEA and sensitive to 4-AP, and therefore resembled IA. The current was half-maximally activated at -6 mV and steady-state inactivation was half-complete at -65 mV. 4. More sustained outward currents were also observed. Although some cells appeared to express a Ca(2+)-activated K+ current, the most common finding was a rapidly activating, slowly inactivating, voltage-dependent K+ current that was sensitive to TEA and Ba2+. This current resembled M-current more than delayed rectifier but displayed a number of idiosyncratic kinetic properties. Chief amongst these was the accumulation of an inactivating process when the current was repeatedly evoked from potentials near the cells' resting value by voltage steps that by themselves produced no observable inactivation during the voltage command; this behaviour was similar to the 'C-terminal' inactivation exhibited by lymphocytes and certain expressed K+ channel clones (Kv1.3). 5. These results indicate that the granule cells of the islands of Calleja are excitable and contain a number of additional

  11. Complementary Postsynaptic Activity Patterns Elicited in Olfactory Bulb by Stimulation of Mitral/Tufted and Centrifugal Fiber Inputs to Granule Cells

    PubMed Central

    Laaris, Nora; Puche, Adam; Ennis, Matthew

    2009-01-01

    Main olfactory bulb (MOB) granule cells receive spatially segregated glutamatergic synaptic inputs from the dendrites of mitral/tufted cells as well as from the axons of centrifugal fibers (CFFs) originating in olfactory cortical areas. Dendrodendritic synapses from mitral/tufted cells occur on granule cell distal dendrites in the external plexiform layer (EPL), whereas CFFs preferentially target the somata/proximal dendrites of granule cells in the granule cell layer (GCL). In the present study, tract tracing, and recordings of field potentials and voltage-sensitive dye optical signals were used to map activity patterns elicited by activation of these two inputs to granule cells in mouse olfactory bulb slices. Stimulation of the lateral olfactory tract (LOT) produced a negative field potential in the EPL and a positivity in the GCL. CFF stimulation produced field potentials of opposite polarity in the EPL and GCL to those elicited by LOT. LOT-evoked optical signals appeared in the EPL and spread subsequently to deeper layers, whereas CFF-evoked responses appeared in the GCL and then spread superficially. Evoked responses were reduced by N-methyl-d-aspartate (NMDA) receptor antagonists and completely suppressed by AMPA receptor antagonists. Reduction of extracellular Mg2+ enhanced the strength and spatiotemporal extent of the evoked responses. These and additional findings indicate that LOT- and CFF-evoked field potentials and optical signals reflect postsynaptic activity in granule cells, with moderate NMDA and dominant AMPA receptor components. Taken together, these results demonstrate that LOT and CFF stimulation in MOB slices selectively activate glutamatergic inputs to the distal dendrites versus somata/proximal dendrites of granule cells. PMID:17035366

  12. Excitatory tonus is required for the survival of granule cell precursors during postnatal development within the cerebellum.

    PubMed

    Kanungo, A K; Liadis, N; Robertson, J; Woo, M; Henderson, J T

    2009-02-18

    In addition to protective effects within the adult central nervous system (CNS), in vivo application of N-methyl-d-aspartate inhibitors such as (+) MK-801 have been shown to induce neurodegeneration in neonatal rats over a specific developmental period. We have systematically mapped the nature and extent of MK-801-induced neurodegeneration throughout the neonatal murine brain in order to genetically dissect the mechanism of these effects. Highest levels of MK-801-induced neurodegeneration are seen in the cerebellar external germinal layer; while mature neurons of the internal granule layer are unaffected by MK-801 treatment. Examination of external germinal layer neurons by electron microscopy, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) and bromodeoxyuridine (BrdU) labeling, and caspase-3 activation demonstrate that these neurons die through the process of programmed cell death soon after they exit from the cell cycle. Significantly, ablation of caspase-3 activity completely inhibited the MK-801-induced (and developmental) programmed cell death of external germinal layer neurons. Similar to caspase-3, inactivation of muscarinic acetylcholine receptors in vivo using scopolamine inhibited MK-801-induced programmed cell death. By contrast, the GABAergic agonist diazepam, either alone or in combination with MK-801, enhanced programmed cell death within external germinal layer neurons. These data demonstrate that, in vivo, cerebellar granule neurons undergo a dramatic change in intracellular signaling in response to molecules present in the local cellular milieu during their first 24 h following exit from the cell cycle.

  13. Identification of a C1q family member associated with cortical granules and follicular cell apoptosis in Carassius auratus gibelio.

    PubMed

    Mei, Jie; Chen, Bo; Yue, Huamei; Gui, Jian-Fang

    2008-07-16

    C1q family proteins with C1q domain have been reported in vertebrates, but their biological roles are currently unknown. In this study, a C1q-like factor, designated Carassius auratus gibelio ovary-specific C1q-like factor (CagOC1q-like), was identified as a cortical granules component. Immunofluorescence localization revealed that the C1q family member was specifically expressed in follicular epithelial cells, and associated with cortical granules in fully grown oocytes. Moreover, it was discharged to the perivitelline space and egg envelope upon fertilization. As it is the first identified C1q family member that is expressed in follicular cells that surround oocyte, CagOC1q-like was applied to detection of follicular cell apoptosis and deletion. The entire cytological process of follicular cell apoptosis and deletion was clearly seen from double visualizations of follicular cells with CagOC1q-like immunofluorescence and apoptotic follicular cells labeled by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) during oocyte maturation and ovulation.

  14. Anion exchange polymer coated graphite granule electrodes for improving the performance of anodes in unbuffered microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Li, Dengfeng; Mao, Xuhui; Yu, Eileen Hao; Scott, Keith; Zhang, Enren; Wang, Dihua

    2016-10-01

    In this paper, graphite granule composite electrodes are prepared for microbial fuel cells (MFCs) by coating commercial graphite granules with the mixture of quaternary DABCO polysulfone or Nafion ion exchange polymer and carbon black. The results of electrochemical impedance spectroscopy (EIS) suggest that the addition of carbon black could significantly improve the electrical conductivity of graphite granule anodes. When phosphate buffer solution (PBS) is replaced by NaCl solution, the current densities of the pristine anode, 0.08 g Nafion coated anode and 0.16 g QDPSU coated anode decrease by 52.6%, 20.6% and 10.3% at -0.2 V (vs. Ag/AgCl), respectively. The solution resistance of ion exchange polymer coated anodes is more stable in comparison with that of pristine anode. After 40 operational days, the performance drop of 0.16 g QDPSU coated anode when switching the solution from PBS to NaCl is still smaller than that of pristine anode. However, 0.08 g Nafion coated anode shows the similar performance in NaCl solution to the pristine anode after long term operation. This study reveals that QDPSU anion exchange polymer is more suitable for the anode modification. The QDPSU coated anode promises a great potential for three-dimensional anode based MFCs to treat domestic wastewater.

  15. Formation of ectopic osteogenesis in weightlessness

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An ectopic osteogenesis experiment aboard the Cosmos-936 biosatellite is described. Decalcified, lyophilized femur and tibia were implanted under the fascia or in the anterior wall of the abdomen in rats. Bone formation before and after the tests is described and illustrated. The extent of formation of ectopic bone in weightlessness did not differ significantly from that in the ground controls, but the bone marrow of the ectopic bone of the flight rats consisted exclusively of fat cells. The deficit of support-muscle loading was considered to cause the disturbance in skeletal bone tissue development.

  16. Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis

    PubMed Central

    Griffin, Nicole G.; Wang, Yu; Hulette, Christine M.; Halvorsen, Matt; Cronin, Kenneth D.; Walley, Nicole M.; Haglund, Michael M.; Radtke, Rodney A.; Pate Skene, J. H.; Sinha, Saurabh R.; Heinzen, Erin L.

    2015-01-01

    Summary Objective Hippocampal sclerosis is the most common neuropathological finding in medically intractable cases of mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of mesial temporal lobe epilepsy patients with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations and to shed light on the transcriptional changes associated with hippocampal sclerosis. Methods RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from mesial temporal lobe epilepsy patients with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis. Results Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes upregulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation. Significance By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from mesial temporal lobe epilepsy patients with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology

  17. Tenascin promotes cerebellar granule cell migration and neurite outgrowth by different domains in the fibronectin type III repeats

    PubMed Central

    1992-01-01

    The extracellular matrix molecule tenascin has been implicated in neuron-glia recognition in the developing central and peripheral nervous system and in regeneration. In this study, its role in Bergmann glial process-mediated neuronal migration was assayed in vitro using tissue explants of the early postnatal mouse cerebellar cortex. Of the five mAbs reacting with nonoverlapping epitopes on tenascin, mAbs J1/tn1, J1/tn4, and J1/tn5, but not mAbs J1/tn2 and J1/tn3 inhibited granule cell migration. Localization of the immunoreactive domains by EM of rotary shadowed tenascin molecules revealed that the mAbs J1/tn4 and J1/tn5, like the previously described J1/tn1 antibody, bound between the third and fifth fibronectin type III homologous repeats and mAb J1/tn3 bound between the third and fifth EGF-like repeats. mAb J1/tn2 had previously been found to react between fibronectin type III homologous repeats 10 and 11 of the mouse molecule (Lochter, A., L. Vaughan, A. Kaplony, A. Prochiantz, M. Schachner, and A. Faissner. 1991. J. Cell Biol. 113:1159-1171). When postnatal granule cell neurons were cultured on tenascin adsorbed to polyornithine, both the percentage of neurite-bearing cells and the length of outgrowing neurites were increased when compared to neurons growing on polyornithine alone. This neurite outgrowth promoting effect of tenascin was abolished only by mAb J1/tn2 or tenascin added to the culture medium in soluble form. The other antibodies did not modify the stimulatory or inhibitory effects of the molecule. These observations indicate that tenascin influences neurite outgrowth and migration of cerebellar granule cells by different domains in the fibronectin type III homologous repeats. PMID:1371773

  18. Tenascin promotes cerebellar granule cell migration and neurite outgrowth by different domains in the fibronectin type III repeats.

    PubMed

    Husmann, K; Faissner, A; Schachner, M

    1992-03-01

    The extracellular matrix molecule tenascin has been implicated in neuron-glia recognition in the developing central and peripheral nervous system and in regeneration. In this study, its role in Bergmann glial process-mediated neuronal migration was assayed in vitro using tissue explants of the early postnatal mouse cerebellar cortex. Of the five mAbs reacting with nonoverlapping epitopes on tenascin, mAbs J1/tn1, J1/tn4, and J1/tn5, but not mAbs J1/tn2 and J1/tn3 inhibited granule cell migration. Localization of the immunoreactive domains by EM of rotary shadowed tenascin molecules revealed that the mAbs J1/tn4 and J1/tn5, like the previously described J1/tn1 antibody, bound between the third and fifth fibronectin type III homologous repeats and mAb J1/tn3 bound between the third and fifth EGF-like repeats. mAb J1/tn2 had previously been found to react between fibronectin type III homologous repeats 10 and 11 of the mouse molecule (Lochter, A., L. Vaughan, A. Kaplony, A. Prochiantz, M. Schachner, and A. Faissner. 1991. J. Cell Biol. 113:1159-1171). When postnatal granule cell neurons were cultured on tenascin adsorbed to polyornithine, both the percentage of neurite-bearing cells and the length of outgrowing neurites were increased when compared to neurons growing on polyornithine alone. This neurite outgrowth promoting effect of tenascin was abolished only by mAb J1/tn2 or tenascin added to the culture medium in soluble form. The other antibodies did not modify the stimulatory or inhibitory effects of the molecule. These observations indicate that tenascin influences neurite outgrowth and migration of cerebellar granule cells by different domains in the fibronectin type III homologous repeats.

  19. Transcriptional Profiling of Newly Generated Dentate Granule Cells Using TU Tagging Reveals Pattern Shifts in Gene Expression during Circuit Integration1,2

    PubMed Central

    Chatzi, Christina; Shen, Rongkun; Goodman, Richard H.

    2016-01-01

    Abstract Despite representing only a small fraction of hippocampal granule cells, adult-generated newborn granule cells have been implicated in learning and memory (Aimone et al., 2011). Newborn granule cells undergo functional maturation and circuit integration over a period of weeks. However, it is difficult to assess the accompanying gene expression profiles in vivo with high spatial and temporal resolution using traditional methods. Here we used a novel method [“thiouracil (TU) tagging”] to map the profiles of nascent mRNAs in mouse immature newborn granule cells compared with mature granule cells. We targeted a nonmammalian uracil salvage enzyme, uracil phosphoribosyltransferase, to newborn neurons and mature granule cells using retroviral and lentiviral constructs, respectively. Subsequent injection of 4-TU tagged nascent RNAs for analysis by RNA sequencing. Several hundred genes were significantly enhanced in the retroviral dataset compared with the lentiviral dataset. We compared a selection of the enriched genes with steady-state levels of mRNAs using quantitative PCR. Ontology analysis revealed distinct patterns of nascent mRNA expression, with newly generated immature neurons showing enhanced expression for genes involved in synaptic function, and neural differentiation and development, as well as genes not previously associated with granule cell maturation. Surprisingly, the nascent mRNAs enriched in mature cells were related to energy homeostasis and metabolism, presumably indicative of the increased energy demands of synaptic transmission and their complex dendritic architecture. The high spatial and temporal resolution of our modified TU-tagging method provides a foundation for comparison with steady-state RNA analyses by traditional transcriptomic approaches in defining the functional roles of newborn neurons. PMID:27011954

  20. High ω-3:ω-6 fatty acids ratio increases fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in human ectopic endometrial cells

    PubMed Central

    Khanaki, Korosh; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi; Darabi, Masoud; Mehdizadeh, Amir; Shabani, Mahdi; Rahimipour, Ali; Nouri, Mohammad

    2014-01-01

    Background: Endometriosis, a common chronic inflammatory disorder, is defined by the atypical growth of endometrium- like tissue outside of the uterus. Secretory phospholipase A2 group IIa (sPLA2-IIa) and fatty acid binding protein4 (FABP4) play several important roles in the inflammatory diseases. Objective: Due to reported potential anti-inflammatory effects of ω-3 and ω-6 fatty acids, the purpose of the present study was to investigate the effects of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) on fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in cultured endometrial cells. Materials and Methods: Ectopic and eutopic endometrial tissues obtained from 15 women were snap frozen. After thawing and tissue digestion, primary mixed stromal and endometrial epithelial cell culture was performed for 8 days in culture mediums supplemented with normal and high ratios of ω-3 and ω-6 PUFA. sPLA2-IIa in the culture medium and FABP4 level was determined using enzyme immuno assay (EIA) technique. Results: Within ectopic endometrial cells group, the level of cellular FABP4 and extracellular sPLA2-IIa were remarkably increased under high ω-3 PUFA exposure compared with control condition (p=0.014 and p=0.04 respectively). Conclusion: ω-3 PUFAs may increase the level of cellular FABP4 and extracellular sPLA2-IIa in ectopic endometrial cells, since sPLAIIa and FABP4 may affect endometriosis via several mechanisms, more relevant studies are encouraged to know the potential effect of increased cellular FABP4 and extracellular sPLA2-IIa on endometriosis. PMID:25709631

  1. Effects of spaced learning in the water maze on development of dentate granule cells generated in adult mice.

    PubMed

    Trinchero, Mariela F; Koehl, Muriel; Bechakra, Malik; Delage, Pauline; Charrier, Vanessa; Grosjean, Noelle; Ladeveze, Elodie; Schinder, Alejandro F; Abrous, D Nora

    2015-11-01

    New dentate granule cells (GCs) are generated in the hippocampus throughout life. These adult-born neurons are required for spatial learning in the Morris water maze (MWM). In rats, spatial learning shapes the network by regulating their number and dendritic development. Here, we explored whether such modulatory effects exist in mice. New GCs were tagged using thymidine analogs or a GFP-expressing retrovirus. Animals were exposed to a reference memory protocol for 10-14 days (spaced training) at different times after newborn cells labeling. Cell proliferation, cell survival, cell death, neuronal phenotype, and dendritic and spine development were examined using immunohistochemistry. Surprisingly, spatial learning did not modify any of the parameters under scrutiny including cell number and dendritic morphology. These results suggest that although new GCs are required in mice for spatial learning in the MWM, they are, at least for the developmental intervals analyzed here, refractory to behavioral stimuli generated in the course of learning in the MWM.

  2. Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells

    PubMed Central

    Riazanski, Vladimir; Becker, Albert; Chen, Jian; Sochivko, Dmitry; Lie, Ailing; Wiestler, Otmar D; Elger, Christian E; Beck, Heinz

    2001-01-01

    We have investigated voltage-dependent outward K+ currents of dentate granule cells (DGCs) in acute brain slices from young and adult rats using nucleated and outside-out patch recordings. In adult DGCs, the outward current pattern was dominated by a transient K+ current component. One portion of this current (∼60 %) was blocked by micromolar concentrations of tetraethylammonium (TEA; IC50 42 μm) and BDS-I, a specific blocker of Kv3.4 subunits (2.5 μm). A second component was insensitive to tetraethylammonium (10 mm) and BDS-I. The transient outward current could be completely blocked by 4-aminopyridine (IC50 296 μm). The TEA- and BDS-I-sensitive and the TEA-resistant current components were isolated pharmacologically. The current component that was blocked by BDS-I and TEA showed a depolarized threshold of activation (∼-30 mV) reminiscent of Kv3.4 subunits, while the current component resistant to TEA activated at more hyperpolarized potentials (∼-60 mV). In nucleated patches obtained by placing the patch pipette adjacent to the apical dendrite, only small Na+ currents and small BDS-I-sensitive transient currents were detected. Nucleated patches obtained from either the cell soma (see above) or the axon hillock showed significantly larger amplitude Na+ currents as well as larger BDS-I-sensitive currents, indicating that this current was predominantly localized within the axosomatic compartment. This result was in good agreement with the distribution of Kv3.4 protein as determined by immunohistochemistry. Current-clamp as well as mock action potential-clamp experiments revealed that the BDS-sensitive current component contributes to action potential repolarization. A comparison of the two age groups (4-10 days and 60-100 days) revealed a marked developmental up-regulation of the BDS-I-sensitive component. These functional changes are paralleled by a developmental increase in Kv3.4 mRNA expression determined by quantitative real-time RT-PCR, as well as a

  3. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia.

    PubMed

    Oram, S H; Thoms, J; Sive, J I; Calero-Nieto, F J; Kinston, S J; Schütte, J; Knezevic, K; Lock, R B; Pimanda, J E; Göttgens, B

    2013-06-01

    LMO1 is a transcriptional regulator and a T-acute lymphoblastic leukaemia (T-ALL) oncogene. Although first identified in association with a chromosomal translocation in T-ALL, the ectopic expression of LMO1 occurs far more frequently in the absence of any known mutation involving its locus. Given that LMO1 is barely expressed in any haematopoietic lineage, and activation of transcriptional drivers in leukaemic cells is not well described, we investigated the regulation of this gene in normal haematopoietic and leukaemic cells. We show that LMO1 has two promoters that drive reporter gene expression in transgenic mice to neural tissues known to express endogenous LMO1. The LMO1 promoters display bivalent histone marks in multiple blood lineages including T-cells, and a 3' flanking region at LMO1 +57 contains a transcriptional enhancer that is active in developing blood cells in transgenic mouse embryos. The LMO1 promoters become activated in T-ALL together with the 3' enhancer, which is bound in primary T-ALL cells by SCL/TAL1 and GATA3. Taken together, our results show that LMO1 is poised for expression in normal progenitors, where activation of SCL/TAL1 together with a breakdown of epigenetic repression of LMO1 regulatory elements induces ectopic LMO1 expression that contributes to the development and maintenance of T-ALL.

  4. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    PubMed

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression.

  5. Environmental Pb2+ exposure during early life alters granule cell neurogenesis and morphology in the hippocampus of young adult rats

    PubMed Central

    Verina, Tatyana; Rohde, Charles A.; Guilarte, Tomás R.

    2007-01-01

    Exposure to environmentally relevant levels of lead (Pb2+) during early life produces deficits in hippocampal synaptic plasticity in the form of long-term potentiation (LTP) and spatial learning in young adult rats (Nihei et al., 2000; Guilarte et al., 2003). Other evidence suggests that the performance of rats in the Morris water maze spatial learning tasks is associated with the level of granule cell neurogenesis in the dentate gyrus (DG) (Drapeau et al., 2003). In this study, we examined whether continuous exposure to environmentally relevant levels of Pb2+ during early life altered granule cell neurogenesis and morphology in the rat hippocampus. Control and Pb2+-exposed rats received BrdU injections (100 mg/kg; i.p.) for five consecutive days starting at postnatal day 45 and were sacrificed either one day or four weeks after the last injection. The total number of newborn cells in the DG of Pb2+-exposed rats was significantly decreased (13%; p<0.001) one day after BrdU injections relative to controls. Further, the survival of newborn cells in Pb2+-exposed rats was significantly decreased by 22.7% (p<0.001) relative to control animals. Co-localization of BrdU with neuronal or astrocytic markers did not reveal a significant effect of Pb2+ exposure on cellular fate. In Pb2+-exposed rats, immature granule cells immunolabeled with doublecortin (DCX) displayed aberrant dendritic morphology. That is, the overall length-density of the DCX-positive apical dendrites in the outer portion of the DG molecular layer was significantly reduced up to 36% in the suprapyramidal blade only. We also found that the area of Timm’s-positive staining representative of the mossy fibers terminal fields in the CA3 stratum oriens (SO) was reduced by 26% in Pb2+-exposed rats. These findings demonstrate that exposure to environmentally relevant levels of Pb2+ during early life alter granule cell neurogenesis and morphology in the rat hippocampus. They provide a cellular and morphological

  6. The granule cell density of the dentate gyrus following administration of Urtica dioica extract to young diabetic rats.

    PubMed

    Fazeli, S A; Gharravi, A M; Ghafari, S; Jahanshahi, M; Golalipour, M J

    2008-08-01

    Urtica dioica L. Stinging nettle has long been known worldwide as a medicinal plant. To study the benefits of the nettle in diabetic encephalopathy, the granule cell density of the dentate gyrus of diabetic rats was studied following administration of Urtica dioica extract. A total of 24 male albino Wistar rats were allocated equally to normal, diabetic, preventive and treatment groups. Hyperglycaemia was induced by streptozotocin (80 mg/kg) in the animals of the diabetic and treatment groups. One week after injection of the streptozotocin the animals in the treatment group received a hydroalcoholic extract of Urtica dioica (100 mg/kg/day) for 4 weeks intraperitoneally. The rats of the preventive group received hydroalcoholic extract of U. dioica (100 mg/kg/day) IP for the first 5 days and an injection of streptozotocin (80 mg/kg) on the 6th day. After 5 weeks of study all the rats were sacrificed and coronal sections were taken from the dorsal hippocampal formation of the right cerebral hemispheres and stained with cresyl violet. The area densities of the granule cells were measured and compared in the four groups. The density was lower in the diabetic rats compared with the controls (p > 0.05). The preventive group showed lower cell density than the controls (p > 0.05). The densities in the treated rats were higher than in the diabetic rats (p > 0.05). Furthermore, the control and treated rats showed similar densities (p > 0.05). It seems that U. dioica extract can help compensate for granule cell loss in the diabetic rat dentate gyrus, which can ameliorate cognitive impairment in diabetes. However, preventive use of the extract showed no significant benefit.

  7. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    PubMed

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic

  8. Activation of κ opioid receptors increases intrinsic excitability of dentate gyrus granule cells

    PubMed Central

    McDermott, Carmel M; Schrader, Laura A

    2011-01-01

    Abstract The dentate gyrus of the hippocampus is thought to control information flow into the rest of the hippocampus. Under pathological conditions, such as epilepsy, this protective feature is circumvented and uninhibited activity flows throughout the hippocampus. Many factors can modulate excitability of the dentate gyrus and ultimately, the hippocampus. It is therefore of critical importance to understand the mechanisms involved in regulating excitability in the dentate gyrus. Dynorphin, the endogenous ligand for the kappa (κ) opioid receptor (KOR), is thought to be involved in neuromodulation in the dentate gyrus. Both dynorphin and its receptor are widely expressed in the dentate gyrus and have been implicated in epilepsy and other complex behaviours such as stress-induced deficits in learning and stress-induced depression-like behaviours. Administration of KOR agonists can prevent both the behavioural and electroencephalographic measures of seizures in several different models of epilepsy. Antagonism of the KORs also prevents stress-induced behaviours. This evidence suggests the KORs as possible therapeutic targets for various pathological conditions. In addition, KOR agonists prevent the induction of LTP. Although there are several mechanisms through which dynorphin could mediate these effects, no studies to date investigated the effects of KOR activation on intrinsic membrane properties and cell excitability. We used whole-cell, patch-clamp recordings from acute mouse hippocampus slices to investigate the effect of KOR activation on dentate gyrus granule cell excitability. The agonist U69,593 (U6, 1 μm) resulted in a lower spike threshold, a decreased latency to first spike, an increased spike half-width, and an overall increase in spike number with current injections ranging from 15 to 45 pA. There was also a reduction in the interspike interval (ISI) both early and late in the spike train, with no change in membrane potential or input resistance

  9. Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells.

    PubMed

    Mustafina, Alsu N; Yakovlev, Aleksey V; Gaifullina, Aisylu Sh; Weiger, Thomas M; Hermann, Anton; Sitdikova, Guzel F

    2015-10-02

    The aim of the present study was to evaluate the effects of hydrogen sulfide (H2S) on the membrane potential, action potential discharge and exocytosis of secretory granules in neurosecretory pituitary tumor cells (GH3). The H2S donor - sodium hydrosulfide (NaHS) induced membrane hyperpolarization, followed by truncation of spontaneous electrical activity and decrease of the membrane resistance. The NaHS effect was dose-dependent with an EC50 of 152 μM (equals effective H2S of 16-19 μM). NaHS effects were not altered after inhibition of maxi conductance calcium-activated potassium (BK) channels by tetraethylammonium or paxilline, but were significantly reduced after inhibition or activation of ATP-dependent potassium channels (KATP) by glibenclamide or by diazoxide, respectively. In whole-cell recordings NaHS increased the amplitude of KATP currents, induced by hyperpolarizing pulses and subsequent application of glibenclamide decreased currents to control levels. Using the fluorescent dye FM 1-43 exocytosis of secretory granules was analyzed in basal and stimulated conditions (high K(+) external solution). Prior application of NaHS decreased the fluorescence of the cell membrane in both conditions which links with activation of KATP currents (basal secretion) and activation of KATP currents and BK-currents (stimulated exocytosis). We suggest that H2S induces hyperpolarization of GH3 cells by activation of KATP channels which results in a truncation of spontaneous action potentials and a decrease of hormone release.

  10. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells

    PubMed Central

    Li, Xiang-Zhou

    2016-01-01

    Eucommia ulmoides Oliv. (E. ulmoides Oliv.) and moso bamboo (Phyllostachys pubescens) leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG) in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL) and the positive controls (metformin, 162.29%; insulin, 161.52%) were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme. PMID:27656239

  11. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells.

    PubMed

    Li, Xiang-Zhou; Zhang, Sheng

    2016-01-01

    Eucommia ulmoides Oliv. (E. ulmoides Oliv.) and moso bamboo (Phyllostachys pubescens) leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG) in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL) and the positive controls (metformin, 162.29%; insulin, 161.52%) were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme.

  12. Endothelin-1 stimulates the release of preloaded ( sup 3 H)D-aspartate from cultured cerebellar granule cells

    SciTech Connect

    Lin, W.W.; Lee, C.Y.; Chuang, D.M. )

    1990-03-16

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded ({sup 3}H)D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca{sup 2+}, but was unaffected by 1 mM Co{sup 2+} or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system.

  13. Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2015-01-01

    This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich

  14. Cysteine string protein (CSP) is an insulin secretory granule-associated protein regulating beta-cell exocytosis.

    PubMed Central

    Brown, H; Larsson, O; Bränström, R; Yang, S N; Leibiger, B; Leibiger, I; Fried, G; Moede, T; Deeney, J T; Brown, G R; Jacobsson, G; Rhodes, C J; Braun, J E; Scheller, R H; Corkey, B E; Berggren, P O; Meister, B

    1998-01-01

    Cysteine string proteins (CSPs) are novel synaptic vesicle-associated protein components characterized by an N-terminal J-domain and a central palmitoylated string of cysteine residues. The cellular localization and functional role of CSP was studied in pancreatic endocrine cells. In situ hybridization and RT-PCR analysis demonstrated CSP mRNA expression in insulin-producing cells. CSP1 mRNA was present in pancreatic islets; both CSP1 and CSP2 mRNAs were seen in insulin-secreting cell lines. Punctate CSP-like immunoreactivity (CSP-LI) was demonstrated in most islets of Langerhans cells, acinar cells and nerve fibers of the rat pancreas. Ultrastructural analysis showed CSP-LI in close association with membranes of secretory granules of cells in the endo- and exocrine pancreas. Subcellular fractionation of insulinoma cells showed CSP1 (34/36 kDa) in granular fractions; the membrane and cytosol fractions contained predominantly CSP2 (27 kDa). The fractions also contained proteins of 72 and 70 kDa, presumably CSP dimers. CSP1 overexpression in INS-1 cells or intracellular administration of CSP antibodies into mouse ob/ob beta-cells did not affect voltage-dependent Ca2+-channel activity. Amperometric measurements showed a significant decrease in insulin exocytosis in individual INS-1 cells after CSP1 overexpression. We conclude that CSP is associated with insulin secretory granules and that CSP participates in the molecular regulation of insulin exocytosis by mechanisms not involving changes in the activity of voltage-gated Ca2+-channels. PMID:9724640

  15. Pattern of rise in subplasma membrane Ca{sup 2+} concentration determines type of fusing insulin granules in pancreatic {beta} cells

    SciTech Connect

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Nakamichi, Yoko; Nishiwaki, Chiyono; Sakurai, Takashi; Nagamatsu, Shinya

    2009-07-31

    We simultaneously analyzed insulin granule fusion with insulin fused to green fluorescent protein and the subplasma membrane Ca{sup 2+} concentration ([Ca{sup 2+}]{sub PM}) with the Ca{sup 2+} indicator Fura Red in rat {beta} cells by dual-color total internal reflection fluorescence microscopy. We found that rapid and marked elevation in [Ca{sup 2+}]{sub PM} caused insulin granule fusion mostly from previously docked granules during the high KCl-evoked release and high glucose-evoked first phase release. In contrast, the slow and sustained elevation in [Ca{sup 2+}]{sub PM} induced fusion from newcomers translocated from the internal pool during the low KCl-evoked release and glucose-evoked second phase release. These data suggest that the pattern of the [Ca{sup 2+}]{sub PM} rise directly determines the types of fusing granules.

  16. Secretory granule formation and membrane recycling by the trans-Golgi network in adipokinetic cells of Locusta migratoria in relation to flight and rest.

    PubMed

    Diederen, J H; Vullings, H G

    1995-03-01

    The influence of flight activity on the formation of secretory granules and the concomitant membrane recycling by the trans-Golgi network in the peptidergic neurosecretory adipokinetic cells of Locusta migratoria was investigated by means of ultrastructural morphometric methods. The patterns of labelling of the trans-Golgi network by the exogenous adsorptive endocytotic tracer wheat-germ agglutinin-conjugated horse-radish peroxidase and by the endogenous marker enzyme acid phosphatase were used as parameters and were measured by an automatic image analysis system. The results show that endocytosed fragments of plasma membrane with bound peroxidase label were transported to the trans-Golgi network and used to build new secretory granules. The amounts of peroxidase and especially of acid phosphatase within the trans-Golgi network showed a strong tendency to be smaller in flight-stimulated cells than in non-stimulated cells. The amounts of acid phosphatase in the immature secretory granules originating from the trans-Golgi network were significantly smaller in stimulated cells. The number of immature secretory granules positive for acid phosphatase tended to be higher in stimulated cells. Thus, flight stimulation of adipokinetic cells for 1 h influences the functioning of the trans-Golgi network; this most probably results in a slight enhancement of the production of secretory granules by the trans-Golgi network.

  17. [Transverse ectopic testis].

    PubMed

    Jouini, Riadh; Lefi, Mounir; Sami, Chelly; Manef, Gesmi; Mohsen, Belguith; Nouri, Abdellatif

    2002-09-01

    Transverse ectopic testis (TET) is a rare form of ectopic testis. The authors report the case of a 2-month-old infant presenting with right inguinoscrotal hernia and ectopic left testis with an impalpable testis. Opening of the hernia sac revealed two testes with two distally fused vasa deferentes. The contralateral testis was easily descended by translocation through the other inguinal canal. A favourable result was obtained with two testes situated in a normal position. In the light of this case, the authors emphasize the clinical and therapeutic features of this anomaly.

  18. Tonic Inhibitory Control of Dentate Gyrus Granule Cells by α5-Containing GABAA Receptors Reduces Memory Interference

    PubMed Central

    Zarnowska, Ewa D.; Benke, Dietmar; Tsvetkov, Evgeny; Sigal, Maksim; Keist, Ruth; Bolshakov, Vadim Y.; Pearce, Robert A.; Rudolph, Uwe

    2015-01-01

    Interference between similar or overlapping memories formed at different times poses an important challenge on the hippocampal declarative memory system. Difficulties in managing interference are at the core of disabling cognitive deficits in neuropsychiatric disorders. Computational models have suggested that, in the normal brain, the sparse activation of the dentate gyrus granule cells maintained by tonic inhibitory control enables pattern separation, an orthogonalization process that allows distinct representations of memories despite interference. To test this mechanistic hypothesis, we generated mice with significantly reduced expression of the α5-containing GABAA (α5-GABAARs) receptors selectively in the granule cells of the dentate gyrus (α5DGKO mice). α5DGKO mice had reduced tonic inhibition of the granule cells without any change in fast phasic inhibition and showed increased activation in the dentate gyrus when presented with novel stimuli. α5DGKO mice showed impairments in cognitive tasks characterized by high interference, without any deficiencies in low-interference tasks, suggesting specific impairment of pattern separation. Reduction of fast phasic inhibition in the dentate gyrus through granule cell-selective knock-out of α2-GABAARs or the knock-out of the α5-GABAARs in the downstream CA3 area did not detract from pattern separation abilities, which confirms the anatomical and molecular specificity of the findings. In addition to lending empirical support to computational hypotheses, our findings have implications for the treatment of interference-related cognitive symptoms in neuropsychiatric disorders, particularly considering the availability of pharmacological agents selectively targeting α5-GABAARs. SIGNIFICANCE STATEMENT Interference between similar memories poses a significant limitation on the hippocampal declarative memory system, and impaired interference management is a cognitive symptom in many disorders. Thus, understanding

  19. Hydroxylated polychlorinated biphenyls increase reactive oxygen species formation and induce cell death in cultured cerebellar granule cells

    SciTech Connect

    Dreiem, Anne Rykken, Sidsel; Lehmler, Hans-Joachim; Robertson, Larry W.; Fonnum, Frode

    2009-10-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that bioaccumulate in the body, however, they can be metabolized to more water-soluble products. Although they are more readily excreted than the parent compounds, some of the metabolites are still hydrophobic and may be more available to target tissues, such as the brain. They can also cross the placenta and reach a developing foetus. Much less is known about the toxicity of PCB metabolites than about the parent compounds. In the present study, we have investigated the effects of eight hydroxylated (OH) PCB congeners (2'-OH PCB 3, 4-OH PCB 14, 4-OH PCB 34, 4'-OH PCB 35, 4-OH PCB 36, 4'-OH PCB 36, 4-OH PCB 39, and 4'-OH PCB 68) on reactive oxygen species (ROS) formation and cell viability in rat cerebellar granule cells. We found that, similar to their parent compounds, OH-PCBs are potent ROS inducers with potency 4-OH PCB 14 < 4-OH PCB 36 < 4-OH PCB 34 < 4'-OH PCB 36 < 4'-OH PCB 68 < 4-OH PCB 39 < 4'-OH PCB 35. 4-OH PCB 36 was the most potent cell death inducer, and caused apoptotic or necrotic morphology depending on concentration. Inhibition of ERK1/2 kinase with U0126 reduced both cell death and ROS formation, suggesting that ERK1/2 activation is involved in OH-PCB toxicity. The results indicate that the hydroxylation of PCBs may not constitute a detoxification reaction. Since OH-PCBs like their parent compounds are retained in the body and may be more widely distributed to sensitive tissues, it is important that not only the levels of the parent compounds but also the levels of their metabolites are taken into account during risk assessment of PCBs and related compounds.

  20. BOULE, a Deleted in Azoospermia Homolog, Is Recruited to Stress Granules in the Mouse Male Germ Cells

    PubMed Central

    Kim, Byunghyuk; Rhee, Kunsoo

    2016-01-01

    High temperature adversely affects normal development of male germ cells in mammals. Acute heat stress induces the formation of stress granules (SGs) in a set of male germ cells, and the SGs have been proposed to protect those cells from heat-induced apoptosis. DAZL, one of DAZ (Deleted in Azoospermia) family proteins, was shown to be an essential component of SGs, which is required for SG formation in the mouse testis. In the present study, we asked whether BOULE, the founding member of DAZ family proteins, is a component of the SGs. We show that BOULE is recruited to the SGs upon heat stress, and that these SGs are developmental stage-specific. These results suggest that DAZ family proteins may have conserved roles in the SGs of male germ cells. PMID:27632217

  1. Ectopic ACTH syndrome: clinicopathological correlations.

    PubMed Central

    Singer, W; Kovacs, K; Ryan, N; Horvath, E

    1978-01-01

    Ten out of 164 cases of bronchogenic carcinoma showed pathological evidence at necropsy of the ectopic ACTH syndrome. All occurred in association with oat-cell carcinoma, constituting 19% of that group. The pathological features consisted of adrenocortical hyperplasia confined to the zona fasciculata and Crooke's hyaline change in the pituitary. Immunoperoxidase stainable ACTH was detected in the pituitary but not in the carcinoma tissue, a surprising finding, which may be due to the different nature of ACTH present in tumour tissue. The ectopic ACTH syndrome was diagnosed ante mortem in only four out of 10 patients on the basis of hypokalaemia and metabolic alkalosis. The lack of clinical pointers in all but terminal cases is discussed as well as possible measures for earlier diagnosis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:209063

  2. Chronic corticosterone administration reduces dendritic complexity in mature, but not young granule cells in the rat dentate gyrus

    PubMed Central

    Yau, Suk-Yu; Li, Ang; Tong, Jian-Bin; Bostrom, Crystal; Christie, Brian R.; Lee, Tatia M.C.; So, Kwok-Fai

    2016-01-01

    Background: Our previous work has shown that exposure to the stress hormone corticosterone (40 mg/kg CORT) for two weeks induces dendritic atrophy of pyramidal neurons in the hippocampal CA3 region and behavioral deficits. However, it is unclear whether this treatment also affects the dentate gyrus (DG), a subregion of the hippocampus comprising a heterogeneous population of young and mature neurons. Objective: We examined the effect of CORT treatment on the dendritic complexity of mature and young granule cells in the DG. Methods: We utilized a Golgi staining method to investigate the dendritic morphology and spine density of young neurons in the inner granular cell layer (GCL) and mature neurons in the outer GCL in response to CORT application. The expressions of glucocorticoid receptors during neuronal maturation were examined using Western blot analysis in a primary hippocampal neuronal culture. Results: Sholl analysis revealed that CORT treatment decreased the number of intersections and shortened the dendritic length in mature, but not young, granule cells. However, the spine density of mature and young neurons was not affected. Western blot analysis showed a progressive increase in the protein levels of glucocorticoid receptors (GRs) in the cultured primary hippocampal neurons during neuronal maturation. Conclusion: These data suggest that mature neurons are likely more vulnerable to chronic exposure to CORT; this may be due to their higher expression of GRs when compared to younger DG neurons. PMID:27567758

  3. Preventing Effect of L-Type Calcium Channel Blockade on Electrophysiological Alterations in Dentate Gyrus Granule Cells Induced by Entorhinal Amyloid Pathology

    PubMed Central

    Pourbadie, Hamid Gholami; Naderi, Nima; Mehranfard, Nasrin; Janahmadi, Mahyar; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-01-01

    The entorhinal cortex (EC) is one of the earliest affected brain regions in Alzheimer’s disease (AD). EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG) with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were investigated. The amyloid beta (Aβ) 1–42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin) accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days), almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer’s disease. PMID:25689857

  4. [Ectopic pregnancy in Senegal].

    PubMed

    Cissé, Cheikh A Tidiane; Bernis, Luc De; Faye, El Hadj Ousseynou; Diadhiou, Fadel

    2002-01-01

    The objective of this prospective study was to analyse the epidemiology and prognosis of ectopic pregnancy in Senegal. From January 1 to December 31, 1996, 255 ectopic pregnancies were registered. The national rate of ectopic pregnancy was 0.6%. of expected pregnancies. However, rates differed greatly between areas in Senegal, with extremes ranging from 0.85%. in Dakar to 0.32%. in Thiès. The epidemiological profile was that of a young woman-mean age: 23 years old, mean parity=3, admitted with broken ectopic pregnancy (95%). A salpingectomy was performed in all cases. The maternal mortality rate was 1.20%, while morbidity, mainly due to post-operative infection, was found in 2.7% of the cases.

  5. Differential expression of cytoskeletal proteins in the dendrites of parvalbumin-positive interneurons versus granule cells in the adult rat dentate gyrus.

    PubMed

    de Haas Ratzliff, A; Soltesz, I

    2000-01-01

    Parvalbumin-positive interneurons and granule cells of the dentate gyrus exhibit characteristic differences in morphological, cytochemical, physiological, and pathophysiological properties. Several of these defining features, including dendritic morphology, spine density, and sensitivity to insults, are likely to be influenced by the neuronal cytoskeleton. The data in this paper demonstrate striking differences in the expression levels of all three neurofilament triplet proteins, as well as alpha-internexin and beta-tubulin III, between the parvalbumin-positive interneurons and dentate granule cells. Therefore, the molecular composition of intermediate filaments and microtubules in the dendritic domain of parvalbumin-positive dentate interneurons is distinct from the cytoskeleton of neighboring granule cells, indicating the existence of highly cell type-specific cytoskeletal architecture within the dentate gyrus.

  6. Delayed dendritic development in newly generated dentate granule cells by cell-autonomous expression of the amyloid precursor protein.

    PubMed

    Morgenstern, Nicolás A; Giacomini, Damiana; Lombardi, Gabriela; Castaño, Eduardo M; Schinder, Alejandro F

    2013-09-01

    Neuronal connectivity and synaptic remodeling are fundamental substrates for higher brain functions. Understanding their dynamics in the mammalian allocortex emerges as a critical step to tackle the cellular basis of cognitive decline that occurs during normal aging and in neurodegenerative disorders. In this work we have designed a novel approach to assess alterations in the dynamics of functional and structural connectivity elicited by chronic cell-autonomous overexpression of the human amyloid precursor protein (hAPP). We have taken advantage of the fact that the hippocampus continuously generates new dentate granule cells (GCs) to probe morphofunctional development of GCs expressing different variants of hAPP in a healthy background. hAPP was expressed together with a fluorescent reporter in neural progenitor cells of the dentate gyrus of juvenile mice by retroviral delivery. Neuronal progeny was analyzed several days post infection (dpi). Amyloidogenic cleavage products of hAPP such as the β-C terminal fragment (β-CTF) induced a substantial reduction in glutamatergic connectivity at 21 dpi, at which time new GCs undergo active growth and synaptogenesis. Interestingly, this effect was transient, since the strength of glutamatergic inputs was normal by 35 dpi. This delay in glutamatergic synaptogenesis was paralleled by a decrease in dendritic length with no changes in spine density, consistent with a protracted dendritic development without alterations in synapse formation. Finally, similar defects in newborn GC development were observed by overexpression of α-CTF, a non-amyloidogenic cleavage product of hAPP. These results indicate that hAPP can elicit protracted dendritic development independently of the amyloidogenic processing pathway.

  7. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed Central

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-01-01

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626033

  8. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.

    PubMed

    Bhalla, U S; Bower, J M

    1993-06-01

    1. Detailed compartmental computer simulations of single mitral and granule cells of the vertebrate olfactory bulb were constructed using previously published geometric data. Electrophysiological properties were determined by comparing model output to previously published experimental data, mainly current-clamp recordings. 2. The passive electrical properties of each model were explored by comparing model output with intracellular potential data from hyperpolarizing current injection experiments. The results suggest that membrane resistivity in both cells is nonuniform, with somatas having a substantially lower resistivity than the dendrites. 3. The active properties of these cells were explored by incorporating active ion channels into modeled compartments. On the basis of evidence from the literature, the mitral cell model included six channel types: fast sodium, fast delayed rectifier (Kfast), slow delayed rectifier (K), transient outward potassium current (KA), voltage- and calcium-dependent potassium current (KCa), and L-type calcium current. The granule cell model included four channel types: rat brain sodium, K, KA, and the non-inactivating muscarinic potassium current (KM). Modeled channels were based on the Hodgkin-Huxley formalism. 4. Representative kinetics for each of the channel classes above were obtained from the literature. The experimentally unknown spatial distributions of each included channel were obtained by systematic parameter searches. These were conducted in two ways: large-scale simulation series, in which each parameter was varied in turn, and an adaptation of a multidimensional conjugate gradient method. In each case, the simulated results were compared wtih experimental data using a curve-matching function evaluating mean squared differences of several aspects of the simulated and experimental voltage waveforms. 5. Systematic parameter variations revealed a single distinct region of parameter space in which the mitral cell model best

  9. Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb

    PubMed Central

    Cavarretta, Francesco; Marasco, Addolorata; Hines, Michael L.; Shepherd, Gordon M.; Migliore, Michele

    2016-01-01

    The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli. PMID:27471461

  10. Progressive behavioral changes during the maturation of rats with early radiation-induced hypoplasia of fascia dentata granule cells

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.; Mulvihill, M.A.; Nemeth, T.J.

    1989-01-01

    Localized exposure of the neonatal rat brain to x rays produces neuronal hypoplasia specific to the granule cell layer of the hippocampal dentate gyrus. This brain damage causes locomotor hyperactivity, slowed acquisition of passive avoidance tasks and long bouts of spontaneous turning (without reversals) in a bowl apparatus. The authors report here how these behavioral deficits change as a function of subject aging and behavioral test replications. Portions of the neonatal rat cerebral hemispheres were X-irradiated in order to selectively damage the granule cells of the dentate gyrus. Rats between the ages of 71-462 days were tested 3 separate times on each of the following 3 behavioral tests: (1) spontaneous locomotion, (2) passive avoidance acquisition, and (3) spontaneous circling in a large plastic hemisphere. Rats with radiation-induced damage to the fascia dentata exhibited long bouts of slow turns without reversals. Once they began, irradiated subjects perseverated in turning to an extent significantly greater than sham-irradiated control subjects. The hyperactivity of the irradiated animals decreased significantly as they matured. These data suggest that radiation-induced damage to the fascia dentata produces task-dependent behavioral deficits that change as a function of subject age and/or behavioral testing.

  11. Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer.

    PubMed

    Cesana, Elisabetta; Pietrajtis, Katarzyna; Bidoret, Céline; Isope, Philippe; D'Angelo, Egidio; Dieudonné, Stéphane; Forti, Lia

    2013-07-24

    The function of inhibitory interneurons within brain microcircuits depends critically on the nature and properties of their excitatory synaptic drive. Golgi cells (GoCs) of the cerebellum inhibit cerebellar granule cells (GrCs) and are driven both by feedforward mossy fiber (mf) and feedback GrC excitation. Here, we have characterized GrC inputs to GoCs in rats and mice. We show that, during sustained mf discharge, synapses from local GrCs contribute equivalent charge to GoCs as mf synapses, arguing for the importance of the feedback inhibition. Previous studies predicted that GrC-GoC synapses occur predominantly between parallel fibers (pfs) and apical GoC dendrites in the molecular layer (ML). By combining EM and Ca(2+) imaging, we now demonstrate the presence of functional synaptic contacts between ascending axons (aa) of GrCs and basolateral dendrites of GoCs in the granular layer (GL). Immunohistochemical quantification estimates these contacts to be ∼400 per GoC. Using Ca(2+) imaging to identify synaptic inputs, we show that EPSCs from aa and mf contacts in basolateral dendrites display similarly fast kinetics, whereas pf inputs in the ML exhibit markedly slower kinetics as they undergo strong filtering by apical dendrites. We estimate that approximately half of the local GrC contacts generate fast EPSCs, indicating their basolateral location in the GL. We conclude that GrCs, through their aa contacts onto proximal GoC dendrites, define a powerful feedback inhibitory circuit in the GL.

  12. Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases.

    PubMed

    Mundy, William R; Freudenrich, Theresa M

    2006-01-01

    Mono- and dialkyl organotin compounds are used primarily as heat stabilizers in polyvinyl chloride (PVC) plastics. Recently, monomethyltin (MMT), dimethyltin (DMT), monobutyltin (MBT), and dibutyltin (DBT) have been detected in water from homes and businesses served by PVC pipes. While trialkyl organotins such as trimethyltin (TMT) and triethyltin (TET) are well known neurotoxicants, the toxicity of the mono- and dialkyl organotins is not well described. The present study compared the cytotoxicity of organotins found in drinking water with the known neurotoxicant TMT in primary cultures of cerebellar granule cells, and examined the role of MAP kinase signaling in organotin-induced cell death. Twenty-four hour exposure to TMT resulted in a concentration-dependent decrease in cell viability with an EC(50) of 3 microM. Exposure to MMT, DMT, and MBT at concentrations up to 10 microM had no effect. DBT, however, was very potent, and decreased cell viability with an EC(50) of 0.3 microM. Staining of organotin-treated cerebellar granule cells with the nuclear dye Syto-13 revealed that TMT and DBT, but not MMT, DMT, or MBT, produced condensation and fragmentation of chromatin characteristic of apoptosis. TMT- and DBT-induced apoptosis was confirmed using TUNEL staining and measurement of PARP cleavage. Activation of MAP kinase pathways was examined after 6 h of exposure to the organotins which induced apoptosis. Both TMT and DBT activated ERK1/2, but only TMT activated the JNK/c-Jun and p38 pathways. Pharmacologic blockade of JNK/c-Jun and p38 activation significantly decreased apoptosis produced by TMT, but not by DBT. These results show that DBT is a potent neurotoxicant in vitro, but unlike TMT, does not induce cell death via activation of MAP kinase signaling.

  13. Granule Associated Serine Proteases of Hematopoietic Cells – An Analysis of Their Appearance and Diversification during Vertebrate Evolution

    PubMed Central

    Akula, Srinivas; Thorpe, Michael; Boinapally, Vamsi; Hellman, Lars

    2015-01-01

    Serine proteases are among the most abundant granule constituents of several hematopoietic cell lineages including mast cells, neutrophils, cytotoxic T cells and NK cells. These proteases are stored in their active form in the cytoplasmic granules and in mammals are encoded from four different chromosomal loci: the chymase locus, the met-ase locus, the T cell tryptase and the mast cell tryptase locus. In order to study their appearance during vertebrate evolution we have performed a bioinformatic analysis of related genes and gene loci from a large panel of metazoan animals from sea urchins to placental mammals for three of these loci: the chymase, met-ase and granzyme A/K loci. Genes related to mammalian granzymes A and K were the most well conserved and could be traced as far back to cartilaginous fish. Here, the granzyme A and K genes were found in essentially the same chromosomal location from sharks to humans. However in sharks, no genes clearly identifiable as members of the chymase or met-ase loci were found. A selection of these genes seemed to appear with bony fish, but sometimes in other loci. Genes related to mammalian met-ase locus genes were found in bony fish. Here, the most well conserved member was complement factor D. However, genes distantly related to the neutrophil proteases were also identified in this locus in several bony fish species, indicating that this locus is also old and appeared at the base of bony fish. In fish, a few of the chymase locus-related genes were found in a locus with bordering genes other than the mammalian chymase locus and some were found in the fish met-ase locus. This indicates that a convergent evolution rather than divergent evolution has resulted in chymase locus-related genes in bony fish. PMID:26569620

  14. Intrahepatic B-cell follicles of chronically hepatitis C virus-infected individuals lack signs of an ectopic germinal center reaction.

    PubMed

    Tucci, Felicia A; Broering, Ruth; Lutterbeck, Melanie; Schlaak, Joerg F; Küppers, Ralf

    2014-06-01

    Chronic infection with hepatitis C virus (HCV) often affects the B-cell compartment, leading to the occurrence of autoimmunity and B-cell lymphoproliferation, in particular mixed cryoglobulinemia and B-cell lymphomas. HCV presumably causes these lymphoproliferations by chronic antigenic stimulation and/or direct mutagenic effects on B cells. It has been speculated that the interaction of HCV with B cells and the expansion of antigen-triggered B cells happens in germinal center-like structures in the livers of HCV carriers. We studied rearranged immunoglobulin V(H) genes from seven B-cell follicles microdissected from the livers of three unselected chronic HCV patients. The follicles consisted of polyclonal naive and memory B-cell populations with only rare indication of minor clonal expansions and no evidence for active somatic hypermutation. Frequent detection of V(H) rearrangements using the VH1-69 gene segment nevertheless indicated that at least a fraction of the B cells is HCV-specific and/or autoreactive. Thus, the typical intrahepatic B-cell follicles in chronic HCV carriers do not function as ectopic germinal centers for clonal expansion and affinity maturation of B cells. Hence, autoreactive and HCV-specific B-cell clones might either develop in secondary lymphoid organs or in intrahepatic follicles only under particular, yet undefined, circumstances.

  15. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury.

    PubMed

    Steward, Oswald; Sharp, Kelli G; Yee, Kelly Matsudaira; Hatch, Maya N; Bonner, Joseph F

    2014-10-15

    We reported previously the formation of ectopic colonies in widespread areas of the nervous system after transplantation of fetal neural stem cells (NSCs) into spinal cord transection sites. Here, we characterize the incidence, distribution, and cellular composition of the colonies. NSCs harvested from E14 spinal cords from rats that express GFP were treated with a growth factor cocktail and grafted into the site of a complete spinal cord transection. Two months after transplant, spinal cord and brain tissue were analyzed histologically. Ectopic colonies were found at long distances from the transplant in the central canal of the spinal cord, the surface of the brainstem and spinal cord, and in the fourth ventricle. Colonies were present in 50% of the rats, and most rats had multiple colonies. Axons extended from the colonies into the host CNS. Colonies were strongly positive for nestin, a marker for neural precursors, and contained NeuN-positive cells with processes resembling dendrites, GFAP-positive astrocytes, APC/CC1-positive oligodendrocytes, and Ki-67-positive cells, indicating ongoing proliferation. Stereological analyses revealed an estimated 21,818 cells in a colony in the fourth ventricle, of which 1005 (5%) were Ki-67 positive. Immunostaining for synaptic markers (synaptophysin and VGluT-1) revealed large numbers of synaptophysin-positive puncta within the colonies but fewer VGluT-1 puncta. Continuing expansion of NSC-derived cell masses in confined spaces in the spinal cord and brain could produce symptoms attributable to compression of nearby tissue. It remains to be determined whether other cell types with self-renewing potential can also form colonies.

  16. An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse

    PubMed Central

    Bertrand, Florie; Müller, Sabina; Roh, Kyung-Ho; Laurent, Camille; Dupré, Loïc; Valitutti, Salvatore

    2013-01-01

    It is presently assumed that lethal hit delivery by cytotoxic T lymphocytes (CTLs) is mechanistically linked to centrosome polarization toward target cells, leading to dedicated release of lytic granules within a confined secretory domain. Here we provide three lines of evidence showing that this mechanism might not apply as a general paradigm for lethal hit delivery. First, in CTLs stimulated with immobilized peptide–MHC complexes, lytic granules and microtubule organizing center localization into synaptic areas are spatio-temporally dissociated, as detected by total internal reflection fluorescence microscopy. Second, in many CTL/target cell conjugates, lytic granule secretion precedes microtubule polarization and can be detected during the first minute after cell–cell contact. Third, inhibition of microtubule organizing center and centrosome polarization impairs neither lytic granule release at the CTL synapse nor killing efficiency. Our results broaden current views of CTL biology by revealing an extremely rapid step of lytic granule secretion and by showing that microtubule organizing center polarization is dispensable for efficient lethal hit delivery. PMID:23536289

  17. Molecular diagnostics and therapeutics for ectopic pregnancy.

    PubMed

    Tong, Stephen; Skubisz, Monika M; Horne, Andrew W

    2015-02-01

    Ectopic pregnancies are a serious gynaecological emergency that can be fatal. As such, prompt diagnosis and safe timely treatment is essential. Here, we review the literature on the development of molecularly targeted diagnostics and therapeutics for ectopic pregnancy. A blood-based biomarker that accurately identifies an ectopic pregnancy could be used to offer early diagnostic certainty in cases where ultrasound cannot determine the location of the embryo ('a pregnancy of unknown location'). Molecules examined so far can be broadly grouped into biological themes of relevance to reproduction: (i) Fallopian tube (dys)function, (ii) embryo/trophoblast growth, (iii) corpus luteum function, (iv) inflammation, (v) uterine function and (vi) angiogenesis. While a sensitive and specific biomarker for ectopic pregnancy has yet to be identified, it is possible that improvements in platform technologies or a multi-modal biomarker approach may yield an accurate diagnostic biomarker test. Furthermore, with the advent of better imaging technology, the need for a blood-based biomarker test may be superseded by improvements in ultrasound or magnetic resonance imaging technology. There have been some recent preclinical studies describing molecularly targeted therapeutic approaches for ectopic pregnancy. Notably, bench-to-bedside studies have examined the use of combination gefitinib (orally available epidermal growth factor receptor inhibitor) and methotrexate. Preclinical studies suggest that combination gefitinib and methotrexate is highly effective in inducing placental cell death, and is significantly more effective than methotrexate alone. In early human trials, encouraging preliminary efficacy data have shown that combination gefitinib and methotrexate can rapidly resolve tubal ectopic pregnancies, and large extra-tubal ectopic pregnancies. If a large clinical randomized controlled trial confirms these findings, combination gefitinib and methotrexate could become a new

  18. Ectopic recurrent craniopharyngioma of the frontal bone.

    PubMed

    Jakobs, Martin; Orakcioglu, Berk

    2012-09-01

    Ectopic recurrence of craniopharyngioma is a rare phenomenon after transcranial resection of the primary tumor. The authors present a case of ectopic recurrent adamantinomatous craniopharyngioma of the frontal bone resected 16 years after initial transcranial resection of the primary tumor. The lesion was first radiographically described 12 years after surgery and was adjacent to the osteosynthesis plate that had been implanted at the craniotomy site. The recurrent craniopharyngioma was totally resected via a lateral eyebrow approach. No infiltration of the meninges or the brain was detected. Only 50 cases of ectopic recurrent craniopharyngioma have been described to date, with the present case being the first one with recurrence located at the skull bone. So far 2 mechanisms have been described: contamination with tumor cells alongside the surgical tract and spreading via CSF and the subarachnoid space. The authors reviewed the literature, provided the largest collection of cases so far, and performed basic statistical analysis regarding ectopic recurrence. Pediatric and adult patients as well as male and female ones are affected equally by this phenomenon. The mean time of ectopic recurrence after initial surgery was 7.1 years. Ectopic recurrence, although rare, should always be considered in a patient with a newly diagnosed intracranial lesion who has undergone transcranial craniopharyngioma resection before.

  19. Lack of Intestinal Epithelial Atg7 Affects Paneth Cell Granule Formation but Does Not Compromise Immune Homeostasis in the Gut

    PubMed Central

    Wittkopf, Nadine; Günther, Claudia; Martini, Eva; Waldner, Maximilian; Amann, Kerstin U.; Neurath, Markus F.; Becker, Christoph

    2012-01-01

    Genetic polymorphisms of autophagy-related genes have been associated with an increased risk to develop inflammatory bowel disease (IBD). Autophagy is an elementary process participating in several cellular events such as cellular clearance and nonapoptotic programmed cell death. Furthermore, autophagy may be involved in intestinal immune homeostasis due to its participation in the digestion of intracellular pathogens and in antigen presentation. In the present study, the role of autophagy in the intestinal epithelial layer was investigated. The intestinal epithelium is essential to maintain gut homeostasis, and defects within this barrier have been associated with the pathogenesis of IBD. Therefore, mice with intestinal epithelial deletion of Atg7 were generated and investigated in different mouse models. Knockout mice showed reduced size of granules and decreased levels of lysozyme in Paneth cells. However, this was dispensable for gut immune homeostasis and had no effect on susceptibility in mouse models of experimentally induced colitis. PMID:22291845

  20. Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb

    PubMed Central

    Wienisch, Martin; Murthy, Venkatesh N.

    2016-01-01

    Information processing in early sensory regions is modulated by a diverse range of inhibitory interneurons. We sought to elucidate the role of olfactory bulb interneurons called granule cells (GCs) in odor processing by imaging the activity of hundreds of these cells simultaneously in mice. Odor responses in GCs were temporally diverse and spatially disperse, with some degree of non-random, modular organization. The overall sparseness of activation of GCs was highly correlated with the extent of glomerular activation by odor stimuli. Increasing concentrations of single odorants led to proportionately larger population activity, but some individual GCs had non-monotonic relations to concentration due to local inhibitory interactions. Individual dendritic segments could sometimes respond independently to odors, revealing their capacity for compartmentalized signaling in vivo. Collectively, the response properties of GCs point to their role in specific and local processing, rather than global operations such as response normalization proposed for other interneurons. PMID:27388949

  1. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors.

    PubMed Central

    D'Angelo, E; De Filippi, G; Rossi, P; Taglietti, V

    1995-01-01

    1. Current-clamp recordings were made in whole-cell patch-clamp configuration from ninety-one granule cells in parasagittal cerebellar slices obtained from 21- to 31-day-old rats. Recordings were performed at 30 degrees C. 2. Resting membrane potential was -58 +/- 6 mV (n = 43). The membrane voltage response to step current injection showed inward rectification consistent with increasing input resistance during membrane depolarization. Over -35 +/- 7 mV (n = 14) repetitive firing with little or no adaptation was activated. Spike frequency increased nearly linearly with injected current. 3. Unitary EPSPs obtained by stimulating the mossy fibre bundle had an amplitude of 11.4 +/- 2.1 mV (n = 22, holding potential = -75 mV). Synchronous activation of greater than one to two mossy fibres was needed to elicit action potentials. Antidromic stimulation elicited antidromic spikes and also EPSPs, presumably through a mossy fibre 'axon reflex'. 4. EPSPs were brought about by NMDA and non-NMDA receptor activation, accounting for about 70 and 30%, respectively, of peak amplitude at the holding potential of -70 mV. The EPSP decay conformed to passive membrane discharge after blocking the NMDA receptors. 5. No appreciable correlation was found between the time-to-peak and decay time constant of the EPSPs, consistent with the compact electrotonic structure of these neurons. 6. During membrane depolarization EPSP amplitude increased transiently, due to both a voltage-dependent increase of the NMDA component and inward rectification. In addition, EPSPs slowed down due to a slowdown of the NMDA component. 7. Temporal summation during high-frequency stimulation was sustained by NMDA receptors, whose contribution to depolarization tended to prevail over that of non-NMDA receptors during the trains. A block of the NMDA receptors resulted in reduced depolarization and output spike frequency. 8. This study, as well as extending previous knowledge to the intracellular level in vivo

  2. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    PubMed

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  3. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells.

    PubMed Central

    Stevens, R L; Fox, C C; Lichtenstein, L M; Austen, K F

    1988-01-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of 35S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although [35S]heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. We here demonstrate that human lung mast cells of 96% purity incorporate [35S] sulfate into separate heparin and chondroitin sulfate proteoglycans in an approximately equal to 2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin [35S]sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin [35S]sulfate E proteoglycans and the [35S]heparin proteoglycans were exocytosed from the [35S]sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of 35S-labeled proteoglycans reside in the secretory granules of these human lung mast cells. PMID:3353378

  4. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    SciTech Connect

    Stevens, R.L.; Austen, K.F. ); Fox, C.C.; Lichtenstein, L.M. )

    1988-04-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of {sup 35}S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although ({sup 35}S)heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate ({sup 35}S)sulfate into separate heparin and chondroitin sulfate proteoglycans in an {approx}2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin ({sup 35}S)sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin ({sup 35}S)sulfate E proteoglycans and the ({sup 35}S)heparin proteoglycans were exocytosed from the ({sup 35}S)sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of {sup 35}S-labeled proteoglycans reside in the secretory granules of these human lung mast cells.

  5. Granulation Properties in DOT Images from Solar Maximum to Minimum

    NASA Astrophysics Data System (ADS)

    Pötzi, W.

    DOT granulation filtergrams in the G-Band from solar maximum to solar minimum (1999 to 2007) were investigated for changes of granulation properties like areas, perimeter, fractal dimension, cell sizes, and life times. Granules seem to become larger during solar minimum, whereas the distances between the granule centres stay constant. Nonetheless, the uncertainties are very high.

  6. Activation of PAC1 Receptors in Rat Cerebellar Granule Cells Stimulates Both Calcium Mobilization from Intracellular Stores and Calcium Influx through N-Type Calcium Channels

    PubMed Central

    Basille-Dugay, Magali; Vaudry, Hubert; Fournier, Alain; Gonzalez, Bruno; Vaudry, David

    2013-01-01

    High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) and a high density of PACAP binding sites have been detected in the developing rat cerebellum. In particular, PACAP receptors are actively expressed in immature granule cells, where they activate both adenylyl cyclase and phospholipase C. The aim of the present study was to investigate the ability of PACAP to induce calcium mobilization in cerebellar granule neurons. Administration of PACAP-induced a transient, rapid, and monophasic rise of the cytosolic calcium concentration ([Ca2+]i), while vasoactive intestinal peptide was devoid of effect, indicating the involvement of the PAC1 receptor in the Ca2+ response. Preincubation of granule cells with the Ca2+ ATPase inhibitor, thapsigargin, or the d-myo-inositol 1,4,5-trisphosphate (IP3) receptor antagonist, 2-aminoethoxydiphenyl borate, markedly reduced the stimulatory effect of PACAP on [Ca2+]i. Furthermore, addition of the calcium chelator, EGTA, or exposure of cells to the non-selective Ca2+ channel blocker, NiCl2, significantly attenuated the PACAP-evoked [Ca2+]i increase. Preincubation of granule neurons with the N-type Ca2+ channel blocker, ω-conotoxin GVIA, decreased the PACAP-induced [Ca2+]i response, whereas the L-type Ca2+ channel blocker, nifedipine, and the P- and Q-type Ca2+ channel blocker, ω-conotoxin MVIIC, had no effect. Altogether, these findings indicate that PACAP, acting through PAC1 receptors, provokes an increase in [Ca2+]i in granule neurons, which is mediated by both mobilization of calcium from IP3-sensitive intracellular stores and activation of N-type Ca2+ channel. Some of the activities of PACAP on proliferation, survival, migration, and differentiation of cerebellar granule cells could thus be mediated, at least in part, through these intracellular and/or extracellular calcium fluxes. PMID:23675369

  7. Environmental lead exposure during early life alters granule cell neurogenesis and morphology in the hippocampus of young adult rats.

    PubMed

    Verina, T; Rohde, C A; Guilarte, T R

    2007-03-30

    Exposure to environmentally relevant levels of lead (Pb(2+)) during early life produces deficits in hippocampal synaptic plasticity in the form of long-term potentiation (LTP) and spatial learning in young adult rats [Nihei MK, Desmond NL, McGlothan JL, Kuhlmann AC, Guilarte TR (2000) N-methyl-D-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience 99:233-242; Guilarte TR, Toscano CD, McGlothan JL, Weaver SA (2003) Environmental enrichment reverses cognitive and molecular deficits induced by developmental lead exposure. Ann Neurol 53:50-56]. Other evidence suggests that the performance of rats in the Morris water maze spatial learning tasks is associated with the level of granule cell neurogenesis in the dentate gyrus (DG) [Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza P-V, Abrous DN (2003) Spatial memory performance of aged rats in the water maze predicts level of hippocampal neurogenesis. Proc Natl Acad Sci U S A 100:14385-14390]. In this study, we examined whether continuous exposure to environmentally relevant levels of Pb(2+) during early life altered granule cell neurogenesis and morphology in the rat hippocampus. Control and Pb(2+)-exposed rats received bromodeoxyuridine (BrdU) injections (100 mg/kg; i.p.) for five consecutive days starting at postnatal day 45 and were killed either 1 day or 4 weeks after the last injection. The total number of newborn cells in the DG of Pb(2+)-exposed rats was significantly decreased (13%; P<0.001) 1 day after BrdU injections relative to controls. Further, the survival of newborn cells in Pb(2+)-exposed rats was significantly decreased by 22.7% (P<0.001) relative to control animals. Co-localization of BrdU with neuronal or astrocytic markers did not reveal a significant effect of Pb(2+) exposure on cellular fate. In Pb(2+)-exposed rats, immature granule cells immunolabeled with doublecortin (DCX) displayed aberrant dendritic morphology

  8. Effects of ammonia on high affinity glutamate uptake and glutamate transporter EAAT3 expression in cultured rat cerebellar granule cells.

    PubMed

    Chan, Helen; Zwingmann, Claudia; Pannunzio, Marc; Butterworth, Roger F

    2003-07-01

    Increased levels of extracellular glutamate are a consistent feature of hepatic encephalopathy (HE) associated with liver failure and other hyperammonemic pathologies. Reduction of glutamate uptake has been described in ammonia-exposed cultured astrocytes, synaptosomes, and in animal models of hyperammonemia. In the present study, we examine the effects of pathophysiological concentrations of ammonia on D-aspartate (a non-metabolizable analog of glutamate) uptake by cultured rat cerebellar granule neurons. Exposure of these cells to ammonia resulted in time-dependent (24% reduction at 24h and 60% reduction at 5 days, P<0.001) and dose-dependent (21, 37, and 57% reduction at 1, 2.5, and 5mM for 5 days, P<0.01) suppression of D-aspartate uptake. Kinetic analyses revealed significant decreases in the velocity of uptake (V(max)) (37% decrease at 2.5mM NH(4)Cl, P<0.05 and 52% decrease at 5mM NH(4)Cl, P<0.001) as well as significant reductions in K(m) values (25% reduction at 2.5mM NH(4)Cl, P<0.05 and 45% reduction at 5mM NH(4)Cl, P<0.001). Western blotting, on the other hand, showed no significant changes in the neuronal glutamate transporter EAAC1/EAAT3 protein, the only glutamate transporter currently known to be expressed by these cells. In addition, 1H combined with 13C-NMR spectroscopy studies using the stable isotope [1-13C]-glucose demonstrated a significant increase in intracellular glutamate levels derived from the oxidative metabolism of glucose, rather than from the deamidation of exogenous glutamine in cultured granule neurons exposed to ammonia. The present study provides evidence that the effects of ammonia on glutamate uptake are not solely an astrocytic phenomenon and that unlike the astrocytic glutamate transporter counterpart, EAAT3 protein expression in cultured cerebellar granule cells is not down-regulated when exposed to ammonia. Decrease of glutamate uptake in these cellular preparations may afford an additional regulatory mechanism aimed at

  9. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.

    PubMed

    Ye, Xinhai; Yin, Xiaofan; Yang, Dawei; Tan, Jian; Liu, Guangpeng

    2012-07-01

    case at 8 weeks. Overall, this study suggests that ectopic osteogenesis of cell/scaffold composites is more dependent on the in vitro expansion condition, and osteo-differentiated BMSCs hold the highest potential concerning in vivo bone regeneration.

  10. BAFF overexpression increases lymphocytic infiltration in Sjögren's target tissue, but only inefficiently promotes ectopic B-cell differentiation.

    PubMed

    Ding, Jian; Zhang, Wei; Haskett, Scott; Pellerin, Alex; Xu, Shanqin; Petersen, Britta; Jandreski, Luke; Hamann, Stefan; Reynolds, Taylor L; Zheng, Timothy S; Mingueneau, Michael

    2016-08-01

    B-cell activating factor (BAFF) levels are increased in rheumatoid arthritis, lupus and primary Sjögren's syndrome (pSS). However, BAFF contribution to pathogenesis is not completely understood. In pSS, immune infiltration of the salivary and lacrimal glands leads to xerostomia and xerophtalmia. Glandular B cell hyperactivation, differentiation into germinal center (GC)-like structures and plasma cell accumulation are histopathological hallmarks that were attributed to increased BAFF. Here, we experimentally tested this hypothesis by overexpressing BAFF in a mouse model of pSS. BAFF overexpression enhanced lymphocytic infiltration and MHCII expression on B cells. Increased BAFF also induced B cell differentiation into GC B cells within the autoimmune target tissue. However, even in these conditions, GC B cells only accounted for <1% of glandular B cells, demonstrating that BAFF is not efficiently promoting ectopic GC formation in pSS and warranting further investigation of therapeutics targeting both BAFF and the related TNF-family member APRIL.

  11. Ectopic Hidradenoma Papilliferum

    PubMed Central

    Rosmaninho, Aristóteles David Neiva; de Almeida, Maria Teresa Duarte Pinto; Costa, Vírgilio; Sanches, Maria Madalena Vasconcelos; Lopes, Carlos; Selores Gomes Meirinhos, Maria Manuela

    2010-01-01

    Hidradenoma papilliferum is a rare tumor that occurs almost exclusively in females on the anogenital area. Rare cases of ectopic (nongenital) hidradenoma papilliferum have been described. The lesions usually present as an asymptomatic slow-growing, red, firm, mobile, well-delimitated nodule that grows for a long time before resection. We describe a case of an 26-year-old man that presented with an enlarging nodule on his right eyelid. The histological findings revealed a hidradenoma papilliferum. So far, among the very few reports of ectopic hidradenoma papilliferum, only a very small number were localized to the eyelid. PMID:21197082

  12. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells.

    PubMed

    Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F

    2015-01-07

    Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus.

  13. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells

    PubMed Central

    Temprana, Silvio G.; Mongiat, Lucas A.; Yang, Sung M.; Trinchero, Mariela F.; Alvarez, Diego D.; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M.; Schinder, Alejandro F.

    2014-01-01

    SUMMARY Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (four-week-old) GCs can efficiently drive distal CA3 targets, but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition towards maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus. PMID:25533485

  14. Chronic pregabalin treatment decreases excitability of dentate gyrus and accelerates maturation of adult-born granule cells.

    PubMed

    Lempel, Augusto Abel; Coll, Lucia; Schinder, Alejandro F; Uchitel, Osvaldo Daniel; Piriz, Joaquin

    2017-01-01

    Pregabalin (PGB) is extensively prescribed to treat neurological and neuropsychiatrical conditions such as neuropathic pain, anxiety disorders, and epilepsy. Although PGB is known to bind selectively to the α2δ subunit of voltage-gated calcium channels, there is little understanding about how it exerts its therapeutic effects. In this article, we analyzed the effects of an in vivo chronic treatment with PGB over the physiology of dentate gyrus granule cells (DGGCs) using ex vivo electrophysiological and morphological analysis in adult mice. We found that PGB decreases neuronal excitability of DGGCs. In addition, PGB accelerates maturation of adult-born DGGCs, an effect that would modify dentate gyrus plasticity. Together, these findings suggest that PGB reduces activity in the dentate gyrus and modulates overall network plasticity, which might contribute to its therapeutic effects. Cover Image for this issue: doi: 10.1111/jnc.13783.

  15. Soaking RNAi-mediated modification of Sf9 cells for baculovirus expression system by ectopic expression of Caenorhabditis elegans SID-1.

    PubMed

    Xu, Jian; Nagata, Yudai; Mon, Hiroaki; Li, Zhiqing; Zhu, Li; Iiyama, Kazuhiro; Kusakabe, Takahiro; Lee, Jae Man

    2013-07-01

    RNA interference (RNAi) is a biological phenomenon that silences the expression of genes of interest. Passive double-stranded RNA (dsRNA) uptake has been uniquely observed in Caenorhabditis elegans due to the expression of systemic RNAi defective-1 (SID-1). We report that ectopic expression of CeSID-1 endows the Sf9 cells with a capacity for soaking RNAi. Soaking the Sf9-SID1 with dsRNA corresponding to either exogenous or endogenous target genes induced a significant decrease in the amount of mRNA or protein. These results enabled us to modify the target proteins of baculovirus expression vector system in both quantities and posttranslational modifications. The current low-cost and high-efficiency RNAi system is useful for high-throughput gene function analysis and mass production of recombinant protein.

  16. Long-Term Potentiation at the Mossy Fiber-Granule Cell Relay Invokes Postsynaptic Second-Messenger Regulation of Kv4 Channels.

    PubMed

    Rizwan, Arsalan P; Zhan, Xiaoqin; Zamponi, Gerald W; Turner, Ray W

    2016-11-02

    Mossy fiber afferents to cerebellar granule cells form the primary synaptic relay into cerebellum, providing an ideal site to process signal inputs differentially. Mossy fiber input is known to exhibit a long-term potentiation (LTP) of synaptic efficacy through a combination of presynaptic and postsynaptic mechanisms. However, the specific postsynaptic mechanisms contributing to LTP of mossy fiber input is unknown. The current study tested the hypothesis that LTP induces a change in intrinsic membrane excitability of rat cerebellar granule cells through modification of Kv4 A-type potassium channels. We found that theta-burst stimulation of mossy fiber input in lobule 9 granule cells lowered the current threshold to spike and increases the gain of spike firing by 2- to 3-fold. The change in postsynaptic excitability was traced to hyperpolarizing shifts in both the half-inactivation and half-activation potentials of Kv4 that occurred upon coactivating NMDAR and group I metabotropic glutamatergic receptors. The effects of theta-burst stimulation on Kv4 channel control of the gain of spike firing depended on a signaling cascade leading to extracellular signal-related kinase activation. Under physiological conditions, LTP of synaptically evoked spike output was expressed preferentially for short bursts characteristic of sensory input, helping to shape signal processing at the mossy fiber-granule cell relay.

  17. Twin screw granulation: steps in granule growth.

    PubMed

    Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2012-11-15

    The present work focuses on the study of the progression of granules in different compartments along the length of screws in a twin screw granulator (TSG). The effects of varying powder feed rate; liquid to solid ratio and viscosity of granulation liquid on properties of granules was studied. The bigger granules produced at the start of the process were found to change in terms of size, shape and strength along the screw length at all the conditions investigated. The granules became more spherical and their strength increased along the screw length. Tracer granules were also introduced in order to understand the role of kneading and conveying elements in the TSG. The kneading elements promoted consolidation and breakage while the conveying elements led to coalescence, breakage and some consolidation. The results presented here help to provide a qualitative and quantitative understanding of the twin screw granulation process.

  18. Light and electron microscopic observations of fabrication, release, and fate of biphasic secretion granules produced by epididymal epithelial principal cells of the fan-throated lizard Sitana ponticeriana cuvier.

    PubMed

    Akbarsha, M A; Tamilarasan, V; Kadalmani, B

    2006-06-01

    The epididymis of the fan-throated lizard Sitana ponticeriana was examined with light and transmission electron microscopy to understand the cellular mechanisms of fabrication of secretion granules in epithelial principal cells, granule release into the lumen, and the fate of the dense structured granules after reaching the lumen. Principal cells of the ductus epididymis, except at the cauda, secrete electron-dense biphasic granules copiously, which decrease in abundance from the initial segment to corpus. The principal cell possesses a prominent Golgi apparatus and all versions of endoplasmic reticulum (ER), rough, smooth, and sparsely granulated. The material of the dense portion of the secretion granules, after processing at the Golgi apparatus, appears to accumulate in large ER cisternae in the supranuclear cytoplasm. It undergoes condensation when the cisternae become condensing vacuoles. Mitochondria appear to play a role in dense granule formation. The condensing vacuoles are displaced toward the apical cytoplasm when the material of the less dense portion is added to the condensing vacuoles at the Golgi area. Thus, the less dense and dense portions of the secretion granules are secreted and added to the condensing vacuoles separately. The composite granules are released into the lumen by exocytosis when the less dense portion merges with the luminal content, whereas the dense portion maintains its structured identity. The latter, initially measuring 1-2 microm in diameter, increases in size several times. It is inferred that these granules release their content gradually, resulting in the appearance of vacuoles, and suggesting that the granules have an insoluble matrix in which there is a sparingly soluble material. The substance leaching out of the granules appears to contribute to keeping the sperm quiescent and alive during storage in the male reproductive tract.

  19. Fuling Granule, a Traditional Chinese Medicine Compound, Suppresses Cell Proliferation and TGFβ-Induced EMT in Ovarian Cancer

    PubMed Central

    Ruan, Shanming; Liu, Wenhong; Wang, Libin; Xiong, Yang; Shen, Minhe

    2016-01-01

    The compound fuling granule (CFG) is a traditional Chinese drug which has been used to treat ovarian cancer in China for over twenty years. Nevertheless, the underlying molecular mechanism of its anti-cancer effect remains unclear. In this study, microarray data analysis was performed to search differentially expressed genes in CFG-treated ovarian cancer cells. Several cell cycle and epithelial-mesenchymal transition (EMT) related genes were identified. The microarray analyses also revealed that CFG potentially regulates EMT in ovarian cancer. We also found that, functionally, CFG significantly suppresses ovarian cancer cell proliferation by cell cycle arrest, apoptosis and senescence and the AKT/GSK-3β pathway is possibly involved. Additionally, the invasion and migration ability of ovarian cancer induced by TGFβ is significantly suppressed by CFG. In conclusion, our results demonstrated that CFG suppresses ovarian cancer cell proliferation as well as TGFβ1-induced EMT in vitro. Finally, we discovered that CFG suppresses tumor growth and distant metastasis in vivo. Overall, these findings provide helpful clues to design novel clinical treatments against cancer. PMID:28036353

  20. Casein Kinase 1δ Is an APC/CCdh1 Substrate that Regulates Cerebellar Granule Cell Neurogenesis

    PubMed Central

    Penas, Clara; Govek, Eve-Ellen; Fang, Yin; Ramachandran, Vimal; Daniel, Mark; Wang, Weiping; Maloof, Marie E.; Rahaim, Ronald J.; Bibian, Mathieu; Kawauchi, Daisuke; Finkelstein, David; Han, Jeng-Liang; Long, Jun; Li, Bin; Robbins, David J.; Malumbres, Marcos; Roussel, Martine F.; Roush, William R.; Hatten, Mary E.; Ayad, Nagi G.

    2015-01-01

    SUMMARY Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of central nervous system progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/CCdh1) ubiquitin ligase, and conditional deletion of the APC/CCdh1 activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/CCdh1 also downregulates CK1δ during cell cycle exit. Therefore, we conclude that APC/CCdh1 controls CK1δ levels to balance proliferation and cell cycle exit in the developing central nervous system. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a new therapeutic target. PMID:25843713

  1. Casein kinase 1δ is an APC/C(Cdh1) substrate that regulates cerebellar granule cell neurogenesis.

    PubMed

    Penas, Clara; Govek, Eve-Ellen; Fang, Yin; Ramachandran, Vimal; Daniel, Mark; Wang, Weiping; Maloof, Marie E; Rahaim, Ronald J; Bibian, Mathieu; Kawauchi, Daisuke; Finkelstein, David; Han, Jeng-Liang; Long, Jun; Li, Bin; Robbins, David J; Malumbres, Marcos; Roussel, Martine F; Roush, William R; Hatten, Mary E; Ayad, Nagi G

    2015-04-14

    Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/C(Cdh1)) ubiquitin ligase, and conditional deletion of the APC/C(Cdh1) activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/C(Cdh1) also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/C(Cdh1) controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.

  2. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short‐term facilitation at mossy fibre to CA3 pyramidal cell synapses

    PubMed Central

    Booker, Sam A.; Campbell, Graham R.; Mysiak, Karolina S.; Brophy, Peter J.; Kind, Peter C.

    2017-01-01

    Key points Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity.Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low‐frequency dentate to CA3 glutamatergic synaptic transmission.High‐frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase‐deficient mice.Intact presynaptic mitochondrial function is critical for the short‐term dynamics of mossy fibre to CA3 synaptic function. Abstract Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole‐cell patch‐clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV‐deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy‐fibre synapse because the amplitude, input–output relationship and 50 ms paired‐pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short‐term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired‐pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect

  3. Selective sorting of alpha-granule proteins.

    PubMed

    Italiano, J E; Battinelli, E M

    2009-07-01

    One of the main functions of blood platelets is to secrete a variety of substances that can modify a developing thrombus, regulate the growth of the vasculature, promote wound repair, and contribute to cell-adhesive events. A majority of this vast array of secreted proteins are stored in alpha-granules. Until recently, it was assumed that platelets contained one homogeneous population of alpha-granules that undergo complete de-granulation during platelet activation. This review focuses on the mechanisms of alpha-granule biogenesis and secretion, with a particular emphasis on recent findings that clearly demonstrate that platelets contain distinct subpopulations of alpha-granules that undergo differential release during activation. We consider the implications of this new paradigm of platelet secretion, discuss mechanisms of alpha-granule biogenesis, and review the molecular basis of transport and delivery of alpha-granules to assembling platelets.

  4. Effect of Calorie Restriction With or Without Exercise on Insulin Sensitivity, β-Cell Function, Fat Cell Size, and Ectopic Lipid in Overweight Subjects

    PubMed Central

    Larson-Meyer, D. Enette; Heilbronn, Leonie K.; Redman, Leanne M.; Newcomer, Bradley R.; Frisard, Madlyn I.; Anton, Steve; Smith, Steven R.; Maplstat, Anthony Alfonso; Ravussin, Eric

    2009-01-01

    OBJECTIVE The purpose of this article was to determine the relationships among total body fat, visceral adipose tissue (VAT), fat cell size (FCS), ectopic fat deposition in liver (intra-hepatic lipid [IHL]) and muscle (intramyocellular lipid [IMCL]), and insulin sensitivity index (Si) in healthy overweight, glucose-tolerant subjects and the effects of calorie restriction by diet alone or in conjunction with exercise on these variables. RESEARCH DESIGN AND METHODS Forty-eight overweight volunteers were randomly assigned to four groups: control (100% of energy requirements), 25% calorie restriction (CR), 12.5% calorie restriction +12.5% energy expenditure through structured exercise (CREX), or 15% weight loss by a low-calorie diet followed by weight maintenance for 6 months (LCD). Weight, percent body fat, VAT, IMCL, IHL, FCS, and Si were assessed at baseline and month 6. RESULTS At baseline, FCS was related to VAT and IHL (P < 0.05) but not to IMCL. FCS was also the strongest determinant of Si (P < 0.01). Weight loss at month 6 was 1 ± 1% (control, mean ± SE), 10 ± 1% (CR), 10 ± 1% (CREX), and 14 ± 1% (LCD). VAT, FCS, percent body fat, and IHL were reduced in the three intervention groups (P < 0.01), but IMCL was unchanged. Si was increased at month 6 (P = 0.05) in the CREX (37 ± 18%) and LCD (70 ± 34%) groups (P < 0.05) and tended to increase in the CR group (40 ± 20%, P = 0.08). Together the improvements in Si were related to loss in weight, fat mass, and VAT, but not IHL, IMCL, or FCS. CONCLUSIONS Large adipocytes lead to lipid deposition in visceral and hepatic tissues, promoting insulin resistance. Calorie restriction by diet alone or with exercise reverses this trend. PMID:16732018

  5. Extracts of ECL-cell granules/vesicles and of isolated ECL cells from rat oxyntic mucosa evoke a Ca2+ second messenger response in osteoblastic cells.

    PubMed

    Larsson, B; Gritli-Linde, A; Norlén, P; Lindström, E; Håkanson, R; Linde, A

    2001-03-02

    Surgical removal of the acid-producing part of the stomach (oxyntic mucosa) reduces bone mass through mechanisms not yet fully understood. The existence of an osteotropic hormone produced by the so-called ECL cells has been suggested. These cells, which are numerous in the oxyntic mucosa, operate under the control of circulating gastrin. Both gastrin and an extract of the oxyntic mucosa decrease blood calcium and stimulate Ca2+ uptake into bone. Conceivably, gastrin lowers blood calcium indirectly by releasing a hypothetical hormone from the ECL cells. The present study investigated, by means of fura-2 fluorometry, the effect of extracts of preparations enriched in ECL cell granules/vesicles from rat oxyntic mucosa on mobilization of intracellular Ca2+ in three osteoblast-like cell lines, UMR-106.01, MC3T3-E1 and Saos-2, and of extracts of isolated ECL cells in UMR-106.01 cells. The extracts were found to induce a dose-related rapid increase in intracellular Ca2+ concentrations in the osteoblast-like cells. The response was not due to histamine or pancreastatin, known ECL cell constituents, and could be abolished by pre-digesting the extracts with exo-aminopeptidase. The results show that the increase in [Ca2+](i) reflects a mobilization of Ca2+ from the endoplasmic reticulum. The observation of an increase in [Ca2+](i) also in murine embryonic fibroblasts show that the response is not limited to osteoblastic cells. The finding that the extracts evoked a typical Ca2+ -mediated second messenger response in osteoblastic cells provides evidence for the existence of a novel osteotropic peptide hormone (gastrocalcin), produced in the ECL cells, and supports the view that gastrectomy-induced osteopathy may reflect a lack of this hormone.

  6. CD28-stimulated ERK2 phosphorylation is required for polarization of the microtubule organizing center and granules in YTS NK cells

    PubMed Central

    Chen, Xi; Allan, David S. J.; Krzewski, Konrad; Ge, Baoxue; Kopcow, Hernan; Strominger, Jack L.

    2006-01-01

    Activation of natural killer (NK) cell cytotoxicity requires adhesion and formation of a conjugate with a susceptible target cell, followed by actin polymerization, and polarization of the microtubule organizing center (MTOC) and cytolytic granules to the NK cell immune synapse. Here, by using the YTS NK cell line as a model, CD28 is shown to be an activating receptor. It signals cytotoxicity in a process dependent on phosphoinositide-3 kinase activation, leading to sustained extracellular signal-regulated kinase 2 (ERK2) phosphorylation. ERK and phospho-ERK localize to microtubule filaments. Neither conjugation with targets nor actin polymerization is affected by blocking ERK2 activation. However, both polarization of the MTOC and cytolytic granules to the synaptic region and NK cell cytotoxicity are strongly reduced by blocking ERK2 activation. A role for the CD28/CD80 interaction in cytotoxicity of human peripheral NK cells also was established. By contrast, lymphocyte function-associated antigen 1 (LFA-1) ligation transduces only a transient ERK2 activation and fails to induce killing in YTS cells. Thus, in YTS cells, a CD28 signal is used to polarize the MTOC and cytolytic granules to the NK cell immune synapse by stimulating sustained ERK2 activation. PMID:16801532

  7. The brain-specific RasGEF very-KIND is required for normal dendritic growth in cerebellar granule cells and proper motor coordination

    PubMed Central

    Hayashi, Kanehiro; Furuya, Asako; Sakamaki, Yuriko; Akagi, Takumi; Shinoda, Yo; Sadakata, Tetsushi; Hashikawa, Tsutomu; Shimizu, Kazuki; Minami, Haruka; Sano, Yoshitake; Nakayama, Manabu

    2017-01-01

    Very-KIND/Kndc1/KIAA1768 (v-KIND) is a brain-specific Ras guanine nucleotide exchange factor carrying two sets of the kinase non-catalytic C-lobe domain (KIND), and is predominantly expressed in cerebellar granule cells. Here, we report the impact of v-KIND deficiency on dendritic and synaptic growth in cerebellar granule cells in v-KIND knockout (KO) mice. Furthermore, we evaluate motor function in these animals. The gross anatomy of the cerebellum, including the cerebellar lobules, layered cerebellar cortex and densely-packed granule cell layer, in KO mice appeared normal, and was similar to wild-type (WT) mice. However, KO mice displayed an overgrowth of cerebellar granule cell dendrites, compared with WT mice, resulting in an increased number of dendrites, dendritic branches and terminals. Immunoreactivity for vGluT2 (a marker for excitatory presynapses of mossy fiber terminals) was increased in the cerebellar glomeruli of KO mice, compared with WT mice. The postsynaptic density around the terminals of mossy fibers was also increased in KO mice. Although there were no significant differences in locomotor ability between KO and WT animals in their home cages or in the open field, young adult KO mice had an increased grip strength and a tendency to exhibit better motor performance in balance-related tests compared with WT animals. Taken together, our results suggest that v-KIND is required for compact dendritic growth and proper excitatory synaptic connections in cerebellar granule cells, which are necessary for normal motor coordination and balance. PMID:28264072

  8. The neuroendocrine protein VGF is sorted into dense-core granules and is secreted apically by polarized rat thyroid epithelial cells.

    PubMed

    Gentile, Flaviana; Calì, Gaetano; Zurzolo, Chiara; Corteggio, Annunziata; Rosa, Patrizia; Calegari, Federico; Levi, Andrea; Possenti, Roberta; Puri, Claudia; Tacchetti, Carlo; Nitsch, Lucio

    2004-04-15

    We have expressed the neuroendocrine VGF protein in FRT rat thyroid cells to study the molecular mechanisms of its sorting to the regulated and polarized pathways of secretion. By immunoelectron microscopy, we have demonstrated that VGF localizes in dense-core granules. Rapid secretion of VGF is induced by PMA stimulation. Moreover, human chromogranin B, a protein of the regulated pathway, co-localizes in the same granules with VGF. In confluent, FRT monolayers on filters protein secretion occur from the apical cell domain. VGF deletion mutants have been generated. By confocal microscopy, we have found that in transient transfection, all mutant proteins are sorted into granules and co-localize with the full-length VGF. They all retain the apical polarity of secretion. We also found that intracellular VGF and its deletion mutants are largely in an aggregated form. We conclude that FRT thyroid cells correctly decode the sorting information of VGF. The signals present on the protein to enter the granules and to be secreted apically cannot be separated from each other and are not in just one discrete portion of the protein. We propose that selective aggregation might represent the signal for sorting VGF to the regulated, apical route.

  9. Mitochondrial trafficking through Rhot1 is involved in the aggregation of germinal granule components during primordial germ cell formation in Xenopus embryos.

    PubMed

    Tada, Haru; Taira, Yuya; Morichika, Keisuke; Kinoshita, Tsutomu

    2016-10-01

    In many animals, the germ plasm is sufficient and necessary for primordial germ cell (PGC) formation. It contains germinal granules and abundant mitochondria (germline-Mt). However, the role of germline-Mt in germ cell formation remains poorly understood. In Xenopus, the germ plasm is distributed as many small islands at the vegetal pole, which gradually aggregates to form a single large mass in each of the four vegetal pole cells at the early blastula stage. Polymerized microtubules and the adapter protein kinesin are required for the aggregation of germ plasm. However, it remains unknown whether germline-Mt trafficking is important for the cytoplasmic transport of germinal granules during germ plasm aggregation. In this study, we focused on the mitochondrial small GTPase protein Rhot1 to inhibit mitochondrial trafficking during the germ plasm aggregation. Expression of Rhot1ΔC, which lacks the C-terminal mitochondrial transmembrane domain, inhibited the aggregation of germline-Mt during early development. In Rhot1-inhibited embryos, germinal granule components did not aggregate during cleavage stages, which reduced the number of PGCs on the genital ridge at tail-bud stage. These results suggest that mitochondrial trafficking is involved in the aggregation of germinal granule components, which are essential for the formation of PGCs.

  10. Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation: A comparative study in the rat.

    PubMed

    Yu, Bo-Han; Zhou, Qian; Wang, Zuo-Lin

    2014-08-01

    The aim of this study was to compare the osteogenic effects of periodontal ligament stem cells (PDLSCs) versus bone marrow mesenchymal stem cells (BMMSCs) in combination with Bio-Oss scaffolds on subcutaneous and critical-size defects in the immunodeficient rat calvarium. PDLSCs and BMMSCs were obtained from the same canine donor. Twenty-four rats were randomly assigned to one of four experimental groups (n = 6 each): group A (no-graft negative control), group B (Bio-Oss positive control), group C (BMMSC/Bio-Oss test group), and group D (PDLSC/Bio-Oss test group). Eight weeks post-transplantation, ectopic and in situ bone regeneration was evaluated by micro-computed tomography (µ-CT), histology, histomorphometry, and immunohistochemistry. The stem cell/Bio-Oss constructs were significantly superior to the controls in terms of their ability to promote osteogenesis (p < 0.01), while the PDLSC/Bio-Oss construct tended to be superior to the BMMSC/Bio-Oss construct. Thus, engineered stem cell/Bio-Oss complexes can successfully reconstruct critical-size defects in rats, and PDLSCs and BMMSCs are both suitable as seed cells.

  11. Effects of ECL cell extracts and granule/vesicle-enriched fractions from rat oxyntic mucosa on cAMP and IP(3) in rat osteoblast-like cells.

    PubMed

    Larsson, Birgitta; Norlén, Per; Lindström, Erik; Zhao, Dawei; Håkanson, Rolf; Linde, Anders

    2002-06-15

    The existence of an osteotropic hormone (referred to as gastrocalcin) in the ECL cells of the gastric mucosa has been suggested. Both gastrin and an extract of the oxyntic mucosa lower blood Ca(2+) and stimulate Ca(2+) uptake into bone. The ECL cells are known to operate under gastrin control and, conceivably, gastrin lowers blood Ca(2+) indirectly by releasing the hypothetical ECL cell hormone. We have shown earlier that extracts of isolated ECL cells or of the granule/vesicle fraction of the oxyntic mucosa evoke a typical Ca(2+)-mediated second messenger response in osteoblastic cells. In the present study, we characterize this response further. An increase in intracellular inositol 1,4,5-trisphosphate (IP(3)) concentration was observed after treatment of UMR-106.01 osteoblast-like cells with extracts of ECL cells or granule/vesicle-enriched fractions from oxyntic mucosa. Intracellular cyclic adenosine monophosphate (cAMP) concentrations were not affected. Inhibition of phospholipase C (PLC) by U-73122 abolished the increase in [Ca(2+)](i). Preincubation of UMR-106.01 cells with pertussis toxin, which blocks many G-proteins, did not prevent the increases in IP(3) and [Ca(2+)](i). It was also found that the novel peptide hormone ghrelin, produced in the A-like cells of the oxyntic mucosa, did not evoke any Ca(2+) signal in osteoblastic cells. The results indicate that the extracts mediate their effects through a pertussis toxin-insensitive mechanism, and that binding to a receptor leads to activation of PLC and production of IP(3) resulting in increased [Ca(2+)](i). The putative osteotropic hormone is distinct from ghrelin.

  12. Redistribution of K+ channels into dendrites is unlikely to account for developmental down regulation of A-currents in rat dentate gyrus granule cells.

    PubMed

    Strecker, T; Heinemann, U

    1993-12-24

    The electrical reactions of many central neurons depend on two voltage-activated K+ currents: the fast transient A-current IA and the delayed rectifier current IK. In rat dentate gyrus granule cells, the A-current density decreases during ontogenesis, possibly due to a redistribution of K+ channels from somata into dendrites. We tested this possibility in mechanically isolated granule cells with preserved dendrites of different length. Potassium currents were recorded with the whole-cell patch-clamp technique using prepulse protocols with and without a delay interval to isolate IA. A correlation between the length of the dendrites and the amount of A-current expressed in a given cell could not be demonstrated. Our findings therefore confirm an ontogenetic down regulation of A-currents.

  13. Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: A simulation of intraoperative procedure.

    PubMed

    Najman, Stevo J; Cvetković, Vladimir J; Najdanović, Jelena G; Stojanović, Sanja; Vukelić-Nikolić, Marija Đ; Vučković, Ivica; Petrović, Dragan

    2016-10-01

    Bone defects represent a serious problem in cranio-maxillofacial surgery. Autologous adipose-derived stromal vascular fraction (SVF) cells in combination with biological factors and bone substitutes were previously proposed as alternative to bone grafting. By simulating an intraoperative procedure we examined osteogenic capacity of the combination of two autologous components, freshly isolated adipose-derived SVF cells, and platelet-rich plasma (PRP), delivered on bone mineral matrix (BMM) carrier (SPB group) in mice ectopic bone forming model. Implantation of BMM only (B group) was a control. The presence of adipose-derived stem cells (ADSCs) in SVF was detected by immunocytochemical analysis. Expression of bone- and endothelial-related genes was compared between freshly isolated SVF and ADSCs obtained from SVF after in vitro cultivation. The implants were analyzed using expression analysis of bone-related genes at one, two, four and eight weeks and histochemical, immunohistochemical and histomorphometrical analyses at two and eight weeks after implantation. Freshly isolated adipose-derived SVF contained ADSCs and exhibited promising osteogenic and vasculogenic capacity. At two and four weeks, significantly higher expression of bone-related genes was detected in SPB group compared to B group. The signs of osteogenic process were more pronounced in SPB than in B implants. By the end of experiment, percentage of infiltrated tissue and vascularization was significantly higher in SPB than in B implants. Adipose-derived SVF cells, PRP and BMM rapidly initiated osteogenesis what makes this combination promising candidate for treatment of bone defects.

  14. The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers.

    PubMed

    Gutiérrez, Rafael

    2016-04-01

    The granule cells (GCs) and their axons, the mossy fibers (MFs), make synapses with interneurons in the hilus and CA3 area of the hippocampus and with pyramidal cells of CA3, each with distinct anatomical and functional characteristics. Many features of synaptic communication observed at the MF synapses are not usually observed in most cortical synapses, and thus have drawn the attention of many groups studying different aspects of the transmission of information. One particular aspect of the GCs, that makes their study unique, is that they express a dual glutamatergic-GABAergic phenotype and several groups have contributed to the understanding of how two neurotransmitters of opposing actions can act on a single target when simultaneously released. Indeed, the GCs somata and their mossy fibers express in a regulated manner glutamate and GABA, GAD, VGlut and VGAT, all markers of both phenotypes. Finally, their activation provokes both glutamate-R-mediated and GABA-R-mediated synaptic responses in the postsynaptic cell targets and even in the MFs themselves. The developmental and activity-dependent expression of these phenotypes seems to follow a "logical" way to maintain an excitation-inhibition balance of the dentate gyrus-to-CA3 communication.

  15. Disruption of the langerin/CD207 Gene Abolishes Birbeck Granules without a Marked Loss of Langerhans Cell Function

    PubMed Central

    Kissenpfennig, Adrien; Aït-Yahia, Smina; Clair-Moninot, Valérie; Stössel, Hella; Badell, Edgar; Bordat, Yann; Pooley, Joanne L.; Lang, Thierry; Prina, Eric; Coste, Isabelle; Gresser, Olivia; Renno, Toufic; Winter, Nathalie; Milon, Geneviève; Shortman, Ken; Romani, Nikolaus; Lebecque, Serge; Malissen, Bernard; Saeland, Sem; Douillard, Patrice

    2005-01-01

    Langerin is a C-type lectin expressed by a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin is a cell surface receptor that induces the formation of an LC-specific organelle, the Birbeck granule (BG). We generated a langerin−/− mouse on a C57BL/6 background which did not display any macroscopic aberrant development. In the absence of langerin, LC were detected in normal numbers in the epidermis but the cells lacked BG. LC of langerin−/− mice did not present other phenotypic alterations compared to wild-type littermates. Functionally, the langerin−/− LC were able to capture antigen, to migrate towards skin draining lymph nodes, and to undergo phenotypic maturation. In addition, langerin−/− mice were not impaired in their capacity to process native OVA protein for I-Ab-restricted presentation to CD4+ T lymphocytes or for H-2Kb-restricted cross-presentation to CD8+ T lymphocytes. langerin−/− mice inoculated with mannosylated or skin-tropic microorganisms did not display an altered pathogen susceptibility. Finally, chemical mutagenesis resulted in a similar rate of skin tumor development in langerin−/− and wild-type mice. Overall, our data indicate that langerin and BG are dispensable for a number of LC functions. The langerin−/− C57BL/6 mouse should be a valuable model for further functional exploration of langerin and the role of BG. PMID:15601833

  16. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells

    PubMed Central

    1991-01-01

    Granule cells acutely dissociated from the dentate gyrus of adult rat brains displayed a single class of high-threshold, voltage-activated (HVA) Ca2+ channels. The kinetics of whole-cell Ca2+ currents recorded with pipette solutions containing an intracellular ATP regenerating system but devoid of exogenous Ca2+ buffers, were fit best by Hodgkin- Huxley kinetics (m2h), and were indistinguishable from those recorded with the nystatin perforated patch method. In the absence of exogenous Ca2+ buffers, inactivation of HVA Ca2+ channels was a predominantly Ca(2+)-dependent process. The contribution of endogenous Ca2+ buffers to the kinetics of inactivation was investigated by comparing currents recorded from control cells to currents recorded from neurons that have lost a specific Ca(2+)-binding protein, Calbindin-D28K (CaBP), after kindling-induced epilepsy. Kindled neurons devoid of CaBP showed faster rates of both activation and inactivation. Adding an exogenous Ca2+ chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), to the intracellular solution largely eliminated inactivation in both control and kindled neurons. The results are consistent with the hypothesis that endogenous intraneuronal CaBP contributes significantly to submembrane Ca2+ sequestration at a concentration range and time domain that regulate Ca2+ channel inactivation. PMID:1662686

  17. Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitro.

    PubMed

    Reistad, Trine; Fonnum, Frode; Mariussen, Espen

    2006-11-01

    Polybrominated diphenyl ethers (PBDE) and hexabromocyclododecane (HBCD) are compounds used as additive flame retardants in plastics, electronic equipment, and textiles. The aim of the present study was to investigate the in vitro effects of the pentabrominated diphenyl ether mixture, DE-71, and HBCD on cerebellar granule cells (CGC). Both DE-71 and HBCD induced death of CGC in low micromolar concentrations. The NMDA receptor antagonist MK801 (3 microM), and the antioxidant alpha-tocopherol (50 microM) significantly reduced the cell death. Incubation of the compounds together with the rat liver post-mitochondrial (S9) fraction reduced cell death by 58 and 64% for DE-71 and HBCD, respectively. No ROS formation and no elevation in intracellular calcium were observed. We further demonstrated apoptotic morphology (Hoechst straining) after exposure to low levels of the two brominated flame retardants and signs of DNA laddering were found after DE-71 exposure. However, other hallmarks of apoptosis, like caspase activity, were absent indicating an atypical form of apoptosis induced by DE-71. After intraperitoneal injection of the two compounds both DE-71 and HBCD were found in significant amounts in brain (559 +/- 194 and 49 +/- 13 microg/kg, respectively) and liver (4,010 +/- 2,437 and 1,248 +/- 505 microg/kg, respectively) 72 h after injection. Our results indicate that the lower brominated PBDEs have a higher potency of bioaccumulation than HBCD, and that both compounds have a neurotoxic potential in vitro.

  18. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    NASA Astrophysics Data System (ADS)

    Hurkman, William J.; Wood, Delilah F.

    2010-06-01

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.

  19. Loqs depends on R2D2 to localize in D2 body-like granules and functions in RNAi pathways in silkworm cells.

    PubMed

    Zhu, Li; Tatsuke, Tsuneyuki; Xu, Jian; Li, Zhiqing; Mon, Hiroaki; Lee, Jae Man; Kusakabe, Takahiro

    2015-09-01

    The phenomenon of RNA interference (RNAi) has been found in various organisms. However, the proteins implicated in RNAi pathway in different species show distinct roles. Knowledge on the underlying mechanism of lepidopteron RNAi is quite lacking such as the roles of Loquacious (Loqs) and R2D2, the dsRNA-binding proteins in silkworm RNAi pathway. Here, we report that Loqs and R2D2 protein depletion affected efficiency of dsRNA-mediated RNAi pathway. Besides, Loqs was found to co-localize with Dicer2 to some specific cytoplasmic foci, which were looked like D2-bodies marked by R2D2 and Dicer2 in Fly cells, thereby calling the foci as D2 body-like granules. Using RNAi methods, Loqs was found to be the key protein in these granules, although R2D2 determined the localization of Loqs in D2 body-like granules. Interestingly, in the R2D2-depeted silkworm cells, the formation of processing bodies, another cytoplasmic foci, was affected. These data indicated R2D2 regulated these two kinds of cytoplasmic foci. Domain deletion analysis demonstrated that dsRBD 1 and 2 were required for Loqs in D2 body-like granules and dsRBD 2 and 3 were required for Loqs to interact with R2D2 and Ago1, respectively. Altogether, our observations provide important information for further study on D2 body-like granules, the newly found cytoplasmic foci in silkworm cells.

  20. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis

    SciTech Connect

    Wang Qishan; Bag, Jnanankur . E-mail: jbag@uoguelph.ca

    2006-02-17

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including {alpha}-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of the MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis.

  1. Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells

    PubMed Central

    Lee, Cheng-Ta; Kao, Min-Hua; Hou, Wen-Hsien; Wei, Yu-Ting; Chen, Chin-Lin; Lien, Cheng-Chang

    2016-01-01

    The dentate gyrus (DG) is the primary gate of the hippocampus and controls information flow from the cortex to the hippocampus proper. To maintain normal function, granule cells (GCs), the principal neurons in the DG, receive fine-tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs). Abnormalities of GABAergic circuits in the DG are associated with several brain disorders, including epilepsy, autism, schizophrenia, and Alzheimer disease. Therefore, understanding the network mechanisms of inhibitory control of GCs is of functional and pathophysiological importance. GABAergic inhibitory INs are heterogeneous, but it is unclear how individual subtypes contribute to GC activity. Using cell-type-specific optogenetic perturbation, we investigated whether and how two major IN populations defined by parvalbumin (PV) and somatostatin (SST) expression, regulate GC input transformations. We showed that PV-expressing (PV+) INs, and not SST-expressing (SST+) INs, primarily suppress GC responses to single cortical stimulation. In addition, these two IN classes differentially regulate GC responses to θ and γ frequency inputs from the cortex. Notably, PV+ INs specifically control the onset of the spike series, whereas SST+ INs preferentially regulate the later spikes in the series. Together, PV+ and SST+ GABAergic INs engage differentially in GC input-output transformations in response to various activity patterns. PMID:27830729

  2. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome.

    PubMed

    Egawa, Kiyoshi; Kitagawa, Kyoko; Inoue, Koichi; Takayama, Masakazu; Takayama, Chitoshi; Saitoh, Shinji; Kishino, Tatsuya; Kitagawa, Masatoshi; Fukuda, Atsuo

    2012-12-05

    Angelman syndrome is a neurodevelopmental disorder caused by loss of function of the UBE3A gene encoding a ubiquitin E3 ligase. Motor dysfunction is a characteristic feature of Angelman syndrome, but neither the mechanisms of action nor effective therapeutic strategies have yet been elucidated. We report that tonic inhibition is specifically decreased in cerebellar granule cells of Ube3a-deficient mice, a model of Angelman syndrome. As a mechanism underlying this decrease in tonic inhibition, we show that Ube3a controls degradation of γ-aminobutyric acid (GABA) transporter 1 (GAT1) and that deficiency of Ube3a induces a surplus of GAT1 that results in a decrease in GABA concentrations in the extrasynaptic space. Administering low doses of 4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridin-3-ol (THIP), a selective extrasynaptic GABA(A) receptor agonist, improves the abnormal firing properties of a population of Purkinje cells in cerebellar brain slices and reduces cerebellar ataxia in Ube3a-deficient mice in vivo. These results suggest that pharmacologically increasing tonic inhibition may be a useful strategy for alleviating motor dysfunction in Angelman syndrome.

  3. Corruption of the Dentate Gyrus by “Dominant” Granule cells: Implications for Dentate Gyrus Function in Health and Disease

    PubMed Central

    Scharfman, Helen E.; Myers, Catherine E.

    2015-01-01

    The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell ‘backprojections’ play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance – ‘mossy fiber variance’ – which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become ‘dominant,’ one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of ‘dominant’ GCs – subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network. PMID:26391451

  4. Corruption of the dentate gyrus by "dominant" granule cells: Implications for dentate gyrus function in health and disease.

    PubMed

    Scharfman, Helen E; Myers, Catherine E

    2016-03-01

    The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell 'backprojections' play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance--'mossy fiber variance'--which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become 'dominant,' one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of 'dominant' GCs--subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network.

  5. Tumor necrosis factor (TNF)-receptor 1 and 2 mediate homeostatic synaptic plasticity of denervated mouse dentate granule cells

    PubMed Central

    Becker, Denise; Deller, Thomas; Vlachos, Andreas

    2015-01-01

    Neurological diseases are often accompanied by neuronal cell death and subsequent deafferentation of connected brain regions. To study functional changes after denervation we generated entorhino-hippocampal slice cultures, transected the entorhinal pathway, and denervated dentate granule cells in vitro. Our previous work revealed that partially denervated neurons respond to the loss of input with a compensatory, i.e., homeostatic, increase in their excitatory synaptic strength. TNFα maintains this denervation-induced homeostatic strengthening of excitatory synapses. Here, we used pharmacological approaches and mouse genetics to assess the role of TNF-receptor 1 and 2 in lesion-induced excitatory synaptic strengthening. Our experiments disclose that both TNF-receptors are involved in the regulation of denervation-induced synaptic plasticity. In line with this result TNF-receptor 1 and 2 mRNA-levels were upregulated after deafferentation in vitro. These findings implicate TNF-receptor signaling cascades in the regulation of homeostatic plasticity of denervated networks and suggest an important role for TNFα-signaling in the course of neurological diseases accompanied by deafferentation. PMID:26246237

  6. Gray platelet syndrome. Dissociation between abnormal sorting in megakaryocyte alpha-granules and normal sorting in Weibel-Palade bodies of endothelial cells.

    PubMed Central

    Gebrane-Younès, J; Cramer, E M; Orcel, L; Caen, J P

    1993-01-01

    The gray platelet syndrome (GPS) is a rare congenital bleeding disorder in which megakaryocytes and platelets are deficient in alpha-granule secretory proteins. Since the Weibel-Palade bodies (WPB) of endothelial cells as well as the alpha-granules contain the von Willebrand Factor (vWF) and P-selectin, we examined by transmission electron microscopy the dermis capillary network of two patients with GPS. Endothelial cells showed the presence of normal WPB with typical internal tubules. Using single and double immunogold labeling for vWF and P-selectin, we detected vWF within WPB, where it was codistributed with the tubules, whereas P-selectin delineated the outline of WPB. Therefore, the fundamental targeting defect in GPS is specific to the megakaryocytic cell line. Images PMID:7504696

  7. Effects of prenatal protein malnutrition on kindling-induced alterations in dentate granule cell excitability. I. Synaptic transmission measures.

    PubMed

    Bronzino, J D; Austin-LaFrance, R J; Morgane, P J; Galler, J R

    1991-05-01

    The effects of prenatal protein malnutrition upon the efficacy of excitatory synaptic transmission at the level of the perforant path/dentate granule cell synapse were examined during development of perforant path kindling in chronically implanted adults rats. Rats born to dams fed a low protein (6% casein) or control protein (25% casein) diet were fostered to lactating dams fed the 25% casein diet 24 h after birth and were maintained on this diet throughout life following weaning. Beginning at 90-120 days of age, animals received daily kindling stimulations applied to the perforant path. Extracellular field potentials recorded from the granule cell layer of the dentate gyrus in response to single-pulse stimulation of the perforant path were analyzed to determine the effects of prenatal protein malnutrition on the efficacy of synaptic transmission during the kindling process. Measures used for these analyses included the EPSP slope, an indicator of the level of synaptic drive, the population spike amplitude which is a measure of postsynaptic activation and cellular firing, and the ratio of the population spike amplitude relative to the corresponding EPSP slope value, which was used to evaluate the overall efficacy of synaptic transmission. animals of the 6%/25% diet group were found to have significantly lower afterdischarge thresholds, yet required significantly more daily kindling stimulations to develop generalized motor convulsions (stage 5 seizure) than control animals. Examination of dentate field potentials obtained prior to kindling revealed no significant between group differences in measures of EPSP slope or population spike amplitude. Statistically significant increases in measures of both the population EPSP slope and population spike amplitude were observed in both diet groups 24 h after the first kindled afterdischarge. The degree of increase in both of these measures was significantly greater in animals of the 6%/25% group. Evaluation of input

  8. Fluorescent Labeling of Newborn Dentate Granule Cells in GAD67-GFP Transgenic Mice: A Genetic Tool for the Study of Adult Neurogenesis

    PubMed Central

    Zhao, Shengli; Zhou, Yang; Gross, Jimmy; Miao, Pei; Qiu, Li; Wang, Dongqing; Chen, Qian; Feng, Guoping

    2010-01-01

    Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells. PMID:20824075

  9. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  10. Medullary thyroid carcinoma with ectopic adrenocorticotropic hormone syndrome.

    PubMed

    Choi, Hong Seok; Kim, Min Joo; Moon, Chae Ho; Yoon, Jong Ho; Ku, Ha Ra; Kang, Geon Wook; Na, Im Il; Lee, Seung-Sook; Lee, Byung-Chul; Park, Young Joo; Kim, Hong Il; Ku, Yun Hyi

    2014-03-01

    Ectopic adrenocorticotropic hormone (ACTH) syndrome is caused most frequently by a bronchial carcinoid tumor or by small cell lung cancer. Medullary thyroid carcinoma (MTC) is a rare etiology of ectopic ACTH syndrome. We describe a case of Cushing syndrome due to ectopic ACTH production from MTC in a 48-year-old male. He was diagnosed with MTC 14 years ago and underwent total thyroidectomy, cervical lymph node dissection and a series of metastasectomies. MTC was confirmed by the pathological examination of the thyroid and metastatic mediastinal lymph node tissues. Two years after his last surgery, he developed Cushingoid features, such as moon face and central obesity, accompanied by uncontrolled hypertension and new-onset diabetes. The laboratory results were compatible with ectopic ACTH syndrome. A bilateral adrenalectomy improved the clinical and laboratory findings that were associated with Cushing syndrome. This is the first confirmed case of ectopic ACTH syndrome caused by MTC in Korea.

  11. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    PubMed

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-10-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.

  12. Characterization of muscarinic receptor subtypes in primary cultures of cerebellar granule cells using specific muscarinic receptor antagonists

    SciTech Connect

    McLeskey, S.W.

    1989-01-01

    In cerebellar granule cell cultures, two muscarinic receptor mediated responses were observed: inhibition of adenylate cyclase (M-AC) and stimulation of phosphoinositide hydrolysis (M-PI). These responses were antagonized by three purported specific muscarinic antagonists: pirenzipine and (-)QNX (specific for M-PI) and methoctramine (specific for M-AC). However, the specificity for the three antagonists in blocking these responses is not comparable to the specificity observed in binding studies on these cells or to that quoted in the literature. Two peaks of molecular sizes were found in these cells corresponding to the two molecular sizes of muscarinic receptive proteins reported in the literature. Muscarinic receptive proteins were alkylated with {sup 3}H-propylbenzilylcholine mustard followed by sodium dodecylsulfate polyacrylamide gel electrophoresis. Pirenzipine and (-)QNX were able to block alkylation of the high molecular size peak, which corresponds to the receptive protein m{sub 3} reported in the literature. Methoctramine was able to block alkylation of a portion of the lower molecular size peak, possibly corresponding to the m{sub 2} and/or m{sub 4} receptive proteins reported in the literature. Studies attempting to show the presence of receptor reserve for either of the two biochemical responses present in these cells by alkylation of the receptive protein with nonradiolabeled propylbenzilylcholine mustard (PBCM) were confounded by specificity of this agent for the lower molecular weight peak of muscarinic receptive protein. Thus the muscarinic receptive proteins coupled to M-AC were alkylated preferentially over the ones coupled to M-PI.

  13. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish

    PubMed Central

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-01-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets. PMID:26451951

  14. Isolation of chromaffin granules.

    PubMed

    Creutz, Carl E

    2010-09-01

    Adrenal medullary chromaffin granules (dense core secretory vesicles) have been a valuable model system for the study of the proteins and membrane components involved in the process of exocytosis. Because of the abundance of chromaffin granules in a readily available tissue source, bovine adrenal medullae, and their unique sedimentation properties, it is possible to obtain large quantities of highly purified granules and granule membranes in a short period of time. Two protocols are presented here for the isolation of chromaffin granules: a basic protocol based on differential centrifugation in an iso-osmotic medium that yields intact chromaffin granules, and an alternate protocol based on sedimentation through a density step gradient that provides a greater yield of more highly purified chromaffin granules. Since in the latter case the granules cannot be returned to a medium of physiological osmolarity without lysis after purification on the step gradient, the alternate protocol is more useful to obtain the granule membranes or contents for further study.

  15. Modulation of Stromal Cell-Derived Factor-1/CXC Chemokine Receptor 4 Axis Enhances rhBMP-2-Induced Ectopic Bone Formation

    PubMed Central

    Wise, Joel K.; Sumner, Dale Rick

    2012-01-01

    Enhancement of in vivo mobilization and homing of endogenous mesenchymal stem cells (MSCs) to an injury site is an innovative strategy for improvement of bone tissue engineering and repair. The present study was designed to determine whether mobilization by AMD3100 and/or local homing by delivery of stromal cell-derived factor-1 (SDF-1) enhances recombinant human bone morphogenetic protein-2 (rhBMP-2) induced ectopic bone formation in an established rat model. Rats received an injection of either saline or AMD3100 treatment 1 h before harvesting of bone marrow for in vitro colony-forming unit-fibroblasts (CFU-F) culture or the in vivo subcutaneous implantation of absorbable collagen sponges (ACSs) loaded with saline, recombinant human bone morphogenetic protein-2 (rhBMP-2), SDF-1, or the combination of SDF-1 and rhBMP-2. AMD3100 treatment resulted in a significant decrease in CFU-F number, compared with saline, which confirmed that a single systemic AMD3100 treatment rapidly mobilized MSCs from the bone marrow. At 28 and 56 days, bone formation in the explanted ACS was assessed by microcomputed tomography (μCT) and histology. At 28 days, AMD3100 and/or SDF-1 had no statistically significant effect on bone volume (BV) or bone mineral content (BMC), but histology revealed more active bone formation with treatment of AMD3100, loading of SDF-1, or the combination of both AMD3100 and SDF-1, compared with saline-treated rhBMP-2 loaded ACS. At 56 days, the addition of AMD3100 treatment, loading of SDF-1, or the combination of both resulted in a statistically significant stimulatory effect on BV and BMC, compared with the saline-treated rhBMP-2 loaded ACS. Histology of the 56-day ACS were consistent with the μCT analysis, exhibiting more mature and mineralized bone formation with AMD3100 treatment, SDF-1 loading, or the combination of both, compared with the saline-treated rhBMP-2 loaded ACS. The present study is the first that provides evidence of the efficacy of AMD

  16. Cocultures of GFP(+) -granule cells with GFP(-) -pyramidal cells and interneurons for the study of mossy fiber neurotransmission with paired recordings.

    PubMed

    Osorio, Beatriz; León, Uriel; Galván, Emilio J; Gutiérrez, Rafael

    2013-04-01

    Synaptic transmission of the granule cells (GCs) via their axons, the mossy fibers (MFs), is traditionally studied on acutely prepared or cultured slices. Usually, extracellular, bulk or minimal stimulation is used to evoke transmitter release from MF terminals, while recording from their postsynaptic target cells, the pyramidal cells and interneurons of CA3. However, the ideal method to assess MF neurotransmission, the simultaneous recording of a presynaptic GC and one of its target cells, is extremely difficult to achieve using slices. Alternatively, cultures of GCs establishing autapses have been developed, but in these, GCs do not contact their natural targets. We developed cocultures of GCs, dissociated from transgenic GFP(+) rats, with pyramidal cells and interneurons of CA3, dissociated from wild-type rats, and confirmed the expression of cell-specific markers by immunofluorescence. We conducted recordings of GFP(+) -GCs synaptically connected with their GFP(-) -target cells, and demonstrate that synaptic transmission and its plasticity have the signature of transmission of MF. Besides being strongly depressed by activation of mGluRs, high frequency activation of GC-to-pyramidal cells synapses undergo LTP, while GC-to-interneuron synapses undergo LTD. This coculture method allows a high reproducibility of recording connected pairs of identified cells, constituting a valuable tool to study MF transmission, as well as different combinations of identifiable pre- and postsynaptic cells.

  17. Effects of prenatal stress and exercise on dentate granule cells maturation and spatial memory in adolescent mice.

    PubMed

    Bustamante, Carlos; Bilbao, Pamela; Contreras, William; Martínez, Mauricio; Mendoza, Antonio; Reyes, Alvaro; Pascual, Rodrigo

    2010-11-01

    Exposure to prenatal stress (PS) increases the risk of developing neurobehavioral disturbances later in life. Previous work has shown that exercise can exert beneficial effects on brain damage; however, it is unknown whether voluntary wheel running (VWR) can ameliorate the neurobehavioral impairments induced by PS in adolescent offspring. Pregnant CF-1 mice were randomly assigned to control (n=5) or stressed (n=5) groups. Pregnant dams were subjected to restraint stress between gestational days 14 and 21 (G14-21), whereas controls remained undisturbed in their home cages. On postnatal day 21 (P21), male pups were randomly assigned to the following experimental groups: control (n=5), stressed (n=5), and stressed mice+daily submitted to VWR (n=4). At P52, all groups were behaviorally evaluated in the Morris water maze. Animals were then sacrificed, and Golgi-impregnated granule cells were morphometrically analyzed. The results indicate that PS produced significant behavioral and neuronal impairments in adolescent offspring and that VWR significantly offset these deleterious effects.

  18. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).

  19. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    PubMed Central

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections). PMID:25983678

  20. Simulation of Ectopic Pacemakers in the Heart: Multiple Ectopic Beats Generated by Reentry inside Fibrotic Regions

    PubMed Central

    Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Lobosco, Marcelo; Alonso, Sergio

    2015-01-01

    The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127

  1. Ectopic Lymphoid Structures: Powerhouse of Autoimmunity

    PubMed Central

    Corsiero, Elisa; Nerviani, Alessandra; Bombardieri, Michele; Pitzalis, Costantino

    2016-01-01

    Ectopic lymphoid structures (ELS) often develop at sites of inflammation in target tissues of autoimmune diseases, such as rheumatoid arthritis, Sjögren’s syndrome, multiple sclerosis, myasthenia gravis, and systemic lupus erythematosus. ELS are characterized by the formation of organized T/B cells aggregates, which can acquire follicular dendritic cells network supporting an ectopic germinal center response. In this review, we shall summarize the mechanisms that regulate the formation of ELS in tertiary lymphoid organs, with particular emphasis on the role of lymphoid chemokines in both formation and maintenance of ELS, the role of emerging positive and negative regulators of ELS development and function, including T follicular helper cells and IL-27, respectively. Finally, we shall discuss the main functions of ELS in supporting the affinity maturation, clonal selection, and differentiation of autoreactive B cells contributing to the maintenance and perpetuation of humoral autoimmunity. PMID:27799933

  2. Intra-cholecystic ectopic liver.

    PubMed

    Natori, T; Hawkin, S; Aizawa, M; Asai, T; Kameda, Y; Ikuyohashi, K

    1986-08-01

    A 56-year-old Japanese woman who had an ectopic liver attached to the inner surface of the gallbladder is reported. The ectopic nodule measuring 1.2 X 0.5 X 0.8 cm was found incidentally when her gallbladder was resected because of cholelithiasis. Ectopic liver tissue in reported cases war located on the serosal surface, or in the wall of the gallbladder. This report described, to our knowledge, the first case of an ectopic liver nodule attached to the mucosal surface of the gallbladder with a thin pedicle.

  3. Respiratory Modulation of Spontaneous Subthreshold Synaptic Activity in Olfactory Bulb Granule Cells Recorded in Awake, Head-Fixed Mice

    PubMed Central

    Youngstrom, Isaac A.

    2015-01-01

    Although the firing patterns of principal neurons in the olfactory bulb are known to be modulated strongly by respiration even under basal conditions, less is known about whether inhibitory local circuit activity in the olfactory bulb (OB) is modulated phasically. The diverse phase preferences of principal neurons in the OB and olfactory cortex that innervate granule cells (GCs) may interfere and prevent robust respiratory coupling, as suggested by recent findings. Using whole-cell recording, we examined the spontaneous, subthreshold membrane potential of GCs in the OBs of awake head-fixed mice. We found that, during periods of basal respiration, the synaptic input to GCs was strongly phase modulated, leading to a phase preference in the average, cycle-normalized membrane potential. Subthreshold phase tuning was heterogeneous in both mitral and tufted cells (MTCs) and GCs but relatively constant within each GC during periods of increased respiratory frequency. The timing of individual EPSPs in GC recordings also was phase modulated with the phase preference imparted by large-amplitude EPSPs, with fast kinetics often matching the phase tuning of the average membrane potential. These results suggest that activity in a subset of excitatory afferents to GCs, presumably including cortical feedback projections and other sources of large-amplitude unitary EPSPs, function to provide a timing signal linked to respiration. The phase preference we find in the membrane potential may provide a mechanism to dynamically modulate recurrent and lateral dendrodendritic inhibition of MTCs and to selective engage a subpopulation of interneurons based on the alignment of their phase tuning relative to sensory-driven MTC discharges. PMID:26063910

  4. Beneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats

    PubMed Central

    Hosseini-Sharifabad, Mohammad; Kamali-Ardakani, Razieh; Hosseini-Sharifabad, Ali

    2016-01-01

    Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigate the effect of Boswellia treatment on spatial learning performance and the morphology of dentate granule cells in aged rats. Materials and Methods: Sixteen male Wistar rats (24 months old) were divided into experimental and control groups. Experimental group was intragastrically administered with the aqueous extract of Bs (100 mg/kg/d for 8 weeks) and control group received a similar volume of water. Spatial learning performance of rats was tested using Morris water maze task. At the end of experiment, the brain was removed and the right hippocampus was serially sectioned for morphometric analysis. The Cavalieri principle was employed to estimate the volume of the DG. A quantitative Golgi study was used to analyze the dendritic trees of dentate granule cells. Results: Chronic treatment with Bs improved spatial learning capability during the three acquisition days. Comparisons also revealed that Bs-treated aged rat had greater DG with increased dendritic complexity in the dentate granule cells than control rats. Hippocampal granule cells of Bs-treated aged rats had more dendritic segments, larger arbors, more numerical branching density and more dendritic spines in comparison to control animals. Conclusion: This study provided a neuro-anatomical basis for memory improvement due to chronic treatment with Bs. PMID:27222832

  5. Localized hypoxia within the subgranular zone determines the early survival of newborn hippocampal granule cells

    PubMed Central

    Chatzi, Christina; Schnell, Eric; Westbrook, Gary L

    2015-01-01

    The majority of adult hippocampal newborn cells die during early differentiation from intermediate progenitors (IPCs) to immature neurons. Neural stem cells in vivo are located in a relative hypoxic environment, and hypoxia enhances their survival, proliferation and stemness in vitro. Thus, we hypothesized that migration of IPCs away from hypoxic zones within the SGZ might result in oxidative damage, thus triggering cell death. Hypoxic niches were observed along the SGZ, composed of adult NSCs and early IPCs, and oxidative byproducts were present in adjacent late IPCs and neuroblasts. Stabilizing hypoxia inducible factor-1α with dimethyloxallyl glycine increased early survival, but not proliferation or differentiation, in neurospheres in vitro and in newly born SGZ cells in vivo. Rescue experiments in Baxfl/flmutants supported these results. We propose that localized hypoxia within the SGZ contributes to the neurogenic microenvironment and determines the early, activity-independent survival of adult hippocampal newborn cells. DOI: http://dx.doi.org/10.7554/eLife.08722.001 PMID:26476335

  6. Cervical ectopic pregnancy.

    PubMed

    Samal, Sunil Kumar; Rathod, Setu

    2015-01-01

    Cervical pregnancy is a rare type of ectopic pregnancy and it represents <1% of all ectopic pregnancies. Early diagnosis and medical management with systemic or local administration of methotrexate is the treatment of choice. If the pregnancy is disturbed, it may lead to massive hemorrhage, which may require hysterectomy to save the patient. We report three cases of cervical pregnancy managed successfully with different approaches of management. Our first case, 28 years old G3P2L2 with previous two lower segment cesarean sections, presented with bleeding per vaginum following 6 weeks of amenorrhea. Clinical examination followed by transvaginal ultrasound confirmed the diagnosis of cervical pregnancy. Total abdominal hysterectomy was done in view of intractable bleeding to save the patient. The second case, a 26-year-old second gravida with previous normal vaginal delivery presented with pain abdomen and single episode of spotting per vaginum following 7 weeks of amenorrhea. Transvaginal ultrasound revealed empty endometrial cavity, closed internal os with gestational sac containing live fetus of 7 weeks gestational age in cervical canal and she was treated with intra-amniotic potassium chloride followed by systemic methotrexate. Follow up with serum beta human chorionic gonadotropin level revealed successful outcome. Our third case, a 27-year-old primigravida with history of infertility treatment admitted with complaints of bleeding per vaginum for 1 day following 8 weeks amenorrhea. She was diagnosed as cervical pregnancy by clinical examination, confirmed by transvaginal ultrasonography and subsequently managed by dilation and curettage with intracervical Foleys' ballon tamponade.

  7. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    SciTech Connect

    Serakinci, Nedime . E-mail: nserakinci@health.sdu.dk; Christensen, Rikke; Graakjaer, Jesper; Cairney, Claire J.; Keith, W. Nicol; Alsner, Jan; Saretzki, Gabriele; Kolvraa, Steen

    2007-03-10

    During the past several years increasing evidence indicating that the proliferation capacity of mammalian cells is highly radiosensitive, regardless of the species and the tissue of origin of the cells, has accumulated. It has also been shown that normal bone marrow cells of mice have a similar radiosensitivity to other mammalian cells so far tested. In this study, we investigated the genetic effects of ionizing radiation (2.5-15 Gy) on normal human mesenchymal stem cells and their telomerised counterpart hMSC-telo1. We evaluated overall genomic integrity, DNA damage/repair by applying a fluorescence-detected alkaline DNA unwinding assay together with Western blot analyses for phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of {gamma}-rays and that overall DNA repair is similar in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres and high telomerase activity have the advantage of re-establishing the telomeric caps.

  8. Two-Photon Na(+) Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites.

    PubMed

    Ona-Jodar, Tiffany; Gerkau, Niklas J; Sara Aghvami, S; Rose, Christine R; Egger, Veronica

    2017-01-01

    Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca(2+) imaging. Here, we used two-photon Na(+) imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na(+)]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na(+)]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na(+)]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na(+)]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na(+) transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na(+)]i replicated these behaviors via negative and positive gradients in Na(+) current density, assuming faithful AP backpropagation. Such specializations of dendritic

  9. Two-Photon Na+ Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites

    PubMed Central

    Ona-Jodar, Tiffany; Gerkau, Niklas J.; Sara Aghvami, S.; Rose, Christine R.; Egger, Veronica

    2017-01-01

    Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer

  10. Ectopic expression of vaccinia virus E3 and K3 cannot rescue ectromelia virus replication in rabbit RK13 cells.

    PubMed

    Hand, Erin S; Haller, Sherry L; Peng, Chen; Rothenburg, Stefan; Hersperger, Adam R

    2015-01-01

    As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV.

  11. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release.

    PubMed

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-06-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.

  12. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release

    PubMed Central

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-01-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca2+ level, but it significantly elevated the intracellular Ca2+ level evoked by the high K+ stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca2+ influx-induced Ca2+ release. PMID:24548607

  13. Effect of Autologous Bone Marrow Stromal Cell Seeding and Bone Morphogenetic Protein-2 Delivery on Ectopic Bone Formation in a Microsphere/Poly(Propylene Fumarate) Composite

    PubMed Central

    Kempen, Diederik H.R.; Kruyt, Moyo C.; Lu, Lichun; Wilson, Clayton E.; Florschutz, Anthony V.; Yaszemski, Michael J.; Dhert, Wouter J.A.

    2009-01-01

    A biodegradable microsphere/scaffold composite based on the synthetic polymer poly(propylene fumarate) (PPF) holds promise as a scaffold for cell growth and sustained delivery vehicle for growth factors for bone regeneration. The objective of the current work was to investigate the in vitro release and in vivo bone forming capacity of this microsphere/scaffold composite containing bone morphogenetic protein-2 (BMP-2) in combination with autologous bone marrow stromal cells (BMSCs) in a goat ectopic implantation model. Three composites consisting of 0, 0.08, or 8 μg BMP-2 per mg of poly(lactic-co-glycolic acid) microspheres, embedded in a porous PPF scaffold, were combined with either plasma (no cells) or culture-expanded BMSCs. PPF scaffolds impregnated with a BMP-2 solution and combined with BMSCs as well as empty PPF scaffolds were also tested. The eight different composites were implanted subcutaneously in the dorsal thoracolumbar area of goats. Incorporation of BMP-2–loaded microspheres in the PPF scaffold resulted in a more sustained in vitro release with a lower burst phase, as compared to BMP-2–impregnated scaffolds. Histological analysis after 9 weeks of implantation showed bone formation in the pores of 11/16 composites containing 8 μg/mg BMP-2–loaded microspheres with no significant difference between composites with or without BMSCs (6/8 and 5/8, respectively). Bone formation was also observed in 1/8 of the BMP-2–impregnated scaffolds. No bone formation was observed in the other conditions. Overall, this study shows the feasibility of bone induction by BMP-2 release from microspheres/scaffold composites. PMID:18925831

  14. The Salmonella effector SseJ disrupts microtubule dynamics when ectopically expressed in normal rat kidney cells

    PubMed Central

    Raines, Sally A.; Hodgkinson, Michael R.; Dowle, Adam A.

    2017-01-01

    Salmonella effector protein SseJ is secreted by Salmonella into the host cell cytoplasm where it can then modify host cell processes. Whilst host cell small GTPase RhoA has previously been shown to activate the acyl-transferase activity of SseJ we show here an un-described effect of SseJ protein production upon microtubule dynamism. SseJ prevents microtubule collapse and this is independent of SseJ’s acyl-transferase activity. We speculate that the effects of SseJ on microtubules would be mediated via its known interactions with the small GTPases of the Rho family. PMID:28235057

  15. Noradrenaline blocks potassium conductance in rat dentate granule cells in vitro.

    PubMed

    Haas, H L; Rose, G M

    1987-07-22

    The actions of noradrenaline and the beta-adrenergic agonist, isoproterenol, were studied on the dentate gyrus in hippocampal slices from rats using extra- and intracellular recording. These agents facilitated field EPSPs (excitatory postsynaptic potentials) and population spikes evoked by perforant path stimulation. Intracellular recording revealed an attenuation of the long lasting afterhyperpolarization (AHP) and the accommodation of cell discharge in response to depolarizing current injection. It is suggested that beta-receptor activation blocks a calcium-dependent potassium current.

  16. Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells

    PubMed Central

    Mahata, Sushil K; Zheng, Hong; Mahata, Sumana; Liu, Xuefei

    2016-01-01

    One of the key mechanisms involved in sympathoexcitation in chronic heart failure (HF) is the activation of the adrenal glands. Impact of the elevated catecholamines on the hemodynamic parameters has been previously demonstrated. However, studies linking the structural effects of such overactivation with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not been previously reported. In this study, HF was induced in male Sprague-Dawley rats by ligation of the left coronary artery. Five weeks after surgery, cardiac function was assessed by ventricular hemodynamics. HF rats showed increased adrenal weight and adrenal catecholamine levels (norepinephrine, epinephrine and dopamine) compared with sham-operated rats. Rats with HF demonstrated increased small synaptic and dense core vesicle in splanchnic–adrenal synapses indicating trans-synaptic activation of catecholamine biosynthetic enzymes, increased endoplasmic reticulum and Golgi lumen width to meet the demand of increased catecholamine synthesis and release, and more mitochondria with dilated cristae and glycogen to accommodate for the increased energy demand for the increased biogenesis and exocytosis of catecholamines from the adrenal medulla. These findings suggest that increased trans-synaptic activation of the chromaffin cells within the adrenal medulla may lead to increased catecholamines in the circulation which in turn contributes to the enhanced neurohumoral drive, providing a unique mechanistic insight for enhanced catecholamine levels in plasma commonly observed in chronic HF condition. PMID:27402067

  17. Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells.

    PubMed

    Mahata, Sushil K; Zheng, Hong; Mahata, Sumana; Liu, Xuefei; Patel, Kaushik P

    2016-09-01

    One of the key mechanisms involved in sympathoexcitation in chronic heart failure (HF) is the activation of the adrenal glands. Impact of the elevated catecholamines on the hemodynamic parameters has been previously demonstrated. However, studies linking the structural effects of such overactivation with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not been previously reported. In this study, HF was induced in male Sprague-Dawley rats by ligation of the left coronary artery. Five weeks after surgery, cardiac function was assessed by ventricular hemodynamics. HF rats showed increased adrenal weight and adrenal catecholamine levels (norepinephrine, epinephrine and dopamine) compared with sham-operated rats. Rats with HF demonstrated increased small synaptic and dense core vesicle in splanchnic-adrenal synapses indicating trans-synaptic activation of catecholamine biosynthetic enzymes, increased endoplasmic reticulum and Golgi lumen width to meet the demand of increased catecholamine synthesis and release, and more mitochondria with dilated cristae and glycogen to accommodate for the increased energy demand for the increased biogenesis and exocytosis of catecholamines from the adrenal medulla. These findings suggest that increased trans-synaptic activation of the chromaffin cells within the adrenal medulla may lead to increased catecholamines in the circulation which in turn contributes to the enhanced neurohumoral drive, providing a unique mechanistic insight for enhanced catecholamine levels in plasma commonly observed in chronic HF condition.

  18. Granulophysin is located in the membrane of azurophilic granules in human neutrophils and mobilizes to the plasma membrane following cell stimulation.

    PubMed Central

    Cham, B. P.; Gerrard, J. M.; Bainton, D. F.

    1994-01-01

    Granulophysin, a protein described in platelet dense granule membranes, has been shown to be similar or identical to CD63, a lysosomal membrane protein. We have previously shown granulophysin to be present in neutrophils using immunofluorescence. We now localize granulophysin to the neutrophil azurophilic granules by fine structural immunocytochemistry. Granulophysin expression on the surface membrane of the neutrophil is increased following stimulation of the cells, demonstrated by flow cytometry and fine structural immunocytochemistry. A similar pattern is shown for an anti-CD63 antibody. Incubation of activated neutrophils with D545, a monoclonal antibody to granulophysin, blocks subsequent binding of anti-CD63 antibodies to the cell surface, and anti-CD63 antibodies prevent subsequent binding of D545 as assessed by flow cytometry and immunoblotting. Our results support the homology of CD63 and granulophysin previously demonstrated in platelets and confirm CD63 as an activation marker in neutrophils and the first azurophilic granule membrane marker of neutrophils. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 9 Figure 10 Figure 11 Figure 12 PMID:8203473

  19. The taurine uptake inhibitor guanidinoethyl sulphonate is an agonist at gamma-aminobutyric acid(A) receptors in cultured murine cerebellar granule cells.

    PubMed

    Mellor, J R; Gunthorpe, M J; Randall, A D

    2000-05-26

    In patch clamp experiments the beta-amino acid uptake inhibitor guanidinoethyl sulphonate (GES) activated currents in intact cultured murine cerebellar granule neurones. These responses could be attenuated by the gamma-aminobutyric acid(A) (GABA(A)) receptor antagonists bicuculline and picrotoxin. With intracellular chloride concentrations of either 20 or 130 mM, GES-induced current responses reversed polarity near the chloride equilibrium potential. When fast applications of agonist were made to excised granule cell macropatches GES responses were dose-dependent and exhibited significant outward rectification. Like taurine (but unlike GABA and beta-alanine) responses, macroscopic desensitisation of GES-induced currents was slow. Our data indicate that care should be exercised when using GES as a taurine uptake inhibitor in systems that also contain GABA(A) receptors.

  20. Fluoro-jade identification of cerebellar granule cell and purkinje cell death in the alpha1A calcium ion channel mutant mouse, leaner.

    PubMed

    Frank, T C; Nunley, M C; Sons, H D; Ramon, R; Abbott, L C

    2003-01-01

    Cell death is a critical component of normal nervous system development; too little or too much results in abnormal development and function of the nervous system. The leaner mouse exhibits excessive, abnormal cerebellar granule cell and Purkinje cell death during postnatal development, which is a consequence of a mutated calcium ion channel subunit, alpha(1A). Previous studies have shown that leaner cerebellar Purkinje cells die in a specific pattern that appears to be influenced by functional and anatomical boundaries of the cerebellum. However, the mechanism of Purkinje cell death and the specific timing of the spatial pattern of cell death remain unclear. By double labeling both leaner and wild-type cerebella with Fluoro-Jade and terminal deoxynucleotide transferase-mediated, deoxyuridine triphosphate nick-end labeling or Fluoro-Jade and tyrosine hydroxylase immunohistochemistry we demonstrated that the relatively new stain, Fluoro-Jade, will label neurons that are dying secondary to a genetic mutation. Then, by staining leaner and wild-type cerebella between postnatal days 20 and 80 with Fluoro-Jade, we were able to show that Purkinje cell death begins at approximately postnatal day 25, peaks in the vermis about postnatal day 40 and in the hemispheres at postnatal day 50 and persists at a low level at postnatal day 80. In addition, we showed that there is a significant difference in the amount of cerebellar Purkinje cell death between rostral and caudal divisions of the leaner cerebellum, and that there is little to no Purkinje cell death in the wild type cerebellum at the ages we examined. This is the first report of the use of Fluoro-Jade to identify dying neurons in a genetic model for neuronal cell death. By using Fluoro-Jade, we have specifically defined the temporospatial pattern of postnatal Purkinje cell death in the leaner mouse. This information can be used to gain insight into the dynamic mechanisms controlling Purkinje cell death in the leaner