-
Further Studies on Oceanic Biogeochemistry and Carbon Cycling
NASA Technical Reports Server (NTRS)
Signorini, S. R.; McClain, C. R.
2003-01-01
This TM consists of two chapters. Chapter I describes the development of a coupled, one-dimensional biogeochemical model using turbulence closure mixed layer (TCMLM) dynamics. The model is applied to the Sargasso Sea at the BATS (Bermuda Atlantic Time Series) site and the results are compared with a previous model study in the same region described in NASNTP-2001-209991. The use of the TCMLM contributed to some improvements in the model simulation of chlorophyll, PAR, nitrate, phosphate, and oxygen, but most importantly, the current model achieved good agreement with the data with much more realistic background eddy diffusivity. However, off-line calculations of horizontal transport of biogeochemical properties revealed that one-dimensional dynamics can only provide a limited assessment of the nutrient and carbon balances at BATS. Future studies in the BATS region will require comprehensive three-dimensional field studies, combined with three-dimensional eddy resolving numerical experiments, to adequately quantify the impact of the local and remote forcing on ecosystem dynamics and carbon cycling. Chapter II addresses the sensitivity of global sea-air CO, flux estimates to wind speed, temperature, and salinity. Sensitivity analyses of sea-air CO, flux to wind speed climatologies, gas transfer algorithms, SSS and SST were conducted for the global oceans and regional domains. Large uncertainties in the global sea-air flux are identified, primarily due to the different gas transfer algorithms used. The sensitivity of the sea-air flux to SST and SSS is similar in magnitude to the effect of using different wind climatologies. Globally, the mean ocean uptake of CO, changes by 5 to 16%, depending upon the combination of SST and SSS used.
-
Nonlinear Eddy-Eddy Interactions in Dry Atmospheres Macroturbulence
NASA Astrophysics Data System (ADS)
Ait Chaalal, F.; Schneider, T.
2012-12-01
The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale eddy-eddy nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of eddy-mean flow interactions and the weakness of eddy-eddy interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these eddy-eddy interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the eddy-eddy interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no eddy-eddy simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic eddy-driven jets and energy-containing eddy length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no eddy-eddy model does not achieve a realistic isotropization of the eddies, the meridional circulation is compressed in the meridional direction and secondary eddy-driven jets emerge. In addition, the baroclinic wave activity does not reach the upper troposphere in association with a very weak or absent Rossby wave absorption in the upper subtropical troposphere. Understanding these deficiencies and the rôle of the eddy-eddy nonlinear interactions in determining the mean meridional circulation paves the way to the development of stochastic third order moments parametrizations, to eventually build GCMs that directly solve for the flow statistics and that could provide a deeper understanding of anthropogenic and natural climate changes. [1] O'Gorman, P. A., & Schneider, T. 2007, Geophysical Research Letters, 34, 22801 [2] Schneider, T., and C. C. Walker, 2006, Journal of the Atmospheric Sciences, 63, 1569-1586.
-
Wake Vortex Prediction Models for Decay and Transport Within Stratified Environments
NASA Astrophysics Data System (ADS)
Switzer, George F.; Proctor, Fred H.
2002-01-01
This paper proposes two simple models to predict vortex transport and decay. The models are determined empirically from results of three-dimensional large eddy simulations, and are applicable to wake vortices out of ground effect and not subjected to environmental winds. The results, from the large eddy simulations assume a range of ambient turbulence and stratification levels. The models and the results from the large eddy simulations support the hypothesis that the decay of the vortex hazard is decoupled from its change in descent rate.
-
Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry
DOE PAGES
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...
2016-01-01
Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less
-
Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.
Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less
-
Computational Analysis of Static and Dynamic Behaviour of Magnetic Suspensions and Magnetic Bearings
NASA Technical Reports Server (NTRS)
Britcher, Colin P. (Editor); Groom, Nelson J.
1996-01-01
Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration isolation system, where the magnetic actuator geometry resembles a conventional magnetic bearing. Magnetostatic computations provide estimates of flux density within airgaps and the iron core material, fringing at the pole faces and the net force generated. Eddy current computations provide coil inductance, power dissipation and the phase lag in the magnetic field, all as functions of excitation frequency. Here, the dynamics of the magnetic bearings, notably the rise time of forces with changing currents, are found to be very strongly affected by eddy currents, even at quite low frequencies. Results are also compared to experimental measurements of the performance of a large-gap magnetic suspension system, the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Eddy current effects are again shown to significantly affect the dynamics of the system. Some consideration is given to the ease and accuracy of computation, specifically relating to OPERA/TOSCA/ELEKTRA.
-
ED(MF)n: Humidity-Convection Feedbacks in a Mass Flux Scheme Based on Resolved Size Densities
NASA Astrophysics Data System (ADS)
Neggers, R.
2014-12-01
Cumulus cloud populations remain at least partially unresolved in present-day numerical simulations of global weather and climate, and accordingly their impact on the larger-scale flow has to be represented through parameterization. Various methods have been developed over the years, ranging in complexity from the early bulk models relying on a single plume to more recent approaches that attempt to reconstruct the underlying probability density functions, such as statistical schemes and multiple plume approaches. Most of these "classic" methods capture key aspects of cumulus cloud populations, and have been successfully implemented in operational weather and climate models. However, the ever finer discretizations of operational circulation models, driven by advances in the computational efficiency of supercomputers, is creating new problems for existing sub-grid schemes. Ideally, a sub-grid scheme should automatically adapt its impact on the resolved scales to the dimension of the grid-box within which it is supposed to act. It can be argued that this is only possible when i) the scheme is aware of the range of scales of the processes it represents, and ii) it can distinguish between contributions as a function of size. How to conceptually represent this knowledge of scale in existing parameterization schemes remains an open question that is actively researched. This study considers a relatively new class of models for sub-grid transport in which ideas from the field of population dynamics are merged with the concept of multi plume modelling. More precisely, a multiple mass flux framework for moist convective transport is formulated in which the ensemble of plumes is created in "size-space". It is argued that thus resolving the underlying size-densities creates opportunities for introducing scale-awareness and scale-adaptivity in the scheme. The behavior of an implementation of this framework in the Eddy Diffusivity Mass Flux (EDMF) model, named ED(MF)n, is examined for a standard case of subtropical marine shallow cumulus. We ask if a system of multiple independently resolved plumes is able to automatically create the vertical profile of bulk (mass) flux at which the sub-grid scale transport balances the imposed larger-scale forcings in the cloud layer.
-
Numerical and Experimental Modeling of the Recirculating Melt Flow Inside an Induction Crucible Furnace
NASA Astrophysics Data System (ADS)
Asad, Amjad; Bauer, Katrin; Chattopadhyay, Kinnor; Schwarze, Rüdiger
2018-06-01
In the paper, a new water model of the turbulent recirculating flow in an induction furnace is introduced. The water model was based on the principle of the stirred vessel used in process engineering. The flow field in the water model was measured by means of particle image velocimetry in order to verify the model's performance. Here, it is indicated that the flow consists of two toroidal vortices similar to the flow in the induction crucible furnace. Furthermore, the turbulent flow in the water model is investigated numerically by adopting eddy-resolving turbulence modeling. The two toroidal vortices occur in the simulations as well. The numerical approaches provide identical time-averaged flow patterns. Moreover, a good qualitative agreement is observed on comparing the experimental and numerical results. In addition, a numerical simulation of the melt flow in a real induction crucible furnace was performed. The turbulent kinetic energy spectrum of the flow in the water model was compared to that of the melt flow in the induction crucible furnace to show the similarity in the nature of turbulence.
-
A daily global mesoscale ocean eddy dataset from satellite altimetry.
PubMed
Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin
2015-01-01
Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System.
-
A daily global mesoscale ocean eddy dataset from satellite altimetry
PubMed Central
Faghmous, James H.; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin
2015-01-01
Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System. PMID:26097744
-
Ocean-Atmosphere Coupling Processes Affecting Predictability in the Climate System
NASA Astrophysics Data System (ADS)
Miller, A. J.; Subramanian, A. C.; Seo, H.; Eliashiv, J. D.
2017-12-01
Predictions of the ocean and atmosphere are often sensitive to coupling at the air-sea interface in ways that depend on the temporal and spatial scales of the target fields. We will discuss several aspects of these types of coupled interactions including oceanic and atmospheric forecast applications. For oceanic mesoscale eddies, the coupling can influence the energetics of the oceanic flow itself. For Madden-Julian Oscillation onset, the coupling timestep should resolve the diurnal cycle to properly raise time-mean SST and latent heat flux prior to deep convection. For Atmospheric River events, the evolving SST field can alter the trajectory and intensity of precipitation anomalies along the California coast. Improvements in predictions will also rely on identifying and alleviating sources of biases in the climate states of the coupled system. Surprisingly, forecast skill can also be improved by enhancing stochastic variability in the atmospheric component of coupled models as found in a multiscale ensemble modeling approach.
-
Model based Inverse Methods for Sizing Cracks of Varying Shape and Location in Bolt hole Eddy Current (BHEC) Inspections (Postprint)
DTIC Science & Technology
2016-02-10
using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models
-
Dynamical analysis of a satellite-observed anticyclonic eddy in the northern Bering Sea
NASA Astrophysics Data System (ADS)
Li, Yineng; Li, Xiaofeng; Wang, Jia; Peng, Shiqiu
2016-05-01
The characteristics and evolution of a satellite-observed anticyclonic eddy in the northern Bering Sea during March and April 1999 are investigated using a three-dimensional Princeton Ocean Model (POM). The anticyclonic-like current pattern and asymmetric feature of the eddy were clearly seen in the synthetic aperture radar (SAR), sea surface temperature, and ocean color images in April 1999. The results from model simulation reveal the three-dimensional structure of the anticyclonic eddy, its movement, and dissipation. Energy analysis indicates that the barotropic instability (BTI) is the main energy source for the growth of the anticyclonic eddy. The momentum analysis further reveals that the larger magnitude of the barotropic pressure gradient in the meridional direction causes the asymmetry of the anticyclonic eddy in the zonal and meridional directions, while the different magnitudes of the meridional baroclinic pressure gradient are responsible for the different intensity of currents between the northern and southern parts of the anticyclonic eddy. This article was corrected on 23 JUL 2016. See the end of the full text for details.
-
Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel
2017-11-01
We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.
-
Reynolds Stress Distributions and the Measurement and Calculation of Eddy Viscosity in Gravity Currents
NASA Astrophysics Data System (ADS)
Kelly, R. W.; Chalk, C.; Dorrell, R. M.; Peakall, J.; Burns, A. D.; Keevil, G. M.; Thomas, R. E.; Williams, G.
2016-12-01
In the natural environment, gravity currents transport large volumes of sediment great distances and are often considered one of the most important mechanisms for sediment transport in ocean basins. Deposits from many individual submarine gravity currents, turbidites, ultimately form submarine fan systems. These are the largest sedimentary systems on the planet and contain valuable hydrocarbon reserves. Moreover, the impact of these currents on submarine technologies and seafloor infrastructure can be devastating and therefore they are of significant interest to a wide range of industries. Here we present experimental, numerical and theoretical models of time-averaged turbulent shear stresses, i.e. Reynolds stresses. Reynolds stresses can be conceptually parameterised by an eddy viscosity parameter that relates chaotic fluid motion to diffusive type processes. As such, it is a useful parameter for indicating the extent of internal mixing and is used extensively in both numerical and analytical modelling of both open-channel and gravity driven flows. However, a lack of knowledge of the turbulent structure of gravity currents limits many hydro- and morphodynamic models. High resolution 3-dimensional experimental velocity data, gathered using acoustic Doppler profiling velocimetry, enabled direct calculation of stresses and eddy viscosity. Comparison of experimental data to CFD and analytical models allowed the testing of eddy viscosity-based turbulent mixing models. The calculated eddy viscosity profile is parabolic in nature in both the upper and lower shear layers. However, an apparent breakdown in the Boussinesq hypothesis (used to calculate the eddy viscosity and upon which many numerical models are based) is observed in the region of the current around the velocity maximum. With the use of accompanying density data it is suggested that the effect of stratification on eddy viscosity is significant and alternative formulations may be required.
-
Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers
NASA Astrophysics Data System (ADS)
Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott
2017-11-01
Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.
-
Biogeochemical Role of Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs, Hypoxic Storms, and Microbial Stewpots?
NASA Astrophysics Data System (ADS)
Frenger, Ivy; Bianchi, Daniele; Stührenberg, Carolin; Oschlies, Andreas; Dunne, John; Deutsch, Curtis; Galbraith, Eric; Schütte, Florian
2018-02-01
Subsurface eddies are known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here we use a global eddying (0.1°) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS) and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most eddies exist for a few months, moving over distances of hundreds of kilometers, a small fraction (<5%) of long-lived eddies propagates over distances greater than 1,000 km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent eddies accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents and may contribute to the well-known reduction of productivity by eddies in EBUS. Furthermore, at the density layer of their cores, eddies decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, eddies represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these nonlocal effects in global climate models, which typically include noneddying oceans, would require dedicated parameterizations.
-
The Aqua-Planet Experiment (APE): CONTROL SST Simulation
NASA Technical Reports Server (NTRS)
Blackburn, Michael; Williamson, David L.; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut;

2013-01-01
Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behavior and investigate convergence of the aqua-planet climate with increasing resolution.
-
Implementation of an Online Chemistry Model to a Large Eddy Simulation Model (PALM-4U0
NASA Astrophysics Data System (ADS)
Mauder, M.; Khan, B.; Forkel, R.; Banzhaf, S.; Russo, E. E.; Sühring, M.; Kanani-Sühring, F.; Raasch, S.; Ketelsen, K.
2017-12-01
Large Eddy Simulation (LES) models permit to resolve relevant scales of turbulent motion, so that these models can capture the inherent unsteadiness of atmospheric turbulence. However, LES models are so far hardly applied for urban air quality studies, in particular chemical transformation of pollutants. In this context, BMBF (Bundesministerium für Bildung und Forschung) funded a joint project, MOSAIK (Modellbasierte Stadtplanung und Anwendung im Klimawandel / Model-based city planning and application in climate change) with the main goal to develop a new highly efficient urban climate model (UCM) that also includes atmospheric chemical processes. The state-of-the-art LES model PALM; Maronga et al, 2015, Geosci. Model Dev., 8, doi:10.5194/gmd-8-2515-2015), has been used as a core model for the new UCM named as PALM-4U. For the gas phase chemistry, a fully coupled 'online' chemistry model has been implemented into PALM. The latest version of the Kinetic PreProcessor (KPP) Version 2.3, has been utilized for the numerical integration of chemical species. Due to the high computational demands of the LES model, compromises in the description of chemical processes are required. Therefore, a reduced chemistry mechanism, which includes only major pollutants namely O3, NO, NO2, CO, a highly simplified VOC chemistry and a small number of products have been implemented. This work shows preliminary results of the advection, and chemical transformation of atmospheric pollutants. Non-cyclic boundaries have been used for inflow and outflow in east-west directions while periodic boundary conditions have been implemented to the south-north lateral boundaries. For practical applications, our approach is to go beyond the simulation of single street canyons to chemical transformation, advection and deposition of air pollutants in the larger urban canopy. Tests of chemistry schemes and initial studies of chemistry-turbulence, transport and transformations are presented.
-
Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence
NASA Astrophysics Data System (ADS)
Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.
2017-12-01
Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.