Eddy current technique for predicting burst pressure
Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.
2003-01-01
A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.
The micrometeorological flux measurement technique known as relaxed eddy accumulation (REA) holds promise as a powerful new tool for ecologists. The more popular eddy covariance (eddy correlation) technique requires the use of sensors that can respond at fast rates (10 Hz), and t...
An analytical technique for the measurement of the exchange (flux) of trace gases between the earth's surface and the atmosphere will be developed. Measurements will rely on the eddy correlation method (ECM). Target compounds are biogenically and anthropogenically emitted v...
Relating chamber measurements to eddy correlation measurements of methane flux
R.J. Clement; S.B. Verma; E.S. Verry
1995-01-01
Methane fluxes were measured using eddy correlation and chamber techniques during 1991 and 1997 at a peatland in north central Minnesota. Comparisons of the two techniques were made using averages of methane flux data available during 1-week periods. The seasonal patterns of fluxes measured by the two techniques compared well. Chamber flux, in 1991, was about 1.8 mg m...
Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation
NASA Technical Reports Server (NTRS)
He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.
Eddy Correlation Flux Measurement System (ECOR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
A technique for estimating dry deposition velocities based on similarity with latent heat flux
NASA Astrophysics Data System (ADS)
Pleim, Jonathan E.; Finkelstein, Peter L.; Clarke, John F.; Ellestad, Thomas G.
Field measurements of chemical dry deposition are needed to assess impacts and trends of airborne contaminants on the exposure of crops and unmanaged ecosystems as well as for the development and evaluation of air quality models. However, accurate measurements of dry deposition velocities require expensive eddy correlation measurements and can only be practically made for a few chemical species such as O 3 and CO 2. On the other hand, operational dry deposition measurements such as those used in large area networks involve relatively inexpensive standard meteorological and chemical measurements but rely on less accurate deposition velocity models. This paper describes an intermediate technique which can give accurate estimates of dry deposition velocity for chemical species which are dominated by stomatal uptake such as O 3 and SO 2. This method can give results that are nearly the quality of eddy correlation measurements of trace gas fluxes at much lower cost. The concept is that bulk stomatal conductance can be accurately estimated from measurements of latent heat flux combined with standard meteorological measurements of humidity, temperature, and wind speed. The technique is tested using data from a field experiment where high quality eddy correlation measurements were made over soybeans. Over a four month period, which covered the entire growth cycle, this technique showed very good agreement with eddy correlation measurements for O 3 deposition velocity.
NASA Astrophysics Data System (ADS)
Swett, M. P.; Amirbahman, A.; Boss, E.
2009-12-01
Wetland and estuarine sediments release significant amounts of dissolved organic carbon (DOC) due to high levels of microbial activity, particularly sulfate reduction. Changes in climate and hydrologic conditions have a potential to alter DOC release from these systems as well. This is a concern, as high levels of DOC can lead to mobilization of toxic metals and organics in natural waters. In addition, source waters high in DOC produce undesirable disinfection byproducts in water treatment. Various in situ methods, such as peepers and sediment core centrifugation, exist to quantify vertical benthic fluxes of DOC and other dissolved species from the sediment-water interface (SWI). These techniques, however, are intrusive and involve disturbance of the sediment environment. Eddy-correlation allows for real-time, non-intrusive, in situ flux measurement of important analytes, such as O2 and DOC. An Acoustic Doppler Velocimeter (ADV) is used to obtain three-dimensional fluid velocity measurements. The eddy-correlation technique employs the mathematical separation of fluid velocity into mean velocity and fluctuating velocity components, with the latter representing turbulent eddy velocity. DOC concentrations are measured using a colored dissolved organic matter (CDOM) fluorometer, and instantaneous vertical flux is determined from the correlated data. This study assesses DOC flux at three project sites: a beaver pond in the Lower Penobscot Watershed, Maine; a mudflat in Penobscot River, Maine; and a mudflat in Great Bay, New Hampshire. Eddy flux values are compared with results obtained using peepers and centrifugation, as well as vertical profiling.
Using eddy currents for noninvasive in vivo pH monitoring for bone tissue engineering.
Beck-Broichsitter, Benedicta E; Daschner, Frank; Christofzik, David W; Knöchel, Reinhard; Wiltfang, Jörg; Becker, Stephan T
2015-03-01
The metabolic processes that regulate bone healing and bone induction in tissue engineering models are not fully understood. Eddy current excitation is widely used in technical approaches and in the food industry. The aim of this study was to establish eddy current excitation for monitoring metabolic processes during heterotopic osteoinduction in vivo. Hydroxyapatite scaffolds were implanted into the musculus latissimus dorsi of six rats. Bone morphogenetic protein 2 (BMP-2) was applied 1 and 2 weeks after implantation. Weekly eddy current excitation measurements were performed. Additionally, invasive pH measurements were obtained from the scaffolds using fiber optic detection devices. Correlations between the eddy current measurements and the metabolic values were calculated. The eddy current measurements and pH values decreased significantly in the first 2 weeks of the study, followed by a steady increase and stabilization at higher levels towards the end of the study. The measurement curves and statistical evaluations indicated a significant correlation between the resonance frequency values of the eddy current excitation measurements and the observed pH levels (p = 0.0041). This innovative technique was capable of noninvasively monitoring metabolic processes in living tissues according to pH values, showing a direct correlation between eddy current excitation and pH in an in vivo tissue engineering model.
Czarnecki, John B.; Stannard, David I.
1997-01-01
Franklin Lake playa is one of the principal discharge areas of the ground-water-flow system associated with Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository. By using the energy-budget eddy-correlation technique, measurements made between June 1983 and April 1984 to estimate evapotranspiration were found to range from 0.1 centimeter per day during winter months to about 0.3 centimeter per day during summer months; the annual average was 0.16 centimeter per day. These estimates were compared with evapotranspiration estimates calculated from six other methods.
Toward relaxed eddy accumulation measurements of sediment-water exchange in aquatic ecosystems
NASA Astrophysics Data System (ADS)
Lemaire, Bruno J.; Noss, Christian; Lorke, Andreas
2017-09-01
Solute transport across the sediment-water interface has major implications for water quality and biogeochemical cycling in aquatic ecosystems. Existing measurement techniques, however, are not capable of resolving sediment-water fluxes of most constituents under in situ flow conditions. We investigated whether relaxed eddy accumulation (REA), a micrometeorological technique with conditional sampling of turbulent updrafts and downdrafts, can be adapted to the aquatic environment. We simulated REA fluxes by reanalyzing eddy covariance measurements from a riverine lake. We found that the empirical coefficient that relates mass fluxes to the concentration difference between both REA samples is invariant with scalar and flow and responds as predicted by a joint Gaussian distribution of linearly correlated variables. Simulated REA fluxes differed on average by around 30% from eddy covariance fluxes (mean absolute error). Assessment of the lower quantification limit suggests that REA can potentially be applied for measuring benthic fluxes of a new range of constituents that cannot be assessed by standard eddy covariance methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; French Atomic Energy and Alternative Energies Commission; Tordjeman, Ph.
2015-07-01
This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance; Tordjeman, Ph.
2015-07-01
This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)
NASA Astrophysics Data System (ADS)
Koopmans, D.; Berg, P.
2013-12-01
Inland waters respire or store a large portion of net terrestrial ecosystem production. As a result their metabolism is significant to the global carbon budget. The proximal drivers of aquatic respiration are organic matter availability, temperature, nutrients, and water velocity. Among these water velocity may be the least quantified. A partial explanation is that the footprint of the open water technique is typically hundreds of meters of river length, while the effect of a change in velocity may be specific to a local benthic environment, e.g., a riffle. With the eddy correlation technique oxygen flux is calculated from the turbulent fluctuation of vertical velocity and the oxygen concentration at a point in the water column. The footprint of the technique scales with the height of the point of measurement allowing an investigation of the in situ oxygen flux at the scale of a riffle. The combination of techniques, then, can be used to investigate the coupling of hydrodynamic conditions and benthic environments in driving aquatic ecosystem metabolism. This parallel approach was applied seasonally to examine the drivers of metabolism in a nutrient-rich, sand-bed coastal stream on the Eastern Shore of Virginia. An ecosystem-scale oxygen flux was calculated with the open water technique while pool-, run-, riffle-, and freshwater tidal-scale oxygen fluxes were calculated with the eddy correlation technique. At the ecosystem scale the stream bed functioned as an effective biocatalytic filter with an average annual net oxygen consumption of 300 mmol m^-2 d^-1. Prior to a stage-discharge shift water velocity explained 90% of the variance in ecosystem respiration (n = 63 days). After the stage-discharge shift water velocity explained 96 % of it (n = 40 days). Hyporheic exchange supported respiration in this system, contributing to its close correlation with water velocity. Among the physically similar benthic environments of the run, riffle, and freshwater tidal sites, however, similar water velocities generated order of magnitude differences in oxygen flux. The smallest oxygen fluxes were observed at the tidal site followed by the riffle and pool. The patterns were consistent with the site-specific suppression of hyporheic exchange by pore water clogging. An uneven distribution of sediment organic matter may also contribute. These results demonstrate that ecosystem metabolism in this stream is hydrodynamically controlled and suggest mechanisms by which that control may be undermined. Oxygen flux measured at a stream riffle with the eddy correlation technique.
Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.
2015-01-01
Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.
Large eddy simulation of incompressible turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Reynolds, W. C.; Ferziger, J. H.
1978-01-01
The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.
Eddy correlation measurements of submarine groundwater discharge
Crusius, John; Berg, P.; Koopmans, D.J.; Erban, L.
2008-01-01
This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment–water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5–15 cm above the sediment surface, at a frequency of 16 to 64 Hz, and for a period of 15 to 60 min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d− 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation.
Non-destructive characterization of SiC coated carbon-carbon composites by multiple techniques
NASA Astrophysics Data System (ADS)
Nixon, Thomas D.; Hemstad, Stan N.; Pfeifer, William H.
SiC coated carbon-carbon composites were evaluated using several non-destructive techniques as a means of quantifying the quality of both the coating and substrate. The techniques employed included dye penetrant infiltration, eddy current measurement, C-scan, and computed tomography (CT). The NDE results were then correlated to oxidation performance and destructive evaluations by electron and optical microscopy.
Tools and Methods for Visualization of Mesoscale Ocean Eddies
NASA Astrophysics Data System (ADS)
Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.
2017-12-01
Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available datasets, to specify the variables (such as temperature or salinity) to display on the isosurfaces, and to choose the scale and orientation of the view. These techniques allow an oceanographer to browse the data based on eddy paths and individual eddies rather than slices or volumes of data.
USDA-ARS?s Scientific Manuscript database
Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes,...
Detecting defects in marine structures by using eddy current infrared thermography.
Swiderski, W
2016-12-01
Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.
From Phenomena to Objects: Segmentation of Fuzzy Objects and its Application to Oceanic Eddies
NASA Astrophysics Data System (ADS)
Wu, Qingling
A challenging image analysis problem that has received limited attention to date is the isolation of fuzzy objects---i.e. those with inherently indeterminate boundaries---from continuous field data. This dissertation seeks to bridge the gap between, on the one hand, the recognized need for Object-Based Image Analysis of fuzzy remotely sensed features, and on the other, the optimization of existing image segmentation techniques for the extraction of more discretely bounded features. Using mesoscale oceanic eddies as a case study of a fuzzy object class evident in Sea Surface Height Anomaly (SSHA) imagery, the dissertation demonstrates firstly, that the widely used region-growing and watershed segmentation techniques can be optimized and made comparable in the absence of ground truth data using the principle of parsimony. However, they both have significant shortcomings, with the region growing procedure creating contour polygons that do not follow the shape of eddies while the watershed technique frequently subdivides eddies or groups together separate eddy objects. Secondly, it was determined that these problems can be remedied by using a novel Non-Euclidian Voronoi (NEV) tessellation technique. NEV is effective in isolating the extrema associated with eddies in SSHA data while using a non-Euclidian cost-distance based procedure (based on cumulative gradients in ocean height) to define the boundaries between fuzzy objects. Using this procedure as the first stage in isolating candidate eddy objects, a novel "region-shrinking" multicriteria eddy identification algorithm was developed that includes consideration of shape and vorticity. Eddies identified by this region-shrinking technique compare favorably with those identified by existing techniques, while simplifying and improving existing automated eddy detection algorithms. However, it also tends to find a larger number of eddies as a result of its ability to separate what other techniques identify as connected eddies. The research presented here is of significance not only to eddy research in oceanography, but also to other areas of Earth System Science for which the automated detection of features lacking rigid boundary definitions is of importance.
NASA Astrophysics Data System (ADS)
Donis, D.; Janssen, F.; Böttcher, M.; McGinnis, D.; Holtappels, M.; Wenzhöfer, F.
2012-04-01
Measurements of solute exchange across the sediment-water interface are crucial for marine environment monitoring. This interface has fundamental filter functions for the mass exchange between the seafloor and the water column. Being a non-invasive technique, the eddy correlation method, is probably the most accurate measurement for benthic fluxes. It does not interfere with local hydrodynamics and integrates over large areas, showing considerable advantages compared to traditional methods, i.e., microprofiles and benthic chambers. One of the most important exchange processes across the sediment-water interface is flux of oxygen, which is a predominant control factor for the biogeochemical activity in the sediment, carbon processing and the composition of benthic communities. The eddy correlation method performs simultaneous recordings of vertical velocities and oxygen concentrations at a specific distance to the seafloor and is becoming a standard method for resolving dissolved oxygen fluxes in aquatic systems. However, data treatment and interpretation, especially in shallow environments, is still challenging. One major concern in eddy correlation studies of coastal environments is how to consider surface wave motions that can dominate the turbulence range and that may bias flux calculations. A critical part of the data treatment thus is the removal of wave biases from the vertical velocity component, by separating the wave frequency oscillations (due to a tilted or miss-aligned sensor) from those containing meaningful flux contributions. Here we present in situ benthic oxygen exchange rates as determined by an eddy correlation system (ECS) and simultaneously deployed stirred benthic chambers. The study was carried out in a coastal ecosystem of the southern Baltic Sea that was impacted by low salinity groundwater discharge (Hel peninsula, Poland). Oxygen fluxes determined with ECS compared well with results from benthic chambers. Flux data and seepage rates are discussed in the context of groundwater and their importance for benthic biogeochemical processes in shallow sandy sediments. This work was supported by 7th framework EU ITN-project SENSEnet and BONUS+ project AMBER.
NASA Astrophysics Data System (ADS)
Swiderski, Waldemar
2016-10-01
Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.
Characteristic eddy decomposition of turbulence in a channel
NASA Technical Reports Server (NTRS)
Moin, Parviz; Moser, Robert D.
1991-01-01
The proper orthogonal decomposition technique (Lumley's decomposition) is applied to the turbulent flow in a channel to extract coherent structures by decomposing the velocity field into characteristic eddies with random coefficients. In the homogeneous spatial directions, a generaliztion of the shot-noise expansion is used to determine the characteristic eddies. In this expansion, the Fourier coefficients of the characteristic eddy cannot be obtained from the second-order statistics. Three different techniques are used to determine the phases of these coefficients. They are based on: (1) the bispectrum, (2) a spatial compactness requirement, and (3) a functional continuity argument. Results from these three techniques are found to be similar in most respects. The implications of these techniques and the shot-noise expansion are discussed. The dominant eddy is found to contribute as much as 76 percent to the turbulent kinetic energy. In both 2D and 3D, the characteristic eddies consist of an ejection region straddled by streamwise vortices that leave the wall in the very short streamwise distance of about 100 wall units.
Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere
D.Y. Hollinger; F.M. Kelliher; J.N. Byers; J.E. Hunt; T.M. McSeveny; P.L. Weir
1994-01-01
We used the eddy-correlation technique to investigate the exchange of C02 between an undisturbed old-growth forest and the atmosphere at a remote Southern Hemisphere site on 15 d between 1989 and 1990. Our goal was to determine how environmental factors regulate ecosystem CO2 exchange, and to test whether present knowledge...
Initial assessment of multi-scale measures of C02 and H20 flux in the Siberian taiga
D.Y. Hollinger; F.M. Kelliher; E.-D. Schulze; N.N. Vygodskaya; A. Varlagin; I. Milukova; J.N. Byers; A. Sogachov; J.E. Hunt; T.M. McSeveny; K.I. Kobak; G. Bauer; A. Arneth
1995-01-01
We measured CO2 and H2O fluxes between undisturbed Larix gmelinii forest and the atmosphere at a remote Eastern Siberian site in July 1993. Scaled-up leaf-level porometer measurements agreed with those derived from the eddy correlation technique for the canopy fluxes of CO2 and H...
USDA-ARS?s Scientific Manuscript database
To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...
Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan
2016-01-01
Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123
Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan
2016-02-26
Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
NASA Astrophysics Data System (ADS)
Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.
2018-04-01
The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.
Non-Destructive Techniques Based on Eddy Current Testing
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754
Non-destructive techniques based on eddy current testing.
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.
NASA Astrophysics Data System (ADS)
Long, Matthew H.; Berg, Peter; Falter, James L.
2015-05-01
The net ecosystem metabolism of the seagrass Thalassia testudinum was studied across a nutrient and productivity gradient in Florida Bay, Florida, using the Eulerian control volume, eddy covariance, and biomass addition techniques. In situ oxygen fluxes were determined by a triangular Eulerian control volume with sides 250 m long and by eddy covariance instrumentation at its center. The biomass addition technique evaluated the aboveground seagrass productivity through the net biomass added. The spatial and temporal resolutions, accuracies, and applicability of each method were compared. The eddy covariance technique better resolved the short-term flux rates and the productivity gradient across the bay, which was consistent with the long-term measurements from the biomass addition technique. The net primary production rates from the biomass addition technique, which were expected to show greater autotrophy due to the exclusion of sediment metabolism and belowground production, were 71, 53, and 30 mmol carbon m-2 d-1 at 3 sites across the bay. The net ecosystem metabolism was 35, 25, and 11 mmol oxygen m-2 d-1 from the eddy covariance technique and 10, -103, and 14 mmol oxygen m-2 d-1 from the Eulerian control volume across the same sites, respectively. The low-flow conditions in the shallow bays allowed for periodic stratification and long residence times within the Eulerian control volume that likely reduced its precision. Overall, the eddy covariance technique had the highest temporal resolution while producing accurate long-term flux rates that surpassed the capabilities of the biomass addition and Eulerian control volume techniques in these shallow coastal bays.
A model relating Eulerian spatial and temporal velocity correlations
NASA Astrophysics Data System (ADS)
Cholemari, Murali R.; Arakeri, Jaywant H.
2006-03-01
In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.
NASA Astrophysics Data System (ADS)
Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne
2013-08-01
A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.
NASA Astrophysics Data System (ADS)
Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Albertson, John D.; Oren, Ram
2014-05-01
Mediterranean ecosystems are characterized by a strong heterogeneity, and often by water-limited conditions. In these conditions contrasting plant functional types (PFT, e.g. grass and woody vegetation) compete for the water use. Both the vegetation cover spatial distribution and the soil properties impact the soil moisture (SM) spatial distribution. Indeed, vegetation cover density and type affects evapotranspiration (ET), which is the main lack of the soil water balance in these ecosystems. With the objective to carefully estimate SM and ET spatial distribution in a Mediterranean water-limited ecosystem and understanding SM and ET relationships, an extended field campaign is carried out. The study was performed in a heterogeneous ecosystem in Orroli, Sardinia (Italy). The experimental site is a typical Mediterranean ecosystem where the vegetation is distributed in patches of woody vegetation (wild olives mainly) and grass. Soil depth is low and spatially varies between 10 cm and 40 cm, without any correlation with the vegetation spatial distribution. ET, land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. But in heterogeneous ecosystems a key assumption of the eddy covariance theory, the homogeneity of the surface, is not preserved and the ET estimate may be not correct. Hence, we estimate ET of the woody vegetation using the thermal dissipation method (i.e. sap flow technique) for comparing the two methodologies. Due the high heterogeneity of the vegetation and soil properties of the field a total of 54 sap flux sensors were installed. 14 clumps of wild olives within the eddy covariance footprint were identified as the most representative source of flux and they were instrumented with the thermal dissipation probes. Measurements of diameter at the height of sensor installation (height of 0.4 m above ground) were recorded in all the clumps. Bark thickness and sapwood depth were measured on several trees to obtain a generalized estimates of sapwood depth. The known of allometric relationships between sapwood area, diameter and canopy cover area within the eddy covariance footprint helped for the application of a reliable scaling procedure of the local sap flow estimates which are in a good agreement with the estimates of ET eddy covariance based. Soil moisture were also extensively monitored through 25 probes installed in the eddy covariance footprint. Results show that comparing eddy covariance and sap flow ET estimates eddy covariance technique is still accurate in this heterogeneous field, whereas the key assumption, surface homogeneity, is not preserved. Furthermore, interestingly wild olives still transpire at higher rates for the driest soil moisture conditions, confirming the hydraulic redistribution from soil below the roots, and from roots penetrating deep cracks in the underlying basalt parent rock.
Characteristic-eddy decomposition of turbulence in a channel
NASA Technical Reports Server (NTRS)
Moin, Parviz; Moser, Robert D.
1989-01-01
Lumley's proper orthogonal decomposition technique is applied to the turbulent flow in a channel. Coherent structures are extracted by decomposing the velocity field into characteristic eddies with random coefficients. A generalization of the shot-noise expansion is used to determine the characteristic eddies in homogeneous spatial directions. Three different techniques are used to determine the phases of the Fourier coefficients in the expansion: (1) one based on the bispectrum, (2) a spatial compactness requirement, and (3) a functional continuity argument. Similar results are found from each of these techniques.
Use of eddy current mixes to solve a weld examination application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.C.; LaBoissonniere, A.
1995-12-31
The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis.
Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack
2016-11-01
Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.
NASA Astrophysics Data System (ADS)
Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol
2017-07-01
The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.
Ozone and carbon dioxide fluxes in a subalpine spruce-fir forest ecosystem
Karl Zeller
1995-01-01
RMFRES RWU 4452 has made several ozone (O3) and carbon dioxide (CO2) trace gas flux measurements in the Snowy Range, WY GLEES research area over the past few years. These measurements were made using the micrometeorological eddy correlation technique at two sites: one 6 m above tree canopy height on the Brooklyn tower (ozone only); and the other below canopy height, 1-...
NASA Astrophysics Data System (ADS)
Flanagan, L. B.; Geske, N.; Emrick, C.; Johnson, B. G.
2006-12-01
Grassland ecosystems typically exhibit very large annual fluctuations in above-ground biomass production and net ecosystem productivity (NEP). Eddy covariance flux measurements, plant stable isotope analyses, and canopy spectral reflectance techniques have been applied to study environmental constraints on grassland ecosystem productivity and the acclimation responses of the ecosystem at a site near Lethbridge, Alberta, Canada. We have observed substantial interannual variation in grassland productivity during 1999-2005. In addition, there was a strong correlation between peak above-ground biomass production and NEP calculated from eddy covariance measurements. Interannual variation in NEP was strongly controlled by the total amount of precipitation received during the growing season (April-August). We also observed significant positive correlations between a multivariate ENSO index and total growing season precipitation, and between the ENSO index and annual NEP values. This suggested that a significant fraction of the annual variability in grassland productivity was associated with ENSO during 1999-2005. Grassland productivity varies asymmetrically in response to changes in precipitation with increases in productivity during wet years being much more pronounced than reductions during dry years. Strong increases in plant water-use efficiency, based on carbon and oxygen stable isotope analyses, contribute to the resilience of productivity during times of drought. Within a growing season increased stomatal limitation of photosynthesis, associated with improved water-use efficiency, resulted in apparent shifts in leaf xanthophyll cycle pigments and changes to the Photochemical Reflectance Index (PRI) calculated from hyper-spectral reflectance measurements conducted at the canopy-scale. These shifts in PRI were apparent before seasonal drought caused significant reductions in leaf area index (LAI) and changes to canopy-scale "greenness" based on NDVI values. With further progression of the seasonal drought, LAI and canopy-scale NDVI also declined in strong correlation. In addition, we have observed strong correlation between NDVI calculated from canopy-scale reflectance measurements and NDVI determined by MODIS. Continued reflectance measurements will help to understand and document the response of the grassland to seasonal and annual environmental change.
Wall-based identification of coherent structures in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Sanmiguel Vila, C.; Flores, O.
2018-04-01
During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.
Tests of a robust eddy correlation system for sensible heat flux
NASA Astrophysics Data System (ADS)
Blanford, J. H.; Gay, L. W.
1992-03-01
Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.
NASA Astrophysics Data System (ADS)
Krauter, N.; Stefani, F.
2017-10-01
Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.
NASA Astrophysics Data System (ADS)
Mackay, D. S.; Ewers, B. E.; Sperry, J. S.; Frank, J. M.; Reed, D. E.
2014-12-01
Mediterranean water limited ecosystems are characterized by an heterogeneous spatial distribution of different plant functional types (PFT), such as grass and trees, competing for water use. Typically, during the dry summers, these ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. The coupled use of sap flow measurements and eddy covariance technique is essential to estimate Evapotransiration (ET) in an heterogeneous ecosystem. An eddy covariance - micrometeorological tower has been installed since 2003 and 33 thermo-dissipation probes based on the Granier technique have installed at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. A network of 30 soil moisture sensors has also been installed for monitoring soil moisture spatial and temporal dynamics and their correlation with trees. Sap flow measurements show the significantly impacts on ET of soil moisture, radiation, vapor pressure deficit (VPD) and interestingly of tree position into the clump, showing double rates for the trees inside the wild olive clumps. The sap flow sensor outputs are analyzed for estimating innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the approximation of the eddy covariance technique. Finally the impact of environmental factors on ET for different soil depth and tree position is demonstrated.
NASA Astrophysics Data System (ADS)
Montaldo, N.; Curreli, M.; Corona, R.; Oren, R.
2015-12-01
Mediterranean water limited ecosystems are characterized by an heterogeneous spatial distribution of different plant functional types (PFT), such as grass and trees, competing for water use. Typically, during the dry summers, these ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. The coupled use of sap flow measurements and eddy covariance technique is essential to estimate Evapotransiration (ET) in an heterogeneous ecosystem. An eddy covariance - micrometeorological tower has been installed since 2003 and 33 thermo-dissipation probes based on the Granier technique have installed at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. A network of 30 soil moisture sensors has also been installed for monitoring soil moisture spatial and temporal dynamics and their correlation with trees. Sap flow measurements show the significantly impacts on ET of soil moisture, radiation, vapor pressure deficit (VPD) and interestingly of tree position into the clump, showing double rates for the trees inside the wild olive clumps. The sap flow sensor outputs are analyzed for estimating innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the approximation of the eddy covariance technique. Finally the impact of environmental factors on ET for different soil depth and tree position is demonstrated.
Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.
Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin
2017-09-19
In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.
Using the Cross-Correlation Function to Evaluate the Quality of Eddy-Covariance Data
NASA Astrophysics Data System (ADS)
Qi, Yongfeng; Shang, Xiaodong; Chen, Guiying; Gao, Zhiqiu; Bi, Xueyan
2015-11-01
A cross-correlation test is proposed for evaluating the quality of 30-min eddy-covariance data. Cross-correlation as a function of time lag is computed for vertical velocity paired with temperature, humidity, and carbon dioxide concentration. High quality data have a dominant peak at zero time lag and approach zero within a time lag of 20 s. Poor quality data have erratic cross-correlation functions, which indicates that the eddy flux may no longer represent the energy and mass exchange between the atmospheric surface layer and the canopy, and such data should be rejected in post-data analyses. Eddy-covariance data over grassland in July 2004 are used to evaluate the proposed test. The results show that 17, 29, and 36 % of the available data should be rejected because of poor quality measurements of sensible heat, latent heat, and CO2 fluxes, respectively. The rejected data mainly occurred on calm nights and day/night transitions when the atmospheric surface layer became stable or neutrally stratified. We found no friction velocity (u_*) threshold below which all data should be rejected, a test that many other studies have implemented for rejecting questionable data. We instead found that some data with low u_* were reliable, whereas other data with higher u_* were not. The poor quality measurements collected under less than ideal conditions were replaced by using the mean diurnal variation gap-filling method. The correction for poor quality data shifted the daily average CO2 flux by +0.34 g C m^{-2} day^{-1}. After applying the quality-control test, the eddy CO2 fluxes did not display a clear dependence on u_*. The results suggest that the cross-correlation test is a potentially valuable step in evaluating the quality of eddy-covariance data.
Investigation of Density Fluctuations in Supersonic Free Jets and Correlation with Generated Noise
NASA Technical Reports Server (NTRS)
Panda, J.; Seasholtz, R. G.
2000-01-01
The air density fluctuations in the plumes of fully-expanded, unheated free jets were investigated experimentally using a Rayleigh scattering based technique. The point measuring technique used a continuous wave laser, fiber-optic transmission and photon counting electronics. The radial and centerline profiles of time-averaged density and root-mean-square density fluctuation provided a comparative description of jet growth. To measure density fluctuation spectra a two-Photomultiplier tube technique was used. Crosscorrelation between the two PMT signals significantly reduced electronic shot noise contribution. Turbulent density fluctuations occurring up to a Strouhal number (Sr) of 2.5 were resolved. A remarkable feature of density spectra, obtained from the same locations of jets in 0.5< M<1.5 range, is a constant Strouhal frequency for peak fluctuations. A detailed survey at Mach numbers M = 0.95, 1.4 and 1.8 showed that, in general, distribution of various Strouhal frequency fluctuations remained similar for the three jets. In spite of the similarity in the flow fluctuation the noise characteristics were found to be significantly different. Spark schlieren photographs and near field microphone measurements confirmed that the eddy Mach wave radiation was present in Mach 1.8 jet, and was absent in Mach 0.95 jet. To measure correlation between the flow and the far field sound pressure fluctuations, a microphone was kept at a distance of 50 diameters, 30 deg. to the flow direction, and the laser probe volume was moved from point to point in the flow. The density fluctuations in the peripheral shear layer of Mach 1.8 jet showed significant correlation up to the measurement limit of Sr = 2.5, while for Mach 0.95 jet no correlation was measured. Along the centerline measurable correlation was found from the end of the potential core and at the low frequency range (Sr less than 0.5). Usually the normalized correlation values increased with an increase of the jet Mach number. The experimental data point out eddy Mach waves as a strong source of sound generation in supersonic jets and fail to locate the primary noise mechanism in subsonic jets.
Inexpensive Eddy-Current Standard
NASA Technical Reports Server (NTRS)
Berry, Robert F., Jr.
1985-01-01
Radial crack replicas serve as evaluation standards. Technique entails intimately joining two pieces of appropriate aluminum alloy stock and centering drilled hole through and along interface. Bore surface of hole presents two vertical stock interface lines 180 degrees apart. These lines serve as radial crack defect replicas during eddy-current technique setup and verification.
Technique for temperature compensation of eddy-current proximity probes
NASA Technical Reports Server (NTRS)
Masters, Robert M.
1989-01-01
Eddy-current proximity probes are used in turbomachinery evaluation testing and operation to measure distances, primarily vibration, deflection, or displacment of shafts, bearings and seals. Measurements of steady-state conditions made with standard eddy-current proximity probes are susceptible to error caused by temperature variations during normal operation of the component under investigation. Errors resulting from temperature effects for the specific probes used in this study were approximately 1.016 x 10 to the -3 mm/deg C over the temperature range of -252 to 100 C. This report examines temperature caused changes on the eddy-current proximity probe measurement system, establishes their origin, and discusses what may be done to minimize their effect on the output signal. In addition, recommendations are made for the installation and operation of the electronic components associated with an eddy-current proximity probe. Several techniques are described that provide active on-line error compensation for over 95 percent of the temperature effects.
de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.
2015-01-01
This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754
de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D
2015-12-24
This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.
Annular modes and apparent eddy feedbacks in the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan
2016-04-01
Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.
Annular modes and apparent eddy feedbacks in the Southern Hemisphere.
Byrne, Nicholas J; Shepherd, Theodore G; Woollings, Tim; Plumb, R Alan
2016-04-28
Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.
Method and apparatus for correcting eddy current signal voltage for temperature effects
Kustra, Thomas A.; Caffarel, Alfred J.
1990-01-01
An apparatus and method for measuring physical characteristics of an electrically conductive material by the use of eddy-current techniques and compensating measurement errors caused by changes in temperature includes a switching arrangement connected between primary and reference coils of an eddy-current probe which allows the probe to be selectively connected between an eddy current output oscilloscope and a digital ohm-meter for measuring the resistances of the primary and reference coils substantially at the time of eddy current measurement. In this way, changes in resistance due to temperature effects can be completely taken into account in determining the true error in the eddy current measurement. The true error can consequently be converted into an equivalent eddy current measurement correction.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Wang, Morgan
1992-01-01
The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.
Revolving Eddy-Current Probe Detects Cracks Near Rivets
NASA Technical Reports Server (NTRS)
Namkung, Min; Wincheski, Buzz; Fulton, James P.; Nath, Shridhar; Simpson, John
1995-01-01
Scanning eddy-current probe in circular pattern increases sensitivity with which probe indicates fatigue cracks and other defects in metal surfaces in vicinity of rivets. Technique devised to facilitate inspection of riveted joints in aircraft. Eddy-current probe in question described in "Electro-magnetic Flaw Detector Is Easier To Use" (LAR-15046).
Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P
2008-07-01
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.
Applicability of Mixing Length Theory to a Turbulent Vortex System
NASA Technical Reports Server (NTRS)
Ragsdale, Robert G.
1961-01-01
The ability of mixing length theory to correlate vortex data is evaluated. Expressions are derived for eddy diffusivity by applying the techniques of von Karman and Prandtl which have been established for pipe flow. Total and static pressures were measured from the outer radius to the exhaust-nozzle radius of a vortex generator for a range of mass flows. These data are combined with Navier-Stokes solutions for this region of a compressible vortex to determine turbulent Reynolds numbers. The Reynolds number is related to Prandtl and Karman functions for various assumed boundary conditions, and the experimental data are used to determine the usefulness of these expressions. The following conclusions were reached: (1) Mixing length functions developed by applying von Karman's similarity hypothesis to vortex motion correlate the data better than do Prandtl functions obtained with the assumption that mixing length is proportional to radius. (2) Some of the expressions developed do not adequately represent the experimental data. (3) The data are correlated with acceptable scatter by evaluating the fluid radial inertia at the outer boundary and the shear stress at the inner boundary. The universal constant K was found to be 0.04 to 0.08, rather than the value of 0.4 which is accepted for rectilinear flow. (4) The data are best correlated by a modified Karman expression which includes an effect of radial inertia, as well as shear stress, on eddy diffusivity.
Evapotranspiration from areas of native vegetation in west-central Florida
Bidlake, W.R.; Woodham, W.M.; Lopez, M.A.
1993-01-01
A study was made to examine the suitability of three different micrometeorological methods for estimating evapotranspiration from selected areas of native vegetation in west-central Florida and to estimate annual evapotranspiration from those areas. Evapotranspiration was estimated using the energy- balance Bowen ratio and eddy correlation methods. Potential evapotranspiration was computed using the Penman equation. The energy-balance Bowen ratio method was used to estimate diurnal evapotrans- piration at unforested sites and yielded reasonable results; however, measurements indicated that the magnitudes of air temperature and vapor-pressure gradients above the forested sites were too small to obtain reliable evapotranspiration measurements with the energy balance Bowen ratio system. Analysis of the surface energy-balance indicated that sensible and latent heat fluxes computed using standard eddy correlation computation methods did not adequately account for available energy. Eddy correlation data were combined with the equation for the surface energy balance to yield two additional estimates of evapotranspiration. Daily potential evapotranspiration and evapotranspira- tion estimated using the energy-balance Bowen ratio method were not correlated at a unforested, dry prairie site, but they were correlated at a marsh site. Estimates of annual evapotranspiration for sites within the four vegetation types, which were based on energy-balance Bowen ratio and eddy correlation measurements, were 1,010 millimeters for dry prairie sites, 990 millimeters for marsh sites, 1,060 millimeters for pine flatwood sites, and 970 millimeters for a cypress swamp site.
A theoretically based determination of bowen-ratio fetch requirements
Stannard, D.I.
1997-01-01
Determination of fetch requirements for accurate Bowen-ratio measurements of latent- and sensible-heat fluxes is more involved than for eddy-correlation measurements because Bowen-ratio sensors are located at two heights, rather than just one. A simple solution to the diffusion equation is used to derive an expression for Bowen-ratio fetch requirements, downwind of a step change in surface fluxes. These requirements are then compared to eddy-correlation fetch requirements based on the same diffusion equation solution. When the eddy-correlation and upper Bowen-ratio sensor heights are equal, and the available energy upwind and downwind of the step change is constant, the Bowen-ratio method requires less fetch than does eddy correlation. Differences in fetch requirements between the two methods are greatest over relatively smooth surfaces. Bowen-ratio fetch can be reduced significantly by lowering the lower sensor, as well as the upper sensor. The Bowen-ratio fetch model was tested using data from a field experiment where multiple Bowen-ratio systems were deployed simultaneously at various fetches and heights above a field of bermudagrass. Initial comparisons were poor, but improved greatly when the model was modified (and operated numerically) to account for the large roughness of the upwind cotton field.
Eddy-Current Detection Of Cracks In Reinforced Carbon/Carbon
NASA Technical Reports Server (NTRS)
Christensen, Scott V.; Koshti, Ajay M.
1995-01-01
Investigations of failures of components made of reinforced carbon/carbon show eddy-current flaw-detection techniques applicable to these components. Investigation focused on space shuttle parts, but applicable to other parts made of carbon/carbon materials. Techniques reveal cracks, too small to be detected visually, in carbon/carbon matrix substrates and in silicon carbide coates on substrates. Also reveals delaminations in carbon/carbon matrices. Used to characterize extents and locations of discontinuities in substrates in situations in which ultrasonic techniques and destructive techniques not practical.
Static Vented Chamber and Eddy Covariance Methane Flux Comparisons in Mid-South US Rice
NASA Astrophysics Data System (ADS)
Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.; Suvocarev, K.; Rival, I.
2017-12-01
Rice cultivation contributes higher amounts of GHG emissions (CO2 and CH4) due to flooded field conditions. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. Rice GHG emissions originating from plot level chambers may not accurately describe the aggregate effects of all the soil and micrometeorological variations across a production field. Eddy covariance (EC) is a direct, integrated field measurement of field scale trace gases. Flux measurements were collected in NE Arkansas production size rice fields (16 ha, 40 ac) during the 2015 and 2016 production seasons (June-August) in continuous flood (CF) irrigation. The study objectives included quantifying the difference between chamber and EC measurements, and categorizing flux behavior to growth stage and field history. EC daily average emissions correlated with chamber measurements (R2=0.27-0.54) more than average from 09:00-12:00 which encompassed chamber measurement times (R2=0.23-0.32). Maximum methane emissions occurred in the late afternoon from 14:00-18:00 which corresponded with maximum soil heat flux and air temperature. The total emissions from the study fields ranged from 27-117 kg CH4-C ha-1 season-1. The emission profile was lower in 2015, most likely due to higher rainfall and cooler temperatures during the growing season compared to 2016. These findings improve our understanding of GHG emissions at the field scale under typical production practices and validity of chamber and EC flux measurement techniques.
Unified Ultrasonic/Eddy-Current Data Acquisition
NASA Technical Reports Server (NTRS)
Chern, E. James; Butler, David W.
1993-01-01
Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.
Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar
2014-10-01
Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.
Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel
NASA Astrophysics Data System (ADS)
Kahrobaee, Saeed; Kashefi, Mehrdad
2015-05-01
The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.
Detection of cracks beneath rivet heads via pulsed eddy current technique
NASA Astrophysics Data System (ADS)
Giguère, J. S. R.; Lepine, B. A.; Dubois, J. M. S.
2002-05-01
Improving the detectability of fatigue cracks under installed fasteners is one of the many goals of the aging aircraft nondestructive evaluation (NDE) community. The pulsed eddy current offers new capabilities to address this requirement. The aim of the paper is to evaluate the potential of this technique for detecting and quantifying notches under installed fasteners.
ERIC Educational Resources Information Center
Espy, John
This fifth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the fundamental concepts applicable to eddy current testing in general. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…
NASA Astrophysics Data System (ADS)
Falahat, S.; Ghanei, S.; Kashefi, M.
2018-04-01
Eddy current and Barkhausen noise nondestructive testing techniques were considered to evaluate the magnetic properties of the decarburised steels as a function of microstructure. To make changes in decarburising depth, carbon steel samples were austenitised at 890 °C for 120-270 min. Considering different decarburised depths, height, position and width of the noise profiles were extracted in order to analyse the magnetic Barkhausen noise measurements. Next, the eddy current test was performed to detect the changes in the microstructure through decarburising of the steel taking into account the impedance variations. According to the results, both techniques allow us to detect changes in the magnetic properties of the decarburised steels and link them with their microstructural changes, nondestructively.
Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.
2014-01-01
Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532
A novel ozone sensor for various environmental applications
NASA Technical Reports Server (NTRS)
Guesten, H.; Heinrich, G.; Schmidt, R. W. H.; Schurath, U.
1994-01-01
A small, lightweight, and fast-response ozone sensor for various environmental applications is described. At a flow rate of 100 l/min(-1) the ozone sensor has a response time of significantly better than 0.1 s with a detection limit lower than 100 pptv. The ozone sensor was successfully tested in various environmental applications, i.e. in measuring directly the vertical ozone flux onto agricultural land utilizing the eddy correlation or covariance technique and in monitoring horizontal and vertical ozone profiles in the troposphere and stratosphere.
NASA Astrophysics Data System (ADS)
Kochendorfer, J.; Viers, J.; Niswonger, R.; Paw U, K.; Haas, E.; Reck, R. A.
2005-12-01
In conjunction with the Cosumnes Research Group, we performed a field study along the Cosumnes River in California's Central Valley. The study included tower-based evapotranspiration estimates, continuous hydrologic measurements, and analysis of remote sensing data. We estimated the effects of phreatophytic evapotranspiration on groundwater from scales as small as an individual stand of trees to as large as the watershed and explored the climactic and hydrologic controls over riparian evapotranspiration. Tower-based evapotranspiration measurements included one eddy covariance tower within a cottonwood forest (Populus fremontii), and one surface temperature/micrometeorological evapotranspiration tower within a willow stand (Salix lasiolepis). The technique used on the surface temperature/micrometeorological evapotranspiration tower was developed and chosen in preference to eddy covariance for a site where a considerable quantity of the riparian ecosystem to atmosphere exchange is advective. Hydrologic techniques included measurements of groundwater depth and volumetric soil moisture. We also examined multitemporal, multiresolution remotely sensed imagery to correlate evapotranspiration rates for a restored cottonwood forest with derived vegetation indices. These indices were evaluated for applicability to other restored riparian habitats within the Cosumnes River Preserve and to help guide future restoration actions as a function of hydrologic connectivity and water demand.
2016-02-10
a wide range of part, environmental and damage conditions. Best practices of using models are presented for both an eddy current NDE sizing and...to assess the reliability of NDE and SHM characterization capability. Best practices of using models are presented for both an eddy current NDE... EDDY CURRENT NDE CASE STUDY An eddy current crack sizing case study is presented to highlight examples of some of these complex characteristics of
NASA Astrophysics Data System (ADS)
McCann-Grosvenor, Kristina; Reimers, Clare E.; Sanders, Rhea D.
2014-08-01
Measurement of in situ O2 consumption and production within permeable sediments, such as those found over the Oregon-Washington inner shelf, has traditionally been done using methods that isolate the sediments from the dynamic influences of currents and wave motions. Modified from atmospheric research, the non-invasive eddy correlation technique can be used to characterize benthic boundary layer dynamics and measure O2 flux across the sediment-water interface without excluding the natural hydrodynamic flow. In 2009, eddy correlation measurements were made in 5 discrete months with varying conditions at a 30 m site off Yaquina Head, Newport, OR. The O2 flux was found to be primarily into the bed (-18±3 mmol m-2 d-1; mean±SE, n=137 15-min bursts) but was sensitive to non-steady state changes in O2 concentrations caused by the differential advection of water masses with variable mean O2 concentrations. Important contributions to O2 eddy fluxes at surface wave frequencies were seen in eddy correlation cospectra and these are interpreted as being indicative of consumption enhanced by advective transport of O2 into the bed. The sediments were deposits of fine sand with permeabilities of 1.3-4.7×10-11 m2 and wave-generated ripples. Sediment pigment and organic carbon concentrations were low (chlorophyll-α: 0.02-0.45 μg g-1, phaeophytin-α: 0.38-1.38 μg g-1 and organic carbon: 0.05-0.39% dry wt in discrete depth intervals from cores collected between March and October), but it was evident that during the summer fresh pigments were trapped in the sand and rapidly mixed over the uppermost 0-13 cm. From these results it is inferred that physical forcing associated largely with waves and currents may accentuate the role of sediment-covered inner shelf habitats as a regional O2 sink compared to the middle shelf. In effect, the action of waves and currents in the benthic boundary layer enables aerobic respiration that counterbalances the oxygenation of the water column by primary production and mixing in the surface layer.
ERIC Educational Resources Information Center
Espy, John; Selleck, Ben
This sixth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II details eddy current examination of steam generator tubing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…
Self similarity of two point correlations in wall bounded turbulent flows
NASA Technical Reports Server (NTRS)
Hunt, J. C. R.; Moin, P.; Moser, R. D.; Spalart, P. R.
1987-01-01
The structure of turbulence at a height y from a wall is affected by the local mean shear at y, by the direct effect of the wall on the eddies, and by the action of other eddies close to or far from the wall. Some researchers believe that a single one of these mechanisms is dominant, while others believe that these effects have to be considered together. It is important to understand the relative importance of these effects in order to develop closure models, for example for the dissipation or for the Reynolds stress equation, and to understand the eddy structure of cross correlation functions and other measures. The specific objective was to examine the two point correlation, R sub vv, of the normal velocity component v near the wall in a turbulent channel flow and in a turbulent boundary layer. The preliminary results show that even in the inhomogeneous turbulent boundary layer, the two-point correlation function may have self similar forms. The results also show that the effects of shear and of blocking are equally important in the form of correlation functions for spacing normal to the wall. But for spanwise spacing, it was found that the eddy structure is quire different in these near flows. So any theory for turbulent structure must take both these effects into account.
Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques
NASA Astrophysics Data System (ADS)
Todorov, E. I.; Mohr, W. C.; Lozev, M. G.
2008-02-01
Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.
The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions
NASA Astrophysics Data System (ADS)
Levy, M.; Martin, A. P.
2013-12-01
The oceanic circulation in the meso to submesoscale regime generates heterogeneity in the concentrations of biogeochemical components over these scales, horizontally between 1 and 100 km. Due to nonlinearities in the biogeochemical reactions, such as phytoplankton primary production and zooplankton grazing, this small-scale heterogeneity can lead to departure from the mean field approximation, whereby plankton reactions are evaluated from mean distributions at coarser scale. Here we explore the magnitude of these eddy reactions and compare their strength to those of the more widely studied eddy transports. We use the term eddy to denote effects arising from scales smaller than ˜ 100 km. This is done using a submesoscale permitting biogeochemical model, representative of the seasonally varying subtropical and subpolar gyres. We found that the eddy reactions associated with primary production and grazing account for ±5-30% of productivity and grazing, respectively, depending on location and time of year, and are scale dependent: two thirds are due to heterogeneities at scales 30-100 km and one third to those at scales below 30 km. Moreover, eddy productivities are systematically negative, implying that production tends to be reduced by nonlinear interactions at the mesoscale and smaller. The opposite result is found for eddy grazing, which is generally positive. The contrasting effects result from vertical advection, which negatively correlates phytoplankton and nutrients and positively correlates phytoplankton and zooplankton in the meso to submesoscale range. Moreover, our results highlight the central role played by eddy reactions for ecological aspects and the distribution of organisms and by eddy transport for biogeochemical aspects and nutrient budgets.
NASA Astrophysics Data System (ADS)
Martin, Adrian P.; Lévy, Marina; van Gennip, Simon; Pardo, Silvia; Srokosz, Meric; Allen, John; Painter, Stuart C.; Pidcock, Roz
2015-09-01
Numerous observations demonstrate that considerable spatial variability exists in components of the marine planktonic ecosystem at the mesoscale and submesoscale (100 km-1 km). The causes and consequences of physical processes at these scales ("eddy advection") influencing biogeochemistry have received much attention. Less studied, the nonlinear nature of most ecological and biogeochemical interactions means that such spatial variability has consequences for regional estimates of processes including primary production and grazing, independent of the physical processes. This effect has been termed "eddy reactions." Models remain our most powerful tools for extrapolating hypotheses for biogeochemistry to global scales and to permit future projections. The spatial resolution of most climate and global biogeochemical models means that processes at the mesoscale and submesoscale are poorly resolved. Modeling work has previously suggested that the neglected eddy reactions may be almost as large as the mean field estimates in some cases. This study seeks to quantify the relative size of eddy and mean reactions observationally, using in situ and satellite data. For primary production, grazing, and zooplankton mortality the eddy reactions are between 7% and 15% of the mean reactions. These should be regarded as preliminary estimates to encourage further observational estimates and not taken as a justification for ignoring eddy reactions. Compared to modeling estimates, there are inconsistencies in the relative magnitude of eddy reactions and in correlations which are a major control on their magnitude. One possibility is that models exhibit much stronger spatial correlations than are found in reality, effectively amplifying the magnitude of eddy reactions.
Eddy-correlation measurements of fluxes of CO 2 and H 2O above a spruce stand
NASA Astrophysics Data System (ADS)
Ibrom, A.; Schütz, C.; Tworek, T.; Morgenstern, K.; Oltchev, A.; Falk, M.; Constantin, J.; Gravenhorst, G.
1996-12-01
Atmospheric fluxes of CO 2 and H 2O above a mature spruce stand ( Picea abies (L.) Karst.) have been investigated using the eddy- correlation technique. A closed path sensor adapted to the special requirements of long-term studies has been developed and tested. Field measurements have been performed since April 1995. Estimates of fetch showed a very narrow source area dimension under instable stratification (≤ 200 m). Fetch requirements at night are not met in some directions. Energy balance closure was influenced systematically by the wind direction indicating a substantial attenuation of the vertical wind motion by the tower (up to 40 %). Even for optimal flow directions, energy balance closure was about 88%. Intercomparison of the used ultra sonic anemometer (USAT-3) with a GILL - anemometer showed systematically lower values of vertical wind speed fluctuations (13 %). Average CO 2-fluxes ranged between -13 at noon to 3 μ mol m-2, s-1 at night in summer. In November and December the stand released CO 2 on a daily basis. A preliminary estimate of the cumulative net carbon balance over the observed period of 9 months is 4-5 t, Cha-1.
Modeling space-time correlations of velocity fluctuations in wind farms
NASA Astrophysics Data System (ADS)
Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael
2018-07-01
An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John
2005-01-01
The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.
Automated eddy current analysis of materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1991-01-01
The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.
2014-02-28
A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing thismore » sensitivity by representing the unresolved eddies by their marginally resolved counterparts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morin, T. H.; Bohrer, G.; Stefanik, K. C.
Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less
Morin, T. H.; Bohrer, G.; Stefanik, K. C.; ...
2017-02-17
Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less
Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki
2014-01-01
Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.
Large Eddy Simulation of a Turbulent Jet
NASA Technical Reports Server (NTRS)
Webb, A. T.; Mansour, Nagi N.
2001-01-01
Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.
Role of eddy pumping in enhancing primary production in the ocean
NASA Technical Reports Server (NTRS)
Falkowski, Paul G.; Kolber, Zbigniew; Ziemann, David; Bienfang, Paul K.
1991-01-01
Eddy pumping is considered to explain the disparity between geochemical estimates and biological measurements of exported production. Episodic nutrient injections from the ocean into the photic zone can be generated by eddy pumping, which biological measurements cannot sample accurately. The enhancement of production is studied with respect to a cyclonic eddy in the subtropical Pacific. A pump-and-probe fluorimeter generates continuous vertical profiles of primary productivity from which the contributions of photochemical and nonphotochemical processes to fluorescence are derived. A significant correlation is observed between the fluorescence measurements and radiocarbon measurements. The results indicate that eddy pumping has an important effect on phytoplankton production and that this production is near the maximum relative specific growth rates. Based on the production enhancement observed in this case, eddy pumping increases total primary production by only 20 percent and does not account for all enhancement.
NASA Technical Reports Server (NTRS)
Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.
1996-01-01
Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.
NASA Astrophysics Data System (ADS)
Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang
2018-04-01
To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.
Large Eddy Simulations using oodlesDST
2016-01-01
Research Agency DST-Group-TR-3205 ABSTRACT The oodlesDST code is based on OpenFOAM software and performs Large Eddy Simulations of......maritime platforms using a variety of simulation techniques. He is currently using OpenFOAM software to perform both Reynolds Averaged Navier-Stokes
O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar
2013-08-01
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
Eddy correlation measurements of size-dependent cloud droplet turbulent fluxes to complex terrain
NASA Astrophysics Data System (ADS)
Vong, Richard J.; Kowalski, Andrew S.
1995-07-01
An eddy correlation technique was used to measure the turbulent flux of cloud droplets to complex, forested terrain near the coast of Washington State during the spring of 1993. Excellent agreement was achieved for cloud liquid water content measured by two instruments. Substantial downward liquid water fluxes of
1mm per 24 h were measured at night during "steady and continuous" cloud events, about twice the magnitude of those measured by Beswick etal. in Scotland. Cloud water chemical fluxes were estimated to represent up to 50% of the chemical deposition associated with precipitation at the site. An observed size-dependence in the turbulent liquid water fluxes suggested that both droplet impaction, which leads to downward fluxes, and phase change processes, which can lead to upward fluxes, consistently are important contributors to the eddy correlation results. The diameter below which phase change processes were important to observed fluxes was shown to depend upon σL
, the relative standard deviation of the liquid water content (LWC) within a 30-min averaging period. The crossover from upward to downward LW flux occurs at 8µm for steady and continuous cloud events but at
13µm for events with a larger degree of LWC variability. This comparison of the two types of cloud events suggested that evaporation was the most likely cause of upward droplet fluxes for the smaller droplets (dia<13µm) during cloud with variable LWC (σL
>0.3).
Eddy Correlation Flux Measurement System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less
NASA Technical Reports Server (NTRS)
Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay
2007-01-01
A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John; Koshti, Ajay
2006-01-01
A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.
NASA Astrophysics Data System (ADS)
Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai
2017-01-01
The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.
Casimir Interaction from Magnetically Coupled Eddy Currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intravaia, Francesco; Henkel, Carsten
2009-09-25
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
System for evaluating weld quality using eddy currents
Todorov, Evgueni I.; Hay, Jacob
2017-12-12
Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)
2001-01-01
Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.
The May October energy budget of a Scots pine plantation at Hartheim, Germany
NASA Astrophysics Data System (ADS)
Gay, L. W.; Vogt, R.; Kessler, A.
1996-03-01
This paper describes measurements of the Hartheim forest energy budget for the 157-day period of May 11 Oct. 14, 1992. Data were collected as 30-min means. Energy available to the forest was measured with net radiometers and soil heat flux discs; sensible heat exchange between the canopy and atmosphere was measured with two “One-Propeller Eddy Correlation” (OPEC) systems, and latent energy (evapotranspiration or ET) was determined as a residual in the surface energy balance equation. Net rediation, change in thermal storage, and sensible heat flux were verified by independent measurements during the Hartheim Experiment (HartX, May 11 12), and again during the “HartX2” experiment over 20 days late in the summer (Sep. 10 29). Specifically, sensible heat estimates from the two adjacent OPEC sensor sets were in close agreement throughout the summer, and in excellent agreement with measurements of sonic eddy correlation systems in May and September. The eddy correlation/energy balance technique was observed to overestimate occurrence of dew, leading to an underestimate of daily ET of about 5%. After taking dew into account, estimates of OPEC ET totaled 358 mm over the 5.1-month period, which is in quite good agreement with an ET estimate of 328 mm from a hydrologic water balance. An observed decrease in forest ET in July and August was clearly associated with low rainfall and increased soil water deficit. The OPEC system required only modest technical supervision, and generated a data yield of 99.5% over the period DOY 144 288. The documented verification and precision of this energy budget appears to be unmatched by any other long-term forest study reported to date.
Eddy current inspection of graphite fiber components
NASA Technical Reports Server (NTRS)
Workman, G. L.; Bryson, C. C.
1990-01-01
The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.
Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki
2014-01-01
Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “eddy_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme. PMID:25405472
Observational evidence of seasonality in the timing of loop current eddy separation
NASA Astrophysics Data System (ADS)
Hall, Cody A.; Leben, Robert R.
2016-12-01
Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) eddy separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC eddy separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC eddy separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC eddy separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC eddy separation events were identified in the 20-year record. Variations in the number and dates of eddy separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC eddy separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of eddy separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated spring and fall centers are March 2nd and August 23rd, respectively, with season boundaries in May and December.
A New Approach to Extract Forest Water Use Efficiency from Eddy Covariance Data
NASA Astrophysics Data System (ADS)
Scanlon, T. M.; Sulman, B. N.
2016-12-01
Determination of forest water use efficiency (WUE) from eddy covariance data typically involves the following steps: (a) estimating gross primary productivity (GPP) from direct measurements of net ecosystem exchange (NEE) by extrapolating nighttime ecosystem respiration (ER) to daytime conditions, and (b) assuming direct evaporation (E) is minimal several days after rainfall, meaning that direct measurements of evapotranspiration (ET) are identical to transpiration (T). Both of these steps could lead to errors in the estimation of forest WUE. Here, we present a theoretical approach for estimating WUE through the analysis of standard eddy covariance data, which circumvents these steps. Only five statistics are needed from the high-frequency time series to extract WUE: CO2 flux, water vapor flux, standard deviation in CO2 concentration, standard deviation in water vapor concentration, and the correlation coefficient between CO2 and water vapor concentration for each half-hour period. The approach is based on the assumption that stomatal fluxes (i.e. photosynthesis and transpiration) lead to perfectly negative correlations and non-stomatal fluxes (i.e. ecosystem respiration and direct evaporation) lead to perfectly positive correlations within the CO2 and water vapor high frequency time series measured above forest canopies. A mathematical framework is presented, followed by a proof of concept using eddy covariance data and leaf-level measurements of WUE.
Analysis and numerical modelling of eddy current damper for vibration problems
NASA Astrophysics Data System (ADS)
Irazu, L.; Elejabarrieta, M. J.
2018-07-01
This work discusses a contactless eddy current damper, which is used to attenuate structural vibration. Eddy currents can remove energy from dynamic systems without any contact and, thus, without adding mass or modifying the rigidity of the structure. An experimental modal analysis of a cantilever beam in the absence of and under a partial magnetic field is conducted in the bandwidth of 01 kHz. The results show that the eddy current phenomenon can attenuate the vibration of the entire structure without modifying the natural frequencies or the mode shapes of the structure itself. In this study, a new inverse method to numerically determine the dynamic properties of the contactless eddy current damper is proposed. The proposed inverse method and the eddy current model based on a lineal viscous force are validated by a practical application. The numerically obtained transfer function correlates with the experimental one, thus showing good agreement in the entire bandwidth of 01 kHz. The proposed method provides an easy and quick tool to model and predict the dynamic behaviour of the contactless eddy current damper, thereby avoiding the use of complex analytical models.
NASA Astrophysics Data System (ADS)
Delon, C.; Druilhet, A.; Delmas, R.; Greenberg, J.
2000-08-01
The Relaxed Eddy Accumulation (REA) technique, implemented aboard aircraft, may be used to measure a wide variety of trace gas fluxes at a regional scale. Its principle is rather simple: air is sampled at a constant rate and the flux is calculated by multiplying a constant β (0.58 in field experiment and 0.62 in simulations) by the standard deviation of the vertical velocity and by the difference between the average concentrations of the scalar (trace gas) for updrafts and downdrafts. The storage of the chemical compound in reservoirs allows for trace gas analysis in laboratory, when in situ measurement with fast response and high sensitivity sensors are not available. The REA method was implemented on the Avion de Recherche Atmosphérique et de Télédétection aircraft during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO) campaign. The main requirement for accurate flux determination is the measurement of the vertical component of wind velocity in real time. A simulation technique was developed to evaluate the performance of an aircraft REA. The influence of the time lag between the vertical velocity (W) measurement and REA control was tested, as well as the offset of W, the threshold, and the filtering imposed on W. Correction factors, used in a deployment of aircraft REA, were deduced from this study. An additional simulation was performed to evaluate the influence of spatial or temporal drifts on the scalar. The simulation showed that the REA method is not more disturbed than the Eddy Correlation method by low frequencies of physical origin, such as topography. The REA method was used during EXPRESSO for the measurement of isoprene fluxes over the wet savanna and the evergreen rain forest.
USDA-ARS?s Scientific Manuscript database
Micrometeorological methods and ecosystem-scale energy and mass flux density measurements have become increasingly important in soil, agricultural, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Eddy cov...
Eddy current system for inspection of train hollow axles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard
2014-02-18
The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlueter, R.D.; Halbach, K.
1991-12-04
This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.
Procedure for Automated Eddy Current Crack Detection in Thin Titanium Plates
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.
2012-01-01
This procedure provides the detailed instructions for conducting Eddy Current (EC) inspections of thin (5-30 mils) titanium membranes with thickness and material properties typical of the development of Ultra-Lightweight diaphragm Tanks Technology (ULTT). The inspection focuses on the detection of part-through, surface breaking fatigue cracks with depths between approximately 0.002" and 0.007" and aspect ratios (a/c) of 0.2-1.0 using an automated eddy current scanning and image processing technique.
2016-02-10
using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models
Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic
2014-01-01
This paper introduce a fast and efficient solver for simulating the induced (eddy) current distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show eddy current in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.
Eddy current correction in volume-localized MR spectroscopy
NASA Technical Reports Server (NTRS)
Lin, C.; Wendt, R. E. 3rd; Evans, H. J.; Rowe, R. M.; Hedrick, T. D.; LeBlanc, A. D.
1994-01-01
The quality of volume-localized magnetic resonance spectroscopy is affected by eddy currents caused by gradient switching. Eddy currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to eddy currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same eddy current characteristics as the original signal without relaxation weighting. The authors also studied a new eddy current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by eddy currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. Eddy current distortions were corrected, allowing quantitative measurement of structures such as the -CH = CH- component, which is otherwise undetectable.
Mesoscale eddies and T richodesmium spp. distributions in the southwestern North Atlantic
McGillicuddy, Dennis J.; Flierl, Glenn R.; Davis, Cabell S.; Dyhrman, Sonya T.; Waterbury, John B.
2015-01-01
Abstract Correlations of Trichodesmium colony abundance with the eddy field emerged in two segments of Video Plankton Recorder observations made in the southwestern North Atlantic during fall 2010 and spring 2011. In fall 2010, local maxima in abundance were observed in cyclones. We hypothesized surface Ekman transport convergence as a mechanism for trapping buoyant colonies in cyclones. Idealized models supported the potential of this process to influence the distribution of buoyant colonies over time scales of several months. In spring 2011, the highest vertically integrated colony abundances were observed in anticyclones. These peaks in abundance correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. These contrasting results in cyclones and anticyclones highlight distinct mechanisms by which mesoscale eddies can influence the abundance and distribution of Trichodesmium populations of the southwestern North Atlantic. PMID:26937328
Venturi Air-Jet Vacuum Ejector For Sampling Air
NASA Technical Reports Server (NTRS)
Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.
1990-01-01
Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.
Automated eddy current analysis of materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
This research effort focused on the use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures. A major emphasis was on incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) has been a goal in the overall concept and is essential for the final implementation for expert system interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of the flaw can be performed. In eddy current or any other expert systems used to analyze signals in real time in a production environment, it is important to simplify computational procedures as much as possible. For that reason, we have chosen to use the measured resistance and reactance values for the preliminary aspects of this work. A simple computation, such as phase angle of the signal, is certainly within the real time processing capability of the computer system. In the work described here, there is a balance between physical measurements and finite element calculations of those measurements. The goal is to evolve into the most cost effective procedures for maintaining the correctness of the knowledge base.
Eddy current techniques for super duplex stainless steel characterization
NASA Astrophysics Data System (ADS)
Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.
2015-08-01
Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.
Hydrodynamic effects on cell growth in agitated microcarrier bioreactors
NASA Technical Reports Server (NTRS)
Cherry, Robert S.; Papoutsakis, E. Terry
1988-01-01
The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.
NASA Astrophysics Data System (ADS)
Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.
2016-12-01
The subtropical humid mid-south region produces nearly 75% of US rice. Rice cultivation contributes higher amounts of GHG emissions (CO2, CH4, and N2O) due to flooded field conditions. Accurate measurements of gas fluxes are important to regional and global climate models. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. These measurements were collected in two NE Arkansas commercial rice fields in 2015 and 2016 production seasons under two irrigation treatments: Alternate Wetting and Drying (AWD) and continuous flood (CF) irrigation. AWD can reduce GHG emissions and water use compared to CF by introducing aerobic conditions that reduce methanogen activity and drained conditions decrease water loss due to seepage or evapotranspiration. N2O was measured only with vented chambers, while CO2 and CH4 were measured with both techniques. In the vented flux chamber technique, headspace gas sampling occurred at least once a week every 20 minutes for one hour of chamber closure. Gas Chromatograph equipped with ECD and FID were used to analyze gas concentrations. Eddy covariance used high frequency measurements wind and concentration measurements to determine fluxes. Chamber measurements were found to be more sensitive during seedling and early vegetative growth while eddy covariance was more sensitive after canopy closure during mid-vegetative to reproductive growth. Unlike eddy covariance which measured net CO2 exchange, flux chamber method measured only CO2 ecosystem respiration because flux measurements occurred using an opaque chamber material.
Toward large eddy simulation of turbulent flow over an airfoil
NASA Technical Reports Server (NTRS)
Choi, Haecheon
1993-01-01
The flow field over an airfoil contains several distinct flow characteristics, e.g. laminar, transitional, turbulent boundary layer flow, flow separation, unstable free shear layers, and a wake. This diversity of flow regimes taxes the presently available Reynolds averaged turbulence models. Such models are generally tuned to predict a particular flow regime, and adjustments are necessary for the prediction of a different flow regime. Similar difficulties are likely to emerge when the large eddy simulation technique is applied with the widely used Smagorinsky model. This model has not been successful in correctly representing different turbulent flow fields with a single universal constant and has an incorrect near-wall behavior. Germano et al. (1991) and Ghosal, Lund & Moin have developed a new subgrid-scale model, the dynamic model, which is very promising in alleviating many of the persistent inadequacies of the Smagorinsky model: the model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model has been remarkably successful in prediction of several turbulent and transitional flows. We plan to simulate turbulent flow over a '2D' airfoil using the large eddy simulation technique. Our primary objective is to assess the performance of the newly developed dynamic subgrid-scale model for computation of complex flows about aircraft components and to compare the results with those obtained using the Reynolds average approach and experiments. The present computation represents the first application of large eddy simulation to a flow of aeronautical interest and a key demonstration of the capabilities of the large eddy simulation technique.
Interaction Between Eddies and Mean Flow in Jupiter's Atmosphere: Analysis of Cassini Imaging Data
NASA Technical Reports Server (NTRS)
Salyk, Colette; Ingersoll, Andrew P.; Lorre, Jean; Vasavada, Ashwin; DelGenio, Anthony D.
2006-01-01
Beebe et al. [Beebe, R.F., et al., 1980. Geophys. Res. Lett. 17, 1-4] and Ingersoll et al. [Ingersoll, A.P., et al., 1981. J. Geophys. Res. 86, 8733-8743] used images from Voyagers 1 and 2 to analyze the interaction between zonal winds and eddies in Jupiter's atmosphere. They reported a high positive correlation between Jupiter's eddy momentum flux, pu'v', and the variation of zonal velocity with latitude, du/dy. This correlation implied a surprisingly high rate of conversion of energy from eddies to zonal flow: approx. 1.5-3.0 W/sq m, a value more than 10% of Jupiter s thermal flux emission. However, Sromovsky et al. [Sromovsky, L.A., et al., 1982. J. Atmos. Sci. 39,1413-1432] argued that possible biases in the analysis could have caused an artificially high correlation. In addition, significant differences in the derived eddy flux between datasets put into question the robustness of any one result. We return to this long-standing puzzle using images of Jupiter from the Cassini flyby of December 2000. Our method is similar to previous analyses, but utilizes an automatic feature tracker instead of the human eye. The number of velocity vectors used in this analysis is over 200,000, compared to the 14,000 vectors used by Ingersoll et al. We also find a positive correlation between u'v' and du/dy and derive a global average power per unit mass, u'v' du/dy, ranging from (7.1-12.3) x 10(exp -5)W/kg. Utilizing Ingersoll et al.'s estimate of the mass per unit area involved in the transport, this would imply a rate of energy conversion of approx.0.7-1.2 W/sq m. We discuss the implications of this result and employ several tests to demonstrate its robustness.
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.
2008-01-01
Thick, multi-layer aluminum structure has been widely used in aircraft design in critical wing splice areas. The multi-layer structure generally consists of three or four aluminum layers with different geometry and varying thickness, which are held together with fasteners. The detection of cracks under fasteners with ultrasonic techniques in subsurface layers away from the skin is impeded primarily by interlayer bonds and faying sealant condition. Further, assessment of such sealant condition is extremely challenging in terms of complexity of structure, limited access, and inspection cost. Although Eddy current techniques can be applied on in-service aircraft from the exterior of the skin without knowing sealant condition, the current eddy current techniques are not able to detect defects with wanted sensitivity. In this work a series of low frequency eddy current probes have been designed, fabricated and tested for this application. A probe design incorporating a shielded magnetic field sensor concentrically located in the interior of a drive coil has been employed to enable a localized deep diffusion of the electromagnetic field into the part under test. Due to the required low frequency inspections, probes have been testing using a variety of magnetic field sensors (pickup coil, giant magneto-resistive, anisotropic magneto-resistive, and spin-dependent tunneling). The probe designs as well as capabilities based upon a target inspection for sub-layer cracking in an airframe wing spar joint is presented.
Aquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O2 Sensors
Holtappels, Moritz; Noss, Christian; Hancke, Kasper; Cathalot, Cecile; McGinnis, Daniel F.; Lorke, Andreas; Glud, Ronnie N.
2015-01-01
In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m-2 d-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. For a sensor orientation typically used in field studies, the artificial flux could be predicted using a simplified mathematical model. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. PMID:25635679
Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…
USDA-ARS?s Scientific Manuscript database
Eddy covariance (EC) is a well-established, non-intrusive observational technique that has long been used to measure the net carbon balance of numerous ecosystems including crop lands for perennial crops such as orchards and vineyards, and pasturelands. While EC measures net carbon fluxes well, it ...
Eddy Current for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.
2014-01-01
The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The eddy current technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stressmore » corrosion cracking (SCC). Results are presented that demonstrate that eddy current can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from eddy current measurements.« less
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.
2008-01-01
As part of the health assessment of flight spare 40in diameter Kevlar composite overwrapped pressure vessels (COPVs) SN002 and SN027 an eddy current characterization of the composite and liner thickness change during pressurization was requested under WSTF-TP-1085-07.A, "Space Shuttle Orbiter Main Propulsion System P/N MC282-0082-0101 S/N 002 and Orbital Maneuvering System P/N MC282-0082-001 S/N 027 COPV Health Assessment." The through the thickness strains have been determined to be an important parameter in the analysis of the reliability and likelihood of stress rupture failure. Eddy current techniques provide a means to measure these thicknesses changes based upon the change in impedance of an eddy current sensor mounted on the exterior of the vessel. Careful probe and technique design have resulted in the capability to independently measure the liner and overwrap thickness changes to better than +/- 0.0005 in. at each sensor location. Descriptions of the inspection system and test results are discussed.
Accidental Turbulent Discharge Rate Estimation from Videos
NASA Astrophysics Data System (ADS)
Ibarra, Eric; Shaffer, Franklin; Savaş, Ömer
2015-11-01
A technique to estimate the volumetric discharge rate in accidental oil releases using high speed video streams is described. The essence of the method is similar to PIV processing, however the cross correlation is carried out on the visible features of the efflux, which are usually turbulent, opaque and immiscible. The key step in the process is to perform a pixelwise time filtering on the video stream, in which the parameters are commensurate with the scales of the large eddies. The velocity field extracted from the shell of visible features is then used to construct an approximate velocity profile within the discharge. The technique has been tested on laboratory experiments using both water and oil jets at Re ~105 . The technique is accurate to 20%, which is sufficient for initial responders to deploy adequate resources for containment. The software package requires minimal user input and is intended for deployment on an ROV in the field. Supported by DOI via NETL.
NASA Astrophysics Data System (ADS)
Dandapat, S.; Chakraborty, A.
2016-12-01
A comprehensive study on the statistics and variability of mesoscale eddies in the North Indian Ocean (NIO) are investigated using satellite altimetry data for the period of 1993-2014. A hybrid algorithm based on the physical and geometrical properties of mesoscale eddies is applied to detect the eddies and track their propagation. The potential eddies with radius larger than 50 km and lifespan longer than 30 days are considered for the analysis. The NIO consists of two unique tropical basins with the high number of eddy generations and activity: the Arabian Sea (AS) and the Bay of Bengal (BOB). It is noticed that the occurrence of cyclonic eddies (CEs) are found to be significant in AS, while the anticyclonic eddies (ACEs) dominate the BOB. In both the oceans eddies mostly propagate westward. The AS eddies showed the higher mean values, propagation speed, mean radius, mean lifetime than BOB eddies. In the AS, it is found that eddies formed on the western side of the basin persist longer and move towards north where as the number of eddies in the eastern coast of the basin is fewer and short lived. In the BOB, two highly eddy productive zones are identified: offshore of Visakhapatnam and the northern part of western BOB. The occurrence of ACEs dominate the offshore of Visakhapatnam, whereas the CEs in the northern part of western BOB. The ACEs are larger but the CEs have longer lifetime and are more energetic in the BOB. Along with the statistical properties, we also examined the eddy temporal variability in seasonal scale and their structural properties from ARGO data in the NIO. The seasonal variations are found to be significant in AS and BOB and in both the oceans significant correlation has been found between the eddy genesis and local wind stress curl. The strong positive wind stress curl during summer favors the formation of more CEs. In general, both ACEs and CEs in the NIO have single-core vertical structure with the core at a depth of about 100-200 dbar.
Detection of Anomalous Machining Damages in Inconel 718 and TI 6-4 by Eddy Current Techniques
NASA Astrophysics Data System (ADS)
Lo, C. C. H.; Shimon, M.; Nakagawa, N.
2010-02-01
This paper reports on an eddy current (EC) study aimed at detecting anomalous machining damages in Inconel 718 and Ti 6-4 samples, including (i) surface discontinuities such as re-depositing of chips onto the machined surface, and (ii) microstructural damages manifested as a white surface layer and a subsurface layer of distorted grains, typically tens of microns thick. A series of pristine and machine-damaged coupons were studied by EC scans using a differential probe operated at 2 MHz to detect discontinuous surface anomalies, and by swept high frequency EC (SHFEC) measurements from 0.5 MHz to 65.5 MHz using proprietary detection coils to detect surface microstructural damages. In general, the EC c-scan data from machine-damaged surfaces show spatial variations with larger standard deviations than those from the undamaged surfaces. In some cases, the c-scan images exhibit characteristic bipolar indications in good spatial correlation with surface anomalies revealed by optical microscopy and laser profilometry. Results of the SHFEC measurements indicate a reduced near-surface conductivity of the damaged surfaces compared to the undamaged surfaces.
NASA Astrophysics Data System (ADS)
Sunday, Katie Jo
Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical milling and analyzed for magnetic core loss dependence on particle size, cure temperature, and microstructure of both coating and core powder. We present a significant increase in core loss related to eddy current loss from coating particles sintering and Fe grain growth. Lastly, a more resistive coating material, NiZnCu-ferrite, is applied for improved resistivity, which leads to lower eddy current loss and improved magnetic performance. By highlighting the importance of microstructure and composition on magnetic properties, a closer look at interfacial features and local microstrain are necessary and accomplished in this work. Future developments of ferrite-based SMC coatings are required to transform the use of electromagnetic devices in today's society.
USDA-ARS?s Scientific Manuscript database
Understanding crop water use is critical to being able to determine crop water requirements and when water is limiting crop productivity. There have been many different techniques used to quantify crop water use and the eddy covariance approach is one method that has the capacity to measure crop wat...
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Williams, Phillip; Simpson, John
2007-01-01
The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.
Eddy Current Rail Inspection Using AC Bridge Techniques.
Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng
2013-01-01
AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method.
Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients
Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.
2011-01-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614
Quantification and compensation of eddy-current-induced magnetic-field gradients.
Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R
2011-09-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.
Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah
2016-01-01
The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305
Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah
2016-02-16
The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1969-07-01
The Fifth International Conference on Nondestructive Testing was held in Montreal, Canada, for the purpose of promoting international collaboration in all matters related to the development and use of nondestructive test methods. A total of 82 papers were selected for presentation. Session titles included: evaluation of material quality; ultrasonics - identification and measurements; thermal methods; testing of welds; visual aids in nondestructive testing; measurements of stress and elastic properties; magnetic and eddy-current methods; surface methods and neutron radiography; standardization - general; ultrasonics at elevated temperatures; applications; x-ray techniques; radiography; ultrasonic standardization; training and qualification; and, correlation of weld defects.
NASA Technical Reports Server (NTRS)
Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari
1995-01-01
We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.
Characterizing the performance of eddy current probes using photoinductive field-mapping
NASA Astrophysics Data System (ADS)
Moulder, John C.; Nakagawa, Norio
1992-12-01
We present a new method for characterizing the performance of eddy current probes by mapping their electromagnetic fields. The technique is based on the photoinductive effect, the change in the impedance of an eddy current probe induced by laser heating of the material under the probe. The instrument we developed maps a probe's electric field distribution by scanning an infrared laser beam over a thin film of gold lying underneath the probe. Measurements of both photoinductive signals and flaw signals for a series of similar probes demonstrates that the impedance change caused by an electrical-discharge-machined notch or a fatigue crack is proportional to the strength of the photoinductive signal. Thus, photoinductive measurements can supplant the use of artifact standards to calibrate eddy current probes.
Software compensation of eddy current fields in multislice high order dynamic shimming.
Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E
2011-06-01
Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.
Removing Wave Artifacts from Eddy Correlation Data
NASA Astrophysics Data System (ADS)
Neumann, Andreas; Brand, Andreas
2017-04-01
The German Wadden Sea is an extensive system of back-barrier tidal basins along the margin of the southern North Sea. Due to their high productivity and the strong retention potential of labile organic carbon high mineralization rates are expected in this system. Since the sediment bed is sandy, the oxygen fluxes across the sediment-water interface (SWI) may be enhanced by strong tidal currents as well as by wind-induced surface waves. In order to measure oxygen fluxes in-situ without disturbance of the sediment, the Eddy Correlation method (ECM) was introduced to aquatic geoscience by Berg et al. (2003). The method is based on correlating turbulent fluctuations of oxygen concentration and vertical velocity measured at high frequency above the SWI. The method integrates over spatial heterogeneities and allows the observation of total benthic oxygen fluxes in complex systems where other methods like flux chamber deployments and oxygen profile measurements in the sediment fail. Therefore, the method should also reflect effects like the enhancement of oxygen fluxes by porewater advection driven by waves and currents over sandy sediments. Unfortunately the ECM suffers from wave contamination due to stirring sensitivity of the electrodes, spatial separation between the oxygen electrode and the location of velocity measurement as well as by a tilt of the measurement setup at the deployment side. In order to correct for this wave contamination we tested the method of spectral reconstruction initially introduced by Bricker and Monismith (2007) for the determination of Reynolds-stresses in wave-affected environments. In short, this method attempts to remove the wave signal from the Power spectral densities of oxygen concentration and vertical velocity fluctuations by cutting off the wave peak in these spectra. The wave contribution to the co-spectrum between both quantities is then reconstructed by assuming that the phasing in the wave band is dominated by the waves. Based on the example of the North-Frisian Wadden Sea we will discuss the potentials and limits of this method. References: Berg, P., H. Roy, F. Janssen, V. Meyer, B. Jorgensen, M. Huettel, and D. de Beer (2003), Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique, Marine Ecology-Progress Series, 261, 75-83, doi:10.3354/meps261075. Bricker, J. D., and S. G. Monismith (2007), Spectral wave turbulence decomposition, J. Atmos. Oceanic Technol., 24(8), 1479-1487, doi:10.1175/JTECH2066.1.
Satellite-based modeling of gross primary production in an evergreen needleleaf forest
Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III
2004-01-01
The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...
Development of eddy current probe for fiber orientation assessment in carbon fiber composites
NASA Astrophysics Data System (ADS)
Wincheski, Russell A.; Zhao, Selina
2018-04-01
Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.
Methane Emissions Estimation from a Dairy Farm using Eddy Covariance Measurements
NASA Astrophysics Data System (ADS)
Guo, Q.; Richardson, S.; Sokol, A. B.; Lauvaux, T.; Hristov, A. N.; Hong, B.; Davis, K. J.
2017-12-01
Dairy farms are a significant source of methane emissions. Accurate quantification of these emissions is important for evaluating and ultimately minimizing the impact of agricultural activity on climate change. We have employed the eddy covariance (EC) technique to attempt to quantify total CH4 emissions from a dairy farm, and compare these emissions to inventory estimates. An eddy covariance (EC) sensor was deployed to monitor CH4 emissions at one dairy manure storage facility from July 2016 through the winter of 2017, at a second manure storage facility from April to mid-July 2017, and at dairy barns during July and August of 2017. A flux footprint model was used to convert the observed methane fluxes into estimates of emissions per unit area from these sources. During April and May, CH4 fluxes from the second lagoon were relatively small and slowly increased with daily mean values growing from 0.45 to 10.75 μmol m-2 s-1. June to mid-July fluxes increased rapidly with a peak daily mean emission of 77.97 μmol m-2 s-1. The fluxes were positively correlated with air temperature. Comparison of emissions from the two lagoons, comparison to an inventory estimate of emissions from these lagoons, and evaluation of methane emissions from the barns are underway. These results will be combined to evaluate total farm emissions, and to test our understanding of the factors that govern emissions from dairy operations.
Novel Techniques for Pulsed Field Gradient NMR Measurements
NASA Astrophysics Data System (ADS)
Brey, William Wallace
Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find application in research areas ranging from functional imaging to NMR microscopy.
Turbulent Eddies in a Compressible Jet in Crossflow Measured using Pulse-Burst PIV
NASA Astrophysics Data System (ADS)
Beresh, Steven; Wagner, Justin; Henfling, John; Spillers, Russell; Pruett, Brian
2015-11-01
Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely-spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to convect through the field of view at repeatable spacings. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.
Parameter studies on the energy balance closure problem using large-eddy simulation
NASA Astrophysics Data System (ADS)
De Roo, Frederik; Banerjee, Tirtha; Mauder, Matthias
2017-04-01
The imbalance of the surface energy budget in eddy-covariance measurements is still a pending problem. A possible cause is the presence of land surface heterogeneity. Heterogeneities of the boundary layer scale or larger are most effective in influencing the boundary layer turbulence, and large-eddy simulations have shown that secondary circulations within the boundary layer can affect the surface energy budget. However, the precise influence of the surface characteristics on the energy imbalance and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, and we focus on idealized heterogeneity by considering spatially variable surface fluxes. The surface fluxes vary locally in intensity and these patches have different length scales. The main focus lies on heterogeneities of length scales of the kilometer scale and one decade smaller. For each simulation, virtual measurement towers are positioned at functionally different positions. We discriminate between the locally homogeneous towers, located within land use patches, with respect to the more heterogeneous towers, and find, among others, that the flux-divergence and the advection are strongly linearly related within each class. Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature. In additional simulations with a large number of virtual towers, we investigate higher order correlations, which can be linked to secondary circulations. In a companion presentation (EGU2017-2130) these correlations are investigated and confirmed with the help of micrometeorological measurements from the TERENO sites where the effects of landscape scale surface heterogeneities are deemed to be important.
On the Space-Time Structure of Sheared Turbulence
NASA Astrophysics Data System (ADS)
de Maré, Martin; Mann, Jakob
2016-09-01
We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according to rapid distortion theory, and Kristensen's longitudinal coherence model, in which eddies are simultaneously advected by larger eddies as well as decaying. The model is compared with data from both observations and large-eddy simulations and is found to predict spatial correlations comparable to the Mann spectral tensor and temporal coherence better than any known model. Within the developed framework, Lagrangian two-point correlations in space and time are also predicted, and the predictions are compared with measurements of isotropic turbulence. The required input to the models, which are formulated as spectral velocity tensors, can be estimated from measured spectra or be derived from the rate of dissipation of turbulent kinetic energy, the friction velocity and the mean shear of the flow. The developed models can, for example, be used in wind-turbine engineering, in applications such as lidar-assisted feed forward control and wind-turbine wake modelling.
NASA Astrophysics Data System (ADS)
Curreli, M.; Montaldo, N.; Oren, R.
2016-12-01
Typically, during the dry summers, Mediterranean ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. In these conditions the combined use of sap flow measurements, based on Granier's thermo-dissipative probes, eddy covariance technique and soil water content measurements provides a robust estimation of evapotranspiration (ET). An eddy covariance micrometeorological tower, thermo-dissipative probes based on the Granier technique and TDR sensors have been installed in the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. 33 sap flow sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics (tree size, exposition to wind, solar radiation and soil depth). Sap flow measurements show the significantly impacts on transpiration of soil moisture, radiation and vapor pressure deficit (VPD). In addition ET is strongly influenced by the tree position into the clump. Results show a significant difference in sap flow rate for the south exposed trees compared to inside clump and north exposed trees. Using an innovative scaling procedure, the transpiration calculated from sap flow measurements have been compared to the eddy covariance ET. Sap flow measurements show night time uptake allows the recharge of the stem capacity, depleted during the day before due to transpiration. The night uptake increases with increasing VPD and transpiration but surprisingly it is independent to soil water content. Soil moisture probes allow monitoring spatial and temporal dynamics of water content at different soil depth and distance to the trees, and estimating its correlation with hydraulic lift. During the light hours soil moisture is depleted by roots to provide the water for transpiration and during night time the lateral roots transfer water from pasture in conjunction whit deep roots uptake to recharge water in the stem.
NASA Astrophysics Data System (ADS)
Shokralla, Shaddy Samir Zaki
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density
NASA Astrophysics Data System (ADS)
Pilinski, M.; Crowley, G.
2014-12-01
We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.
Seasonal variability in global eddy diffusion and the effect on neutral density
NASA Astrophysics Data System (ADS)
Pilinski, M. D.; Crowley, G.
2015-04-01
We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.
Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Hutchins, N.; Hambleton, W. T.; Marusic, Ivan
2005-10-01
This work can be viewed as a reprise of Head & Bandyopadhyay's (J. Fluid Mech. vol. 107, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45(°) and 135(°) to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Re_{tau} {≈} 690-2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135(°) plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135(°) plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear to be ‘attached’ to the buffer region, or ‘detaching’ from it. The demarcation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall awake description of turbulent boundary layers.
Improved NDI techniques for aircraft inspections
NASA Astrophysics Data System (ADS)
Hagemaier, Donald J.; Wilson, Dwight
1996-11-01
Through the use of an 'integrated product team' approach and new inspection techniques incorporating the latest in imaging capabilities and automation, the costs of some man- power intensive tasks can now be drastically reduced. Also, through the use of advanced eddy current techniques, the detectable size of cracks under flush-head fasteners can be reduced while maintaining a reliable inspection. Early in this decade, the FAA Technical Center and NASA LaRC formulated an aging aircraft research plan. The unique aspect about the research is that it is driven by the aircraft manufacturers and airlines in order to center only on those areas in which help is needed and to keep it focused. Once developed, the manufacturer works with the FAA Validation Center at Sandia National Labs., the airline, and the researcher to transfer technology to the field. This article describes the evaluation and results obtained using eddy current technology to determine the minimum detectable crack size under installed flush-head fasteners. Secondly, it describes the integrated efforts of engineers at McDonnell Douglas Aerospace and Northwest Airlines in the successful application of MAUS eddy current C-scanning of the DC-10 circumferential and axial crown splices. The eddy current C-scanning greatly reduced the man-hour effort required for the existing radiographic inspection. Thirdly, it describes the use of a novel ultrasonic technique coupled to a scanner and graphics for the detection and quantification of corrosion thinning and stress corrosion cracking of the DC-9 lower wing tee cap. This successful effort resulted from a rather large integrated task team. It also results in a vast man-hour savings over the existing internal visual inspection.
De Geeter, Nele; Crevecoeur, Guillaume; Dupre, Luc
2011-02-01
In many important bioelectromagnetic problem settings, eddy-current simulations are required. Examples are the reduction of eddy-current artifacts in magnetic resonance imaging and techniques, whereby the eddy currents interact with the biological system, like the alteration of the neurophysiology due to transcranial magnetic stimulation (TMS). TMS has become an important tool for the diagnosis and treatment of neurological diseases and psychiatric disorders. A widely applied method for simulating the eddy currents is the impedance method (IM). However, this method has to contend with an ill conditioned problem and consequently a long convergence time. When dealing with optimal design problems and sensitivity control, the convergence rate becomes even more crucial since the eddy-current solver needs to be evaluated in an iterative loop. Therefore, we introduce an independent IM (IIM), which improves the conditionality and speeds up the numerical convergence. This paper shows how IIM is based on IM and what are the advantages. Moreover, the method is applied to the efficient simulation of TMS. The proposed IIM achieves superior convergence properties with high time efficiency, compared to the traditional IM and is therefore a useful tool for accurate and fast TMS simulations.
Eddy current heating in magnetic refrigerators
NASA Technical Reports Server (NTRS)
Kittel, Peter
1990-01-01
Eddy current heating can be a significant source of parasitic heating in low temperature magnetic refrigerators. To study this problem a technique to approximate the heating due to eddy currents has been developed. A formula is presented for estimating the heating within a variety of shapes commonly found in magnetic refrigerators. These shapes include circular, square, and rectangular rods; cylindrical and split cylindrical shells; wire loops; and 'coil foil. One set of components evaluated are different types of thermal radiation shields. This comparison shows that a simple split shield is almost as effective (only 23 percent more heating) as using a shield, with the same axial thermal conductivity, made of 'coil foil'.
High resolution eddy current microscopy
NASA Astrophysics Data System (ADS)
Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.
2001-01-01
We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.
NASA Astrophysics Data System (ADS)
Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.
2015-12-01
Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a footprint model. Our results indicate diurnality of ecosystem level N2O emissions may have important consequences for both field and global scale budgets and highlight the need of more continuous measurements for future investigation.
NASA Astrophysics Data System (ADS)
Burba, George; Madsen, Rod; Feese, Kristin
2013-04-01
The Eddy Covariance method is a micrometeorological technique for direct high-speed measurements of the transport of gases, heat, and momentum between the earth's surface and the atmosphere. Gas fluxes, emission and exchange rates are carefully characterized from single-point in-situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Since the early 1990s, this technique has been widely used by micrometeorologists across the globe for quantifying CO2 emission rates from various natural, urban and agricultural ecosystems [1,2], including areas of agricultural carbon sequestration. Presently, over 600 eddy covariance stations are in operation in over 120 countries. In the last 3-5 years, advancements in instrumentation and software have reached the point when they can be effectively used outside the area of micrometeorology, and can prove valuable for geological carbon capture and sequestration, landfill emission measurements, high-precision agriculture and other non-micrometeorological industrial and regulatory applications. In the field of geological carbon capture and sequestration, the magnitude of CO2 seepage fluxes depends on a variety of factors. Emerging projects utilize eddy covariance measurement to monitor large areas where CO2 may escape from the subsurface, to detect and quantify CO2 leakage, and to assure the efficiency of CO2 geological storage [3,4,5,6,7,8]. Although Eddy Covariance is one of the most direct and defensible ways to measure and calculate turbulent fluxes, the method is mathematically complex, and requires careful setup, execution and data processing tailor-fit to a specific site and a project. With this in mind, step-by-step instructions were created to introduce a novice to the conventional Eddy Covariance technique [9], and to assist in further understanding the method through more advanced references such as graduate-level textbooks, flux networks guidelines, journals and technical papers. A free open-source software package with a user-friendly interface was developed accordingly for computing final fully corrected CO2 emission numbers [10]. The presentation covers highlights of the eddy covariance method, its application to geological carbon sequestration, key requirements, instrumentation and software, and reviews educational resources particularly useful for carbon sequestration research. References: [1] Aubinet, M., T. Vesala, and D. Papale (Eds.), 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer-Verlag, 442 pp. [2] Foken T., 2008. Micrometeorology. Springer-Verlag, 308 pp. [4] Finley, R., 2009. An Assessment of Geological Carbon Sequestration in the Illinois Basin Overview of the Decatur-Illinois Basin Site. MGSC, http://www.istc.illinois.edu/info/govs_awards_docs/2009-GSA-1100-Finley.pdf [5] Liu, G. (Ed.), 2012. Greenhouse Gases: Capturing, Utilization and Reduction. Intech, 338 pp. [6] LI-COR Biosciences, 2011. Surface Monitoring for Geologic Carbon Sequestration Monitoring: Methods, Instrumentation, and Case Studies. LI-COR Biosciences, Pub. 980-11916, 15 pp. [7] Benson, S., 2006. Monitoring carbon dioxide sequestration in deep geological formations for inventory verification and carbon credits, SPE-102833, Presentation [8] Lewicki, J., G. Hilley, M. Fischer, L. Pan, C. Olden-burg, C. Dobeck, and L. Spangler, 2009.Eddy covariance observations of leakage during shallow subsurface CO2 releases. Journal of Geophys Res, 114: D12302 [9] Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences, 328 pp. [10] LI-COR Biosciences, 2012. EddyPro 4.0: Help and User's Guide. Lincoln, NE, 208 pp.
Catalina Eddy as revealed by the historical downscaling of reanalysis
NASA Astrophysics Data System (ADS)
Kanamitsu, Masao; Yulaeva, Elena; Li, Haiqin; Hong, Song-You
2013-08-01
Climatological properties, dynamical and thermodynamical characteristics of the Catalina Eddy are examined from the 61 years NCEP/NCAR Reanalysis downscaled to hourly 10 km resolution. The eddy is identified as a mesoscale cyclonic circulation confined to the Southern California Bight. Pattern correlation of wind direction against the canonical Catalina Eddy is used to extract cases from the downscaled analysis. Validation against published cases and various observations confirmed that the downscaled analysis accurately reproduces Catalina Eddy events. A composite analysis of the initiation phase of the eddy indicates that no apparent large-scale cyclonic/anti-cyclonic large-scale forcing is associated with the eddy formation or decay. The source of the vorticity is located at the coast of the Santa Barbara Channel. It is generated by the convergence of the wind system crossing over the San Rafael Mountains and the large-scale northwesterly flow associated with the subtropical high. This vorticity is advected towards the southeast by the northwesterly flow, which contributes to the formation of the streak of positive vorticity. At 6 hours prior to the mature stage, there is an explosive generation of positive vorticity along the coast, coincident with the phase change of the sea breeze circulation (wind turning from onshore to offshore), resulting in the convergence all along the California coast. The generation of vorticity due to convergence along the coast together with the advection of vorticity from the north resulted in the formation of southerly flow along the coast, forming the Catalina Eddy. The importance of diurnal variation and the lack of large-scale forcing are new findings, which are in sharp contrast to prior studies. These differences are due to the inclusion of many short-lived eddy events detected in our study which have not been included in other studies.
Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements
NASA Astrophysics Data System (ADS)
Chang, Ming-Huei; Jan, Sen; Mensah, Vigan; Andres, Magdalena; Rainville, Luc; Yang, Yiing Jang; Cheng, Yu-Hsin
2018-01-01
Variability of the Kuroshio east of Taiwan was observed at a cross-stream transect 50 km south of the PCM-1 line with an array of three moored ADCPs measuring for 23 months, supplemented with eleven repeated shipboard surveys. Observations of the Kuroshio's velocity structure reveal the absence of an obvious regular seasonal signal, but significant variability at 70-200 day period for both maximum velocity axis migration and transport due to interactions with mesoscale eddies. Empirical orthogonal function (EOF) analysis shows the migration and transport modes explain 46% and 29% of the total variance, respectively, which is in contrast to the findings at the PCM-1 line where the transport mode explained more variance than did the migration mode. The Kuroshio transport in the upper 500 m across a 150 km section is 17.2 Sv with a standard deviation of 5 Sv. The estimated Kuroshio transport is 4.3 Sv lower than that reported for the PCM-1 line, likely due to the interannual variations related to abundance of mesoscale eddies in the Subtropical Counter Current (STCC) region. Transport variability east of Taiwan is mostly caused by Kuroshio-eddy interactions. When single anticyclonic (cyclonic) eddies encounter the Kuroshio, they enhance (reduce) poleward transport, presumably by increasing (decreasing) the sea level anomaly (SLA) along the eastern flank of the Kuroshio (correlation = 0.82). When a pair of eddies impinges on the Kuroshio, the upstream confluence and diffluence caused by the dipole eddies increases and decreases the Kuroshio transport, respectively. Furthermore, the eastward (westward) currents that result from either the single eddy or the dipole eddy produce flow divergence (convergence) adjacent to the Kuroshio's eastern edge, favoring the offshore (onshore) migration of the Kuroshio axis.
Influence of Kuroshio Oceanic Eddies on North Pacific Weather Patterns
NASA Astrophysics Data System (ADS)
Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Hsieh, J. S.; Wu, D.; Lin, X.; Wu, L.; Jing, Z.
2016-02-01
High-resolution satellite observations reveal energetic meso-scale ocean eddy activity and positive correlation between meso-scale sea surface temperature (SST) and surface wind along oceanic frontal zones, such as the Kuroshio and Gulf Stream, suggesting a potential role of meso-scale oceanic eddies in forcing the atmosphere. Using a 27 km horizontal resolution Weather Research Forecasting (WRF) model forced with observed daily SST at 0.09° spatial resolution during boreal winter season, two ensembles of 10 WRF simulations, in one of which meso-scale SST variability induced by ocean eddies was suppressed, were conducted in the North Pacific to study the local and remote influence of meso-scale oceanic eddies in the Kuroshio Extention Region (KER) on the atmosphere. Suppression of meso-scale oceanic eddies results in a deep tropospheric response along and downstream of the KER, including a significant decrease (increase) in winter season mean rainfall along the KER (west coast of US), a reduction of storm genesis in the KER, and a southward shift of the jet stream and North Pacific storm track in the eastern North Pacific. The simulated local and remote rainfall response to meso-scale oceanic eddies in the KER is also supported by observational analysis. A mechanism invoking moist baroclinic instability is proposed as a plausible explanation for the linkage between meso-scale oceanic eddies in the KER and large-scale atmospheric response in the North Pacific. It is argued that meso-scale oceanic eddies can have a rectified effect on planetary boundary layer moisture, the stability of the lower atmosphere and latent heat release, which in turn affect cyclogenesis. The accumulated effect of the altered storm development downstream further contributes to the equivalent barotropic mean flow change in the eastern North Pacific basin.
NASA Technical Reports Server (NTRS)
Donaldson, C. D.
1973-01-01
The question is considered of how complex a model should be used for the calculation of turbulent shear flows. At the present time there are models varying in complexity from very simple eddy-transport models to models in which all the equations for the nonzero second-order correlations are solved simultaneously with the equations for the mean variables. A discussion is presented of the relationship between these two models of turbulent shear flow. Two types of motion are discussed: first, turbulent shear flow in a stratified medium and, second, the motion in a turbulent line vortex. These two cases are instructive because in the first example eddy-transport methods have proven reasonably effective, whereas in the second, they have led to erroneous conclusions. It is not generally appreciated that the simplest form of eddy-transport theory can be derived from second-order closure models of turbulent flow by a suitably limiting process. This limiting process and the suitability of eddy-transport modeling for stratified media and line vortices are discussed.
Optical coherence tomography for nondestructive evaluation of fuel rod degradation
NASA Astrophysics Data System (ADS)
Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian
2015-03-01
Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.
Eddy energy and shelf interactions in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Ohlmann, J. Carter; Niiler, P. Peter; Fox, Chad A.; Leben, Robert R.
2001-02-01
Sea surface height anomaly data from satellite are continuously available for the entire Gulf of Mexico. Surface current velocities derived from these remotely sensed data are compared with surface velocities from drifting buoys. The comparison shows that satellite altimetry does an excellent job resolving gulf eddies over the shelf rise (depths between ˜200 and 2000 m) if the proper length scale is used. Correlations between altimeter- and drifter-derived velocities are statistically significant (r>0.5) when the surface slope is computed over 125 km, indicating that remotely sensed sea surface height anomaly data can be used to aid the understanding of circulation over the shelf rise. Velocity variance over the shelf rise from the altimetry data shows regions of pronounced eddy energy south of the Mississippi outflow, south of the Texas-Louisiana shelf, and in the northwest and northeast corners of the gulf. These are the same locations where surface drifters are most likely to cross the shelf rise, suggesting gulf eddies promote cross-shore flows. This is clearly exemplified with both warm and cold eddies. Finally, the contribution of gulf eddies and wind stress to changes in the mean circulation are compared. Results indicate that the eddy-generated vorticity flux to the mean flow is greater than the contribution from the surface wind stress curl, especially in the region of the Loop current and along the shelf rise base in the western gulf. Future modeling efforts must not neglect the role of eddies in driving gulf circulation over the shelf rise.
Carbon dioxide exchange in Norway spruce at the shoot, tree and ecosystem scale.
Wallin, G; Linder, S; Lindroth, A; Räntfors, M; Flemberg, S; Grelle, A
2001-08-01
Net CO2 exchange in a 35-year-old boreal Norway spruce (Picea abies (L.) Karst.) forest in northern Sweden was measured at the shoot (NSE), tree (NTE) and ecosystem levels (NEE) by means of shoot cuvettes, whole-tree chambers and the eddy covariance technique, respectively. We compared the dynamics of gross primary production (GPP) at the three levels during the course of a single week. The diurnal dynamics of GPP at each level were estimated by subtracting half-hourly or hourly model-estimated values of total respiration (excluding light-dependent respiration) from net CO(2) exchange. The relationship between temperature and total respiration at each level was derived from nighttime measurements of NSE, NTE and NEE over the course of 1 month. There was a strong linear relationship (r2 = 0.93) between the hourly estimates of GPP at the shoot and tree levels, but the correlation between shoot- and ecosystem-level GPP was weaker (r2 = 0.69). However, the correlation between shoot- and ecosystem-level GPP was improved (r2 = 0.88) if eddy covariance measurements were restricted to periods when friction velocity was > or = 0.5 m s(-1). Daily means were less dependent on friction velocity, giving an r2 value of 0.94 between shoot- and ecosystem-level GPP. The correlation between shoot and tree levels also increased when daily means were compared (r2 = 0.98). Most of the measured variation in carbon exchange rate among the shoot, tree and ecosystem levels was the result of periodic low coupling between vegetation and the atmosphere at the ecosystem level. The results validate the use of measurements at the shoot and tree level for analyzing the contribution of different compartments to net ecosystem CO2 exchange.
Validating LES for Jet Aeroacoustics
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2011-01-01
Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that are produced. This paper addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. This paper argues that the issue of accuracy of the experimental measurements be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it argues that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound, such as two-point space-time velocity correlations. A brief review of data sources available is presented along with examples illustrating cross-facility and internal quality checks required of the data before it should be accepted for validation of LES.
NASA Astrophysics Data System (ADS)
Russell, E.; Chi, J.; Waldo, S.; Pressley, S. N.; Lamb, B. K.; Pan, W.
2017-12-01
Diurnal and seasonal gas fluxes vary by crop growth stage. Digital cameras are increasingly being used to monitor inter-annual changes in vegetation phenology in a variety of ecosystems. These cameras are not designed as scientific instruments but the information they gather can add value to established measurement techniques (i.e. eddy covariance). This work combined deconstructed digital images with eddy covariance data from five agricultural sites (1 fallow, 4 cropped) in the inland Pacific Northwest, USA. The data were broken down with respect to crop stage and management activities. The fallow field highlighted the camera response to changing net radiation, illumination, and rainfall. At the cropped sites, the net ecosystem exchange, gross primary production, and evapotranspiration were correlated with the greenness and redness values derived from the images over the growing season. However, the color values do not change quickly enough to respond to day-to-day variability in the flux exchange as the two measurement types are based on different processes. The management practices and changes in phenology through the growing season were not visible within the camera data though the camera did capture the general evolution of the ecosystem fluxes.
NASA Technical Reports Server (NTRS)
Russell, Rick; Grundy, David; Jablonski, David; Martin, Christopher; Washabaugh, Andrew; Goldfine, Neil
2011-01-01
There are 3 mechanisms that affect the life of a COPV are: a) The age life of the overwrap; b) Cyclic fatigue of the metallic liner; c) Stress Rupture life. The first two mechanisms are understood through test and analysis. A COPV Stress Rupture is a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. Currently there is no simple, deterministic method of determining the stress rupture life of a COPV, nor a screening technique to determine if a particular COPV is close to the time of a stress rupture failure. Conclusions: Demonstrated a correlation between MWM response and pressure or strain. Demonstrated the ability to monitor stress in COPV at different orientations and depths. FA41 provides best correlation with bottle pressure or stress.
NASA Astrophysics Data System (ADS)
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.
2016-02-01
Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.
Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John
2010-01-01
The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.
Eddy Current Testing for Detecting Small Defects in Thin Films
NASA Astrophysics Data System (ADS)
Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor
2007-03-01
Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.
NASA Astrophysics Data System (ADS)
Brümmer, C.; Moffat, A. M.; Huth, V.; Augustin, J.; Herbst, M.; Kutsch, W. L.
2016-12-01
Manual carbon dioxide flux measurements with closed chambers at scheduled campaigns are a versatile method to study management effects at small scales in multiple-plot experiments. The eddy covariance technique has the advantage of quasi-continuous measurements but requires large homogeneous areas of a few hectares. To evaluate the uncertainties associated with interpolating from individual campaigns to the whole vegetation period, we installed both techniques at an agricultural site in Northern Germany. The presented comparison covers two cropping seasons, winter oilseed rape in 2012/13 and winter wheat in 2013/14. Modeling half-hourly carbon fluxes from campaigns is commonly performed based on non-linear regressions for the light response and respiration. The daily averages of net CO2 modeled from chamber data deviated from eddy covariance measurements in the range of ± 5 g C m-2 day-1. To understand the observed differences and to disentangle the effects, we performed four additional setups (expert versus default settings of the non-linear regressions based algorithm, purely empirical modeling with artificial neural networks versus non-linear regressions, cross-validating using eddy covariance measurements as campaign fluxes, weekly versus monthly scheduling of campaigns) to model the half-hourly carbon fluxes for the whole vegetation period. The good agreement of the seasonal course of net CO2 at plot and field scale for our agricultural site demonstrates that both techniques are robust and yield consistent results at seasonal time scale even for a managed ecosystem with high temporal dynamics in the fluxes. This allows combining the respective advantages of factorial experiments at plot scale with dense time series data at field scale. Furthermore, the information from the quasi-continuous eddy covariance measurements can be used to derive vegetation proxies to support the interpolation of carbon fluxes in-between the manual chamber campaigns.
Eddy current characterization of small cracks using least square support vector machine
NASA Astrophysics Data System (ADS)
Chelabi, M.; Hacib, T.; Le Bihan, Y.; Ikhlef, N.; Boughedda, H.; Mekideche, M. R.
2016-04-01
Eddy current (EC) sensors are used for non-destructive testing since they are able to probe conductive materials. Despite being a conventional technique for defect detection and localization, the main weakness of this technique is that defect characterization, of the exact determination of the shape and dimension, is still a question to be answered. In this work, we demonstrate the capability of small crack sizing using signals acquired from an EC sensor. We report our effort to develop a systematic approach to estimate the size of rectangular and thin defects (length and depth) in a conductive plate. The achieved approach by the novel combination of a finite element method (FEM) with a statistical learning method is called least square support vector machines (LS-SVM). First, we use the FEM to design the forward problem. Next, an algorithm is used to find an adaptive database. Finally, the LS-SVM is used to solve the inverse problems, creating polynomial functions able to approximate the correlation between the crack dimension and the signal picked up from the EC sensor. Several methods are used to find the parameters of the LS-SVM. In this study, the particle swarm optimization (PSO) and genetic algorithm (GA) are proposed for tuning the LS-SVM. The results of the design and the inversions were compared to both simulated and experimental data, with accuracy experimentally verified. These suggested results prove the applicability of the presented approach.
Evaluation of eddy current and magnetic techniques for inspecting rebars in bridge barrier rails
NASA Astrophysics Data System (ADS)
Lo, C. C. H.; Nakagawa, N.
2013-01-01
This paper reports on a feasibility study of using eddy current (EC) and magnetic flux leakage (MFL) methods to detect corrosion damage in rebars that anchor concrete barrier rails to the road deck of bridge structures. EC and MFL measurements were carried out on standalone rebars with and without artificial defects of 25% and 50% material loss, using a commercial EC-based rebar locator and a MFL system that was developed using giant magnetoresistance sensors to detect leakage fluxes from the defects. Both techniques can readily detect the defects at a distance of 2.5″ (63.5 mm). The amplitudes of the EC and MFL signals vary monotonically with the amount of material loss, indicating the potential of using the techniques to quantify material loss of standalone rebars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, D.G.; Sorensen, N.R.
1998-02-01
This report presents a nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel alloys from stainless steel alloys as well as an evaluation of cleaning techniques to remove a thermal oxide layer on aircraft exhaust components. The results of this assessment are presented in terms of how effective each technique classifies a known exhaust material. Results indicate that either inspection technique can separate inconel and stainless steel alloys. Based on the experiments conducted, the electrochemical spot test is the optimum for use by airframe and powerplant mechanics. A spot test procedure is proposed for incorporation into themore » Federal Aviation Administration Advisory Circular 65-9A Airframe & Powerplant Mechanic - General Handbook. 3 refs., 70 figs., 7 tabs.« less
NASA Technical Reports Server (NTRS)
Anders, John B.; Walsh, Michael J.; Bushnell, Dennis M.
1988-01-01
Modern turbulence-control techniques are discussed. Particular atention is given to retrofit techniques such as riblets and large-eddy breakup (LEBU) devices which use passive elements suitable for a variety of existing vehicles with minimum added complexity. Riblets are small flow-aligned grooves in the aircraft skin that damp turbulence and reduce skin friction; the mechanism of riblet drag reduction derives from the enhancement of turbulence-altering, transverse viscous forces by strong spanwise surface geometry gradients. LEBUs are thin plates or ribbons suspended in a turbulent boundary layer to sever or break up the large vortices that form the convoluted outer edge of the layer. Other turbulence-control techniques are discussed, including one that involves the injection of control vortices into the turbulent boundary layer to modify or substitute for large-eddy structures.
Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pries, Jason L.; Tang, Lixin; Burress, Timothy A.
This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequencymore » and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.« less
Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model
NASA Astrophysics Data System (ADS)
Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank
2017-07-01
Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.
Meakin, James A; Jezzard, Peter
2013-03-01
Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and eddy currents during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that eddy currents cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce eddy current effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to eddy currents and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail
2015-01-01
In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.
Verification of Agricultural Methane Emission Inventories
NASA Astrophysics Data System (ADS)
Desjardins, R. L.; Pattey, E.; Worth, D. E.; VanderZaag, A.; Mauder, M.; Srinivasan, R.; Worthy, D.; Sweeney, C.; Metzger, S.
2017-12-01
It is estimated that agriculture contributes more than 40% of anthropogenic methane (CH4) emissions in North America. However, these estimates, which are either based on the Intergovernmental Panel on Climate Change (IPCC) methodology or inverse modeling techniques, are poorly validated due to the challenges of separating interspersed CH4 sources within agroecosystems. A flux aircraft, instrumented with a fast-response Picarro CH4 analyzer for the eddy covariance (EC) technique and a sampling system for the relaxed eddy accumulation technique (REA), was flown at an altitude of about 150 m along several 20-km transects over an agricultural region in Eastern Canada. For all flight days, the top-down CH4 flux density measurements were compared to the footprint adjusted bottom-up estimates based on an IPCC Tier II methodology. Information on the animal population, land use type and atmospheric and surface variables were available for each transect. Top-down and bottom-up estimates of CH4 emissions were found to be poorly correlated, and wetlands were the most frequent confounding source of CH4; however, there were other sources such as waste treatment plants and biodigesters. Spatially resolved wavelet covariance estimates of CH4 emissions helped identify the contribution of wetlands to the overall CH4 flux, and the dependence of these emissions on temperature. When wetland contribution in the flux footprint was minimized, top-down and bottom-up estimates agreed to within measurement error. This research demonstrates that although existing aircraft-based technology can be used to verify regional ( 100 km2) agricultural CH4 emissions, it remains challenging due to diverse sources of CH4 present in many regions. The use of wavelet covariance to generate spatially-resolved flux estimates was found to be the best way to separate interspersed sources of CH4.
Rubin, David M.; McDonald, Richard R.
1995-01-01
Recirculating flow in lateral separation eddies is typically weaker than main stem flow and provides an effective environment for trapping sediment. Observations of recirculating flow and sedimentary structures demonstrate that eddies pulsate in size and in flow velocity even when main stem flow is steady. Time series measurements of flow velocity and location of the reattachment point indicate that these pulsations are nonperiodic. Nonperiodic flow in the lee of a channel margin constriction is grossly different from the periodic flow in the lee of a cylinder that is isolated in a flow. Our experiments demonstrate that placing a flow-parallel plate adjacent to a cylinder is sufficient to cause the leeside flow to change from a periodic sequence of vortices to a nonperiodically pulsating lateral separation eddy, even if flow conditions are otherwise unchanged. Two processes cause the leeside flow to become nonperiodic when the plate is added. First, vortices that are shed from the cylinder deform and become irregular as they impact the plate or interfere with remnants of other vortices near the reattachment point. Second, these deformed vortices and other flow structures are recirculated in the lateral separation eddy, thereby influencing the future state (pressure and momentum distribution) of the recirculating flow. The vortex deformation process was confirmed experimentally by documenting spatial differences in leeside flow; vortex shedding that is evident near the separation point is undetectable near the reattachment point. Nonlinear forecasting techniques were used in an attempt to distinguish among several possible kinds of nonperiodic flows. The computational techniques were unable to demonstrate that any of the nonperiodic flows result from low-dimensional nonlinear processes.
Evaluation of a scalar eddy transport coefficient based on geometric constraints
NASA Astrophysics Data System (ADS)
Bachman, S. D.; Marshall, D. P.; Maddison, J. R.; Mak, J.
2017-01-01
A suite of idealized models is used to evaluate and compare several previously proposed scalings for the eddy transport coefficient in downgradient mesoscale eddy closures. Of special interest in this comparison is a scaling introduced as part of the eddy parameterization framework of Marshall et al. (2012), which is derived using the inherent geometry of the Eliassen-Palm eddy flux tensor. The primary advantage of using this coefficient in a downgradient closure is that all dimensional terms are explicitly specified and the only uncertainty is a nondimensional parameter, α, which is bounded by one in magnitude. In each model a set of passive tracers is initialized, whose flux statistics are used to invert for the eddy-induced tracer transport. Unlike previous work, where this technique has been employed to diagnose the tensor coefficient of a linear flux-gradient relationship, the idealization of these models allows the lateral eddy transport to be described by a scalar coefficient. The skill of the extant scalings is then measured by comparing their predicted values against the coefficients diagnosed using this method. The Marshall et al. (2012), scaling is shown to scale most closely with the diagnosed coefficients across all simulations. It is shown that the skill of this scaling is due to its functional dependence on the total eddy energy, and that this scaling provides an excellent match to the diagnosed fluxes even in the limit of constant α. Possible extensions to this work, including how to incorporate the resultant transport coefficient into the Gent and McWilliams parameterization, are discussed.
Energy Cascade Analysis: from Subscale Eddies to Mean Flow
NASA Astrophysics Data System (ADS)
Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James
2017-11-01
Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Saludes-Rodil, Sergio; Baeyens, Enrique; Rodríguez-Juan, Carlos P
2015-04-29
An unsupervised approach to classify surface defects in wire rod manufacturing is developed in this paper. The defects are extracted from an eddy current signal and classified using a clustering technique that uses the dynamic time warping distance as the dissimilarity measure. The new approach has been successfully tested using industrial data. It is shown that it outperforms other classification alternatives, such as the modified Fourier descriptors.
NASA Astrophysics Data System (ADS)
Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco
2018-04-01
This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.
Estimates of Oceanic Eddy Heat and Salt Transports from Satellite Altimetry and Argo Profile Data.
NASA Astrophysics Data System (ADS)
Amores Maimo, A. M.; Melnichenko, O.; Maximenko, N. A.
2016-12-01
Horizontal heat and salt fluxes by mesoscale eddies are estimated in the near-global ocean (10°-60° N and 10°-60° S) by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The eddy fluxes are expectedly strong in the western boundary currents and in the Southern Ocean along the Antarctic Circumpolar Current (ACC). The fluxes are generally weak, but not negligible in gyre interiors. In the vertical, the eddy heat and salt fluxes are surface-intensified and confined mainly to the upper 600m layer, but their distribution with depth is not homogeneous throughout the ocean. In the Kuroshio Extension (KE) region, for example, the heat flux is poleward everywhere in the surface layer above the thermocline, but oppositely signed relative to the jet's axis in a deeper layer between approximately 300-800 m, where the flux is poleward on the northern side of the jet and equatorward on its southern side. Relatively strong fluxes at depth are also observed in the ACC, particularly in the Indian sector, and in the subtropical North Atlantic at the level of the Mediterranean Water (MW) at around 1000 m depth. The latter exemplifies the role of eddies in MW spreading. These and other features of the longitude-latitude-depth distributions of the eddy heat and salt fluxes, constructed for the first time from observational data, are presented and discussed.
Duell, L. F. W.
1988-01-01
In Owens Valley, evapotranspiration (ET) is one of the largest components of outflow in the hydrologic budget and the least understood. ET estimates for December 1983 through October 1985 were made for seven representative locations selected on the basis of geohydrology and the characteristics of phreatophytic alkaline scrub and meadow communities. The Bowen-ratio, eddy-correlation, and Penman-combination methods were used to estimate ET. The results of the analyses appear satisfactory when compared to other estimates of ET. Results by the eddy-correlation method are for a direct and a residual latent-heat flux that is based on sensible-heat flux and energy budget measurements. Penman-combination potential ET estimates were determined to be unusable because they overestimated actual ET. Modification in the psychrometer constant of this method to account for differences between heat-diffusion resistance and vapor-diffusion resistance permitted actual ET to be estimated. The methods may be used for studies in similar semiarid and arid rangeland areas in the Western United States. Meteorological data for three field sites are included in the appendix. Simple linear regression analysis indicates that ET estimates are correlated to air temperature, vapor-density deficit, and net radiation. Estimates of annual ET range from 300 mm at a low-density scrub site to 1,100 mm at a high-density meadow site. The monthly percentage of annual ET was determined to be similar for all sites studied. (Author 's abstract)
Correction of eddy current distortions in high angular resolution diffusion imaging.
Zhuang, Jiancheng; Lu, Zhong-Lin; Vidal, Christine Bouteiller; Damasio, Hanna
2013-06-01
To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion-weighted image. The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods. The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross-correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.
2015-12-01
We have developed a physically based, multi-scalar drought index—the Evaporative Demand Drought Index (EDDI)—to improve treatment of evaporative dynamics in drought monitoring. Existing popular drought indices—such as the Palmer Drought Severity Index that informs much of the US Drought Monitor (USDM)—have primarily relyied on precipitation and temperature (T) to represent hydroclimatic anomalies, leaving evaporative demand (E0) most often derived from poorly performing T-based parameterizations then used to derive actual evapotranspiration (ET) from LSMs. Instead, EDDI leverages the inter-relations of E0 and ET, measuring E0's physical response to surface drying anomalies due to two distinct land surface/atmosphere interactions: (i) in sustained drought, limited moisture availability forces E0 and ET into a complementary relation, whereby ET declines as E0 increases; and (ii) in "flash" droughts, E0 increases due to increasing advection or radiation. E0's rise in response to both drought types suggests EDDI's robustness as a monitor and leading indicator of drought. To drive EDDI, we use for E0 daily reference ET from the ASCE Standardized Reference ET equation forced by North American Land Data Assimilation System drivers. EDDI is derived by aggregating E0 anomalies from its long-term mean across a period of interest and normalizing them to a Z-score. Positive EDDI indicates drier than normal conditions (and so drought). We use the current historic California drought as a test-case in which to examine EDDI's performance in monitoring agricultural and hydrologic drought. We observe drought development and decompose the behavior of drought's evaporative drivers during in-drought intensification periods and wetting events. EDDI's performance as a drought leading indicator with respect to the USDM is tested in important agricultural regions. Comparing streamflow from several USGS gauges in the Sierra Nevada to EDDI, we find that EDDI tracks most major hydrologic droughts, with correlations to water-year streamflow that are highest at the 9- to 12-month aggregation periods, and during the summer. EDDI shows significant promise as a leading indicator of drought, thereby providing a valuable planning window for growers and water resource managers.
Finite-element numerical modeling of atmospheric turbulent boundary layer
NASA Technical Reports Server (NTRS)
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
NASA Technical Reports Server (NTRS)
Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.
2004-01-01
Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.
NASA Astrophysics Data System (ADS)
Tang, M.; Tsai, J.; Tsuang, B.; Feng, P.; Kuo, P.
2012-12-01
In the past decades, more and more attention was given to the increase of atmospheric methane concentration from the scientific community. Methane is one of greenhouse gases with a global warming potential 21 times greater than carbon dioxide on a 100-year horizon. Rice paddy fields were considered as a major source for methane and so far there are few studies where the eddy covariance (EC) technique has been used to measure methane fluxes from rice paddy fields, especially in Asia. Therefore, in this study we used EC technique and relaxed eddy accumulation (REA) method simultaneously to observe the methane fluxes over rice paddy, fertilized with pig manure, in Taiwan from 22th February to 5th June in 2012. A suit of Micrometeorologial variables and water table depth were measured in conjunction with the fluxes. The results showed that the rice paddy field was source of methane during most of the study period and the observed methane fluxes ranged between - 0.5 and 13 μg m-2 s-1. and the maximum values usually occurred in the afternoon. A significant methane emission was observed in the first one and a half month after transplanting. Comparison of daily methane fluxes measured by EC and REA showed generally good agreement between both methods with a coefficient of determination of 0.81, although the magnitude of methane fluxes measured by REA were slightly lower than those by EC. During the continuous flooded period, the methane fluxes can be depicted well by a function of soil temperature with an exponential form. Sudden pulses of methane fluxes were observed when drained for the removal of obstruction which hindered the methane diffuse from the soil to the atmosphere. During fallow period between growth periods, the paddy fields was a sink of methane where the methane uptake was about 0.5μg m-2 s-1 around noon.
NASA Astrophysics Data System (ADS)
Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.
2012-11-01
Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent has two cores: an intermediate one mainly containing diluted Antarctic Intermediate Water (AAIW), and a deep one consisting of North Atlantic Deep Water (NADW). In the intermediate core, T-S properties are strongly correlated with current velocity, probably because of the strong salinity gradient at the interface between Red Sea Water (RSW) and AAIW. In the deep core, velocity and hydrographic time series do not correlate on a daily basis, but they do at longer time scales.
A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.
Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A
2007-04-01
Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.
NASA Astrophysics Data System (ADS)
Vogl, Teresa; Hrdina, Amy; Thomas, Christoph
2016-04-01
The traditional eddy covariance (EC) technique requires the use of fast responding sensors (≥ 10 Hz) that do not exist for many chemical species found in the atmosphere. In this case, the Relaxed Eddy Accumulation (REA) method offers a means to calculate fluxes of trace gases and other scalar quantities (Businger and Oncley, 1990) and was originally derived from the eddy accumulation method (EA) first proposed by Desjardins (1972). While REA lessens the requirements for sensors and sampling and thus offers practical appeal, it introduces a dependence of the computed flux from a proportionality factor β. The accuracy of the REA fluxes hinges upon the correct determination of β, which was found to vary between 0.40 and 0.63 (Milne et al., 1999, Ammann and Meixner, 2002, Ruppert et al., 2006). However, formulating a universally valid parameterization for β instead of empirical evaluation has remained a conundrum and has been a main limitation for REA. In this study we take a fresh look at the dependencies and mathematical models of β by analyzing eddy covariance (EC) data and REA simulations for two field experiments in drastically contrasting environments: an exclusively physically driven environment in the Dry Valleys of Antarctica, and a biologically active system in a grassland in Germany. The main objective is to work toward a model parameterization for β that can be applied over wide range of surface conditions and forcings without the need for empirical evaluation, which is not possible for most REA applications. Our study discusses two different models to define β: (i) based upon scalar-scalar similarity, in which a different scalar is measured with fast-response sensors as a proxy for the scalar of interest, here referred to as β0; and (ii) computed solely from the vertical wind statistics, assuming a linear relationship between the scalar of interest and the vertical wind speed, referred to as βw. Results are presented for the carbon-dioxide, latent and sensible heat fluxes across the contrasting environments. First, the choice of an appropriate scalar to calculate β0 is discussed considering the sources and sinks of each scalar with an emphasis on the carbon dioxide flux, which shows strongly dissimilar dynamics between the Antarctic ecosystem and the grassland. Secondly, the impact of atmospheric stability on both β models is investigated. In a next step, we attempt to find a physically meaningful explanation for the overestimation of the REA scalar fluxes compared to those from EC for using βw. We do so by analyzing the probability density function (pdf) and its statistical moments for the vertical wind speed. We found its pdf to be non-Gaussian for the majority of cases, and detected a close to linear relationship of its kurtosis with βw. Finally, in an attempt to provide practical guidance for field measurements, we integrate our findings and propose an enhanced model parameterization, and evaluate the differences between our new model and a constant β. Ammann, C. and Meixner, F.X. (2002) Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities. J. Geophys. Res. 107. ACL7.1-ACL7.9 doi:10.1029/2001JD000649 Businger, J.A., Oncley, S.P. (1990) Flux measurement with conditional sampling. J. Atmos. Ocean. Tech. 7:349-352. Desjardins, R. L. (1972) A study of carbon-dioxide and sensible heat fluxes using the eddy correlation technique, Ph.D. dissertation, Cornell University, 189 pp. Desjardins, R.L. (1977) Description and evaluation of sensible heat flux detector. Boundary-Layer Meteorol. 11:147-154. Katul, G., Finkelstein, P. L., Clarke, J. F., and Ellestad, T. G. (1996) An Investigation of the Conditional Sampling Methods Used to Estimate Fluxes of Active, Reactive and Passive Scalars. J. Appl. Meteorol. 35: 1835-1845. Milne, R., Beverland, I. J., Hargreaves, K., and Moncrieff, J. B. (1999) Variation of the beta coefficient in the relaxed eddy accumulation method. Boundary-Layer Meteorol. 93: 211-225. Ruppert, J. ATEM software for atmospheric turbulent exchange measurements using eddy covariance and relaxed eddy accumulation systems: Bayreuth whole-air REA system setup, Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614-8916, Arbeitsergebnisse 28, 29 S, 2005 Ruppert, J., Thomas, C., and Foken, T. (2006) scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol. 120: 39-63.
Global Modeling, Field Campaigns, Upscaling and Ray Desjardins
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Hall, F. G.
2012-01-01
In the early 1980's, it became apparent that land surface radiation and energy budgets were unrealistically represented in Global Circulation models (GCM's), Shortly thereafter, it became clear that the land carbon budget was also poorly represented in Earth System Models (ESM's), A number of scientific communities, including GCM/ESM modelers, micrometeorologists, satellite data specialists and plant physiologists, came together to design field experiments that could be used to develop and validate the contemporary prototype land surface models. These experiments were designed to measure land surface fluxes of radiation, heat, water vapor and CO2 using a network of flux towers and other plot-scale techniques, coincident with satellite measurements of related state variables, The interdisciplinary teams involved in these experiments quickly became aware of the scale gap between plot-scale measurements (approx 10 - 100m), satellite measurements (100m - 10 km), and GCM grid areas (l0 - 200km). At the time, there was no established flux measurement capability to bridge these scale gaps. Then, a Canadian science learn led by Ray Desjardins started to actively participate in the design and execution of the experiments, with airborne eddy correlation providing the radically innovative bridge across the scale gaps, In a succession of brilliantly executed field campaigns followed up by convincing scientific analyses, they demonstrated that airborne eddy correlation allied with satellite data was the most powerful upscaling tool available to the community, The rest is history: the realism and credibility of weather and climate models has been enormously improved enormously over the last 25 years with immense benefits to the public and policymakers.
Local energy flux estimates for unstable conditions using variance data in semiarid rangelands
Kustas, William P.; Blanford, J.H.; Stannard, D.I.; Daughtry, C.S.T.; Nichols, W.D.; Weltz, M.A.
1994-01-01
A network of meteorological stations was installed during the Monsoon '90 field campaign in the Walnut Gulch experimental watershed. The study area has a fairly complex surface. The vegetation cover is heterogeneous and sparse, and the terrain is mildly hilly, but dissected by ephemeral channels. Besides measurement of some of the standard weather data such as wind speed, air temperature, and solar radiation, these sites also contained instruments for estimating the local surface energy balance. The approach utilized measurements of net radiation (Rn), soil heat flux (G) and Monin-Obukhov similarity theory applied to first- and second-order turbulent statistics of wind speed and temperature for determining the sensible heat flux (H). The latent heat flux (LE) was solved as a residual in the surface energy balance equation, namely, LE = −(Rn + G + H). This procedure (VAR-RESID) for estimating the energy fluxes satisfied monetary constraints and the requirement for low maintenance and continued operation through the harsh environmental conditions experienced in semiarid regions. Comparison of energy fluxes using this approach with more traditional eddy correlation techniques showed differences were within 20% under unstable conditions. Similar variability in flux estimates over the study area was present in the eddy correlation data. Hence, estimates of H and LE using the VAR-RESID approach under unstable conditions were considered satisfactory. Also, with second-order statistics of vertical velocity collected at several sites, the local momentum roughness length was estimated. This is an important parameter used in modeling the turbulent transfer of momentum and sensible heat fluxes across the surface-atmosphere interface.
Universal characteristics of fractal fluctuations in prime number distribution
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-11-01
The frequency of occurrence of prime numbers at unit number spacing intervals exhibits self-similar fractal fluctuations concomitant with inverse power law form for power spectrum generic to dynamical systems in nature such as fluid flows, stock market fluctuations and population dynamics. The physics of long-range correlations exhibited by fractals is not yet identified. A recently developed general systems theory visualizes the eddy continuum underlying fractals to result from the growth of large eddies as the integrated mean of enclosed small scale eddies, thereby generating a hierarchy of eddy circulations or an inter-connected network with associated long-range correlations. The model predictions are as follows: (1) The probability distribution and power spectrum of fractals follow the same inverse power law which is a function of the golden mean. The predicted inverse power law distribution is very close to the statistical normal distribution for fluctuations within two standard deviations from the mean of the distribution. (2) Fractals signify quantum-like chaos since variance spectrum represents probability density distribution, a characteristic of quantum systems such as electron or photon. (3) Fractal fluctuations of frequency distribution of prime numbers signify spontaneous organization of underlying continuum number field into the ordered pattern of the quasiperiodic Penrose tiling pattern. The model predictions are in agreement with the probability distributions and power spectra for different sets of frequency of occurrence of prime numbers at unit number interval for successive 1000 numbers. Prime numbers in the first 10 million numbers were used for the study.
Large-eddy simulation of flow in a plane, asymmetric diffuser
NASA Technical Reports Server (NTRS)
Kaltenbach, Hans-Jakob
1993-01-01
Recent improvements in subgrid-scale modeling as well as increases in computer power make it feasible to investigate flows using large-eddy simulation (LES) which have been traditionally studied with techniques based on Reynolds averaging. However, LES has not yet been applied to many flows of immediate technical interest. Preliminary results from LES of a plane diffuser flow are described. The long term goal of this work is to investigate flow separation as well as separation control in ducts and ramp-like geometries.
NASA Astrophysics Data System (ADS)
Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Oren, Ram
2015-04-01
Sapflow and eddy covariance techniques are attractive methods for evapotranspiration (ET) estimates. We demonstrated that in Mediterranean ecosystems, characterized by an heterogeneous spatial distribution of different plant functional types (PFT) such as grass and trees, the combined use of these techniques becomes essential for the actual ET estimates. Indeed, during the dry summers these water-limited heterogeneous ecosystems are typically characterized by a simple dual PFT system with strong-resistant woody vegetation and bare soil, since grass died. An eddy covariance - micrometeorological tower has been installed over an heterogeneous ecosystem at the Orroli site in Sardinia (Italy) from 2003. The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. Where patchy land cover leads and the surface fluxes from different cover are largely different, ET evaluation may be not robust enough and eddy covariance method hypothesis are not anymore preserved. In these conditions the sapflow measurements, performed by thermodissipation probes, provide robust estimates of the transpiration from woody vegetation. Through the coupled use of the sapflow sensor observations, a 2D footprint model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. Based on the Granier technique, 33 thermo-dissipation probes have been built and 6 power regulators have been assembled to provide a constant current of 3V to the sensors. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. The sap flow sensors outputs are analyzed to estimate innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Results show the response of wild olives stomatal conductance to vapor pressure deficit that follow an exponential decrease. Interestingly the tree exposure impacts transpiration significantly, showing double rates for the trees in the south part of the wild olive clumps. The soil depth also affects ET dynamics due to the influence on water absorption of the root tree system. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the impact of climate dynamics on the ET estimates with the two tecniques.
Optimized distortion correction technique for echo planar imaging.
Chen , N K; Wyrwicz, A M
2001-03-01
A new phase-shifted EPI pulse sequence is described that encodes EPI phase errors due to all off-resonance factors, including B(o) field inhomogeneity, eddy current effects, and gradient waveform imperfections. Combined with the previously proposed multichannel modulation postprocessing algorithm (Chen and Wyrwicz, MRM 1999;41:1206-1213), the encoded phase error information can be used to effectively remove geometric distortions in subsequent EPI scans. The proposed EPI distortion correction technique has been shown to be effective in removing distortions due to gradient waveform imperfections and phase gradient-induced eddy current effects. In addition, this new method retains advantages of the earlier method, such as simultaneous correction of different off-resonance factors without use of a complicated phase unwrapping procedure. The effectiveness of this technique is illustrated with EPI studies on phantoms and animal subjects. Implementation to different versions of EPI sequences is also described. Magn Reson Med 45:525-528, 2001. Copyright 2001 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Capotondi, Antonietta; Holland, William R.; Malanotte-Rizzoli, Paola
1995-01-01
The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to 'correctly' extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1-0.2 in the deep ocean.
Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance
NASA Astrophysics Data System (ADS)
Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander
2016-04-01
Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude, based on preliminary evidence, that the Hainich forest acted as a moderate net sink for methane during the investigation. This supports earlier findings from chamber measurements at the Hainich forest site and is similar to findings from other forest sites. Our observations will be continued through 2016 and beyond to provide longer-term methane flux time series spanning entire seasons. However, the current data set already provides a basis for further consolidating methods of measurements and analysis of turbulent methane fluxes using eddy covariance and true eddy accumulation.
Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Ahn, B-K.; Graham, W. R.; Rizzi, S. A.
2004-01-01
As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.
Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)
NASA Astrophysics Data System (ADS)
McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.
2003-03-01
Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0
Optical coherence tomography for nondestructive evaluation of fuel rod degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renshaw, Jeremy B., E-mail: jrenshaw@epri.com; Jenkins, Thomas P., E-mail: tjenkins@metrolaserinc.com; Buckner, Benjamin D., E-mail: tjenkins@metrolaserinc.com
Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such asmore » Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.« less
Duell, Lowell F. W.
1990-01-01
In Owens Valley, evapotranspiration (ET) is one of the largest components of outflow in the hydrologic budget and the least understood. ET estimates for December 1983 through October 1985 were made for seven representative locations selected on the basis of geohydrology and the characteristics of phreatophytic alkaline scrub and meadow communities. The Bowen-ratio, eddy-correlation, and Penman-combination methods were used to estimate ET. The results of the analyses appear satisfactory when compared with other estimates of ET. Results by the eddy-correlation method are for a direct and a residual latent-heat flux that is based on sensible-heat flux and energy-budget measurements. Penman-combination potential-ET estimates were determined to be unusable because they overestimated actual ET. Modification of the psychrometer constant of this method to account for differences between heat-diffusion resistance and vapor-diffusion resistance permitted actual ET to be estimated. The methods described in this report may be used for studies in similar semiarid and arid rangeland areas in the Western United States. Meteorological data for three field sites are included in the appendix of this report. Simple linear regression analysis indicates that ET estimates are correlated to air temperature, vapor-density deficit, and net radiation. Estimates of annual ET range from 301 millimeters at a low-density scrub site to 1,137 millimeters at a high-density meadow site. The monthly percentage of annual ET was determined to be similar for all sites studied.
Advanced flow noise reducing acoustic sensor arrays
NASA Astrophysics Data System (ADS)
Fine, Kevin; Drzymkowski, Mark; Cleckler, Jay
2009-05-01
SARA, Inc. has developed microphone arrays that are as effective at reducing flow noise as foam windscreens and sufficiently rugged for tough battlefield environments. These flow noise reducing (FNR) sensors have a metal body and are flat and conformally mounted so they can be attached to the roofs of land vehicles and are resistant to scrapes from branches. Flow noise at low Mach numbers is created by turbulent eddies moving with the fluid flow and inducing pressure variations on microphones. Our FNR sensors average the pressure over the diameter (~20 cm) of their apertures, reducing the noise created by all but the very largest eddies. This is in contrast to the acoustic wave which has negligible variation over the aperture at the frequencies of interest (f less or equal than 400 Hz). We have also post-processed the signals to further reduce the flow noise. Two microphones separated along the flow direction exhibit highly correlated noise. The time shift of the correlation corresponds to the time for the eddies in the flow to travel between the microphones. We have created linear microphone arrays parallel to the flow and have reduced flow noise as much as 10 to 15 dB by subtracting time-shifted signals.
Cloud-top meridional momentum transports on Saturn and Jupiter
NASA Technical Reports Server (NTRS)
Stromovsky, L. A.; Revercomb, H. E.; Krauss, R. J.
1986-01-01
Cloud-tracked wind measurements reported by Sromovsky et al. were analyzed to determine meridional momentum transports in Saturn's northern middle latitudes. Results are expressed in terms of eastward and northward velocity components (u and v), and eddy components u and v. At most latitudes between 13 and 44 deg N (planetocentric), the transport by the mean flow (
NASA Astrophysics Data System (ADS)
Loescher, Carolin; Fischer, Martin; Neulinger, Sven; Fiedler, Björn; Philippi, Miriam; Schütte, Florian; Singh, Arvind; Hauss, Helena; Karstensen, Johannes; Körtzinger, Arne; Schmitz, Ruth
2016-04-01
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale eddies with close to anoxic O2 concentrations (<1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the eddy fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed layer base. The O2-depleted core waters eddy promoted transcription of the key gene for denitrification, nirS. This process is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.
NASA Astrophysics Data System (ADS)
Löscher, C. R.; Fischer, M. A.; Neulinger, S. C.; Fiedler, B.; Philippi, M.; Schütte, F.; Singh, A.; Hauss, H.; Karstensen, J.; Körtzinger, A.; Künzel, S.; Schmitz, R. A.
2015-08-01
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of around 40 μmol kg-1. Only recently, the discovery of re-occurring mesoscale eddies with sometimes close to anoxic O2 concentrations (<1 μmol kg-1) and located just below the mixed layer challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first metagenomic dataset from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed a significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and increased carbon uptake rates up to three times as high as in surrounding waters. Carbon uptake below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our combined data indicate that high primary production in the eddy fuels export production and the presence of a specific microbial community responsible for enhanced respiration at shallow depths, below the mixed layer base. Progressively decreasing O2 concentrations in the eddy were found to promote transcription of the key gene for denitrification, nirS, in the O2-depleted core waters. This process is usually absent from the open ETNA waters. In the light of future ocean deoxygenation our results show exemplarily that even distinct events of anoxia have the potential to alter microbial community structures and with that critically impact primary productivity and biogeochemical processes of oceanic water bodies.
NASA Astrophysics Data System (ADS)
Löscher, C. R.; Fischer, M. A.; Neulinger, S. C.; Fiedler, B.; Philippi, M.; Schütte, F.; Singh, A.; Hauss, H.; Karstensen, J.; Körtzinger, A.; Künzel, S.; Schmitz, R. A.
2015-12-01
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open-ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale eddies with close to anoxic O2 concentrations (< 1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the eddy fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed-layer base. The transcription of the key functional marker gene for dentrification, nirS, further indicated a potential for nitrogen loss processes in O2-depleted core waters of the eddy. Dentrification is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.
Integrated and spectral energetics of the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1981-01-01
Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.
On the cyclonic eddy generation in Panay Strait, Philippines
NASA Astrophysics Data System (ADS)
Flament, P. J.; Repollo, C. L. A.; Flores-vidal, X.; Villanoy, C.
2016-12-01
High Frequency Doppler Radar (HFDR), shallow pressure gauges and Acoustic Doppler Current Profiler (ADCP) time-series observations during the Philippine Straits Dynamics Experiment (PhilEx) were analyzed to describe the mesoscale currents in Panay Strait, Philippines. Low frequency surface currents inferred from three HFDR (July 2008 { July 2009), revealed a clear seasonal signal in concurrent with the reversal of the Asian monsoon. The mesoscale cyclonic eddy west of Panay Island is generated during the winter northeast (NE) monsoon. This causes changes in the strength, depth and width of the intra-seasonal Panay coastal jet as its eastern limb. Winds from QuikSCAT satellite and from a nearby airport indicate that these flow structures correlate with the strength and direction of the prevailing local wind. An intensive survey of the cyclonic eddy in February 8-9, 2009, obtaining a 24-hour successive cross-shore Conductivity-Temperature- Depth (CTD) sections in conjunction with shipboard ADCP measurements showed a well- developed cyclonic eddy characterized by near-surface velocities reaching 50 cm/s. This observation coincides with the intensification of the wind in between Mindoro and Panay islands generating a positive wind stress curl in the lee of Panay, which in turn induces divergent surface currents. Water column response from the mean transects showed a pronounced signal of upwelling, indicated by the doming of isotherms and isopycnals. A pressure gradient then was sets up, resulting in the spin-up of a cyclonic eddy in geostrophic balance. Evaluation of the surface vorticity balance equation suggests that the wind stress curl via Ekman pumping mechanism provides the necessary input in the formation and evolution of the cyclonic eddy. In particular, the cumulative effect of the wind stress curl plays a key role on the generation of the eddy. The Beta-effect on the other hand may led to propagation of the eddy westward.
MATERIALS AND TECHNIQUES FOR THE LANGUAGE LABORATORY.
ERIC Educational Resources Information Center
NAJAM, EDWARD W.
THE PROCEEDINGS OF THE SECOND ANNUAL INDIANA-PURDUE LANGUAGE LABORATORY CONFERENCE ARE ORGANIZED, AFTER INTRODUCTORY STATEMENTS BY NAJAM AND LARSEN ON CONTEMPORARY TRENDS IN LANGUAGE INSTRUCTION, UNDER THREE GENERAL HEADINGS PLUS APPENDIXES. IN THE FIRST SECTION DEVOTED TO MATERIALS AND TECHNIQUES ARE ARTICLES BY HYER, GARIMALDI, EDDY, AND SMITH…
NASA Astrophysics Data System (ADS)
Huth, Vytas; Moffat, Antje Maria; Calmet, Anna; Andres, Monique; Laufer, Judit; Pehle, Natalia; Rach, Bernd; Gundlach, Laura; Augustin, Jürgen
2017-04-01
Winter oilseed rape is the dominant biofuel crop in the young moraine landscape in North-Eastern Germany. However, studies on the effect of rapeseed cropping on net ecosystem exchange of CO2 (NEE) and the soil carbon (SC) balance are scarce. SC balance estimates are usually derived from long-term soil sampling field trials where rapeseed is part of different crop rotations. The estimated annual differences linked to rapeseed cropping are rather small (varying between losses of 40 g C m-2 and gains of up to 100 g C m-2). Testing management effects on the NEE and SC balance of cropping systems is best done by comparing plots with different treatments at the same site under the same climate. The soil sampling approach is in the need of field trials that run over decades, which has the disadvantage that management strategies of practical farming may have already changed when the results are derived. Continuous eddy covariance measurements of NEE would require large fields in flat terrain for each of the treatments, which is especially complicated in the heterogeneous landscapes of glacigenic origin of North-Eastern Germany. The common approach of using the chamber technique to derive NEE, however, is subject to the local soil and plant stand heterogeneities due to its tiny footprint. This technique might also disturb the ecosystem, the measurements are usually discontinuous requiring elaborate gap-filling techniques, and it has mostly been used on organic soils where large respiratory C losses occur. Therefore, our aim was to answer, if a combined approach of the eddy covariance and the chamber technique can detect the relatively small NEE and SC differences of rapeseed cropping on mineral soils within a shorter period of time than conventional soil sampling field trials can. We tested the new experimental design taking the advantages of both techniques into account: The eddy covariance tower measuring the NEE dynamics during the year; the chamber measurements to detect the flux differences between specific management practices - with additional chamber measurements installed close to the eddy tower as a reference linking the two techniques. In our experiment, we studied the effect of four different treatments of fertilization (mineral versus organic) and tillage (no-till versus mulch-till versus ploughing) on the NEE of rapeseed cropping for the climatic seasons 2013 to 2015. We compared the NEE of the treatments to the "background" NEE measured by the eddy covariance technique in the nearby reference field for the years 2013 and 2014. With this data, we estimated the uncertainty resulting from gap filling discontinuous chamber measurements and relate it to the observed effects of the four different treatments on the NEE. Here, we present first results on the applicability of the manual-chamber technique to derive the relatively small effects of rapeseed cropping on NEE and SC within a short period of three years of study.
Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)
A Study of the Southern Ocean: Mean State, Eddy Genesis & Demise, and Energy Pathways
NASA Astrophysics Data System (ADS)
Zajaczkovski, Uriel
The Southern Ocean (SO), due to its deep penetrating jets and eddies, is well-suited for studies that combine surface and sub-surface data. This thesis explores the use of Argo profiles and sea surface height ( SSH) altimeter data from a statistical point of view. A linear regression analysis of SSH and hydrographic data reveals that the altimeter can explain, on average, about 35% of the variance contained in the hydrographic fields and more than 95% if estimated locally. Correlation maxima are found at mid-depth, where dynamics are dominated by geostrophy. Near the surface, diabatic processes are significant, and the variance explained by the altimeter is lower. Since SSH variability is associated with eddies, the regression of SSH with temperature (T) and salinity (S) shows the relative importance of S vs T in controlling density anomalies. The AAIW salinity minimum separates two distinct regions; above the minimum density changes are dominated by T, while below the minimum S dominates over T. The regression analysis provides a method to remove eddy variability, effectively reducing the variance of the hydrographic fields. We use satellite altimetry and output from an assimilating numerical model to show that the SO has two distinct eddy motion regimes. North and south of the Antarctic Circumpolar Current (ACC), eddies propagate westward with a mean meridional drift directed poleward for cyclonic eddies (CEs) and equatorward for anticyclonic eddies (AEs). Eddies formed within the boundaries of the ACC have an effective eastward propagation with respect to the mean deep ACC flow, and the mean meridional drift is reversed, with warm-core AEs propagating poleward and cold-core CEs propagating equatorward. This circulation pattern drives downgradient eddy heat transport, which could potentially transport a significant fraction (24 to 60 x 1013 W) of the net poleward ACC eddy heat flux. We show that the generation of relatively large amplitude eddies is not a ubiquitous feature of the SO but rather a phenomenon that is constrained to five isolated, well-defined "hotspots". These hotspots are located downstream of major topographic features, with their boundaries closely following f/H contours. Eddies generated in these locations show no evidence of a bias in polarity and decay within the boundaries of the generation area. Eddies tend to disperse along f/H contours rather than following lines of latitude. We found enhanced values of both buoyancy (BP) and shear production (SP) inside the hotspots, with BP one order of magnitude larger than SP. This is consistent with baroclinic instability being the main mechanism of eddy generation. The mean potential density field estimated from Argo floats shows that inside the hotspots, isopycnal slopes are steep, indicating availability of potential energy. The hotspots identified in this thesis overlap with previously identified regions of standing meanders. We provide evidence that hotspot locations can be explained by the combined effect of topography, standing meanders that enhance baroclinic instability, and availability of potential energy to generate eddies via baroclinic instabilities.
Wind-induced upwelling in the Kerguelen Plateau region
NASA Astrophysics Data System (ADS)
Gille, S. T.; Carranza, M. M.; Cambra, R.
2014-11-01
In contrast to most of the Southern Ocean, the Kerguelen Plateau supports an unusually strong spring chlorophyll (Chl a) bloom, likely because the euphotic zone in the region is supplied with higher iron concentrations. This study uses satellite wind, sea surface temperature (SST), and ocean color data to explore the impact of wind-driven processes on upwelling of cold (presumably iron-rich) water to the euphotic zone. Results show that, in the Kerguelen region, cold SSTs correlate with high wind speeds, implying that wind-mixing leads to enhanced vertical mixing. Cold SSTs also correlate with negative wind-stress curl, implying that Ekman pumping can further enhance upwelling. In the moderate to high eddy kinetic energy (EKE) regions surrounding Kerguelen, we find evidence of coupling between winds and SST gradients associated with mesoscale eddies, which can locally modulate the wind-stress curl. This coupling introduces persistent wind-stress curl patterns and Ekman pumping around these long-lived eddies, which may modulate the evolution of Chl a in the downstream plume far offshore. Close to the plateau, this eddy coupling breaks down. Kerguelen has a significant wind shadow on its downwind side, which changes position depending on the prevailing wind and which generates a wind-stress curl dipole that shifts location depending on wind direction. This leads to locally enhanced Ekman pumping for a few hundred kilometers downstream from the Kerguelen Plateau; Chl a values tend to be more elevated in places where wind-stress curl induces Ekman upwelling than in locations of downwelling, although the estimated upwelling rates are too small for this relationship to derive from direct effects on upward iron supply, and thus other processes, which remain to be determined, must also be involved in the establishment of these correlations. During the October and November (2011) KErguelen Ocean and Plateau compared Study (KEOPS-2) field program, wind conditions were fairly typical for the region, with enhanced Ekman upwelling expected to the north of the Kerguelen Islands.
Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.
Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles
2009-01-01
Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.
NASA Astrophysics Data System (ADS)
Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger
2018-03-01
This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.
Investigating electrical resonance in eddy-current array probes
NASA Astrophysics Data System (ADS)
Hughes, R.; Fan, Y.; Dixon, S.
2016-02-01
The sensitivity enhancing effects of eddy-current testing at frequencies close to electrical resonance are explored. Var-ied techniques exploiting the phenomenon, dubbed near electrical resonance signal enhancement (NERSE), were experimentally investigated to evaluate its potential exploitation for other interesting applications in aerospace materials, in particular its potential for boosting the sensitivity of standard ECT measurements. Methods for setting and controlling the typically unstable resonant frequencies of such systems are discussed. This research is funded by the EPSRC, via the Research Centre for Non-Destructive Evaluation RCNDE, and Rolls-Royce plc.
Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose
NASA Astrophysics Data System (ADS)
Wincheski, Buzz; Simpson, John; Hall, George
2009-03-01
In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.
Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John; Hall, George
2008-01-01
In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.
Evaluating Corrosion in SAVY Containers using Non-Destructive Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Matthew Nicholas; Vaidya, Rajendra U.; Abeyta, Adrian Anthony
Powerpoint presentation on Ultrasonic and Eddy Current NDT; UT Theory; Eddy current (ECA): How it works; Controlled Corrosion at NM Tech; Results – HCl Corrosion; Waveform Data for 10M HCl; Accuracy Statistics; Results – FeCl 3 Pitting; Waveforms for Anhydrous FeCl 3; Analyzing Corroded Stainless Steel 316L Plates; 316L Plate to Imitate Pitting; ECA Pit Depth Calibration Curve; C Scan Imaging; UT Pit Detection; SST Containers: Ultrasonic (UT) vs. CMM; UT Data Analysis; UT Conclusions and Observations; ECA Conclusions; Automated System Vision.
Solving time-dependent two-dimensional eddy current problems
NASA Technical Reports Server (NTRS)
Lee, Min Eig; Hariharan, S. I.; Ida, Nathan
1990-01-01
Transient eddy current calculations are presented for an EM wave-scattering and field-penetrating case in which a two-dimensional transverse magnetic field is incident on a good (i.e., not perfect) and infinitely long conductor. The problem thus posed is of initial boundary-value interface type, where the boundary of the conductor constitutes the interface. A potential function is used for time-domain modeling of the situation, and finite difference-time domain techniques are used to march the potential function explicitly in time. Attention is given to the case of LF radiation conditions.
Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.
2017-06-01
Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.
NASA Astrophysics Data System (ADS)
Abu-Nabah, Bassam A.
Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on high frequency eddy current spectroscopy, (iv) the development of custom-made spiral coils to allow eddy current conductivity characterization over the whole frequency range of interest with reduced coil sensitivity to lift off, (v) the benefits of implementing a semi-quadratic system calibration in reducing the coil sensitivity to lift-off, and (vi) the feasibility of adapting high-frequency eddy current residual stress characterization for shot-peened titanium alloys.
Drought evolution, severity and trends in mainland China over 1961-2013.
Yao, Ning; Li, Yi; Lei, Tianjie; Peng, Lingling
2018-03-01
Droughts have destructive impacts on crop yields and water supplies, and researching droughts is vital for societal stability and human life. This work aimed to assess the spatiotemporal evolution of droughts in mainland China over 1961-2013 using four drought indices. These indices were the percentage of precipitation anomaly (Pa), standard precipitation index (SPI), standard precipitation evapotranspiration index (SPEI) and evaporative demand drought index (EDDI) at multiple timescales ranging from 1-week to 24-month. The variations of the SPI, SPEI and EDDI were compared with historical severe or extreme droughts. The general increases of the Pa, SPI and SPEI, and general decrease of the EDDI, consistently implied an overall relief of drought conditions over 1961-2013. The different drought indices revealed historical drought conditions, including the national extreme droughts in 1961, 1965, 1972, 1978, 1986, 1988, 1992, 1994, 1997, 1999 and 2000, but various drought severity levels were classified for each drought event since the classification standards differed. Although the SPI and SPEI performed better than the EDDI and there were higher correlations between the SPI and the SPEI, all the indices were regional- or station-specific and have identified historical severe or extreme drought events. At shorter timescales, the EDDI revealed earlier onsets and ends of flash droughts, unlike those indicated by the SPI and SPEI. The comparison of the different indices based on the historical drought events confirmed the uses of the Pa, SPI and SPEI for determining continuous droughts and that of the EDDI for identifying flash droughts. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.
2015-07-01
We examine interannual variability of phytoplankton blooms in northwestern Arabian Sea and Gulf of Oman. Satellite data (SeaWIFS ocean color) shows two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. A pronounced anti-correlation between the AVISO sea surface height anomaly (SSHA) and chlorophyll is found during the wintertime bloom. On a regional scale, interannual variability of the wintertime bloom is thus dominated by cyclonic eddies which vary in location from one year to another. These results were compared against the outputs from three different 3-D Earth System models. We show that two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The southern part of the domain is a region with a much sharper thermocline and nutricline relatively close to the surface, in which eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). We suggest that for the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf.
Eddy covariance measurements of sea spray particles over the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Norris, S.; Brooks, I.; de Leeuw, G.; Smith, M. H.; Moeman, M.; Lingard, J.
2007-09-01
Most estimates of sea spray aerosol source functions have used indirect means to infer the rate of production as a function of wind speed. Only recently has the technology become available to make high frequency measurements of aerosol concentration suitable for direct eddy correlation determination of the particle flux. This was accomplished in this study by combining a newly developed fast aerosol particle counter with an ultrasonic anemometer which allowed for eddy covariance measurements of size-segregated particle fluxes. The aerosol instrument is the Compact Lightweight Aerosol Spectrometer Probe (CLASP) - capable of measuring 8-channel size spectra for mean radii between 0.15 and 0.35 μm at 10 Hz. The first successful measurements were made during the WASFAB (Waves, Air Sea Fluxes, Aerosol and Bubbles) field campaign in October 2005 in Duck (NC, USA). The method and results are presented and comparisons are made with recent sea spray source functions from the literature.
NASA Astrophysics Data System (ADS)
Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing
2018-04-01
Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.
New gap-filling and partitioning technique for H2O eddy fluxes measured over forests
NASA Astrophysics Data System (ADS)
Kang, Minseok; Kim, Joon; Malla Thakuri, Bindu; Chun, Junghwa; Cho, Chunho
2018-01-01
The continuous measurement of H2O fluxes using the eddy covariance (EC) technique is still challenging for forests because of large amounts of wet canopy evaporation (EWC), which occur during and following rain events when the EC systems rarely work correctly. We propose a new gap-filling and partitioning technique for the H2O fluxes: a model-statistics hybrid (MSH) method. It enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET) into transpiration and (wet canopy) evaporation. We tested and validated the new method using the data sets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16-41 mm yr-1 and separated it from the ET (14-23 % of the annual ET). Additionally, we illustrated certain advantages of the proposed technique which enable us to understand better how ET responds to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.
Shape Optimization by Bayesian-Validated Computer-Simulation Surrogates
NASA Technical Reports Server (NTRS)
Patera, Anthony T.
1997-01-01
A nonparametric-validated, surrogate approach to optimization has been applied to the computational optimization of eddy-promoter heat exchangers and to the experimental optimization of a multielement airfoil. In addition to the baseline surrogate framework, a surrogate-Pareto framework has been applied to the two-criteria, eddy-promoter design problem. The Pareto analysis improves the predictability of the surrogate results, preserves generality, and provides a means to rapidly determine design trade-offs. Significant contributions have been made in the geometric description used for the eddy-promoter inclusions as well as to the surrogate framework itself. A level-set based, geometric description has been developed to define the shape of the eddy-promoter inclusions. The level-set technique allows for topology changes (from single-body,eddy-promoter configurations to two-body configurations) without requiring any additional logic. The continuity of the output responses for input variations that cross the boundary between topologies has been demonstrated. Input-output continuity is required for the straightforward application of surrogate techniques in which simplified, interpolative models are fitted through a construction set of data. The surrogate framework developed previously has been extended in a number of ways. First, the formulation for a general, two-output, two-performance metric problem is presented. Surrogates are constructed and validated for the outputs. The performance metrics can be functions of both outputs, as well as explicitly of the inputs, and serve to characterize the design preferences. By segregating the outputs and the performance metrics, an additional level of flexibility is provided to the designer. The validated outputs can be used in future design studies and the error estimates provided by the output validation step still apply, and require no additional appeals to the expensive analysis. Second, a candidate-based a posteriori error analysis capability has been developed which provides probabilistic error estimates on the true performance for a design randomly selected near the surrogate-predicted optimal design.
A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux
NASA Astrophysics Data System (ADS)
Li, M.; Chen, Y.
2010-12-01
Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies. Seasonal and daily variability of latent heat fluxes were also discussed.
Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation
NASA Astrophysics Data System (ADS)
Morton, Scott
2002-08-01
An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan
2014-02-18
Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath andmore » slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.« less
NASA Astrophysics Data System (ADS)
Ciani, Daniele; Carton, Xavier; Barbosa Aguiar, Ana Claudia; Peliz, Alvaro; Bashmachnikov, Igor; Ienna, Federico; Chapron, Bertrand
2017-04-01
Subsurface-intensified eddies are ubiquitous in the world ocean. They can be generated by exchanges of water masses between semi-enclosed evaporation basins and the open ocean or by deep convection. Past and recent studies have shown that these eddies are carriers of large amounts of heat and salt, that they are coherent over inter-annual timescales and that they can migrate for several thousands of miles from their origination areas towards the open ocean. Hence, subsurface-intensified eddies can influence the three-dimensional distribution of oceanic tracers at global scale. The synoptic knowledge of the eddies positions and mean pathways is then crucial for evaluating temperature and salinity budgets in the world ocean. At present day, satellite sensors constitute the ideal tool for the synoptic and global scale observations of the ocean. Since they only provide informations on the oceanic surface, we characterized the signatures that subsurface eddies generate at the sea-surface, to determine the extent to which they can be isolated from the surrounding surface turbulence and be considered as a trace of an underlying eddy. We studied the surface signature of subsurface-intensified anticyclones (Mediterranean Water Eddies - Meddies) in a realistic, long-term (20 years) and high resolution simulation (dx = 3 km) based on the ROMS model. The novelty and advantage of this approach is given by the simultaneous availability of the full 3D eddies characteristics, the ones of the background ocean and of the sea-surface (in terms of sea-surface height, temperature and salinity). This also allowed us to speculate on a synergy between different satellite observations for the automatic detection of subsurface eddies from space. The along trajectory properties and surface signatures of more than 90 long-lived Meddies were analyzed. We showed that the Meddies constantly generate positive anomalies in sea-surface height and that these anomalies are principally related to the Meddy potential vorticity structure at depth (around 1000 m below the sea-surface). Such anomalies were long-lived, mostly migrated exhibiting southwestward trajectories, their intensities were O(10 cm) and extended horizontally up to more than 300 km (around 1.5 times the Meddy diameter). On the other hand, the Meddies thermohaline surface signatures proved to be mostly dominated by the local surface conditions and their structure poorly correlated to the Meddy structure at depth (e.g. the Meddy volume-integrated salt and temperature content). These results point out that satellite altimetry is the most suitable approach to track subsurface-intensified eddies from observations of the sea-surface, also encouraging the use of future high-resolution altimetric observations (e.g. SWOT) to detect subsurface oceanic motions from satellite sensors.
Characterization of flaws in a tube bundle mock-up for reliability studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupperman, D.S.; Bakhtiari, S.
1997-02-01
As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubesmore » were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes.« less
Results of NDE Technique Evaluation of Clad Hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunerth, Dennis C.
2014-09-01
This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used tomore » detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing parameters. These contributing factors need to be recognized and a means to control them or separate their contributions will be required to obtain the desired information.« less
The interaction of pulsed eddy current with metal surface crack for various coils
NASA Astrophysics Data System (ADS)
Yang, Hung-Chi; Tai, Cheng-Chi
2002-05-01
We study the interaction of pulsed eddy current (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil currents will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection.
Evaluation of an eddy resolving global model at the Bermuda Atlantic Time-series Study site
NASA Astrophysics Data System (ADS)
Hiron, L.; Goncalves Neto, A.; Bates, N. R.; Johnson, R. J.
2016-02-01
The Bermuda Atlantic Time-series Study (BATS) commenced monthly sampling in 1988 and thus provides an invaluable 27 years of ocean temperature and salinity profiles for inferring climate relevant processes. However, the passage of mesoscale eddies through this site complicates the local heat and salinity budgets due to inadequate spatial and temporal sampling of these eddy systems. Thus, application of high resolution operational numerical models potentially offers a framework for estimating the horizontal transport due to mesoscale processes. The goal of this research was to analyze the accuracy of the MERCATOR operational 1/12° global ocean model at the BATS site by comparing temperature, salinity and heat budgets for years 2008 - 2015. Overall agreement in the upper 540m for temperature and salinity is found to be very encouraging with significant (P< 0.01) correlations at all depths for both fields. The highest value of correlation coefficient for the temperature field is 0.98 at the surface which decreases to 0.66 at 150m and then reaches a minimum of 0.50 at 320 to 540m. Similarly, the highest correlation coefficient for salinity is found at the surface, with a value of 0.83 and then decreases to a minimum of 0.25 in the subtropical mode water though then increases to 0.5 at 540m. Mixing in the MERCATOR model is also very well captured with a mixed layer depth (MLD) correlation coefficient of 0.92 for the seven year period. Finally, the total heat budget (0-540m) from MERCATOR varies coherently with the BATS observations as shown by a high correlation coefficient of 0.84 (P < 0.01). According to these analyses, daily output from the MERCATOR model represents accurately the temperature, salinity, heat budget and MLD at the BATS site. We propose this model can be used in future research at the BATS site by providing information about mesoscale structure and importantly, advective fluxes at this site.
Experimental evaluation of fluctuating density and radiated noise from a high temperature jet
NASA Technical Reports Server (NTRS)
Massier, P. F.; Parthasarathy, S. P.; Cuffel, R. F.
1973-01-01
An experimental investigation has been conducted to characterize the fluctuating density within a high-temperature (1100 K) subsonic jet and to characterize by the noise radiated to the surroundings. Cross correlations obtained by introducing time delay to the signals detected from spatially separated crossed laser beams set up as a Schlieren system were used to determine radial and axial distributions of the convection velocity of the moving noise sources (eddies). In addition, the autocorrelation of the fluctuating density was evaluated in the moving frame of reference of the eddies. Also, the autocorrelation of the radiated noise in the moving reference frame was evaluated from cross correlations by introducing time delay to the signals detected by spatially separated pairs of microphones. Radial distributions of the mean velocity were obtained from measurements of the stagnation temperature, and stagnation and static pressures with the use of probes.
NASA Astrophysics Data System (ADS)
Bernhofer, Ch.
1992-06-01
A simple eddy correlation system is presented that allows on-line calculation of latent and sensible heat fluxes. The system is composed of a three dimensional propeller anemometer, a thermocouple and a capacitance relative humidity sensor. Results from two contrasting sites demonstrate the capability of the system to measure turbulent fluxes under varying conditions. A dry mixed (dominantly coniferous) forest in hilly terrain in Austria is compared to a well irrigated, heavily transpiring, deciduous pecan orchard in the Southwest of the US. The US site shows insufficient closure of the energy balance that is attributed to non-turbulent fluxes under advective conditions in a stable boundary layer (Blanford et al., 1991) while the Austrian site exhibits almost perfect closure with the use of the very same instruments when the boundary layer is convective and advection is negligible.
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2005-01-01
Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.
Continuous measurement of air-water gas exchange by underwater eddy covariance
NASA Astrophysics Data System (ADS)
Berg, Peter; Pace, Michael L.
2017-12-01
Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent mixing. This effect is unaccounted for in widely used empirical correlations for gas exchange coefficients and is another source of uncertainty in gas exchange estimates. The aquatic eddy covariance technique allows studies of air-water gas exchange processes and their controls at an unparalleled level of detail. A finding related to the new approach is that heat fluxes at the air-water interface can, contrary to those typically found in the benthic environment, be substantial and require correction of O2 sensor readings using high-speed parallel temperature measurements. Fast-responding O2 sensors are inherently sensitive to temperature changes, and if this correction is omitted, temperature fluctuations associated with the turbulent heat flux will mistakenly be recorded as O2 fluctuations and bias the O2 eddy flux calculation.
NASA Astrophysics Data System (ADS)
Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca
2018-06-01
We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.
NASA Technical Reports Server (NTRS)
Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil
2011-01-01
The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor array. In addition, this paper will outline recent efforts to produce sensors capable of making real-time measurements at temperatures up to 850 C, and discuss previous results demonstrating capability to monitor carbon fiber temperature changes within a composite material.
Modification of ocean-estuary salt fluxes by density-driven advection of a headland eddy
NASA Astrophysics Data System (ADS)
Fram, J. P.; Stacey, M. T.
2005-05-01
Scalar exchange between San Francisco Bay and the coastal ocean is examined using shipboard observations made across the Golden Gate Channel. Ocean-estuary exchange is often described as a combination of two independent types of mechanisms: density-driven exchange such as gravitational circulation and tidal asymmetries such as tidal trapping. In this study we found that exchange is also governed by an interaction between these mechanisms. Tidally trapped eddies created in shallow shoals are mixed into the main channel earlier in the tidal cycle during the rainy season because the eddies are pushed seaward by gravitational circulation. This interaction increases the tidally averaged dispersive salt flux into the bay. The study consists of experiments during each of three 'seasons': winter/spring runoff (March 2002), summer upwelling (July 2003), and fall relaxation (October 2002). Within each experiment, transects across the channel were repeated approximately every 12 minutes for 25 hours during both spring tide and the following neap tide. Velocity was measured from a boat-mounted ADCP. Scalar concentrations were measured from a tow-yoed SeaSciences Acrobat. Salinity exchange over each spring-neap cycle is quantified with harmonic analysis. Harmonic results are decomposed into flux mechanisms using temporal and spatial correlations. The temporal correlation of cross-sectional averaged salinity and velocity (tidal pumping flux) is the largest part of the dispersive flux of salinity into the bay. From the tidal pumping portion of the dispersive flux, it is shown that there is less exchange than was found in earlier studies. Furthermore, tidal pumping flux scales strongly with flow due to density-driven movement of tidally trapped eddies and density-driven increases in ebb-flood frictional phasing. Complex bathymetry makes salinity exchange scale differently with flow than would be expected from simple tidal pumping and gravitational circulation models.
Subgrid or Reynolds stress-modeling for three-dimensional turbulence computations
NASA Technical Reports Server (NTRS)
Rubesin, M. W.
1975-01-01
A review is given of recent advances in two distinct computational methods for evaluating turbulence fields, namely, statistical Reynolds stress modeling and turbulence simulation, where large eddies are followed in time. It is shown that evaluation of the mean Reynolds stresses, rather than use of a scalar eddy viscosity, permits an explanation of streamline curvature effects found in several experiments. Turbulence simulation, with a new volume averaging technique and third-order accurate finite-difference computing is shown to predict the decay of isotropic turbulence in incompressible flow with rather modest computer storage requirements, even at Reynolds numbers of aerodynamic interest.
Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.
1999-01-01
Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s. Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(exp 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely sensed estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient-replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24 +/- 0.1 mol N/sq m (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.
1999-01-01
Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
NASA Astrophysics Data System (ADS)
Thomas, Leif N.
2008-08-01
A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.
NASA Astrophysics Data System (ADS)
Stepinski, Tadeusz
2003-07-01
Sweden has been intensively developing methods for long term storage of spent fuel from the nuclear power plants for twenty-five years. A dedicated research program has been initiated and conducted by the Swedish company SKB (Swedish Nuclear Fuels and Waste Management Co.). After the interim storage SKB plans to encapsulate spent nuclear fuel in copper canisters that will be placed at a deep repository located in bedrock. The canisters filled with fuel rods will be sealed by an electron beam weld. This paper presents three complementary NDE techniques used for assessing the sealing weld in copper canisters, radiography, ultrasound, and eddy current. A powerful X-ray source and a digital detector are used for the radiography. An ultrasonic array system consisting of a phased ultrasonic array and a multi-channel electronics is used for the ultrasonic examination. The array system enables electronic focusing and rapid electronic scanning eliminating the use of a complicated mechanical scanner. A specially designed eddy current probe capable of detecting small voids at the depth up to 4 mm in copper is used for the eddy current inspection. Presently, all the NDE techniques are verified in SKB's Canister Laboratory where full scale canisters are welded and examined.
NASA Astrophysics Data System (ADS)
Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Hipps, Lawrence E.; Evett, Steven R.; Basara, Jeffrey B.; Neale, Christopher M. U.; French, Andrew N.; Colaizzi, Paul; Agam, Nurit; Cosh, Michael H.; Chavez, José L.; Howell, Terry A.
2012-12-01
Discrepancies can arise among surface flux measurements collected using disparate techniques due to differences in both the instrumentation and theoretical underpinnings of the different measurement methods. Using data collected primarily within a pair of irrigated cotton fields as a part of the 2008 Bushland Evapotranspiration and Remote Sensing Experiment (BEAREX08), flux measurements collected with two commonly-used methods, eddy covariance (EC) and lysimetry (LY), were compared and substantial differences were found. Daytime mean differences in the flux measurements from the two techniques could be in excess of 200 W m-2 under strongly advective conditions. Three causes for this disparity were found: (i) the failure of the eddy covariance systems to fully balance the surface energy budget, (ii) flux divergence due to the local advection of warm, dry air over the irrigated cotton fields, and (iii) the failure of lysimeters to accurately represent the surface properties of the cotton fields as a whole. Regardless of the underlying cause, the discrepancy among the flux measurements underscores the difficulty in collecting these measurements under strongly advective conditions. It also raises awareness of the uncertainty associated with in situ micrometeorological measurements and the need for caution when using such data for model validation or as observational evidence to definitively support or refute scientific hypotheses.
Bastin, M E; Armitage, P A
2000-07-01
The accurate determination of absolute measures of diffusion anisotropy in vivo using single-shot, echo-planar imaging techniques requires the acquisition of a set of high signal-to-noise ratio, diffusion-weighted images that are free from eddy current induced image distortions. Such geometric distortions can be characterized and corrected in brain imaging data using magnification (M), translation (T), and shear (S) distortion parameters derived from separate water phantom calibration experiments. Here we examine the practicalities of using separate phantom calibration data to correct high b-value diffusion tensor imaging data by investigating the stability of these distortion parameters, and hence the eddy currents, with time. It is found that M, T, and S vary only slowly with time (i.e., on the order of weeks), so that calibration scans need not be performed after every patient examination. This not only minimises the scan time required to collect the calibration data, but also the computational time needed to characterize these eddy current induced distortions. Examples of how measurements of diffusion anisotropy are improved using this post-processing scheme are also presented.
Flux agreement above a Scots pine plantation
NASA Astrophysics Data System (ADS)
Gay, L. W.; Vogt, R.; Bernhofer, Ch.; Blanford, J. H.
1996-03-01
The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one “low” tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the “high” tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches -1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a “phantom dew” error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent SEC system 3 were in reasonable agreement, while the BREB system appeared to overestimate H and underestimate LE; H and LE measured by SEC system 22 on the high tower were lower than from OPEC and SEC3 on the low tower. The turbulent flux measurements tended to converge, but the data exhibit unexplained differences between days, between systems, and between locations.
Zheng, Ze-Mei; Yu, Gui-Rui; Sun, Xiao-Min; Cao, Guang-Min; Wang, Yue-Si; Du, Ming-Yuan; Li, Jun; Li, Ying-Nian
2008-02-01
Based on the measurement of carbon flux by the methods of eddy covariance and static chamber/gas chromatogram, a comparison was made between the two methods in evaluating ecosystem respiration over winter wheat (Triticum aestivum)--summer maize (Zea mays) double cropland and Kobresia humilis alpine meadow. The results showed that under the conditions of obtained data having good quality, nighttime ecosystem respiration from eddy covariance measurement was significantly agreed with that from static chamber/gas chromatogram measurement, with the correlation coefficients ranging from 0.95 to 0.98, and the daytime ecosystem respiration from these two measurements also had a good consistency though the static chamber/gas chromatogram measurement often produced higher values. The daily mean value of ecosystem respiration was significantly different between these two measurements, but the seasonal pattern was similar. For winter wheat-summer maize double cropland, the difference of mean air temperature inside and outside the chamber was 1.8 degrees C, and the daily mean value of ecosystem respiration across the whole study period was 30.3% lower in eddy covariance measurement than in static chamber/gas chromatogram measurement; while for alpine meadow, the difference of the mean air temperature was 1.9 degrees C, and the daily mean value of ecosystem respiration was 31.4% lower in eddy covariance measurement than in static chamber/gas chromatogram measurement. The variance between the daily mean values of ecosystem respiration obtained from the two measurements was higher in growing season than in dormant season.
NASA Astrophysics Data System (ADS)
Tanis, Fred J.; Manley, Thomas O.; Mitchell, Brian G.
1990-09-01
Eddies along the Polar Front/Marginal Ice Zone (MIZ) in Fram Strait are thought to make important contributions to nutrient flux and stimulation of primary productivity. During the Coordinated Eastern Arctic Regional Experiment (CEAREX) helicopter-based measurements of upwelling radiance were made in four visible spectral bands and in the thermal IR across mesoscale features associated with the MIZ. These structures were mapped by flying a grid pattern over the ocean surface to define eddy boundaries. Subsequently, the area was also sampled vertically with CTD and spectral radiometer profilers. Data obtained from a single structure were integrated to construct a three dimensional picture of physical and optical properties. Volume modeling of temperature, salinity, and density fields obtained from CTD survey define the subsurface eddy structure and are in good agreement with infrared derived characteristics. Maximum temperature in the core was found to be four degrees higher than the surrounding water. Volume modeling further indicates that a subsurface layer of Arctic Intermediate Water is intrinsically associated with the surface expression of the eddy. The ratio of upwelling radiances, L(44l)/L(565), was found to be correlated to surface chlorophyll, particulate absorption coefficient, and in water determinations of L using the optical profiling system. The remote sensing reflectance ratio along with the IR sea surface temperature were found to be useful to detect the surface expression of the eddy and to indicate near surface biological and physical processes.
NASA Astrophysics Data System (ADS)
Claycomb, James Ronald
1998-10-01
Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.
Coupled circuit numerical analysis of eddy currents in an open MRI system.
Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi
2014-08-01
We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation methods. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Siebicke, Lukas
2017-04-01
The eddy covariance (EC) method is state-of-the-art in directly measuring vegetation-atmosphere exchange of CO2 and H2O at ecosystem scale. However, the EC method is currently limited to a small number of atmospheric tracers by the lack of suitable fast-response analyzers or poor signal-to-noise ratios. High resource and power demands may further restrict the number of spatial sampling points. True eddy accumulation (TEA) is an alternative method for direct and continuous flux observations. Key advantages are the applicability to a wider range of air constituents such as greenhouse gases, isotopes, volatile organic compounds and aerosols using slow-response analyzers. In contrast to relaxed eddy accumulation (REA), true eddy accumulation (Desjardins, 1977) has the advantage of being a direct method which does not require proxies. True Eddy Accumulation has the potential to overcome above mentioned limitations of eddy covariance but has hardly ever been successfully demonstrated in practice in the past. This study presents flux measurements using an innovative approach to true eddy accumulation by directly, continuously and automatically measuring trace gas fluxes using a flow-through system. We merge high-frequency flux contributions from TEA with low-frequency covariances from the same sensors. We show flux measurements of CO2, CH4 and H2O by TEA and EC above an old-growth forest at the ICOS flux tower site "Hainich" (DE-Hai). We compare and evaluate the performance of the two direct turbulent flux measurement methods eddy covariance and true eddy accumulation using side-by-side trace gas flux observations. We further compare performance of seven instrument complexes, i.e. combinations of sonic anemometers and trace gas analyzers. We compare gas analyzers types of open-path, enclosed-path and closed-path design. We further differentiate data from two gas analysis technologies: infrared gas analysis (IRGA) and laser spectrometry (open path and CRDS closed-path laser spectrometers). We present results of CO2 and H2O fluxes from the following six instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), METEK-uSonic3/LI-7500 (EC), Gill-R3/LI-6262 (EC), Gill-R3/LI-7200 (EC), Gill-HS/LI-7200 (EC), Gill-R3/LGR-FGGA (EC). Further, we present results of much more difficult to measure CH4 fluxes from the following three instruments, i.e. combinations of sonic anemometers/gas analyzers (and methods): METEK-uSonic3/Picarro-G2301 (TEA), Gill-R3/LI-7700 (EC), Gill-R3/LGR-FGGA (EC). We observed that CO2, CH4 and H2O fluxes from the side-by-side measurements by true eddy accumulation and eddy covariance methods correlated well. Secondly, the difference between the TEA and EC methods using the same sonic anemometer but different gas analyzer was often smaller than the mismatch of the various side-by-side eddy covariance measurements using different sonic anemometers and gas analyzers. Signal-to-noise ratios of CH4 fluxes from the true eddy accumulation system system were superior to both eddy covariance sensors (open-path LI-7700 and closed-path CRDS LGR-FGGA sensors). We conclude that our novel implementation of the true eddy accumulation method demonstrated high signal-to-noise ratios, applicability to slow-response gas analyzers, small power consumption and direct proxy-free ecosystem-scale trace gas flux measurements of CO2, CH4 and H2O. The current results suggest that true eddy accumulation would be suitable and should be applied as the method-of-choice for direct flux measurements of a large number of atmospheric constituents beyond CO2 and H2O, including isotopes, aerosols, volatile organic compounds and other trace gases for which eddy covariance might not be a viable alternative. We will further develop true eddy accumulation as a novel approach using multiplexed systems for spatially distributed flux measurements.
Integrated and spectral energy flows of the GLAS GCM
NASA Technical Reports Server (NTRS)
Tennebaum, J.
1981-01-01
Methods to analyze the generation, transport, and dissipation of energy to study geophysical fluid flows are discussed. Energetics analyses are pursued in several directions: (1) the longitudinal and time dependence on the energy flow to the stratosphere was examined as a function of geographical sector; (2) strong and weak energy flows were correlated by medium range forecasts; (3) the one dimensional spectral results (Fourier services around latitude circles) were extended to spherical harmonics over a global domain; (4) the validity of vertical velocities derived from mass convergence was examined for their effect on the conversion of eddy available potential energy to eddy kinetic energy.
The nature of large-scale turbulence in the Jovian atmosphere
NASA Technical Reports Server (NTRS)
Mitchell, J. L.
1982-01-01
The energetics and spectral characteristis of quasi-geostrophic turbulence in Jupiter's atmosphere are examined using sequences of Voyager images and infrared temperature soundings. Using global wind measurements momentum transports associated with zonally symmetric stresses and turbulent stresses are quantified. Though a strong up-gradient flux of momentum by eddies was observed, measurements do not preclude the possibility that symmetric stresses play a critical role in maintaining the mean zonal circulation. Strong correlation between the observed meridional distribution of eddy-scale kinetic energy and available potential energy suggests coupling between the observed cloudtop turbulent motions and the upper tropospheric thermodynamics. An Oort energy budget for Jupiter's upper troposphere is formulated.
NASA Astrophysics Data System (ADS)
Burba, G. G.; Madsen, R.; Feese, K.
2013-12-01
The eddy covariance (EC) method is a micrometeorological technique for direct high-speed measurements of the transport of gases and energy between land or water surfaces and the atmosphere [1]. This method allows for observations of gas transport scales from 20-40 times per second to multiple years, represents gas exchange integrated over a large area, from hundreds of square meters to tens of square kilometres, and corresponds to gas exchange from the entire surface, including canopy, and soil or water layers. Gas fluxes, emission and exchange rates are characterized from single-point in situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Presently, over 600 eddy covariance stations are in operation in over 120 countries [1]. EC is now recognized as an effective method in regulatory and industrial applications, including CCUS [2-10]. Emerging projects utilize EC to continuously monitor large areas before and after the injections, to locate and quantify leakages where CO2 may escape from the subsurface, to improve storage efficiency, and for other CCUS characterizations [5-10]. Although EC is one of the most direct and defensible micrometeorological techniques measuring gas emission and transport, and complete automated stations and processing are readily available, the method is mathematically complex, and requires careful setup and execution specific to the site and project. With this in mind, step-by-step instructions were created in [1] to introduce a novice to the EC method, and to assist in further understanding of the method through more advanced references. In this presentation we provide brief highlights of the eddy covariance method, its application to geological carbon capture, utilization and storage, key requirements, instrumentation and software, and review educational resources particularly useful for carbon sequestration research. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Lewicki J., Hilley G. Eddy covariance mapping and quantification of surface CO2 leakage fluxes. GRL, 2009; 36: L21802. [8] Finley R. An Assessment of Geological Carbon Sequestration in the Illinois Basin. Overview of the Decatur-Illinois Basin Site. DOE-MGSC; 2009. [9] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [10] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia; Submitted: 1-8.
Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)
NASA Astrophysics Data System (ADS)
Liu, Z. J.; Low, T. S.
1996-04-01
The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.
Eddy current simulation in thick cylinders of finite length induced by coils of arbitrary geometry.
Sanchez Lopez, Hector; Poole, Michael; Crozier, Stuart
2010-12-01
Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field produced by this induced current degrades the spatial and temporal performance of the primary field generated by the gradient coils. Although this undesired effect can be minimized by using actively and/or passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the successful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy currents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current density on each as a Fourier series. The coupling between each mode of the Fourier series with every other is modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a canonical problem and comparing the results against a commercially available software package. An accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat consisting of three different conducting materials. Details of the temporal-spatial induced current diffusion process were simulated through all cryostat layers, which could not be efficiently simulated with any other method. With this data, all quantities that depend on the current density, such as the secondary magnetic field, are simply evaluated. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, X. I. A.; Marusic, I.; Meneveau, C.
2016-06-01
Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2
Newton vs. Munchhausen in upper-troposphere dynamics
NASA Astrophysics Data System (ADS)
Bergmann, Juan Carlos
2010-05-01
Atmospheric angular momentum (AM) balance depends crucially on the existence and magnitude of the planetary-scale AM transport by 'eddies' in the upper troposphere. Its divergence has to provide the torque, which is necessary to realise the upper-troposphere branch of meridional circulation. (In the boundary layer, the torque is provided by surface-friction.) The torques in neighbouring circulation cells are opposed, so that the AM transport mediates a torque-interaction between the circulation cells. This interaction corresponds to a clear requirement of Newton's Third Law: torques (forces) exist only in interaction with other bodies, and their sum is equal to zero. In Münchhausen's physics, force (and torque) exists without interaction: In a famous tale, Münchhausen saves himself (and his horse!) from drowning in a swamp-hole by pulling himself up at his hair. Münchhausen-physics situations arise in the dynamical analysis of the torque exerted by a single eddy and in analysis of the cause for the AM transport of the single eddy. The local AM transport of the single eddy is defined by the difference in zonal velocity between the pole-ward and equator-ward branches (Δu) multiplied with meridional velocity-magnitude (¦v¦). For the average over many eddies, it transforms to the average product of the deviations of zonal and meridional velocities from their local averages (, eddy-correlation; the complete formulations include the local radius of rotation but it is omitted here for simplicity reasons). This definition is phenomenological but not dynamical. In dynamical analysis it turns out that the torque-related zonal equation of motion of an AM-transporting single eddy can be formulated without torque-interaction with other bodies (torque-free eddy). Newton III implies also the phenomenological torque (transport divergence -δ(¦v¦Δu)/δy) to be zero for this case because there is no partner of torque-interaction. However, the dynamically torque-free single eddy has an unavoidable 'transport' divergence - especially in the turning-region of the meridional motion. Thus, there is a phenomenological 'torque' (non-zero 'transport' divergence) without torque-interaction - a classical Münchhausen situation! The dynamical cause of phenomenological 'AM transport' and associated phenomenological 'torques' of the dynamically torque-free single eddy is 'hidden' in the non-torque-related meridional equation of motion for steady-state: δv-δ t = - u δv-δx - vδv-δ y - f u(x) + Fy(x) = 0 . Strong variation of the meridional pressure-gradient force Fy(x) (no torque!) over the eddy-path (longitude x) produces varying zonal velocities u(x) that are falsely interpreted as 'AM transport' on the phenomenological level (the 'advective' terms are negligible outside the eddy's turning regions). Thus, creation and destruction of phenomenological 'AM transport' (Δu) in a single eddy do not originate from torque-interaction with other bodies - another classical Münchhausen situation! Should the previous analysis be ignored in favour of maintaining the 'established' ideas of upper-troposphere dynamics or should there be an effort to formulate new ideas that are in accordance with Newtonian physics?
Post-tensioning tendon force loss detection using low power pulsed eddy current measurement
NASA Astrophysics Data System (ADS)
Kim, Ji-Min; Lee, Jun; Sohn, Hoon
2018-04-01
In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.
Eddy Covariance Measurements of the Sea-Spray Aerosol Flu
NASA Astrophysics Data System (ADS)
Brooks, I. M.; Norris, S. J.; Yelland, M. J.; Pascal, R. W.; Prytherch, J.
2015-12-01
Historically, almost all estimates of the sea-spray aerosol source flux have been inferred through various indirect methods. Direct estimates via eddy covariance have been attempted by only a handful of studies, most of which measured only the total number flux, or achieved rather coarse size segregation. Applying eddy covariance to the measurement of sea-spray fluxes is challenging: most instrumentation must be located in a laboratory space requiring long sample lines to an inlet collocated with a sonic anemometer; however, larger particles are easily lost to the walls of the sample line. Marine particle concentrations are generally low, requiring a high sample volume to achieve adequate statistics. The highly hygroscopic nature of sea salt means particles change size rapidly with fluctuations in relative humidity; this introduces an apparent bias in flux measurements if particles are sized at ambient humidity. The Compact Lightweight Aerosol Spectrometer Probe (CLASP) was developed specifically to make high rate measurements of aerosol size distributions for use in eddy covariance measurements, and the instrument and data processing and analysis techniques have been refined over the course of several projects. Here we will review some of the issues and limitations related to making eddy covariance measurements of the sea spray source flux over the open ocean, summarise some key results from the last decade, and present new results from a 3-year long ship-based measurement campaign as part of the WAGES project. Finally we will consider requirements for future progress.
Evaporation from Lake Mead, Nevada and Arizona, March 2010 through February 2012
Moreo, Michael T.; Swancar, Amy
2013-01-01
Evaporation from Lake Mead was measured using the eddy-covariance method for the 2-year period starting March 2010 and ending February 2012. When corrected for energy imbalances, annual eddy-covariance evaporation was 2,074 and 1,881 millimeters (81.65 and 74.07 inches), within the range of previous estimates. There was a 9-percent decrease in the evaporation rate and a 10-percent increase in the lake surface area during the second year of the study compared to the first. These offsetting factors resulted in a nearly identical 720 million cubic meters (584,000 acre feet) evaporation volume for both years. Monthly evaporation rates were best correlated with wind speed, vapor pressure difference, and atmospheric stability. Differences between individual monthly evaporation and mean monthly evaporation were as much as 20 percent. Net radiation provided most of the energy available for evaporative processes; however, advected heat from the Colorado River was an important energy source during the second year of the study. Peak evaporation lagged peak net radiation by 2 months because a larger proportion of the net radiation that reaches the lake goes to heating up the water column during the spring and summer months. As most of this stored energy is released, higher evaporation rates are sustained during fall months even though net radiation declines. The release of stored heat also fueled nighttime evaporation, which accounted for 37 percent of total evaporation. The annual energy-balance ratio was 0.90 on average and varied only 0.01 between the 2 years, thus implying that 90 percent of estimated available energy was accounted for by turbulent energy measured using the eddy-covariance method. More than 90 percent of the turbulent-flux source area represented the open-water surface, and 94 percent of 30-minute turbulent-flux measurements originated from wind directions where the fetch ranged from 2,000 to 16,000 meters. Evaporation uncertainties were estimated to be 5 to 7 percent. A secondary evaporation method, the Bowen ratio energy budget method, also was employed to measure evaporation from Lake Mead primarily as a validation of eddy-covariance evaporation measurements at annual timescales. There was good agreement between annual corrected eddy-covariance and Bowen ratio energy budget evaporation estimates, providing strong validation of these two largely independent methods. Annual Bowen ratio energy budget evaporation was 6 and 8 percent greater than eddy-covariance evaporation for the 2 study years, and both methods indicated there was a similar decrease in evaporation from the first to the second year. Both methods produced negative sensible heat fluxes during the same months, and there was a strong correlation between monthly Bowen ratios (R2 = 0.94). The correlation between monthly evaporation (R2 = 0.65), however, was not as strong. Monthly differences in evaporation were attributed primarily to heat storage estimate uncertainty.
White matter tractography by means of Turboprop diffusion tensor imaging.
Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana
2005-12-01
White matter fiber-tractography by means of diffusion tensor imaging (DTI) is a noninvasive technique that provides estimates of the structural connectivity of the brain. However, conventional fiber-tracking methods using DTI are based on echo-planar image acquisitions (EPI), which suffer from image distortions and artifacts due to magnetic susceptibility variations and eddy currents. Thus, a large percentage of white matter fiber bundles that are mapped using EPI-based DTI data are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber-tracking techniques. In contrast, Turboprop imaging is a multiple-shot gradient and spin-echo (GRASE) technique that provides images with significantly fewer susceptibility and eddy current-related artifacts than EPI. The purpose of this work was to evaluate the performance of fiber-tractography techniques when using data obtained with Turboprop-DTI. All fiber pathways that were mapped were found to be in agreement with the anatomy. There were no visible distortions in any of the traced fiber bundles, even when these were located in the vicinity of significant magnetic field inhomogeneities. Additionally, the Turboprop-DTI data used in this research were acquired in less than 19 min of scan time. Thus, Turboprop appears to be a promising DTI data acquisition technique for tracing white matter fibers.
Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arrowood, Lloyd F.
Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusionmore » strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.« less
Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A
2017-03-13
The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
Eddy covariance measurements of sea spray particles over the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Norris, S. J.; Brooks, I. M.; de Leeuw, G.; Smith, M. H.; Moerman, M.; Lingard, J. J. N.
2008-02-01
Most estimates of sea spray aerosol source functions have used indirect means to infer the rate of production as a function of wind speed. Only recently has the technology become available to make high frequency measurements of aerosol spectra suitable for direct eddy correlation determination of the sea spray particle flux. This was accomplished in this study by combining a newly developed fast aerosol particle counter with an ultrasonic anemometer which allowed for eddy covariance measurements of size-segregated particle fluxes. The aerosol instrument is the Compact Lightweight Aerosol Spectrometer Probe (CLASP) - capable of measuring 8-channel size spectra for mean radii between 0.15 and 3.5 µm at 10 Hz. The first successful measurements were made during the Waves, Air Sea Fluxes, Aerosol and Bubbles (WASFAB) field campaign in October 2005 in Duck (NC, USA). The method and initial results are presented and comparisons are made with recent sea spray source functions from the literature.
Integrated and spectral energetics of the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1982-01-01
Integrated and spectral error energetics of the GLAS General circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level, particularly above strong initial jet streams associated in part with regions of steep terrain. The spectral error growth study represents the first comparison of general circulation model spectral energetics predictions with the corresponding observational spectra on a day by day basis. The major conclusion is that eddy kinetics energy can be correct while significant errors occur in the kinetic energy of wavenumber 3. Both the model and observations show evidence of single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetics and potential energy.
Mishra, G K; Kumar, Abhay; Prakash, O; Biswal, R; Dixit, S K; Nakhe, S V
2015-04-10
This paper presents computational and experimental studies on wavelength/frequency fluctuation characteristics of a high pulse repetition rate (18 kHz) dye laser pumped by a frequency-doubled Nd:YAG laser (532 nm). The temperature gradient in the dye solution is found to be responsible for wavelength fluctuations of the dye laser at low flow rates (2800
Stable isotope measurements of evapotranspiration partitioning in a maize field
NASA Astrophysics Data System (ADS)
Hogan, Patrick; Parajka, Juraj; Oismüller, Markus; Strauss, Peter; Heng, Lee; Blöschl, Günter
2017-04-01
Evapotranspiration (ET) is one of the most important processes in describing land surface - atmosphere interactions as it connects the energy and water balances. Furthermore knowledge of the individual components of evapotranspiration is important for ecohydrological modelling and agriculture, particularly for irrigation efficiency and crop productivity. In this study, we tested the application of the stable isotope method for evapotranspiration partitioning to a maize crop during the vegetative stage, using sap flow sensors as a comparison technique. Field scale ET was measured using an eddy covariance device and then partitioned using high frequency in-situ measurements of the isotopic signal of the canopy water vapor. The fraction of transpiration (Ft) calculated with the stable isotope method showed good agreement with the sap flow method. High correlation coefficient values were found between the two techniques, indicating the stable isotope method can successfully be applied in maize. The results show the changes in transpiration as a fraction of evapotranspiration after rain events and during the subsequent drying conditions as well as the relationship between transpiration and solar radiation and vapor pressure deficit.
Open software tools for eddy covariance flux partitioning
USDA-ARS?s Scientific Manuscript database
Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...
Turbulent fluxes by "Conditional Eddy Sampling"
NASA Astrophysics Data System (ADS)
Siebicke, Lukas
2015-04-01
Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.
Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.
1973-01-01
Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.
Research on defects inspection of solder balls based on eddy current pulsed thermography.
Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe
2015-10-13
In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.
Partitioning Carbon Dioxide and Water Vapor Fluxes Using Correlation Analysis
USDA-ARS?s Scientific Manuscript database
Partitioning of eddy covariance flux measurements is routinely done to quantify the contributions of separate processes to the overall fluxes. Measurements of carbon dioxide fluxes represent the difference between gross ecosystem photosynthesis and total respiration, while measurements of water vapo...
NASA Astrophysics Data System (ADS)
Corona, Roberto; Curreli, Matteo; Montaldo, Nicola; Oren, Ram
2013-04-01
Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Mediterranean regions suffer water scarcity due to the dry climate conditions. In semi-arid regions evapotranspiration (ET) is the leading loss term of the root-zone water budget with a yearly magnitude that may be roughly equal to the precipitation. Despite the attention these ecosystems are receiving, a general lack of knowledge persists about the estimate of ET and the relationship between ET and the plant survival strategies for the different PFTs under water stress. During the dry summers these water-limited heterogeneous ecosystems are mainly characterized by a simple dual PFT-landscapes with strong-resistant woody vegetation and bare soil since grass died. In these conditions due to the low signal of the land surface fluxes captured by the sonic anemometer and gas analyzer the widely used eddy covariance may fail and its ET estimate is not robust enough. In these conditions the use of the sap flow technique may have a key role, because theoretically it provides a direct estimate of the woody vegetation transpiration. Through the coupled use of the sap flow sensor observations, a 2D foot print model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. The case study is at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in 2004. Land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are estimated. From 2012 sap flow sensors based on the thermal Dissipation Method are installed on numerous trees around the tower. Preliminary results show first the need of careful use sap flow sensors outputs which are affected by errors in the estimates of their main parameters, mainly allometric relationships between, for instance, sapwood area, diameter, canopy cover area, which affect the upscale of the local tree measurements to the site plot larger scale. Finally we demonstrate that the sap flow sensors are essential for the estimate of ET in such dry conditions, typical of Mediterranean ecosystems.
NASA Astrophysics Data System (ADS)
Anderson, C.; Vivoni, E. R.; Pierini, N.; Robles-Morua, A.; Rango, A.; Laliberte, A.; Saripalli, S.
2012-12-01
Ecohydrological dynamics can be evaluated from field observations of land-atmosphere states and fluxes, including water, carbon, and energy exchanges measured through the eddy covariance method. In heterogeneous landscapes, the representativeness of these measurements is not well understood due to the variable nature of the sampling footprint and the mixture of underlying herbaceous, shrub, and soil patches. In this study, we integrate new field techniques to understand how ecosystem surface states are related to turbulent fluxes in two different semiarid shrubland settings in the Jornada (New Mexico) and Santa Rita (Arizona) Experimental Ranges. The two sites are characteristic of Chihuahuan (NM) and Sonoran (AZ) Desert mixed-shrub communities resulting from woody plant encroachment into grassland areas. In each study site, we deployed continuous soil moisture and soil temperature profile observations at twenty sites around an eddy covariance tower after local footprint estimation revealed the optimal sensor network design. We then characterized the tower footprint through terrain and vegetation analyses derived at high resolution (<1 m) from imagery obtained from a fixed-wing and rotary-wing Unmanned Aerial Vehicles (UAV). Our analysis focuses on the summertime land-atmosphere states and fluxes during which each ecosystem responded differentially to the North American monsoon. We found that vegetation heterogeneity induces spatial differences in soil moisture and temperature that are important to capture when relating these states to the eddy covariance flux measurements. Spatial distributions of surface states at different depths reveal intricate patterns linked to vegetation cover that vary between the two sites. Furthermore, single site measurements at the tower are insufficient to capture the footprint conditions and their influence on turbulent fluxes. We also discuss techniques for aggregating the surface states based upon the vegetation and soil classifications obtained from the high-resolution aerial imagery. Overall, the integration of the different techniques yielded new insight into the spatiotemporal variation of land surface states and their relation to sensible and latent heat fluxes in two shrubland sites, with the potential application in other ecosystems worldwide.
Analyses of mean and turbulent motion in the tropics with the use of unequally spaced data
NASA Technical Reports Server (NTRS)
Kao, S. K.; Nimmo, E. J.
1979-01-01
Wind velocities from 25 km to 60 km over Ascension Island, Fort Sherman and Kwajalein for the period January 1970 to December 1971 are analyzed in order to achieve a better understanding of the mean flow, the eddy kinetic energy and the Eulerian time spectra of the eddy kinetic energy. Since the data are unequally spaced in time, techniques of one-dimensional covariance theory were utilized and an unequally spaced time series analysis was accomplished. The theoretical equations for two-dimensional analysis or wavenumber frequency analysis of unequally spaced data were developed. Analysis of the turbulent winds and the average seasonal variance and eddy kinetic energy of the turbulent winds indicated that maximum total variance and energy is associated with the east-west velocity component. This is particularly true for long period seasonal waves which dominate the total energy spectrum. Additionally, there is an energy shift for the east-west component into the longer period waves with altitude increasing from 30 km to 50 km.
Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo
NASA Astrophysics Data System (ADS)
Tang, Angela C. I.; Stoy, Paul C.; Hirata, Ryuichi; Musin, Kevin K.; Aeries, Edward B.; Wenceslaus, Joseph; Melling, Lulie
2018-05-01
Tropical biogenic sources are a likely cause of the recent increase in global atmospheric methane concentration. To improve our understanding of tropical methane sources, we used the eddy covariance technique to measure CH4 flux (FCH4) between a tropical peat forest ecosystem and the atmosphere in Malaysian Borneo over a 2-month period during the wet season. Mean daily FCH4 during the measurement period, on the order of 0.024 g C-CH4·m-2·day-1, was similar to eddy covariance FCH4 measurements from tropical rice agroecosystems and boreal fen ecosystems. A linear modeling analysis demonstrated that air temperature (Tair) was critical for modeling FCH4 before the water table breached the surface and that water table alone explained some 20% of observed FCH4 variability once standing water emerged. Future research should measure FCH4 on an annual basis from multiple tropical ecosystems to better constrain tropical biogenic methane sources.
Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE
NASA Technical Reports Server (NTRS)
Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.
1993-01-01
Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.
Developing an Automated Method for Detection of Operationally Relevant Ocean Fronts and Eddies
NASA Astrophysics Data System (ADS)
Rogers-Cotrone, J. D.; Cadden, D. D. H.; Rivera, P.; Wynn, L. L.
2016-02-01
Since the early 90's, the U.S. Navy has utilized an observation-based process for identification of frontal systems and eddies. These Ocean Feature Assessments (OFA) rely on trained analysts to identify and position ocean features using satellite-observed sea surface temperatures. Meanwhile, as enhancements and expansion of the navy's Hybrid Coastal Ocean Model (HYCOM) and Regional Navy Coastal Ocean Model (RNCOM) domains have proceeded, the Naval Oceanographic Office (NAVO) has provided Tactical Oceanographic Feature Assessments (TOFA) that are based on data-validated model output but also rely on analyst identification of significant features. A recently completed project has migrated OFA production to the ArcGIS-based Acoustic Reach-back Cell Ocean Analysis Suite (ARCOAS), enabling use of additional observational datasets and significantly decreasing production time; however, it has highlighted inconsistencies inherent to this analyst-based identification process. Current efforts are focused on development of an automated method for detecting operationally significant fronts and eddies that integrates model output and observational data on a global scale. Previous attempts to employ techniques from the scientific community have been unable to meet the production tempo at NAVO. Thus, a system that incorporates existing techniques (Marr-Hildreth, Okubo-Weiss, etc.) with internally-developed feature identification methods (from model-derived physical and acoustic properties) is required. Ongoing expansions to the ARCOAS toolset have shown promising early results.
Implicit Large Eddy Simulation of a wingtip vortex at Rec =1.2x106
NASA Astrophysics Data System (ADS)
Lombard, Jean-Eloi; Moxey, Dave; Sherwin, Spencer; SherwinLab Team
2015-11-01
We present recent developments in numerical methods for performing a Large Eddy Simulation (LES) of the formation and evolution of a wingtip vortex. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, make these types of test cases particularly challenging to investigate numerically. To demonstrate the method's viability, we present results from numerical simulations of flow over a NACA 0012 profile wingtip at Rec = 1.2 x106 and compare them against experimental data, which is to date the highest Reynolds number achieved for a LES that has been correlated with experiments for this test case. Our model correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex dominated flows over complex geometries. McLaren Racing/Royal Academy of Engineering Research Chair.
NASA Astrophysics Data System (ADS)
Todorov, Evgueni Iordanov
2017-04-01
The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.
Monitoring Wetlands Area Using Microwave, Optical And In-Situ Data
NASA Astrophysics Data System (ADS)
Dabrowska, Katarzyna; Zielinska, Maria Budzynska
2011-01-01
The study of Wetlands has been continue within the PECS Project: “Study and implement remote sensing techniques for the assessment of carbon balances for different biomasses and soil moistures within various ecosystems”. The research has been conducted in Biebrza valley, one of the largest wetland in Europe, since 2003. Recently, to existing data base of wetlands monitoring Carbon flux measurements using the Chamber Method and Eddy Correlation Method have been included. The study aims at monitoring and mapping various soil-vegetation variables and the assessment of the level of carbon balance using optical and microwave satellite data along with ground truth observations. Optical images have been used for classification of wetlands vegetation and calculation of LAI and biomass. For the assessment of water balance, energy budget approach has been applied. Microwave images have been used for the assessment of soil moisture and biomass.
Vitale, Luca; Di Tommasi, Paul; D'Urso, Guido; Magliulo, Vincenzo
2016-03-01
The eddy correlation technique was used to investigate the influence of biophysical variables and crop phenological phases on the behaviour of ecosystem carbon fluxes of a maize crop, in two contrasting growing seasons. In 2009, the reduced water supply during the early growing stage limited leaf area expansion, thus negatively affecting canopy photosynthesis. The variability of gross primary production (GPP) and ecosystem respiration (R eco) was mainly explained by seasonal variation of leaf area index (LAI). The seasonal variation of R eco was positively influenced by soil temperatures (T soil) in 2008 but not in 2009. In 2008, a contribution of both autotrophic and heterotrophic components to total R eco could be hypothesized, while during 2009, autotrophic respiration is supposed to be the most important component. Crop phenological phases affected the response of ecosystem fluxes to biophysical drivers.
NASA Astrophysics Data System (ADS)
Rhew, Robert C.; Deventer, Malte Julian; Turnipseed, Andrew A.; Warneke, Carsten; Ortega, John; Shen, Steve; Martinez, Luis; Koss, Abigail; Lerner, Brian M.; Gilman, Jessica B.; Smith, James N.; Guenther, Alex B.; de Gouw, Joost A.
2017-11-01
Alkenes are reactive hydrocarbons that influence local and regional atmospheric chemistry by playing important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The simplest alkene, ethene (ethylene), is a major plant hormone and ripening agent for agricultural commodities. The group of light alkenes (C2-C4) originates from both biogenic and anthropogenic sources, but their biogenic sources are poorly characterized, with limited field-based flux observations. Here we report net ecosystem fluxes of light alkenes and isoprene from a semiarid ponderosa pine forest in the Rocky Mountains of Colorado, USA using the relaxed eddy accumulation (REA) technique during the summer of 2014. Ethene, propene, butene and isoprene emissions have strong diurnal cycles, with median daytime fluxes of 123, 95, 39 and 17 µg m-2 h-1, respectively. The fluxes were correlated with each other, followed general ecosystem trends of CO2 and water vapor, and showed similar sunlight and temperature response curves as other biogenic VOCs. The May through October flux, based on measurements and modeling, averaged 62, 52, 24 and 18 µg m-2 h-1 for ethene, propene, butene and isoprene, respectively. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons: roughly 18 % of the dominant biogenic VOC, 2-methyl-3-buten-2-ol. The measured ecosystem scale fluxes are 40-80 % larger than estimates used for global emissions models for this type of ecosystem.
Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations
NASA Astrophysics Data System (ADS)
Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.
2012-04-01
Methane is an important greenhouse gas with a warming potential 23 times that of carbon dioxide over a 100-year cycle. The permafrost regions of the world store significant amounts of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over the coming decades and centuries. Presently, most measurements of methane fluxes in permafrost regions have been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for permafrost research. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hours to annual estimates). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump and analyzer system. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path approach allows methane flux measurements at ambient pressure without the need for a pump. As a result, the measurements can be done with very low-power (e.g. 5-10 Watts), light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance stations is important for a number of ecosystems (rice fields, landfills, wetlands, cattle yards), but it is especially important for permafrost regions where grid power and access roads are generally not available, and the logistics of running the experiments are particularly expensive. Emerging research on methane flux measurements using low-power stations equipped with LI-7700 open-path methane analyzer (LI-COR Biosciences) are presented from several permafrost ecosystems with contrasting setups, and weather conditions. Principles of operation, station characteristics and requirements are also discussed.
Nesting large-eddy simulations within mesoscale simulations for wind energy applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, J K; Mirocha, J D; Chow, F K
2008-09-08
With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting thatmore » a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.« less
Towards an integrated quality control procedure for eddy-covariance data
NASA Astrophysics Data System (ADS)
Vitale, Domenico; Papale, Dario
2017-04-01
The eddy-covariance technique is nowadays the most reliable and direct way, allowing to calculate the main fluxes of Sensible and Latent Heat and of Net Ecosystem Exchange, this last being the result of the difference between the CO2 assimilated by photosynthetic activities and those released to the atmosphere through the ecosystem respiration processes. Despite the improvements in accuracy of measurement instruments and software development, the eddy-covariance technique is not suitable under non-ideal conditions respect to the instruments characteristics and the physical assumption behind the technique mainly related to the well-developed and stationary turbulence conditions. Under these conditions the calculated fluxes are not reliable and need to be flagged and discarded. In order to discover these unavoidable "bad" fluxes and build dataset with the highest quality, several tests applied both on high-frequency (10-20 Hz) raw data and on half-hourly times series have been developed in the past years. Nevertheless, there is an increasing need to develop a standardized quality control procedure suitable not only for the analysis of long-term data, but also for the near-real time data processing. In this paper, we review established quality assessment procedures and present an innovative quality control strategy with the purpose of integrating the existing consolidated procedures with robust and advanced statistical tests more suitable for the analysis of time series data. The performance of the proposed quality control strategy is evaluated both on simulated and EC data distributed by the ICOS research infrastructure. It is concluded that the proposed strategy is able to flag and exclude unrealistic fluxes while being reproducible and retaining the largest possible amount of high quality data.
Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.
2017-01-01
The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399
Corrosion Detection in Airframes Using a New Flux-Focusing Eddy Current Probe
NASA Technical Reports Server (NTRS)
Fulton, James P.; Wincheski, Buzz; Nath, Shridhar; Namkung, Min
1994-01-01
A new flux-focusing eddy current probe was recently developed at NASA Langley Research Center. The new probe is similar in design to a reflection type eddy current probe, but is unique in that it does not require the use of an impedance bridge for balancing. The device monitors the RMS output voltage of a pickup coil and, as a result, is easier to operate and interpret than traditional eddy current instruments. The unique design feature of the probe is a ferromagnetic cylinder, typically 1020 steel, which separates a concentrically positioned drive and pickup coil. The increased permeability of the steel causes the magnetic flux produced by the drive coil to be focused in a ring around the pickup coil. At high frequencies the eddy currents induced in both the sample and the cylinder allow little or no flux to link with the pickup coil. This results in a self-nulling condition which has been shown to be useful for the unambiguous detection of cracks in conducting materials. As the frequency is lowered the flux produced by the drive coil begins to link with the pickup coil causing an output which, among other things, is proportional to the thickness of the test specimen. This enables highly accurate measurements of the thickness of conducting materials and helps to facilitate the monitoring of thickness variations in a conducting structure such as an aircraft fuselage. Under ideal laboratory conditions the probe can sense thickness changes on the order of 1% as illustrated. However, this is highly dependent upon the thickness, and the geometric complexity of the sample being tested and for practical problems the sensitivity is usually much less. In this presentation we highlight some of the advantages and limitations in using the probe to inspect aircraft panels for corrosion and other types of material nonuniformities. In particular, we present preliminary results which illustrate the probes capabilities for detecting first and second layer corrosion in aircraft panels which may contain air gaps between the layers. Since the probe utilized eddy currents its corrosion detection capabilities are similar to convectional eddy current techniques, but the new probe is much easier to use.
NASA Astrophysics Data System (ADS)
Ahmed, S.; Salucci, M.; Miorelli, R.; Anselmi, N.; Oliveri, G.; Calmon, P.; Reboud, C.; Massa, A.
2017-10-01
A quasi real-time inversion strategy is presented for groove characterization of a conductive non-ferromagnetic tube structure by exploiting eddy current testing (ECT) signal. Inversion problem has been formulated by non-iterative Learning-by-Examples (LBE) strategy. Within the framework of LBE, an efficient training strategy has been adopted with the combination of feature extraction and a customized version of output space filling (OSF) adaptive sampling in order to get optimal training set during offline phase. Partial Least Squares (PLS) and Support Vector Regression (SVR) have been exploited for feature extraction and prediction technique respectively to have robust and accurate real time inversion during online phase.
Nonlinear, non-stationary image processing technique for eddy current NDE
NASA Astrophysics Data System (ADS)
Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita
2012-05-01
Automatic analysis of eddy current (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.
Eddy current inspection of weld defects in tubing
NASA Technical Reports Server (NTRS)
Katragadda, G.; Lord, W.
1992-01-01
An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.
GEOS-3 ocean current investigation using radar altimeter profiling. [Gulf Stream surface topography
NASA Technical Reports Server (NTRS)
Leitao, C. D.; Huang, N. E.; Parra, C. G.
1978-01-01
Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 radar altimeter. The quasi-stationary departures are observed either as elevation changes in single pass profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.
Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele
2018-02-16
Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components
Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele
2018-01-01
Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953
NASA Astrophysics Data System (ADS)
Bernhofer, Ch.; Gay, L. W.; Granier, A.; Joss, U.; Kessler, A.; Köstner, B.; Siegwolf, R.; Tenhunen, J. D.; Vogt, R.
1996-03-01
In May 1992 during the interdisciplinary measurement campaign HartX (Hartheim eXperiment), several independent estimates of stand water vapor flux were compared at a 12-m high Scots pine ( Pinus silvestris) plantation on a flat fluvial terrace of the Rhine close to Freiburg, Germany. Weather during the HartX period was characterized by ten consecutive clear days with exceptionally high input of available energy for this time of year and with a slowly shifting diurnal pattern in atmospheric variables like vapor pressure deficit. Methods utilized to quantify components of stand water flux included porometry measurements on understory graminoid leaves and on pine needles and three different techniques for determining individual tree xylem sap flow. Micrometeorological methods included eddy covariance and eddy covariance energy balance techniques with six independent systems on two towers separated by 40 m. Additionally, Bowen ratio energy balance estimates of water flux were conducted and measurements of the gradients in water vapor, CO2, and trace gases within and above the stand were carried out with an additional, portable 30 m high telescoping mast. Biologically-based estimates of overstory transpiration were obtained by up-scaling tree sap flow rates to stand level via cumulative sapwood area. Tree transpiration contributed between 2.2 and 2.6 mm/day to ET for a tree leaf area index (LAI) of 2.8. The pine stand had an understory dominated by sedge and grass species with overall average LAI of 1.5. Mechanistic canopy gas exchange models that quantify both water vapor and CO2 exchange were applied to both understory and tree needle ecosystem compartments. Thus, the transpiration by graminoid species was estimated at approximately 20% of total stand ET. The modelled estimates for understory contribution to stand water flux compared well with micrometeorologically-based determinations. Maximum carbon gain was estimated from the canopy models at approximately 425 mmol/(m2day) for the tree needles and at 100 mmol/(m2day) for the understory. Carbon gain was suggested by the modelling analysis to remain relatively constant during the HartX period, while water use efficiency in carbon fixation increased with decreasing vapor pressure deficit. Biologically- and micrometeorologically-based estimates of stand water flux showed good general agreement with variation of up to 20% that reflects both errors due to the inherent assumptions associated with different methods as well as natural spatial variability in fluxes. The various methods support a reliable estimate of average ET from this homogeneous canopy during HartX of about 2.6 mm/day (a maximum of about 3.1 mm/day) with an insignificant decreasing trend in correlation with decreasing vapor pressure deficit and possibly soil moisture. Findings during HartX were embedded in local scale heterogeneity with greater roughness over the forest and much higher ET over the surrounding agricultural fields which results in weak but clearly existant circulation patterns. A variety of measurements were continued after the HartX campaign. They allow us to extend our findings for six months with changing environmental conditions, including shortage of soil moisture. Hydrological estimates of soil water extractions and micrometeorological estimates of ET by the one-propeller eddy covariance (OPEC) system were in very good agreement, supporting the use of this robust eddy covariance energy balance technique for long-term monitoring.
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...
2016-01-01
Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.
Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less
Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study
NASA Technical Reports Server (NTRS)
Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.
2011-01-01
The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.
A 3D Model for Eddy Current Inspection in Aeronautics: Application to Riveted Structures
NASA Astrophysics Data System (ADS)
Paillard, S.; Pichenot, G.; Lambert, M.; Voillaume, H.; Dominguez, N.
2007-03-01
Eddy current technique is currently an operational tool used for fastener inspection which is an important issue for the maintenance of aircraft structures. The industry calls for faster, more sensitive and reliable NDT techniques for the detection and characterization of potential flaws nearby rivet. In order to reduce the development time and to optimize the design and the performances assessment of an inspection procedure, the CEA and EADS have started a collaborative work aiming at extending the modeling features of the CIVA non destructive simulation plat-form in order to handle the configuration of a layered planar structure with a rivet and an embedded flaw nearby. Therefore, an approach based on the Volume Integral Method using the Green dyadic formalism which greatly increases computation efficiency has been developed. The first step, modeling the rivet without flaw as a hole in a multi-stratified structure, has been reached and validated in several configurations with experimental data.
Local Dynamics of Baroclinic Waves in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Kavulich, M. J.; Szunyogh, I.; Gyarmati, G.; Wilson, R.
2010-12-01
In this presentation, the spatio-temporal evolution of baroclinic waves in the GFDL Mars GCM is investigated. The study employs diagnostic techniques that were developed to analyze the life cycles of baroclinic waves in the terrestrial atmosphere. These techniques include a Hilbert-transform-based method to extract the packets of Rossby wave envelopes at the jet level, the eddy kinetic energy equation for the full atmospheric column, and ensemble-based diagnostics. The results show that, similar to the terrestrial atmosphere, coherent westward-propagating wave packets can be detected in the Martian atmosphere. These wave packets are composed of waves of wavenumber 2 through 5, in contrast to the wavenumber 4 through 9 waves that contribute the upper-tropospheric wave packets of the terrestrial atmosphere. Additionally, as in the terrestrial atmosphere, the dominant part of the eddy kinetic energy is generated in regions of baroclinic energy conversion, which are strongly localized in both space and time. Implications of the results for predictability of the state of the Martian atmosphere are also discussed.
Review of PWR fuel rod waterside corrosion behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzarolli, F.; Jorde, D.; Manzel, R.
Waterside corrosion of Zircaloy has generally not been a problem under normal PWR operating conditions, although some instances of accelerated corrosion have been reported. However, an incentive exists to extend the average fuel rod discharge burnups to about 50,000 MWd/MTU. To minimize corrosion at these extended burnups, the factors which influence Zircaloy corrosion need to be better understood. A data base of Zircaloy corrosion behavior under PWR operating conditions has been established. The data are compiled previously published reports as well as from new Kraftwerk Union examinations. A non-destructive eddy-current technique is used to measure the oxide layer thickness onmore » fuel rods. Comparisons of measuremnts made using this eddy-current technique with those made by usual metallographic methods indicate good agreement. The data were evaluated by defining a fitting factor F which describes the increase in corrosion rate observed in-reactor over that observed from measurements of ex-reactor corrosion coupons.« less
NASA Astrophysics Data System (ADS)
Heimsch, Florian; Kreilein, Heiner; Rauf, Abdul; Knohl, Alexander
2016-04-01
Rainforests in general and montane rainforests in particular have rarely been studied over longer time periods. We aim to provide baseline information of a montane tropical forest's carbon uptake over time in order to quantify possible losses through land-use change. Thus we conducted a re-inventory of 22 10-year old forest inventory plots, giving us a rare opportunity to quantify carbon uptake over such a long time period by traditional methods. We discuss shortfalls of such techniques and why our estimate of 1.5 Mg/ha/a should be considered as the lower boundary and not the mean carbon uptake per year. At the same location as the inventory, CO2 fluxes were measured with the Eddy-Covariance technique. Measurements were conducted at 48m height with an LI 7500 open-path infrared gas analyser. We will compare carbon uptake estimates from these measurements to those of the more conventional inventory method and discuss, which factors are probably responsible for differences.
An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea
NASA Astrophysics Data System (ADS)
Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.
2012-08-01
The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale eddies almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea eddies, we identify a region along the southeast Australian coast which we name ‘Eddy Avenue’ where eddies have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic eddies within Eddy Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that Eddy Avenue cyclonic and anticyclonic eddies have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic eddies formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic eddies due to the entrainment of nutrient-rich shelf waters. Cyclonic eddies within Eddy Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic eddies (0.18 mg m-3). The average chlorophyll a concentration for cyclonic eddies is 16% higher in Eddy Avenue and 28% lower for anticyclonic eddies when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these eddies will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.
Determining confounding sensitivities in eddy current thin film measurements
NASA Astrophysics Data System (ADS)
Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn
2017-02-01
Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.
A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION
The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...
Time dependent turbulence modeling and analytical theories of turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, R.
1993-01-01
By simplifying the direct interaction approximation (DIA) for turbulent shear flow, time dependent formulas are derived for the Reynolds stresses which can be included in two equation models. The Green's function is treated phenomenologically, however, following Smith and Yakhot, we insist on the short and long time limits required by DIA. For small strain rates, perturbative evaluation of the correlation function yields a time dependent theory which includes normal stress effects in simple shear flows. From this standpoint, the phenomenological Launder-Reece-Rodi model is obtained by replacing the Green's function by its long time limit. Eddy damping corrections to short time behavior initiate too quickly in this model; in contrast, the present theory exhibits strong suppression of eddy damping at short times. A time dependent theory for large strain rates is proposed in which large scales are governed by rapid distortion theory while small scales are governed by Kolmogorov inertial range dynamics. At short times and large strain rates, the theory closely matches rapid distortion theory, but at long times it relaxes to an eddy damping model.
Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy
NASA Astrophysics Data System (ADS)
Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi
2012-02-01
Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.
Micrometeorologic methods for measuring the post-application volatilization of pesticides
Majewski, M.S.
1999-01-01
A wide variety of micrometeorological measurement methods can be used to estimate the postapplication volatilization of pesticides from treated fields. All these estimation methods require that the entire study area have the same surficial characteristics, including the area surrounding the actual study site, and that the pesticide under investigation be applied as quickly and as uniformly as possible before any measurements are made. Methods such as aerodynamic profile, energy balance, eddy correlation, and relaxed eddy accumulation require a large (typically 1 or more hectare) study area so that the flux measurements can be made in a well developed atmospheric boundary- layer and that steady-state conditions exist. The area surrounding the study plot should have similar surficial characteristics as the study plot with sufficient upwind extent so the wind speed and temperature gradients are fully developed. Mass balance methods such as integrated horizontal flux and trajectory simulations do not require a large source area, but the area surrounding the study plot should have similar surficial characteristics. None of the micrometeorological techniques for estimating the postapplication volatilization fluxes of pesticides disturb the environment or the soil processes that influence the gas exchange from the surface to the atmosphere. They allow for continuous measurements and provide a temporally averaged flux value over a large area. If the behavior of volatilizing pesticides and the importance of the volatilization process in redistributing pesticides in the environment are to be fully understood, it is critical that we understand not only the processes that govern pesticide entry into the lower atmosphere, but also how much of the millions of kilograms of pesticides that are applied annually are introduced into, and redistributed by, the atmosphere. We also must be aware of the assumptions and limitations of the estimation techniques used, and adapt the field of pesticide volatilization flux measurements to advances in atmospheric science.
NASA Astrophysics Data System (ADS)
Fischer, G.; Karstensen, J.; Romero, O.; Baumann, K.-H.; Donner, B.; Hefter, J.; Mollenhauer, G.; Iversen, M.; Fiedler, B.; Monteiro, I.; Körtzinger, A.
2015-11-01
Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks were observed in February-March 2010 when the eddy approached CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated to that of organic carbon in particular in the deep trap samples, suggesting a close coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/mesopelagic signatures to the bathypelagic traps. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some production under nutrient (nitrate) limitation in the upper few tens of meters above the zone of suboxia might have occurred in the beginning of 2010. The δ15N record showed a decrease from January to March 2010 while the organic carbon and N fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive but nutrient depletion and/or a high availability of dust as ballast mineral for organic-rich aggregates might have contributed to the elevated fluxes during the eddy passage. Remineralization of sinking organic-rich particles could have contributed to the formation of a suboxic zone at shallow depth. Although the eddy has been formed in the African coastal area in summer 2009, no indication of coastal flux signatures were found in the sediment traps, suggesting an alteration of the eddy since its formation. This confirms the assumption that suboxia developed within the eddy en-route. Screening of the biomarker fractions for the occurrence of ladderane fatty acids that could indicate the presence of anammox (anaeobic ammonia oxidation) bacteria, and isorenieratene derivatives, indicative for the presence of green sulfur bacteria and, thus for photic zone suboxia/anoxia was negative. This could indicate that suboxic conditions in the eddy had recently developed and the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped considerably in February 2010, mainly due to reduced contribution of shallow dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to stop diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage.
Conductivity tomography based on pulsed eddy current with SQUID magnetometer
NASA Astrophysics Data System (ADS)
Panaitov, G. I.; Krause, H.-J.; Zhang, Y.
2002-05-01
Pulsed eddy current (EC) techniques have the advantage of potentially covering a broader depth range than standard single frequency EC testing. We developed a novel pulsed EC technique using a liquid-nitrogen cooled SQUID magnetometer. For two reasons, SQUID magnetometers are particularly well suited as sensors: first they constitute an extremely sensitive magnetic field sensor, second they measure the field directly which decays more slowly than its time derivative picked up by induction coils. A square waveform transmitter signal was used, with alternating slopes in order to eliminate drift effect, and stacking synchronous to the power line frequency in order to improve signal-to-noise. The early time (high frequency) data of the recorded transient correspond to the upper layers of the conducting medium, while late time data or low frequencies deliver information on deep layers. Measurements of cracks at different depths in a stacked aluminum sample are presented. From the measured data, the apparent conductivity of the sample was calculated for each position and depth by applying a technique known from geophysical data interpretation. Thus, the position and depth of the crack was determined from the tomographic conductivity image of the sample.
Lévêque, E; Koudella, C R
2001-04-30
An eddy-viscous term is added to Navier-Stokes dynamics at wave numbers k greater than the inflection point kc of the energy flux F(log(k)). The eddy viscosity is fixed so that the energy spectrum satisfies E(k) = E(kc) (k/kc)(-3) for k>kc. This resulting forcing induces a rapid depletion of the energy cascade at k>kc. It is observed numerically that the model reproduces turbulence energetics at k< or =kc and statistics of two-point velocity correlations at scales r>lambda (Taylor microscale). Compared to a direct numerical simulation of R(lambda) = 130 an equivalent run with the present model results in a gain of a factor 20 in CPU time.
NASA Astrophysics Data System (ADS)
Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B.
2017-11-01
We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from - 56 to 885 g m- 2 d- 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2 emission rate from the study area ranged from 8.6 t d- 1 based on eddy covariance measurements to 9.8 t d- 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m- 2 d- 1. Nighttime H and LE were considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m- 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The fumarole H2O/CO2 and CO2/H2S end member ratios (101.7 and 27.1, respectively, on average) were invariant during the measurement period and fell within the range of values measured in direct fumarole gas samples. The soil gas H2O/CO2 end member ratios ( 15-30) were variable and low relative to the fumarole end member, likely resulting from water vapor loss during cooling and condensation in the shallow subsurface, whereas the CO2/H2S end member ratio was high ( 160), presumably related to transport of CO2-dominated soil gas emissions mixed with trace fumarolic emissions to the Multi-GAS station. Nighttime eddy covariance ratios of H2O to CO2 flux were typically between the soil gas and fumarole end member H2O/CO2 ratios defined by Multi-GAS measurements. Overall, the combined eddy covariance and Multi-GAS approach provides a powerful tool for quasi-continuous measurements of gas and heat emissions for improved volcano-hydrothermal monitoring.
Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
NASA Astrophysics Data System (ADS)
Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos
2017-05-01
This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.
NASA CR-2120 - Summary of nondestructive testing theory and practice
NASA Technical Reports Server (NTRS)
Meister, R. P.
1974-01-01
This is a familiarization report of nondestructive testing (ndt) prepared by staff of the Battelle Columbus Laboratories on a NASA contract. There is a short introduction, a chapter on applicability of ndt which is illustrated with examples of typical defects and includes tables comparing the characteristics, interrelationships, and costs of the different techniques. There are chapters dealing with penetrants, magnetic particle radiography, ultrasonics, and eddy currents. New techniques are described.
NASA Astrophysics Data System (ADS)
Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani
2017-12-01
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.
Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.
2007-10-01
An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.
Influence of Mesoscale Eddies on New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
McGillicuddy, D. J., Jr.; Robinson, A. R.; Siegel, D. A.; Jannasch, H. W.; Johnson, R.; Dickey, T. D.; McNeil, J.; Michaels, A. F.; Knap, A. H.
1998-01-01
It is problematic that geochemical estimates of new production, that fraction of total primary production in surface waters fueled by externally supplied nutrients, in oligotrophic waters of the open ocean surpass that which can be sustained by the traditionally accepted mechanisms of nutrient supply. In the cam of the Sargasso Sea, for example, these mechanisms account for less than half of the annual nutrient requirement indicated by new production estimates based on three independent transient-tracer techniques. Specifically, approximately one-quarter to one-third of the annual nutrient requirement can be supplied by entrainment into the mixed layer during wintertime convection, with minor contributions from mixing in the thermocline and wind-driven transport (the potentially important role of nitrogen fixation- for which estimates vary by an order of magnitude in this region- is excluded from this budget). Here we present four lines of evidence-eddy-resolving model simulations, high-resolution observations from moored instrumentation, shipboard surveys and satellite data-which suggest that the vertical flux of nutrients induced by the dynamics of mesoscale eddies is sufficient to balance the nutrient budget in the Sargasso Sea.
A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.
Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru
2009-02-01
A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.
NASA Technical Reports Server (NTRS)
1995-01-01
This report contains the 1995 annual progress reports of the Research Fellows and students of the Center for Turbulence Research (CTR). In 1995 CTR continued its concentration on the development and application of large-eddy simulation to complex flows, development of novel modeling concepts for engineering computations in the Reynolds averaged framework, and turbulent combustion. In large-eddy simulation, a number of numerical and experimental issues have surfaced which are being addressed. The first group of reports in this volume are on large-eddy simulation. A key finding in this area was the revelation of possibly significant numerical errors that may overwhelm the effects of the subgrid-scale model. We also commissioned a new experiment to support the LES validation studies. The remaining articles in this report are concerned with Reynolds averaged modeling, studies of turbulence physics and flow generated sound, combustion, and simulation techniques. Fundamental studies of turbulent combustion using direct numerical simulations which started at CTR will continue to be emphasized. These studies and their counterparts carried out during the summer programs have had a noticeable impact on combustion research world wide.
A geometrical optics approach for modeling atmospheric turbulence
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Atia, Walid; Davis, Christopher C.
2005-08-01
Atmospheric turbulence has a significant impact on the quality of a laser beam propagating through the atmosphere over long distances. Turbulence causes the optical phasefront to become distorted from propagation through turbulent eddies of varying sizes and refractive index. Turbulence also results in intensity scintillation and beam wander, which can severely impair the operation of target designation and free space optical (FSO) communications systems. We have developed a new model to assess the effects of turbulence on laser beam propagation in such applications. We model the atmosphere along the laser beam propagation path as a spatial distribution of spherical bubbles or curved interfaces. The size and refractive index discontinuity represented by each bubble are statistically distributed according to various models. For each statistical representation of the atmosphere, the path of a single ray, or a bundle of rays, is analyzed using geometrical optics. These Monte Carlo techniques allow us to assess beam wander, beam spread, and phase shifts along the path. An effective Cn2 can be determined by correlating beam wander behavior with the path length. This model has already proved capable of assessing beam wander, in particular the (Range)3 dependence of mean-squared beam wander, and in estimating lateral phase decorrelations that develop across the laser phasefront as it propagates through turbulence. In addition, we have developed efficient computational techniques for various correlation functions that are important in assessing the effects of turbulence. The Monte Carlo simulations are compared and show good agreement with the predictions of wave theory.
CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia
NASA Astrophysics Data System (ADS)
Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan
2014-05-01
The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological operation and soil moisture has stronger influence on the seasonal dynamics of soil and agroecosystem CO2 emissions. Obtained unique for Russian agriculture data are very useful for land-use practices environmental assessment, for soil organic carbon dynamics analysis and agroecological evaluation, and for food C-footprint calculation. Their system analysis together with the nearest forest eddy covariance stations helps us to understand better the land-use change impact on the GHG fluxes dynamics and ecosystem services.
USDA-ARS?s Scientific Manuscript database
Discrepancies can arise among surface flux measurements collected using disparate techniques due to differences in both the instrumentation and theoretical underpinnings of the different measurement methods. Using data collected primarily over a pair of irrigated cotton fields as a part of the Bushl...
MEASUREMENT OF BI-DIRECTIONAL AMMONIA FLUXES OVER SOYBEAN USING MODIFIED BOWEN-RATIO TECHNIQUE
Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8-week period during the summer of 2002. The modified Bowne-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy covar...
Moving magnets in a micromagnetic finite-difference framework
NASA Astrophysics Data System (ADS)
Rissanen, Ilari; Laurson, Lasse
2018-05-01
We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.
Large eddy simulation of the tidal power plant deep green using the actuator line method
NASA Astrophysics Data System (ADS)
Fredriksson, S. T.; Broström, G.; Jansson, M.; Nilsson, H.; Bergqvist, B.
2017-12-01
Tidal energy has the potential to provide a substantial part of the sustainable electric power generation. The tidal power plant developed by Minesto, called Deep Green, is a novel technology using a ‘flying’ kite with an attached turbine, moving at a speed several times higher than the mean flow. Multiple Deep Green power plants will eventually form arrays, which require knowledge of both flow interactions between individual devices and how the array influences the surrounding environment. The present study uses large eddy simulations (LES) and an actuator line model (ALM) to analyze the oscillating turbulent boundary layer flow in tidal currents without and with a Deep Green power plant. We present the modeling technique and preliminary results so far.
Above Canopy Emissions of Isoprene and Monoterpenes from a Southeast Asian Tropical Forest
NASA Astrophysics Data System (ADS)
Baker, B.; Johnson, C.; Cai, Z.; Guenther, A.; Greenberg, J.; Bai, J.; Li, Q.
2003-12-01
Fluxes of isoprene were measured using the eddy covariance technique and an ozone chemiluminescence isoprene sensor above a secondary tropical forest/rubber tree plantation located in the Xishuangbanna region of southern China during the wet and dry seasons. Fluxes of monoterpenes were inferred from ambient boundary layer concentrations (wet season) and from relaxed eddy accumulation measurements (dry season). Isoprene emissions were comparable to what has been observed from other tropical forests in Africa and South America. In this forest, monoterpene emissions were much higher during the wet season due to the senescence of the rubber trees during the dry season. These flux measurements represent the first ecosystem level flux measurements reported from Southeast Asian tropical forests.
NASA Astrophysics Data System (ADS)
Huang, Jie; Xu, Fanghua; Zhou, Kuanbo; Xiu, Peng; Lin, Yanluan
2017-08-01
Temporal evolution of near-surface chlorophyll (CHL) associated with mesoscale eddies over entire eddy lifespan is complicated. Based on satellite measurements and a reanalysis data set, we identify and quantify major temporal and spatial CHL responses in cyclonic eddies in the southeastern Pacific, and explore the associated mechanisms. Only few temporal CHL variations can be directly linked to the four primary mechanisms: "eddy pumping," "eddy trapping," "eddy stirring," and "eddy-induced Ekman pumping." About 80% of the temporal CHL variations are too complex to be explained by a single mechanism. Five characteristic CHL responses, including classic dipoles (CD), positive-dominant dipoles (PD), negative-dominant dipoles (ND), positive monopoles (PM), and negative monopoles (NM) are identified using the self-organizing map (SOM). CD, a dominant response induced primarily by "eddy stirring," has a continued increasing of frequency of occurrence with time, although its contribution to the total CHL variability remains low. As the secondary prominent response, NM has two peaks of frequency of occurrence at eddy formation and maturation stages, mainly accounted by "eddy trapping" after eddy breakup and "eddy-induced Ekman pumping," respectively. The sum of frequency of occurrence of PD and PM are comparable to that of NM. The initial positive CHL at eddy formation stage is associated with "eddy trapping." The significant positive CHL increase from the eddy intensification to early decay stage is mainly attributed to "eddy pumping." Although the frequency of occurrence of ND is the smallest, its contribution to negative CHL anomalies is unnegligible.
NASA Astrophysics Data System (ADS)
Rykova, Tatiana; Oke, Peter R.; Griffin, David A.
2017-06-01
Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.
Assessing diel variation of CH4 flux from rice paddies through temperature patterns
NASA Astrophysics Data System (ADS)
Centeno, Caesar Arloo R.; Alberto, Ma Carmelita R.; Wassmann, Reiner; Sander, Bjoern Ole
2017-10-01
The diel variation in methane (CH4) flux from irrigated rice was characterized during the dry and wet cropping seasons in 2013 and 2014 using the eddy covariance (EC) technique. The EC technique has the advantage of obtaining measurements of fluxes at an extremely high temporal resolution (10Hz), meaning it records 36,000 measurements per hour. The EC measurements can very well capture the temporal variations of the diel (both diurnal and nocturnal) fluxes of CH4 and the environmental factors (temperature, surface energy flux, and gross ecosystem photosynthesis) at 30-min intervals. The information generated by this technique is important to enhance our mechanistic understanding of the different factors affecting the landscape scale diel CH4 flux. Distinct diel patterns of CH4 flux were observed when the data were partitioned into different cropping periods (pre-planting, growth, and fallow). The temporal variations of the diel CH4 flux during the dry seasons were more pronounced than during the wet seasons because the latter had so much climatic disturbance from heavy monsoon rains and occasional typhoons. Pearson correlation analysis and Granger causality test were used to confirm if the environmental factors evaluated were not only correlated with but also Granger-causing the diel CH4 flux. Soil temperature at 2.5 cm depth (Ts 2.5 cm) can be used as simple proxy for predicting diel variations of CH4 fluxes in rice paddies using simple linear regression during both the dry and wet seasons. This simple site-specific temperature response function can be used for gap-filling CH4 flux data for improving the estimates of CH4 source strength from irrigated rice production.
An experimental investigation of turbulent boundary layers along curved surfaces
NASA Technical Reports Server (NTRS)
So, R. M. C.; Mellor, G. L.
1972-01-01
A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.
Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration
Sumner, David M.; Geurink, Jeffrey S.; Swancar, Amy
2017-01-01
Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if “calibrated†to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2-kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r2=0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r2=0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.
The 2008 North Atlantic Spring Bloom Experiment II: Autonomous Platforms and Mixed Layer Evolution
NASA Astrophysics Data System (ADS)
Lee, C. M.; D'Asaro, E. A.; Perry, M.; Fennel, K.; Gray, A.; Rehm, E.; Briggs, N.; Sackmann, B. S.; Gudmundsson, K.
2008-12-01
The 2008 North Atlantic Spring Bloom Experiment (NAB08) employed a system of drifting floats, mobile gliders and ship-based measurements to resolve patch-scale physical and biological variability over the 3- month course of an entire bloom. Although both autonomous and ship-based elements were essential to achieving NAB08 goals, the autonomous system provided a novel perspective by employing long-range gliders to repeatedly survey the volume surrounding a drifting Lagrangian float, thus characterizing patch- scale bloom evolution. Integration of physical and biogeochemical sensors (temperature, conductivity, dissolved oxygen, chlorophyll and CDOM fluorescence, light transmission, optical backscatter, spectral light, and nitrate) and development of in situ calibration techniques were required to support this new autonomous approach. Energetic, small-scale eddy activity at the experiment site (southeast of Iceland, near the Joint Global Ocean Flux Study and Marine Light Mixed Layer sites) produced a swift, heterogeneous velocity field that challenged the gliders" operational abilities and drove refinements to the piloting techniques used to maintain float-following surveys. Although intentionally deployed outside of energetic eddies, floats and gliders were rapidly entrained into these features. Floats circulated within eddies near the start and end of the experiment, drifting generally northwest, across the basin, in-between. An eddy sampled late in the deployment provided particularly interesting signatures, with elevated biological signals manifest consistently in one quadrant. As measurements were collected in a parcel-following Lagrangian frame, this suggests energetic small-scale exchange process (such as vertical or lateral mixing) paired with fast-acting biological processes capable of modifying the newly entrained water as it navigates its path around the eddy. Despite this energetic kilometer-scale heterogeneity, broadly distributed platforms appeared to experience similar broad, long-timescale trends. Initial mixed layer depths exceeded 200 m, with gradual shoaling punctuated by periods of rapid, storm-driven deepening. In mid-April, a period of calm weather, rapid restratification and exponentially growing chlorophyll fluorescence marks the bloom's start. Although one-dimensional processes (e.g. diapycnal mixing and solar warming) clearly play important roles in producing the spring bloom, the rate and vertical extent of upper ocean restratification indicate that lateral mixing, perhaps wind- or eddy-driven exchange or the slumping of lateral density contrasts, play a more important role in restratifying the upper ocean. These important trigger events present a severe observational challenge as they take place at small (kilometers) spatial scales, are fully three-dimensional and episodic in time. The NAB08 efforts demonstrate how mobile, autonomous platforms can be exploited to resolve these events and their impact over the course of an entire bloom cycle.
Long-term Trends and Variability of Eddy Activities in the South China Sea
NASA Astrophysics Data System (ADS)
Zhang, M.; von Storch, H.
2017-12-01
For constructing empirical downscaling models and projecting possible future states of eddy activities in the South China Sea (SCS), long-term statistical characteristics of the SCS eddy are needed. We use a daily global eddy-resolving model product named STORM covering the period of 1950-2010. This simulation has employed the MPI-OM model with a mean horizontal resolution of 10km and been driven by the NCEP reanalysis-1 data set. An eddy detection and tracking algorithm operating on the gridded sea surface height anomaly (SSHA) fields was developed. A set of parameters for the criteria in the SCS are determined through sensitivity tests. Our method detected more than 6000 eddy tracks in the South China Sea. For all of them, eddy diameters, track length, eddy intensity, eddy lifetime and eddy frequency were determined. The long-term trends and variability of those properties also has been derived. Most of the eddies propagate westward. Nearly 100 eddies travel longer than 1000km, and over 800 eddies have a lifespan of more than 2 months. Furthermore, for building the statistical empirical model, the relationship between the SCS eddy statistics and the large-scale atmospheric and oceanic phenomena has been investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, May Wai San; Ovchinnikov, Mikhail; Wang, Minghuai
Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution cloud-resolving model. The cloud-resolving model uses the Morrison microphysics scheme, which contains prognostic variables for rain, graupel, ice, and snow. A benchmark simulation with a horizontal grid spacing of 250 m of a deep convection case carried out to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the down-gradient nature of the eddy-diffusion approximation tends to transport mass away from concentrated regions, whereasmore » the benchmark simulation indicates that the vertical transport tends to transport mass from below the level of maximum to aloft. Unlike the eddy-diffusion approach, the quadri-modal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach is shown to perform the best by accounting for within-quadrant correlations, and improves the results for all hydrometeors except for snow. A sensitivity study is performed to examine how vertical transport may affect the microphysics of the hydrometeors. The vertical transport of each hydrometeor type is artificially suppressed in each test. Results from the sensitivity tests show that cloud-droplet-related processes are most sensitive to suppressed rain or graupel transport. In particular, suppressing rain or graupel transport has a strong impact on the production of snow and ice aloft. Lastly, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.« less
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Desai, A. R.; Schroeder, N. M.; NACP Site Synthesis Participants
2011-12-01
Northern peatlands contain a significant fraction of the global carbon pool, and their responses to hydrological change are likely to be important factors in future carbon cycle-climate feedbacks. Global-scale carbon cycle modeling studies typically use general ecosystem models with coarse spatial resolution, often without peatland-specific processes. Here, seven ecosystem models were used to simulate CO2 fluxes at three field sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor, sphagnum-dominated bog, from 2002-2006. Flux residuals (simulated - observed) were positively correlated with measured water table for both gross ecosystem productivity (GEP) and ecosystem respiration (ER) at the two fen sites for all models, and were positively correlated with water table at the bog site for the majority of models. Modeled diurnal cycles at fen sites agreed well with eddy covariance measurements overall. Eddy covariance GEP and ER were higher during dry periods than during wet periods, while model results predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP had no significant dependence on water table, while models predicted higher GEP during wet periods. All models significantly over-estimated GEP at the bog site, and all but one over-estimated ER at the bog site. Carbon cycle models in peatland-rich regions could be improved by incorporating better models or measurements of hydrology and by inhibiting GEP and ER rates under saturated conditions. Bogs and fens likely require distinct treatments in ecosystem models due to differences in nutrients, peat properties, and plant communities.
The Stability of Outcropping Ocean Eddies
NASA Astrophysics Data System (ADS)
Paldor, N.; Cohen, Y.; Dvorkin, Y.
2017-12-01
In the end of the last century numerous ship-borne observations and linear instability studies have addressed the long life span of meso-scale ocean eddies. These eddies are observed to persist in the ocean for periods of 2-3 years with little deformation. As eddy instabilities occur because Rossby waves in the surrounding (assumed motionless) ocean interact with various waves in the eddy itself, the stability was attributed to some eddy structure that hinders such wave-wave interactions. However, instabilities with growthrates of the order of the inertial period were found in various multilayer models including hypothesized structures and several observed eddy structures. A solution to the difference between instability theory and observed stability was ultimately suggested by relaxing the assumption of a motionless ocean that surrounds the eddy and prescribing the mean flow in the ocean such that it counterbalances the depth changes imposed by the eddy while maintaining a constant PV-ocean. This hypothesis was successfully applied to Gaussian eddies for mathematical simplicity. Yet, the Gaussian eddy has no surface front - thus avoiding instabilities that involve frontal waves - and it disagrees with observation that clearly show that most eddies have surface fronts. Here the constant PV ocean hypothesis is applied to two frontal eddies: constant PV-eddies and solidly rotating eddy. A complete account of the mean flow of the coupled eddy-ocean system is analyzed using a canonical formulation of the gradient balance. The phase speeds of waves in the eddy-ocean system are computed by a shooting method. Both eddies are found to be unstable in motionless ocean, yet in a constant PV-ocean no instabilities are found using the exact same numerical search. While many eddy structures can be hypothesized there are only a handful of physical mechanisms for instability and in these eddies the assumed constant PV-ocean negates many of these physical mechanisms for instability. This implies that meso-scale eddies should be stable in a constant PV ocean, regardless to their structure, which is not precisely one of the above mentioned. This theory stimulates observations of the ocean under the eddies. To maintain the uniform PV value, relative vorticity must develop in the ocean under the eddy as it moves in the ocean.
Fluxes of Nitrous Acid (HONO) above an Agricultural Field Side near Paris
NASA Astrophysics Data System (ADS)
Laufs, S.; Cazaunau, M.; Stella, P.; Loubet, B.; Kurtenbach, R.; Cellier, P.; Mellouki, W.; Kleffmann, J.
2012-04-01
HONO is an important precursor of the OH radical, the detergent of the atmosphere. Field measurements show high diurnal HONO mixing ratios that cannot be explained by chemical models with known gas phase chemistry. Therefore, daytime sources of HONO are still under discussion. During the last decade many experimental investigation were performed to study heterogeneous production of HONO like the photo enhanced reduction of NO2 on humic acids or photolysis of HNO3 on surfaces. Recently, nitrite produced by bacteria, present in soil, was discussed as a source of HONO as well. In addition gas phase sources like the photolysis of nitrophenols, or the reaction of excited NO2 are discussed. Gradient measurements show high mixing ratios of HONO even above the boundary layer. However, beside intensive investigations on the sources of HONO, it is still an open question whether heterogeneous or gas phase sources are more important in the atmosphere. Flux measurements could represent a method to find the origin of missing sources of HONO. Until now instruments are not sensitive and fast enough to do Eddy correlation measurements for HONO. Alternatively, HONO fluxes are estimated by the Aerodynamic Gradient (AGM), or Relaxed Eddy Accumulation (REA) methods. Here we present HONO fluxes estimated by AGM and the LOPAP technique (Long Path Absorption Photometer) above an agricultural field in Grignon, Paris (48°51'N, 1°58'E). Fluxes during different seasons and different types of vegetations including bare soil will be presented and compared with chemical corrected fluxes of NO, NO2 and O3, or other parameters.
Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system
NASA Astrophysics Data System (ADS)
Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart
2016-04-01
An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.
A simple phenomenological model for grain clustering in turbulence
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-01-01
We propose a simple model for density fluctuations of aerodynamic grains, embedded in a turbulent, gravitating gas disc. The model combines a calculation for the behaviour of a group of grains encountering a single turbulent eddy, with a hierarchical approximation of the eddy statistics. This makes analytic predictions for a range of quantities including: distributions of grain densities, power spectra and correlation functions of fluctuations, and maximum grain densities reached. We predict how these scale as a function of grain drag time ts, spatial scale, grain-to-gas mass ratio tilde{ρ }, strength of turbulence α, and detailed disc properties. We test these against numerical simulations with various turbulence-driving mechanisms. The simulations agree well with the predictions, spanning ts Ω ˜ 10-4-10, tilde{ρ }˜ 0{-}3, α ˜ 10-10-10-2. Results from `turbulent concentration' simulations and laboratory experiments are also predicted as a special case. Vortices on a wide range of scales disperse and concentrate grains hierarchically. For small grains this is most efficient in eddies with turnover time comparable to the stopping time, but fluctuations are also damped by local gas-grain drift. For large grains, shear and gravity lead to a much broader range of eddy scales driving fluctuations, with most power on the largest scales. The grain density distribution has a log-Poisson shape, with fluctuations for large grains up to factors ≳1000. We provide simple analytic expressions for the predictions, and discuss implications for planetesimal formation, grain growth, and the structure of turbulence.
Convection anomalies associated with warm eddy at the coastal area
NASA Astrophysics Data System (ADS)
Shi, R.; Wang, D.
2017-12-01
A possible correlation between a warm eddy and thunderstorms and convective precipitations are investigated at the coastal area in the northwestern South China Sea. Compared to the climatological mean in August from 2006 to 2013, an extreme enhancement of thunderstorm activities and precipitation rate are identified at the southern offshore area of Hainan island in August 2010 when a strong and long-live warm eddy was observed near the coastline at the same time. The 3 hourly satellite data (TRMM) indicate that the nocturnal convections is strong offshore and that could be responsible for the extreme positive anomalies of thunderstorms and rainfall in August 2010. The TRMM data also show a small reduction of thunderstorm activities and rainfall on the island in the afternoon. Meanwhile, the Weather Research and Forecasting (WRF) model was applied to simulate the change of rainfall in August 2010. The WRF simulation of rainfall rate is comparable with the observation results while there is some difference in the spatial distribution. The WRF simulation successfully captured the strong offshore rainfall and the diurnal variation of rainfall in August 2010. The WRF simulation indicated that the different convergence induced by sea/land breeze could be one essential reason for the adjustment of thunderstorms and rainfall in 2010. The substantial connection between sea/land breeze and upper layer heat content modified by the warm eddy is still on ongoing and will be reported in the future work.
Quantifying mesoscale eddies in the Lofoten Basin
NASA Astrophysics Data System (ADS)
Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.
2016-07-01
The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.
NASA Technical Reports Server (NTRS)
Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.
1996-01-01
This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation flux measurements of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation flux measurements of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to measure NO fluxes will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne fluxes of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision measurements currently needed for predictive models can also. These measurement capabilities will greatly enhance our current ability to quantify the fluxes of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen flux measurement capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry Experimental portion of LBA.
Eddy Generation and Shedding in a Tidally Energetic Channel
NASA Astrophysics Data System (ADS)
McIlvenny, J.; Gillibrand, P. A.; Walters, R. A.
2016-02-01
The Pentland Firth in northern Scotland, and its subsidiary channel the Inner Sound, are currently under scrutiny as the first tidal energy array in the world is installed during 2016. The tidal flows in the channel and sound have been intensively observed and modelled in recent years, and the turbulent nature of the flow, with features of eddy generation and shedding, is becoming increasingly well known. Turbulence and eddies pose potential risks to the turbine infrastructure through enhanced stress on the blades, while understanding environmental effects of energy extraction also requires accurate simulation of the hydrodynamics of the flow. Here, we apply a mixed finite element/finite volume hydrodynamic model to the northern Scottish shelf, with a particular focus on flows through the Pentland Firth and the Inner Sound. We use an unstructured grid model, which allows the open boundaries to be far removed from the region of interest, while still allowing a grid spacing of 40m in the Inner Sound. The model employs semi-implicit techniques to solve the momentum and free surface equations, and semi-Lagrangian methods to solve the material derivative in the momentum equation, making it fast, robust and accurate and suitable for simulating flows in irregular coastal ocean environments. The model is well suited to address questions relating to tidal energy potential. We present numerical simulations of tidal currents in The Pentland Firth and Inner Sound. Observed velocities in the Inner Sound, measured by moored ADCP deployments, reach speeds of up to 5 m s-1 and the model successfully reproduces these strong currents. In the simulations, eddies are formed by interactions between the strong flow and the northern and southern headlands on the island of Stroma; some of these eddies are trapped and remain locked in position, whereas others are shed and transported away from the generation zone. We track the development and advection of eddies in relation to the site of the tidal energy farm, and we compare the simulated locations of eddies with observed seabed sediment distributions in the Inner Sound. Simulations with and without the presence of tidal turbines in the Inner Sound are presented, and the potential impact of the turbines on sediment dynamics is considered.
Spatial-frequency variability of the eddy kinetic energy in the South Atlantic Ocean
NASA Astrophysics Data System (ADS)
Cecilio, C. M.; Gherardi, D. F.; Souza, R.; Correa-Ramirez, M.
2013-05-01
In the South Atlantic Ocean (SAO) part of the inter-oceanic flow is accomplished through the issuance of anticyclonic eddies by the Agulhas Retroflection. This region, known as Agulhas Leakage (AL), is responsible by the intermittent shedding of eddies in the SAO. The propagation of these eddies into the SAO induces wave processes that allows the interaction between modes of variability of different basins, ranging from high to low frequency. Modelling studies suggests that the Indian-Atlantic inter-ocean exchange is strongly related to the structure of the wind field, in particular with the position of the maximum Southern Hemisphere westerly winds. This study aims to investigate the variations of the large-scale and regional mesoscale eddy field over the SAO using a frequency domain technique, Multiple Taper Method with Singular Value Decomposition (MTM-SVD). The MTM-SVD approach is applied to examine the individual and joint spatiotemporal variability modes of eddy kinetic energy (EKE) and winds stress. The EKE is estimated from geostrophic velocity anomalies data distributed by Aviso and winds stress from winds dataset of Cross-Calibrated Multi-Platform (CCMP) project from PO.DAAC. The impact of the AL in the SAO, was assessed first for the entire region and subsequently applied in the regions of higher mesoscale activity, which are the Brazil-Malvinas Confluence (BMC), the AL, and the Brazilian Current (BC) region. The results of local fractional variance (LFV) of EKE obtained by the MTM-SVD method show a strong significant annual variability in SAO and BC region while in BMC and in AL this frequency is weaker. In the most energetic mesoscale activity regions (BMC and AL) the pattern of variability is distinct. In the BMC region the interannual variability is dominated while in the AL region the most part of variability is associated by high frequency. The joint LFV spectrum of wind and EKE show an out-of-phase relationship between the AL region and BMC region in the interannual frequencies (3 to 5 years). The dominant frequencies can be seen in 1,5 to 3 years period band and in the intrasazonal frequencies, 0,3 to 0,5 years. The results suggests that the EKE variability patterns are different in the SAO wich might be related to the influence of eddies from AL.
Eddy Covariance Method: Overview of General Guidelines and Conventional Workflow
NASA Astrophysics Data System (ADS)
Burba, G. G.; Anderson, D. J.; Amen, J. L.
2007-12-01
Atmospheric flux measurements are widely used to estimate water, heat, carbon dioxide and trace gas exchange between the ecosystem and the atmosphere. The Eddy Covariance method is one of the most direct, defensible ways to measure and calculate turbulent fluxes within the atmospheric boundary layer. However, the method is mathematically complex, and requires significant care to set up and process data. These reasons may be why the method is currently used predominantly by micrometeorologists. Modern instruments and software can potentially expand the use of this method beyond micrometeorology and prove valuable for plant physiology, hydrology, biology, ecology, entomology, and other non-micrometeorological areas of research. The main challenge of the method for a non-expert is the complexity of system design, implementation, and processing of the large volume of data. In the past several years, efforts of the flux networks (e.g., FluxNet, Ameriflux, CarboEurope, Fluxnet-Canada, Asiaflux, etc.) have led to noticeable progress in unification of the terminology and general standardization of processing steps. The methodology itself, however, is difficult to unify, because various experimental sites and different purposes of studies dictate different treatments, and site-, measurement- and purpose-specific approaches. Here we present an overview of theory and typical workflow of the Eddy Covariance method in a format specifically designed to (i) familiarize a non-expert with general principles, requirements, applications, and processing steps of the conventional Eddy Covariance technique, (ii) to assist in further understanding the method through more advanced references such as textbooks, network guidelines and journal papers, (iii) to help technicians, students and new researchers in the field deployment of the Eddy Covariance method, and (iv) to assist in its use beyond micrometeorology. The overview is based, to a large degree, on the frequently asked questions received from new users of the Eddy Covariance method and relevant instrumentation, and employs non-technical language to be of practical use to those new to this field. Information is provided on theory of the method (including state of methodology, basic derivations, practical formulations, major assumptions and sources of errors, error treatment, and use in non- traditional terrains), practical workflow (e.g., experimental design, implementation, data processing, and quality control), alternative methods and applications, and the most frequently overlooked details of the measurements. References and access to an extended 141-page Eddy Covariance Guideline in three electronic formats are also provided.
Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions
NASA Astrophysics Data System (ADS)
Waterman, S.; Lilly, J. M.
2014-12-01
Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.
Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach
NASA Astrophysics Data System (ADS)
Berloff, Pavel
2018-07-01
This work continues development of dynamically consistent parameterizations for representing mesoscale eddy effects in non-eddy-resolving and eddy-permitting ocean circulation models and focuses on the classical double-gyre problem, in which the main dynamic eddy effects maintain eastward jet extension of the western boundary currents and its adjacent recirculation zones via eddy backscatter mechanism. Despite its fundamental importance, this mechanism remains poorly understood, and in this paper we, first, study it and, then, propose and test its novel parameterization. We start by decomposing the reference eddy-resolving flow solution into the large-scale and eddy components defined by spatial filtering, rather than by the Reynolds decomposition. Next, we find that the eastward jet and its recirculations are robustly present not only in the large-scale flow itself, but also in the rectified time-mean eddies, and in the transient rectified eddy component, which consists of highly anisotropic ribbons of the opposite-sign potential vorticity anomalies straddling the instantaneous eastward jet core and being responsible for its continuous amplification. The transient rectified component is separated from the flow by a novel remapping method. We hypothesize that the above three components of the eastward jet are ultimately driven by the small-scale transient eddy forcing via the eddy backscatter mechanism, rather than by the mean eddy forcing and large-scale nonlinearities. We verify this hypothesis by progressively turning down the backscatter and observing the induced flow anomalies. The backscatter analysis leads us to formulating the key eddy parameterization hypothesis: in an eddy-permitting model at least partially resolved eddy backscatter can be significantly amplified to improve the flow solution. Such amplification is a simple and novel eddy parameterization framework implemented here in terms of local, deterministic flow roughening controlled by single parameter. We test the parameterization skills in an hierarchy of non-eddy-resolving and eddy-permitting modifications of the original model and demonstrate, that indeed it can be highly efficient for restoring the eastward jet extension and its adjacent recirculation zones. The new deterministic parameterization framework not only combines remarkable simplicity with good performance but also is dynamically transparent, therefore, it provides a powerful alternative to the common eddy diffusion and emerging stochastic parameterizations.
Cyclonic eddies identified in the Cape Basin of the South Atlantic Ocean
NASA Astrophysics Data System (ADS)
Hall, C.; Lutjeharms, J. R. E.
2011-03-01
Inter-ocean exchange south of Africa takes place largely through the movement of Agulhas Rings into the Cape Basin. Recent observations have shown that the highly energetic flow field in this basin consists of anti-cyclonic rings as well as cyclonic eddies. Very little is known of the characteristics of the cyclonic eddies. Using altimetric data, this study determines the location, frequency and seasonality of these cyclonic eddies their size, trajectories, life spans and their association with Agulhas Rings. Cyclonic eddies were seen to split, merge and link with other cyclonic eddies, where splitting events created child cyclonic eddies. The 105 parent and 157 child cyclonic eddies identified over a decade show that on average 11 parent and 17 child cyclonic eddies appear annually in AVISO merged absolute dynamic topography data along the continental slope. Thirty-two percent follow an overall west south-westward direction, with 27% going west north-westward. Average translocation speeds are 2.2 ± 0.1 km/day for parent and 3.0 ± 0.2 km/day for child cyclonic eddies. Parent cyclonic eddy lifespan averaged 250 ± 18 days; whereas child cyclonic eddies survived for only 118 ± 11 days. A significant difference in lifespan for parent and child cyclonic eddies identified in the north and south region of the study area was detected. Seventy-seven percent of the northern and 93% of the southern cyclonic eddies were first detected directly adjacent to passing Agulhas Rings, suggesting a vital interaction between these mesoscale eddies within the region. Topographical features appeared to affect the behaviour and lifespan of these deep cyclonic eddies.
NASA Astrophysics Data System (ADS)
Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven
2017-02-01
Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar fracture toughness and a decrease in Mode I cyclic strain energy release rates fatigue life. Finally, all approaches were correlated: the resulted NDE percentages and parameters were correlated with the features revealed by the destructive test of serial sectioning and static and fatigue values in order to quantify discontinuities such as delamination and voids.
NASA Astrophysics Data System (ADS)
Ghanei, S.; Kashefi, M.; Mazinani, M.
2014-04-01
The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.
NASA Technical Reports Server (NTRS)
Khoo, Boo-Cheong; Sonin, Ain A.
1992-01-01
An experimental correlation is derived for gas absorption at a turbulent, shear-free liquid interface. The correlation is expressed in terms of the liquid-side turbulence intensity, liquid-side macroscale, and the properties of the diffusing gas and solvent. The transfer coefficient increases linearly with rms velocity up to a point where the eddy Reynolds number reaches a critical (Schmidt number dependent) value. At higher velocities, there is a more rapid linear rise. The slope of the lower Reynolds number region is proportional to the square root of the diffusivity; at Reynolds numbers much higher than that of the break point, the slope becomes independent of diffusivity.
Ling, Julia; Templeton, Jeremy Alan
2015-08-04
Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests.more » The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.« less
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) and water use efficiency (WUE) in peach orchards has previously been observed in young (less than 5-8 years old), drip irrigated orchards using micrometeorological techniques such as Eddy Covariance or large-weighing lysimeters. However, no work has been reported on ET and W...
A perspective view of the plane mixing layer
NASA Technical Reports Server (NTRS)
Jimenez, J.; Cogollos, M.; Bernal, L. P.
1984-01-01
A three-dimensional model of the plane mixing layer is constructed by applying digital image processing and computer graphic techniques to laser fluorescent motion pictures of its transversal sections. A system of streamwise vortex pairs is shown to exist on top of the classical spanwise eddies. Its influence on mixing is examined.
USDA-ARS?s Scientific Manuscript database
Burning, grazing, and baling (hay harvesting) are common management practices for tallgrass prairie. However, the impacts of these management practices on grassland phenology and carbon uptake are not well understood. Utilizing multiple observations to detect fingerprints of various management pract...
Large Eddy Simulation of a Film Cooling Technique with a Plenum
NASA Astrophysics Data System (ADS)
Dharmarathne, Suranga; Sridhar, Narendran; Araya, Guillermo; Castillo, Luciano; Parameswaran, Sivapathasund
2012-11-01
Factors that affect the film cooling performance have been categorized into three main groups: (i) coolant & mainstream conditions, (ii) hole geometry & configuration, and (iii) airfoil geometry Bogard et al. (2006). The present study focuses on the second group of factors, namely, the modeling of coolant hole and the plenum. It is required to simulate correct physics of the problem to achieve more realistic numerical results. In this regard, modeling of cooling jet hole and the plenum chamber is highly important Iourokina et al. (2006). Substitution of artificial boundary conditions instead of correct plenum design would yield unrealistic results Iourokina et al. (2006). This study attempts to model film cooling technique with a plenum using a Large Eddy Simulation.Incompressible coolant jet ejects to the surface of the plate at an angle of 30° where it meets compressible turbulent boundary layer which simulates the turbine inflow conditions. Dynamic multi-scale approach Araya (2011) is introduced to prescribe turbulent inflow conditions. Simulations are carried out for two different blowing ratios and film cooling effectiveness is calculated for both cases. Results obtained from LES will be compared with experimental results.
Pulsed eddy current differential probe to detect the defects in a stainless steel pipe
NASA Astrophysics Data System (ADS)
Angani, C. S.; Park, D. G.; Kim, C. G.; Leela, P.; Kishore, M.; Cheong, Y. M.
2011-04-01
Pulsed eddy current (PEC) is an electromagnetic nondestructive technique widely used to detect and quantify the flaws in conducting materials. In the present study a differential Hall-sensor probe which is used in the PEC system has been fabricated for the detection of defects in stainless steel pipelines. The differential probe has an exciting coil with two Hall-sensors. A stainless steel test sample with electrical discharge machining (EDM) notches under different depths of 1-5 mm was made and the sample was laminated by plastic insulation having uniform thickness to simulate the pipelines in nuclear power plants (NPPs). The driving coil in the probe is excited by a rectangular current pulse and the resultant response, which is the difference of the two Hall-sensors, has been detected as the PEC probe signal. The discriminating time domain features of the detected pulse such as peak value and time to zero are used to interpret the experimental results with the defects in the test sample. A feature extraction technique such as spectral power density has been devised to infer the PEC response.
Automated eddy current inspection of Space Shuttle APU turbine wheel blades
NASA Technical Reports Server (NTRS)
Fisher, Jay L.; Rowland, Stephen N.; Stolte, Jeffrey S.; Salkowski, Charles
1991-01-01
An automated inspection system based on eddy current testing (ET) techniques has been developed to inspect turbine wheel blades on the APU used in NASA's Space Transportation system. The APU is a hydrazine-powered gas turbine with a 15-cm diameter Rene 41 turbine wheel, which has 123 first-stage blades and 123 second-stage blades. The flaw detection capability of the ET system is verified through comparison with fluorescent penetrant test results. Results of the comparison indicate that ET is capable of inspecting surfaces with very restrictive geometries. The ET capability requires development of probes with extremely small coils to allow inspection within 0.4 mm of the blade root and the leading and trailing edges of the blade and within a height restriction of less than 1 mm. The color 2D presentation of the ET data provided crack-growth pattern and length information similar to those found with visual techniques. It also provided visual clues to minimize geometry effects such as generated from blade edges, a neighoring blade, and changes in the blade thickness.
NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.
2013-09-01
This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulkmore » ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.« less
Flux Measurements of Trace Gases, Aerosols and Energy from the Urban Core of Mexico City
NASA Astrophysics Data System (ADS)
Velasco, E.; Molina, L.; Lamb, B.; Pressley, S.; Grivicke, R.; Westberg, H.; Jobson, T.; Allwine, E.; Coons, T.; Jimenez, J.; Nemitz, E.; Alexander, L. M.; Worsnop, D.; Ramos, R.
2007-05-01
As part of the MILAGRO field campaign in March 2006 we deployed a flux system in a busy district of Mexico City surrounded by congested avenues. The flux system consisted of a tall tower instrumented with fast-response sensors coupled with eddy covariance (EC) techniques to measure fluxes of volatile organic compounds (VOCs), CO2, CO, aerosols and energy. The measured fluxes represent direct measurements of emissions that include all major and minor emission sources from a typical residential and commercial district. In a previous study we demonstrated that the EC techniques are valuable tools to evaluate emissions inventories in urban areas, and understand better the atmospheric chemistry and the role that megacities play in global change. We measured fluxes of olefins using a Fast Olefin Sensor (FOS) and the EC technique, fluxes of aromatic and oxygenated VOCs by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique, fluxes of CO2 and H2O with an open path Infrared Gas Analyzer (IRGA) and the EC technique, fluxes of CO using a modified gradient method and a commercial CO instrument, and fluxes of aerosols (organics, nitrates and sulfates) using an Aerodyne Aerosol Mass Spectrometer (AMS) and the EC technique. In addition we used a disjunct eddy accumulation (DEA) system to extend the number of VOCs. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site using gas chromatography / flame ionization detection (GC-FID). We also measured fluxes of sensible and latent heat by EC and the radiation components with a net radiometer. Overall, these flux measurements confirm the results of our previous flux measurements in Mexico City in terms of the magnitude, composition, and distribution. We found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns show clear anthropogenic signatures, with important contributions from vehicular traffic. The DEA results for individual hydrocarbons show that the alkane fluxes are considerably higher than alkene fluxes, which is consistent with ambient concentration measurements and with the emission inventory for Mexico City. CO fluxes, estimated from a modified gradient technique, were more than 10% of the measured CO2 fluxes (on a molar basis) which is much higher than is generally expected for combustion efficiencies in mobile and other sources. Investigation of this result is underway. The energy balance distribution and radiative parameters observed are similar to distributions and parameters reported for other urban sites.
NASA Astrophysics Data System (ADS)
Sun, Liang; Li, Qiu-Yang
2017-04-01
The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for satellite-based observational data but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
Study of the far wake vortex field generated by a rectangular airfoil in a water tank
NASA Technical Reports Server (NTRS)
Lezius, D. K.
1973-01-01
Underwater towing experiments were carried out with a rectangular airfoil of aspect ratio 5.3 at 4 and 8 deg angles of attack and at chord-based Reynolds numbers between 2 x 100,000 and 7.5 x 100,000. Quantitative measurements by means of the hydrogen bubble technique indicated lower peak swirl velocities in the range of 100 to 1000 lenghts downstream than have been measured in wind tunnel of flight tests. The maximum circumferential velocity decayed whereas the turbulent eddy viscosity increased. This behavior and other known rates of vortex decay are explained in terms of an analytical solution for the vortex problem with time varying eddy viscosity. It is shown that this case corresponds to nonequilibrium turbulent vortex flow.
Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.
Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok
2016-02-08
Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.
NASA Astrophysics Data System (ADS)
Burba, George; Sturtevant, Cove; Peltola, Olli; Schreiber, Peter; Zulueta, Rommel; Haapanala, Sami; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; McDermitt, Dayle; Oechel, Walt
2013-04-01
The permafrost regions store significant amount of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over following decades and centuries. Present measurements of methane fluxes in permafrost regions have mostly been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hourly to annual). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump, climate control, and analyzer systems. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements in cold regions remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path instrumentation allows methane flux measurements at normal pressure without a need for a pump. As a result, the measurements can be done with very low-power (e.g., 7-10 Watts) light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance station is important for number of ecosystems (rice fields, landfills, wetlands, cattle yards, etc.), but it is especially important for permafrost and other cold regions where grid power and access roads are generally not available, and logistics of running the experiment is particularly expensive. Emerging research using low-power laser-based instrumentation to measure CH4 emissions are presented from several permafrost ecosystems with contrasting setups, weather, and moisture conditions. Principles of open-path instrument operation, station characteristics and requirements are also discussed, as well as concurrent measurements of CO2 and H2O emissions using open-path and enclosed instrumentation.
NASA Astrophysics Data System (ADS)
Berloff, P. S.
2016-12-01
This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.
NASA Astrophysics Data System (ADS)
Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng
2017-12-01
The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.
Nonlinear Eddy-Eddy Interactions in Dry Atmospheres Macroturbulence
NASA Astrophysics Data System (ADS)
Ait Chaalal, F.; Schneider, T.
2012-12-01
The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale eddy-eddy nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of eddy-mean flow interactions and the weakness of eddy-eddy interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these eddy-eddy interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the eddy-eddy interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no eddy-eddy simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic eddy-driven jets and energy-containing eddy length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no eddy-eddy model does not achieve a realistic isotropization of the eddies, the meridional circulation is compressed in the meridional direction and secondary eddy-driven jets emerge. In addition, the baroclinic wave activity does not reach the upper troposphere in association with a very weak or absent Rossby wave absorption in the upper subtropical troposphere. Understanding these deficiencies and the rôle of the eddy-eddy nonlinear interactions in determining the mean meridional circulation paves the way to the development of stochastic third order moments parametrizations, to eventually build GCMs that directly solve for the flow statistics and that could provide a deeper understanding of anthropogenic and natural climate changes. [1] O'Gorman, P. A., & Schneider, T. 2007, Geophysical Research Letters, 34, 22801 [2] Schneider, T., and C. C. Walker, 2006, Journal of the Atmospheric Sciences, 63, 1569-1586.
Increasing of eddy activity in the northeastern Pacific during 1993-2011
NASA Astrophysics Data System (ADS)
Ding, M.; Lin, P.; Liu, H.; Chai, F.
2017-12-01
We study the long-term behaviors of eddy activity in the northeastern Pacific (NEP) and the dynamic mechanism behind them based on the 3rd version of the mesoscale eddy trajectories dataset released by Chelton et al. (2013) combined with other observation and reanalysis datasets. Both the eddy kinetic energy (EKE) and eddy occurrence number (EON) present prominent increasing trends, with inter-annual and decadal variabilities northeast of the Hawaii-Emperor seamounts. The increasing trend of the EON is mainly due to prolongation of the eddy lifetime associated with the eddy intensification, particularly for anticyclonic eddies (AEs). Weakened surface winds tend to prolong the eddy lifetimes, as the eddy attenuation time scale is inversely proportional to the wind speed. The enhanced anticyclonic wind stress curl (WSC) anomalies inject more energy into the AE over the study region and provide a more suitable environment for AEs growth. The decadal climate modes, such as the Pacific decadal oscillation (PDO) and the North Pacific gyre oscillation (NPGO), may also modulate eddy activities in the NEP by exerting fluctuations in the surface wind system.
Development of a second order closure model for computation of turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Varma, A. K.; Donaldson, C. D.
1974-01-01
A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.
NASA Astrophysics Data System (ADS)
Fischer, Gerhard; Karstensen, Johannes; Romero, Oscar; Baumann, Karl-Heinz; Donner, Barbara; Hefter, Jens; Mollenhauer, Gesine; Iversen, Morten; Fiedler, Björn; Monteiro, Ivanice; Körtzinger, Arne
2016-06-01
Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg-1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m-2 d-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ˜ 15 and 13.3 mg m-2 d-1, respectively, were observed in February-March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The δ15N record showed a decrease from 5.21 to 3.11 ‰ from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from ˜ 52 to 21.4 mg m-2 d-1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.
Angular approach combined to mechanical model for tool breakage detection by eddy current sensors
NASA Astrophysics Data System (ADS)
Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.
2014-02-01
The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.
Greenhouse gas exchange over grazed systems
NASA Astrophysics Data System (ADS)
Felber, R.; Ammann, C.; Neftel, A.
2012-04-01
Grasslands act as sinks and sources of greenhouse gases (GHG) and are, in conjunction with livestock production systems, responsible for a large share of GHG emissions. Whereas ecosystem scale flux measurements (eddy covariance) are commonly used to investigate CO2 exchange (and is becoming state-of-the-art for other GHGs, too), GHG emissions from agricultural animals are usually investigated on the scale of individual animals. Therefore eddy covariance technique has to be tested for combined systems (i.e. grazed systems). Our project investigates the ability of field scale flux measurements to reliably quantify the contribution of grazing dairy cows to the net exchange of CO2 and CH4. To quantify the contribution of the animals to the net flux the position, movement, and grazing/rumination activity of each cow are recorded. In combination with a detailed footprint analysis of the eddy covariance fluxes, the animal related CO2 and CH4 emissions are derived and compared to standard emission values derived from respiration chambers. The aim of the project is to test the assumption whether field scale CO2 flux measurements adequately include the respiration of grazing cows and to identify potential errors in ecosystem Greenhouse gas budgets.
Influence of Mesoscale Eddies on New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
McGillicuddy , Dennis J., Jr.; Robinson, A. R.; Siegel, D. A.; Jannasch, H. W.; Johnson, R.; Dickey, T. D.; McNeil, J.; Michaels, A. F.; Knap, A. H.
1998-01-01
It is problematic that geochemical estimates of new production - that fraction of total primary production in surface waters fueled by externally supplied nutrients - in oligotrophic waters of the open ocean surpass that which can be sustained by the traditionally accepted mechanisms of nutrient supply. In the case of the Sargasso Sea, for example, these mechanisms account for less than half of the annual nutrient requirement indicated by new production estimates based on three independent transient-tracer techniques. Specifically, approximately one-quarter to one-third of the annual nutrient requirement can be supplied by entrainment into the mixed layer during wintertime convection, with minor contributions from mixing in the thermocline and wind-driven transport (the potentially important role of nitrogen fixation - for which estimates vary by an order of magnitude in this region - is excluded from this budget). Here we present four lines of evidence - eddy-resolving model simulations, high-resolution observations from moored instrumentation, shipboard surveys, and satellite data - which suggest that the vertical flux of nutrients induced by the dynamics of mesoscale eddies is sufficient to balance the nutrient budget in the Sargasso Sea. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Stramma, L.; Bange, H. W.; Czeschel, R.; Lorenzo, A.; Frank, M.
2013-06-01
Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study three eddies along a section at 16°45' S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water eddy, an open ocean mode water eddy and an open ocean cyclonic eddy have been identified and sampled in order to determine both their hydrographic properties and their influence on the biogeochemical setting of the ETSP. In the thermocline the temperature of the coastal anticyclonic eddy was up to 2 °C warmer, 0.2 more saline and the swirl velocity was up to 35 cm s-1. The observed temperature and salinity anomalies, as well as swirl velocities of both types of eddies were about twice as large as had been described for the mean eddies in the ETSP and the observed heat and salt anomalies (AHA, ASA) show a much larger variability than the mean AHA and ASA. We found that the eddies contributed significantly to productivity by maintaining pronounced subsurface maxima of chlorophyll. Based on a comparison of the coastal (young) mode water eddy and the open ocean (old) mode water eddy we conclude that the aging of eddies when they detach from the coast and move westward to the open ocean considerably influences the eddies' properties: chlorophyll maxima are weaker and nutrients are subducted. The coastal mode water eddy was found to be a hotspot of nitrogen loss in the OMZ, whereas, the open ocean cyclonic eddy was of negligible importance for nitrogen loss. Our results show that the important role the eddies play in the ETSP can only be fully deciphered and understood through dedicated high spatial and temporal resolution oceanographic/biogeochemical surveys.
Lavigne, M.B.; Ryan, M.G.; Anderson, D.E.; Baldocchi, D.D.; Crill, P.M.; Fitzjarrald, D.R.; Goulden, M.L.; Gower, S.T.; Massheder, J.M.; McCaughey, J.H.; Rayment, M.; Striegl, Robert G.
1997-01-01
During the growing season, nighttime ecosystem respiration emits 30–100% of the daytime net photosynthetic uptake of carbon, and therefore measurements of rates and understanding of its control by the environment are important for understanding net ecosystem exchange. Ecosystem respiration can be measured at night by eddy covariance methods, but the data may not be reliable because of low turbulence or other methodological problems. We used relationships between woody tissue, foliage, and soil respiration rates and temperature, with temperature records collected on site to estimate ecosystem respiration rates at six coniferous BOREAS sites at half-hour or 1-hour intervals, and then compared these estimates to nocturnal measurements of CO2 exchange by eddy covariance. Soil surface respiration was the largest source of CO2 at all sites (48–71%), and foliar respiration made a large contribution to ecosystem respiration at all sites (25–43%). Woody tissue respiration contributed only 5–15% to ecosystem respiration. We estimated error for the scaled chamber predictions of ecosystem respiration by using the uncertainty associated with each respiration parameter and respiring biomass value. There was substantial uncertainty in estimates of foliar and soil respiration because of the spatial variability of specific respiration rates. In addition, more attention needs to be paid to estimating foliar respiration during the early part of the growing season, when new foliage is growing, and to determining seasonal trends of soil surface respiration. Nocturnal eddy covariance measurements were poorly correlated to scaled chamber estimates of ecosystem respiration (r2=0.06–0.27) and were consistently lower than scaled chamber predictions (by 27% on average for the six sites). The bias in eddy covariance estimates of ecosystem respiration will alter estimates of gross assimilation in the light and of net ecosystem exchange rates over extended periods.
Eddy properties in the Southern California Current System
NASA Astrophysics Data System (ADS)
Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent
2018-05-01
The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.
Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard
NASA Astrophysics Data System (ADS)
Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T.
2018-01-01
Mesoscale eddies are known to transport heat and biogeochemical properties from Arctic Ocean boundary currents to basin interiors. Previous hydrographic surveys and model results suggest that eddy formation may be common in the Atlantic Water (AW) inflow area north of Svalbard, but no quantitative eddy survey has yet been done for the region. Here vorticity and water property signatures are used to identify and track AW eddies in an eddy-resolving sea ice-ocean model. The boundary current sheds AW eddies along most of the length of the continental slope considered, from the western Yermak Plateau to 40°E, though eddies forming east of 20°E are likely more important for slope-to-basin transport. Eddy formation seasonality reflects seasonal stability properties of the boundary current in the eastern portion of the study domain, but on and immediately east of the Yermak Plateau enhanced eddy formation during summer merits further investigation. AW eddies tend to be anticyclonic, have radii close to the local deformation radius, and be centered in the halocline. They transport roughly 0.16 Sv of AW and, due to their warm cores, 1.0 TW away from the boundary current. These findings suggest eddies may be important for halocline ventilation in the Eurasian Basin, as has been shown for Pacific Water eddies in the Canadian Basin.
A daily global mesoscale ocean eddy dataset from satellite altimetry.
Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin
2015-01-01
Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System.
Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J
2016-05-01
Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.
A daily global mesoscale ocean eddy dataset from satellite altimetry
Faghmous, James H.; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin
2015-01-01
Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System. PMID:26097744
NASA Astrophysics Data System (ADS)
Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.; Ricciuto, Dan; Barr, Alan; Richardson, Andrew D.; Flanagan, Lawrence B.; Lafleur, Peter M.; Tian, Hanqin; Chen, Guangsheng; Grant, Robert F.; Poulter, Benjamin; Verbeeck, Hans; Ciais, Philippe; Ringeval, Bruno; Baker, Ian T.; Schaefer, Kevin; Luo, Yiqi; Weng, Ensheng
2012-03-01
Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor,sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated - observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Grete, Philipp; Vlaykov, Dimitar G.; Schmidt, Wolfram; Schleicher, Dominik R. G.; Federrath, Christoph
2015-02-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment—magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures—models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The SGS energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pressure ({{β }p}=0.25,1,2.5,5,25) and sonic Mach numbers ({{M}s}=2,2.5,4). Furthermore, we make a comparison to traditional, phenomenological eddy-viscosity and α -β -γ closures. We find only mediocre performance of the kinetic eddy-viscosity and α -β -γ closures, and that the magnetic eddy-viscosity closure is poorly correlated with the simulation data. Moreover, three of five coefficients of the traditional closures exhibit a significant spread in values. In contrast, our new closures demonstrate consistently high correlations and constant coefficient values over time and over the wide range of parameters tested. Important aspects in compressible MHD turbulence such as the bi-directional energy cascade, turbulent magnetic pressure and proper alignment of the EMF are well described by our new closures.
Intra-Sensor Variability Study of two BLS 900 Scintillometers
NASA Astrophysics Data System (ADS)
Thiem, Christina; Mauder, Matthias; Chwala, Christian; Bernhardt, Matthias; Kunstmann, Harald; Schulz, Karsten
2017-04-01
The latent heat flux is an important validation parameter for satellite measurements and a wide variety of hydrological and meteorological numerical models. Scintillometers can provide references for such validations due to their ability to spatially integrate turbulent fluxes. Large-aperture near-infrared scintillometers are capable of determining spatial averages of the structure parameter of temperature and the sensible heat flux over path lengths up to 5 km. One way to derive both sensible and latent heat flux is to use a combined optical and microwave scintillometer system. With only an optical scintillometer and additional measurements of ground heat flux and net radiation, the latent heat flux can be calculated from the residual of the energy balance. Studies have shown, however, that in certain cases measurements from the same types of scintillometers differ due to minute differences in construction. In order to prove the robustness of the measurements of two near-infrared scintillometers for future studies, we compared their observations and validated them by comparison to the sensible heat flux derived from an eddy covariance system. In this study two boundary layer scintillometers (BLS; BLS900, Scintec, Rottenburg, Germany) were installed in a central European valley as part of the TERENO preAlpine observatory during the years 2013 and 2015. An independent measurement of the sensible and latent heat flux was obtained from a permanent eddy covariance system installed in the vicinity of the scintillometer path. The structure parameter of the refractive index and average sensible heat fluxes of both BLS units were compared with each other. In general, the BLS structure parameters correlated very well and the high correlation between the BLS-derived sensible heat fluxes and the eddy covariance-derived sensible heat fluxes encouraged further application of these scintillometers in separate experiments.
NASA Astrophysics Data System (ADS)
Hall Barbosa, C.
2004-06-01
A technique had been previously developed, based on magnetic field measurements using a superconducting quantum interference device sensor, to localize in three dimensions steel needles lost in the human body. In all six cases that were treated until now, the technique allowed easy surgical localization of the needles with high accuracy. The technique decreases, by a large factor, the surgery time for foreign body extraction, and also reduces the generally high odds of failure. The method is accurate, noninvasive, and innocuous, and with clear clinical importance. Despite the importance of needle localization, the most prevalent foreign body in the modern society is the firearm projectile (bullet), generally composed of lead, a paramagnetic material, thus not presenting a remanent magnetic field as steel needles do. On the other hand, since lead is a good conductor, eddy current detection techniques can be employed, by applying an alternating magnetic field with the aid of excitation coils. The primary field induces eddy currents on the lead, which in turn generate a secondary magnetic field that can be detected by a magnetometer, and give information about position and volume of the conducting foreign body. In this article we present a theoretical study for the development of a localization technique for lead bullets inside the human body. Initially, we present a model for the secondary magnetic field generated by the bullet, given a known applied field. After that, we study possible excitation systems, and propose a localization algorithm based on the detected magnetic field.
NASA Astrophysics Data System (ADS)
Chang, Yu-Lin; Miyazawa, Yasumasa; Oey, Lie-Yauw; Kodaira, Tsubasa; Huang, Shihming
2017-05-01
In this study, we investigate the processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean based on the in situ chlorophyll data obtained from 52 cruises conducted by the Japan Meteorological Agency together with idealized numerical simulations. Both the observation and model results suggest that chlorophyll/phytoplankton concentrations are higher in cold than in warm eddies in near-surface water (z > -70 m). In the idealized simulation, the isopycnal movements associated with upwelling/downwelling transport phytoplankton and nutrients to different vertical depths during eddy formation (stage A). Phytoplankton and nutrients in cold eddies is transported toward shallower waters while those in warm eddies move toward deeper waters. In the period after the eddy has formed (stage B), sunlight and initially upwelled nutrients together promote the growth of phytoplankton in cold eddies. Phytoplankton in warm eddies decays due to insufficient sunlight in deeper waters. In stage B, upwelling and downwelling coexist in both warm and cold eddies, contributing nearly equally to vertical displacement. The upwelling/downwelling-induced nitrate flux accounts for a small percentage (˜3%) of the total nitrate flux in stage B. The vertical velocity caused by propagating eddies, therefore, is not the primary factor causing differences in phytoplankton concentrations between stage-B warm and cold eddies.
Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system.
Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart
2016-04-01
An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, Shannon E.; Sargent, Steve; Wagner-Riddle, Claudia
2018-03-01
Nitrous oxide (N2O) fluxes measured using the eddy-covariance method capture the spatial and temporal heterogeneity of N2O emissions. Most closed-path trace-gas analyzers for eddy-covariance measurements have large-volume, multi-pass absorption cells that necessitate high flow rates for ample frequency response, thus requiring high-power sample pumps. Other sampling system components, including rain caps, filters, dryers, and tubing, can also degrade system frequency response. This field trial tested the performance of a closed-path eddy-covariance system for N2O flux measurements with improvements to use less power while maintaining the frequency response. The new system consists of a thermoelectrically cooled tunable diode laser absorption spectrometer configured to measure both N2O and carbon dioxide (CO2). The system features a relatively small, single-pass sample cell (200 mL) that provides good frequency response with a lower-powered pump ( ˜ 250 W). A new filterless intake removes particulates from the sample air stream with no additional mixing volume that could degrade frequency response. A single-tube dryer removes water vapour from the sample to avoid the need for density or spectroscopic corrections, while maintaining frequency response. This eddy-covariance system was collocated with a previous tunable diode laser absorption spectrometer model to compare N2O and CO2 flux measurements for two full growing seasons (May 2015 to October 2016) in a fertilized cornfield in Southern Ontario, Canada. Both spectrometers were placed outdoors at the base of the sampling tower, demonstrating ruggedness for a range of environmental conditions (minimum to maximum daily temperature range: -26.1 to 31.6 °C). The new system rarely required maintenance. An in situ frequency-response test demonstrated that the cutoff frequency of the new system was better than the old system (3.5 Hz compared to 2.30 Hz) and similar to that of a closed-path CO2 eddy-covariance system (4.05 Hz), using shorter tubing and no dryer, that was also collocated at the site. Values of the N2O fluxes were similar between the two spectrometer systems (slope = 1.01, r2 = 0.96); CO2 fluxes as measured by the short-tubed eddy-covariance system and the two spectrometer systems correlated well (slope = 1.03, r2 = 0.998). The new lower-powered tunable diode laser absorption spectrometer configuration with the filterless intake and single-tube dryer showed promise for deployment in remote areas.
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor.
NASA Astrophysics Data System (ADS)
Arain, M. A.
2015-12-01
Climate variability, extreme weather events, forest age and management history impacts carbon sequestration in forest ecosystems. A variety of measurement techniques such as eddy covariance, dendrochronology, automatic soil CO2 chambers and remote sensing are employed fully understand forest carbon dynamics. Here, we present carbon flux measurements from 2003-2014 in a 76-year old managed temperate pine ((-Pinus strobus L.) forest, near Lake Erie in southern Ontario, Canada. Forest was partially thinned (30% tree harvested) in 1983 and 2012. The thinning in 2012 did not significantly impact carbon fluxes as post-thinning fluxes were within the range of inter-annual variability. Mean annual post-thinning (2012-2104) gross ecosystem productivity (GEP) measure by the eddy covariance technique was 1518 ± 78 g C m-2 year-1 as compared to pre-thinning (2003-2011) GEP of 1384 ± 121 g C m-2·year-1. Over the same period, mean post-thinning net ecosystem productivity (NEP) was 185 ± 75 g C m-2 year-1 as compared to post-thinning NEP of 180 ± 70 g C m-2 year-1, indicating that pre-thinning NEP was not significantly different than post-thinning NEP. Only post-thinning mean annual ecosystem respiration (Re; 1322 ± 54 g C m-2 year-1) was higher than pre-thinning Re (1195 ± 101 g C m-2 year-1). Soil CO2 efflux measurements showed similar trends. We also evaluated the impacts of climate variability and management regime on the full life cycle of the forest using annual radial tree-ring growths from 15 trees and compared them with historical climate (temperature and precipitation) data. While the annual growth rates displayed weak correlation with long-term climatic records, the growth was generally reduced during years with extreme drought (-36% of mean annual precipitation) and extreme temperature variability (±0.6 - 1.0°C). Overall, forest was more sensitive to management regime than climate variability. It showed higher growth stress during low light condition after crown closure. When partial thinning was introduced in 1983, it responded slowly and took about 5 to 7 years to show measureable increase in its growth, despite favorable climatic conditions. This study will help to advance our understanding of carbon dynamic of forest ecosystems.
GEM: a dynamic tracking model for mesoscale eddies in the ocean
NASA Astrophysics Data System (ADS)
Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu
2016-12-01
The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
Moisture and wave-mean flow interactions in the general circulation of Earth's atmosphere
NASA Astrophysics Data System (ADS)
Yamada, Ray
Baroclinic eddies play an important role in shaping the midlatitude climate and its variability. They are the dominant means by which heat, momentum, and water vapor are transported in the atmosphere, but their turbulent nature makes it challenging to grasp their aggregate effect on the mean circulation. Wave-mean flow diagnostics provide an effective means for understanding the interactions between eddies and the mean circulation. These diagnostics are derived by dynamically motivated averaging of the equations of motion, which exposes the total explicit eddy effect on the mean circulation tendency. Most of the classic formulations of these diagnostics have been limited by the fact that they do not account for the eddy flux of water vapor, which can drive circulation through latent heat released from condensation. In the first part of this thesis, a moist isentropic generalization of the Eliassen-Palm (EP) flux diagnostic is developed. Moist isentropes are often not invertible with height, which prevents the standard techniques used to derive the dry diagnostic from being applied in the moist case. This issue is resolved by using a conditional-averaging approach to define a weak coordinate transformation. The primitive equations, EP flux, and EP theorem are derived in generality for non- invertible coordinates, without assumptions of quasi-geostrophy or small wave-amplitude. It is shown that, in the reanalysis climatology, the moist EP flux is twice as strong as the dry EP flux and has a greater equatorward extent. Physically, the increase in momentum exchange is tied to an enhancement of the form drag associated with the horizontal structure of midlatitude eddies, where the poleward flow of moist air is located in regions of strong eastward pressure gradients. The second part of this thesis studies the effect of latent heating on the mean flow adjustment in idealized baroclinic life cycles. The life cycles are simulated in an idealized moist general circulation model (GCM) with no convective parameterizations and diabatic heating is due entirely to the latent heat released from large-scale condensation. A series of life cycle simulations are run varying only the initially prescribed value of the relative humidity. It is shown that increasing relative humidity acts to decrease the baroclinic shear of the adjusting zonal jet. By solving a moist elliptic equation for the Eulerian-mean circulation forced by the eddy fluxes, it is shown that the eddy moisture flux drives an indirect Eulerian circulation on the equatorward flank of the jet. This in turn increases the strength and equatorward extent of the developing surface westerlies. The reduction of baroclinicity is consistent with the earlier idea that moisture fluxes increase the EP flux and form drag associated with baroclinic eddies. The final topic of this thesis is about the extratropical internal variability of the atmosphere. The annular mode (AM) has long been considered the dominant mode of atmospheric variability driven by midlatitude storms. It describes a north-south vacillation of the eddy-driven jet on intraseasonal timescales which are considerably longer than the life cycle of typical synoptic storms. This low-frequency variability of the AM is thought to be supported by a mean-eddy feedback, in which a poleward shift of the jet is supported by a poleward shift of the baroclinic zone. However, it is shown that the atmospheric energy transport and isentropic circulation shift equatorward in the monthly AM composites. This shift is mainly the result of a poleward shift of the Ferrel cell. An alternative mean-eddy feedback mechanism based on the idea of the jet acting as a mixing barrier is proposed as an explanation for the small response of the eddy energy flux.
A. Morani; D. Nowak; S. Hirabayashi; G. Guidolotti; M. Medori; V. Muzzini; S. Fares; G. Scarascia Mugnozza; C. Calfapietra
2014-01-01
Ozone flux estimates from the i-Tree model were compared with ozone flux measurements using the Eddy Covariance technique in a periurban Mediterranean forest near Rome (Castelporziano). For the first time i-Tree model outputs were compared with field measurements in relation to dry deposition estimates. Results showed generally a...
Optically and non-optically excited thermography for composites: A review
NASA Astrophysics Data System (ADS)
Yang, Ruizhen; He, Yunze
2016-03-01
Composites, such as glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP), and adhesive bonding are being increasingly used in fields of aerospace, renewable energy, civil and architecture, and other industries. Flaws and damages are inevitable during either fabrication or lifetime of composites structures or components. Thus, nondestructive testing (NDT) are extremely required to prevent failures and to increase reliability of composite structures or components in both manufacture and in-service inspection. Infrared thermography techniques including pulsed thermography, pulsed phase thermography, and lock-in thermography have shown the great potential and advantages. Besides conventional optical thermography, other sources such as laser, eddy current, microwave, and ultrasound excited thermography are drawing increasingly attentions for composites. In this work, a fully, in-depth and comprehensive review of thermography NDT techniques for composites inspection was conducted based on an orderly and concise literature survey and detailed analysis. Firstly, basic concepts for thermography NDT were defined and introduced, such as volume heating thermography. Next, the developments of conventional optic, laser, eddy current, microwave, and ultrasound thermography for composite inspection were reviewed. Then, some case studies for scanning thermography were also reviewed. After that, the strengths and limitations of thermography techniques were concluded through comparison studies. At last, some research trends were predicted. This work containing critical overview, detailed comparison and extensive list of references will disseminates knowledge between users, manufacturers, designers and researchers involved in composite structures or components inspection by means of thermography NDT techniques.
49 CFR 180.209 - Requirements for requalification of specification cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...
49 CFR 180.209 - Requirements for requalification of specification cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...
Eddy Current Testing, RQA/M1-5330.17.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on eddy current testing. The subject is presented under the following headings: Introduction, Eddy Current Principles, Eddy Current Equipment, Eddy Current Methods,…
49 CFR 180.209 - Requirements for requalification of specification cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...
Impacts of mesoscale eddies on biogeochemical cycles in the South China Sea
NASA Astrophysics Data System (ADS)
Xiu, P.; Chai, F.; Guo, M.
2016-02-01
Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a coupled physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic eddies are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic eddies are with lower concentrations compared with surrounding waters, which is generally controlled by the eddy pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies are also revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures are not linearly coupled at the eddy core where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find eddy pumping mechanisms are generally dominant in winter and eddy advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by eddy pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal eddy advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.
In, Myung-Ho; Posnansky, Oleg; Speck, Oliver
2016-05-01
To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.
Monitoring the Softening of Aluminum-Alloy V95ochT2 Shapes by a Nondestructive Method
NASA Astrophysics Data System (ADS)
Shigapov, A. I.; Klimova, T. A.; Il'inkova, T. A.
2015-09-01
Correlation relations between the strength and the electrical conductivity of aluminum shapes are determined. The properties of alloy V95ochT2 are studied after different temperature-and-time actions. It is shown that the "dark spots" appearing on the surface of such shapes can be evaluated by a nondestructive eddy-current method.
NASA Astrophysics Data System (ADS)
Kikumoto, Hideki; Ooka, Ryozo
2012-07-01
A large-eddy simulation is performed on a turbulent dispersion of chemically reactive air pollutants in a two-dimensional urban street canyon with an aspect ratio of 1.0. Nitrogen monoxide emitted from a line-source set on the bottom of the street canyon disperses and reacts with Ozone included in a free stream. The reactions have significant influences on the concentrations of pollutants in the canyon space, and they increase the concentrations of the reaction products relative to of the concentrations of the reactants. The transport of air pollutants through a free shear layer above the canyon is closely related to the structure of the turbulence. Gases in the canyon are mainly exhausted when low-speed regions appear above the canyon. In contrast, pollutants in the free stream flow into the canyon with high-speed fluid bodies. Consequently, the correlation between the time fluctuations of the reactants' concentrations strongly affects the reaction rates in the region near the free shear layer. In this calculation, the correlation term reaches to a value of 20% of the mean reaction rate at a maximum there.
Antibacterial efficacy of an endodontic sonic-powered irrigation system: An in vitro study.
Zeng, Chang; Willison, Jon; Meghil, Mohamed M; Bergeron, Brian E; Cutler, Christopher W; Tay, Franklin R; Niu, Lina; Ma, Jingzhi
2018-06-13
To evaluate the efficacy of EDDY, a new sonic-powered irrigation system, in reducing intracanal bacteria load. Thirty-eight instrumented, autoclaved single-rooted human premolars were inoculated with Enterococcus faecalis (ATCC-29212) for 21 days. Two teeth were used as negative control without bacterial contamination. For the bacteria-inoculated teeth, 6 were used as positive control without irrigation. The remaining 30 teeth were randomly divided into 2 groups (N = 15), using 3% NaOCl as irrigant: (A) 30-gauge syringe needle irrigation (SNI), (B) EDDY (VDW, Munich, Germany). Twelve teeth per group and 4 teeth in the positive control were evaluated for bacterial reduction using MTT assay. The remaining teeth were split for BacLight LIVE/DEAD staining to examine the percentages of live/dead bacteria present in the dentinal tubules from different canal locations (coronal, mid-root and apical portions of the canal space) using confocal laser scanning microscopy (CLSM). MTT assay indicated that both SNI and EDDY significantly reduced overall intracanal bacterial load compared with the positive control, with no significant difference between the two techniques. CLSM indicated that EDDY had better intratubular bacterial killing efficacy than SNI in the coronal and mid-root portions of the canal space only but not in the apical portion. In all canal locations (coronal, mid-root apical), both systems failed to eliminate bacteria that proliferated deep within the dentinal tubules. With the use of 3% NaOCl, sonic-powered irrigant activation with EDDY tips did not provide additional advantage over SNI in killing Enterococcus faecalis from deep intraradicular dentin. Both the sonic-powered root canal irrigant activation system and syringe needle irrigation can reduce intracanal bacteria load but are incapable of completely killing all bacteria that resided deep within the dentinal tubules of root canals infected with Enterococcus faecalis. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Burba, George; Budishchev, Artem; Gioli, Beniamino; Haapanala, Sami; Helbig, Manuel; Losacco, Salvatore; Mammarella, Ivan; Moreaux, Virginie; Murphy, Patrick; Oechel, Walter; Peltola, Olli; Rinne, Janne; Sonnentag, Oliver; Sturtevant, Cove; Vesala, Timo; Zona, Donatella; Zulueta, Rommel
2014-05-01
Flux stations have been widely used to monitor release and uptake rates of CO2, CH4, H2O and other gases from various ecosystems for climate research for over 30 years. The stations provide accurate and continuous measurements of gas exchange at time scales ranging from 15 or 30 minutes to multiple years, and at spatial scales ranging from thousands m2 to multiple km2, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in gas release due to weather or man-triggered events (pressure changes, ice breakage and melts, ebullition events, etc.). They can also detect slow changes related to seasonal dynamics and man-triggered processes (seasonal freeze and thaw, long-term permafrost degradation, etc.). From 1980s to mid-2000s, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular researcher. In the past 3-5 years, due to significant efforts of global and regional flux networks and technological developments, the methodology became fairly standardized. Majority of current stations compute gas emission and uptake rates using eddy covariance method, as one of the most direct micrometeorological techniques. Over 600 such flux stations operate in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, airplanes, ships, etc.). With increasing atmospheric temperatures in the Arctic likely resulting in a higher rate of permafrost degradation, measurements of gas exchange dynamics become particularly important. The permafrost regions store a significant amount of organic materials under anaerobic conditions, leading to large CH4 production and accumulation in the upper layers of bedrock, soil and ice. These regions may become a significant potential source of global CH4 release under a warming climate over the following decades and centuries. Present measurements of CH4 release in permafrost regions have mostly been made with static chamber techniques, and few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active soil layer. Closed-path gas analyzers for measuring CH4 eddy fluxes require climate control, employ high-power pumps, and generally require grid power and infrastructure. As a result, spatial coverage of eddy covariance CH4 flux measurements in cold regions remains limited. Existing stations are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into manpower and infrastructure. In this presentation, basic principles of eddy covariance flux measurements are explained, along with details on the CH4, CO2 and H2O exchange measurements using low-power flux stations. Also included are latest updates on the emerging research utilizing such stations in remote permafrost regions, and on the 2013-2014 development of fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CH4 release rates.
Lewicki, Jennifer L.; Kelly, Peter; Bergfeld, Deborah; Vaughan, R. Greg; Lowenstern, Jacob B.
2017-01-01
We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from − 56 to 885 g m− 2 d− 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2emission rate from the study area ranged from 8.6 t d− 1 based on eddy covariance measurements to 9.8 t d− 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m− 2 d− 1. Nighttime H and LEwere considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m− 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The fumarole H2O/CO2 and CO2/H2S end member ratios (101.7 and 27.1, respectively, on average) were invariant during the measurement period and fell within the range of values measured in direct fumarole gas samples. The soil gas H2O/CO2end member ratios (~ 15–30) were variable and low relative to the fumarole end member, likely resulting from water vapor loss during cooling and condensation in the shallow subsurface, whereas the CO2/H2S end member ratio was high (~ 160), presumably related to transport of CO2-dominated soil gas emissions mixed with trace fumarolic emissions to the Multi-GAS station. Nighttime eddy covariance ratios of H2O to CO2 flux were typically between the soil gas and fumarole end member H2O/CO2 ratios defined by Multi-GAS measurements. Overall, the combined eddy covariance and Multi-GAS approach provides a powerful tool for quasi-continuous measurements of gas and heat emissions for improved volcano-hydrothermal monitoring.
Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan
2016-02-01
The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (P<0.05). However, to air and soil moisture, Re and GEP had different responses, that was, GEP was more vulnerable by the decrease of the soil moisture compared with Re. Besides, the raising of saturation vapour pressure promoted the Re modestly but inhibited the GEP, which was supposed to be the main reason for NEP decrease of bamboo forest ecosystem in Anji, from July to August in 2013.
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gros, Ethan; Udpa, Lalita; Smith, James A.
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs inmore » the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring loaded eddy probe is at measuring film thickness under varying experimental conditions. This research will study the effects of a number of factors such as i) calibration, ii) conductivity, iii) edge effect, iv) surface finish of base material and v) cable condition and compare with the long term reproducibility of a standard measurement. This work was performed with support from the Department of Energy under the United States National Nuclear Security Administration (NNSA) at the Idaho National Laboratory.« less
Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles
NASA Astrophysics Data System (ADS)
Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh
2015-09-01
Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.
Geosat Data Assimilation with Application to the Eastern North Atlantic
NASA Technical Reports Server (NTRS)
Stammer, Detlef
1997-01-01
An attempt is made to determine the three-dimensional ocean circulation from satellite altimeter measurements by assimilating Geosat sea surface height data into an eddy-resolving QuasiGeostrophic (QG) model of the eastern North Atlantic Ocean. Results are tested against independent information from hydrographic field observations and moored current meter data collected during the Geosat ERM. The comparison supports the concept of inferring aspects of the three-dimensional flow field from sea surface height observations by combining altimetric measurements with the dynamics of ocean circulation models. A Holland-type QG model with open boundaries is set up on a 2000 km X 2000 km domain of the eastern North Atlantic between 25 deg. and 45 deg. N, 32 deg. and 8 deg. W. By using a simple nudging technique, about two years of Geosat altimeter data are assimilated into the model every five days as space-time objective analyses on the model grid. The error information resulting from the analysis is used during the assimilation procedure to account for data uncertainties. Results show an intense eddy field, which in the surface layer interacts with a meandering Azores Front. Compared to Geosat, the model leads to smoothed fields that follow the observations. Model simulations are significantly correlated with hydrographic data from March 1988 and June 1989, both close to the surface and in the subsurface. Good agreement is also found between the model velocity fields and moored current meter data in the top two model layers. The agreement is visually weak in the bottom layer, although a coherence analysis reveals an agreement between the model simulation and current meter data over the full water column at periods exceeding 80 days.
Validating Variance Similarity Functions in the Entrainment Zone
NASA Astrophysics Data System (ADS)
Osman, M.; Turner, D. D.; Heus, T.; Newsom, R. K.
2017-12-01
In previous work, the water vapor variance in the entrainment zone was proposed to be proportional to the convective velocity scale, gradient water vapor mixing ratio and the Brunt-Vaisala frequency in the interfacial layer, while the variance of the vertical wind at in the entrainment zone was defined in terms of the convective velocity scale. The variances in the entrainment zone have been hypothesized to depend on two distinct functions, which also depend on the Richardson number. To the best of our knowledge, these hypotheses have never been tested observationally. Simultaneous measurements of the Eddy correlation surface flux, wind shear profiles from wind profilers, and variance profile measurements of vertical motions and water vapor by Doppler and Raman lidars, respectively, provide a unique opportunity to thoroughly examine the functions used in defining the variances and validate them. These observations were made over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. We have identified about 30 cases from 2016 during which the convective boundary layer (CBL) is quasi-stationary and well mixed for at least 2 hours. The vertical profiles of turbulent fluctuations of the vertical wind and water vapor have been derived using an auto covariance technique to separate out the instrument random error to a set of 2-h period time series. The error analysis of the lidars observations demonstrates that the lidars are capable of resolving the vertical structure of turbulence around the entrainment zone. Therefore, utilizing this unique combination of observations, this study focuses on extensively testing the hypotheses that the second-order moments are indeed proportional to the functions which also depend on Richardson number. The coefficients that are used in defining the functions will also be determined observationally and compared against with the values suggested by Large eddy simulation (LES) studies.
Biogeochemical responses to meso- and submesoscale oceanic variability in the Kuroshio region
NASA Astrophysics Data System (ADS)
Suzue, Y.; Uchiyama, Y.; Yamazaki, H.
2016-02-01
Influences of the Kuroshio and associated meso- and submesoscale variability due to frontally- and topographically-induced eddies on biogeochemical processes in the Kuroshio region off Japan are examined with a synoptic downscaling ocean modeling using the UCLA version of ROMS (Shchepetkin and McWilliams, 2005; 2008) coupled with an NPZD (nutrient, phyto/zooplanktons and detritus) nitrogen-based biogeochemical model (e.g., Fasham et al., 1990). The hydrodynamic model is initialized and forced by the JCOPE2 assimilative oceanic reanalysis (Miyazawa et al., 2009) with a horizontal grid resolution of 1/12o (dx ≈ 10 km) to convey the basin-scale information including the transient Kuroshio path though the parent ROMS-L1 model (dx = 3 km) and the child ROMS-L2 model (dx = 1 km) successively with the one-way offline nesting technique (Mason et al., 2011). The JMA GPV-MSM assimilative atmospheric reanalysis (dx = 6 km) is used to force both the ROMS models, while the NPZD model is configured according to Gruber et al. (2006). The model result is extensively compared with satellite (e.g., AVISO, MODIS/Aqua Chl.a) and in-situ data (e.g., the JMA's ship measurement) to confirm good agreement. The submesoscale eddy-resolving L2 output exhibits that intermediate water containing abundant nutrients occasionally surfaces by localized upwelling associated with cyclonic eddies, and that high Chl.a concentration appears around the Kuroshio Front. Furthermore, it is found that meso- and submesoscale eddies developed between the Kuroshio and the coastline also influence on the nearshore biogeochemical productivity.
Investigating physical controls on methane and carbon ...
Reservoirs are a globally important source of carbon to the atmosphere. Several recent studies have found that both carbon dioxide (CO2) and methane (CH4) emissions from reservoirs are currently being underestimated by up to 50%. This underestimation is due to inadequate characterization of both spatial variability (e.g. ebullition and CO2 surface water concentration hot spots) and temporal variability (e.g. diurnal patterns, seasonal differences, and pulses driven by weather events or other disturbances). Use of the eddy covariance technique to measure CO2 and CH4 fluxes over reservoirs can help address the issues of spatial and temporal coverage. Here we present results from two eddy covariance measurement campaigns monitoring CO2 and CH4 fluxes over reservoirs in southwestern Ohio, US. The first campaign was part of a study looking at the effects of water level drawdown on reservoir methane ebullition. The eddy covariance results showed a clear response of CH4 emissions to the change in water level, increasing from a baseline of 3440 mg CH4 m-2 d-1 to a maximum of 6740 mg CH4 m-2 d-1 during the drawdown. These results agreed well with the emission rates measured via bubble samplers deployed in the same area as the tower. Conversely, the CO2 fluxes did not show a strong response to the drawdown. In the second campaign the eddy covariance system was deployed longer term at a mid-sized (2.4 km2) lake. Analyses of diurnal patterns in CO2 and CH4 emissions as well
Measurement of internal defects in aluminum using a nano-granular in-gap magnetic sensor
NASA Astrophysics Data System (ADS)
Ozawa, T.; Yabukami, S.; Totsuka, J.; Koyama, S.; Hayasaka, J.; Wako, N.; Arai, K. I.
2015-05-01
Techniques for identifying defects in metals are very important in a wide variety of manufacturing areas. The present paper reports an eddy current testing method that employs a nano-granular in-gap magnetic sensor (GIGS) to detect internal defects in aluminum boards. The GIGS consists of a tunnel magnetoresistive film with nanometer sized grains and two yokes. In the presence of an external magnetic field, the nano-granular film exhibits only a small change in resistance due to the tunnel magnetoresistive effect. However, by placing it between two yokes, the magnetic flux can be greatly concentrated, thus increasing the change in resistance. The GIGS is a magnetic-field sensor that exploits this principle to achieve enhanced sensitivity. Moreover, because it has a cross-sectional yolk area of just 80 μm × 0.5 μm, it achieves outstanding spatial resolution. In the present study, it is used in combination with an eddy-current method in order to detect internal defects in aluminum. In this method, an excitation coil is used to apply an AC magnetic field perpendicular to the aluminum surface. This induces eddy currents in the metal, which in turn give rise to an AC magnetic field, which is then measured by the GIGS. The presence of defects in the aluminum distorts the eddy current flow, causing a change in the magnitude and distribution of the magnetic field. Such changes can be detected using the GIGS. In the present study, the proposed method was used to successfully detect indentations with diameters of 5 mm on the rear surface of an aluminum plate.
On the Roles of Upper- versus Lower-level Thermal Forcing in Shifting the Eddy-Driven Jet
NASA Astrophysics Data System (ADS)
Zhang, Y.; Nie, Y.; Chen, G.; Yang, X. Q.
2017-12-01
One most drastic atmospheric change in the global warming scenario is the increase in temperature over tropical upper-troposphere and polar surface. The strong warming over those two area alters the spacial distributions of the baroclinicity in the upper-troposphere of subtropics and in the lower-level of subpolar region, with competing effects on the mid-latitude atmospheric circulation. The final destination of the eddy-driven jet in future climate could be "a tug of war" between the impacts of such upper- versus lower-level thermal forcing. In this study, the roles of upper- versus lower-level thermal forcing in shifting the eddy-driven jet are investigated using a nonlinear multi-level quasi-geostrophic channel model. All of our sensitivity experiments show that the latitudinal position of the eddy-driven jet is more sensitive to the upper-level thermal forcing. Such upper-level dominance over the lower-level forcing can be attributed to the different mechanisms through which eddy-driven jet responses to them. The upper-level thermal forcing induces a jet shift mainly by affecting the baroclinic generation of eddies, which supports the latitudinal shift of the eddy momentum flux convergence. The jet response to the lower-level thermal forcing, however, is strongly "eddy dissipation control". The lower-level forcing, by changing the baroclinicity in the lower troposphere, induces a direct thermal zonal wind response in the upper level thus modifies the nonlinear wave breaking and the resultant irreversible eddy mixing, which amplifies the latitudinal shift of the eddy-driven jet. Whether the eddy response is "generation control" or "dissipation control" may strongly depend on the eddy behavior in its baroclinic processes. Only the anomalous eddy generation that penetrates into the upper troposphere can have a striking impact on the eddy momentum flux, which pushes the jet shift more efficiently and dominates the eddy response.
Summary of nondestructive testing theory and practice
NASA Technical Reports Server (NTRS)
Meister, R. P.; Randall, M. D.; Mitchell, D. K.; Williams, L. P.; Pattee, H. E.
1972-01-01
The ability to fabricate design critical and man-rated aerospace structures using materials near the limits of their capabilities requires a comprehensive and dependable assurance program. The quality assurance program must rely heavily on nondestructive testing methods for thorough inspection to assess properties and quality of hardware items. A survey of nondestructive testing methods is presented to provide space program managers, supervisors and engineers who are unfamiliar with this technical area with appropriate insight into the commonly accepted nondestructive testing methods available, their interrelationships, used, advantages and limitations. Primary emphasis is placed on the most common methods: liquid penetrant, magnetic particle, radiography, ultrasonics and eddy current. A number of the newer test techniques including thermal, acoustic emission, holography, microwaves, eddy-sonic and exo-electron emission, which are beginning to be used in applications of interest to NASA, are also discussed briefly.
Large-eddy simulations of compressible convection on massively parallel computers. [stellar physics
NASA Technical Reports Server (NTRS)
Xie, Xin; Toomre, Juri
1993-01-01
We report preliminary implementation of the large-eddy simulation (LES) technique in 2D simulations of compressible convection carried out on the CM-2 massively parallel computer. The convective flow fields in our simulations possess structures similar to those found in a number of direct simulations, with roll-like flows coherent across the entire depth of the layer that spans several density scale heights. Our detailed assessment of the effects of various subgrid scale (SGS) terms reveals that they may affect the gross character of convection. Yet, somewhat surprisingly, we find that our LES solutions, and another in which the SGS terms are turned off, only show modest differences. The resulting 2D flows realized here are rather laminar in character, and achieving substantial turbulence may require stronger forcing and less dissipation.
NASA Astrophysics Data System (ADS)
Stramma, L.; Bange, H. W.; Czeschel, R.; Lorenzo, A.; Frank, M.
2013-11-01
Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study, three eddies along a section at 16°45´ S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water eddy, an open ocean mode water eddy and an open ocean cyclonic eddy have been identified and sampled in order to determine both their hydrographic properties and their influence on the biogeochemical setting of the ETSP. In the thermocline the temperature of the coastal anticyclonic eddy was up to 2 °C warmer, 0.2 more saline and the swirl velocity was up to 35 cm s-1. The observed temperature and salinity anomalies, as well as swirl velocities of both types of eddies were about twice as large as had been described for the mean eddies in the ETSP. The observed heat and salt anomalies (AHA, ASA) of the anticyclonic eddy near the shelf-break of 17.7 × 1018 J and 36.6 × 1010 kg are more than twice as large as the mean AHA and ASA for the ETSP. We found that the eddies contributed to the productivity by maintaining pronounced subsurface maxima of chlorophyll of up to 6 μg L-1. Based on a comparison of the coastal (young) mode water eddy and the open ocean (old) mode water eddy we suggest that the ageing of eddies when they detach from the shelf-break and move westward to the open ocean influences the eddies' properties: chlorophyll maxima are reduced to about half (2.5-3 μg L-1) and nutrients are subducted. However, different settings at the time of formation may also contribute to the observed differences between the young and old mode water eddies. The coastal mode water eddy was found to be a site of nitrogen (N) loss in the OMZ with a maximum ΔNO3- anomaly (i.e. N loss) of about -25 μmol L-1 in 250 m water depth, whereas, the open ocean mode water and cyclonic eddies were of minor and negligible importance for the N loss, respectively. Our results show that the important role of eddies for the distribution of nutrients, as well as biogeochemical processes in the ETSP (and other OMZ/upwelling regions) can only be fully deciphered and understood through dedicated high spatial and temporal resolution oceanographic/biogeochemical surveys.
Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry
NASA Technical Reports Server (NTRS)
Ellis, Tayera
2015-01-01
Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system's eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware. Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in a beat frequency. However, for PDV, discerning the signal from the noise is difficult without a moving source to induce the modulation. A rotating wheel is currently being used as the moving source but its configuration is impractical and has cumbersome placement inside the current frangible joint test cell. As a way to combat this problem and verify a satisfactory signal-to-noise ratio, a reflective moving crystal piezo will be used to modulate a beat frequency, and an absorptive target will be used to block the signal in order to determine any back reflection coming from the probe and discern the true signal-to-noise ratio. The piezo will be mounted and inserted onto the test table on an extendable telescopic antenna grounded by a magnetic base in the test zone. This piezo configuration will be more compatible within the test zone and allow for easy removal of the disk following acceptable signal verification and prior to frangible joint tests.
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Gutowski, William J., Jr.
1991-01-01
Atmospheric transient eddies contribute significantly to mid-latitude energy and water vapor transports. Changes in the global climate, as induced by greenhouse enhancement, will likely alter transient eddy behavior. Unraveling all the feedbacks that occur in general circulation models (GCMs) can be difficult. The transient eddies are isolated from the feedbacks and are focused on the response of the eddies to zonal-mean climate changes that result from CO2-doubling. Using a primitive-equation spectral model, the impact of climate change on the life cycles of transient eddies is examined. Transient eddy behavior in experiments is compared with initial conditions that are given by the zonal-mean climates of the GCMs with current and doubled amounts of CO2. The smaller meridional temperature gradient in a doubled CO2 climate leads to a reduction in eddy kinetic energy, especially in the subtropics. The decrease in subtropical eddy energy is related to a substantial reduction in equatorward flux of eddy activity during the latter part of the life cycle. The reduction in equatorward energy flux alters the moisture cycle. Eddy meridional transport of water vapor is shifted slightly poleward and subtropical precipitation is reduced. The water vapor transport exhibits a relatively small change in magnitude, compared to changes in eddy energy, due to the compensating effect of higher specific humidity in the doubled-CO2 climate. An increase in high-latitude precipitation is related to the poleward shift in eddy water vapor flux. Surface evaporation amplifies climatic changes in water vapor transport and precipitation in the experiments.
Baltar, Federico; Arístegui, Javier; Gasol, Josep M; Lekunberri, Itziar; Herndl, Gerhard J
2010-08-01
To investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000 m depth. In the upper epipelagic layer (0-200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200-1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic 'hotspots' of prokaryotic activity (in the epi- and mesopelagic realms).
NASA Astrophysics Data System (ADS)
Zhao, Yuan-Bing; Liang, X. San; Gan, Jianping
2016-11-01
Eddy-shedding is a highly nonlinear process that presents a major challenge in geophysical fluid dynamics. Using the newly developed localized multiscale energy and vorticity analysis (MS-EVA), this study investigates an observed typical warm eddy-shedding event as the Kuroshio passes the Luzon Strait, in order to gain insight into the underlying internal dynamics. Through multiscale window transform (MWT), it is found that the loop-form Kuroshio intrusion into the South China Sea (SCS) is not a transient feature, but a quasi-equilibrium state of the system. A mesoscale reconstruction reveals that the eddy does not have its origin at the intrusion path, but comes from the Northwest Pacific. It propagates westward, preceded by a cyclonic (cold) eddy, through the Kuroshio into the SCS. As the eddy pair runs across the main current, the cold one weakens and the warm one intensifies through a mixed instability. In its development, another cold eddy is generated to its southeast, which also experiences a mixed instability. It develops rapidly and cuts the warm eddy off the stream. Both the warm and cold eddies then propagate westward in the form of a Rossby wave (first baroclinic mode). As the eddies approach the Dongsha Islands, they experience another baroclinic instability, accompanied by a sudden accumulation of eddy available potential energy. This part of potential energy is converted to eddy kinetic energy through buoyancy conversion, and is afterward transferred back to the large-scale field through inverse cascading, greatly reducing the intensity of the eddy and eventually leading to its demise.
Open ocean dead zones in the tropical North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Karstensen, J.; Fiedler, B.; Schütte, F.; Brandt, P.; Körtzinger, A.; Fischer, G.; Zantopp, R.; Hahn, J.; Visbeck, M.; Wallace, D.
2015-04-01
Here we present first observations, from instrumentation installed on moorings and a float, of unexpectedly low (<2 μmol kg-1) oxygen environments in the open waters of the tropical North Atlantic, a region where oxygen concentration does normally not fall much below 40 μmol kg-1. The low-oxygen zones are created at shallow depth, just below the mixed layer, in the euphotic zone of cyclonic eddies and anticyclonic-modewater eddies. Both types of eddies are prone to high surface productivity. Net respiration rates for the eddies are found to be 3 to 5 times higher when compared with surrounding waters. Oxygen is lowest in the centre of the eddies, in a depth range where the swirl velocity, defining the transition between eddy and surroundings, has its maximum. It is assumed that the strong velocity at the outer rim of the eddies hampers the transport of properties across the eddies boundary and as such isolates their cores. This is supported by a remarkably stable hydrographic structure of the eddies core over periods of several months. The eddies propagate westward, at about 4 to 5 km day-1, from their generation region off the West African coast into the open ocean. High productivity and accompanying respiration, paired with sluggish exchange across the eddy boundary, create the "dead zone" inside the eddies, so far only reported for coastal areas or lakes. We observe a direct impact of the open ocean dead zones on the marine ecosystem as such that the diurnal vertical migration of zooplankton is suppressed inside the eddies.
NASA Astrophysics Data System (ADS)
Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James
2016-04-01
Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2 difference) than the constant ci/ca ratio. However, photosynthesis and respiration fluxes over sugarcane were ~15% lower with a VPD-ci/ca relationship than a constant ci/ca ratio. The results illustrate the importance of combining leaf-level physiological observations with EC to improve the performance of the FP algorithm.
Mapping the Spatial Distribution of CO2 release from Kīlauea Volcano, Hawaii, USA
NASA Astrophysics Data System (ADS)
Elias, T.; Werner, C. A.; Kern, C.; Sutton, A. J.; Hauri, E. H.; Kelly, P. J.
2014-12-01
Kīlauea Volcano is a large emitter of volcanic CO2 with emission rates ranging from 7500-30,000 t/d. However, Kīlauea presents a challenging situation for CO2 emission rate measurement in that the main source of SO2 is the active vent in Halema'uma'u Crater, whereas CO2 emits mainly from a large (> 1km2) diffuse region east of the vent. Previous researchers recognized this issue and advocated for the use of a plume-integrated concentration ratio paired with the SO2 emission to determine CO2 emission rates; however, this worked best prior to the opening of the summit vent in 2008, or when SO2emission was still diffuse as opposed to focused degassing from the vent. We used two techniques to study the spatial distribution and temporal variability of CO2 release from the summit caldera in July, 2014. Eddy covariance measurements made at 14 locations in the area of diffuse emission resulted in elevated fluxes that generally ranged from 500 to > 5000 g/m2d, or typical of other volcanic and hydrothermal areas worldwide. MultiGas measurements of the CO2 and SO2 concentration in air at 1-m above the ground identified approximately seven areas of elevated area of CO2 degassing in the caldera. The CO2 concentrations in air were spatially well correlated to approximately 100 m and displayed anisotropy that was consistent with the measured wind direction. Areas of highest CO2 concentration correlated with the areas of highest flux using the eddy covariance method and were found near the middle of the caldera approximately 1 km NE of the active vent. This area overlies the inferred location of the shallow summit reservoir, and is characterized by linear fractures with adhered sublimate deposits at the surface. A few of the fractures are visibly fuming, but much of the degassing in the area is not apparent. Future work includes monitoring the fluxes in this area over time, and attempting to quantify emission rates from the areas of measured flux.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Tian, F.; Hu, H.; Yang, P.
2014-03-01
A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: a photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationship between leaf areas and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance showed reasonable consistency during the cotton's open-boll growth stage, during which soil evaporation can be neglected. The results indicate that the proposed upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed for a cotton field under mulched drip irrigation. During the two analyzed sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 m day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above the drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Tian, F.; Hu, H. C.; Hu, H. P.
2013-11-01
A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between leaf area and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance shown reasonable consistency during the cotton open boll growth stage when soil evaporation can be neglected. The results indicate that the upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed under mulched drip irrigation. During the two analysis sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 mm day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.
NASA Astrophysics Data System (ADS)
Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.
2017-12-01
The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for sea-salt and ammoniums sulfate particle fluxes. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the sea-salt particle fluxes measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The sea-salt particle detection limit of the Hy-Res REA flux system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and sea-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the sea-salt particle fluxes. In principle, the instrument can be applied to measure fluxes of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).
Predicting deep percolation with eddy covariance under mulch drip irrigation
NASA Astrophysics Data System (ADS)
Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang
2016-04-01
Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.
NASA Astrophysics Data System (ADS)
Huhn, Florian; Haller, George
2014-05-01
Haller and Beron-Vera(2013) have recently introduced a new objective method to detect coherent Lagrangian eddies in turbulence. They find that closed null-geodesics of a generalized Green-Lagrange strain tensor act as coherent Lagrangian eddy boundaries, showing near-zero and uniform material stretching. We make use of this method to develop an automated detection procedure for coherent Lagrangian eddies in large-scale ocean data. We apply our results to a recent 3D general circulation model, the Southern Ocean State Estimate (SOSE), with focus on the South Atlantic Ocean and the inter-ocean exchange between the Indian and Atlantic ocean. We detect a large number of coherent Lagrangian eddies and present statistics of their properties. The largest and most circular eddy boundaries represent Lagrangian Agulhas rings. Circular regions inside these rings with higher temperature and salinity than the surrounding waters can be explained by the coherent eddy boundaries that enclose and isolate the eddy interiors. We compare eddy boundaries at different depths with eddy boundaries obtained from geostrophic velocities derived from the model's sea surface height (SSH). The transport of mass, heat and salinity enclosed by coherent eddies through a section in the Cape basin is quantified and compared to the non-coherent transport by the background flow.
The pines of the Eddy Arboretum
John Duffield
1949-01-01
The Eddy Arboretum at Placerville, California, contains more than 90 species, varieties, and hybrids of pines, and is therefore of great interest to horticulturists. The Arboretum was established in 1925 as a source of breeding stock for the Eddy Tree Breeding Station, founded in the same year by Mr. James G. Eddy of Seattle. In 1934 Mr. Eddy presented the Arboretum...
Recent progress in the NDE of cast ship propulsion components
NASA Astrophysics Data System (ADS)
Spies, Martin; Rieder, Hans; Dillhöfer, Alexander; Rauhut, Markus; Taeubner, Kai; Kreier, Peter
2014-02-01
The failure of propulsion components of ships and ferries can lead to serious environmental and economic damage or even the loss of lives. For ultrasonic inspection of such large components we employ mechanized scanning and defect reconstruction using the Synthetic Aperture Focusing Technique (SAFT). We report on results obtained in view of the detection of defects with different inspection techniques. Also, we address the issue of Probability of Detection by reporting results obtained in POD and MAPOD-studies (Model-Assisted POD) using experimental and simulated data. Finally, we show recent results of surface and sub-surface inspection using optical and eddy current techniques.
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2017-01-01
Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change. Model concepts, if correct, rule out unambiguously, linear trends in climate. Climate change will only be manifested as increase or decrease in the natural variability. However, more stringent tests of model concepts and predictions are required before applications to such an important issue as climate change. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate (O'Gorman in Curr Clim Change Rep 1:49-59, 2015).
Assessing the Extent and Impact of Online Data Sharing in Eddy Covariance Flux Research
NASA Astrophysics Data System (ADS)
Dai, Sheng-Qi; Li, Hong; Xiong, Jun; Ma, Jun; Guo, Hai-Qiang; Xiao, Xiangming; Zhao, Bin
2018-01-01
Research data sharing is appealing for its potential benefits on sharers' scientific impact and is also advocated by various policies. How do scientific benefits and policies correlate with practical ecological data sharing? In this study, we investigated data-sharing practices in eddy covariance flux research as a typical case. First, we collected researchers' data-sharing information from major observation networks. Then, we downloaded bibliometric data from the Web of Science and evaluated scientific impact using LeaderRank, a synthetic algorithm that takes both citation and cooperation impacts into consideration. Our results demonstrated the following: (1) specific to eddy covariance flux research, 8% of researchers published information in public data portals, whereas 64% of researchers provided their available data online in a downloadable form; (2) regional differences in data sharing, publications, and observation networks existed; and (3) the data sharers in impact-ranked ecologists followed a long-tail distribution, which suggested that, although sharing data is not necessary for researchers to be influential, data sharers are more likely to be high-impact researchers. Differentiated policies should be proposed to encourage ecologists in the long tail of data sharers, and from regions with little tradition of data sharing, to embrace a more open model of science.
Recent and Future Enhancements in NDI for Aircraft Structures
2015-11-30
accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other
Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)
2015-11-30
accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other
Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)
2015-11-01
accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other
Recent and Future Enhancements in NDI for Aircraft Structures (POSTPRINT)
2015-11-16
accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other
Comparison of results obtained with various sensors used to measure fluctuating quantities in jets.
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Massier, P. F.; Cuffel, R. F.
1973-01-01
An experimental investigation has been conducted to compare the results obtained with six different instruments that sense fluctuating quantities in free jets. These sensors are typical of those that have recently been used by various investigators who are engaged in experimental studies of jet noise. Intensity distributions and two-point correlations with space separation and time delay were obtained. The static pressure, density, and velocity fluctuations are well correlated over the entire cross section of the jet and the cross-correlations persist for several jet diameters along the flow direction. The eddies appear to be flattened in the flow direction by a ratio of 0.4.
The Leeuwin Current and its eddies: An introductory overview
NASA Astrophysics Data System (ADS)
Waite, A. M.; Thompson, P. A.; Pesant, S.; Feng, M.; Beckley, L. E.; Domingues, C. M.; Gaughan, D.; Hanson, C. E.; Holl, C. M.; Koslow, T.; Meuleners, M.; Montoya, J. P.; Moore, T.; Muhling, B. A.; Paterson, H.; Rennie, S.; Strzelecki, J.; Twomey, L.
2007-04-01
The Leeuwin Current (LC) is an anomalous poleward-flowing eastern boundary current that carries warm, low-salinity water southward along the coast of Western Australia. We present an introduction to a new body of work on the physical and biological dynamics of the LC and its eddies, collected in this Special Issue of Deep-Sea Research II, including (1) several modelling efforts aimed at understanding LC dynamics and eddy generation, (2) papers from regional surveys of primary productivity and nitrogen uptake patterns in the LC, and (3) the first detailed field investigations of the biological oceanography of LC mesoscale eddies. Key results in papers collected here include insight into the source regions of the LC and the Leeuwin Undercurrent (LUC), the energetic interactions of the LC and LUC, and their roles in the generation of warm-core (WC) and cold-core (CC) eddies, respectively. In near-shore waters, the dynamics of upwelling were found to control the spatio-temporal variability of primary production, and important latitudinal differences were found in the fraction of production driven by nitrate (the f-ratio). The ubiquitous deep chlorophyll maximum within LC was found to be a significant contributor to total water column production within the region. WC eddies including a single large eddy studied in 2000 contained relatively elevated chlorophyll a concentrations thought to originate at least in part from the continental shelf/shelf break region and to have been incorporated during eddy formation. During the Eddies 2003 voyage, a more detailed study comparing the WC and CC eddies illuminated more mechanistic details of the unusual dynamics and ecology of the eddies. Food web analysis suggested that the WC eddy had an enhanced "classic" food web, with more concentrated mesozooplankton and larger diatom populations than in the CC eddy. Finally, implications for fisheries management are addressed.
The eddy current probe array for Keda Torus eXperiment.
Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong
2016-11-01
In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.
NASA Astrophysics Data System (ADS)
Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver
2014-06-01
This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1976-01-01
Miniature pressure transducers installed near the leading edge of a fan blade were used to diagnose the non-uniform flow entering a subsonic tip speed turbofan on a static test stand. The pressure response of the blade to the inlet flow variations was plotted in a form which shows the space-time history of disturbances ingested by the rotor. Also, periodically sampled data values were auto- and cross-correlated as if they had been acquired from fixed hot wire anemometers at 150 equally spaced angles around the inlet. With a clean inlet and low wind, evidence of long, narrow turbulence eddies was easily found both in the boundary layer of the fan duct and outside the boundary layer. The role of the boundary layer was to follow and amplify disturbances in the outer flow. These eddies frequently moved around the inlet with a corkscrew motion as they passed through.
Improved Imaging With Laser-Induced Eddy Currents
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
System tests specimen of material nondestructively by laser-induced eddy-current imaging improved by changing method of processing of eddy-current signal. Changes in impedance of eddy-current coil measured in absolute instead of relative units.
D.M. Olson; T.J. Griffis; A. Noormets; R. Kolka; J. Chen
2013-01-01
Three years (2009-2011) of near-continuous methane (CH4) and carbon dioxide (CO2) fluxes were measured with the eddy covariance (EC) technique at a temperate peatland located within the Marcell Experimental Forest, in northern Minnesota, USA. The peatland was a net source of CH4 and a net sink of CO...
Aircraft Drag Prediction and Reduction
1985-07-01
Figure 10 with their subsources. The major source groups are the airfiame noise sources, the propulsion system noise sources, and the lamirar-flow control ...the emerging areas of non -planar geometry and large-eddy alteration. Turbulent control techniques for air generally result in modest (but...17. 57. Ketchem, Jeffery J.; and Velkoff, Henry R.: An Experimental Investigation of the Effect of Electrically Induced Controlled Frequency
G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien
2015-01-01
Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...
NASA Astrophysics Data System (ADS)
Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley
2018-03-01
Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.
Cleavage of a Gulf of Mexico Loop Current eddy by a deep water cyclone
NASA Astrophysics Data System (ADS)
Biggs, D. C.; Fargion, G. S.; Hamilton, P.; Leben, R. R.
1996-09-01
Eddy Triton, an anticyclonic eddy shed by the Loop Current in late June 1991, drifted SW across the central Gulf of Mexico in the first 6 months of 1992, along the ``southern'' of the three characteristic drift paths described by Vukovich and Crissman [1986] from their analyses of 13 years of advanced very high resolution radiometer sea surface temperature data. An expendable bathythermograph (XBT) and conductivity-temperature-depth (CTD) transect of opportunity through Triton at eddy age 7 months in January 1992 found that eddy interior stood 23 dyn. cm higher than periphery; this gradient drove an anticyclonic swirl transport of 9-10 Sv relative to 800 dbar. At eddy age 9-10 months and while this eddy was in deep water near 94°W, it interacted with a mesoscale cyclonic circulation and was cleaved into two parts. The major (greater dynamic centimeters) piece drifted NW to end up in the ``eddy graveyard'' in the NW corner of the gulf, while the minor piece drifted SW and reached the continental margin of the western gulf off Tuxpan. This southern piece of Eddy Triton then turned north to follow the 2000-m isobath to about 24°N and later coalesced with what remained of the major fragment. Because Eddy Triton's cleavage took place just before the start of marine mammals (GulfCet) and Louisiana-Texas physical oceanography (LATEX) field programs, the closely spaced CTD, XBT, and air dropped XBT (AXBT) data that were gathered on the continental margin north of 26°N in support of these programs allow a detailed look at the northern margin of the larger fragment of this eddy. Supporting data from the space-borne altimeters on ERS 1 and TOPEX/POSEIDON allow us to track both pieces of Eddy Triton in the western Gulf and follow their spin down in dynamic height, coalescence, and ultimate entrainment in January 1993 into another anticyclonic eddy (Eddy U).
NASA Astrophysics Data System (ADS)
Vaillancourt, Robert D.; Marra, John; Seki, Michael P.; Parsons, Michael L.; Bidigare, Robert R.
2003-07-01
A synoptic spatial examination of the eddy Haulani (17-20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m -3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria ( Prochlorococcus and Synechococcus) and small (<3 μm diameter) photosynthetic eukaryotes were 3.6-fold more numerically abundant outside the eddy as compared to inside. Large photosynthetic eukaryotes (>3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.
Impact of Preferred Eddy Tracks on Transport and Mixing in the Eastern South Pacific
NASA Astrophysics Data System (ADS)
Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.
2017-12-01
Mesoscale eddies, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called eddy trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic eddies), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale eddies, the impact of repeated eddy tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred eddy tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an eddy-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of eddies to the ocean circulation. Preferred eddy tracks are further isolated from the more random eddies, by comparing the distances between individual tracks and the striated pattern in long-term mean eddy polarity with a least-squares approach. The remaining non-eddying flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of organized and random eddies, mean flow, large-scale perturbations etc. to mixing properties and transport pathways. Float release into the full flow inside selected vortices is also used to document the impact of eddy trains on the transformation of water masses inferred from changes in temperature/salinity along float trajectories.
Eddy covariance measurement of isoprene fluxes
NASA Astrophysics Data System (ADS)
Guenther, Alex B.; Hills, Alan J.
1998-06-01
A system has been developed to directly measure isoprene flux above a forest canopy by eddy covariance using the combination of a fast response, real-time isoprene sensor and sonic anemometer. This system is suitable for making nearly unattended, long-term, and continuous measurements of isoprene fluxes. Isoprene detection is based on chemiluminescence between isoprene and reactant ozone, which produces green light at 500 nm. The sensor has a noise level (1σ) of 450 pptv for a 1-s integration which is dominated by random high-frequency noise that does not significantly degrade eddy covariance flux measurements. Interference from the flux of other compounds is primarily due to the emission of monoterpenes, propene, ethene, and methyl butenol and the deposition of methacrolein and methyl vinyl ketone. The average total interference for North American landscapes in midday summer is estimated to be about 5% for emissions and -3% for deposition fluxes. In only a few North American landscapes, where isoprene emissions are very low and methyl butenol emissions are high, are interferences predicted to be significant. The system was field tested on a tower above a mixed deciduous forest canopy (Duke Forest, North Carolina, U.S.A.) dominated by oak trees, which are strong isoprene emitters. Isoprene fluxes were estimated for 307 half-hour sampling periods over 10 days. Daytime fluxes ranging from 1 to 14 mg C m-2 h-1 were strongly correlated with light and temperature. The daytime mean flux of 6 mg C m-2 h-1 is similar to previous estimates determined by relaxed eddy accumulation by Geron et al [1997] at this site. Nighttime fluxes were near zero (0.01±0.03 mg C m-2 h-1).
Geodesic detection of Agulhas rings
NASA Astrophysics Data System (ADS)
Beron-Vera, F. J.; Wang, Y.; Olascoaga, M. J.; Goni, G. J.; Haller, G.
2012-12-01
Mesoscale oceanic eddies are routinely detected from instantaneous velocities. While simple to implement, this Eulerian approach gives frame-dependent results and often hides true material transport by eddies. Building on the recent geodesic theory of transport barriers, we develop an objective (i.e., frame-independent) method for accurately locating coherent Lagrangian eddies. These eddies act as compact water bodies, with boundaries showing no leakage or filamentation over long periods of time. Applying the algorithm to altimetry-derived velocities in the South Atlantic, we detect, for the first time, Agulhas rings that preserve their material coherence for several months, while eddy candidates yielded by other approaches tend to disperse or leak within weeks. These findings suggest that current Eulerian estimates of the Agulhas leakage need significant revision.Temporal evolution of fluid patches identified as eddies by different methods. First column: eddies extracted using geodesic eddy identification [1,2]. Second column: eddies identified from sea surface height (SSH) using the methodology of Chelton et al. [2] with U/c > 1. Third column: eddies identified as elliptic regions by the Okubo-Weiss (OW) criterion [e.g., 3]. Fourth column: eddies identified as mesoelliptic (ME) regions by Mezic et al.'s [4] criterion. References: [1] Beron-Vera et al. (2012). Geodesic eddy detection suggests reassessment of Agulhas leakage. Proc. Nat. Acad. Sci. USA, submitted. [2] Haller & Beron-Vera (2012). Geodesic theory of transport barriers in two-dimensional flows. Physica D, in press. [2] Chelton et al. (2011). Prog. Oceanog. 91, 167. [3] Chelton et al. (2007). Geophys. Res. Lett. 34, L5606. [4] Mezic et al. (2010). Science 330, 486.
Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence
NASA Astrophysics Data System (ADS)
Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine
2017-04-01
Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.
2015-04-27
Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the mid-latitude continental and the tropical regions are conducted and evaluated, we examine the scale-dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraftmore » eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of 38 mid-latitude continental convection. We show that the single updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as 3 updrafts can account for the internal variability of updrafts well. Based on evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.« less
Comprehensive comparison of gap filling techniques for eddy covariance net carbon fluxes
NASA Astrophysics Data System (ADS)
Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.
2007-12-01
Review of fifteen techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluation of their performance for different artificial gap scenarios based on a set of ten benchmark datasets from six forested sites in Europe. The goal of gap filling is the reproduction of the NEE time series and hence this present work focuses on estimating missing NEE values, not on editing or the removal of suspect values in these time series due to systematic errors in the measurements (e.g. nighttime flux, advection). The gap filling was examined by generating fifty secondary datasets with artificial gaps (ranging in length from single half-hours to twelve consecutive days) for each benchmark dataset and evaluating the performance with a variety of statistical metrics. The performance of the gap filling varied among sites and depended on the level of aggregation (native half- hourly time step versus daily), long gaps were more difficult to fill than short gaps, and differences among the techniques were more pronounced during the day than at night. The non-linear regression techniques (NLRs), the look-up table (LUT), marginal distribution sampling (MDS), and the semi-parametric model (SPM) generally showed good overall performance. The artificial neural network based techniques (ANNs) were generally, if only slightly, superior to the other techniques. The simple interpolation technique of mean diurnal variation (MDV) showed a moderate but consistent performance. Several sophisticated techniques, the dual unscented Kalman filter (UKF), the multiple imputation method (MIM), the terrestrial biosphere model (BETHY), but also one of the ANNs and one of the NLRs showed high biases which resulted in a low reliability of the annual sums, indicating that additional development might be needed. An uncertainty analysis comparing the estimated random error in the ten benchmark datasets with the artificial gap residuals suggested that the techniques are already at or very close to the noise limit of the measurements. Based on the techniques and site data examined here, the effect of gap filling on the annual sums of NEE is modest, with most techniques falling within a range of ±25 g C m-2 y-1.
Observations of the interaction between near-inertial waves and mesoscale eddies
NASA Astrophysics Data System (ADS)
Martínez-Marrero, Antonio; Sangrá, Pablo; Caldeira, Rui; Aguiar-González, Borja; Rodríguez-Santana, Ángel
2014-05-01
Trajectories of eight drifters dragged below the surface mixed layer and current meter data from a mooring are used to analyse the interaction between near-inertial waves and mesoscale eddies. Drifters were deployed within eddies generated downstream of Canary and Madeira islands between 1998 and 2007. The mooring was installed in the passage of cyclonic eddies induced by Gran Canaria island during 2006. Rotatory wavelet analysis of Lagrangian velocities shows a clear relationship between the near-inertial waves' intrinsic frequencies and the eddy angular velocities. The results reveal that near-inertial waves reach a minimum frequency of half the planetary vorticity (f/2) in the inner core of young anticyclonic eddies rotating with its maximum absolute angular speed of f/2. The highest amplitudes of the observed inertial motions are also found within anticyclonic eddies evidencing the trapping of inertial waves. Finally, the analysis of the current meter series show frequency fluctuations of the near-inertial currents in the upper 500 meters that are related to the passage of cyclonic eddies. These fluctuations appear to be consistent with the variation of the background vorticity produced by the eddies.
Mesoscale Eddies Are Oases for Higher Trophic Marine Life
Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.
2012-01-01
Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294
Determination of eddy current response with magnetic measurements.
Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B
2017-09-01
Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.
NASA Astrophysics Data System (ADS)
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
Investigation of the environmental change pattern of Japan
NASA Technical Reports Server (NTRS)
Maruyasu, T. (Principal Investigator)
1973-01-01
The author has identified the following significant results. ERTS-1 imagery clearly identifies the relationships between the status of erosion, effluent patterns affected by the coastal current, and the cultural construction activities. Simple photographic techniques can be used for detecting water mass distribution separately from cloud cover and also noise caused by reflected sunlight from wave surfaces. Polluted water does not diffuse continuously into the oceanic water, but forms masses in the water in the Kuroshio area. The polluted or turbid water in the area just north of the Tomogashima Channel, the south outlet of the Osaka Bay, shows that the northward tidal current runs in a clockwise eddy at the tidal period when the imagery was taken. Such an eddy-like pattern of tidal current had never been revealed by conventional oceanographic data. A front between an oceanic water mass and a polluted water mass runs in a NW-SE direction in the central part of the Osaka Bay. The patterns of turbid water discharged from the Kii River and Yoshino River show a northward tidal current in the North Kii Straits. The pattern of lighter turbid or polluted water located in the northwest region of the North Kii straits suggests the existence of a clockwise eddy in the straits.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.
2013-12-01
To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.
Mean-state acceleration of cloud-resolving models and large eddy simulations
Jones, C. R.; Bretherton, C. S.; Pritchard, M. S.
2015-10-29
In this study, large eddy simulations and cloud-resolving models (CRMs) are routinely used to simulate boundary layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. These models are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We develop a simple scheme to reduce this time scale separation to accelerate themore » evolution of the mean state. Using this approach we are able to accelerate the model evolution by a factor of 2–16 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. As a culminating test, we apply this technique to accelerate the embedded CRMs in the Superparameterized Community Atmosphere Model by a factor of 2, thereby showing that the method is robust and stable to realistic perturbations across spatial and temporal scales typical in a GCM.« less
NASA Astrophysics Data System (ADS)
Sirianni, M.; Comas, X.; Shoemaker, B.; Job, M. J.; Cooper, H.
2016-12-01
Globally, wetland soils play an important role in regulating climate change by functioning as a source or sink for atmospheric carbon, particularly in terms of methane and carbon dioxide. While many historic studies defined the function of wetland soils in the global carbon budget, the gas-flux dynamics of subtropical wetlands is largely unknown. Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. The U.S. Geological Survey employs eddy covariance methods at several locations within the Preserve to quantify carbon and methane exchanges at ecosystem scales. While eddy covariance towers are a convenient tool for measuring gas fluxes, their footprint is spatially extensive (hundreds of meters); and thus spatial variability at smaller scales is masked by averaging or even overlooked. We intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a combination of geophysical, hydrologic and ecologic techniques. Preliminary results suggest that gas releases from flooded calcitic soils are much greater than organic soils. These results - and others - will help build a better understanding of the role of subtropical wetlands in the global carbon budget.
NASA Astrophysics Data System (ADS)
Kulkarni, M. N.; Kamra, A. K.
2012-11-01
A theoretical model is developed for calculating the vertical distribution of atmospheric electric potential in exchange layer of maritime clean atmosphere. The transport of space charge in electrode layer acts as a convective generator in this model and plays a major role in determining potential distribution in vertical. Eddy diffusion is the main mechanism responsible for the distribution of space charge in vertical. Our results show that potential at a particular level increases with increase in the strength of eddy diffusion under similar conditions. A method is suggested to estimate columnar resistance, the ionospheric potential and the vertical atmospheric electric potential distribution in exchange layer from measurements of total air-earth current density and surface electric field made over oceans. The results are validated and found to be in very good agreement with the previous aircraft measurements. Different parameters involved in the proposed methodology can be determined either theoretically, as in the present work, or experimentally using the near surface atmospheric electrical measurements or using some other surface-based measurement technique such as LIDAR. A graphical relationship between the atmospheric eddy diffusion coefficient and height of exchange layer obtained from atmospheric electrical approach, is reported.
Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.
Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying
2015-12-21
The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.
Large eddy simulation of turbine wakes using higher-order methods
NASA Astrophysics Data System (ADS)
Deskos, Georgios; Laizet, Sylvain; Piggott, Matthew D.; Sherwin, Spencer
2017-11-01
Large eddy simulations (LES) of a horizontal-axis turbine wake are presented using the well-known actuator line (AL) model. The fluid flow is resolved by employing higher-order numerical schemes on a 3D Cartesian mesh combined with a 2D Domain Decomposition strategy for an efficient use of supercomputers. In order to simulate flows at relatively high Reynolds numbers for a reasonable computational cost, a novel strategy is used to introduce controlled numerical dissipation to a selected range of small scales. The idea is to mimic the contribution of the unresolved small-scales by imposing a targeted numerical dissipation at small scales when evaluating the viscous term of the Navier-Stokes equations. The numerical technique is shown to behave similarly to the traditional eddy viscosity sub-filter scale models such as the classic or the dynamic Smagorinsky models. The results from the simulations are compared to experimental data for a Reynolds number scaled by the diameter equal to ReD =1,000,000 and both the time-averaged stream wise velocity and turbulent kinetic energy (TKE) are showing a good overall agreement. At the end, suggestions for the amount of numerical dissipation required by our approach are made for the particular case of horizontal-axis turbine wakes.
Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array
Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying
2015-01-01
The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608
NASA Astrophysics Data System (ADS)
Velasco, E.; Grivicke, R.; Pressley, S.; Allwine, G.; Jobson, T.; Westberg, H.; Lamb, B.; Ramos, R.; Molina, L.
2007-12-01
Direct measurements of emissions of pollutant gases that include all major and minor emissions sources in urban areas are a missing requirement to improve and evaluate emissions inventories. The quality of an urban emissions inventory relies on the accuracy of the information of anthropogenic activities, which in many cases is not available, in particular in urban areas of developing countries. As part of the MCMA-2003 field campaign, we demonstrated the feasibility of using eddy covariance (EC) techniques coupled with fast-response sensors to measure fluxes of volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City. Those flux measurements demonstrated to be also a valuable tool to evaluate the emissions inventory used for air quality modeling. With the objective to confirm the representativeness of the 2003 flux measurements in terms of magnitude, composition and diurnal distribution, as well to evaluate the most recent emissions inventory, a second flux system was deployed in a different district of Mexico City during the 2006 MILAGRO field campaign. This system was located in a busy district surrounded by congested avenues close to the center of the city. In 2003 and 2006 fluxes of olefins and CO2 were measured by the EC technique using a Fast Isoprene Sensor calibrated with a propylene standard and an open path Infrared Gas Analyzer (IRGA), respectively. Fluxes of aromatic and oxygenated VOCs were analyzed by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique. In 2006 the number of VOCs was extended using a disjunct eddy accumulation (DEA) system. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site by gas chromatography / flame ionization detection (GC-FID). In both studies we found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns were similar, but the 2006 fluxes showed higher magnitudes. This difference was due to the different characteristics of the monitored sites rather than an increment of the emissions over a 3-year period. The diurnal patterns of VOCs and CO2 fluxes were strongly related to vehicular traffic. Toluene and methanol fluxes also exhibited a strong influence from non-mobile sources; in particular the 2006 flux measurements were influenced on some days by the application of a resin to the sidewalks in the neighborhood near the flux tower. The fluxes of individual hydrocarbons measured by DEA showed good agreement with the fluxes measured by EC and DEC which demonstrates that the DEA method is valuable for flux measurements of additional individual species. Finally, the comparisons between the measured fluxes of VOCs and the emissions reported by the emissions inventory for the monitored sector of the city showed that these last were within the observed variability of the measured fluxes.
Meisamy, Sina; Hines, Catherine D G; Hamilton, Gavin; Sirlin, Claude B; McKenzie, Charles A; Yu, Huanzhou; Brittain, Jean H; Reeder, Scott B
2011-03-01
To prospectively compare an investigational version of a complex-based chemical shift-based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24-71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r(2)), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2 correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r(2) = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). T1-independent chemical shift-based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2 correction, spectral modeling of fat, and eddy current correction methods are used. © RSNA, 2011.
Hines, Catherine D. G.; Hamilton, Gavin; Sirlin, Claude B.; McKenzie, Charles A.; Yu, Huanzhou; Brittain, Jean H.; Reeder, Scott B.
2011-01-01
Purpose: To prospectively compare an investigational version of a complex-based chemical shift–based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. Materials and Methods: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24–71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r2), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2* correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Results: Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r2 = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). Conclusion: T1-independent chemical shift–based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2* correction, spectral modeling of fat, and eddy current correction methods are used. © RSNA, 2011 PMID:21248233
Cold spray NDE for porosity and other process anomalies
NASA Astrophysics Data System (ADS)
Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.
2018-04-01
This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar surface profile information plus attenuation measurements trended with porosity. The ultrasound measurements, however, may be limited to geometries where the substrate back-wall is normal to the cold spray surface and not too thick. Eddy current showed a strong correlation with porosity. Eddy currents can also be sensitive to cracks and do not need fluid coupling to make measurements, but are not sensitive to coating thicknesses in most cases. Vickers hardness measurements also tracked well with porosity; however, these types of hardness measurements are also not sensitive to coating thickness. An NDE program may include multiple measurements.
NASA Astrophysics Data System (ADS)
Zondlo, Mark; Pan, Da; Golston, Levi; Sun, Kang; Tao, Lei
2016-04-01
Ammonia (NH3) emissions from agricultural areas show extreme spatiotemporal variations, yet agricultural emissions dominate the global NH3 budget and ammoniated aerosols are a dominant component of unhealthy fine particulate matter. The emissions of NH3 and their deposition near and downwind of agricultural areas is complex. As part of a multi-year field intensive along the Colorado Front Range (including the NASA DISCOVER-AQ and NSF FRAPPE field experiments), we have examined temporal emissions of NH3 from feedlots, regional transport of ammonia and ammoniated aerosols from the plains to relatively pristine regions in Rocky Mountain National Park, and dry deposition and re-emission of grassland NH3 in the park. Eddy covariance measurements at feedlots and natural grasslands in the mountains were conducted with newly-developed open-path, eddy covariance laser-based sensors for NH3 (0.7 ng NH3/m2/s detection limit at 10 Hz). These measurements were coupled with other NH3/NHx measurements from mobile laboratories, aircraft, and satellite to examine the transport of NH3 from agricultural areas to cleaner regions downwind. At the farm level, eddy covariance NH3 fluxes showed a strong diurnal component correlated with temperature regardless of the season but with higher absolute emissions in summer than winter. While farm-to-farm variability (N=62 feedlots) was high, similar diurnal trends were observed at all sites regardless of individual farm type (dairy, beef, sheep, poultry, pig). Deposition at scales of several km showed relatively small deposition (10% loss) based upon NH3/CH4 tracer correlations, though the NH3 concentrations were so elevated (up to ppmv) that these losses should not be neglected when considering near-farm deposition. Ammonia was efficiently transported at least 150 km during upslope events to the Colorado Front Range (ele. 3000-4000 m) based upon aircraft, mobile laboratory, and model measurements. The gas phase lifetime of NH3 was estimated to be at least 12 hours. Eddy covariance measurements in the mountains showed deposition of 3.2 ng N/m2/s during upslope events from the agricultural areas. In contrast, during downslope events when clean, free tropospheric air was at the site, re-emission of NH3 to the atmosphere of a similar magnitude was observed. The strong correlations with wind direction, coupled to back trajectories and measurements, suggest that agricultural NH3 emissions are playing an important role in nitrogen deposition at Rocky Mountain National Park. These results will be compared to similar measurements by our group in the San Joaquin Valley in California and via TES/IASI satellite measurements elsewhere in the US.
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
Cyclonic entrainment of preconditioned shelf waters into a frontal eddy
NASA Astrophysics Data System (ADS)
Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.
2015-02-01
The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.
Circulation and multiple-scale variability in the Southern California Bight
NASA Astrophysics Data System (ADS)
Dong, Changming; Idica, Eileen Y.; McWilliams, James C.
2009-09-01
The oceanic circulation in the Southern California Bight (SCB) is influenced by the large-scale California Current offshore, tropical remote forcing through the coastal wave guide alongshore, and local atmospheric forcing. The region is characterized by local complexity in the topography and coastline. All these factors engender variability in the circulation on interannual, seasonal, and intraseasonal time scales. This study applies the Regional Oceanic Modeling System (ROMS) to the SCB circulation and its multiple-scale variability. The model is configured in three levels of nested grids with the parent grid covering the whole US West Coast. The first child grid covers a large southern domain, and the third grid zooms in on the SCB region. The three horizontal grid resolutions are 20 km, 6.7 km, and 1 km, respectively. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to gyre-scale SODA reanalysis fields at the boundaries. The momentum flux is from a three-hourly reanalysis mesoscale MM5 wind with a 6 km resolution for the finest grid in the SCB. The oceanic model starts in an equilibrium state from a multiple-year cyclical climatology run, and then it is integrated from years 1996 through 2003. In this paper, the 8-year simulation at the 1 km resolution is analyzed and assessed against extensive observational data: High-Frequency (HF) radar data, current meters, Acoustic Doppler Current Profilers (ADCP) data, hydrographic measurements, tide gauges, drifters, altimeters, and radiometers. The simulation shows that the domain-scale surface circulation in the SCB is characterized by the Southern California Cyclonic Gyre, comprised of the offshore equatorward California Current System and the onshore poleward Southern California Countercurrent. The simulation also exhibits three subdomain-scale, persistent ( i.e., standing), cyclonic eddies related to the local topography and wind forcing: the Santa Barbara Channel Eddy, the Central-SCB Eddy, and the Catalina-Clemente Eddy. Comparisons with observational data reveal that ROMS reproduces a realistic mean state of the SCB oceanic circulation, as well as its interannual (mainly as a local manifestation of an ENSO event), seasonal, and intraseasonal (eddy-scale) variations. We find high correlations of the wind curl with both the alongshore pressure gradient (APG) and the eddy kinetic energy level in their variations on time scales of seasons and longer. The geostrophic currents are much stronger than the wind-driven Ekman flows at the surface. The model exhibits intrinsic eddy variability with strong topographically related heterogeneity, westward-propagating Rossby waves, and poleward-propagating coastally-trapped waves (albeit with smaller amplitude than observed due to missing high-frequency variations in the southern boundary conditions).
Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles
NASA Astrophysics Data System (ADS)
Touber, Emile; Sandham, Neil D.
2009-12-01
Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.
Large eddy simulation applications in gas turbines.
Menzies, Kevin
2009-07-28
The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.
2015-06-30
The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patternedmore » conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.« less
Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure
NASA Technical Reports Server (NTRS)
Oefelein, Joseph C.; Garcia, Roberto (Technical Monitor)
2002-01-01
This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.
Large-eddy simulation of flow around an airfoil on a structured mesh
NASA Technical Reports Server (NTRS)
Kaltenbach, Hans-Jakob; Choi, Haecheon
1995-01-01
The diversity of flow characteristics encountered in a flow over an airfoil near maximum lift taxes the presently available statistical turbulence models. This work describes our first attempt to apply the technique of large-eddy simulation to a flow of aeronautical interest. The challenge for this simulation comes from the high Reynolds number of the flow as well as the variety of flow regimes encountered, including a thin laminar boundary layer at the nose, transition, boundary layer growth under adverse pressure gradient, incipient separation near the trailing edge, and merging of two shear layers at the trailing edge. The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The corresponding angle of attack was determined independently by Wadcock (1987) and Hastings & Williams (1984, 1987) to be close to 12 deg. The simulation matches the chord Reynolds number U(sub infinity)c/v = 1.64 x 10(exp 6) of Wadcock's experiment.